Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1974-01-01
A two year study of the major process variables associated with the manufacturing process for sealed, nickel-cadmium, areospace cells is summarized. Effort was directed toward identifying the major process variables associated with a manufacturing process, experimentally assessing each variable's effect, and imposing the necessary changes (optimization) and controls for the critical process variables to improve results and uniformity. A critical process variable associated with the sintered nickel plaque manufacturing process was identified as the manual forming operation. Critical process variables identified with the positive electrode impregnation/polarization process were impregnation solution temperature, free acid content, vacuum impregnation, and sintered plaque strength. Positive and negative electrodes were identified as a major source of carbonate contamination in sealed cells.
Del Valle Del Valle, Gema; Carrió, Carmen; Belloch, Amparo
2017-10-09
Help-seeking for mental disorders is a complex process, which includes different temporary stages, and in which the motivational variables play an especially relevant role. However, there is a lack of instruments to evaluate in depth both the temporary and motivational variables involved in the help-seeking process. This study aims to analyse in detail these two sets of variables, using a specific instrument designed for the purpose, to gain a better understanding of the process of treatment seeking. A total of 152 patients seeking treatment in mental health outpatient clinics of the NHS were individually interviewed: 71 had Obsessive-Compulsive Disorder, 21 had Agoraphobia, 18 had Major Depressive Disorder), 20 had Anorexia Nervosa, and 22 had Cocaine Dependence. The patients completed a structured interview assessing the help-seeking process. Disorder severity and quality of life was also assessed. The patients with agoraphobia and with major depression took significantly less time in recognising their mental health symptoms. Similarly, patients with major depression were faster in seeking professional help. Motivational variables were grouped in 3 sets: motivators for seeking treatment, related to the negative impact of symptoms on mood and to loss of control over symptoms; motivators for delaying treatment, related to minimisation of the disorder; and stigma-associated variables. The results support the importance of considering the different motivational variables involved in the several stages of the help-seeking process. The interview designed to that end has shown its usefulness in this endeavour. Copyright © 2017 SEP y SEPB. Publicado por Elsevier España, S.L.U. All rights reserved.
Variability in Rheumatology day care hospitals in Spain: VALORA study.
Hernández Miguel, María Victoria; Martín Martínez, María Auxiliadora; Corominas, Héctor; Sanchez-Piedra, Carlos; Sanmartí, Raimon; Fernandez Martinez, Carmen; García-Vicuña, Rosario
To describe the variability of the day care hospital units (DCHUs) of Rheumatology in Spain, in terms of structural resources and operating processes. Multicenter descriptive study with data from a self-completed questionnaire of DCHUs self-assessment based on DCHUs quality standards of the Spanish Society of Rheumatology. Structural resources and operating processes were analyzed and stratified by hospital complexity (regional, general, major and complex). Variability was determined using the coefficient of variation (CV) of the variable with clinical relevance that presented statistically significant differences when was compared by centers. A total of 89 hospitals (16 autonomous regions and Melilla) were included in the analysis. 11.2% of hospitals are regional, 22,5% general, 27%, major and 39,3% complex. A total of 92% of DCHUs were polyvalent. The number of treatments applied, the coordination between DCHUs and hospital pharmacy and the post graduate training process were the variables that showed statistically significant differences depending on the complexity of hospital. The highest rate of rheumatologic treatments was found in complex hospitals (2.97 per 1,000 population), and the lowest in general hospitals (2.01 per 1,000 population). The CV was 0.88 in major hospitals; 0.86 in regional; 0.76 in general, and 0.72 in the complex. there was variability in the number of treatments delivered in DCHUs, being greater in major hospitals and then in regional centers. Nonetheless, the variability in terms of structure and function does not seem due to differences in center complexity. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.
Dimensional control of die castings
NASA Astrophysics Data System (ADS)
Karve, Aniruddha Ajit
The demand for net shape die castings, which require little or no machining, is steadily increasing. Stringent customer requirements are forcing die casters to deliver high quality castings in increasingly short lead times. Dimensional conformance to customer specifications is an inherent part of die casting quality. The dimensional attributes of a die casting are essentially dependent upon many factors--the quality of the die and the degree of control over the process variables being the two major sources of dimensional error in die castings. This study focused on investigating the nature and the causes of dimensional error in die castings. The two major components of dimensional error i.e., dimensional variability and die allowance were studied. The major effort of this study was to qualitatively and quantitatively study the effects of casting geometry and process variables on die casting dimensional variability and die allowance. This was accomplished by detailed dimensional data collection at production die casting sites. Robust feature characterization schemes were developed to describe complex casting geometry in quantitative terms. Empirical modeling was utilized to quantify the effects of the casting variables on dimensional variability and die allowance for die casting features. A number of casting geometry and process variables were found to affect dimensional variability in die castings. The dimensional variability was evaluated by comparisons with current published dimensional tolerance standards. The casting geometry was found to play a significant role in influencing the die allowance of the features measured. The predictive models developed for dimensional variability and die allowance were evaluated to test their effectiveness. Finally, the relative impact of all the components of dimensional error in die castings was put into perspective, and general guidelines for effective dimensional control in the die casting plant were laid out. The results of this study will contribute to enhancement of dimensional quality and lead time compression in the die casting industry, thus making it competitive with other net shape manufacturing processes.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.
1972-01-01
The effort and results of a program to determine and study the critical process variables associated with the manufacture of aerospace, hermetically-sealed, nickel-cadmium cells are reported. During the period, the impregnation/polarization process variable study was brought to a close with the completion of a series of related experiments. The results of the experiments are summarized. During this period, a general characterization of cell separator materials was initiated. The major conclusions resulting from the characterization of materials are included.
The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools
NASA Astrophysics Data System (ADS)
Anaam, Mahyoub Ali
The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they outperform nonscience majors on integrated science process skills and logical thinking abilities. High achievers in science majors have a significantly higher attitude toward science, higher integrated science process skills, and higher logical thinking abilities than high and low achievers in nonscience majors. No gender differences were found on these variables. Chi-Square tests indicate that no significant relationships exist between students' majors and their personality types and learning styles. However, it was found that majority of students prefer extroversion over introversion, sensing over intuition, thinking over feeling, and judging over perceiving. Moreover, the most common learning styles among science and nonscience majors were the divergent and the assimilative learning styles. Finally, the educational implication of these findings were discussed and future research that need to be conducted were proposed.
EXAMINING THE TEMPORAL VARIABILITY OF AMMONIA AND NITRIC OXIDE EMISSIONS FROM AGRICULTURAL PROCESSES
This paper examines the temporal variability of airborne emissions of ammonia from livestock operations and fertilizer application and nitric oxide from soils. In the United States, the livestock operations and fertilizer categories comprise the majority of the ammonia emissions...
CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperber, Ken R.; Hendon, Harry H.
2011-05-04
These are a set of slides on CLIVAR Asian-Australian Monsoon Panel Report to Scientific Steering Group-18. These are the major topics covered within: major activities over the past year, AAMP Monsoon Diagnostics/Metrics Task Team, Boreal Summer Asian Monsoon, Workshop on Modelling Monsoon Intraseasonal Variability, Workshop on Interdecadal Variability and Predictability of the Asian-Australian Monsoon, Evidence of Interdecadal Variability of the Asian-Australian Monsoon, Development of MJO metrics/process-oriented diagnostics/model evaluation/prediction with MJOTF and GCSS, YOTC MJOTF, GEWEX GCSS, AAMP MJO Diabatic Heating Experiment, Hindcast Experiment for Intraseasonal Prediction, Support and Coordination for CINDY2011/DYNAMO, Outreach to CORDEX, Interaction with FOCRAII, WWRP/WCRP Multi-Week Predictionmore » Project, Major Future Plans/Activities, Revised AAMP Terms of Reference, Issues and Challenges.« less
Using the domain identification model to study major and career decision-making processes
NASA Astrophysics Data System (ADS)
Tendhar, Chosang; Singh, Kusum; Jones, Brett D.
2018-03-01
The purpose of this study was to examine the extent to which (1) a domain identification model could be used to predict students' engineering major and career intentions and (2) the MUSIC Model of Motivation components could be used to predict domain identification. The data for this study were collected from first-year engineering students. We used a structural equation model to test the hypothesised relationship between variables in the partial domain identification model. The findings suggested that engineering identification significantly predicted engineering major intentions and career intentions and had the highest effect on those two variables compared to other motivational constructs. Furthermore, results suggested that success, interest, and caring are plausible contributors to students' engineering identification. Overall, there is strong evidence that the domain identification model can be used as a lens to study career decision-making processes in engineering, and potentially, in other fields as well.
The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
1997-01-01
The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.
NASA Astrophysics Data System (ADS)
Brown, S. M.; Behn, M. D.; Grove, T. L.
2017-12-01
We present results of a combined petrologic - geochemical (major and trace element) - geodynamical forward model for mantle melting and subsequent melt modification. The model advances Behn & Grove (2015), and is calibrated using experimental petrology. Our model allows for melting in the plagioclase, spinel, and garnet fields with a flexible retained melt fraction (from pure batch to pure fractional), tracks residual mantle composition, and includes melting with water, variable melt productivity, and mantle mode calculations. This approach is valuable for understanding oceanic crustal accretion, which involves mantle melting and melt modification by migration and aggregation. These igneous processes result in mid-ocean ridge basalts that vary in composition at the local (segment) and global scale. The important variables are geophysical and geochemical and include mantle composition, potential temperature, mantle flow, and spreading rate. Accordingly, our model allows us to systematically quantify the importance of each of these external variables. In addition to discriminating melt generation effects, we are able to discriminate the effects of different melt modification processes (inefficient pooling, melt-rock reaction, and fractional crystallization) in generating both local, segment-scale and global-scale compositional variability. We quantify the influence of a specific igneous process on the generation of oceanic crust as a function of variations in the external variables. We also find that it is unlikely that garnet lherzolite melting produces a signature in either major or trace element compositions formed from aggregated melts, because when melting does occur in the garnet field at high mantle temperature, it contributes a relatively small, uniform fraction (< 10%) of the pooled melt compositions at all spreading rates. Additionally, while increasing water content and/or temperature promote garnet melting, they also increase melt extent, pushing the pooled composition to lower Sm/Yb and higher Lu/Hf.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem
2007-04-01
Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.
Practical small-scale explosive seam welding
NASA Technical Reports Server (NTRS)
Bement, L. J.
1983-01-01
Joining principles and variables, types of joints, capabilities, and current and potential applications are described for an explosive seam welding process developed at NASA Langley Research Center. Variable small quantities of RDX explosive in a ribbon configuration are used to create narrow (less than 0.5 inch), long length, uniform, hermetrically sealed joints that exhibit parent metal properties in a wide variety of metals, alloys, and combinations. The first major all application of the process is the repair of four nuclear reactors in Canada. Potential applications include pipelines, sealing of vessels, and assembly of large space structures.
Systematic review of the neural basis of social cognition in patients with mood disorders.
Cusi, Andrée M; Nazarov, Anthony; Holshausen, Katherine; Macqueen, Glenda M; McKinnon, Margaret C
2012-05-01
This review integrates neuroimaging studies of 2 domains of social cognition--emotion comprehension and theory of mind (ToM)--in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were "fMRI," "emotion comprehension," "emotion perception," "affect comprehension," "affect perception," "facial expression," "prosody," "theory of mind," "mentalizing" and "empathy" in combination with "major depressive disorder," "bipolar disorder," "major depression," "unipolar depression," "clinical depression" and "mania." Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Studies that did not include control tasks or a comparator group were included in this review. Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks under lying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders.
Data Processing Aspects of MEDLARS
Austin, Charles J.
1964-01-01
The speed and volume requirements of MEDLARS necessitate the use of high-speed data processing equipment, including paper-tape typewriters, a digital computer, and a special device for producing photo-composed output. Input to the system is of three types: variable source data, including citations from the literature and search requests; changes to such master files as the medical subject headings list and the journal record file; and operating instructions such as computer programs and procedures for machine operators. MEDLARS builds two major stores of data on magnetic tape. The Processed Citation File includes bibliographic citations in expanded form for high-quality printing at periodic intervals. The Compressed Citation File is a coded, time-sequential citation store which is used for high-speed searching against demand request input. Major design considerations include converting variable-length, alphanumeric data to mechanical form quickly and accurately; serial searching by the computer within a reasonable period of time; high-speed printing that must be of graphic quality; and efficient maintenance of various complex computer files. PMID:14119287
DATA PROCESSING ASPECTS OF MEDLARS.
AUSTIN, C J
1964-01-01
The speed and volume requirements of MEDLARS necessitate the use of high-speed data processing equipment, including paper-tape typewriters, a digital computer, and a special device for producing photo-composed output. Input to the system is of three types: variable source data, including citations from the literature and search requests; changes to such master files as the medical subject headings list and the journal record file; and operating instructions such as computer programs and procedures for machine operators. MEDLARS builds two major stores of data on magnetic tape. The Processed Citation File includes bibliographic citations in expanded form for high-quality printing at periodic intervals. The Compressed Citation File is a coded, time-sequential citation store which is used for high-speed searching against demand request input. Major design considerations include converting variable-length, alphanumeric data to mechanical form quickly and accurately; serial searching by the computer within a reasonable period of time; high-speed printing that must be of graphic quality; and efficient maintenance of various complex computer files.
NASA Astrophysics Data System (ADS)
Pappas, C.
2017-12-01
Terrestrial ecosystem processes respond differently to hydrometeorological variability across timescales, and so does our scientific understanding of the underlying mechanisms. Process-based modeling of ecosystem functioning is therefore challenging, especially when long-term predictions are envisioned. Here we analyze the statistical properties of hydrometeorological and ecosystem variability, i.e., the variability of ecosystem process related to vegetation carbon dynamics, from hourly to decadal timescales. 23 extra-tropical forest sites, covering different climatic zones and vegetation characteristics, are examined. Micrometeorological and reanalysis data of precipitation, air temperature, shortwave radiation and vapor pressure deficit are used to describe hydrometeorological variability. Ecosystem variability is quantified using long-term eddy covariance flux data of hourly net ecosystem exchange of CO2 between land surface and atmosphere, monthly remote sensing vegetation indices, annual tree-ring widths and above-ground biomass increment estimates. We find that across sites and timescales ecosystem variability is confined within a hydrometeorological envelope that describes the range of variability of the available resources, i.e., water and energy. Furthermore, ecosystem variability demonstrates long-term persistence, highlighting ecological memory and slow ecosystem recovery rates after disturbances. We derive an analytical model, combining deterministic harmonics and stochastic processes, that represents major mechanisms and uncertainties and mimics the observed pattern of hydrometeorological and ecosystem variability. This stochastic framework offers a parsimonious and mathematically tractable approach for modelling ecosystem functioning and for understanding its response and resilience to environmental changes. Furthermore, this framework reflects well the observed ecological memory, an inherent property of ecosystem functioning that is currently not captured by simulation results with process-based models. Our analysis offers a perspective for terrestrial ecosystem modelling, combining current process understanding with stochastic methods, and paves the way for new model-data integration opportunities in Earth system sciences.
Regulated Divergence: Textual Patterns, Creativity and Cognitive Emotion Regulation
ERIC Educational Resources Information Center
Kopcsó, Krisztina; Láng, András
2017-01-01
According to literature, several forms of creativity relate to primary process and adaptive regression. The major aim of this study was to examine whether a specific pattern of creativity and primary- and secondary-process thinking could be identified among stories while investigating some personal variables. 78 undergraduate students (41 women,…
The importance of normalisation in the construction of deprivation indices.
Gilthorpe, M S
1995-12-01
Measuring socio-economic deprivation is a major challenge usually addressed through the use of composite indices. This paper aims to clarify the technical details regarding composite index construction. The distribution of some variables, for example unemployment, varies over time, and these variations must be considered when composite indices are periodically re-evaluated. The process of normalisation is examined in detail and particular attention is paid to the importance of symmetry and skewness of the composite variable distributions. Four different solutions of the Townsend index of socioeconomic deprivation are compared to reveal the effects that differing transformation processes have on the meaning or interpretation of the final index values. Differences in the rank order and the relative separation between values are investigated. Constituent variables which have been transformed to yield a more symmetric distribution provide indices that behave similarly, irrespective of the actual transformation methods adopted. Normalisation is seen to be of less importance than the removal of variable skewness. Furthermore, the degree of success of the transformation in removing skewness has a major effect in determining the variation between the individual electoral ward scores. Constituent variables undergoing no transformation produce an index that is distorted by the inherent variable skewness, and this index is not consistent between re-evaluations, either temporally or spatially. Effective transformation of constituent variables should always be undertaken when generating a composite index. The most important aspect is the removal of variable skewness. There is no need for the transformed variables to be normally distributed, only symmetrically distributed, before standardisation. Even where additional parameter weights are to be applied, which significantly alter the final index, appropriate transformation procedures should be adopted for the purpose of consistency over time and between different geographical areas.
Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T
2017-05-03
One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.
NASA Astrophysics Data System (ADS)
Colette, Augustin; Bessagnet, Bertrand; Dangiola, Ariela; D'Isidoro, Massimo; Gauss, Michael; Granier, Claire; Hodnebrog, Øivind; Jakobs, Hermann; Kanakidou, Maria; Khokhar, Fahim; Law, Kathy; Maurizi, Alberto; Meleux, Frederik; Memmesheimer, Michael; Nyiri, Agnes; Rouil, Laurence; Stordal, Frode; Tampieri, Francesco
2010-05-01
With the growth of urban agglomerations, assessing the drivers of variability of air quality in and around the main anthropogenic emission hotspots has become a major societal concern as well as a scientific challenge. These drivers include emission changes and meteorological variability; both of them can be investigated by means of numerical modelling of trends over the past few years. A collaborative effort has been developed in the framework of the CityZen European project to address this question. Several chemistry and transport models (CTMs) are deployed in this activity: four regional models (BOLCHEM, CHIMERE, EMEP and EURAD) and three global models (CTM2, MOZART, and TM4). The period from 1998 to 2007 has been selected for the historic reconstruction. The focus for the present preliminary presentation is Europe. A consistent set of emissions is used by all partners (EMEP for the European domain and IPCC-AR5 beyond) while a variety of meteorological forcing is used to gain robustness in the ensemble spread amongst models. The results of this experiment will be investigated to address the following questions: - Is the envelope of models able to reproduce the observed trends of the key chemical constituents? - How the variability amongst models changes in time and space and what does it tell us about the processes driving the observed trends? - Did chemical regimes and aerosol formation processes changed in selected hotspots? Answering the above questions will contribute to fulfil the ultimate goal of the present study: distinguishing the respective contribution of meteorological variability and emissions changes on air quality trends in major anthropogenic emissions hotspots.
Kinetic energy budgets in areas of convection
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.
1979-01-01
Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.
Molloy Elreda, Lauren; Coatsworth, J Douglas; Gest, Scott D; Ram, Nilam; Bamberger, Katharine
2016-11-01
Although the majority of evidence-based programs are designed for group delivery, group process and its role in participant outcomes have received little empirical attention. Data were collected from 20 groups of participants (94 early adolescents, 120 parents) enrolled in an efficacy trial of a mindfulness-based adaptation of the Strengthening Families Program (MSFP). Following each weekly session, participants reported on their relations to group members. Social network analysis and methods sensitive to intraindividual variability were integrated to examine weekly covariation between group process and participant progress, and to predict post-intervention outcomes from levels and changes in group process. Results demonstrate hypothesized links between network indices of group process and intervention outcomes and highlight the value of this unique analytic approach to studying intervention group process.
Materials characterization of propellants using ultrasonics
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Jones, David
1993-01-01
Propellant characteristics for solid rocket motors were not completely determined for its use as a processing variable in today's production facilities. A major effort to determine propellant characteristics obtainable through ultrasonic measurement techniques was performed in this task. The information obtained was then used to determine the uniformity of manufacturing methods and/or the ability to determine non-uniformity in processes.
ERIC Educational Resources Information Center
Bean, John P.
A theoretical model of turnover in work organizations was applied to the college student dropout process at a major midwestern land grant university. The 854 freshmen women subjects completed a questionnaire that included measures for 14 independent variables: grades, practical value, development, routinization, instrumental communication,…
ERIC Educational Resources Information Center
Aumann, Jon; And Others
Exploring a Phoenix, Arizona, drug rehabilitation program oriented toward the Chicano addict was the purpose of this study. The study related to 3 major variables influencing the rehabilitation process: (1) characteristics of the Chicano addict, (2) characteristic life style patterns considered in the rehabilitation process, and (3) the extent to…
NASA Astrophysics Data System (ADS)
Candra, S.; Batan, I. M. L.; Berata, W.; Pramono, A. S.
2017-11-01
This paper presents the mathematical approach of minimum blank holder force to prevent wrinkling in deep drawing process of the cylindrical cup. Based on the maximum of minor-major strain ratio, the slab method was applied to determine the modeling of minimum variable blank holder force (VBHF) and it compared to FE simulation. The Tin steel sheet of T4-CA grade, with the thickness of 0.2 mm was used in this study. The modeling of minimum VBHF can be used as a simple reference to prevent wrinkling in deep drawing.
Yang, Cheng-Huei; Luo, Ching-Hsing; Yang, Cheng-Hong; Chuang, Li-Yeh
2004-01-01
Morse code is now being harnessed for use in rehabilitation applications of augmentative-alternative communication and assistive technology, including mobility, environmental control and adapted worksite access. In this paper, Morse code is selected as a communication adaptive device for disabled persons who suffer from muscle atrophy, cerebral palsy or other severe handicaps. A stable typing rate is strictly required for Morse code to be effective as a communication tool. This restriction is a major hindrance. Therefore, a switch adaptive automatic recognition method with a high recognition rate is needed. The proposed system combines counter-propagation networks with a variable degree variable step size LMS algorithm. It is divided into five stages: space recognition, tone recognition, learning process, adaptive processing, and character recognition. Statistical analyses demonstrated that the proposed method elicited a better recognition rate in comparison to alternative methods in the literature.
Simulation and sensitivity analysis of carbon storage and fluxes in the New Jersey Pinelands
Zewei Miao; Richard G. Lathrop; Ming Xu; Inga P. La Puma; Kenneth L. Clark; John Hom; Nicholas Skowronski; Steve Van Tuyl
2011-01-01
A major challenge in modeling the carbon dynamics of vegetation communities is the proper parameterization and calibration of eco-physiological variables that are critical determinants of the ecosystem process-based model behavior. In this study, we improved and calibrated a biochemical process-based WxBGC model by using in situ AmeriFlux eddy covariance tower...
ERIC Educational Resources Information Center
Hejazi, Sara
2009-01-01
Organizations worldwide have been turning to Six Sigma program (SSP) to eliminate the defects in their products or drive out the variability in their processes to attain a competitive advantage in their marketplace. An effective certification program has been touted as a major contributor to successful implementation of SSP. An effective…
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Liu, J. W.
1990-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided.
García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David
2009-09-14
The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.
Rathore, Anurag S; Kumar Singh, Sumit; Pathak, Mili; Read, Erik K; Brorson, Kurt A; Agarabi, Cyrus D; Khan, Mansoor
2015-01-01
Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real-time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration-related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers.
Spatial pattern analysis of Cu, Zn and Ni and their interpretation in the Campania region (Italy)
NASA Astrophysics Data System (ADS)
Petrik, Attila; Albanese, Stefano; Jordan, Gyozo; Rolandi, Roberto; De Vivo, Benedetto
2017-04-01
The uniquely abundant Campanian topsoil dataset enabled us to perform a spatial pattern analysis on 3 potentially toxic elements of Cu, Zn and Ni. This study is focusing on revealing the spatial texture and distribution of these elements by spatial point pattern and image processing analysis such as lineament density and spatial variability index calculation. The application of these methods on geochemical data provides a new and efficient tool to understand the spatial variation of concentrations and their background/baseline values. The determination and quantification of spatial variability is crucial to understand how fast the change in concentration is in a certain area and what processes might govern the variation. The spatial variability index calculation and image processing analysis including lineament density enables us to delineate homogenous areas and analyse them with respect to lithology and land use. Identification of spatial outliers and their patterns were also investigated by local spatial autocorrelation and image processing analysis including the determination of local minima and maxima points and singularity index analysis. The spatial variability of Cu and Zn reveals the highest zone (Cu: 0.5 MAD, Zn: 0.8-0.9 MAD, Median Deviation Index) along the coast between Campi Flegrei and the Sorrento Peninsula with the vast majority of statistically identified outliers and high-high spatial clustered points. The background/baseline maps of Cu and Zn reveals a moderate to high variability (Cu: 0.3 MAD, Zn: 0.4-0.5 MAD) NW-SE oriented zone including disrupted patches from Bisaccia to Mignano following the alluvial plains of Appenine's rivers. This zone has high abundance of anomaly concentrations identified using singularity analysis and it also has a high density of lineaments. The spatial variability of Ni shows the highest variability zone (0.6-0.7 MAD) around Campi Flegrei where the majority of low outliers are concentrated. The variability of background/baseline map of Ni reveals a shift to the east in case of highest variability zones coinciding with limestone outcrops. The high segmented area between Mignano and Bisaccia partially follows the alluvial plains of Appenine's rivers which seem to be playing a crucial role in the distribution and redistribution pattern of Cu, Zn and Ni in Campania. The high spatial variability zones of the later elements are located in topsoils on volcanoclastic rocks and are mostly related to cultivation and urbanised areas.
Hospital cost structure in the USA: what's behind the costs? A business case.
Chandra, Charu; Kumar, Sameer; Ghildayal, Neha S
2011-01-01
Hospital costs in the USA are a large part of the national GDP. Medical billing and supplies processes are significant and growing contributors to hospital operations costs in the USA. This article aims to identify cost drivers associated with these processes and to suggest improvements to reduce hospital costs. A Monte Carlo simulation model that uses @Risk software facilitates cost analysis and captures variability associated with the medical billing process (administrative) and medical supplies process (variable). The model produces estimated savings for implementing new processes. Significant waste exists across the entire medical supply process that needs to be eliminated. Annual savings, by implementing the improved process, have the potential to save several billion dollars annually in US hospitals. The other analysis in this study is related to hospital billing processes. Increased spending on hospital billing processes is not entirely due to hospital inefficiency. The study lacks concrete data for accurately measuring cost savings, but there is obviously room for improvement in the two US healthcare processes. This article only looks at two specific costs associated with medical supply and medical billing processes, respectively. This study facilitates awareness of escalating US hospital expenditures. Cost categories, namely, fixed, variable and administrative, are presented to identify the greatest areas for improvement. The study will be valuable to US Congress policy makers and US healthcare industry decision makers. Medical billing process, part of a hospital's administrative costs, and hospital supplies management processes are part of variable costs. These are the two major cost drivers of US hospitals' expenditures that were examined and analyzed.
High-throughput assay for optimising microbial biological control agent production and delivery
USDA-ARS?s Scientific Manuscript database
Lack of technologies to produce and deliver effective biological control agents (BCAs) is a major barrier to their commercialization. A myriad of variables associated with BCA cultivation, formulation, drying, storage, and reconstitution processes complicates agent quality maximization. An efficie...
Systematic review of the neural basis of social cognition in patients with mood disorders
Cusi, Andrée M.; Nazarov, Anthony; Holshausen, Katherine; MacQueen, Glenda M.; McKinnon, Margaret C.
2012-01-01
Background This review integrates neuroimaging studies of 2 domains of social cognition — emotion comprehension and theory of mind (ToM) — in patients with major depressive disorder and bipolar disorder. The influence of key clinical and method variables on patterns of neural activation during social cognitive processing is also examined. Methods Studies were identified using PsycINFO and PubMed (January 1967 to May 2011). The search terms were “fMRI,” “emotion comprehension,” “emotion perception,” “affect comprehension,” “affect perception,” “facial expression,” “prosody,” “theory of mind,” “mentalizing” and “empathy” in combination with “major depressive disorder,” “bipolar disorder,” “major depression,” “unipolar depression,” “clinical depression” and “mania.” Results Taken together, neuroimaging studies of social cognition in patients with mood disorders reveal enhanced activation in limbic and emotion-related structures and attenuated activity within frontal regions associated with emotion regulation and higher cognitive functions. These results reveal an overall lack of inhibition by higher-order cognitive structures on limbic and emotion-related structures during social cognitive processing in patients with mood disorders. Critically, key variables, including illness burden, symptom severity, comorbidity, medication status and cognitive load may moderate this pattern of neural activation. Limitations Studies that did not include control tasks or a comparator group were included in this review. Conclusion Further work is needed to examine the contribution of key moderator variables and to further elucidate the neural networks underlying altered social cognition in patients with mood disorders. The neural networks underlying higher-order social cognitive processes, including empathy, remain unexplored in patients with mood disorders. PMID:22297065
Remote Sensing and Problems of the Hydrosphere
NASA Technical Reports Server (NTRS)
Goldberg, E. D. (Editor)
1979-01-01
A discussion of freshwater and marine systems is presented including areas of the classification of lakes, identification and quantification of major functional groups of phytoplankton, sources and sinks of biochemical factors, and temporal and regional variability of surface features. Atmospheric processes linked to hydrospheric process through the transfer of matter via aerosols and gases are discussed. Particle fluxes to the aquatic environment and global geochemical problems are examined.
Multifractal Properties of Process Control Variables
NASA Astrophysics Data System (ADS)
Domański, Paweł D.
2017-06-01
Control system is an inevitable element of any industrial installation. Its quality affects overall process performance significantly. The assessment, whether control system needs any improvement or not, requires relevant and constructive measures. There are various methods, like time domain based, Minimum Variance, Gaussian and non-Gaussian statistical factors, fractal and entropy indexes. Majority of approaches use time series of control variables. They are able to cover many phenomena. But process complexities and human interventions cause effects that are hardly visible for standard measures. It is shown that the signals originating from industrial installations have multifractal properties and such an analysis may extend standard approach to further observations. The work is based on industrial and simulation data. The analysis delivers additional insight into the properties of control system and the process. It helps to discover internal dependencies and human factors, which are hardly detectable.
NASA Astrophysics Data System (ADS)
Wang, G. D.; Chan, L. C.
2009-11-01
In order to find a feasible method to evaluate the deformation of tubes during the Tube Hydroforming (THF) process, the hardness and the strain in two selected deformation areas of hydro formed copper tubes (C11000) were measured and tested, and an instinct relationship was found between the hardness and the principal strains of the tubes. The major strain of the surface of tubes had the strongest linear relationship with hardness. A regression formula was used to describe the relationship between hardness and the sensitive strain which is defined in the present work as a dependent variable of major strain and thickness strain.
Genetic, environmental, and epigenetic factors in the development of personality disturbance.
Depue, Richard A
2009-01-01
A dimensional model of personality disturbance is presented that is defined by extreme values on interacting subsets of seven major personality traits. Being at the extreme has marked effects on the threshold for eliciting those traits under stimulus conditions: that is, the extent to which the environment affects the neurobiological functioning underlying the traits. To explore the nature of development of extreme values on these traits, each trait is discussed in terms of three major issues: (a) the neurobiological variables associated with the trait, (b) individual variation in this neurobiology as a function of genetic polymorphisms, and (c) the effects of environmental adversity on these neurobiological variables through the action of epigenetic processes. It is noted that gene-environment interaction appears to be dependent on two main factors: (a) both genetic and environmental variables appear to have the most profound and enduring effects when they exert their effects during early postnatal periods, times when the forebrain is undergoing exuberant experience-expectant dendritic and axonal growth; and (b) environmental effects on neurobiology are strongly modified by individual differences in "traitlike" functioning of neurobiological variables. A model of the nature of the interaction between environmental and neurobiological variables in the development of personality disturbance is presented.
Conservation and Variability of Meiosis Across the Eukaryotes.
Loidl, Josef
2016-11-23
Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.
Understanding the visual resource
Floyd L. Newby
1971-01-01
Understanding our visual resources involves a complex interweaving of motivation and cognitive recesses; but, more important, it requires that we understand and can identify those characteristics of a landscape that influence the image formation process. From research conducted in Florida, three major variables were identified that appear to have significant effect...
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
Characterization of the spatial variability of channel morphology
Moody, J.A.; Troutman, B.M.
2002-01-01
The spatial variability of two fundamental morphological variables is investigated for rivers having a wide range of discharge (five orders of magnitude). The variables, water-surface width and average depth, were measured at 58 to 888 equally spaced cross-sections in channel links (river reaches between major tributaries). These measurements provide data to characterize the two-dimensional structure of a channel link which is the fundamental unit of a channel network. The morphological variables have nearly log-normal probability distributions. A general relation was determined which relates the means of the log-transformed variables to the logarithm of discharge similar to previously published downstream hydraulic geometry relations. The spatial variability of the variables is described by two properties: (1) the coefficient of variation which was nearly constant (0.13-0.42) over a wide range of discharge; and (2) the integral length scale in the downstream direction which was approximately equal to one to two mean channel widths. The joint probability distribution of the morphological variables in the downstream direction was modelled as a first-order, bivariate autoregressive process. This model accounted for up to 76 per cent of the total variance. The two-dimensional morphological variables can be scaled such that the channel width-depth process is independent of discharge. The scaling properties will be valuable to modellers of both basin and channel dynamics. Published in 2002 John Wiley and Sons, Ltd.
Analysis And Control System For Automated Welding
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne
1994-01-01
Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.
Qian, Hong; Chen, Shengbin; Zhang, Jin-Long
2017-07-17
Niche-based and neutrality-based theories are two major classes of theories explaining the assembly mechanisms of local communities. Both theories have been frequently used to explain species diversity and composition in local communities but their relative importance remains unclear. Here, we analyzed 57 assemblages of angiosperm trees in 0.1-ha forest plots across China to examine the effects of environmental heterogeneity (relevant to niche-based processes) and spatial contingency (relevant to neutrality-based processes) on phylogenetic structure of angiosperm tree assemblages distributed across a wide range of environment and space. Phylogenetic structure was quantified with six phylogenetic metrics (i.e., phylogenetic diversity, mean pairwise distance, mean nearest taxon distance, and the standardized effect sizes of these three metrics), which emphasize on different depths of evolutionary histories and account for different degrees of species richness effects. Our results showed that the variation in phylogenetic metrics explained independently by environmental variables was on average much greater than that explained independently by spatial structure, and the vast majority of the variation in phylogenetic metrics was explained by spatially structured environmental variables. We conclude that niche-based processes have played a more important role than neutrality-based processes in driving phylogenetic structure of angiosperm tree species in forest communities in China.
Sources of biomass feedstock variability and the potential impact on biofuels production
Williams, C. Luke; Westover, Tyler L.; Emerson, Rachel M.; ...
2015-11-23
In this study, terrestrial lignocellulosic biomass has the potential to be a carbon neutral and domestic source of fuels and chemicals. However, the innate variability of biomass resources, such as herbaceous and woody materials, and the inconsistency within a single resource due to disparate growth and harvesting conditions, presents challenges for downstream processes which often require materials that are physically and chemically consistent. Intrinsic biomass characteristics, including moisture content, carbohydrate and ash compositions, bulk density, and particle size/shape distributions are highly variable and can impact the economics of transforming biomass into value-added products. For instance, ash content increases by anmore » order of magnitude between woody and herbaceous feedstocks (from ~0.5 to 5 %, respectively) while lignin content drops by a factor of two (from ~30 to 15 %, respectively). This increase in ash and reduction in lignin leads to biofuel conversion consequences, such as reduced pyrolysis oil yields for herbaceous products as compared to woody material. In this review, the sources of variability for key biomass characteristics are presented for multiple types of biomass. Additionally, this review investigates the major impacts of the variability in biomass composition on four conversion processes: fermentation, hydrothermal liquefaction, pyrolysis, and direct combustion. Finally, future research processes aimed at reducing the detrimental impacts of biomass variability on conversion to fuels and chemicals are proposed.« less
Managerial process improvement: a lean approach to eliminating medication delivery.
Hussain, Aftab; Stewart, LaShonda M; Rivers, Patrick A; Munchus, George
2015-01-01
Statistical evidence shows that medication errors are a major cause of injuries that concerns all health care oganizations. Despite all the efforts to improve the quality of care, the lack of understanding and inability of management to design a robust system that will strategically target those factors is a major cause of distress. The paper aims to discuss these issues. Achieving optimum organizational performance requires two key variables; work process factors and human performance factors. The approach is that healthcare administrators must take in account both variables in designing a strategy to reduce medication errors. However, strategies that will combat such phenomena require that managers and administrators understand the key factors that are causing medication delivery errors. The authors recommend that healthcare organizations implement the Toyota Production System (TPS) combined with human performance improvement (HPI) methodologies to eliminate medication delivery errors in hospitals. Despite all the efforts to improve the quality of care, there continues to be a lack of understanding and the ability of management to design a robust system that will strategically target those factors associated with medication errors. This paper proposes a solution to an ambiguous workflow process using the TPS combined with the HPI system.
Glosser, D.; Kutchko, B.; Benge, G.; ...
2016-03-21
Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less
Cognitive Performance and Heart Rate Variability: The Influence of Fitness Level
Luque-Casado, Antonio; Zabala, Mikel; Morales, Esther; Mateo-March, Manuel; Sanabria, Daniel
2013-01-01
In the present study, we investigated the relation between cognitive performance and heart rate variability as a function of fitness level. We measured the effect of three cognitive tasks (the psychomotor vigilance task, a temporal orienting task, and a duration discrimination task) on the heart rate variability of two groups of participants: a high-fit group and a low-fit group. Two major novel findings emerged from this study. First, the lowest values of heart rate variability were found during performance of the duration discrimination task, compared to the other two tasks. Second, the results showed a decrement in heart rate variability as a function of the time on task, although only in the low-fit group. Moreover, the high-fit group showed overall faster reaction times than the low-fit group in the psychomotor vigilance task, while there were not significant differences in performance between the two groups of participants in the other two cognitive tasks. In sum, our results highlighted the influence of cognitive processing on heart rate variability. Importantly, both behavioral and physiological results suggested that the main benefit obtained as a result of fitness level appeared to be associated with processes involving sustained attention. PMID:23437276
X-Ray Variability of BL Lac Objects
NASA Astrophysics Data System (ADS)
McHardy, Ian
I present an overview of the X-ray temporal and spectral variability of BL Lacs on both short and long timescales. The previously observed behaviour of short (~days) flares superimposed on a relatively steady `quiescent' level is still broadly correct. However, for the brighter BL Lacs, the well sampled lightcurves from the RXTE ASM show that the `quiescent' level also varies considerably on timescales of ~100 days in a manner similar to that seen in Optically Violently Variable Quasars (OVVs) such as 3C279 and 3C273. Possible reasons for this behaviour are discussed. For the large majority of BL Lacs the soft and medium energy X-ray bands are dominated by synchrotron emission and, unlike the case of OVVs, the emission mechanism is not in doubt. Most interest then centres on the structure of the emitting region, and the electron acceleration processes, particularly during outbursts. That structure, and the acceleration processes, can be investigated by consideration of the spectral variability during flares, which is not simple. I review the observations of spectral variability and consider the evidence for and against homogeneous models. I also briefly compare the X-ray spectral variability of BL Lacs with that of OVVs such as 3C273.
Framework for a U.S. Geological Survey Hydrologic Climate-Response Program in Maine
Hodgkins, Glenn A.; Lent, Robert M.; Dudley, Robert W.; Schalk, Charles W.
2009-01-01
This report presents a framework for a U.S. Geological Survey (USGS) hydrologic climate-response program designed to provide early warning of changes in the seasonal water cycle of Maine. Climate-related hydrologic changes on Maine's rivers and lakes in the winter and spring during the last century are well documented, and several river and lake variables have been shown to be sensitive to air-temperature changes. Monitoring of relevant hydrologic data would provide important baseline information against which future climate change can be measured. The framework of the hydrologic climate-response program presented here consists of four major parts: (1) identifying homogeneous climate-response regions; (2) identifying hydrologic components and key variables of those components that would be included in a hydrologic climate-response data network - as an example, streamflow has been identified as a primary component, with a key variable of streamflow being winter-spring streamflow timing; the data network would be created by maintaining existing USGS data-collection stations and establishing new ones to fill data gaps; (3) regularly updating historical trends of hydrologic data network variables; and (4) establishing basins for process-based studies. Components proposed for inclusion in the hydrologic climate-response data network have at least one key variable for which substantial historical data are available. The proposed components are streamflow, lake ice, river ice, snowpack, and groundwater. The proposed key variables of each component have extensive historical data at multiple sites and are expected to be responsive to climate change in the next few decades. These variables are also important for human water use and (or) ecosystem function. Maine would be divided into seven climate-response regions that follow major river-basin boundaries (basins subdivided to hydrologic units with 8-digit codes or larger) and have relatively homogeneous climates. Key hydrologic variables within each climate-response region would be analyzed regularly to maintain up-to-date analyses of year-to-year variability, decadal variability, and longer term trends. Finally, one basin in each climate-response region would be identified for process-based hydrologic and ecological studies.
Do attentional capacities and processing speed mediate the effect of age on executive functioning?
Gilsoul, Jessica; Simon, Jessica; Hogge, Michaël; Collette, Fabienne
2018-02-06
The executive processes are well known to decline with age, and similar data also exists for attentional capacities and processing speed. Therefore, we investigated whether these two last nonexecutive variables would mediate the effect of age on executive functions (inhibition, shifting, updating, and dual-task coordination). We administered a large battery of executive, attentional and processing speed tasks to 104 young and 71 older people, and we performed mediation analyses with variables showing a significant age effect. All executive and processing speed measures showed age-related effects while only the visual scanning task performance (selective attention) was explained by age when controlled for gender and educational level. Regarding mediation analyses, visual scanning partially mediated the age effect on updating while processing speed partially mediated the age effect on shifting, updating and dual-task coordination. In a more exploratory way, inhibition was also found to partially mediate the effect of age on the three other executive functions. Attention did not greatly influence executive functioning in aging while, in agreement with the literature, processing speed seems to be a major mediator of the age effect on these processes. Interestingly, the global pattern of results seems also to indicate an influence of inhibition but further studies are needed to confirm the role of that variable as a mediator and its relative importance by comparison with processing speed.
Approximate techniques of structural reanalysis
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lowder, H. E.
1974-01-01
A study is made of two approximate techniques for structural reanalysis. These include Taylor series expansions for response variables in terms of design variables and the reduced-basis method. In addition, modifications to these techniques are proposed to overcome some of their major drawbacks. The modifications include a rational approach to the selection of the reduced-basis vectors and the use of Taylor series approximation in an iterative process. For the reduced basis a normalized set of vectors is chosen which consists of the original analyzed design and the first-order sensitivity analysis vectors. The use of the Taylor series approximation as a first (initial) estimate in an iterative process, can lead to significant improvements in accuracy, even with one iteration cycle. Therefore, the range of applicability of the reanalysis technique can be extended. Numerical examples are presented which demonstrate the gain in accuracy obtained by using the proposed modification techniques, for a wide range of variations in the design variables.
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
Evaluating the effectiveness of intercultural teachers.
Cox, Kathleen
2011-01-01
With globalization and major immigration flows, intercultural teaching encounters are likely to increase, along with the need to assure intercultural teaching effectiveness.Thus, the purpose of this article is to present a conceptual framework for nurse educators to consider when anticipating an intercultural teaching experience. Kirkpatrick's and Bushnell's models provide a basis for the conceptual framework. Major concepts of the model include input, process, output, and outcome.The model may possibly be used to guide future research to determine which variables are most influential in explaining intercultural teaching effectiveness.
Supercontinent cycles, true polar wander, and very long-wavelength mantle convection
NASA Astrophysics Data System (ADS)
Zhong, Shijie; Zhang, Nan; Li, Zheng-Xiang; Roberts, James H.
2007-09-01
We show in this paper that mobile-lid mantle convection in a three-dimensional spherical shell with observationally constrained mantle viscosity structure, and realistic convective vigor and internal heating rate is characterized by either a spherical harmonic degree-1 planform with a major upwelling in one hemisphere and a major downwelling in the other hemisphere when continents are absent, or a degree-2 planform with two antipodal major upwellings when a supercontinent is present. We propose that due to modulation of continents, these two modes of mantle convection alternate within the Earth's mantle, causing the cyclic processes of assembly and breakup of supercontinents including Rodinia and Pangea in the last 1 Ga. Our model suggests that the largely degree-2 structure for the present-day mantle with the Africa and Pacific antipodal superplumes, is a natural consequence of this dynamic process of very long-wavelength mantle convection interacting with supercontinent Pangea. Our model explains the basic features of true polar wander (TPW) events for Rodinia and Pangea including their equatorial locations and large variability of TPW inferred from paleomagnetic studies. Our model also suggests that TPW is expected to be more variable and large during supercontinent assembly, but small after a supercontinent acquires its equatorial location and during its subsequent dispersal.
Which Measures of Online Control Are Least Sensitive to Offline Processes?
de Grosbois, John; Tremblay, Luc
2018-02-28
A major challenge to the measurement of online control is the contamination by offline, planning-based processes. The current study examined the sensitivity of four measures of online control to offline changes in reaching performance induced by prism adaptation and terminal feedback. These measures included the squared Z scores (Z 2 ) of correlations of limb position at 75% movement time versus movement end, variable error, time after peak velocity, and a frequency-domain analysis (pPower). The results indicated that variable error and time after peak velocity were sensitive to the prism adaptation. Furthermore, only the Z 2 values were biased by the terminal feedback. Ultimately, the current study has demonstrated the sensitivity of limb kinematic measures to offline control processes and that pPower analyses may yield the most suitable measure of online control.
The variable polarity plasma arc welding process: Characteristics and performance
NASA Technical Reports Server (NTRS)
Hung, R. J.; Zhu, G. J.
1991-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiqi; Ahlström, Anders; Allison, Steven D.
Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.
2016-01-01
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
Who Stays? Who Leaves? An Examination of Sex Differences in Staying and Leaving.
ERIC Educational Resources Information Center
Poole, Millicent E.; Low, B. C.
The purpose of this study was to examine the major determinants of the "staying" and "leaving" process for samples of Melbourne (Australia) male and female adolescents. Sixty attitudinal statements were obtained from 796 adolescents and factor analysed. The subset of independent variables, together with a set of personality and…
Measuring ICT Use and Contributing Conditions in Primary Schools
ERIC Educational Resources Information Center
Vanderlinde, Ruben; Aesaert, Koen; van Braak, Johan
2015-01-01
Information and communication technology (ICT) use became of major importance for primary schools across the world as ICT has the potential to foster teaching and learning processes. ICT use is therefore a central measurement concept (dependent variable) in many ICT integration studies. This data paper presents two datasets (2008 and 2011) that…
The Impact of Collective Bargaining on Public and Client Interests in Education.
ERIC Educational Resources Information Center
Mitchell, Douglas E.
This paper proposes an analytical perspective that illuminates the major variables in the establishment of labor relations policy in education. It describes the relationships that exist between collective bargaining, the pursuit of the public interest, and the protection of client interests in the processes of schooling. The anslysis is based on…
Analysis of AVHRR, CZCS and historical in situ data off the Oregon Coast
NASA Technical Reports Server (NTRS)
Strub, P. Ted; Chelton, Dudley B.
1990-01-01
The original scientific objectives of this grant were to: (1) characterize the seasonal cycles and interannual variability for phytoplankton concentrations and sea surface temperature (SST) in the California Current using satellite data; and (2) to explore the spatial and temporal relationship between these variables and surface wind forcing. An additional methodological objective was to develop statistical methods for forming mean fields, which minimize the effects of random data gaps and errors in the irregularly sampled CZCS (Coastal Zone Color Scanner) and AVHRR (Advanced Very High Resolution Radiometer) satellite data. A final task was to evaluate the level of uncertainty in the wind fields used for the statistical analysis. Funding in the first year included part of the cost of an image processing system to enable this and other projects to process and analyze satellite data. This report consists of summaries of the major projects carried out with all or partial support from this grant. The appendices include a list of papers and professional presentations supported by the grant, as well as reprints of the major papers and reports.
NASA Astrophysics Data System (ADS)
Huret, M.; Petitgas, P.; Woillez, M.
2010-10-01
Dispersal of fish early life stages explains part of the recruitment success, through interannual variability in spawning, transport and survival. Dispersal results from a complex interaction between physical and biological processes acting at different temporal and spatial scales, and at the individual or population level. In this paper we quantify the response of anchovy egg and larval dispersal in the Bay of Biscay to the following sources of variability: vertical larval behaviour, drift duration, adult spawning location and timing, and spatio-temporal variability in the hydrodynamics. We use simulations of Lagrangian trajectories in a 3-dimensional hydrodynamic model, as well as spatial indices describing different properties of the dispersal kernel: the mean transport (distance, direction), its variance, occupation of space by particles and their aggregation. We show that larval drift duration has a major impact on the dispersion at scales of ˜100 km, but that vertical behaviour becomes dominant reducing dispersion at scales of ˜1-10 km. Spawning location plays a major role in explaining connectivity patterns, in conjunction with spawning temporal variability. Interannual variability in the circulation dominates over seasonal variability. However, seasonal patterns become predominant for coastal spawning locations, revealing a recurrent shift in the direction of dispersal during the anchovy spawning season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glosser, D.; Kutchko, B.; Benge, G.
Foamed cement is a critical component for wellbore stability. The mechanical performance of a foamed cement depends on its microstructure, which in turn depends on the preparation method and attendant operational variables. Determination of cement stability for field use is based on laboratory testing protocols governed by API Recommended Practice 10B-4 (API RP 10B-4, 2015). However, laboratory and field operational variables contrast considerably in terms of scale, as well as slurry mixing and foaming processes. Here in this paper, laboratory and field operational processes are characterized within a physics-based framework. It is shown that the “atomization energy” imparted by themore » high pressure injection of nitrogen gas into the field mixed foamed cement slurry is – by a significant margin – the highest energy process, and has a major impact on the void system in the cement slurry. There is no analog for this high energy exchange in current laboratory cement preparation and testing protocols. Quantifying the energy exchanges across the laboratory and field processes provides a basis for understanding relative impacts of these variables on cement structure, and can ultimately lead to the development of practices to improve cement testing and performance.« less
A meta-analysis of research on science teacher education practices associated with inquiry strategy
NASA Astrophysics Data System (ADS)
Sweitzer, Gary L.; Anderson, Ronald D.
A meta-analysis was conducted of studies of teacher education having as measured outcomes one or more variables associated with inquiry teaching. Inquiry addresses those teacher behaviors that facilitate student acquisition of concepts and processes through strategies such as problem solving, uses of evidence, logical and analytical reasoning, clarification of values, and decision making. Studies which contained sufficient data for the calculation of an effect size were coded for 114 variables. These variables were divided into the following six major categories: study information and design characteristics, teacher and teacher trainee characteristics, student characteristics, treatment description, outcome description, and effect size calculation. A total of 68 studies resulting in 177 effect size calculations were coded. Mean effect sizes broken across selected variables were calculated.
The added value of time-variable microgravimetry to the understanding of how volcanoes work
Carbone, Daniele; Poland, Michael; Greco, Filippo; Diament, Michel
2017-01-01
During the past few decades, time-variable volcano gravimetry has shown great potential for imaging subsurface processes at active volcanoes (including some processes that might otherwise remain “hidden”), especially when combined with other methods (e.g., ground deformation, seismicity, and gas emissions). By supplying information on changes in the distribution of bulk mass over time, gravimetry can provide information regarding processes such as magma accumulation in void space, gas segregation at shallow depths, and mechanisms driving volcanic uplift and subsidence. Despite its potential, time-variable volcano gravimetry is an underexploited method, not widely adopted by volcano researchers or observatories. The cost of instrumentation and the difficulty in using it under harsh environmental conditions is a significant impediment to the exploitation of gravimetry at many volcanoes. In addition, retrieving useful information from gravity changes in noisy volcanic environments is a major challenge. While these difficulties are not trivial, neither are they insurmountable; indeed, creative efforts in a variety of volcanic settings highlight the value of time-variable gravimetry for understanding hazards as well as revealing fundamental insights into how volcanoes work. Building on previous work, we provide a comprehensive review of time-variable volcano gravimetry, including discussions of instrumentation, modeling and analysis techniques, and case studies that emphasize what can be learned from campaign, continuous, and hybrid gravity observations. We are hopeful that this exploration of time-variable volcano gravimetry will excite more scientists about the potential of the method, spurring further application, development, and innovation.
Towards the Prediction of Decadal to Centennial Climate Processes in the Coupled Earth System Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhengyu; Kutzbach, J.; Jacob, R.
2011-12-05
In this proposal, we have made major advances in the understanding of decadal and long term climate variability. (a) We performed a systematic study of multidecadal climate variability in FOAM-LPJ and CCSM-T31, and are starting exploring decadal variability in the IPCC AR4 models. (b) We develop several novel methods for the assessment of climate feedbacks in the observation. (c) We also developed a new initialization scheme DAI (Dynamical Analogue Initialization) for ensemble decadal prediction. (d) We also studied climate-vegetation feedback in the observation and models. (e) Finally, we started a pilot program using Ensemble Kalman Filter in CGCM for decadalmore » climate prediction.« less
NASA Astrophysics Data System (ADS)
Ruiz, Laurent; Varma, Murari R. R.; Kumar, M. S. Mohan; Sekhar, M.; Maréchal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Kumar, C.; Braun, Jean-Jacques
2010-01-01
SummaryAccurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year -1 and the evapotranspiration was about 900 mm year -1 out of which 100 mm year -1 was uptake from the deep saprolite horizons. The stream flow was 100 mm year -1 while the groundwater underflow was 80 mm year -1. The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems.
Stamovlasis, Dimitrios; Vaiopoulou, Julie
2017-07-01
The present study examines the factors influencing a decision-making process, with specific focus on the role of dysfunctional myths (DM). DM are thoughts or beliefs that are rather irrational, however influential to people's decisions. In this paper a decision-making process regarding the career choice of university students majoring in natural sciences and education (N=496) is examined by analyzing survey data taken via Career Decision Making Difficulties Questionnaire (CDDQ). The difficulty of making the choice and the certainty about one's decision were the state variables, while the independent variables were factors related to the lack of information or knowledge needed, which actually reflect a bounded rationality. Cusp catastrophe analysis, based on both least squares and maximum likelihood procedures, showed that the nonlinear models predicting the two state variables were superior to linear alternatives. Factors related to lack of knowledge about the steps involved in the process of career decision-making, lack of information about the various occupations, lack of information about self and lack of motivation acted as asymmetry, while dysfunctional myths acted as bifurcation factor for both state variables. The catastrophe model, grounded in empirical data, revealed a unique role for DM and a better interpretation within the context of complexity and the notion of bounded rationality. The analysis opens the nonlinear dynamical systems (NDS) perspective in studying decision-making processes. Theoretical and practical implications are discussed.
Fellows, Robert P; Byrd, Desiree A; Morgello, Susan
2014-01-01
It is unclear whether or to what degree literacy, aging, and other neurologic abnormalities relate to cognitive deficits among people living with HIV/AIDS in the combined antiretroviral therapy (CART) era. The primary aim of this study was to simultaneously examine the association of age, HIV-associated motor abnormalities, major depressive disorder, and reading level with information processing speed, learning, memory, and executive functions, and to determine whether processing speed mediated any of the relationships between cognitive and noncognitive variables. Participants were 186 racially and ethnically diverse men and women living with HIV/AIDS who underwent comprehensive neurological, neuropsychological, and medical evaluations. Structural equation modeling was utilized to assess the extent to which information processing speed mediated the relationship between age, motor abnormalities, major depressive disorder, and reading level with other cognitive abilities. Age, motor dysfunction, reading level, and current major depressive disorder were all significantly associated with information processing speed. Information processing speed fully mediated the effects of age on learning, memory, and executive functioning and partially mediated the effect of major depressive disorder on learning and memory. The effect of motor dysfunction on learning and memory was fully mediated by processing speed. These findings provide support for information processing speed as a primary deficit, which may account, at least in part, for many of the other cognitive abnormalities recognized in complex HIV/AIDS populations. The association of age and information processing speed may account for HIV/aging synergies in the generation of CART-era cognitive abnormalities.
Valente, Andrea; Bürki, Audrey; Laganaro, Marina
2014-01-01
A major effort in cognitive neuroscience of language is to define the temporal and spatial characteristics of the core cognitive processes involved in word production. One approach consists in studying the effects of linguistic and pre-linguistic variables in picture naming tasks. So far, studies have analyzed event-related potentials (ERPs) during word production by examining one or two variables with factorial designs. Here we extended this approach by investigating simultaneously the effects of multiple theoretical relevant predictors in a picture naming task. High density EEG was recorded on 31 participants during overt naming of 100 pictures. ERPs were extracted on a trial by trial basis from picture onset to 100 ms before the onset of articulation. Mixed-effects regression models were conducted to examine which variables affected production latencies and the duration of periods of stable electrophysiological patterns (topographic maps). Results revealed an effect of a pre-linguistic variable, visual complexity, on an early period of stable electric field at scalp, from 140 to 180 ms after picture presentation, a result consistent with the proposal that this time period is associated with visual object recognition processes. Three other variables, word Age of Acquisition, Name Agreement, and Image Agreement influenced response latencies and modulated ERPs from ~380 ms to the end of the analyzed period. These results demonstrate that a topographic analysis fitted into the single trial ERPs and covering the entire processing period allows one to associate the cost generated by psycholinguistic variables to the duration of specific stable electrophysiological processes and to pinpoint the precise time-course of multiple word production predictors at once.
Understanding the weather signal in national crop-yield variability
NASA Astrophysics Data System (ADS)
Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders
2017-06-01
Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.
Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds
NASA Astrophysics Data System (ADS)
Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn
2017-12-01
Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely mediated by processes within ponds. This work demonstrates the importance of understanding hydrologically driven chemodynamics in permafrost ponds on multiple scales (seasonal and event scale).
ERIC Educational Resources Information Center
Obradovic, Jelena
2010-01-01
Homeless children show significant developmental delays across major domains of adaptation, yet research on protective processes that may contribute to resilient adaptation in this highly disadvantaged group of children is extremely rare. This study examined the role of effortful control for adaption in 58 homeless children, ages 5-6, during their…
McGuire, A.D.; Sitch, S.; Clein, Joy S.; Dargaville, R.; Esser, G.; Foley, J.; Heimann, Martin; Joos, F.; Kaplan, J.; Kicklighter, D.W.; Meier, R.A.; Melillo, J.M.; Moore, B.; Prentice, I.C.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Tian, H.; Williams, L.J.; Wittenberg, U.
2001-01-01
The concurrent effects of increasing atmospheric CO2 concentration, climate variability, and cropland establishment and abandonment on terrestrial carbon storage between 1920 and 1992 were assessed using a standard simulation protocol with four process-based terrestrial biosphere models. Over the long-term(1920–1992), the simulations yielded a time history of terrestrial uptake that is consistent (within the uncertainty) with a long-term analysis based on ice core and atmospheric CO2 data. Up to 1958, three of four analyses indicated a net release of carbon from terrestrial ecosystems to the atmosphere caused by cropland establishment. After 1958, all analyses indicate a net uptake of carbon by terrestrial ecosystems, primarily because of the physiological effects of rapidly rising atmospheric CO2. During the 1980s the simulations indicate that terrestrial ecosystems stored between 0.3 and 1.5 Pg C yr−1, which is within the uncertainty of analysis based on CO2 and O2 budgets. Three of the four models indicated (in accordance with O2 evidence) that the tropics were approximately neutral while a net sink existed in ecosystems north of the tropics. Although all of the models agree that the long-term effect of climate on carbon storage has been small relative to the effects of increasing atmospheric CO2 and land use, the models disagree as to whether climate variability and change in the twentieth century has promoted carbon storage or release. Simulated interannual variability from 1958 generally reproduced the El Niño/Southern Oscillation (ENSO)-scale variability in the atmospheric CO2 increase, but there were substantial differences in the magnitude of interannual variability simulated by the models. The analysis of the ability of the models to simulate the changing amplitude of the seasonal cycle of atmospheric CO2 suggested that the observed trend may be a consequence of CO2 effects, climate variability, land use changes, or a combination of these effects. The next steps for improving the process-based simulation of historical terrestrial carbon include (1) the transfer of insight gained from stand-level process studies to improve the sensitivity of simulated carbon storage responses to changes in CO2 and climate, (2) improvements in the data sets used to drive the models so that they incorporate the timing, extent, and types of major disturbances, (3) the enhancement of the models so that they consider major crop types and management schemes, (4) development of data sets that identify the spatial extent of major crop types and management schemes through time, and (5) the consideration of the effects of anthropogenic nitrogen deposition. The evaluation of the performance of the models in the context of a more complete consideration of the factors influencing historical terrestrial carbon dynamics is important for reducing uncertainties in representing the role of terrestrial ecosystems in future projections of the Earth system.
The Policy Formation Process: A Conceptual Framework for Analysis. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Fuchs, E. F.
1972-01-01
A conceptual framework for analysis which is intended to assist both the policy analyst and the policy researcher in their empirical investigations into policy phenomena is developed. It is meant to facilitate understanding of the policy formation process by focusing attention on the basic forces shaping the main features of policy formation as a dynamic social-political-organizational process. The primary contribution of the framework lies in its capability to suggest useful ways of looking at policy formation reality. It provides the analyst and the researcher with a group of indicators which suggest where to look and what to look for when attempting to analyze and understand the mix of forces which energize, maintain, and direct the operation of strategic level policy systems. The framework also highlights interconnections, linkage, and relational patterns between and among important variables. The framework offers an integrated set of conceptual tools which facilitate understanding of and research on the complex and dynamic set of variables which interact in any major strategic level policy formation process.
A review of blood sample handling and pre-processing for metabolomics studies.
Hernandes, Vinicius Veri; Barbas, Coral; Dudzik, Danuta
2017-09-01
Metabolomics has been found to be applicable to a wide range of clinical studies, bringing a new era for improving clinical diagnostics, early disease detection, therapy prediction and treatment efficiency monitoring. A major challenge in metabolomics, particularly untargeted studies, is the extremely diverse and complex nature of biological specimens. Despite great advances in the field there still exist fundamental needs for considering pre-analytical variability that can introduce bias to the subsequent analytical process and decrease the reliability of the results and moreover confound final research outcomes. Many researchers are mainly focused on the instrumental aspects of the biomarker discovery process, and sample related variables sometimes seem to be overlooked. To bridge the gap, critical information and standardized protocols regarding experimental design and sample handling and pre-processing are highly desired. Characterization of a range variation among sample collection methods is necessary to prevent results misinterpretation and to ensure that observed differences are not due to an experimental bias caused by inconsistencies in sample processing. Herein, a systematic discussion of pre-analytical variables affecting metabolomics studies based on blood derived samples is performed. Furthermore, we provide a set of recommendations concerning experimental design, collection, pre-processing procedures and storage conditions as a practical review that can guide and serve for the standardization of protocols and reduction of undesirable variation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Factors Associated with Asian American Students' Choice of STEM Major
ERIC Educational Resources Information Center
Lowinger, Robert; Song, Hyun-a
2017-01-01
This study explored Asian American students' likelihood of selecting STEM over liberal arts or business college majors using the Education Longitudinal Study of 2002. Student-level variables were the strongest predictors of college major, followed by parent-level variables, and background variables. Academic achievement and interest were the…
Knowles, Noah
2002-01-01
Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.
Origins of extrinsic variability in eukaryotic gene expression
NASA Astrophysics Data System (ADS)
Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff
2006-02-01
Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes simultaneously, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modelling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous lower limit for expression variability. A second source, which is modelled as originating from a common upstream transcription factor, exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.
Origins of extrinsic variability in eukaryotic gene expression
NASA Astrophysics Data System (ADS)
Volfson, Dmitri; Marciniak, Jennifer; Blake, William J.; Ostroff, Natalie; Tsimring, Lev S.; Hasty, Jeff
2006-03-01
Variable gene expression within a clonal population of cells has been implicated in a number of important processes including mutation and evolution, determination of cell fates and the development of genetic disease. Recent studies have demonstrated that a significant component of expression variability arises from extrinsic factors thought to influence multiple genes in concert, yet the biological origins of this extrinsic variability have received little attention. Here we combine computational modeling with fluorescence data generated from multiple promoter-gene inserts in Saccharomyces cerevisiae to identify two major sources of extrinsic variability. One unavoidable source arising from the coupling of gene expression with population dynamics leads to a ubiquitous noise floor in expression variability. A second source which is modeled as originating from a common upstream transcription factor exemplifies how regulatory networks can convert noise in upstream regulator expression into extrinsic noise at the output of a target gene. Our results highlight the importance of the interplay of gene regulatory networks with population heterogeneity for understanding the origins of cellular diversity.
Rivers and Floodplains as Key Components of Global Terrestrial Water Storage Variability
NASA Astrophysics Data System (ADS)
Getirana, Augusto; Kumar, Sujay; Girotto, Manuela; Rodell, Matthew
2017-10-01
This study quantifies the contribution of rivers and floodplains to terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics and to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes 8% of TWS variability globally, but that contribution differs widely among climate zones. Changes in SWS are a principal component of TWS variability in the tropics, where major rivers flow over arid regions and at high latitudes. SWS accounts for 22-27% of TWS variability in both the Amazon and Nile Basins. Changes in SWS are negligible in the Western U.S., Northern Africa, Middle East, and central Asia. Based on comparisons with Gravity Recovery and Climate Experiment-based TWS, we conclude that accounting for SWS improves simulated TWS in most of South America, Africa, and Southern Asia, confirming that SWS is a key component of TWS variability.
Multistage variable probability forest volume inventory. [the Defiance Unit of the Navajo Nation
NASA Technical Reports Server (NTRS)
Anderson, J. E. (Principal Investigator)
1979-01-01
An inventory scheme based on the use of computer processed LANDSAT MSS data was developed. Output from the inventory scheme provides an estimate of the standing net saw timber volume of a major timber species on a selected forested area of the Navajo Nation. Such estimates are based on the values of parameters currently used for scaled sawlog conversion to mill output. The multistage variable probability sampling appears capable of producing estimates which compare favorably with those produced using conventional techniques. In addition, the reduction in time, manpower, and overall costs lend it to numerous applications.
The growth receptors and their role in wound healing.
Rolfe, Kerstin J; Grobbelaar, Adriaan O
2010-11-01
Abnormal wound healing is a major problem in healthcare today, with both scarring and chronic wounds affecting large numbers of individuals worldwide. Wound healing is a complex process involving several variables, including growth factors and their receptors. Chronic wounds fail to complete the wound healing process, while scarring is considered to be an overzealous wound healing process. Growth factor receptors and their ligands are being investigated to assess their potential in the development of therapeutic strategies to improve wound healing. This review discusses potential therapeutics for manipulating growth factors and their corresponding receptors for the treatment of abnormal wound healing.
On-line identification of fermentation processes for ethanol production.
Câmara, M M; Soares, R M; Feital, T; Naomi, P; Oki, S; Thevelein, J M; Amaral, M; Pinto, J C
2017-07-01
A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.
2009-01-01
The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Post-secretion processing influences spider silk performance
Blamires, Sean J.; Wu, Chung-Lin; Blackledge, Todd A.; Tso, I-Min
2012-01-01
Phenotypic variation facilitates adaptations to novel environments. Silk is an example of a highly variable biomaterial. The two-spidroin (MaSp) model suggests that spider major ampullate (MA) silk is composed of two proteins—MaSp1 predominately contains alanine and glycine and forms strength enhancing β-sheet crystals, while MaSp2 contains proline and forms elastic spirals. Nonetheless, mechanical properties can vary in spider silks without congruent amino acid compositional changes. We predicted that post-secretion processing causes variation in the mechanical performance of wild MA silk independent of protein composition or spinning speed across 10 species of spider. We used supercontraction to remove post-secretion effects and compared the mechanics of silk in this ‘ground state’ with wild native silks. Native silk mechanics varied less among species compared with ‘ground state’ silks. Variability in the mechanics of ‘ground state’ silks was associated with proline composition. However, variability in native silks did not. We attribute interspecific similarities in the mechanical properties of native silks, regardless of amino acid compositions, to glandular processes altering molecular alignment of the proteins prior to extrusion. Such post-secretion processing may enable MA silk to maintain functionality across environments, facilitating its function as a component of an insect-catching web. PMID:22628213
NASA Astrophysics Data System (ADS)
Jones, William I.
This study examined the understanding of nature of science among participants in their final year of a 4-year undergraduate teacher education program at a Midwest liberal arts university. The Logic Model Process was used as an integrative framework to focus the collection, organization, analysis, and interpretation of the data for the purpose of (1) describing participant understanding of NOS and (2) to identify participant characteristics and teacher education program features related to those understandings. The Views of Nature of Science Questionnaire form C (VNOS-C) was used to survey participant understanding of 7 target aspects of Nature of Science (NOS). A rubric was developed from a review of the literature to categorize and score participant understanding of the target aspects of NOS. Participants' high school and college transcripts, planning guides for their respective teacher education program majors, and science content and science teaching methods course syllabi were examined to identify and categorize participant characteristics and teacher education program features. The R software (R Project for Statistical Computing, 2010) was used to conduct an exploratory analysis to determine correlations of the antecedent and transaction predictor variables with participants' scores on the 7 target aspects of NOS. Fourteen participant characteristics and teacher education program features were moderately and significantly ( p < .01) correlated with participant scores on the target aspects of NOS. The 6 antecedent predictor variables were entered into multiple regression analyses to determine the best-fit model of antecedent predictor variables for each target NOS aspect. The transaction predictor variables were entered into separate multiple regression analyses to determine the best-fit model of transaction predictor variables for each target NOS aspect. Variables from the best-fit antecedent and best-fit transaction models for each target aspect of NOS were then combined. A regression analysis for each of the combined models was conducted to determine the relative effect of these variables on the target aspects of NOS. Findings from the multiple regression analyses revealed that each of the fourteen predictor variables was present in the best-fit model for at least 1 of the 7 target aspects of NOS. However, not all of the predictor variables were statistically significant (p < .007) in the models and their effect (beta) varied. Participants in the teacher education program who had higher ACT Math scores, completed more high school science credits, and were enrolled either in the Middle Childhood with a science concentration program major or in the Adolescent/Young Adult Science Education program major were more likely to have an informed understanding on each of the 7 target aspects of NOS. Analyses of the planning guides and the course syllabi in each teacher education program major revealed differences between the program majors that may account for the results.
Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A
2017-08-07
A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling rainfall-runoff relationship using multivariate GARCH model
NASA Astrophysics Data System (ADS)
Modarres, R.; Ouarda, T. B. M. J.
2013-08-01
The traditional hydrologic time series approaches are used for modeling, simulating and forecasting conditional mean of hydrologic variables but neglect their time varying variance or the second order moment. This paper introduces the multivariate Generalized Autoregressive Conditional Heteroscedasticity (MGARCH) modeling approach to show how the variance-covariance relationship between hydrologic variables varies in time. These approaches are also useful to estimate the dynamic conditional correlation between hydrologic variables. To illustrate the novelty and usefulness of MGARCH models in hydrology, two major types of MGARCH models, the bivariate diagonal VECH and constant conditional correlation (CCC) models are applied to show the variance-covariance structure and cdynamic correlation in a rainfall-runoff process. The bivariate diagonal VECH-GARCH(1,1) and CCC-GARCH(1,1) models indicated both short-run and long-run persistency in the conditional variance-covariance matrix of the rainfall-runoff process. The conditional variance of rainfall appears to have a stronger persistency, especially long-run persistency, than the conditional variance of streamflow which shows a short-lived drastic increasing pattern and a stronger short-run persistency. The conditional covariance and conditional correlation coefficients have different features for each bivariate rainfall-runoff process with different degrees of stationarity and dynamic nonlinearity. The spatial and temporal pattern of variance-covariance features may reflect the signature of different physical and hydrological variables such as drainage area, topography, soil moisture and ground water fluctuations on the strength, stationarity and nonlinearity of the conditional variance-covariance for a rainfall-runoff process.
ERIC Educational Resources Information Center
Csizér, Kata; Tankó, Gyula
2017-01-01
Apart from L2 motivation, self-regulation is also increasingly seen as a key variable in L2 learning in many foreign language learning contexts because classroom-centered instructive language teaching might not be able to provide sufficient input for students. Therefore, taking responsibility and regulating the learning processes and positive…
ERIC Educational Resources Information Center
Wollard, Laura; Klein, Benjamin; Carlson, Darby J.; Carlson, Kimberly A.
2006-01-01
A major challenge in teaching the process of science to students is designing and implementing laboratory activities that emulate what is actually done in a research laboratory. To facilitate this effort, science educators have been encouraged to design exercises that span multiple laboratory periods, encourage independent thinking, promote…
NASA Astrophysics Data System (ADS)
Santoni, S.; Huneau, F.; Garel, E.; Celle-Jeanton, H.
2018-04-01
Climate change is nowadays widely considered to have major effects on groundwater resources. Climatic projections suggest a global increase in evaporation and higher frequency of strong rainfall events especially in Mediterranean context. Since evaporation is synonym of low recharge conditions whereas strong rainfall events are more favourable to recharge in heterogeneous subsurface contexts, a lack of knowledge remains then on the real ongoing and future drinking groundwater supply availability at aquifers scale. Due to low recharge potential and high inter-annual climate variability, this issue is strategic for the Mediterranean hydrosystems. This is especially the case for coastal aquifers because they are exposed to seawater intrusion, sea-level rise and overpumping risks. In this context, recharge processes and rates were investigated in a Mediterranean coastal aquifer with subsurface heterogeneity located in Southern Corsica (France). Aquifer recharge rates from combining ten physical and chemical methods were computed. In addition, hydrochemical and isotopic investigations were carried out through a monthly two years monitoring combining major ions and stable isotopes of water in rain, runoff and groundwater. Diffuse, focused, lateral mountain system and irrigation recharge processes were identified and characterized. A predominant focused recharge conditioned by subsurface heterogeneity is evidenced in agreement with variable but highly favourable recharge rates. The fast water transfer from the surface to the aquifer implied by this recharge process suggests less evaporation, which means higher groundwater renewal and availability in such Mediterranean coastal aquifers.
Development of a heavy duty portable variable power supply (HPVPS)
NASA Astrophysics Data System (ADS)
Musa, Ahmad Zulfadli Bin; Lung, Chong Man; Abidin, Wan'Amirah Basyarah Binti Zainol
2017-08-01
This paper covers the innovation of a Heavy Duty Portable Variable Power Supply (HPVPS) in Jabatan Kejuruteraan Elektrik (JKE), Politeknik Mukah, Sarawak (PMU). This project consists of variable power supply which can vary the output from 1.2 V to 11.6V, AC pure wave inverter to convert DC to AC for the operation of low power home appliances and also used Li-on rechargeable batteries to store the electrical energy and additional feature that can be used to jump-start the batteries of the car. The main objective of this project is to make the user can operate the electronic devices anywhere whenever if no electricity while doing their lab activities. Most of the regulated power supply in JKE lab aged 9-10 years old and need periodical maintenance and need cost and also the unit can be used is not enough to support the whole class during lab activities. As a result, the P&P process will be facing the major problem in order to make the lab activities running smoothly. By development of the portable variable power supply, the P&P process is more efficient and very helpful.
Development of process parameters for 22 nm PMOS using 2-D analytical modeling
NASA Astrophysics Data System (ADS)
Maheran, A. H. Afifah; Menon, P. S.; Ahmad, I.; Shaari, S.; Faizah, Z. A. Noor
2015-04-01
The complementary metal-oxide-semiconductor field effect transistor (CMOSFET) has become major challenge to scaling and integration. Innovation in transistor structures and integration of novel materials are necessary to sustain this performance trend. CMOS variability in the scaling technology becoming very important concern due to limitation of process control; over statistically variability related to the fundamental discreteness and materials. Minimizing the transistor variation through technology optimization and ensuring robust product functionality and performance is the major issue.In this article, the continuation study on process parameters variations is extended and delivered thoroughly in order to achieve a minimum leakage current (ILEAK) on PMOS planar transistor at 22 nm gate length. Several device parameters are varies significantly using Taguchi method to predict the optimum combination of process parameters fabrication. A combination of high permittivity material (high-k) and metal gate are utilized accordingly as gate structure where the materials include titanium dioxide (TiO2) and tungsten silicide (WSix). Then the L9 of the Taguchi Orthogonal array is used to analyze the device simulation where the results of signal-to-noise ratio (SNR) of Smaller-the-Better (STB) scheme are studied through the percentage influences of the process parameters. This is to achieve a minimum ILEAK where the maximum predicted ILEAK value by International Technology Roadmap for Semiconductors (ITRS) 2011 is said to should not above 100 nA/µm. Final results shows that the compensation implantation dose acts as the dominant factor with 68.49% contribution in lowering the device's leakage current. The absolute process parameters combination results in ILEAK mean value of 3.96821 nA/µm where is far lower than the predicted value.
Development of process parameters for 22 nm PMOS using 2-D analytical modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maheran, A. H. Afifah; Menon, P. S.; Shaari, S.
2015-04-24
The complementary metal-oxide-semiconductor field effect transistor (CMOSFET) has become major challenge to scaling and integration. Innovation in transistor structures and integration of novel materials are necessary to sustain this performance trend. CMOS variability in the scaling technology becoming very important concern due to limitation of process control; over statistically variability related to the fundamental discreteness and materials. Minimizing the transistor variation through technology optimization and ensuring robust product functionality and performance is the major issue.In this article, the continuation study on process parameters variations is extended and delivered thoroughly in order to achieve a minimum leakage current (I{sub LEAK}) onmore » PMOS planar transistor at 22 nm gate length. Several device parameters are varies significantly using Taguchi method to predict the optimum combination of process parameters fabrication. A combination of high permittivity material (high-k) and metal gate are utilized accordingly as gate structure where the materials include titanium dioxide (TiO{sub 2}) and tungsten silicide (WSi{sub x}). Then the L9 of the Taguchi Orthogonal array is used to analyze the device simulation where the results of signal-to-noise ratio (SNR) of Smaller-the-Better (STB) scheme are studied through the percentage influences of the process parameters. This is to achieve a minimum I{sub LEAK} where the maximum predicted I{sub LEAK} value by International Technology Roadmap for Semiconductors (ITRS) 2011 is said to should not above 100 nA/µm. Final results shows that the compensation implantation dose acts as the dominant factor with 68.49% contribution in lowering the device’s leakage current. The absolute process parameters combination results in I{sub LEAK} mean value of 3.96821 nA/µm where is far lower than the predicted value.« less
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2017-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). In 2017, the CVP Program had a call for proposals focused on observing and understanding processes affecting the propagation of intraseasonal oscillations in the Maritime Continent region. This poster will present the recently funded CVP projects, the expected scientific outcomes, the geographic areas of their work in the Maritime Continent region, and the collaborations with the Office of Naval Research, Indonesian Agency for Meteorology, Climatology and Geophysics (BMKG), Japan Agency for Marine-Earth Science and Technology (JAMSTEC) and other partners.
Toward more realistic projections of soil carbon dynamics by Earth system models
Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...
2016-01-21
Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less
Mantle-derived trace element variability in olivines and their melt inclusions
NASA Astrophysics Data System (ADS)
Neave, David A.; Shorttle, Oliver; Oeser, Martin; Weyer, Stefan; Kobayashi, Katsura
2018-02-01
Trace element variability in oceanic basalts is commonly used to constrain the physics of mantle melting and the chemistry of Earth's deep interior. However, the geochemical properties of mantle melts are often overprinted by mixing and crystallisation processes during ascent and storage. Studying primitive melt inclusions offers one solution to this problem, but the fidelity of the melt-inclusion archive to bulk magma chemistry has been repeatedly questioned. To provide a novel check of the melt inclusion record, we present new major and trace element analyses from olivine macrocrysts in the products of two geographically proximal, yet compositionally distinct, primitive eruptions from the Reykjanes Peninsula of Iceland. By combining these macrocryst analyses with new and published melt inclusion analyses we demonstrate that olivines have similar patterns of incompatible trace element (ITE) variability to the inclusions they host, capturing chemical systematics on intra- and inter-eruption scales. ITE variability (element concentrations, ratios, variances and variance ratios) in olivines from the ITE-enriched Stapafell eruption is best accounted for by olivine-dominated fractional crystallisation. In contrast, ITE variability in olivines and inclusions from the ITE-depleted Háleyjabunga eruption cannot be explained by crystallisation alone, and must have originated in the mantle. Compatible trace element (CTE) variability is best described by crystallisation processes in both eruptions. Modest correlations between host and inclusion ITE contents in samples from Háleyjabunga suggest that melt inclusions can be faithful archives of melting and magmatic processes. It also indicates that degrees of ITE enrichment can be estimated from olivines directly when melt inclusion and matrix glass records of geochemical variability are poor or absent. Inter-eruption differences in olivine ITE systematics between Stapafell and Háleyjabunga mirror differences in melt inclusion suites, and confirm that the Stapafell eruption was fed by lower degree melts from greater depths within the melting region than the Háleyjabunga eruption. Although olivine macrocrysts from Stapafell are slightly richer in Ni than those from Háleyjabunga, their overall CTE systematics (e.g., Ni/(Mg/Fe), Fe/Mn and Zn/Fe) are inconsistent with being derived from olivine-free pyroxenites. However, the major element systematics of Icelandic basalts require lithological heterogeneity in their mantle source in the form of Fe-rich and hence fusible domains. We thus conclude that enriched heterogeneities in the Icelandic mantle are composed of modally enriched, yet nonetheless olivine-bearing, lithologies and that olivine CTE contents provide an incomplete record of lithological heterogeneity in the mantle. Modally enriched peridotites may therefore play a more important role in oceanic magma genesis than previously inferred.
Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate
Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...
2016-11-08
Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.
1995-12-01
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. There is a need for non-combustion processes with a wide application range to treat the large majority of these waste forms. The non-combustion process should also be safe, effective, cost-competitive, permit-able, and preferrably mobile. This paper describes the DETOX processmore » of organic waste oxidation.« less
William H. Romme; Craig D. Allen; John D. Bailey; William L. Baker; Brandon T. Bestelmeyer; Peter M. Brown; Karen S. Eisenhart; M. Lisa Floyd; David W. Huffman; Brian F. Jacobs; Richard F. Miller; Esteban H. Muldavin; Thomas W. Swetnam; Robin J. Tausch; Peter J. Weisberg
2009-01-01
Pinon-juniper is a major vegetation type in western North America. Effective management of these ecosystems has been hindered by inadequate understanding of 1) the variability in ecosystem structure and ecological processes that exists among the diverse combinations of Pinons, junipers, and associated shrubs, herbs, and soil organisms; 2) the prehistoric and historic...
Thomas A. Spies; David B. Lindenmayer; A. Malcolm Gill; Scott L. Stephens; James K. Agee
2012-01-01
Conserving biodiversity in fire-prone forest ecosystems is challenging for several reasons including differing and incomplete conceptual models of fire-related ecological processes, major gaps in ecological and management knowledge, high variability in fire behavior and ecological responses to fires, altered fire regimes as a result of land-use history and climate...
ERIC Educational Resources Information Center
Coyne, Thomas J.; Nordone, Ronald; Donovan, Joseph W.; Thygeson, William
This paper describes the initial analyses needed to help institutions of higher education plan majors in nursing and allied health as institutions look for new markets based on demographic and employment factors. Twelve variables were identified and weighted to describe an ideal recruitment market. Using a three-phase process, potential U.S.…
NASA Astrophysics Data System (ADS)
Chakrabarti, Anindya S.
2016-01-01
We present a model of technological evolution due to interaction between multiple countries and the resultant effects on the corresponding macro variables. The world consists of a set of economies where some countries are leaders and some are followers in the technology ladder. All of them potentially gain from technological breakthroughs. Applying Lotka-Volterra (LV) equations to model evolution of the technology frontier, we show that the way technology diffuses creates repercussions in the partner economies. This process captures the spill-over effects on major macro variables seen in the current highly globalized world due to trickle-down effects of technology.
Wang, Pei; Zhang, Hui; Yang, Hailong; Nie, Lei; Zang, Hengchang
2015-02-25
Near-infrared (NIR) spectroscopy has been developed into an indispensable tool for both academic research and industrial quality control in a wide field of applications. The feasibility of NIR spectroscopy to monitor the concentration of puerarin, daidzin, daidzein and total isoflavonoid (TIF) during the extraction process of kudzu (Pueraria lobata) was verified in this work. NIR spectra were collected in transmission mode and pretreated with smoothing and derivative. Partial least square regression (PLSR) was used to establish calibration models. Three different variable selection methods, including correlation coefficient method, interval partial least squares (iPLS), and successive projections algorithm (SPA) were performed and compared with models based on all of the variables. The results showed that the approach was very efficient and environmentally friendly for rapid determination of the four quality indices (QIs) in the kudzu extraction process. This method established may have the potential to be used as a process analytical technological (PAT) tool in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Khuda, Sefat; Slate, Andrew; Pereira, Marion; Al-Taher, Fadwa; Jackson, Lauren; Diaz-Amigo, Carmen; Bigley, Elmer C; Whitaker, Thomas; Williams, Kristina M
2012-05-02
Among the major food allergies, peanut, egg, and milk are the most common. The immunochemical detection of food allergens depends on various factors, such as the food matrix and processing method, which can affect allergen conformation and extractability. This study aimed to (1) develop matrix-specific incurred reference materials for allergen testing, (2) determine whether multiple allergens in the same model food can be simultaneously detected, and (3) establish the effect of processing on reference material stability and allergen detection. Defatted peanut flour, whole egg powder, and spray-dried milk were added to cookie dough at seven incurred levels before baking. Allergens were measured using five commercial enzyme-linked immunosorbent assay (ELISA) kits. All kits showed decreased recovery of all allergens after baking. Analytical coefficients of variation for most kits increased with baking time, but decreased with incurred allergen level. Thus, food processing negatively affects the recovery and variability of peanut, egg, and milk detection in a sugar cookie matrix when using immunochemical methods.
NASA Astrophysics Data System (ADS)
Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi
2017-11-01
An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,
Jackson, B Scott
2004-10-01
Many different types of integrate-and-fire models have been designed in order to explain how it is possible for a cortical neuron to integrate over many independent inputs while still producing highly variable spike trains. Within this context, the variability of spike trains has been almost exclusively measured using the coefficient of variation of interspike intervals. However, another important statistical property that has been found in cortical spike trains and is closely associated with their high firing variability is long-range dependence. We investigate the conditions, if any, under which such models produce output spike trains with both interspike-interval variability and long-range dependence similar to those that have previously been measured from actual cortical neurons. We first show analytically that a large class of high-variability integrate-and-fire models is incapable of producing such outputs based on the fact that their output spike trains are always mathematically equivalent to renewal processes. This class of models subsumes a majority of previously published models, including those that use excitation-inhibition balance, correlated inputs, partial reset, or nonlinear leakage to produce outputs with high variability. Next, we study integrate-and-fire models that have (nonPoissonian) renewal point process inputs instead of the Poisson point process inputs used in the preceding class of models. The confluence of our analytical and simulation results implies that the renewal-input model is capable of producing high variability and long-range dependence comparable to that seen in spike trains recorded from cortical neurons, but only if the interspike intervals of the inputs have infinite variance, a physiologically unrealistic condition. Finally, we suggest a new integrate-and-fire model that does not suffer any of the previously mentioned shortcomings. By analyzing simulation results for this model, we show that it is capable of producing output spike trains with interspike-interval variability and long-range dependence that match empirical data from cortical spike trains. This model is similar to the other models in this study, except that its inputs are fractional-gaussian-noise-driven Poisson processes rather than renewal point processes. In addition to this model's success in producing realistic output spike trains, its inputs have long-range dependence similar to that found in most subcortical neurons in sensory pathways, including the inputs to cortex. Analysis of output spike trains from simulations of this model also shows that a tight balance between the amounts of excitation and inhibition at the inputs to cortical neurons is not necessary for high interspike-interval variability at their outputs. Furthermore, in our analysis of this model, we show that the superposition of many fractional-gaussian-noise-driven Poisson processes does not approximate a Poisson process, which challenges the common assumption that the total effect of a large number of inputs on a neuron is well represented by a Poisson process.
Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric
2012-03-01
Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.
Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I
2017-06-15
Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.
NASA Astrophysics Data System (ADS)
Guo, A.; Wang, Y.
2017-12-01
Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.
High taxonomic variability despite stable functional structure across microbial communities.
Louca, Stilianos; Jacques, Saulo M S; Pires, Aliny P F; Leal, Juliana S; Srivastava, Diane S; Parfrey, Laura Wegener; Farjalla, Vinicius F; Doebeli, Michael
2016-12-05
Understanding the processes that are driving variation of natural microbial communities across space or time is a major challenge for ecologists. Environmental conditions strongly shape the metabolic function of microbial communities; however, other processes such as biotic interactions, random demographic drift or dispersal limitation may also influence community dynamics. The relative importance of these processes and their effects on community function remain largely unknown. To address this uncertainty, here we examined bacterial and archaeal communities in replicate 'miniature' aquatic ecosystems contained within the foliage of wild bromeliads. We used marker gene sequencing to infer the taxonomic composition within nine metabolic functional groups, and shotgun environmental DNA sequencing to estimate the relative abundances of these groups. We found that all of the bromeliads exhibited remarkably similar functional community structures, but that the taxonomic composition within individual functional groups was highly variable. Furthermore, using statistical analyses, we found that non-neutral processes, including environmental filtering and potentially biotic interactions, at least partly shaped the composition within functional groups and were more important than spatial dispersal limitation and demographic drift. Hence both the functional structure and taxonomic composition within functional groups of natural microbial communities may be shaped by non-neutral and roughly separate processes.
Benford's law and continuous dependent random variables
NASA Astrophysics Data System (ADS)
Becker, Thealexa; Burt, David; Corcoran, Taylor C.; Greaves-Tunnell, Alec; Iafrate, Joseph R.; Jing, Joy; Miller, Steven J.; Porfilio, Jaclyn D.; Ronan, Ryan; Samranvedhya, Jirapat; Strauch, Frederick W.; Talbut, Blaine
2018-01-01
Many mathematical, man-made and natural systems exhibit a leading-digit bias, where a first digit (base 10) of 1 occurs not 11% of the time, as one would expect if all digits were equally likely, but rather 30%. This phenomenon is known as Benford's Law. Analyzing which datasets adhere to Benford's Law and how quickly Benford behavior sets in are the two most important problems in the field. Most previous work studied systems of independent random variables, and relied on the independence in their analyses. Inspired by natural processes such as particle decay, we study the dependent random variables that emerge from models of decomposition of conserved quantities. We prove that in many instances the distribution of lengths of the resulting pieces converges to Benford behavior as the number of divisions grow, and give several conjectures for other fragmentation processes. The main difficulty is that the resulting random variables are dependent. We handle this by using tools from Fourier analysis and irrationality exponents to obtain quantified convergence rates as well as introducing and developing techniques to measure and control the dependencies. The construction of these tools is one of the major motivations of this work, as our approach can be applied to many other dependent systems. As an example, we show that the n ! entries in the determinant expansions of n × n matrices with entries independently drawn from nice random variables converges to Benford's Law.
Pomeroy, Andrew; Lowe, Ryan J.; Ghisalberti, Marco; Winter, Gundula; Storlazzi, Curt D.; Cuttler, Michael V. W.
2018-01-01
Sediment produced on fringing coral reefs that is transported along the bed or in suspension affects ecological reef communities as well as the morphological development of the reef, lagoon, and adjacent shoreline. This study quantified the physical process contribution and relative importance of incident waves, infragravity waves, and mean currents to the spatial and temporal variability of sediment in suspension. Estimates of bed shear stresses demonstrate that incident waves are the key driver of the SSC variability spatially (reef flat, lagoon, and channels) but cannot not fully describe the SSC variability alone. The comparatively small but statistically significant contribution to the bed shear stress by infragravity waves and currents, along with the spatial availability of sediment of a suitable size and volume, is also important. Although intra‐tidal variability in SSC occurs in the different reef zones, the majority of the variability occurs over longer slowly varying (subtidal) time scales, which is related to the arrival of large incident waves at a reef location. The predominant flow pathway, which can transport suspended sediment, consists of cross‐reef flow across the reef flat that diverges in the lagoon and returns offshore through channels. This pathway is primarily due to subtidal variations in wave‐driven flows, but can also be driven alongshore by wind stresses when the incident waves are small. Higher frequency (intra‐tidal) current variability also occur due to both tidal flows, as well as variations in the water depth that influence wave transmission across the reef and wave‐driven currents.
Toward a Network Model of MHC Class II-Restricted Antigen Processing
Miller, Michael A.; Ganesan, Asha Purnima V.; Eisenlohr, Laurence C.
2013-01-01
The standard model of Major Histocompatibility Complex class II (MHCII)-restricted antigen processing depicts a straightforward, linear pathway: internalized antigens are converted into peptides that load in a chaperone dependent manner onto nascent MHCII in the late endosome, the complexes subsequently trafficking to the cell surface for recognition by CD4+ T cells (TCD4+). Several variations on this theme, both moderate and radical, have come to light but these alternatives have remained peripheral, the conventional pathway generally presumed to be the primary driver of TCD4+ responses. Here we continue to press for the conceptual repositioning of these alternatives toward the center while proposing that MHCII processing be thought of less in terms of discrete pathways and more in terms of a network whose major and minor conduits are variable depending upon many factors, including the epitope, the nature of the antigen, the source of the antigen, and the identity of the antigen-presenting cell. PMID:24379819
Fandiño-Losada, Andrés; Forsell, Yvonne; Lundberg, Ingvar
2013-07-01
The psychosocial work environment may be a determinant of the development and course of depressive disorders, but the literature shows inconsistent findings. Thus, the aim of this study is to determine longitudinal effects of the job demands-control-support model (JDCSM) variables on the occurrence of major depression among working men and women from the general population. The sample comprised 4,710 working women and men living in Stockholm, who answered the same questionnaire twice, 3 years apart, who were not depressed during the first wave and had the same job in both waves. The questionnaire included JDCSM variables (demands, skill discretion, decision authority and social climate) and other co-variables (income, education, occupational group, social support, help and small children at home, living with an adult and depressive symptoms at time 1; and negative life events at time 2). Multiple logistic regressions were run to calculate odds ratios of having major depression at time 2, after adjustment for other JDCSM variables and co-variables. Among women, inadequate work social climate was the only significant risk indicator for major depression. Surprisingly, among men, high job demands and low skill discretion appeared as protective factors against major depression. The results showed a strong relationship between inadequate social climate and major depression among women, while there were no certain effects for the remaining exposure variables. Among men, few cases of major depression hampered well-founded conclusions regarding our findings of low job demands and high skill discretion as related to major depression.
Environment and host as large-scale controls of ectomycorrhizal fungi.
van der Linde, Sietse; Suz, Laura M; Orme, C David L; Cox, Filipa; Andreae, Henning; Asi, Endla; Atkinson, Bonnie; Benham, Sue; Carroll, Christopher; Cools, Nathalie; De Vos, Bruno; Dietrich, Hans-Peter; Eichhorn, Johannes; Gehrmann, Joachim; Grebenc, Tine; Gweon, Hyun S; Hansen, Karin; Jacob, Frank; Kristöfel, Ferdinand; Lech, Paweł; Manninger, Miklós; Martin, Jan; Meesenburg, Henning; Merilä, Päivi; Nicolas, Manuel; Pavlenda, Pavel; Rautio, Pasi; Schaub, Marcus; Schröck, Hans-Werner; Seidling, Walter; Šrámek, Vít; Thimonier, Anne; Thomsen, Iben Margrete; Titeux, Hugues; Vanguelova, Elena; Verstraeten, Arne; Vesterdal, Lars; Waldner, Peter; Wijk, Sture; Zhang, Yuxin; Žlindra, Daniel; Bidartondo, Martin I
2018-06-06
Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.
The search for Infrared radiation prior to major earthquakes
NASA Astrophysics Data System (ADS)
Ouzounov, D.; Taylor, P.; Pulinets, S.
2004-12-01
This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.
Biomechanics as a window into the neural control of movement
2016-01-01
Abstract Biomechanics and motor control are discussed as parts of a more general science, physics of living systems. Major problems of biomechanics deal with exact definition of variables and their experimental measurement. In motor control, major problems are associated with formulating currently unknown laws of nature specific for movements by biological objects. Mechanics-based hypotheses in motor control, such as those originating from notions of a generalized motor program and internal models, are non-physical. The famous problem of motor redundancy is wrongly formulated; it has to be replaced by the principle of abundance, which does not pose computational problems for the central nervous system. Biomechanical methods play a central role in motor control studies. This is illustrated with studies with the reconstruction of hypothetical control variables and those exploring motor synergies within the framework of the uncontrolled manifold hypothesis. Biomechanics and motor control have to merge into physics of living systems, and the earlier this process starts the better. PMID:28149390
Bimakr, Mandana; Rahman, Russly Abdul; Taip, Farah Saleena; Adzahan, Noranizan Mohd; Sarker, Md Zaidul Islam; Ganjloo, Ali
2012-10-08
In the present study, ultrasound-assisted extraction of crude oil from winter melon seeds was investigated through response surface methodology (RSM). Process variables were power level (25-75%), temperature (45-55 °C) and sonication time (20-40 min). It was found that all process variables have significant (p < 0.05) effects on the response variable. A central composite design (CCD) was used to determine the optimum process conditions. Optimal conditions were identified as 65% power level, 52 °C temperature and 36 min sonication time for maximum crude yield (108.62 mg-extract/g-dried matter). The antioxidant activity, total phenolic content and fatty acid composition of extract obtained under optimized conditions were determined and compared with those of oil obtained by the Soxhlet method. It was found that crude extract yield (CEY) of ultrasound-assisted extraction was lower than that of the Soxhlet method, whereas antioxidant activity and total phenolic content of the extract obtained by ultrasound-assisted extraction were clearly higher than those of the Soxhlet extract. Furthermore, both extracts were rich in unsaturated fatty acids. The major fatty acids of the both extracts were linoleic acid and oleic acid.
Preparation of Effective Operating Manuals to Support Waste Management Plant Operator Training
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S. R.
2003-02-25
Effective plant operating manuals used in a formal training program can make the difference between a successful operation and a failure. Once the plant process design and control strategies have been fixed, equipment has been ordered, and the plant is constructed, the only major variable affecting success is the capability of plant operating personnel. It is essential that the myriad details concerning plant operation are documented in comprehensive operating manuals suitable for training the non-technical personnel that will operate the plant. These manuals must cover the fundamental principles of each unit operation including how each operates, what process variables aremore » important, and the impact of each variable on the overall process. In addition, operators must know the process control strategies, process interlocks, how to respond to alarms, each of the detailed procedures required to start up and optimize the plant, and every control loop-including when it is appropriate to take manual control. More than anything else, operating mistakes during the start-up phase can lead to substantial delays in achieving design processing rates as well as to problems with government authorities if environmental permit limits are exceeded. The only way to assure return on plant investment is to ensure plant operators have the knowledge to properly run the plant from the outset. A comprehensive set of operating manuals specifically targeted toward plant operators and supervisors written by experienced operating personnel is the only effective way to provide the necessary information for formal start-up training.« less
NASA Astrophysics Data System (ADS)
Hockaday, W. C.; Kane, E. S.; Ohlson, M.; Huang, R.; Von Bargen, J.; Davis, R.
2014-12-01
Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.
Microbial facies distribution and its geological and geochemical controls at the Hanford 300 area
NASA Astrophysics Data System (ADS)
Hou, Z.; Nelson, W.; Stegen, J.; Murray, C. J.; Arntzen, E.
2015-12-01
Efforts have been made by various scientific disciplines to study hyporheic zones and characterize their associated processes. One way to approach the study of the hyporheic zone is to define facies, which are elements of a (hydrobio) geologic classification scheme that groups components of a complex system with high variability into a manageable set of discrete classes. In this study, we try to classify the hyporheic zone based on the geology, geochemistry, microbiology, and understand their interactive influences on the integrated biogeochemical distributions and processes. A number of measurements have been taken for 21 freeze core samples along the Columbia River bank in the Hanford 300 Area, and unique datasets have been obtained on biomass, pH, number of microbial taxa, percentage of N/C/H/S, microbial activity parameters, as well as microbial community attributes/modules. In order to gain a complete understanding of the geological control on these variables and processes, the explanatory variables are set to include quantitative gravel/sand/mud/silt/clay percentages, statistical moments of grain size distributions, as well as geological (e.g., Folk-Wentworth) and statistical (e.g., hierarchical) clusters. The dominant factors for major microbial and geochemical variables are identified and summarized using exploratory data analysis approaches (e.g., principal component analysis, hierarchical clustering, factor analysis, multivariate analysis of variance). The feasibility of extending the facies definition and its control of microbial and geochemical properties to larger scales is discussed.
Aydin Sunbul, Esra; Sunbul, Murat; Gulec, Huseyin
Depression is an independent risk factor in cardiovascular diseases. Changes in the cardiac autonomic functions and pro-inflammatory processes are potential biological factors. Endothelial dysfunction plays an important role in the etiopathogenesis of atherosclerosis. Our objective was to evaluate the impact of major depression on heart rate variability and endothelial dysfunction in patients with stable CAD. The study group included 65 CAD patients with a diagnosis of major depression and 54 CAD patients without major depression. All study population underwent transthoracic echocardiography, measurement of flow mediated dilatation (FMD) and 24-h holter recording for heart rate variability (HRV). Blood samples were drawn to determine the inflammatory parameters. Severity of depressive episode was assessed by Montgomery-Asberg Depression Scale (MADRS). The distribution of age and sex was similar in the patient and control groups (P=0.715, 0.354, respectively). There was no significant difference in medications used between the groups. Echocardiographic parameters were similar between the groups. Inflammatory parameters were also similar between the groups. HRV parameters were significantly lower in the patient group than controls. The absolute FMD value and percentage FMD were significantly lower in the patient group than controls (P<0.001). The MADRS score correlated with pNN50 in both groups (P<0.05), and with FMD in the control group (P<0.001), even after adjusting for age and gender (P<0.001). MADRS score was an independent predictor of pNN50 level, percentage and absolute FMD values regardless of age and gender. Clinician should pay more attention for evaluation of depressive patients with CAD. Copyright © 2016 Elsevier Inc. All rights reserved.
A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger
2018-04-19
Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model for the mutational process; regions that deviate from the null model are candidates for elements that drive cancer development.
Rand, Miya K; Shimansky, Yury P
2013-03-01
A quantitative model of optimal transport-aperture coordination (TAC) during reach-to-grasp movements has been developed in our previous studies. The utilization of that model for data analysis allowed, for the first time, to examine the phase dependence of the precision demand specified by the CNS for neurocomputational information processing during an ongoing movement. It was shown that the CNS utilizes a two-phase strategy for movement control. That strategy consists of reducing the precision demand for neural computations during the initial phase, which decreases the cost of information processing at the expense of lower extent of control optimality. To successfully grasp the target object, the CNS increases precision demand during the final phase, resulting in higher extent of control optimality. In the present study, we generalized the model of optimal TAC to a model of optimal coordination between X and Y components of point-to-point planar movements (XYC). We investigated whether the CNS uses the two-phase control strategy for controlling those movements, and how the strategy parameters depend on the prescribed movement speed, movement amplitude and the size of the target area. The results indeed revealed a substantial similarity between the CNS's regulation of TAC and XYC. First, the variability of XYC within individual trials was minimal, meaning that execution noise during the movement was insignificant. Second, the inter-trial variability of XYC was considerable during the majority of the movement time, meaning that the precision demand for information processing was lowered, which is characteristic for the initial phase. That variability significantly decreased, indicating higher extent of control optimality, during the shorter final movement phase. The final phase was the longest (shortest) under the most (least) challenging combination of speed and accuracy requirements, fully consistent with the concept of the two-phase control strategy. This paper further discussed the relationship between motor variability and XYC variability.
Soil resources and topography shape local tree community structure in tropical forests
Baldeck, Claire A.; Harms, Kyle E.; Yavitt, Joseph B.; John, Robert; Turner, Benjamin L.; Valencia, Renato; Navarrete, Hugo; Davies, Stuart J.; Chuyong, George B.; Kenfack, David; Thomas, Duncan W.; Madawala, Sumedha; Gunatilleke, Nimal; Gunatilleke, Savitri; Bunyavejchewin, Sarayudh; Kiratiprayoon, Somboon; Yaacob, Adzmi; Supardi, Mohd N. Nur; Dalling, James W.
2013-01-01
Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24–50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9–34% and 5–29%, respectively), and all environmental variables together explain 13–39% of compositional variation within a plot. A large fraction of variation (19–37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. PMID:23256196
Murdin, A D; Su, H; Klein, M H; Caldwell, H D
1995-01-01
Trachoma and sexually transmitted diseases caused by Chlamydia trachomatis are major health problems worldwide. Epitopes from the variable domains of the major outer membrane protein are candidates for vaccine development. We have constructed hybrid polioviruses expressing sequences from major outer membrane protein variable domains I and IV. Antisera to the hybrids could, in combination, strongly neutralize 8 of the 12 C. trachomatis serovars most commonly associated with oculogenital infections and weakly neutralize the others. PMID:7532625
NASA Astrophysics Data System (ADS)
Steenhuis, T. S.; Azzaino, Z.; Hoang, L.; Pacenka, S.; Worqlul, A. W.; Mukundan, R.; Stoof, C.; Owens, E. M.; Richards, B. K.
2017-12-01
The New York City source watersheds in the Catskill Mountains' humid, temperate climate has long-term hydrological and water quality monitoring data It is one of the few catchments where implementation of source and landscape management practices has led to decreased phosphorus concentration in the receiving surface waters. One of the reasons is that landscape measures correctly targeted the saturated variable source runoff areas (VSA) in the valley bottoms as the location where most of the runoff and other nonpoint pollutants originated. Measures targeting these areas were instrumental in lowering phosphorus concentration. Further improvements in water quality can be made based on a better understanding of the flow processes and water table fluctuations in the VSA. For that reason, we instrumented a self-contained upland variable source watershed with a landscape characteristic of a soil underlain by glacial till at shallow depth similar to the Catskill watersheds. In this presentation, we will discuss our experimental findings and present a mathematical model. Variable source areas have a small slope making gravity the driving force for the flow, greatly simplifying the simulation of the flow processes. The experimental data and the model simulations agreed for both outflow and water table fluctuations. We found that while the flows to the outlet were similar throughout the year, the discharge of the VSA varies greatly. This was due to transpiration by the plants which became active when soil temperatures were above 10oC. We found that shortly after the temperature increased above 10oC the baseflow stopped and only surface runoff occurred when rainstorms exceeded the storage capacity of the soil in at least a portion of the variable source area. Since plant growth in the variable source area was a major variable determining the base flow behavior, changes in temperature in the future - affecting the duration of the growing season - will affect baseflow and related transport of nutrient and other chemicals many times more than small temperature related increases in potential evaporation rate. This in turn will directly change the water availability and pollutant transport in the many surface source watersheds with variable source area hydrology.
From nanoelectronics to nano-spintronics.
Wang, Kang L; Ovchinnikov, Igor; Xiu, Faxian; Khitun, Alex; Bao, Ming
2011-01-01
Today's electronics uses electron charge as a state variable for logic and computing operation, which is often represented as voltage or current. In this representation of state variable, carriers in electronic devices behave independently even to a few and single electron cases. As the scaling continues to reduce the physical feature size and to increase the functional throughput, two most outstanding limitations and major challenges, among others, are power dissipation and variability as identified by ITRS. This paper presents the expose, in that collective phenomena, e.g., spintronics using appropriate order parameters of magnetic moment as a state variable may be considered favorably for a new room-temperature information processing paradigm. A comparison between electronics and spintronics in terms of variability, quantum and thermal fluctuations will be presented. It shows that the benefits of the scalability to smaller sizes in the case of spintronics (nanomagnetics) include a much reduced variability problem as compared with today's electronics. In addition, another advantage of using nanomagnets is the possibility of constructing nonvolatile logics, which allow for immense power savings during system standby. However, most of devices with magnetic moment usually use current to drive the devices and consequently, power dissipation is a major issue. We will discuss approaches of using electric-field control of ferromagnetism in dilute magnetic semiconductor (DMS) and metallic ferromagnetic materials. With the DMSs, carrier-mediated transition from paramagnetic to ferromagnetic phases make possible to have devices work very much like field effect transistor, plus the non-volatility afforded by ferromagnetism. Then we will describe new possibilities of the use of electric field for metallic materials and devices: Spin wave devices with multiferroics materials. We will also further describe a potential new method of electric field control of metallic ferromagnetism via field effect of the Thomas Fermi surface layer.
Habituation of the orienting reflex and the development of Preliminary Process Theory.
Barry, Robert J
2009-09-01
The orienting reflex (OR), elicited by an innocuous stimulus, can be regarded as a model of the organism's interaction with its environment, and has been described as the unit of attentional processing. A major determinant of the OR is the novelty of the eliciting stimulus, generally operationalized in terms of its reduction with stimulus repetition, the effects of which are commonly described in habituation terms. This paper provides an overview of a research programme, spanning more than 30 years, investigating psychophysiological aspects of the OR in humans. The major complication in this research is that the numerous physiological measures used as dependent variables in the OR context fail to jointly covary with stimulus parameters. This has led to the development of the Preliminary Process Theory (PPT) of the OR to accommodate the complexity of the observed stimulus-response patterns. PPT is largely grounded in autonomic measures, and current work is attempting to integrate electroencephalographic measures, particularly components in the event-related brain potentials reflecting aspects of stimulus processing. The emphasis in the current presentation is on the use of the defining criteria of the habituation phenomenon, and Groves and Thompson's Dual-process Theory, in the development of PPT.
Assessing Factors Contributing to Cyanobacteria Harmful Algal Blooms in U.S. Lakes
NASA Astrophysics Data System (ADS)
Salls, W. B.; Iiames, J. S., Jr.; Lunetta, R. S.; Mehaffey, M.; Schaeffer, B. A.
2017-12-01
Cyanobacteria Harmful Algal Blooms (CHABs) in inland lakes have emerged as a major threat to water quality from both ecological and public health standpoints. Understanding the factors and processes driving CHAB occurrence is important in order to properly manage ensuring more favorable water quality outcomes. High water temperatures and nutrient loadings are known drivers of CHABs; however, the contribution of landscape variables and their interactions with these drivers remains relatively unstudied at a regional or national scale. This study assesses upstream landscape variables that may contribute to or obstruct/delay nutrient loadings to freshwater systems in several hundred inland lakes in the Upper Mid-western and Northeastern United States. We employ multiple linear regression and random forest modeling to determine which variables contribute most strongly to CHAB occurrence. This lakeshed-based approach will rank the impact of each landscape variable on cyanobacteria levels derived from satellite remotely sensed data from the Medium Resolution Imaging Spectrometer (MERIS) sensor for the 2011 bloom season (July - October).
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-03-20
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.
NASA Astrophysics Data System (ADS)
Lucas, S. E.
2016-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). This poster will present the recently funded CVP projects on improving the understanding Atlantic Meridional Overturning Circulation (AMOC), its impact on decadal predictability, and its relationship with the overall climate system.
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-01-01
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The ‘charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and ‘discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events. PMID:28317857
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect
NASA Astrophysics Data System (ADS)
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-03-01
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The `charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and `discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.
NASA Astrophysics Data System (ADS)
Diz, Paula; Hernández-Almeida, Iván; Bernárdez, Patricia; Pérez-Arlucea, Marta; Hall, Ian R.
2018-07-01
The modern Eastern Equatorial Pacific (EEP) is a key oceanographic region for regulating the Earth's climate system, accounting for between 5-10% of global marine production whilst also representing a major source of carbon dioxide efflux to the atmosphere. Changes in ocean dynamics linked to the nutrient supply from the Southern Ocean have been suggested to have played a dominant role in regulating EEP productivity over glacial-interglacial timescales of the past 500 ka. Yet, the full extent of the climate and oceanic teleconnections and the mechanisms promoting the observed increase of productivity occurring at glacial terminations remain poorly understood. Here we present multi-proxy, micropaleontological, geochemical and sedimentological records from the easternmost EEP to infer changes in atmospheric patterns and oceanic processes potentially influencing regional primary productivity over glacial-interglacial cycles of the mid-late Pleistocene (∼0-650 ka). These proxy data support a leading role for the north-south migration of the Intertropical Convergence Zone (ITCZ) in shaping past productivity variability in the EEP. Productivity increases during glacial periods and notably peaks at major and "extra" glacial terminations (those occurring 1-2 precession cycles after some major terminations) coincident with the inferred southernmost position of the ITCZ. The comparison of our reconstructions with proxy records of climate variability suggests the intensification of related extratropical atmospheric and oceanic teleconnections during deglaciation events. These processes may have re-activated the supply of southern sourced nutrients to the EEP, potentially contributing to enhanced productivity in the EEP and thus counterbalancing the oceanic carbon dioxide outgassing at glacial terminations.
NASA Astrophysics Data System (ADS)
Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.
2017-12-01
Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents the deepest, hottest and lowest viscosity magma of all the samples considered. [1] Jennings E. S., Gibson S. A., Maclennan J. and Heinonen J. S. (2017) Deep mixing of mantle melts beneath continental flood basalt provinces: Constraints from olivine-hosted melt inclusions in primitive magmas. Geochimica et Cosmochimica Acta 196, 36-57.
Fontana, Silvia Alicia; Raimondi, Waldina; Rizzo, María Laura
2014-09-05
Sleep quality not only refers to sleeping well at night, but also includes appropriate daytime functioning. Poor quality of sleep can affect a variety of attention processes. The aim of this investigation was to evaluate the relationship between the perceived quality of sleep and selective focus in a group of college students. A descriptive cross-sectional study was carried out in a group of 52 Argentinian college students of the Universidad Adventista del Plata. The Pittsburgh Sleep Quality Index, the Continuous Performance Test and the Trail Making Test were applied. The main results indicate that students sleep an average of 6.48 hours. Generally half of the population tested had a good quality of sleep. However, the dispersion seen in some components demonstrates the heterogeneity of the sample in these variables. It was observed that the evaluated attention processes yielded different levels of alteration in the total sample: major variability in the process of process and in the divided-attention processes were detected. A lower percentage of alteration was observed in the process of attention support. Poor quality of sleep has more impact in the sub processes with greater participation of corticocortical circuits (selective and divided attention) and greater involvement of the prefrontal cortex. Fewer difficulties were found in the attention-support processes that rely on subcortical regions and have less frontal involvement.
Genetic variability in captive populations of the stingless bee Tetragonisca angustula.
Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C
2016-08-01
Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.
NASA Astrophysics Data System (ADS)
Gascuel-Odoux, Chantal; Remi, Dupas; Patrick, Durand; Ophélie, Fovet; Gerard, Gruau; Anne, Jaffrezic; Guillaume, Humbert; Philippe, Merot; Gu, Sen
2016-04-01
Agriculture greatly contributes to modify C, N and P cycles, particularly in animal breeding regions due to high inputs. Climatic conditions, intra and inter-annual variabilities, modify nutrient stream water emissions, acting in time on transfer and transformation, accumulation and mobilization processes, connecting and disconnecting in time different compartments (soil, riparian areas, groundwater). In agricultural catchments, nutrient perturbations are dominated by agricultural land use, and decoupling human activities and climate effects is far from easy. Climate change generally appears as a secondary driver compared to land use. If studied, generally only one nutrient is considered. Only long term, high frequency and multiple element data series can decouple these two drivers. The Kervidy-Naizin watershed belongs to the AgrHyS environmental research observatory (http://www6.inra.fr/ore_agrhys_eng), itself included in RBV (French catchment network of the CZO). On this catchment, 6 years of daily data on DOC, NO3, SRP, TP concentrations allow us to analyze the effect of seasonal and inter-annual climatic variabilities on water quality (C, N, P). Different papers have been published on the effect of climate on nitrate (Molenat et al, 2008), SRP and TP (Dupas et al, 2015) and DOC (Humbert et al, 2015). We will present first results comparing the effect of climate on these three major solute forms of C, N and P. While C and P dynamics are very close and controlled by fluctuation of water table downslope, i.e. in riparian areas, mobilizing C and P in time, nitrate dynamics is controlled by GW dynamics upslope acting as the major N reservoir. As example, the dryness conditions in summer appears a key factor of the C and P emissions in autumn. All the three solute forms interact when anoxic conditions are observed in riparian zones. These basic processes explain how climatic variability can influence and explain interactions between C, N and P emissions in stream water. These results underline three major lack in most of our observatories: high frequency data as flood event are important for C and P emissions; multiple element approach, as very few observatories have currently C, N and P, their solute and particulate forms; climate but also soil wetness, GW fluctuations explaining biotransformation and connection between reservoirs on catchments, so that linking hydrological and biogeochimical condition is necessary to explain export. These lacks of observations is a barrier to develop process based models assessing and predicting the effect of climate on water quality. References Dupas R., Gruau G., Sen Gu, Humbert G., Jaffrezic A., Gascuel-Odoux C., 2015. Groundwater control of biogeochemical processes causing phosphorus release from riparian wetlands. Water Research 84, 307-314 Humbert G., Jaffrezic A., Fovet O., Gruau G., Durand P., 2015. Dry-season length and runoff control annual variability in stream DOC dynamics in a small, shallow groundwater-dominated agricultural watershed. Water Resources Research. Molenat J., Gascuel-Odoux C., Ruiz L., Gruau G., 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater. Journal of Hydrology 348, 363- 378.
A Comparison of Majority and Minority Students on Variables of an Educational Productivity Model.
ERIC Educational Resources Information Center
Payne, Oscar L.
Two ethnic groups of students, majority and minority, were compared on variables of a Psychological Productivity Model. Black and Hispanic students were grouped as minorities, and White students were considered majority students. Participants were 120 high school students from an urban high school in the Southwest. The Psychological Productivity…
Chemical processing of glasses
NASA Astrophysics Data System (ADS)
Laine, Richard M.
1990-11-01
The development of chemical processing methods for the fabrication of glass and ceramic shapes for photonic applications is frequently Edisonian in nature. In part, this is because the numerous variables that must be optimized to obtain a given material with a specific shape and particular properties cannot be readily defined based on fundamental principles. In part, the problems arise because the basic chemistry of common chemical processing systems has not been fully delineated. The prupose of this paper is to provide an overview of the basic chemical problems associated with chemical processing. The emphasis will be on sol-gel processing, a major subset pf chemical processing. Two alternate approaches to chemical processing of glasses are also briefly discussed. One approach concerns the use of bimetallic alkoxide oligomers and polymers as potential precursors to mulimetallic glasses. The second approach describes the utility of metal carboxylate precursors to multimetallic glasses.
Kaizen method for esophagectomy patients: improved quality control, outcomes, and decreased costs.
Iannettoni, Mark D; Lynch, William R; Parekh, Kalpaj R; McLaughlin, Kelley A
2011-04-01
The majority of costs associated with esophagectomy are related to the initial 3 days of hospital stay requiring intensive care unit stays, ventilator support, and intraoperative time. Additional costs arise from hospital-based services. The major cost increases are related to complications associated with the procedure. We attempted to define these costs and identify expense management by streamlining care through strict adherence to patient care maps, operative standardization, and rapid discharge planning to reduce variability. Utilizing methods of Kaizen philosophy we evaluated all processes related to the entire experience of esophageal resection. This process has taken over 5 years to achieve, with quality and cost being tracked over this time period. Cost analysis included expenses related to intensive care unit, anesthesia, disposables, and hospital services. Quality improvement measures were related to intraoperative complications, in-hospital complications, and postoperative outcomes. The Institutional Review Board approved the use of anonymous data from standard clinical practice because no additional treatment was planned (observational study). Utilizing a continuous process improvement methodology, a 43% reduction in cost per case has been achieved with a significant increase in contribution margin for esophagectomy. The length of stay has been reduced from 14 days to 5. With intraoperative and postoperative standardization the leak rate has dropped from 12% to less than 3% to no leaks in our current Kaizen modification of care in our last 64 patients. Utilizing lean manufacturing techniques and continuous process evaluation we have attempted to eliminate variability, standardized the phases of care resulting in improved outcomes, decreased length of stay, and improved contribution margins. These Kaizen improvements require continuous interventions, strict adherence to care maps, and input from all levels for quality improvements. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Altenstein-Yamanaka, David; Zimmermann, Johannes; Krieger, Tobias; Dörig, Nadja; Grosse Holtforth, Martin
2017-07-01
Interpersonal factors play a major role in causing and maintaining depression. This study sought to investigate how patients' self-perceived interpersonal problems and impact messages as perceived by significant others are interrelated, change over therapy, and differentially predict process and outcome in psychotherapy of depression. For the present study, we used data from 144 outpatients suffering from major depression that were treated within a psychotherapy study. Interpersonal variables were assessed pre- and posttherapy with the self-report Inventory of Interpersonal Problems-Circumplex Scale (IIP-32; Thomas, Brähler, & Strauss, 2011) and with the informant-based Impact Message Inventory (Caspar, Berger, Fingerle, & Werner, 2016). Patients' levels on the dimensions of Agency and Communion were calculated from both measures; their levels on Interpersonal Distress were measured with the IIP. Depressive and general symptomatology was assessed at pre-, post-, and at 3-month follow-up; patient-reported process measures were assessed during therapy. The Agency scores of IIP and IMI correlated moderately, but the Communion scores did not. IIP Communion was positively associated with the quality of the early therapeutic alliance and with the average level of cognitive-emotional processing during therapy. Whereas IIP Communion and IMI Agency increased over therapy, IIP Distress decreased. A pre-post-decrease in IIP Distress was positively associated with pre-postsymptomatic change over and above the other interpersonal variables, but pre-post-increase in IMI Agency was positively associated with symptomatic improvement from post- to 3-month follow-up. These findings suggest that significant others seem to provide important additional information about the patients' interpersonal style. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Multivariate Models of Adult Pacific Salmon Returns
Burke, Brian J.; Peterson, William T.; Beckman, Brian R.; Morgan, Cheryl; Daly, Elizabeth A.; Litz, Marisa
2013-01-01
Most modeling and statistical approaches encourage simplicity, yet ecological processes are often complex, as they are influenced by numerous dynamic environmental and biological factors. Pacific salmon abundance has been highly variable over the last few decades and most forecasting models have proven inadequate, primarily because of a lack of understanding of the processes affecting variability in survival. Better methods and data for predicting the abundance of returning adults are therefore required to effectively manage the species. We combined 31 distinct indicators of the marine environment collected over an 11-year period into a multivariate analysis to summarize and predict adult spring Chinook salmon returns to the Columbia River in 2012. In addition to forecasts, this tool quantifies the strength of the relationship between various ecological indicators and salmon returns, allowing interpretation of ecosystem processes. The relative importance of indicators varied, but a few trends emerged. Adult returns of spring Chinook salmon were best described using indicators of bottom-up ecological processes such as composition and abundance of zooplankton and fish prey as well as measures of individual fish, such as growth and condition. Local indicators of temperature or coastal upwelling did not contribute as much as large-scale indicators of temperature variability, matching the spatial scale over which salmon spend the majority of their ocean residence. Results suggest that effective management of Pacific salmon requires multiple types of data and that no single indicator can represent the complex early-ocean ecology of salmon. PMID:23326586
Ad hoc committee on global climate issues: Annual report
Gerhard, L.C.; Hanson, B.M.B.
2000-01-01
The AAPG Ad Hoc Committee on Global Climate Issues has studied the supposition of human-induced climate change since the committee's inception in January 1998. This paper details the progress and findings of the committee through June 1999. At that time there had been essentially no geologic input into the global climate change debate. The following statements reflect the current state of climate knowledge from the geologic perspective as interpreted by the majority of the committee membership. The committee recognizes that new data could change its conclusions. The earth's climate is constantly changing owing to natural variability in earth processes. Natural climate variability over recent geological time is greater than reasonable estimates of potential human-induced greenhouse gas changes. Because no tool is available to test the supposition of human-induced climate change and the range of natural variability is so great, there is no discernible human influence on global climate at this time.
Some Behaviorial Science Measurement Concerns and Proposals.
Nesselroade, John R; Molenaar, Peter C M
2016-01-01
Primarily from a measurement standpoint, we question some basic beliefs and procedures characterizing the scientific study of human behavior. The relations between observed and unobserved variables are key to an empirical approach to building explanatory theories and we are especially concerned about how the former are used as proxies for the latter. We believe that behavioral science can profitably reconsider the prevailing version of this arrangement because of its vulnerability to limiting idiosyncratic aspects of observed/unobserved variable relations. We describe a general measurement approach that takes into account idiosyncrasies that should be irrelevant to the measurement process but can intrude and may invalidate it in ways that distort and weaken relations among theoretically important variables. To clarify further our major concerns, we briefly describe one version of the measurement approach that fundamentally supports the individual as the primary unit of analysis orientation that we believe should be preeminent in the scientific study of human behavior.
Agustin, Alyssa E; Merrifield, Mark A; Potemra, James T; Morishige, Carey
2015-12-15
A twenty-two year record of marine debris collected on Tern Island is used to characterize the temporal variability of debris deposition at a coral atoll in the Northwestern Hawaiian Islands. Debris deposition tends to be episodic, without a significant relationship to local forcing processes associated with winds, sea level, waves, and proximity to the Subtropical Convergence Zone. The General NOAA Operational Modeling Environment is used to estimate likely debris pathways for Tern Island. The majority of modeled arrivals come from the northeast following prevailing trade winds and surface currents, with trajectories indicating the importance of the convergence zone, or garbage patch, in the North Pacific High region. Although debris deposition does not generally exhibit a significant seasonal cycle, some debris types contain considerable 3 cycle/yr variability that is coherent with wind and surface pressure over a broad region north of Tern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Do team processes really have an effect on clinical performance? A systematic literature review.
Schmutz, J; Manser, T
2013-04-01
There is a growing literature on the relationship between team processes and clinical performance. The purpose of this review is to summarize these articles and examine the impact of team process behaviours on clinical performance. We conducted a literature search in five major databases. Inclusion criteria were: English peer-reviewed papers published between January 2001 and May 2012, which showed or tried to show (i) a statistical relationship of a team process variable and clinical performance or (ii) an improvement of a performance variable through a team process intervention. Study quality was assessed using predefined quality indicators. For every study, we calculated the relevant effect sizes. We included 28 studies in the review, seven of which were intervention studies. Every study reported at least one significant relationship between team processes or an intervention and performance. Also, some non-significant effects were reported. Most of the reported effect sizes were large or medium. The study quality ranged from medium to high. The studies are highly diverse regarding the specific team process behaviours investigated and also regarding the methods used. However, they suggest that team process behaviours do influence clinical performance and that training results in increased performance. Future research should rely on existing theoretical frameworks, valid, and reliable methods to assess processes such as teamwork or coordination and focus on the development of adequate tools to assess process performance, linking them with outcomes in the clinical setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, L.; Witzel, G.; Ghez, A. M.
2014-08-10
Continuously time variable sources are often characterized by their power spectral density and flux distribution. These quantities can undergo dramatic changes over time if the underlying physical processes change. However, some changes can be subtle and not distinguishable using standard statistical approaches. Here, we report a methodology that aims to identify distinct but similar states of time variability. We apply this method to the Galactic supermassive black hole, where 2.2 μm flux is observed from a source associated with Sgr A* and where two distinct states have recently been suggested. Our approach is taken from mathematical finance and works withmore » conditional flux density distributions that depend on the previous flux value. The discrete, unobserved (hidden) state variable is modeled as a stochastic process and the transition probabilities are inferred from the flux density time series. Using the most comprehensive data set to date, in which all Keck and a majority of the publicly available Very Large Telescope data have been merged, we show that Sgr A* is sufficiently described by a single intrinsic state. However, the observed flux densities exhibit two states: noise dominated and source dominated. Our methodology reported here will prove extremely useful to assess the effects of the putative gas cloud G2 that is on its way toward the black hole and might create a new state of variability.« less
Valenza, Gaetano; Garcia, Ronald G; Citi, Luca; Scilingo, Enzo P; Tomaz, Carlos A; Barbieri, Riccardo
2015-01-01
Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entropy, namely the inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous point-process sample entropy (ipSampEn), to describe a novel characterization of MD patients undergoing affective elicitation. Because these measures are built within a nonlinear point-process model, they allow for the assessment of complexity in cardiovascular dynamics at each moment in time. Heartbeat dynamics were characterized from 48 healthy controls and 48 patients with MD while emotionally elicited through either neutral or arousing audiovisual stimuli. Experimental results coming from the arousing tasks show that ipApEn measures are able to instantaneously track heartbeat complexity as well as discern between healthy subjects and MD patients. Conversely, standard heart rate variability (HRV) analysis performed in both time and frequency domains did not show any statistical significance. We conclude that measures of entropy based on nonlinear point-process models might contribute to devising useful computational tools for care in mental health.
Assessing LULC changes over Chilika Lake watershed in Eastern India using Driving Force Analysis
NASA Astrophysics Data System (ADS)
Jadav, S.; Syed, T. H.
2017-12-01
Rapid population growth and industrial development has brought about significant changes in Land Use Land Cover (LULC) of many developing countries in the world. This study investigates LULC changes in the Chilika Lake watershed of Eastern India for the period of 1988 to 2016. The methodology involves pre-processing and classification of Landsat satellite images using support vector machine (SVM) supervised classification algorithm. Results reveal that `Cropland', `Emergent Vegetation' and `Settlement' has expanded over the study period by 284.61 km², 106.83 km² and 98.83 km² respectively. Contemporaneously, `Lake Area', `Vegetation' and `Scrub Land' have decreased by 121.62 km², 96.05 km² and 80.29 km² respectively. This study also analyzes five major driving force variables of socio-economic and climatological factors triggering LULC changes through a bivariate logistic regression model. The outcome gives credible relative operating characteristics (ROC) value of 0.76 that indicate goodness fit of logistic regression model. In addition, independent variables like distance to drainage network and average annual rainfall have negative regression coefficient values that represent decreased rate of dependent variable (changed LULC) whereas independent variables (population density, distance to road and distance to railway) have positive regression coefficient indicates increased rate of changed LULC . Results from this study will be crucial for planning and restoration of this vital lake water body that has major implications over the society and environment at large.
NASA Astrophysics Data System (ADS)
Sonam; Jain, Vikrant
2018-03-01
Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.
Murigneux, Valentine; Dufour, Anne-Béatrice; Lobry, Jean R; Pène, Laurent
2014-07-01
About 120,000 reference samples are analyzed each year in the Forensic Laboratory of Lyon. A total of 1640 positive control experiments used to validate and optimize the analytical method in the routine process were submitted to a multivariate exploratory data analysis approach with the aim of better understanding the underlying sources of variability. The peak heights of the 16 genetic markers targeted by the AmpFℓSTR(®) Identifiler(®) STR kit were used as variables of interest. Six different 3130xl genetic analyzers located in the same controlled environment were involved. Two major sources of variability were found: (i) the DNA load of the sample modulates all peak heights in a similar way so that the 16 markers are highly correlated, (ii) the genetic analyzer used with a locus-specific response for peak height and a better sensitivity for the most recently acquired. Three markers (FGA, D3S1358, and D13S317) were found to be of special interest to predict the success rate observed in the routine process. © 2014 American Academy of Forensic Sciences.
Variability in primary productivity determines metapopulation dynamics
2016-01-01
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity—a major outcome of ecosystem functions—on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. PMID:27053739
Variability in primary productivity determines metapopulation dynamics.
Fernández, Néstor; Román, Jacinto; Delibes, Miguel
2016-04-13
Temporal variability in primary productivity can change habitat quality for consumer species by affecting the energy levels available as food resources. However, it remains unclear how habitat-quality fluctuations may determine the dynamics of spatially structured populations, where the effects of habitat size, quality and isolation have been customarily assessed assuming static habitats. We present the first empirical evaluation on the effects of stochastic fluctuations in primary productivity--a major outcome of ecosystem functions--on the metapopulation dynamics of a primary consumer. A unique 13-year dataset from an herbivore rodent was used to test the hypothesis that inter-annual variations in primary productivity determine spatiotemporal habitat occupancy patterns and colonization and extinction processes. Inter-annual variability in productivity and in the growing season phenology significantly influenced habitat colonization patterns and occupancy dynamics. These effects lead to changes in connectivity to other potentially occupied habitat patches, which then feed back into occupancy dynamics. According to the results, the dynamics of primary productivity accounted for more than 50% of the variation in occupancy probability, depending on patch size and landscape configuration. Evidence connecting primary productivity dynamics and spatiotemporal population processes has broad implications for metapopulation persistence in fluctuating and changing environments. © 2016 The Authors.
Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H
2017-05-01
This study assessed the present-day levels (year 2010-2011) of exposure to respirable dust (RD) and respirable silica (RS) in taconite mines and evaluated how the mining process influences exposure concentrations. Personal samples (n = 679) were collected to assess exposure levels of workers to RD and RS at six mines in the Mesabi Iron Range of Minnesota. The RD and RS concentrations were measured using the National Institute for Occupational Safety and Health (NIOSH) 0600 and NIOSH 7500, respectively. Between-mine, between-SEG (similar exposure groups), within-SEG, and within-worker components of variability for RD and RS exposures were estimated using a two- or three-way nested random-effects ANOVA model. The majority of RD concentrations across all mines were below the Mine Safety and Health Administration (MSHA) Permissible Exposure Limit (PEL). The highest concentrations of RD were often observed in either the Pelletizing or Crushing departments, which are inherently dusty operations. With a few exceptions, the concentrations of RS in the crushing and concentrating processes were higher than those in the other mining processes, as well as higher than the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV) for RS. The magnetic separation and flotation processes in the concentrating department reduced the levels of RS significantly, and lowered the percentage of quartz in RD in the pelletizing department. There was little variability among the six mines or between the two mineralogically distinct zones for either RD or RS exposures. The between-SEG variability for RS did not differ substantially across most of the mines and was a major component of exposure variance. The within-SEG (or between-worker) variance component was typically the smallest because in many instances one worker from a SEG within a mine was monitored multiple times. Some of these findings were affected by the degree of censoring in each SEG and mine, characteristics of the taconite rock, seasonal effects during sampling, or the tasks assigned to each job in that mine.
Southern Ocean phytoplankton physiology in a changing climate.
Petrou, Katherina; Kranz, Sven A; Trimborn, Scarlett; Hassler, Christel S; Ameijeiras, Sonia Blanco; Sackett, Olivia; Ralph, Peter J; Davidson, Andrew T
2016-09-20
The Southern Ocean (SO) is a major sink for anthropogenic atmospheric carbon dioxide (CO 2 ), potentially harbouring even greater potential for additional sequestration of CO 2 through enhanced phytoplankton productivity. In the SO, primary productivity is primarily driven by bottom up processes (physical and chemical conditions) which are spatially and temporally heterogeneous. Due to a paucity of trace metals (such as iron) and high variability in light, much of the SO is characterised by an ecological paradox of high macronutrient concentrations yet uncharacteristically low chlorophyll concentrations. It is expected that with increased anthropogenic CO 2 emissions and the coincident warming, the major physical and chemical process that govern the SO will alter, influencing the biological capacity and functioning of the ecosystem. This review focuses on the SO primary producers and the bottom up processes that underpin their health and productivity. It looks at the major physico-chemical drivers of change in the SO, and based on current physiological knowledge, explores how these changes will likely manifest in phytoplankton, specifically, what are the physiological changes and floristic shifts that are likely to ensue and how this may translate into changes in the carbon sink capacity, net primary productivity and functionality of the SO. Copyright © 2016 Elsevier GmbH. All rights reserved.
Time-Warp–Invariant Neuronal Processing
Gütig, Robert; Sompolinsky, Haim
2009-01-01
Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp–invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp–invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp–invariant computational capabilities. PMID:19582146
Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.
2008-01-01
Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Lippi, Giuseppe; Montagnana, Martina; Giavarina, Davide
2006-01-01
Owing to remarkable advances in automation, laboratory technology and informatics, the pre-analytical phase has become the major source of variability in laboratory testing. The present survey investigated the development of several pre-analytical processes within a representative cohort of Italian clinical laboratories. A seven-point questionnaire was designed to investigate the following issues: 1a) the mean outpatient waiting time before check-in and 1b) the mean time from check-in to sample collection; 2) the mean time from sample collection to analysis; 3) the type of specimen collected for clinical chemistry testing; 4) the degree of pre-analytical automation; 5a) the number of samples shipped to other laboratories and 5b) the availability of standardised protocols for transportation; 6) the conditions for specimen storage; and 7) the availability and type of guidelines for management of unsuitable specimens. The questionnaire was administered to 150 laboratory specialists attending the SIMEL (Italian Society of Laboratory Medicine) National Meeting in June 2006. 107 questionnaires (71.3%) were returned. Data analysis revealed a high degree of variability among laboratories for the time required for check-in, outpatient sampling, sample transportation to the referral laboratory and analysis upon the arrival. Only 31% of laboratories have automated some pre-analytical steps. Of the 87% of laboratories that ship specimens to other facilities without sample preparation, 19% have no standardised protocol for transportation. For conventional clinical chemistry testing, 74% of the laboratories use serum evacuated tubes (59% with and 15% without serum separator), whereas the remaining 26% use lithium-heparin evacuated tubes (11% with and 15% without plasma separator). The storage period and conditions for rerun/retest vary widely. Only 63% of laboratories have a codified procedure for the management of unsuitable specimens, which are recognised by visual inspection (69%) or automatic detection (29%). Only 56% of the laboratories have standardised procedures for the management of unsuitable specimens, which vary widely on a local basis. The survey highlights broad heterogeneity in several pre-analytical processes among Italian laboratories. The lack of reliable guidelines encompassing evidence-based practice is a major problem for the standardisation of this crucial part of the testing process and represents a major challenge for laboratory medicine in the 2000s.
Source/process apportionment of major and trace elements in sinking particles in the Sargasso sea
NASA Astrophysics Data System (ADS)
Huang, S.; Conte, M. H.
2009-01-01
Elemental composition of the particle flux at the Oceanic Flux Program (OFP) time-series site off Bermuda was measured from January 2002 to March 2005. Eighteen elements (Mg, Al, Si, P, Ca, Sc, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd, Ba and Pb) in sediment trap material from 500, 1500 and 3200 m depths were quantified using fusion-HR-ICPMS. Positive Matrix Factorization (PMF) was used to elucidate sources, elemental associations and processes that affect geochemical behavior in the water column. Results provide evidence for intense elemental cycling between the sinking flux material and the dissolved and suspended pools within mesopelagic and bathypelagic waters. Biological processing and remineralization rapidly deplete the sinking flux material in organic matter and associated elements (N, P, Cd, Zn) between 500 and 1500 m depth. Suspended particle aggregation, authigenic mineral precipitation, and chemical scavenging enriches the flux material in lithogenic minerals, barite and redox sensitive elements (Mn, Co, V, Fe). A large increase in the flux of lithogenic elements is observed with depth and confirms that the northeast Sargasso is a significant sink for advected continental materials, likely supplied via Gulf Stream circulation. PMF resolved major sources that contribute to sinking flux at all depths (carbonate, high-Mg carbonate, opal, organic matter, lithogenic material, and barite) as well as additional depth-specific elemental associations that contribute about half of the compositional variability in the flux. PMF solutions indicate close geochemical associations of barite-opal, Cd-P, Zn-Co, Zn-Pb and redox sensitive elements in the sinking flux material at 500 m depth. Major reorganizations of element associations occur as labile carrier phases break down and elements redistribute among new carrier phases deeper in the water column. Factor scores show strong covariation and similar temporal phasing among the three trap depths and indicate a tight coupling in particle flux compositional variability throughout the water column. Seasonality in flux composition is primarily driven by dilution of the lithogenic component with freshly-produced biogenic material during the late winter primary production maximum. Temporal trends in scores reveal subtle non-seasonal changes in flux composition occurring on month long timescales. This non-seasonal variability may be driven by changes in the biogeochemical properties of intermediate water masses that pass through the region and which affect rates of chemical scavenging and/or aggregation within the water column.
Controlling Contagion Processes in Activity Driven Networks
NASA Astrophysics Data System (ADS)
Liu, Suyu; Perra, Nicola; Karsai, Márton; Vespignani, Alessandro
2014-03-01
The vast majority of strategies aimed at controlling contagion processes on networks consider the connectivity pattern of the system either quenched or annealed. However, in the real world, many networks are highly dynamical and evolve, in time, concurrently with the contagion process. Here, we derive an analytical framework for the study of control strategies specifically devised for a class of time-varying networks, namely activity-driven networks. We develop a block variable mean-field approach that allows the derivation of the equations describing the coevolution of the contagion process and the network dynamic. We derive the critical immunization threshold and assess the effectiveness of three different control strategies. Finally, we validate the theoretical picture by simulating numerically the spreading process and control strategies in both synthetic networks and a large-scale, real-world, mobile telephone call data set.
Means and extremes: building variability into community-level climate change experiments.
Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula
2013-06-01
Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.
Climatology and variability of SST frontal activity in Eastern Pacific Ocean over the past decade
NASA Astrophysics Data System (ADS)
Wang, Y.; Yuan, Y.
2016-12-01
Distribution of sea surface temperature (SST) fronts are derived from high-resolution MODIS dataset in Eastern Pacific Ocean from 2003 to 2015. Daily distribution of frontal activities shows detailed feature and movement of front and the discontinuity of the track of front cause by cloud coverage. Monthly frontal probability is calculated to investigate corresponding climatology and variability. Frontal probability is generally higher along the coast and decreasing offshore. The frontal activity could extend few hundreds of kilometers near the major capes and central Pacific Ocean. SST gradient associated with front is changing over different latitude with stronger gradient near the mid-latitude and under major topographic effects near tropics. Corresponding results from empirical orthogonal functions (EOF) shows major variability of SST front is found in mid-latitude and central Pacific Ocean. The temporal variability captures a strong interannual and annual variability in those regions, while Intraannual variability are found more important at small scale near major capes and topographic features. The frontal variability is highly impacted by wind stress, upwelling, air-sea interaction, current, topography, eddy activity, El Nino along with other factors. And front plays an importance role in influencing the distribution of nutrients, the activity of fisheries and the development of ecosystems.
Parisi Kern, Andrea; Ferreira Dias, Michele; Piva Kulakowski, Marlova; Paulo Gomes, Luciana
2015-05-01
Reducing construction waste is becoming a key environmental issue in the construction industry. The quantification of waste generation rates in the construction sector is an invaluable management tool in supporting mitigation actions. However, the quantification of waste can be a difficult process because of the specific characteristics and the wide range of materials used in different construction projects. Large variations are observed in the methods used to predict the amount of waste generated because of the range of variables involved in construction processes and the different contexts in which these methods are employed. This paper proposes a statistical model to determine the amount of waste generated in the construction of high-rise buildings by assessing the influence of design process and production system, often mentioned as the major culprits behind the generation of waste in construction. Multiple regression was used to conduct a case study based on multiple sources of data of eighteen residential buildings. The resulting statistical model produced dependent (i.e. amount of waste generated) and independent variables associated with the design and the production system used. The best regression model obtained from the sample data resulted in an adjusted R(2) value of 0.694, which means that it predicts approximately 69% of the factors involved in the generation of waste in similar constructions. Most independent variables showed a low determination coefficient when assessed in isolation, which emphasizes the importance of assessing their joint influence on the response (dependent) variable. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cratering history of Miranda: Implications for geologic processes
Plescia, J.B.
1988-01-01
Miranda's surface is divisible into cratered terrain and coronae. The cratered terrain is the most heavily cratered of the terrains and presumably is the oldest. The frequency of craters in the cratered terrain is variable and related to position on the satellite. The coronae are also variably cratered. Elsinore and Arden Coronae have similar crater frequencies and may have formed simultaneously. They are of intermediate agompared to the cratered terrain and to Inverness Corona, which is the youngest major terrain. Graben formation appears to have occured both before and after the formation of the coronae reflecting periods of global expansion. Miranda's surfaces are, in general, the least cratered and therefore inferred to be the youngest within the Uranian system. ?? 1988.
[Depressive symptoms among medical intern students in a Brazilian public university].
Costa, Edméa Fontes de Oliva; Santana, Ygo Santos; Santos, Ana Teresa Rodrigues de Abreu; Martins, Luiz Antonio Nogueira; Melo, Enaldo Vieira de; Andrade, Tarcísio Matos de
2012-01-01
To estimate, among Medical School intern students, the prevalence of depressive symptoms and their severity, as well as associated factors. Cross-sectional study in May 2008, with a representative sample of medical intern students (n = 84) from Universidade Federal de Sergipe (UFS). Beck Depression Inventory (BDI) and a structured questionnaire containing information on sociodemographic variables, teaching-learning process, and personal aspects were used. The exploratory data analysis was performed by descriptive and inferential statistics. Finally, the analysis of multiple variables by logistic regression and the calculation of simple and adjusted ORs with their respective 95% confidence intervals were performed. The general prevalence was 40.5%, with 1.2% (95% CI: 0.0-6.5) of severe depressive symptoms; 4.8% (95% CI: 1.3-11.7) of moderate depressive symptoms; and 34.5% (95% CI: 24.5-45.7) of mild depressive symptoms. The logistic regression revealed the variables with a major impact associated with the emergence of depressive symptoms: thoughts of dropping out (OR 6.24; p = 0.002); emotional stress (OR 7.43;p = 0.0004); and average academic performance (OR 4.74; p = 0.0001). The high prevalence of depressive symptoms in the study population was associated with variables related to the teaching-learning process and personal aspects, suggesting immediate preemptive measures regarding Medical School graduation and student care are required.
NASA Astrophysics Data System (ADS)
Jia, Ningning; Y Lam, Edmund
2010-04-01
Inverse lithography technology (ILT) synthesizes photomasks by solving an inverse imaging problem through optimization of an appropriate functional. Much effort on ILT is dedicated to deriving superior masks at a nominal process condition. However, the lower k1 factor causes the mask to be more sensitive to process variations. Robustness to major process variations, such as focus and dose variations, is desired. In this paper, we consider the focus variation as a stochastic variable, and treat the mask design as a machine learning problem. The stochastic gradient descent approach, which is a useful tool in machine learning, is adopted to train the mask design. Compared with previous work, simulation shows that the proposed algorithm is effective in producing robust masks.
Towards process-informed bias correction of climate change simulations
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Shepherd, Theodore G.; Widmann, Martin; Zappa, Giuseppe; Walton, Daniel; Gutiérrez, José M.; Hagemann, Stefan; Richter, Ingo; Soares, Pedro M. M.; Hall, Alex; Mearns, Linda O.
2017-11-01
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases.
A study of information management in the patient surgical pathway in NHSScotland.
Bouamrane, Matt-Mouley; Mair, Frances S
2013-01-01
We conducted a study of information management processes across the patient surgical pathway in NHSScotland. While the majority of general practitioners (GPs) consider electronic medical records systems as an essential and integral part of their work during the patient consultation, many were not fully satisfied with the functionalities of these systems. A majority of GPs considered that the national eReferral system streamlined referral processes. Almost all GPs reported marked variability in the quality of discharge information. Preoperative processes vary significantly across Scotland, with most services using paper-based systems. Insufficient use is made of information provided through the patient electronic referral leading to a considerable duplication of tasks already performed in primary care. Three health-boards have implemented electronic preoperative information systems. These have transformed clinical practices and facilitated communication and information-sharing among the multi-disciplinary team and within the health-boards. Substantial progress has been made towards improving information transfer and sharing within the surgical pathway in recent years. However, there remains scope for further improvements at the interface between services.
Prediction by regression and intrarange data scatter in surface-process studies
Toy, T.J.; Osterkamp, W.R.; Renard, K.G.
1993-01-01
Modeling is a major component of contemporary earth science, and regression analysis occupies a central position in the parameterization, calibration, and validation of geomorphic and hydrologic models. Although this methodology can be used in many ways, we are primarily concerned with the prediction of values for one variable from another variable. Examination of the literature reveals considerable inconsistency in the presentation of the results of regression analysis and the occurrence of patterns in the scatter of data points about the regression line. Both circumstances confound utilization and evaluation of the models. Statisticians are well aware of various problems associated with the use of regression analysis and offer improved practices; often, however, their guidelines are not followed. After a review of the aforementioned circumstances and until standard criteria for model evaluation become established, we recommend, as a minimum, inclusion of scatter diagrams, the standard error of the estimate, and sample size in reporting the results of regression analyses for most surface-process studies. ?? 1993 Springer-Verlag.
Cocchi, Marina; Durante, Caterina; Grandi, Margherita; Manzini, Daniela; Marchetti, Andrea
2008-01-15
The present research is aimed at monitoring the evolution of the volatile organic compounds of different samples of aceto balsamico tradizionale of modena (ABTM) during ageing. The flavouring compounds, headspace fraction, of the vinegars of four batterie were sampled by solid phase microextraction technique (SPME), and successively analysed by gas chromatography. Obtaining a data set characterized by different sources of variability such as, different producers, samples of different age and chromatographic profile. The gas chromatographic signals were processed by a three-way data analysis method (Tucker3), which allows an easy visualisation of the data by furnishing a distinct set of graphs for each source of variability. The obtained results indicate that the samples can be separated according to their age highlighting the chemical constituents, which play a major role for their differentiation. The present study represents an example of how the application of Tucker3 models, on gas chromatographic signals may help to follow the transformation processes of food products.
NASA Astrophysics Data System (ADS)
Hashimoto, Hiroyuki; Takaguchi, Yusuke; Nakamura, Shizuka
Instability of calculation process and increase of calculation time caused by increasing size of continuous optimization problem remain the major issues to be solved to apply the technique to practical industrial systems. This paper proposes an enhanced quadratic programming algorithm based on interior point method mainly for improvement of calculation stability. The proposed method has dynamic estimation mechanism of active constraints on variables, which fixes the variables getting closer to the upper/lower limit on them and afterwards releases the fixed ones as needed during the optimization process. It is considered as algorithm-level integration of the solution strategy of active-set method into the interior point method framework. We describe some numerical results on commonly-used bench-mark problems called “CUTEr” to show the effectiveness of the proposed method. Furthermore, the test results on large-sized ELD problem (Economic Load Dispatching problems in electric power supply scheduling) are also described as a practical industrial application.
Recovery of metal values from copper slag and reuse of residual secondary slag.
Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney
2017-12-01
Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Poitras, Julien; Chauny, Jean-Marc; Lévesque, Jean-Frédéric; Ouimet, Mathieu; Dupuis, Gilles; Tanguay, Alain; Simard-Racine, Geneviève
2015-01-01
Introduction Health services research generates useful knowledge. Promotion of implementation of this knowledge in medical practice is essential. Prior to initiation of a major study on rural emergency departments (EDs), we deployed two knowledge transfer strategies designed to generate interest and engagement from potential knowledge users. The objective of this paper was to review: 1) a combined project launch and media press release strategy, and 2) a pre-study survey designed to survey potential knowledge users’ opinions on the proposed study variables. Materials and Methods We evaluated the impact of the project launch (presentation at two conferences hosted by key stakeholders) and media press release via a survey of participants/stakeholders and by calculating the number of media interview requests and reports generated. We used a pre-study survey to collect potential key stakeholder’ opinions on the study variables. Results Twenty-one of Quebec’s 26 rural EDs participated in the pre-study survey (81% participation rate). The press release about the study generated 51 press articles and 20 media request for interviews, and contributed to public awareness of a major rural research initiative. In the pre-study survey, thirteen participants (46%) mentioned prior knowledge of the research project. Results from the pre-study survey revealed that all of the potential study variables were considered to be relevant for inclusion in the research project. Respondents also proposed additional variables of interest, including factors promoting retention of human resources. Conclusions The present study demonstrated the potential utility of a two-pronged knowledge transfer strategy, including a combined formal launch and press release, and a pre-study survey designed to ensure that the included variables were of interest to participants and stakeholders. PMID:25849328
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2011-08-01
Effect of process variables on the quality attributes of briquettes from wheat, oat, canola and barley straw Jaya Shankar Tumuluru*, L. G. Tabil, Y. Song, K. L. Iroba and V. Meda Biomass is a renewable energy source and environmentally friendly substitute for fossil fuels such as coal and petroleum products. Major limitation of biomass for successful energy application is its low bulk density, which makes it very difficult and costly to transport and handle. To overcome this limitation, biomass has to be densified. The commonly used technologies for densification of biomass are pelletization and briquetting. Briquetting offers many advantages atmore » it can densify larger particles sizes of biomass at higher moisture contents. Briquetting is influenced by a number of feedstock and process variables such as moisture content, particle size distribution, and some operating variables such as temperature and densification pressure. In the present study, experiments were designed and conducted based on Box-Behnken design to produce briquettes using barley, wheat, canola and barley straws. A laboratory scale hydraulic briquette press was used for the present study. The experimental process variables and their levels used in the present study were pressure levels (7.5, 10, 12.5 MPa), three levels of temperature (90, 110, 130 C), at three moisture content levels (9, 12, 15% w.b.), and three levels of particle size (19.1, 25.04, 31.75 mm). The quality variables studied includes moisture content, initial density and final briquette density after two weeks of storage, size distribution index and durability. The raw biomass was initially chopped and size reduced using a hammer mill. The ground biomass was conditioned at different moisture contents and was further densified using laboratory hydraulic press. For each treatment combination, ten briquettes were manufactured at a residence time of about 30 s after compression pressure setpoint was achieved. After compression, the initial dimensions and the final dimensions after 2 weeks of storage in controlled environment of all the samples were measured. Durability, dimensional stability, and moisture content tests were conducted after two weeks of storage of the briquettes produced. Initial results indicated that moisture content played a significant role on briquettes durability, stability, and density. Low moisture content of the straws (7-12%) gave more durable briquettes. Briquette density increased with increasing pressure depending on the moisture content value. The axial expansion was more significant than the lateral expansion, which in some cases tended to be nil depending on the material and operating variables. Further data analysis is in progress in order to understand the significance of the process variables based on ANOVA. Regression models were developed to predict the changes in quality of briquettes with respect of the process variables under study. Keywords: Herbaceous biomass, densification, briquettes, density, durability, dimensional stability, ANOVA and regression equations« less
NASA Astrophysics Data System (ADS)
Sutherland, Michael D.; Dafforn, Katherine A.; Scanes, Peter; Potts, Jaimie; Simpson, Stuart L.; Sim, Vivian X. Y.; Johnston, Emma L.
2017-11-01
The urbanisation of coastal zones is a major threat to the health of global estuaries and has been linked to increased contamination (e.g. metals) and excess organic matter. Urban stormwater networks collect and funnel contaminants into waterways at point sources (e.g. stormdrains). Under dry, low flow conditions, these stormwater contaminants can accumulate in sediments over time and result in modifications to benthic sediment biogeochemical processes. To quantify these processes, this field study measured differences in benthic metabolism (CR, GPP, NEM) and sediment-water nutrient fluxes (NH3, NOx, PO4) associated with stormdrains (0 m, 200 m and 1000 m away) and increased water-retention (embayments vs channels). Significant changes to benthic metabolism were detected with distance from stormdrains, and with differences in water-retention rates, above natural spatial and temporal variation. Oxygen consumption was ∼50% higher at stormdrains (0 m) compared to 1000 m away and >70% higher at stormdrains (0 m) located in embayments compared to channels. Oxygen production also appeared to decrease with distance from stormdrains in embayments, but patterns were variable. These changes to benthic metabolism were of a magnitude expected to influence benthic nutrient cycling, but NH3, NOx and PO4 fluxes were generally low, and highly spatially and temporally variable. Overall, metal (Cu) contamination explained most of the variation in sediment biogeochemical processes between embayments and channels, while sediment grain size explained differences in fluxes with distance from stormdrains. Importantly, although there was evidence of increased productivity associated with stormdrains, we also detected evidence of early hypoxia suggesting that systems with legacy stormwater contaminants exist on a tipping point. Future work should investigate changes to sediment processes after a major rainfall event, when large and sudden inputs of potentially toxic contaminants occur. Monitoring benthic O2 fluxes could be a sensitive measure of ecological change under these conditions.
Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694
Pérez, Ana G; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos
2014-01-01
Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil.
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
NASA Astrophysics Data System (ADS)
Mamadjanova, Gavkhar; Leckebusch, Gregor C.
2016-04-01
Mudflows are formed almost every year in the territory of Uzbekistan and neighbouring countries. They represent a major threat to human life and settlements and can significantly damage infrastructure. In general, in addition to elevated soil moisture conditions, severe local rainfall events (e.g., 15 mm of precipitation in 12 hours) and associated air temperature conditions are understood to be the main factors in the formation of mudflows in the piedmont areas of Uzbekistan. The main purpose of this study is to understand factors on local and synoptic to hemispheric scales, which cause mudflow variability on interannual and longer time scales. To fulfil this objective, in a first step historical data of mudflow occurrences (mainly March to August) in Uzbekistan provided by the Centre of Hydro-meteorological Service of the Republic of Uzbekistan (Uzhydromet) for more than 140 years are statistically analysed. During the investigation period a total of around 3000 mudflow events were observed with about 21 events per year on average and a maximum of 168 mudflows in 1930. To understand principle factors steering the variability of mudflow occurrences, synoptic scale circulation weather types (CWT) over Central Asia and Uzbekistan are investigated. The majority of mudflows (22%) occur during the advection of westerly airflow when moist air from Central and Southern Europe reaches Uzbekistan. This objectively classified synoptic situation can be related to one of the 15 primary synoptic circulation types over the Central Asia and Uzbekistan which were subjectively derived by Bugayev and Giorgio in 1930-40s (Bugayev et al., 1957), thus confirming the validity of this approach. By means of the CWT approach, we further analyse that on mudflow-days the frequencies of cyclonic, westerly, south-westerly and north-westerly stream flows are increased in comparison to the climatological frequency of occurrence of these circulation weather types. Details of the necessary and sufficient meteorological conditions within a CWT class are investigated. Further studies will investigate and identify key factors steering the variability in CWT frequency variability over Central Asia on longer timescales and how these are related to known major variability modes in the climate system.
Mir, Riyaz Ahmad; Jeelani, Gh; Dar, Farooq Ahmad
2016-07-01
River Jhelum is a major source of water for growing population and irrigation in the Kashmir Himalaya. The region is trending towards water scarcity as well as quality deterioration stage due to its highly unregulated development. The existence of few literature on various aspects of the basin prompts us to study the spatio-temporal variability of its physicochemical parameters and thereby to understand the regulating hydrogeochemical mechanisms based on 50 samples collected during high flow (June 2008) and low flow (January 2009) periods. The water chemistry exhibited significant spatial variability reflecting the mixing processes in the basin. The seasonal effect does change the concentration of ions significantly with modest variability in the order of ionic abundance. The Ca(2+) ion among cations and HCO3 (-) ion among anions dominate the ionic budget and correlates significantly with the diverse lithology of the basin. Three major water types, i.e., Ca-Mg-HCO3 (72 %), Ca-HCO3 (12 %), and Mg-Ca-HCO3 (16 %), suggest that the chemical composition of water is dominantly controlled by carbonate lithology, besides a significant contribution from silicates. However, at certain sites, the biological processes and anthropogenic activities play a major role. Relatively, the lower ionic concentration during high flow period (summer season) suggested the significant influence of higher discharge via dilution effect. The higher discharge due to higher rainfall and snow melting in response to rising temperature in this period leads to strong flushing of human and agricultural wastes into the river. The factor analysis also reflected the dominant control of varied lithology and anthropogenic sources on the water quality based on the four significant factors explaining collectively about 70-81 % of the total data variance. A two-member chloride mixing model used to estimate the discharge contribution of tributaries to the main river channel showed reliable results. It may be mentioned that the regular and continuous contamination through anthropogenic sources is likely to jeopardize and degrade the water quality in the near future. Thus, critical management approaches and strategies are very imperative for its future sustainability.
Is there a UV/X-ray connection in IRAS 13224-3809?
NASA Astrophysics Data System (ADS)
Buisson, D. J. K.; Lohfink, A. M.; Alston, W. N.; Cackett, E. M.; Chiang, C.-Y.; Dauser, T.; De Marco, B.; Fabian, A. C.; Gallo, L. C.; García, J. A.; Jiang, J.; Kara, E.; Middleton, M. J.; Miniutti, G.; Parker, M. L.; Pinto, C.; Uttley, P.; Walton, D. J.; Wilkins, D. R.
2018-04-01
We present results from the optical, ultraviolet, and X-ray monitoring of the NLS1 galaxy IRAS 13224-3809 taken with Swift and XMM-Newton during 2016. IRAS 13224-3809 is the most variable bright AGN in the X-ray sky and shows strong X-ray reflection, implying that the X-rays strongly illuminate the inner disc. Therefore, it is a good candidate to study the relationship between coronal X-ray and disc UV emission. However, we find no correlation between the X-ray and UV flux over the available ˜40 d monitoring, despite the presence of strong X-ray variability and the variable part of the UV spectrum being consistent with irradiation of a standard thin disc. This means either that the X-ray flux which irradiates the UV emitting outer disc does not correlate with the X-ray flux in our line of sight and/or that another process drives the majority of the UV variability. The former case may be due to changes in coronal geometry, absorption or scattering between the corona and the disc.
Radio-loud AGN Variability from Propagating Relativistic Jets
NASA Astrophysics Data System (ADS)
Li, Yutong; Schuh, Terance; Wiita, Paul J.
2018-06-01
The great majority of variable emission in radio-loud AGNs is understood to arise from the relativistic flows of plasma along two oppositely directed jets. We study this process using the Athena hydrodynamics code to simulate propagating three-dimensional relativistic jets for a wide range of input jet velocities and jet-to-ambient matter density ratios. We then focus on those simulations that remain essentially stable for extended distances (60-120 times the jet radius). Adopting results for the densities, pressures and velocities from these propagating simulations we estimate emissivities from each cell. The observed emissivity from each cell is strongly dependent upon its variable Doppler boosting factor, which depends upon the changing bulk velocities in those zones with respect to our viewing angle to the jet. We then sum the approximations to the fluxes from a large number of zones upstream of the primary reconfinement shock. The light curves so produced are similar to those of blazars, although turbulence on sub-grid scales is likely to be important for the variability on the shortest timescales.
Indian Monsoon Rainfall Variability During the Common Era: Implications on the Ancient Civilization
NASA Astrophysics Data System (ADS)
Pothuri, D.
2017-12-01
Indian monsoon rainfall variability was reconstructed during last two millennia by using the δ18Ow from a sediment core in the Krishna-Godavari Basin. Higher δ18Ow values during Dark Age Cold Period (DACP) (1550 to 1250 years BP) and Little Ice Age (LIA) (700 to 200 years BP) represent less Indian monsoon rainfall. Whereas during Medieval Warm Period (MWP) (1200 to 800 years BP) and major portion of Roman Warm Period (RWP) 2000 to 1550 years BP) document more rainfall in the Indian subcontinent as evident from lower δ18Ow values. A significant correlation exist between the Bay of Bengal (BoB) sea surface temperature (SST) and Indian monsoon proxy (i.e. δ18Ow), which suggests that; (i) the forcing mechanism of the Indian monsoon rainfall variability during last two millennia was controlled by the thermal contrast between the Indian Ocean and Asian Land Mass, and (ii) the evaporation processes in the BoB and associated SST are strongly coupled with the Indian Monsoon variability over the last two millennia.
Martin, J.; Runge, M.C.; Nichols, J.D.; Lubow, B.C.; Kendall, W.L.
2009-01-01
Thresholds and their relevance to conservation have become a major topic of discussion in the ecological literature. Unfortunately, in many cases the lack of a clear conceptual framework for thinking about thresholds may have led to confusion in attempts to apply the concept of thresholds to conservation decisions. Here, we advocate a framework for thinking about thresholds in terms of a structured decision making process. The purpose of this framework is to promote a logical and transparent process for making informed decisions for conservation. Specification of such a framework leads naturally to consideration of definitions and roles of different kinds of thresholds in the process. We distinguish among three categories of thresholds. Ecological thresholds are values of system state variables at which small changes bring about substantial changes in system dynamics. Utility thresholds are components of management objectives (determined by human values) and are values of state or performance variables at which small changes yield substantial changes in the value of the management outcome. Decision thresholds are values of system state variables at which small changes prompt changes in management actions in order to reach specified management objectives. The approach that we present focuses directly on the objectives of management, with an aim to providing decisions that are optimal with respect to those objectives. This approach clearly distinguishes the components of the decision process that are inherently subjective (management objectives, potential management actions) from those that are more objective (system models, estimates of system state). Optimization based on these components then leads to decision matrices specifying optimal actions to be taken at various values of system state variables. Values of state variables separating different actions in such matrices are viewed as decision thresholds. Utility thresholds are included in the objectives component, and ecological thresholds may be embedded in models projecting consequences of management actions. Decision thresholds are determined by the above-listed components of a structured decision process. These components may themselves vary over time, inducing variation in the decision thresholds inherited from them. These dynamic decision thresholds can then be determined using adaptive management. We provide numerical examples (that are based on patch occupancy models) of structured decision processes that include all three kinds of thresholds. ?? 2009 by the Ecological Society of America.
ERIC Educational Resources Information Center
Rodgers, Harrell R., Jr.; Bullock, Charles S., III
This volume is a study of individual behavior manifested in the desegregation process of 31 Georgia school districts from 1965 to 1974. Major objectives of the study are to glean insight into the variables that determine whether school officials involved would comply with the law and to assess the impact of Federal desegregation guidelines. The…
2007-06-23
6 %AI-2%Sn- 4 %Zr- 6 %Mo in the very high cycle regime. The microstructure is a two-phase structure with primary a grains (ap grains) in a transformed [3...aluminum [2], magnesium [3], nickel-based [ 4 ], and titanium [5,6] alloy systems. Fatigue crack initiation is known to consume the majority of fatigue...microstructural neighborhood affects this process. In fatigue studies of alpha + beta titanium alloys, [ 6 -9] cyclic deformation localization is first observed in
Redundancy relations and robust failure detection
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Lou, X. C.; Verghese, G. C.; Willsky, A. S.
1984-01-01
All failure detection methods are based on the use of redundancy, that is on (possible dynamic) relations among the measured variables. Consequently the robustness of the failure detection process depends to a great degree on the reliability of the redundancy relations given the inevitable presence of model uncertainties. The problem of determining redundancy relations which are optimally robust in a sense which includes the major issues of importance in practical failure detection is addressed. A significant amount of intuition concerning the geometry of robust failure detection is provided.
Relationship between cardiac vagal activity and mood congruent memory bias in major depression.
Garcia, Ronald G; Valenza, Gaetano; Tomaz, Carlos A; Barbieri, Riccardo
2016-01-15
Previous studies suggest that autonomic reactivity during encoding of emotional information could modulate the neural processes mediating mood-congruent memory. In this study, we use a point-process model to determine dynamic autonomic tone in response to negative emotions and its influence on long-term memory of major depressed subjects. Forty-eight patients with major depression and 48 healthy controls were randomly assigned to either neutral or emotionally arousing audiovisual stimuli. An adaptive point-process algorithm was applied to compute instantaneous estimates of the spectral components of heart rate variability [Low frequency (LF), 0.04-0.15 Hz; High frequency (HF), 0.15-0.4 Hz]. Three days later subjects were submitted to a recall test. A significant increase in HF power was observed in depressed subjects in response to the emotionally arousing stimulus (p=0.03). The results of a multivariate analysis revealed that the HF power during the emotional segment of the stimulus was independently associated with the score of the recall test in depressed subjects, after adjusting for age, gender and educational level (Coef. 0.003, 95%CI, 0.0009-0.005, p=0.008). These results could only be interpreted as responses to elicitation of specific negative emotions, the relationship between HF changes and encoding/recall of positive stimuli should be further examined. Alterations on parasympathetic response to emotion are involved in the mood-congruent cognitive bias observed in major depression. These findings are clinically relevant because it could constitute the mechanism by which depressed patients maintain maladaptive patterns of negative information processing that trigger and sustain depressed mood. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Quilty, Lena C; Taylor, Graeme J; McBride, Carolina; Bagby, R Michael
2017-08-01
Previous studies have found that alexithymia predicts process and outcome of psychodynamic psychotherapy across a range of psychiatric disorders. There is preliminary evidence that alexithymia may exert its effects on outcome through the therapist. Other studies have found that alexithymia does not influence outcome of cognitive-behavioral therapy (CBT). The aim of the current study was to investigate the capacity of alexithymia to predict therapist- and patient-rated therapeutic alliance and response to CBT and interpersonal psychotherapy (IPT) for major depressive disorder. A total of 75 adults with major depressive disorder were randomized to receive weekly sessions of manualized individual CBT or IPT for a period of 16 weeks. Pre-treatment alexithymia exhibited a positive direct effect on depression change, and a negative indirect effect on depression change via patient-rated alliance at week 13. There was no mediating role of therapist-rated alliance. Although these findings are preliminary, they suggest that pre-treatment alexithymia has meaningful links to psychotherapy process and outcome, and that nuanced analyses incorporating intervening variables are necessary to elucidate the nature of these links. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Yan, Xiaoqin; Zhang, Rong; Knutson, Thomas R
2017-11-22
Observed Atlantic major hurricane frequency has exhibited pronounced multidecadal variability since the 1940s. However, the cause of this variability is debated. Using observations and a coupled earth system model (GFDL-ESM2G), here we show that the decline of the Atlantic major hurricane frequency during 2005-2015 is associated with a weakening of the Atlantic Meridional Overturning Circulation (AMOC) inferred from ocean observations. Directly observed North Atlantic sulfate aerosol optical depth has not increased (but shows a modest decline) over this period, suggesting the decline of the Atlantic major hurricane frequency during 2005-2015 is not likely due to recent changes in anthropogenic sulfate aerosols. Instead, we find coherent multidecadal variations involving the inferred AMOC and Atlantic major hurricane frequency, along with indices of Atlantic Multidecadal Variability and inverted vertical wind shear. Our results provide evidence for an important role of the AMOC in the recent decline of Atlantic major hurricane frequency.
Long-term human response to uncertain environmental conditions in the Andes
Dillehay, Tom D.; Kolata, Alan L.
2004-01-01
Human interaction with the physical environment has increasingly transformed Earth-system processes. Reciprocally, climate anomalies and other processes of environmental change of natural and anthropogenic origin have been affecting, and often disrupting, societies throughout history. Transient impact events, despite their brevity, can have significant long-term impact on society, particularly if they occur in the context of ongoing, protracted environmental change. Major climate events can affect human activities in critical conjunctures that shape particular trajectories of social development. Here we report variable human responses to major environmental events in the Andes with a particular emphasis on the period from anno Domini 500–1500 on the desert north coast of Perú. We show that preindustrial agrarian societies implemented distinct forms of anticipatory response to environmental change and uncertainty. We conclude that innovations in production strategies and agricultural infrastructures in these indigenous societies reflect differential social response to both transient (El Niño–Southern Oscillation events) and protracted (desertification) environmental change. PMID:15024122
An eco-balance of a recycling plant for spent lead-acid batteries.
Salomone, Roberta; Mondello, Fabio; Lanuzza, Francesco; Micali, Giuseppe
2005-02-01
This study applies Life Cycle Assessment (LCA) methodology to present an eco-balance of a recycling plant that treats spent lead-acid batteries. The recycling plant uses pyrometallurgical treatment to obtain lead from spent batteries. The application of LCA methodology (ISO 14040 series) enabled us to assess the potential environmental impacts arising from the recycling plant's operations. Thus, net emissions of greenhouse gases as well as other major environmental consequences were examined and hot spots inside the recycling plant were identified. A sensitivity analysis was also performed on certain variables to evaluate their effect on the LCA study. The LCA of a recycling plant for spent lead-acid batteries presented shows that this methodology allows all of the major environmental consequences associated with lead recycling using the pyrometallurgical process to be examined. The study highlights areas in which environmental improvements are easily achievable by a business, providing a basis for suggestions to minimize the environmental impact of its production phases, improving process and company performance in environmental terms.
Kang, Jian; Zhang, Jixin; Bai, Yongqiang
2016-12-15
An evaluation of the oil-spill emergency response capability (OS-ERC) currently in place in modern marine management is required to prevent pollution and loss accidents. The objective of this paper is to develop a novel OS-ERC evaluation model, the importance of which stems from the current lack of integrated approaches for interpreting, ranking and assessing OS-ERC performance factors. In the first part of this paper, the factors influencing OS-ERC are analyzed and classified to generate a global evaluation index system. Then, a semantic tree is adopted to illustrate linguistic variables in the evaluation process, followed by the application of a combination of Fuzzy Cognitive Maps (FCM) and the Analytic Hierarchy Process (AHP) to construct and calculate the weight distribution. Finally, considering that the OS-ERC evaluation process is a complex system, a fuzzy comprehensive evaluation (FCE) is employed to calculate the OS-ERC level. The entire evaluation framework obtains the overall level of OS-ERC, and also highlights the potential major issues concerning OS-ERC, as well as expert opinions for improving the feasibility of oil-spill accident prevention and protection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reproducibility of ZrO2-based freeze casting for biomaterials.
Naleway, Steven E; Fickas, Kate C; Maker, Yajur N; Meyers, Marc A; McKittrick, Joanna
2016-04-01
The processing technique of freeze casting has been intensely researched for its potential to create porous scaffold and infiltrated composite materials for biomedical implants and structural materials. However, in order for this technique to be employed medically or commercially, it must be able to reliably produce materials in great quantities with similar microstructures and properties. Here we investigate the reproducibility of the freeze casting process by independently fabricating three sets of eight ZrO2-epoxy composite scaffolds with the same processing conditions but varying solid loading (10, 15 and 20 vol.%). Statistical analyses (One-way ANOVA and Tukey's HSD tests) run upon measurements of the microstructural dimensions of these composite scaffold sets show that, while the majority of microstructures are similar, in all cases the composite scaffolds display statistically significant variability. In addition, composite scaffolds where mechanically compressed and statistically analyzed. Similar to the microstructures, almost all of their resultant properties displayed significant variability though most composite scaffolds were similar. These results suggest that additional research to improve control of the freeze casting technique is required before scaffolds and composite scaffolds can reliably be reproduced for commercial or medical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Malone, A.
2017-12-01
Quantifying mass balance sensitivity to climate change is essential for forecasting glacier evolution and deciphering climate signals embedded in archives of past glacier changes. Ideally, these quantifications result from decades of field measurement, remote sensing, and a hierarchy modeling approach, but in data-sparse regions, such as the Himalayas and tropical Andes, regional-scale modeling rooted in first principles provides a first-order picture. Previous regional-scaling modeling studies have applied a surface energy and mass balance approach in order to quantify equilibrium line altitude sensitivity to climate change. In this study, an expanded regional-scale surface energy and mass balance model is implemented to quantify glacier-wide mass balance sensitivity to climate change for tropical Andean glaciers. Data from the Randolph Glacier Inventory are incorporated, and additional physical processes are included, such as a dynamic albedo and cloud-dependent atmospheric emissivity. The model output agrees well with the limited mass balance records for tropical Andean glaciers. The dominant climate variables driving interannual mass balance variability differ depending on the climate setting. For wet tropical glaciers (annual precipitation >0.75 m y-1), temperature is the dominant climate variable. Different hypotheses for the processes linking wet tropical glacier mass balance variability to temperature are evaluated. The results support the hypothesis that glacier-wide mass balance on wet tropical glaciers is largely dominated by processes at the lowest elevation where temperature plays a leading role in energy exchanges. This research also highlights the transient nature of wet tropical glaciers - the vast majority of tropical glaciers and a vital regional water resource - in an anthropogenic warming world.
Pellerin, Brian A.; Downing, Bryan D.; Kendall, Carol; Dahlgren, Randy A.; Kraus, Tamara E.C.; Saraceno, John Franco; Spencer, Robert G. M.; Bergamaschi, Brian A.
2009-01-01
1. We investigated diurnal nitrate (NO3−) concentration variability in the San Joaquin River using an in situ optical NO3− sensor and discrete sampling during a 5‐day summer period characterized by high algal productivity. Dual NO3− isotopes (δ15NNO3 and δ18ONO3) and dissolved oxygen isotopes (δ18ODO) were measured over 2 days to assess NO3− sources and biogeochemical controls over diurnal time‐scales.2. Concerted temporal patterns of dissolved oxygen (DO) concentrations and δ18ODOwere consistent with photosynthesis, respiration and atmospheric O2 exchange, providing evidence of diurnal biological processes independent of river discharge.3. Surface water NO3− concentrations varied by up to 22% over a single diurnal cycle and up to 31% over the 5‐day study, but did not reveal concerted diurnal patterns at a frequency comparable to DO concentrations. The decoupling of δ15NNO3 and δ18ONO3isotopes suggests that algal assimilation and denitrification are not major processes controlling diurnal NO3− variability in the San Joaquin River during the study. The lack of a clear explanation for NO3− variability likely reflects a combination of riverine biological processes and time‐varying physical transport of NO3− from upstream agricultural drains to the mainstem San Joaquin River.4. The application of an in situ optical NO3− sensor along with discrete samples provides a view into the fine temporal structure of hydrochemical data and may allow for greater accuracy in pollution assessment.
NASA Astrophysics Data System (ADS)
Roughan, M.
2016-02-01
The East Australian Current (EAC) flows as a jet over the narrow shelf of southeastern Australia, dominating shelf circulation, and shedding vast eddies at the highly variable separation point. These characteristics alone make it a dynamically challenging region to measure, model and predict. In recent years a significant effort has been placed on understanding continental shelf processes along the coast of SE Australia, adjacent to the EAC, our major Western Boundary Current. We have used a multi-pronged approach by combining state of the art in situ observations and data assimilation modelling. Observations are obtained from a network of moorings, HF Radar and ocean gliders deployed in shelf waters along SE Australia, made possible through Australia's Integrated Marine Observing System (IMOS). In addition, we have developed a high resolution reanalysis of the East Australian Current using ROMS and 4DVar data Assimilation. In addition to the traditional data streams (SST, SSH and ARGO) we assimilate the newly available IMOS observations in the region. These include velocity and hydrographic observations from the EAC transport array, 1km HF radar measurements of surface currents, CTD casts from ocean gliders, and temperature, salinity and velocity measurements from a network of shelf mooring arrays. We use these vast data sets and numerical modelling tools combined with satellite remote sensed data to understand spatio-temporal variability of shelf processes and water mass distributions on synoptic, seasonal and inter-annual timescales. We have quantified the cross shelf transport variability inshore of the EAC, the driving mechanisms, the seasonal cycles in shelf waters and to some extent variability in the biological (phytoplankton) response. I will present a review of some of the key results from a number of recent studies.
Garcia, Ana Maria.; Hoos, Anne B.; Terziotti, Silvia
2011-01-01
We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p < 0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables – soil organic matter and soil pH – are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity.
van der Weide, Jan; Hinrichs, John WJ
2006-01-01
Since the identification of all the major drug-metabolising cytochrome P450 (CYP) enzymes and their major gene variants, pharmacogenetics has had a major impact on psychotherapeutic drug therapy. CYP enzymes are responsible for the metabolism of most clinically used drugs. Individual variability in CYP activity is an important reason for drug therapy failure. Variability in CYP activity may be caused by various factors, including endogenous factors such as age, gender and morbidity as well as exogenous factors such as co-medication, food components and smoking habit. However, polymorphisms, present in most CYP genes, are responsible for a substantial part of this variability. Although CYP genotyping has been shown to predict the majority of aberrant phenotypes, it is currently rarely performed in clinical practice. PMID:16886044
Gorlin-goltz syndrome: case report of a rare hereditary disorder.
Agrawal, Ashutosh; Murari, Aditi; Vutukuri, Sunil; Singh, Arun
2012-01-01
Introduction. Gorlin-Goltz syndrome is an inherited autosomal dominant disorder with complete penetrance and extreme variable expressivity. Case Report. The present paper highlights the importance of diagnostic criteria and histopathology in early and prompt diagnosis which will lead to proper treatment and genetic counseling of the patient. Discussion. Gorlin-Goltz syndrome is about multisystem process comprising the triad of basal cell nevi, jaw keratocysts, and skeletal anomalies. A spectrum of other neurological, ophthalmic, endocrine and genital manifestations is known to be variably associated with this triad. Diagnosis of the syndrome is based on major and minor criteria. Conclusion. This paper emphasizes the importance of oral and maxillofacial health professionals in the early diagnosis of nevoid basal cell carcinoma syndrome and in a preventive multidisciplinary approach to provide a better prognosis to the patient.
Public transportation in the 1980's: responding to pressures of fiscal austerity. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, M.D.; Hemily, P.B.
A telephone survey of 30 transit general managers was used to determine the general response of transit agencies to fiscal pressures. A more detailed case study of the Greater Bridgeport Transit District provided greater detail on the response process in one agency, especially focussing on the identification and implementation of feasible options. The concept of a transit agency's operational environment was used to identify the key analysis variables that guided the survey and case study. In general, these variables could be classified into two major categories: (1) those relating to the degree of decisionmaking independence of the agency, and (2)more » those relating to the degree to which an agency is capable of responding to financial pressures.« less
Roush, W B; Boykin, D; Branton, S L
2004-08-01
A mixture experiment, a variant of response surface methodology, was designed to determine the proportion of time to feed broiler starter (23% protein), grower (20% protein), and finisher (18% protein) diets to optimize production and processing variables based on a total production time of 48 d. Mixture designs are useful for proportion problems where the components of the experiment (i.e., length of time the diets were fed) add up to a unity (48 d). The experiment was conducted with day-old male Ross x Ross broiler chicks. The birds were placed 50 birds per pen in each of 60 pens. The experimental design was a 10-point augmented simplex-centroid (ASC) design with 6 replicates of each point. Each design point represented the portion(s) of the 48 d that each of the diets was fed. Formulation of the diets was based on NRC standards. At 49 d, each pen of birds was evaluated for production data including BW, feed conversion, and cost of feed consumed. Then, 6 birds were randomly selected from each pen for processing data. Processing variables included live weight, hot carcass weight, dressing percentage, fat pad percentage, and breast yield (pectoralis major and pectoralis minor weights). Production and processing data were fit to simplex regression models. Model terms determined not to be significant (P > 0.05) were removed. The models were found to be statistically adequate for analysis of the response surfaces. A compromise solution was calculated based on optimal constraints designated for the production and processing data. The results indicated that broilers fed a starter and finisher diet for 30 and 18 d, respectively, would meet the production and processing constraints. Trace plots showed that the production and processing variables were not very sensitive to the grower diet.
Recent directions taken in water, energy, and biogeochemical budgets research
Lins, Harry F.
1994-01-01
Understanding and predicting global change is a major scientific focus of the late 20th century. Although atmospheric scientists have made substantial progress in developing models that account for many components of the climate system, significant progress is needed in understanding processes associated with the exchange of water, energy, and carbon between terrestrial systems and the atmosphere.To strengthen terrestrial process research, especially research associated with the interactions of water, energy, gases, nutrients, and vegetation, the U.S. Geological Survey initiated an intensive study of Water, Energy, and Biogeochemical Budgets (WEBB). WEBB is aimed at improving understanding of processes controlling terrestrial water, energy, and biogeochemical fluxes, their interactions, and their relations to climatic variables; and the ability to predict continental water, energy, and biogeochemical budgets over a range of spatial and temporal scales.
Narrowing the Gap in Quantification of Aerosol-Cloud Radiative Effects
NASA Astrophysics Data System (ADS)
Feingold, G.; McComiskey, A. C.; Yamaguchi, T.; Kazil, J.; Johnson, J. S.; Carslaw, K. S.
2016-12-01
Despite large advances in our understanding of aerosol and cloud processes over the past years, uncertainty in the aerosol-cloud radiative effect/forcing is still of major concern. In this talk we will advocate a methodology for quantifying the aerosol-cloud radiative effect that considers the primacy of fundamental cloud properties such as cloud amount and albedo alongside the need for process level understanding of aerosol-cloud interactions. We will present a framework for quantifying the aerosol-cloud radiative effect, regime-by-regime, through process-based modelling and observations at the large eddy scale. We will argue that understanding the co-variability between meteorological and aerosol drivers of the radiative properties of the cloud system may be as important an endeavour as attempting to untangle these drivers.
Mahler, B.J.; Valdes, D.; Musgrove, M.; Massei, N.
2008-01-01
Karst aquifers display a range of geologic and geomorphic characteristics in a wide range of climatic and land-use settings; identification of transport dynamics representative of karst aquifers in general could help advance our understanding of these complex systems. To this end, nutrient, turbidity, and major ion dynamics in response to storms were compared at multiple sites in two karst aquifers with contrasting characteristics and settings: the Chalk aquifer (Eure Department, Normandy, France) and the Barton Springs segment of the Edwards Aquifer (Texas, U.S.A.). The Chalk aquifer is typified by high matrix porosity, thick surficial deposits (up to 30??m thick), and agricultural land use; the Barton Springs segment is typified by low matrix porosity, outcropping limestone, and urban land use. Following one to three storms, from 5 to 16 samples from springs and wells were analyzed for major ions, and specific conductance and turbidity were monitored continuously. Comparison of the chemographs indicated some generalized responses, including an increase in turbidity and potassium concentrations and a decrease in major ion and nitrate concentrations with infiltrating storm runoff. Factor analysis of major ions and turbidity revealed strikingly similar behavior of the chemical variables for the two aquifers: The first two factors, explaining more than 75% of the variability, illustrate that dynamics of most major ions (including nitrate) are opposed to those of turbidity and of potassium. The results demonstrate that potassium and nitrate are effective tracers of infiltrating storm runoff and resident ground water, respectively, and the similar results for these two highly contrasting aquifers suggest that the dynamics identified might be applicable to karst systems in general. ?? 2008 Elsevier B.V. All rights reserved.
Mahler, B J; Valdes, D; Musgrove, M; Massei, N
2008-05-26
Karst aquifers display a range of geologic and geomorphic characteristics in a wide range of climatic and land-use settings; identification of transport dynamics representative of karst aquifers in general could help advance our understanding of these complex systems. To this end, nutrient, turbidity, and major ion dynamics in response to storms were compared at multiple sites in two karst aquifers with contrasting characteristics and settings: the Chalk aquifer (Eure Department, Normandy, France) and the Barton Springs segment of the Edwards Aquifer (Texas, U.S.A.). The Chalk aquifer is typified by high matrix porosity, thick surficial deposits (up to 30 m thick), and agricultural land use; the Barton Springs segment is typified by low matrix porosity, outcropping limestone, and urban land use. Following one to three storms, from 5 to 16 samples from springs and wells were analyzed for major ions, and specific conductance and turbidity were monitored continuously. Comparison of the chemographs indicated some generalized responses, including an increase in turbidity and potassium concentrations and a decrease in major ion and nitrate concentrations with infiltrating storm runoff. Factor analysis of major ions and turbidity revealed strikingly similar behavior of the chemical variables for the two aquifers: The first two factors, explaining more than 75% of the variability, illustrate that dynamics of most major ions (including nitrate) are opposed to those of turbidity and of potassium. The results demonstrate that potassium and nitrate are effective tracers of infiltrating storm runoff and resident ground water, respectively, and the similar results for these two highly contrasting aquifers suggest that the dynamics identified might be applicable to karst systems in general.
Fluctuating environments, sexual selection and the evolution of flexible mate choice in birds.
Botero, Carlos A; Rubenstein, Dustin R
2012-01-01
Environmentally-induced fluctuation in the form and strength of natural selection can drive the evolution of morphology, physiology, and behavior. Here we test the idea that fluctuating climatic conditions may also influence the process of sexual selection by inducing unexpected reversals in the relative quality or sexual attractiveness of potential breeding partners. Although this phenomenon, known as 'ecological cross-over', has been documented in a variety of species, it remains unclear the extent to which it has driven the evolution of major interspecific differences in reproductive behavior. We show that after controlling for potentially influential life history and demographic variables, there are significant positive associations between the variability and predictability of annual climatic cycles and the prevalence of infidelity and divorce within populations of a taxonomically diverse array of socially monogamous birds. Our results are consistent with the hypothesis that environmental factors have shaped the evolution of reproductive flexibility and suggest that in the absence of severe time constraints, secondary mate choice behaviors can help prevent, correct, or minimize the negative consequences of ecological cross-overs. Our findings also illustrate how a basic evolutionary process like sexual selection is susceptible to the increasing variability and unpredictability of climatic conditions that is resulting from climate change.
The NOAA-NASA CZCS Reanalysis Effort
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Conkright, Margarita E.; OReilly, John E.; Patt, Frederick S.; Wang, Meng-Hua; Yoder, James; Casey-McCabe, Nancy; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Satellite observations of global ocean chlorophyll span over two decades. However, incompatibilities between processing algorithms prevent us from quantifying natural variability. We applied a comprehensive reanalysis to the Coastal Zone Color Scanner (CZCS) archive, called the NOAA-NASA CZCS Reanalysis (NCR) Effort. NCR consisted of 1) algorithm improvement (AI), where CZCS processing algorithms were improved using modernized atmospheric correction and bio-optical algorithms, and 2) blending, where in situ data were incorporated into the CZCS AI to minimize residual errors. The results indicated major improvement over the previously available CZCS archive. Global spatial and seasonal patterns of NCR chlorophyll indicated remarkable correspondence with modern sensors, suggesting compatibility. The NCR permits quantitative analyses of interannual and interdecadal trends in global ocean chlorophyll.
NASA Astrophysics Data System (ADS)
Hunter, Evelyn M. Irving
1998-12-01
The purpose of this study was to examine the relationship and predictive power of the variables gender, high school GPA, class rank, SAT scores, ACT scores, and socioeconomic status on the graduation rates of minority college students majoring in the sciences at a selected urban university. Data was examined on these variables as they related to minority students majoring in science. The population consisted of 101 minority college students who had majored in the sciences from 1986 to 1996 at an urban university in the southwestern region of Texas. A non-probability sampling procedure was used in this study. The non-probability sampling procedure in this investigation was incidental sampling technique. A profile sheet was developed to record the information regarding the variables. The composite scores from SAT and ACT testing were used in the study. The dichotomous variables gender and socioeconomic status were dummy coded for analysis. For the gender variable, zero (0) indicated male, and one (1) indicated female. Additionally, zero (0) indicated high SES, and one (1) indicated low SES. Two parametric procedures were used to analyze the data in this investigation. They were the multiple correlation and multiple regression procedures. Multiple correlation is a statistical technique that indicates the relationship between one variable and a combination of two other variables. The variables socioeconomic status and GPA were found to contribute significantly to the graduation rates of minority students majoring in all sciences when combined with chemistry (Hypotheses Two and Four). These variables accounted for 7% and 15% of the respective variance in the graduation rates of minority students in the sciences and in chemistry. Hypotheses One and Three, the predictor variables gender, high school GPA, SAT Total Scores, class rank, and socioeconomic status did not contribute significantly to the graduation rates of minority students in biology and pharmacy.
Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake
NASA Astrophysics Data System (ADS)
Muller, S. J.; Gerber, S.
2013-12-01
The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.
Denwood, M J; Love, S; Innocent, G T; Matthews, L; McKendrick, I J; Hillary, N; Smith, A; Reid, S W J
2012-08-13
The faecal egg count (FEC) is the most widely used means of quantifying the nematode burden of horses, and is frequently used in clinical practice to inform treatment and prevention. The statistical process underlying the FEC is complex, comprising a Poisson counting error process for each sample, compounded with an underlying continuous distribution of means between samples. Being able to quantify the sources of variability contributing to this distribution of means is a necessary step towards providing estimates of statistical power for future FEC and FECRT studies, and may help to improve the usefulness of the FEC technique by identifying and minimising unwanted sources of variability. Obtaining such estimates require a hierarchical statistical model coupled with repeated FEC observations from a single animal over a short period of time. Here, we use this approach to provide the first comparative estimate of multiple sources of within-horse FEC variability. The results demonstrate that a substantial proportion of the observed variation in FEC between horses occurs as a result of variation in FEC within an animal, with the major sources being aggregation of eggs within faeces and variation in egg concentration between faecal piles. The McMaster procedure itself is associated with a comparatively small coefficient of variation, and is therefore highly repeatable when a sufficiently large number of eggs are observed to reduce the error associated with the counting process. We conclude that the variation between samples taken from the same animal is substantial, but can be reduced through the use of larger homogenised faecal samples. Estimates are provided for the coefficient of variation (cv) associated with each within animal source of variability in observed FEC, allowing the usefulness of individual FEC to be quantified, and providing a basis for future FEC and FECRT studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Onjong, Hillary Adawo; Wangoh, John; Njage, Patrick Murigu Kamau
2014-08-01
Fish processing plants still face microbial food safety-related product rejections and the associated economic losses, although they implement legislation, with well-established quality assurance guidelines and standards. We assessed the microbial performance of core control and assurance activities of fish exporting processors to offer suggestions for improvement using a case study. A microbiological assessment scheme was used to systematically analyze microbial counts in six selected critical sampling locations (CSLs). Nine small-, medium- and large-sized companies implementing current food safety management systems (FSMS) were studied. Samples were collected three times on each occasion (n = 324). Microbial indicators representing food safety, plant and personnel hygiene, and overall microbiological performance were analyzed. Microbiological distribution and safety profile levels for the CSLs were calculated. Performance of core control and assurance activities of the FSMS was also diagnosed using an FSMS diagnostic instrument. Final fish products from 67% of the companies were within the legally accepted microbiological limits. Salmonella was absent in all CSLs. Hands or gloves of workers from the majority of companies were highly contaminated with Staphylococcus aureus at levels above the recommended limits. Large-sized companies performed better in Enterobacteriaceae, Escherichia coli, and S. aureus than medium- and small-sized ones in a majority of the CSLs, including receipt of raw fish material, heading and gutting, and the condition of the fish processing tables and facilities before cleaning and sanitation. Fish products of 33% (3 of 9) of the companies and handling surfaces of 22% (2 of 9) of the companies showed high variability in Enterobacteriaceae counts. High variability in total viable counts and Enterobacteriaceae was noted on fish products and handling surfaces. Specific recommendations were made in core control and assurance activities associated with sampling locations showing poor performance.
NASA Astrophysics Data System (ADS)
Wang, Yu; Fan, Jie; Xu, Ye; Sun, Wei; Chen, Dong
2017-06-01
Effective application of carbon capture, utilization and storage (CCUS) systems could help to alleviate the influence of climate change by reducing carbon dioxide (CO2) emissions. The research objective of this study is to develop an equilibrium chance-constrained programming model with bi-random variables (ECCP model) for supporting the CCUS management system under random circumstances. The major advantage of the ECCP model is that it tackles random variables as bi-random variables with a normal distribution, where the mean values follow a normal distribution. This could avoid irrational assumptions and oversimplifications in the process of parameter design and enrich the theory of stochastic optimization. The ECCP model is solved by an equilibrium change-constrained programming algorithm, which provides convenience for decision makers to rank the solution set using the natural order of real numbers. The ECCP model is applied to a CCUS management problem, and the solutions could be useful in helping managers to design and generate rational CO2-allocation patterns under complexities and uncertainties.
Nájera, S; Gil-Martínez, M; Zambrano, J A
2015-01-01
The aim of this paper is to establish and quantify different operational goals and control strategies in autothermal thermophilic aerobic digestion (ATAD). This technology appears as an alternative to conventional sludge digestion systems. During the batch-mode reaction, high temperatures promote sludge stabilization and pasteurization. The digester temperature is usually the only online, robust, measurable variable. The average temperature can be regulated by manipulating both the air injection and the sludge retention time. An improved performance of diverse biochemical variables can be achieved through proper manipulation of these inputs. However, a better quality of treated sludge usually implies major operating costs or a lower production rate. Thus, quality, production and cost indices are defined to quantify the outcomes of the treatment. Based on these, tradeoff control strategies are proposed and illustrated through some examples. This paper's results are relevant to guide plant operators, to design automatic control systems and to compare or evaluate the control performance on ATAD systems.
Interindividual Variability in Metabolism of [6]-Shogaol by Gut Microbiota.
Wang, Pei; Wang, Ronghui; Zhu, Yingdong; Sang, Shengmin
2017-11-08
[6]-Shogaol (6S), one of the major bioactive components in dry ginger, is attracting considerable attention because of its wide spectrum of biological activities, but its metabolic fate is still not fully understood. In the present study, the microbial metabolism of 6S was examined for the first time in in vitro batch fecal fermentation system and in mice. Two major microbial metabolites were detected and identified as 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9) and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11). Our results indicated that reductions of the double bond and the ketone group are the major metabolic pathways of 6S by the human gut microbiota. We also observed the interindividual variability in the metabolism of M11 to M9 by human gut microbiota. In addition, we demonstrated that the glucuronidated form of 6S and its metabolites could be rapidly deconjugated by human gut microbiota and in mice, which can be regarded as a reactive process taking place in the intestinal tract. To our knowledge, this is the first report involving the identification of the microbial metabolites of 6S in an in vitro fermentation system, and the first demonstration of the critical role of gut microbiota in producing the bioactive free form of 6S and its metabolites in the intestinal tract in mice.
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
NASA Astrophysics Data System (ADS)
Delpierre, N.; Dufrêne, E.
2009-04-01
With several sites measuring mass and energy turbulent fluxes for more than ten years, the CarboEurope database appears as a valuable resource for addressing the question of the determinism of the interannual variability of carbon (C) and water balances in forests ecosystems. Apart from major climate-driven anomalies during the anomalous 2003 summer and 2007 spring, little is known about the factors driving interannual variability (IAV) of the C balance in forest ecosystems. We used the CASTANEA process-based model to simulate the C and W fluxes and balances of three European evergreen forests for the 2000-2007 period (FRPue Quercus ilex, 44°N; DETha Picea abies, 51°N; FIHyy Pinus sylvestris, 62°N). The model fairly reproduced the day-to-day variability of measured fluxes, accounting for 70-81%, 77-91% and 59-90% of the daily variance of measured NEP, GPP and TER, respectively. However, the model was challenged in representing the IAV of fluxes integrated on an annual time scale. It reproduced ca. 80% of the interannual variance of measured GPP, but no significant relationship could be established between annual measured and modelled NEP or TER. Accordingly, CASTANEA appeared as a suitable tool for disentangling the influence of climate and biological processes on GPP at mutiple time scales. We show that climate and biological processes relative influences on the modelled GPP vary from year to year in European evergreen forests. Water-stress related and phenological processes (i.e. release of the winter thermal constraint on photosynthesis in evergreens) appear as primary drivers for the particular 2003 and 2007 years, respectively, but the relative influence of other climatic factors widely varies for less remarkable years at all sites. We discuss shortcomings of the method, as related to the influence of compensating errors in the simulated fluxes, and assess the causes of the model poor ability to represent the IAV of the annual sums of NEP and TER.
Implementation of quality by design toward processing of food products.
Rathore, Anurag S; Kapoor, Gautam
2017-05-28
Quality by design (QbD) is a systematic approach that begins with predefined objectives and emphasizes product and process understanding and process control. It is an approach based on principles of sound science and quality risk management. As the food processing industry continues to embrace the idea of in-line, online, and/or at-line sensors and real-time characterization for process monitoring and control, the existing gaps with regard to our ability to monitor multiple parameters/variables associated with the manufacturing process will be alleviated over time. Investments made for development of tools and approaches that facilitate high-throughput analytical and process development, process analytical technology, design of experiments, risk analysis, knowledge management, and enhancement of process/product understanding would pave way for operational and economic benefits later in the commercialization process and across other product pipelines. This article aims to achieve two major objectives. First, to review the progress that has been made in the recent years on the topic of QbD implementation in processing of food products and second, present a case study that illustrates benefits of such QbD implementation.
NASA Astrophysics Data System (ADS)
Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques
2010-05-01
Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. These results are of practical relevance as they invalidate recharge assessment methods based on steady state assumptions in this context. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. Ruiz L, Varma MRR, Mohan Kumar MS, Sekhar M, Maréchal JC, Descloitres M, Riotte J, Sat Kumar, Kumar C and Braun JJ 2010 Water balance modelling in a tropical watershed under deciduous forest (Mule Hole, India) : regolith matric storage buffers the groundwater recharge process. Journal of Hydrology, 380, 460-472. http://dx.doi.org/10.1016/j.jhydrol.2009.11.020
Deciding about fast and slow decisions.
Croskerry, Pat; Petrie, David A; Reilly, James B; Tait, Gordon
2014-02-01
Two reports in this issue address the important topic of clinical decision making. Dual process theory has emerged as the dominant model for understanding the complex processes that underlie human decision making. This theory distinguishes between the reflexive, autonomous processes that characterize intuitive decision making and the deliberate reasoning of an analytical approach. In this commentary, the authors address the polarization of viewpoints that has developed around the relative merits of the two systems. Although intuitive processes are typically fast and analytical processes slow, speed alone does not distinguish them. In any event, the majority of decisions in clinical medicine are not dependent on very short response times. What does appear relevant to diagnostic ease and accuracy is the degree to which the symptoms of the disease being diagnosed are characteristic ones. There are also concerns around some methodological issues related to research design in this area of enquiry. Reductionist approaches that attempt to isolate dependent variables may create such artificial experimental conditions that both external and ecological validity are sacrificed. Clinical decision making is a complex process with many independent (and interdependent) variables that need to be separated out in a discrete fashion and then reflected on in real time to preserve the fidelity of clinical practice. With these caveats in mind, the authors believe that research in this area should promote a better understanding of clinical practice and teaching by focusing less on the deficiencies of intuitive and analytical systems and more on their adaptive strengths.
Effects of Short Term Bioturbation by Common Voles on Biogeochemical Soil Variables
Wilske, Burkhard; Eccard, Jana A.; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz
2015-01-01
Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35–150 individuals ha–1 mth–1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10–20 and 20–30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15–30 cm decreased and the C/N ratio at 5–10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools. PMID:25954967
Effects of short term bioturbation by common voles on biogeochemical soil variables.
Wilske, Burkhard; Eccard, Jana A; Zistl-Schlingmann, Marcus; Hohmann, Maximilian; Methler, Annabel; Herde, Antje; Liesenjohann, Thilo; Dannenmann, Michael; Butterbach-Bahl, Klaus; Breuer, Lutz
2015-01-01
Bioturbation contributes to soil formation and ecosystem functioning. With respect to the active transport of matter by voles, bioturbation may be considered as a very dynamic process among those shaping soil formation and biogeochemistry. The present study aimed at characterizing and quantifying the effects of bioturbation by voles on soil water relations and carbon and nitrogen stocks. Bioturbation effects were examined based on a field set up in a luvic arenosol comprising of eight 50 × 50 m enclosures with greatly different numbers of common vole (Microtus arvalis L., ca. 35-150 individuals ha-1 mth-1). Eleven key soil variables were analyzed: bulk density, infiltration rate, saturated hydraulic conductivity, water holding capacity, contents of soil organic carbon (SOC) and total nitrogen (N), CO2 emission potential, C/N ratio, the stable isotopic signatures of 13C and 15N, and pH. The highest vole densities were hypothesized to cause significant changes in some variables within 21 months. Results showed that land history had still a major influence, as eight key variables displayed an additional or sole influence of topography. However, the δ15N at depths of 10-20 and 20-30 cm decreased and increased with increasing vole numbers, respectively. Also the CO2 emission potential from soil collected at a depth of 15-30 cm decreased and the C/N ratio at 5-10 cm depth narrowed with increasing vole numbers. These variables indicated the first influence of voles on the respective mineralization processes in some soil layers. Tendencies of vole activity homogenizing SOC and N contents across layers were not significant. The results of the other seven key variables did not confirm significant effects of voles. Thus overall, we found mainly a first response of variables that are indicative for changes in biogeochemical dynamics but not yet of those representing changes in pools.
NASA Astrophysics Data System (ADS)
Lado, Longun Moses
This study examined the influence of a set of relevant independent variables on students' decision to major in math or science disciplines, on the one hand, or arts or humanities disciplines, on the other. The independent variables of interest in the study were students' attitudes toward science, their gender, their socioeconomic status, their age, and the strength and direction of parents' and peers' influences on their academic decisions. The study answered five research questions that concerned students' intention in math or science, the association between students' attitudes and their choice to major in math or science, the extent to which parents' and peers' perspectives influence students' choice of major, and the influence of a combination of relevant variables on students' choice of major. The scholarly context for the study was literature relating to students' attitudes toward science and math, their likelihood of taking courses or majoring in science or math and various conditions influencing their attitudes and actions with respect to enrollment in science or math disciplines. This literature suggested that students' experiences, their gender, parents' and peers' influence, their socio-economic status, teachers' treatment of them, school curricula, school culture, and other variables may influence students' attitudes toward science and math and their decision regarding the study of these subjects. The study used a questionnaire comprised of 28 items to elicit information from students. Based upon cluster sampling of secondary schools, the researcher surveyed 1000 students from 10 secondary schools and received 987 responses. The researcher used SPSS to analyze students' responses. Descriptive statistics, logistic regression, and multiple regression analyses to provide findings that address the study's research questions. The following are the major findings from the study: (1) The instrument used to measure students' attitudes toward science and mathematics was not highly reliable, perhaps contributing to an attenuation of the relationship between attitude toward science and mathematics and choice of a science or mathematics major (rather than an arts or humanities major). (2) Far more students than the researcher had anticipated provided responses indicating that they planned to major in a science or mathematics discipline rather than an arts or humanities discipline. (3) Students' attitudes towards math and science were more favorable than the researcher anticipated based on findings from previous related studies. This result suggests the possibility of social desirability bias in students' responses. (4) Three significant predicator variables contributed to a significant logistic regression equation in which choice of science or mathematics major was the dependent variable: gender (negative association), attitude toward science and math (positive association), and peer influence 1 (positive association). Gender was the strongest predictor. (5) Five significant predictor variables contributed to a significant multiple linear regression equation in which attitude toward science and mathematics was the dependent variable: peer influence 1 (positive association), parent influence 1 (positive association), parent influence 2 (positive association), books in home (positive association), and peer influence 2 (positive association). The results reveal that among the targeted variables (gender, attitude, peer influence 1, peer influence 2, parent influence 1, parent influence 2, books in home, and age) only gender, peer influence 1, and attitude were significant predictors of students' major in math or science.
Spray drying formulation of amorphous solid dispersions.
Singh, Abhishek; Van den Mooter, Guy
2016-05-01
Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.
Process development of starch hydrolysis using mixing characteristics of Taylor vortices.
Masuda, Hayato; Horie, Takafumi; Hubacz, Robert; Ohmura, Naoto; Shimoyamada, Makoto
2017-04-01
In food industries, enzymatic starch hydrolysis is an important process that consists of two steps: gelatinization and saccharification. One of the major difficulties in designing the starch hydrolysis process is the sharp change in its rheological properties. In this study, Taylor-Couette flow reactor was applied to continuous starch hydrolysis process. The concentration of reducing sugar produced via enzymatic hydrolysis was evaluated by varying operational variables: rotational speed of the inner cylinder, axial velocity (reaction time), amount of enzyme, and initial starch content in the slurry. When Taylor vortices were formed in the annular space, efficient hydrolysis occurred because Taylor vortices improved the mixing of gelatinized starch with enzyme. Furthermore, a modified inner cylinder was proposed, and its mixing performance was numerically investigated. The modified inner cylinder showed higher potential for enhanced mixing of gelatinized starch and the enzyme than the conventional cylinder.
NASA Astrophysics Data System (ADS)
Beguet, Benoit; Guyon, Dominique; Boukir, Samia; Chehata, Nesrine
2014-10-01
The main goal of this study is to design a method to describe the structure of forest stands from Very High Resolution satellite imagery, relying on some typical variables such as crown diameter, tree height, trunk diameter, tree density and tree spacing. The emphasis is placed on the automatization of the process of identification of the most relevant image features for the forest structure retrieval task, exploiting both spectral and spatial information. Our approach is based on linear regressions between the forest structure variables to be estimated and various spectral and Haralick's texture features. The main drawback of this well-known texture representation is the underlying parameters which are extremely difficult to set due to the spatial complexity of the forest structure. To tackle this major issue, an automated feature selection process is proposed which is based on statistical modeling, exploring a wide range of parameter values. It provides texture measures of diverse spatial parameters hence implicitly inducing a multi-scale texture analysis. A new feature selection technique, we called Random PRiF, is proposed. It relies on random sampling in feature space, carefully addresses the multicollinearity issue in multiple-linear regression while ensuring accurate prediction of forest variables. Our automated forest variable estimation scheme was tested on Quickbird and Pléiades panchromatic and multispectral images, acquired at different periods on the maritime pine stands of two sites in South-Western France. It outperforms two well-established variable subset selection techniques. It has been successfully applied to identify the best texture features in modeling the five considered forest structure variables. The RMSE of all predicted forest variables is improved by combining multispectral and panchromatic texture features, with various parameterizations, highlighting the potential of a multi-resolution approach for retrieving forest structure variables from VHR satellite images. Thus an average prediction error of ˜ 1.1 m is expected on crown diameter, ˜ 0.9 m on tree spacing, ˜ 3 m on height and ˜ 0.06 m on diameter at breast height.
Variable rate irrigation (VRI)
USDA-ARS?s Scientific Manuscript database
Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...
Biopsychosocial correlates of lifetime major depression in a multiple sclerosis population.
Patten, S B; Metz, L M; Reimer, M A
2000-04-01
The objective of this paper was to evaluate the lifetime and point prevalence of major depression in a population-based Multiple Sclerosis (MS) clinic sample, and to describe associations between selected biopsychosocial variables and the prevalence of lifetime major depression in this sample. Subjects who had participated in an earlier study were re-contacted for additional data collection. Eighty-three per cent (n=136) of those eligible consented to participate. Each subject completed the Composite International Diagnostic Interview (CIDI) and an interviewer-administered questionnaire evaluating a series of biopsychosocial variables. The lifetime prevalence of major depression in this sample was 22.8%, somewhat lower than previous estimates in MS clinic populations. Women, those under 35, and those with a family history of major depression had a higher prevalence. Also, subjects reporting high levels of stress and heavy ingestion of caffeine (>400 mg) had a higher prevalence of major depression. As this was a cross-sectional analysis, the direction of causal effect for the observed associations could not be determined. By identifying variables that are associated with lifetime major depression, these data generate hypotheses for future prospective studies. Such studies will be needed to further understand the etiology of depressive disorders in MS.
ERIC Educational Resources Information Center
Casey, M. Beth
1996-01-01
Identified subjects' handedness and family handedness (genetic variables) and college major (environmental variable); and tested subjects on the Vandenberg Mental Rotation Test. Found that right-handed females with non-right-handed relatives and with science or math majors outperformed other females and equaled the performance of males on the…
A Study of ESEA, Title I Impact Components on Urban Elementary Schools and Their Pupils.
ERIC Educational Resources Information Center
Brown, Edward K.
A systematic study of the composition and dispersement of Title I projects assigned to elementary schools in Philadelphia was conducted. Categorical variables were identified from four major derived variables (program density code, school aggregate fund, pupil service component, achievement-growth differential score) and four major demographic…
Chen, Nien-Tsu Nancy
2015-07-01
Major health behavior change models tend to consider health decisions as primarily resulting from a systematic appraisal of relevant beliefs, such as the perceived benefits and risks of a pharmacological intervention. Drawing on research from the disciplines of risk management, communication, and psychology, this study proposed the inclusion of a heuristic route in established theory and tested the direction of influence between heuristic and systematic process variables. Affect and social trust were included as key heuristics in the proposed dual-mode framework of health decision making. Furthermore, exposure to health-related coverage on television was considered potentially influential over both heuristic and systematic process variables. To test this framework, data were collected from a national probability sample of 584 adults in the United States in 2012 regarding their decision to vaccinate against a hypothetical avian flu. The results provided some support for the bidirectional influence between heuristic and systematic processing. Affect toward flu vaccination and trust in the Food and Drug Administration were found to be powerful predictors of vaccination intention, enhancing intention both directly and indirectly via certain systematic process variables. The direction of influence between perceived susceptibility and severity, on the one hand, and affect, on the other, is less clear, suggesting the need for further research. Contrary to the opinion of media critics, exposure to televised health coverage was negatively associated with the perceived risks of vaccination. Results from this study carry theoretical and practical implications, and applying this model to the acceptance of different health interventions constitutes an area for future inquiries. © 2015 Society for Risk Analysis.
Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H
2014-11-01
Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. © 2014 John Wiley & Sons Ltd.
Aromatic hydrocarbons from the Middle Jurassic fossil wood of the Polish Jura
NASA Astrophysics Data System (ADS)
Smolarek, Justyna; Marynowski, Leszek
2013-09-01
Aromatic hydrocarbons are present in the fossil wood samples in relatively small amounts. In almost all of the tested samples the dominating aromatic hydrocarbon is perylene and its methyl and dimethyl derivatives. The most important biomarkers present in the aromatic fraction are dehydroabietane, siomonellite and retene, compounds characteristic for conifers. The distribution of discussed compounds is highly variable due to such early diagenetic processes affecting the wood as oxidation and the activity of microorganisms. MPI1 parameter values (methylphenanthrene index) for the majority of the samples are in the range of 0.1 to 0.5, which results in the highly variable values of Rc (converted value of vitrinite reflectance) ranging from 0.45 to 0.70%. Such values suggest that MPI1 parameter is not useful as maturity parameter in case of Middle Jurassic ore-bearing clays, even if measured strictly on terrestrial organic matter (OM). As a result of weathering processes (oxidation) the distribution of aromatic hydrocarbons changes. In the oxidized samples the amount of aromatic hydrocarbons, both polycyclic as well as aromatic biomarkers decreases.
NASA Astrophysics Data System (ADS)
Amorim, Eva; Ramos, Sandra; Elliott, Michael; Bordalo, Adriano A.
2016-01-01
Connectivity between coastal spawning grounds and estuarine nurseries is a critical step in the life cycle of many fish species. Larval immigration and transport-associated physical-biological processes are determinants of recruitment success to nursery areas. The recruitment of the European flounder, Platichthys flesus, to estuarine nurseries located at the southern edge of the species distribution range, has been usually investigated during its juvenile stages, while estuarine recruitment during the earlier planktonic life stage remains largely unstudied. The present study investigated the patterns of flounder larval recruitment and the influence of environmental factors on the immigration of the early life stages to the Lima estuary (NW Portugal), integrating data on fish larvae and post-settlement individuals (< 50 mm length), collected over 7 years. Late-stage larvae arrived at the estuary between February and July and peak abundances were observed in April. Post-settlement individuals (< 50 mm) occurred later between April and October, whereas newly-settled ones (< 20 mm) were found only in May and June. Variables associated with the spawning, survival and growth of larvae in the ocean (sea surface temperature, chlorophyll a and inland hydrological variables) were the major drivers of flounder occurrence in the estuarine nursery. Although the adjacent coastal area is characterized by a current system with strong seasonality and mesoscale variability, we did not identify any influence of variables related with physical processes (currents and upwelling) on the occurrence of early life stages in the estuary. A wider knowledge on the influence of the coastal circulation variability and its associated effects upon ocean-estuarine connectivity is required to improve our understanding of the population dynamics of marine spawning fish that use estuarine nurseries.
NASA Astrophysics Data System (ADS)
Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard
2017-04-01
The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.
Real-time Data Display System of the Korean Neonatal Network
Lee, Byong Sop; Moon, Wi Hwan
2015-01-01
Real-time data reporting in clinical research networks can provide network members through interim analyses of the registered data, which can facilitate further studies and quality improvement activities. The aim of this report was to describe the building process of the data display system (DDS) of the Korean Neonatal Network (KNN) and its basic structure. After member verification at the KNN member's site, users can choose a variable of interest that is listed in the in-hospital data statistics (for 90 variables) or in the follow-up data statistics (for 54 variables). The statistical results of the outcome variables are displayed on the HyperText Markup Language 5-based chart graphs and tables. Participating hospitals can compare their performance to those of KNN as a whole and identify the trends over time. Ranking of each participating hospital is also displayed in terms of key outcome variables such as mortality and major neonatal morbidities with the names of other centers blinded. The most powerful function of the DDS is the ability to perform 'conditional filtering' which allows users to exclusively review the records of interest. Further collaboration is needed to upgrade the DDS to a more sophisticated analytical system and to provide a more user-friendly interface. PMID:26566352
NASA Astrophysics Data System (ADS)
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-10-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7-27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity.
Feigin, Rena; Sapir, Yaffa
2005-03-01
The present study deals with personal and psychological characteristics of addicts coping with abstinence from drugs in various stages of recovery. The study focuses primarily on two personal variables: attribution of responsibility for the problem and its solution, and the sense of coherence. Additional factors that were examined in the study are demographic variables, which include those related to drug addiction. The sample included 128 short-term abstinent patients in the early stages of recovery after detoxification, and 40 long-term abstinent former addicts, who have abstained from the use of drugs for two to eight years. The results indicate a higher level of sense of coherence among the long-term abstinent subjects relating to their inner resources. On the other hand, much similarity was found between the groups in relation to the attribution of responsibility variable. In both groups, the majority reports that they attribute responsibility for the solution of the problem to themselves. The findings underscored the significant link between personality variables and coping with the processes of recovery, while an analysis of demographic and addiction variables did not show a significant distinction between the group of long-term abstinent subjects and the short-term abstinent subjects.
Liu, Jinliang; Qian, Hong; Jin, Yi; Wu, Chuping; Chen, Jianhua; Yu, Shuquan; Wei, Xinliang; Jin, Xiaofeng; Liu, Jiajia; Yu, Mingjian
2016-01-01
Understanding the relative importance of dispersal limitation and environmental filtering processes in structuring the beta diversities of subtropical forests in human disturbed landscapes is still limited. Here we used taxonomic (TBD) and phylogenetic (PBD), including terminal PBD (PBDt) and basal PBD (PBDb), beta diversity indices to quantify the taxonomic and phylogenetic turnovers at different depths of evolutionary history in disturbed and undisturbed subtropical forests. Multiple linear regression model and distance-based redundancy analysis were used to disentangle the relative importance of environmental and spatial variables. Environmental variables were significantly correlated with TBD and PBDt metrics. Temperature and precipitation were major environmental drivers of beta diversity patterns, which explained 7–27% of the variance in TBD and PBDt, whereas the spatial variables independently explained less than 1% of the variation for all forests. The relative importance of environmental and spatial variables differed between disturbed and undisturbed forests (e.g., when Bray-Curtis was used as a beta diversity metric, environmental variable had a significant effect on beta diversity for disturbed forests but had no effect on undisturbed forests). We conclude that environmental filtering plays a more important role than geographical limitation and disturbance history in driving taxonomic and terminal phylogenetic beta diversity. PMID:27775021
NASA Astrophysics Data System (ADS)
Restrepo López, Juan Camilo; Orejarena R, Andrés F.; Torregroza, Ana Carolina
2017-12-01
Monthly averaged suspended sediment load data from seven rivers in northern Colombia (Caribbean alluvial plain) draining into the Caribbean Sea were analyzed to quantify magnitudes, estimate long-term trends, and evaluate variability patterns of suspended sediment load. Collectively these rivers deliver an average of around 146.3 × 106 t yr-1 of suspended sediments to the Colombian Caribbean coast. The largest sediment supply is provided by the Magdalena River, with a mean suspended sediment load of 142.6 × 106 t yr-1, or 38% of the total fluvial discharge estimated for the whole Caribbean littoral zone. Between 2000 and 2010, the annual suspended sediment load of these rivers increased by as much as 36%. Wavelet spectral analyses identified periods of intense variability between 1987-1990 and 1994-2002, where major oscillation processes appeared simultaneously. The semi-annual, annual and quasi-decadal bands are the main factors controlling suspended sediment load variability in fluvial systems, whereas the quasi-biennial and interannual bands constitute second-order sources of variability. The climatic and oceanographic drivers of the oscillations identified through wavelet spectral analyses define a signal of medium-long-term variability for the suspended sediment load, while the physiographic and environmental characteristics of the basins determine their ability to magnify, attenuate or modify this signal.
NASA Astrophysics Data System (ADS)
Sutton, A.; Sabine, C. L.; Feely, R. A.
2016-02-01
One of the major challenges to assessing the impact of ocean acidification on marine life is the need to better understand the magnitude of long-term change in the context of natural variability. High-frequency moored observations can be highly effective in defining interannual, seasonal, and subseasonal variability at key locations. Here we present monthly aragonite saturation state (Ωaragonite) climatology for 15 open ocean, coastal, and coral reef locations using 3-hourly moored observations of surface seawater pCO2 and pH collected together since as early as 2009. We then use these present day surface mooring observations to estimate pre-industrial variability at each location and compare these results to previous modeling studies addressing global-scale variability and change. Our observations suggest that open oceans sites, especially in the subtropics, are experiencing Ωaragonite values throughout much of the year which are outside the range of pre-industrial values. In coastal and coral reef ecosystems, which have higher natural variability, seasonal patterns where present day Ωaragonite values exceeding pre-industrial bounds are emerging with some sites exhibiting subseasonal conditions approaching Ωaragonite = 1. Linking these seasonal patterns in carbonate chemistry to biological processes in these regions is critical to identify when and where marine life may encounter Ωaragonite values outside the conditions to which they have adapted.
Small scale denitrification variability in riparian zones: Results from a high-resolution dataset
NASA Astrophysics Data System (ADS)
Gassen, Niklas; Knöller, Kay; Musolff, Andreas; Popp, Felix; Lüders, Tillmann; Stumpp, Christine
2017-04-01
Riparian zones are important compartments at the interface between groundwater and surface water where biogeochemical processes like denitrification are often enhanced. Nitrate loads of either groundwater entering a stream through the riparian zone or streamwater infiltrating into the riparian zone can be substantially reduced. These processes are spatially and temporally highly variable, making it difficult to capture solute variabilities, estimate realistic turnover rates and thus to quantify integral mass removal. A crucial step towards a more detailed characterization is to monitor solutes on a scale which adequately resemble the highly heterogeneous distribution and on a scale where processes occur. We measured biogeochemical parameters in a spatial high resolution within a riparian corridor of a German lowland river system over the course of one year. Samples were taken from three newly developed high-resolution multi-level wells with a maximum vertical resolution of 5 cm and analyzed for major ions, DOC and N-O isotopes. Sediment derived during installation of the wells was analyzed for specific denitrifying enzymes. Results showed a distinct depth zonation of hydrochemistry within the shallow alluvial aquifer, with a 1 m thick zone just below the water table with lower nitrate concentrations and EC values similar to the nearby river. Conservative parameters were consistent inbetween the three wells, but nitrate was highly variable. In addition, spots with low nitrate concentrations showed isotopic and microbial evidence for higher denitrification activities. The depth zonation was observed throughout the year, with stronger temporal variations of nitrate concentrations just below the water table compared to deeper layers. Nitrate isotopes showed a clear seasonal trend of denitrification activities (high in summer, low in winter). Our dataset gives new insight into river-groundwater exchange processes and shows the highly heterogeneous distribution of denitrification in riparian zones, both in time and space. With these new insights, we are able to improve our understanding of spatial scaling of denitrification processes. This leads to a better prediction and improved management strategies for buffer mechanisms in riparian zones.
An overview of AmeriFlux data products and methods for data acquisition, processing, and publication
NASA Astrophysics Data System (ADS)
Pastorello, G.; Poindexter, C.; Agarwal, D.; Papale, D.; van Ingen, C.; Torn, M. S.
2014-12-01
The AmeriFlux network encompasses independently managed field sites measuring ecosystem carbon, water, and energy fluxes across the Americas. In close coordination with ICOS in Europe, a new set of fluxes data and metadata products is being produced and released at the FLUXNET level, including all AmeriFlux sites. This will enable continued releases of global standardized set of flux data products. In this release, new formats, structures, and ancillary information are being proposed and adopted. This presentation discusses these aspects, detailing current and future solutions. One of the major revisions was to the BADM (Biological, Ancillary, and Disturbance Metadata) protocols. The updates include structure and variable changes to address new developments in data collection related to flux towers and facilitate two-way data sharing. In particular, a new organization of templates is now in place, including changes in templates for biomass, disturbances, instrumentation, soils, and others. New variables and an extensive addition to the vocabularies used to describe BADM templates allow for a more flexible and comprehensible coverage of field sites and the data collection methods and results. Another extensive revision is in the data formats, levels, and versions for fluxes and micrometeorological data. A new selection and revision of data variables and an integrated new definition for data processing levels allow for a more intuitive and flexible notation for the variety of data products. For instance, all variables now include positional information that is tied to BADM instrumentation descriptions. This allows for a better characterization of spatial representativeness of data points, e.g., individual sensors or the tower footprint. Additionally, a new definition for data levels better characterizes the types of processing and transformations applied to the data across different dimensions (e.g., spatial representativeness of a data point, data quality checks applied, and differentiation between measured data and data from models that use process knowledge). We also present an expanded approach to versions of data and data processing software, with stable and immutable data releases, but also pre-release versions to allow evaluation and feedback prior to a stable release.
Mwangi, Benson; Ebmeier, Klaus P; Matthews, Keith; Steele, J Douglas
2012-05-01
Quantitative abnormalities of brain structure in patients with major depressive disorder have been reported at a group level for decades. However, these structural differences appear subtle in comparison with conventional radiologically defined abnormalities, with considerable inter-subject variability. Consequently, it has not been possible to readily identify scans from patients with major depressive disorder at an individual level. Recently, machine learning techniques such as relevance vector machines and support vector machines have been applied to predictive classification of individual scans with variable success. Here we describe a novel hybrid method, which combines machine learning with feature selection and characterization, with the latter aimed at maximizing the accuracy of machine learning prediction. The method was tested using a multi-centre dataset of T(1)-weighted 'structural' scans. A total of 62 patients with major depressive disorder and matched controls were recruited from referred secondary care clinical populations in Aberdeen and Edinburgh, UK. The generalization ability and predictive accuracy of the classifiers was tested using data left out of the training process. High prediction accuracy was achieved (~90%). While feature selection was important for maximizing high predictive accuracy with machine learning, feature characterization contributed only a modest improvement to relevance vector machine-based prediction (~5%). Notably, while the only information provided for training the classifiers was T(1)-weighted scans plus a categorical label (major depressive disorder versus controls), both relevance vector machine and support vector machine 'weighting factors' (used for making predictions) correlated strongly with subjective ratings of illness severity. These results indicate that machine learning techniques have the potential to inform clinical practice and research, as they can make accurate predictions about brain scan data from individual subjects. Furthermore, machine learning weighting factors may reflect an objective biomarker of major depressive disorder illness severity, based on abnormalities of brain structure.
Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers.
Sihvo, H-K; Immonen, K; Puolanne, E
2014-05-01
A myopathy affecting the pectoralis major muscle of the commercial broiler has emerged creating remarkable economic losses as well as a potential welfare problem of the birds. We here describe the macroscopic and histologic lesions of this myopathy within 10 pectoralis major muscles of 5- to 6-week-old broilers in Finland. Following macroscopic evaluation and palpation of the muscles, a tissue sample of each was fixed in formalin, processed for histology, and histologically evaluated. The muscles that were macroscopically hard, outbulging, pale, and often accompanied with white striping histologically exhibited moderate to severe polyphasic myodegeneration with regeneration as well as a variable amount of interstitial connective tissue accumulation or fibrosis. All affected cases also exhibited perivenular lymphocyte accumulation. The etiology of this myodegenerative lesion remains yet open. Polyphasic myodegeneration is associated with several previously known etiologies, but palpatory hardness focusing on the pectoralis major, together with perivenular lymphocytes, has not been described in relation to them. The results of this study provide the pathological basis for further studies concerning the etiology of the currently described myopathy.
Life sciences biomedical research planning for Space Station
NASA Technical Reports Server (NTRS)
Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine
1987-01-01
The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.
Mukerjee, Shaibal; Smith, Luther A; Johnson, Mary M; Neas, Lucas M; Stallings, Casson A
2009-08-01
Passive ambient air sampling for nitrogen dioxide (NO(2)) and volatile organic compounds (VOCs) was conducted at 25 school and two compliance sites in Detroit and Dearborn, Michigan, USA during the summer of 2005. Geographic Information System (GIS) data were calculated at each of 116 schools. The 25 selected schools were monitored to assess and model intra-urban gradients of air pollutants to evaluate impact of traffic and urban emissions on pollutant levels. Schools were chosen to be statistically representative of urban land use variables such as distance to major roadways, traffic intensity around the schools, distance to nearest point sources, population density, and distance to nearest border crossing. Two approaches were used to investigate spatial variability. First, Kruskal-Wallis analyses and pairwise comparisons on data from the schools examined coarse spatial differences based on city section and distance from heavily trafficked roads. Secondly, spatial variation on a finer scale and as a response to multiple factors was evaluated through land use regression (LUR) models via multiple linear regression. For weeklong exposures, VOCs did not exhibit spatial variability by city section or distance from major roads; NO(2) was significantly elevated in a section dominated by traffic and industrial influence versus a residential section. Somewhat in contrast to coarse spatial analyses, LUR results revealed spatial gradients in NO(2) and selected VOCs across the area. The process used to select spatially representative sites for air sampling and the results of coarse and fine spatial variability of air pollutants provide insights that may guide future air quality studies in assessing intra-urban gradients.
NASA Astrophysics Data System (ADS)
Tréguer, Paul; Goberville, Eric; Barrier, Nicolas; L'Helguen, Stéphane; Morin, Pascal; Bozec, Yann; Rimmelin-Maury, Peggy; Czamanski, Marie; Grossteffan, Emilie; Cariou, Thierry; Répécaud, Michel; Quéméner, Loic
2014-11-01
There is now a strong scientific consensus that coastal marine systems of Western Europe are highly sensitive to the combined effects of natural climate variability and anthropogenic climate change. However, it still remains challenging to assess the spatial and temporal scales at which climate influence operates. While large-scale hydro-climatic indices, such as the North Atlantic Oscillation (NAO) or the East Atlantic Pattern (EAP) and the weather regimes such as the Atlantic Ridge (AR), are known to be relevant predictors of physical processes, changes in coastal waters can also be related to local hydro-meteorological and geochemical forcing. Here, we study the temporal variability of physical and chemical characteristics of coastal waters located at about 48°N over the period 1998-2013 using (1) sea surface temperature, (2) sea surface salinity and (3) nutrient concentration observations for two coastal sites located at the outlet of the Bay of Brest and off Roscoff, (4) river discharges of the major tributaries close to these two sites and (5) regional and local precipitation data over the region of interest. Focusing on the winter months, we characterize the physical and chemical variability of these coastal waters and document changes in both precipitation and river runoffs. Our study reveals that variability in coastal waters is connected to the large-scale North Atlantic atmospheric circulation but is also partly explained by local river influences. Indeed, while the NAO is strongly related to changes in sea surface temperature at the Brest and Roscoff sites, the EAP and the AR have a major influence on precipitations, which in turn modulate river discharges that impact sea surface salinity at the scale of the two coastal stations.
NASA Astrophysics Data System (ADS)
Dobbie, K. E.; McTaggart, I. P.; Smith, K. A.
1999-11-01
Emissions of nitrous oxide from intensively managed agricultural fields were measured over 3 years. Exponential increases in flux occurred with increasing soil water- filled pore space (WFPS) and temperature; increases in soil mineral N content due to fertilizer application also stimulated emissions. Fluxes were low when any of these variables was below a critical value. The largest fluxes occurred when WFPS values were very high (70-90%), indicating that denitrification was the major process responsible. The relationships with the driving variables showed strong similarities to those reported for very different environments: irrigated sugar cane crops, pastures, and forest in the tropics. Annual emissions varied widely (0.3-18.4 kg N2O-N ha-1). These variations were principally due to the degree of coincidence of fertilizer application and major rainfall events. It is concluded therefore that several years' data are required from any agricultural ecosystem in a variable climate to obtain a robust estimate of mean N2O fluxes. The emissions from small-grain cereals (winter wheat and spring barley) were consistently lower (0.2-0.7 kg N2O-N per 100 kg N applied) than from cut grassland (0.3-5.8 kg N2O- N per 100 kg N). Crops such as broccoli and potatoes gave emissions of the same order as those from the grassland. Although these differences between crop types are not apparent in general data comparisons, there may well be distinct regional differences in the relative and absolute emissions from different crops, due to local factors relating to soil type, weather patterns, and agricultural management practices. This will only be determined by more detailed comparative studies.
Gorlin-Goltz Syndrome: Case Report of a Rare Hereditary Disorder
Agrawal, Ashutosh; Murari, Aditi; Vutukuri, Sunil; Singh, Arun
2012-01-01
Introduction. Gorlin-Goltz syndrome is an inherited autosomal dominant disorder with complete penetrance and extreme variable expressivity. Case Report. The present paper highlights the importance of diagnostic criteria and histopathology in early and prompt diagnosis which will lead to proper treatment and genetic counseling of the patient. Discussion. Gorlin-Goltz syndrome is about multisystem process comprising the triad of basal cell nevi, jaw keratocysts, and skeletal anomalies. A spectrum of other neurological, ophthalmic, endocrine and genital manifestations is known to be variably associated with this triad. Diagnosis of the syndrome is based on major and minor criteria. Conclusion. This paper emphasizes the importance of oral and maxillofacial health professionals in the early diagnosis of nevoid basal cell carcinoma syndrome and in a preventive multidisciplinary approach to provide a better prognosis to the patient. PMID:23050170
NASA Technical Reports Server (NTRS)
Stern, John A.
1988-01-01
The study of probe event related potentials (probe ERPs) is reviewed. Several recent experiments are described which seem to leave in doubt the usefulness of applying ERP to simulation and field conditions as well as laboratory situations. Relatively minor changes in the experimental paradigm can produce major shifts in ERP findings, for reasons that are not clear. However, task-elicited ERPs might be used on a flight simulator if the experimenter takes time of arrival of the eyes on a particular instrument as one variable of concern and dwell time on the instrument as a second variable. One can then look at ERPs triggered by saccade termination for fixation pauses of specified durations. It may well be that ERP to a momentarily important display will differ from that elicited by routine instrument check.
NASA Astrophysics Data System (ADS)
Shankar Kumar, Ravi; Goswami, A.
2015-06-01
The article scrutinises the learning effect of the unit production time on optimal lot size for the uncertain and imprecise imperfect production process, wherein shortages are permissible and partially backlogged. Contextually, we contemplate the fuzzy chance of production process shifting from an 'in-control' state to an 'out-of-control' state and re-work facility of imperfect quality of produced items. The elapsed time until the process shifts is considered as a fuzzy random variable, and consequently, fuzzy random total cost per unit time is derived. Fuzzy expectation and signed distance method are used to transform the fuzzy random cost function into an equivalent crisp function. The results are illustrated with the help of numerical example. Finally, sensitivity analysis of the optimal solution with respect to major parameters is carried out.
Complexity Variability Assessment of Nonlinear Time-Varying Cardiovascular Control
NASA Astrophysics Data System (ADS)
Valenza, Gaetano; Citi, Luca; Garcia, Ronald G.; Taylor, Jessica Noggle; Toschi, Nicola; Barbieri, Riccardo
2017-02-01
The application of complex systems theory to physiology and medicine has provided meaningful information about the nonlinear aspects underlying the dynamics of a wide range of biological processes and their disease-related aberrations. However, no studies have investigated whether meaningful information can be extracted by quantifying second-order moments of time-varying cardiovascular complexity. To this extent, we introduce a novel mathematical framework termed complexity variability, in which the variance of instantaneous Lyapunov spectra estimated over time serves as a reference quantifier. We apply the proposed methodology to four exemplary studies involving disorders which stem from cardiology, neurology and psychiatry: Congestive Heart Failure (CHF), Major Depression Disorder (MDD), Parkinson’s Disease (PD), and Post-Traumatic Stress Disorder (PTSD) patients with insomnia under a yoga training regime. We show that complexity assessments derived from simple time-averaging are not able to discern pathology-related changes in autonomic control, and we demonstrate that between-group differences in measures of complexity variability are consistent across pathologies. Pathological states such as CHF, MDD, and PD are associated with an increased complexity variability when compared to healthy controls, whereas wellbeing derived from yoga in PTSD is associated with lower time-variance of complexity.
Metal stable isotopes in weathering and hydrology: Chapter 10
Bullen, Thomas D.; Holland, Heinrich; Turekian, K.
2014-01-01
This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.
Garcia, A.M.; Hoos, A.B.; Terziotti, S.
2011-01-01
We applied the SPARROW model to estimate phosphorus transport from catchments to stream reaches and subsequent delivery to major receiving water bodies in the Southeastern United States (U.S.). We show that six source variables and five land-to-water transport variables are significant (p<0.05) in explaining 67% of the variability in long-term log-transformed mean annual phosphorus yields. Three land-to-water variables are a subset of landscape characteristics that have been used as transport factors in phosphorus indices developed by state agencies and are identified through experimental research as influencing land-to-water phosphorus transport at field and plot scales. Two land-to-water variables - soil organic matter and soil pH - are associated with phosphorus sorption, a significant finding given that most state-developed phosphorus indices do not explicitly contain variables for sorption processes. Our findings for Southeastern U.S. streams emphasize the importance of accounting for phosphorus present in the soil profile to predict attainable instream water quality. Regional estimates of phosphorus associated with soil-parent rock were highly significant in explaining instream phosphorus yield variability. Model predictions associate 31% of phosphorus delivered to receiving water bodies to geology and the highest total phosphorus yields in the Southeast were catchments with already high background levels that have been impacted by human activity. ?? 2011 American Water Resources Association. This article is a US Government work and is in the public domain in the USA.
Design for the automation of composite wind turbine blade manufacture
NASA Astrophysics Data System (ADS)
Polcari, M. J.; White, K. D.; Sherwood, J. A.
2016-10-01
The majority of large wind turbine blades are manufactured from textile-reinforced resin-infused composites using an open mold. The placement of the textile reinforcements in the mold is traditionally accomplished by a manual process where dozens of workers hand place each dry fabric in the mold. Depending on the level of skill and experience of each worker and the relative complexity of the mold geometry, local areas may exhibit out-of-plane wrinkling and in-plane waviness. Fabric imperfections such as these can adversely impact the strength and stiffness of the blade, thereby compromising its durability in service. In an effort to reduce the variabilities associated with a manual-labor process, an automated piecewise shifting method has been proposed for fabric placement. This automated layup method saves time on the preform process and reduces variability from blade to blade. In the current research the automated shifting layup method is investigated using a robust and easy-to-use finite element modelling approach. User-defined material models utilizing a mesoscopic unit-cell modeling approach are linked with Abaqus to capture the evolution of the fabric shear stiffness and changes in the fiber orientations during the fabric-placement process. The simulation approach is demonstrated for the geometry of the trailing edge of a typical wind turbine blade. The simulation considers the mechanical behavior of the fabric and reliably predicts fabric deformation and failure zones.
NASA Technical Reports Server (NTRS)
Takeda, Hiroshi; Mori, Hiroshi; Hiroi, Takahiro; Saito, Jun
1994-01-01
We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.
Variability of hazardous air pollutants in an urban area
NASA Astrophysics Data System (ADS)
Spicer, Chester W.; Buxton, Bruce E.; Holdren, Michael W.; Smith, Deborah L.; Kelly, Thomas J.; Rust, Steven W.; Pate, Alan D.; Sverdrup, George M.; Chuang, Jane C.
The variability of hazardous air pollutants (HAPs) is an important factor in determining human exposure to such chemicals, and in designing HAP measurement programs. This study has investigated the factors which contribute to HAP variability in an urban area. Six measurement sites separated by up to 12 km collected data with 3 h time resolution to examine spatial variability within neighborhoods and between neighborhoods. The measurements were made in Columbus, OH. The 3 h results also were used to study temporal variability, and duplicate samples collected at each site were used to determine the component of variability attributable to the measurement process. Hourly samples collected over 10 days at one site provided further insight into the temporal resolution needed to capture short-term peak concentrations. Measurements at the 6 spatial sites focused on 78 chemicals. Twenty-three of these species were found in at least 95% of the 3 h samples, and 39 chemicals were present at least 60% of the time. The relative standard deviations for most of these 39 frequently detected chemicals was 1.0 or lower. Variability was segmented into temporal, spatial, and measurement components. Temporal variation was the major contributor to HAP variability for 19 of the 39 frequently detected compounds, based on the 3 h data. Measurement imprecision contributed less than 25% for most of the volatile organic species, but 30% or more of the variability for carbonyl compounds, trace elements, and particle-bound extractable organic mass. Interestingly, the spatial component contributed less than 20% of the total variability for all the chemicals except sulfur. Based on the data with hourly resolution, peak to median ratios (hourly peak to 24 h median) averaged between 2 and 4 for most of the volatile organic compounds, but there were two species with peak to median ratios of about 10.
Relationship between the kinetic energy budget and intensity of convection. [in atmosphere
NASA Technical Reports Server (NTRS)
Fuelberg, H. E.; Scoggins, J. R.
1977-01-01
Synoptic data collected over the eastern United States during the fourth Atmospheric Variability Experiment, April 24 and 25, 1975, is used to study the relationship between the kinetic energy budget and the intensity of convective activity. It is found that areas of intense convective activity are also major centers of kinetic energy activity. Energy processes increase in magnitude with an increase in convection intensity. Large generation of kinetic energy is associated with intense convection, but large quantities of energy are transported out of the area of convection. The kinetic energy budget associated with grid points having no convection differs greatly from the budgets of the three categories of convection. Weak energy processes are not associated with convection.
Understanding extreme quasar optical variability with CRTS - I. Major AGN flares
NASA Astrophysics Data System (ADS)
Graham, Matthew J.; Djorgovski, S. G.; Drake, Andrew J.; Stern, Daniel; Mahabal, Ashish A.; Glikman, Eilat; Larson, Steve; Christensen, Eric
2017-10-01
There is a large degree of variety in the optical variability of quasars and it is unclear whether this is all attributable to a single (set of) physical mechanism(s). We present the results of a systematic search for major flares in active galactic nucleus (AGN) in the Catalina Real-time Transient Survey as part of a broader study into extreme quasar variability. Such flares are defined in a quantitative manner as being atop of the normal, stochastic variability of quasars. We have identified 51 events from over 900 000 known quasars and high-probability quasar candidates, typically lasting 900 d and with a median peak amplitude of Δm = 1.25 mag. Characterizing the flare profile with a Weibull distribution, we find that nine of the sources are well described by a single-point single-lens model. This supports the proposal by Lawrence et al. that microlensing is a plausible physical mechanism for extreme variability. However, we attribute the majority of our events to explosive stellar-related activity in the accretion disc: superluminous supernovae, tidal disruption events and mergers of stellar mass black holes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annamalai, H.
The overall goal of this project is to assess the ability of the CMIP3/5 models to simulate the Indian-Ocean monsoon systems. The PI along with post-docs investigated research issues ranging from synoptic systems to long-term trends over the Asian monsoon region. The PI applied diagnostic tools such as moist static energy (MSE) to isolate: the moist and radiative processes responsible for extended monsoon breaks over South Asia, precursors in the ENSO-monsoon association, reasons for the drying tendency over South Asia and the possible effect on tropical Indian Ocean climate anomalies influencing certain aspects of ENSO characteristics. By diagnosing various observationsmore » and coupled model simulations, we developed working hypothesis and tested them by carrying out sensitivity experiments with both linear and nonlinear models. Possible physical and dynamical reasons for model sensitivities were deduced. On the teleconnection front, the ability of CMIP5 models in representing the monsoon-desert mechanism was examined recently. Further more, we have applied a suite of diagnostics and have performed an in depth analysis on CMIP5 integrations to isolate the possible reasons for the ENSO-monsoon linkage or lack thereof. The PI has collaborated with Dr. K.R. Sperber of PCMDI and other CLIVAR Asian-Australian monsoon panel members in understanding the ability of CMIP3/5 models in capturing monsoon and its spectrum of variability. The objective and process-based diagnostics aided in selecting models that best represent the present-day monsoon and its variability that are then employed for future projections. Two major highlights were an invitation to write a review on present understanding monsoons in a changing climate in Nature Climate Change, and identification of an east-west shift in observed monsoon rainfall (more rainfall over tropical western Pacific and drying tendency over South Asia) in the last six decades and attributing that shift to SST rise over the tropical western Pacific. On the training of post-doctoral scientists: the PI spent considerable amount of time and efforts in introducing the post-docs into climate modeling and designing the numerical experiments. With training provided and knowledge gained, post-docs worked in the project obtained long term positions elsewhere. The PI also enjoyed the experience in managing the works and educating work ethics to the younger generation. Based on the research achievements and publications, the PI gave invited talks in major international monsoon conferences/workshops, and gave lectures in various research organizations in the last six years. Finally, during the project period, the PI attended all the DOE organized PIs meeting and presented the major results. Some of the major implications of the project include: (i) Sustained observational efforts are necessary to monitor the three-dimensional moisture distribution over the Asian monsoon region that would aid in better understanding, modeling and predicting severe monsoons well in advance and (ii) process-based diagnostics lead pathways for model improvements.« less
NASA Technical Reports Server (NTRS)
Starr, D. OC. (Editor); Melfi, S. Harvey (Editor)
1991-01-01
The proposed GEWEX Water Vapor Project (GVaP) addresses fundamental deficiencies in the present understanding of moist atmospheric processes and the role of water vapor in the global hydrologic cycle and climate. Inadequate knowledge of the distribution of atmospheric water vapor and its transport is a major impediment to progress in achieving a fuller understanding of various hydrologic processes and a capability for reliable assessment of potential climatic change on global and regional scales. GVap will promote significant improvements in knowledge of atmospheric water vapor and moist processes as well as in present capabilities to model these processes on global and regional scales. GVaP complements a number of ongoing and planned programs focused on various aspects of the hydrologic cycle. The goal of GVaP is to improve understanding of the role of water vapor in meteorological, hydrological, and climatological processes through improved knowledge of water vapor and its variability on all scales. A detailed description of the GVaP is presented.
NASA Astrophysics Data System (ADS)
Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.
2016-12-01
Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.
Ferguson, Lynnette R; Smith, Bronwen G; James, Bryony J
2010-10-01
The Inflammatory bowel diseases, Crohn's disease and ulcerative colitis, are debilitating conditions, characterised by lifelong sensitivity to certain foods, and often a need for surgery and life-long medication. The anti-inflammatory effects of long chain omega-3 polyunsaturated acids justify their inclusion in enteral nutrition formulas that have been associated with disease remission. However, there have been variable data in clinical trials to test supplementary omega-3 polyunsaturated fatty acids in inducing or maintaining remission in these diseases. Although variability in trial design has been suggested as a major factor, we suggest that variability in processing and presentation of the products may be equally or more important. The nature of the source, and rapidity of getting the fish or other food source to processing or to market, will affect the percentage of the various fatty acids, possible presence of heavy metal contaminants and oxidation status of the various fatty acids. For dietary supplements or fortified foods, whether the product is encapsulated or not, whether storage is under nitrogen or not, and length of time between harvest, processing and marketing will again profoundly affect the properties of the final product. Clinical trials to test efficacy of these products in IBD to date have utilised the relevant skills of pharmacology and gastroenterology. We suggest that knowledge from food science, nutrition and engineering will be essential to establish the true role of this important group of compounds in these diseases. This journal is © The Royal Society of Chemistry 2010
Parametric Evaluation of Interstellar Exploration Mission Concepts
NASA Technical Reports Server (NTRS)
Adams, Robert B.
2017-01-01
One persistent difficulty in evaluating the myriad advanced propulsion concepts proposed over the last 60 years is a true apples to apples comparison of the expected gain in performance. This analysis is complicated by numerous factors including, multiple missions of interest to the advanced propulsion community, the lack of a credible closed form solution to 'medium thrust' trajectories, and lack of detailed design data for most proposed concepts that lend credibility to engine performance estimates. This paper describes a process on how to make fair comparisons of different propulsion concepts for multiple missions over a wide range of performance values. The figure below illustrates this process. This paper describes in detail the process and outlines the status so far in compiling the required data. Parametric data for several missions are calculated and plotted against specific power-specific impulse scatter plots of expected propulsion system performance. The overlay between required performance as defined by the trajectory parametrics and expected performance as defined in the literature for major categories of propulsion systems clearly defines which propulsion systems are the most apt for a given mission. The application of the Buckingham Pi theorem to general parameters for interstellar exploration ( mission time, mass, specific impulse, specific power, distance, propulsion source energy/mass, etc.) yields a number of dimensionless variables. The relationships of these variables can then be explored before application to a particular mission. Like in the fields of fluid mechanics and heat transfer, the use of the Buckingham Pi theorem results in new variables to make apples to apples comparisons.
Geometry and material choices govern hard-rock drilling performance of PDC drag cutters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wise, Jack LeRoy
2005-06-01
Sandia National Laboratories has partnered with industry on a multifaceted, baseline experimental study that supports the development of improved drag cutters for advanced drill bits. Different nonstandard cutter lots were produced and subjected to laboratory tests that evaluated the influence of selected design and processing parameters on cutter loads, wear, and durability pertinent to the penetration of hard rock with mechanical properties representative of formations encountered in geothermal or deep oil/gas drilling environments. The focus was on cutters incorporating ultrahard PDC (polycrystalline diamond compact) overlays (i.e., diamond tables) on tungsten-carbide substrates. Parameter variations included changes in cutter geometry, material composition,more » and processing conditions. Geometric variables were the diamond-table thickness, the cutting-edge profile, and the PDC/substrate interface configuration. Material and processing variables for the diamond table were, respectively, the diamond particle size and the sintering pressure applied during cutter fabrication. Complementary drop-impact, granite-log abrasion, linear cutting-force, and rotary-drilling tests examined the response of cutters from each lot. Substantial changes in behavior were observed from lot to lot, allowing the identification of features contributing major (factor of 10+) improvements in cutting performance for hard-rock applications. Recent field demonstrations highlight the advantages of employing enhanced cutter technology during challenging drilling operations.« less
Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L
2012-07-17
Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.
NASA Astrophysics Data System (ADS)
Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi
2018-05-01
Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.
Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang
2017-01-01
To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859
Process for applying control variables having fractal structures
Bullock, IV, Jonathan S.; Lawson, Roger L.
1996-01-01
A process and apparatus for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform.
Process for applying control variables having fractal structures
Bullock, J.S. IV; Lawson, R.L.
1996-01-23
A process and apparatus are disclosed for the application of a control variable having a fractal structure to a body or process. The process of the present invention comprises the steps of generating a control variable having a fractal structure and applying the control variable to a body or process reacting in accordance with the control variable. The process is applicable to electroforming where first, second and successive pulsed-currents are applied to cause the deposition of material onto a substrate, such that the first pulsed-current, the second pulsed-current, and successive pulsed currents form a fractal pulsed-current waveform. 3 figs.
Bioactive lipids in the butter production chain from Parmigiano Reggiano cheese area.
Verardo, Vito; Gómez-Caravaca, Ana M; Gori, Alessandro; Losi, Giuseppe; Caboni, Maria F
2013-11-01
Bovine milk contains hundreds of diverse components, including proteins, peptides, amino acids, lipids, lactose, vitamins and minerals. Specifically, the lipid composition is influenced by different variables such as breed, feed and technological process. In this study the fatty acid and phospholipid compositions of different samples of butter and its by-products from the Parmigiano Reggiano cheese area, produced by industrial and traditional churning processes, were determined. The fatty acid composition of samples manufactured by the traditional method showed higher levels of monounsaturated and polyunsaturated fatty acids compared with industrial samples. In particular, the contents of n-3 fatty acids and conjugated linoleic acids were higher in samples produced by the traditional method than in samples produced industrially. Sample phospholipid composition also varied between the two technological processes. Phosphatidylethanolamine was the major phospholipid in cream, butter and buttermilk samples obtained by the industrial process as well as in cream and buttermilk samples from the traditional process, while phosphatidylcholine was the major phospholipid in traditionally produced butter. This result may be explained by the different churning processes causing different types of membrane disruption. Generally, samples produced traditionally had higher contents of total phospholipids; in particular, butter produced by the traditional method had a total phospholipid content 33% higher than that of industrially produced butter. The samples studied represent the two types of products present in the Parmigiano Reggiano cheese area, where the industrial churning process is widespread compared with the traditional processing of Reggiana cow's milk. This is because Reggiana cow's milk production is lower than that of other breeds and the traditional churning process is time-consuming and economically disadvantageous. However, its products have been demonstrated to contain more bioactive lipids compared with products obtained from other breeds and by the industrial process. © 2013 Society of Chemical Industry.
Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting
2018-04-01
The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.
Groundwater Quality: Analysis of Its Temporal and Spatial Variability in a Karst Aquifer.
Pacheco Castro, Roger; Pacheco Ávila, Julia; Ye, Ming; Cabrera Sansores, Armando
2018-01-01
This study develops an approach based on hierarchical cluster analysis for investigating the spatial and temporal variation of water quality governing processes. The water quality data used in this study were collected in the karst aquifer of Yucatan, Mexico, the only source of drinking water for a population of nearly two million people. Hierarchical cluster analysis was applied to the quality data of all the sampling periods lumped together. This was motivated by the observation that, if water quality does not vary significantly in time, two samples from the same sampling site will belong to the same cluster. The resulting distribution maps of clusters and box-plots of the major chemical components reveal the spatial and temporal variability of groundwater quality. Principal component analysis was used to verify the results of cluster analysis and to derive the variables that explained most of the variation of the groundwater quality data. Results of this work increase the knowledge about how precipitation and human contamination impact groundwater quality in Yucatan. Spatial variability of groundwater quality in the study area is caused by: a) seawater intrusion and groundwater rich in sulfates at the west and in the coast, b) water rock interactions and the average annual precipitation at the middle and east zones respectively, and c) human contamination present in two localized zones. Changes in the amount and distribution of precipitation cause temporal variation by diluting groundwater in the aquifer. This approach allows to analyze the variation of groundwater quality controlling processes efficiently and simultaneously. © 2017, National Ground Water Association.
AVHRR channel selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.
Regional contribution to variability and trends of global gross primary productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117±13 Pg C yr-1 (mean ± 1 standard deviation), whichmore » was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.« less
Regional contribution to variability and trends of global gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.; Bond-Lamberty, Ben; Ciais, Philippe; Zhao, Fang; Reyer, Christopher P. O.; Ostberg, Sebastian; Chang, Jinfeng; Ito, Akihiko; Yang, Jia; Zeng, Ning; Kalnay, Eugenia; West, Tristram; Leng, Guoyong; Francois, Louis; Munhoven, Guy; Henrot, Alexandra; Tian, Hanqin; Pan, Shufen; Nishina, Kazuya; Viovy, Nicolas; Morfopoulos, Catherine; Betts, Richard; Schaphoff, Sibyll; Steinkamp, Jörg; Hickler, Thomas
2017-10-01
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr-1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.
Cornelissen, Pieter A; Van Hoof, Joris J; De Jong, Menno D T
2017-09-01
In spite of increasing governmental and organizational efforts, organizations still struggle to improve the safety of their employees as evidenced by the yearly 2.3 million work-related deaths worldwide. Occupational safety research is scattered and inaccessible, especially for practitioners. Through systematically reviewing the safety literature, this study aims to provide a comprehensive overview of behavioral and circumstantial factors that endanger or support employee safety. A broad search on occupational safety literature using four online bibliographical databases yielded 27.527 articles. Through a systematic reviewing process 176 online articles were identified that met the inclusion criteria (e.g., original peer-reviewed research; conducted in selected high-risk industries; published between 1980-2016). Variables and the nature of their interrelationships (i.e., positive, negative, or nonsignificant) were extracted, and then grouped and classified through a process of bottom-up coding. The results indicate that safety outcomes and performance prevail as dependent research areas, dependent on variables related to management & colleagues, work(place) characteristics & circumstances, employee demographics, climate & culture, and external factors. Consensus was found for five variables related to safety outcomes and seven variables related to performance, while there is debate about 31 other relationships. Last, 21 variables related to safety outcomes and performance appear understudied. The majority of safety research has focused on addressing negative safety outcomes and performance through variables related to others within the organization, the work(place) itself, employee demographics, and-to a lesser extent-climate & culture and external factors. This systematic literature review provides both scientists and safety practitioners an overview of the (under)studied behavioral and circumstantial factors related to occupational safety behavior. Scientists could use this overview to study gaps, and validate or falsify relationships. Safety practitioners could use the insights to evaluate organizational safety policies, and to further development of safety interventions. Copyright © 2017 National Safety Council and Elsevier Ltd. All rights reserved.
Understanding levels of best practice: An empirical validation.
Phan, Huy P; Ngu, Bing H; Wang, Hui-Wen; Shih, Jen-Hwa; Shi, Sheng-Ying; Lin, Ruey-Yih
2018-01-01
Recent research has explored the nature of the theoretical concept of optimal best practice, which emphasizes the importance of personal resolve, inner strength, and the maximization of a person's development, whether it is mental, cognitive, social, or physical. In the context of academia, the study of optimal functioning places emphasis on a student's effort expenditure, positive outlook, and determination to strive for educational success and enriched subjective well-being. One major inquiry closely associated with optimal functioning is the process of optimization. Optimization, in brief, delves into the enactment of different psychological variables that could improve a person's internal state of functioning (e.g., cognitive functioning). From a social sciences point of view, very little empirical evidence exists to affirm and explain a person's achievement of optimal best practice. Over the past five years, we have made extensive progress in the area of optimal best practice by developing different quantitative measures to assess and evaluate the importance of this theoretical concept. The present study, which we collaborated with colleagues in Taiwan, involved the use of structural equation modeling (SEM) to analyze a cohort of Taiwanese university students' (N = 1010) responses to a series of Likert-scale measures that focused on three major entities: (i) the importance of optimal best practice, (ii) three major psychological variables (i.e., effective functioning, personal resolve, and emotional functioning) that could optimize student' optimal best levels in academic learning, and (iii) three comparable educational outcomes (i.e., motivation towards academic learning, interest in academic learning, and academic liking experience) that could positively associate with optimal best practice and the three mentioned psychological variables. Findings that we obtained, overall, fully supported our initial a priori model. This evidence, in its totality, has made substantive practical, theoretical, and methodological contributions. Foremost, from our point of view, is clarity into the psychological process of optimal best practice in the context of schooling. For example, in relation to subjective well-being experiences, how can educators optimize students' positive emotions? More importantly, aside from practical relevance, our affirmed research inquiry has produced insightful information for further advancement. One distinction, in this case, entails consideration of a more complex methodological design that could measure, assess, and evaluate the impact of optimization.
Understanding levels of best practice: An empirical validation
Wang, Hui-Wen; Shih, Jen-Hwa; Shi, Sheng-Ying; Lin, Ruey-Yih
2018-01-01
Recent research has explored the nature of the theoretical concept of optimal best practice, which emphasizes the importance of personal resolve, inner strength, and the maximization of a person’s development, whether it is mental, cognitive, social, or physical. In the context of academia, the study of optimal functioning places emphasis on a student’s effort expenditure, positive outlook, and determination to strive for educational success and enriched subjective well-being. One major inquiry closely associated with optimal functioning is the process of optimization. Optimization, in brief, delves into the enactment of different psychological variables that could improve a person’s internal state of functioning (e.g., cognitive functioning). From a social sciences point of view, very little empirical evidence exists to affirm and explain a person’s achievement of optimal best practice. Over the past five years, we have made extensive progress in the area of optimal best practice by developing different quantitative measures to assess and evaluate the importance of this theoretical concept. The present study, which we collaborated with colleagues in Taiwan, involved the use of structural equation modeling (SEM) to analyze a cohort of Taiwanese university students’ (N = 1010) responses to a series of Likert-scale measures that focused on three major entities: (i) the importance of optimal best practice, (ii) three major psychological variables (i.e., effective functioning, personal resolve, and emotional functioning) that could optimize student’ optimal best levels in academic learning, and (iii) three comparable educational outcomes (i.e., motivation towards academic learning, interest in academic learning, and academic liking experience) that could positively associate with optimal best practice and the three mentioned psychological variables. Findings that we obtained, overall, fully supported our initial a priori model. This evidence, in its totality, has made substantive practical, theoretical, and methodological contributions. Foremost, from our point of view, is clarity into the psychological process of optimal best practice in the context of schooling. For example, in relation to subjective well-being experiences, how can educators optimize students’ positive emotions? More importantly, aside from practical relevance, our affirmed research inquiry has produced insightful information for further advancement. One distinction, in this case, entails consideration of a more complex methodological design that could measure, assess, and evaluate the impact of optimization. PMID:29902278
NASA Astrophysics Data System (ADS)
Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David
2013-04-01
As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control air-sea CO2 fluxes and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of air-sea CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of air-sea CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and SeaWiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and air-sea flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.
Liang, Shih-Hsiung; Walther, Bruno Andreas; Shieh, Bao-Sen
2017-01-01
Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies.
Liang, Shih-Hsiung; Walther, Bruno Andreas
2017-01-01
Background Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. Methods We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. Results The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Discussion Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies. PMID:28316893
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
Changes in heart rate variability during TOVA testing in patients with major depressive disorder.
Shen, Tsu-Wang; Liu, Fang-Chih; Chen, Shaw-Ji; Chen, Shao-Tsu
2013-01-01
The aim of this study was to identify major depressive disorder (MDD) based on heart rate variability (HRV) during tests of variables of attention (TOVA). Forty-five MDD patients without cardiovascular disease and 45 controls matched by age and gender participated in this study. Compared to the controls, the MDD group had lower resting HRV parameters, more omissions and variability and longer response times on TOVA, and failure of attention employment to decrease HRV. The resting HRV parameters may provide easily measured, clinically useful ways to identify patients with MDD and to monitor their progress in treatment. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
USDA-ARS?s Scientific Manuscript database
Background The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or ...
ERIC Educational Resources Information Center
O'Cleirigh, Conall; Ironson, Gail; Smits, Jasper A. J.
2007-01-01
Living with HIV involves management of multiple stressful disease-related and other life events. Distress tolerance may provide a functional, individual-based context for qualifying the established relationships between major life events and psychosocial variables important in the management of HIV. The present study provided a preliminary test of…
Ou-Yang, Chang-Feng; Chang, Chih-Chung; Chen, Shen-Po; Chew, Clock; Lee, Bo-Ru; Chang, Chih-Yuan; Montzka, Stephen A; Dutton, Geoffrey S; Butler, James H; Elkins, James W; Wang, Jia-Lin
2015-11-01
Ambient levels and variability of major atmospheric halocarbons, i.e. CFC-12, CFC-11, CFC-113, CCl4, CH3CCl3, C2HCl3, and C2Cl4 in a major metropolis (Taipei, Taiwan) were re-investigated after fourteen years by flask sampling in 2012. Our data indicates that the variability expressed as standard deviations (SD) of CFC-113 and CCl4 remained small (2.0 ppt and 1.9 ppt, respectively) for the 10th-90th percentile range in both sampling periods; whereas the variability of CFC-12, CFC-11, C2HCl3, and C2Cl4 measured in 2012 became noticeably smaller than observed in 1998, suggesting their emissions were reduced over time. By comparing with the background data of a global network (NOAA/ESRL/GMD baseline observatories), the ambient levels and distribution of these major halocarbons in Taipei approximated those at a background site (Mauna Loa) in 2012, suggesting that the fingerprint of the major halocarbons in a used-to-be prominent source area has gradually approached to that of the background atmosphere. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCabe-Glynn, S. E.; Johnson, K. R.; Yoshimura, K.; Buenning, N. H.; Welker, J. M.
2015-12-01
Extreme precipitation events across the Western US commonly associated with atmospheric rivers (ARs), whereby extensive fluxes of moisture are transported from the subtropics, can result in major damage and are projected by most climate models to increase in frequency and severity. However, they are difficult to project beyond ~ten days and the location of landfall and topographically induced precipitation is even more uncertain. Water isotopes, often used to reconstruct past rainfall variability, are useful natural tracers of atmospheric hydrologic processes. Because of the typical tropical and sub-tropical origins, ARs can carry unique water isotope (δ18O and δ2H, d-excess) signatures that can be utilized to provide source and process information that can lead to improving AR predictions. Recent analysis of the top 10 weekly precipitation total samples from Sequoia National Park, CA, of which 9 contained AR events, shows a high variability in the isotopic values. NOAA Hysplit back trajectory analyses reveals a variety of trajectories and varying latitudinal source regions contributed to moisture delivered to this site, which may explain part of the high variability (δ2H = -150.03 to -49.52 ‰, δ18O = -19.27 to -7.20 ‰, d-excess = 4.1 to 25.8). Here we examine the top precipitation totals occurring during AR events and the associated isotopic composition of precipitation samples from several sites across the Western US. We utilize IsoGSM, an isotope-enabled atmospheric general circulation model, to characterize the hydrologic processes and physical dynamics contributing to the observed isotopic variations. We investigate isotopic influences from moisture source location, AR speed, condensation height, and associated temperature. We explore the dominant controls on spatial and temporal variations of the isotopic composition of AR precipitation which highlights different physical processes for different AR events.
Hot mill process parameters impacting on hot mill tertiary scale formation
NASA Astrophysics Data System (ADS)
Kennedy, Jonathan Ian
For high end steel applications surface quality is paramount to deliver a suitable product. A major cause of surface quality issues is from the formation of tertiary scale. The scale formation depends on numerous factors such as thermo-mechanical processing routes, chemical composition, thickness and rolls used. This thesis utilises a collection of data mining techniques to better understand the influence of Hot Mill process parameters on scale formation at Port Talbot Hot Strip Mill in South Wales. The dataset to which these data mining techniques were applied was carefully chosen to reduce process variation. There are several main factors that were considered to minimise this variability including time period, grade and gauge investigated. The following data mining techniques were chosen to investigate this dataset: Partial Least Squares (PLS); Logit Analysis; Principle Component Analysis (PCA); Multinomial Logistical Regression (MLR); Adaptive Neuro Inference Fuzzy Systems (ANFIS). The analysis indicated that the most significant variable for scale formation is the temperature entering the finishing mill. If the temperature is controlled on entering the finishing mill scale will not be formed. Values greater than 1070 °C for the average Roughing Mill and above 1050 °C for the average Crop Shear temperature are considered high, with values greater than this increasing the chance of scale formation. As the temperature increases more scale suppression measures are required to limit scale formation, with high temperatures more likely to generate a greater amount of scale even with fully functional scale suppression systems in place. Chemistry is also a significant factor in scale formation, with Phosphorus being the most significant of the chemistry variables. It is recommended that the chemistry specification for Phosphorus be limited to a maximum value of 0.015 % rather than 0.020 % to limit scale formation. Slabs with higher values should be treated with particular care when being processed through the Hot Mill to limit scale formation.
An ecohydrologic model for a shallow groundwater urban environment.
Arden, Sam; Ma, Xin Cissy; Brown, Mark
2014-01-01
The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration is a major hydrologic flow that is often altered through urbanization, although the mechanisms of change are sometimes difficult to tease out due to difficulty in effectively simulating soil-plant-atmosphere interactions. This paper introduces a simplified yet realistic model that is a combination of existing surface runoff and ecohydrology models designed to increase the quantitative understanding of complex urban hydrologic processes. Results demonstrate that the model is capable of simulating the long-term variability of major hydrologic fluxes as a function of impervious surface, temperature, water table elevation, canopy interception, soil characteristics, precipitation and complex mechanisms of plant water uptake. These understandings have potential implications for holistic urban water system management.
NASA Astrophysics Data System (ADS)
Tisseyre, Bruno
2015-04-01
For more than 15 years, research projects are conducted in the precision viticulture (PV) area around the world. These research projects have provided new insights into the within-field variability in viticulture. Indeed, access to high spatial resolution data (remote sensing, embedded sensors, etc.) changes the knowledge we have of the fields in viticulture. In particular, the field which was until now considered as a homogeneous management unit, presents actually a high spatial variability in terms of yield, vigour an quality. This knowledge will lead (and is already causing) changes on how to manage the vineyard and the quality of the harvest at the within field scale. From the experimental results obtained in various countries of the world, the goal of the presentation is to provide figures on: - the spatial variability of the main parameters (yield, vigor, quality), and how this variability is organized spatially, - the temporal stability of the observed spatial variability and the potential link with environmental parameters like soil, topography, soil water availability, etc. - information sources available at a high spatial resolution conventionally used in precision agriculture likely to highlight this spatial variability (multi-spectral images, soil electrical conductivity, etc.) and the limitations that these information sources are likely to present in viticulture. Several strategies are currently being developed to take into account the within field variability in viticulture. They are based on the development of specific equipments, sensors, actuators and site specific strategies with the aim of adapting the vineyard operations at the within-field level. These strategies will be presented briefly in two ways : - Site specific operations (fertilization, pruning, thinning, irrigation, etc.) in order to counteract the effects of the environment and to obtain a final product with a controlled and consistent wine quality, - Differential harvesting with the objective to take advantage of the observed spatial variability to produce different quality of wines. These later approach tends to produce very different quality wines which will be blended to control the final quality and/or marketed differently. These applications show that the environment and its spatial variability can be valued with the goal of controlling the final quality of the wine produced. Technologies to characterize the spatial variability of vine fields are currently in rapid evolution. They will significantly impact production methods and management strategies of the vineyard. In its last part, the presentation will summarize the technologies likely to impact the knowledge and the vineyard management either at the field level, at the vineyard level or at the regional level. A brief overview of the needs in terms of information processing will be also performed. A reflection on the difficulties that might limit the adoption of precision viticulture technologies (PV) will be done. Indeed, although very informative, PV entails high costs of information acquisition and data processing. Cost is one of the major obstacles to the dissemination of these tools and services to the majority of wine producers. In this context, the pooling of investments is a choke point to make the VP accessible to the highest number of growers. Thus, to be adopted, the VP will necessarily satisfy the operational requirements at the field level, but also throughout the whole production area (at the regional level). This working scale raises new scientific questions to be addressed.
Water management to cope with and adapt to climate variability and change.
NASA Astrophysics Data System (ADS)
Hamdy, A.; Trisorio-Liuzzi, G.
2009-04-01
In many parts of the world, variability in climatic conditions is already resulting in major impacts. These impacts are wide ranging and the link to water management problems is obvious and profound. The know-how and the available information undoubtedly indicate that climate change will lead to an intensification of the global hydrological cycle and can have major impacts on regional water resources, affecting both ground and surface water supply for sectorial water uses and, in particular, the irrigation field imposing notable negative effects on food security and poverty alleviation programs in most arid and semi-arid developing countries. At the United Nations Millennium Summit, in September 2000, world leaders adopted the Millennium Development Declaration. From this declaration, the IWRM was recognised as the key concept the water sector should be using for water related development and measures and, hence, for achieving the water related MDG's. However, the potential impacts of climate change and increasing climate variability are not sufficiently addressed in the IWRM plans. Indeed, only a very limited IWRM national plans have been prepared, coping with climate variability and changes. This is mainly due to the lack of operational instruments to deal with climate change and climate variability issues. This is particularly true in developing countries where the financial, human and ecological impacts are potentially greatest and where water resources may be already highly stressed, but the capacity to cope and adapt is weakest. Climate change has now brought realities including mainly rising temperatures and increasing frequency of floods and droughts that present new challenges to be addressed by the IWRM practice. There are already several regional and international initiatives underway that focus on various aspects of water resources management those to be linked with climate changes and vulnerability issues. This is the way where the water resources management and climate scientist communities are engaged in a process for building confidence and understanding, identifying options and defining the water resources management strategies which to cope with impacts of climate variability and change.
Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins
Knight, Rodney R.; Gain, W. Scott; Wolfe, William J.
2012-01-01
Predictive equations were developed for 19 ecologically relevant streamflow characteristics within five major groups of flow variables (magnitude, ratio, frequency, variability, and date) for use in the Tennessee and Cumberland River basins using stepbackward regression. Basin characteristics explain 50% or more of the variation for 12 of the 19 equations. Independent variables identified through stepbackward regression were statistically significant in 78 of 304 cases (α > 0.0001) and represent four major groups: climate, physical landscape features, regional indicators, and land use. Of these groups, the regional and climate variables were the most influential for determining hydrologic response. Daily temperature range, geologic factor, and rock depth were major factors explaining the variability in 17, 15, and 13 equations, respectively. The equations and independent datasets were used to explore the broad relation between basin properties and streamflow and the implication of streamflow to the study of ecological flow requirements. Key results include a high degree of hydrologic variability among least disturbed Blue Ridge streams, similar hydrologic behaviour for watersheds with widely varying degrees of forest cover, and distinct hydrologic profiles for streams in different geographic regions. Published in 2011. This article is a US Government work and is in the public domain in the USA.
Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel
2017-01-01
Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943
Winter monsoon variability and its impact on aerosol concentrations in East Asia.
Jeong, Jaein I; Park, Rokjin J
2017-02-01
We investigate the relationship between winter aerosol concentrations over East Asia and variability in the East Asian winter monsoon (EAWM) using GEOS-Chem 3-D global chemical transport model simulations and ground-based aerosol concentration data. We find that both observed and modeled surface aerosol concentrations have strong relationships with the intensity of the EAWM over northern (30-50°N, 100-140°E) and southern (20-30°N, 100-140°E) East Asia. In strong winter monsoon years, compared to weak winter monsoon years, lower and higher surface PM 2.5 concentrations by up to 25% are shown over northern and southern East Asia, respectively. Analysis of the simulated results indicates that the southward transport of aerosols is a key process controlling changes in aerosol concentrations over East Asia associated with the EAWM. Variability in the EAWM is found to play a major role in interannual variations in aerosol concentrations; consequently, changes in the EAWM will be important for understanding future changes in wintertime air quality over East Asia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ring Current He Ion Control by Bounce Resonant ULF Waves
NASA Astrophysics Data System (ADS)
Kim, Hyomin; Gerrard, Andrew J.; Lanzerotti, Louis J.; Soto-Chavez, Rualdo; Cohen, Ross J.; Manweiler, Jerry W.
2017-12-01
Ring current energy He ion (˜65 keV to ˜520 keV) differential flux data from the Radiation Belt Storm Probe Ion Composition Experiment (RBSPICE) instrument aboard the Van Allan Probes spacecraft show considerable variability during quiet solar wind and geomagnetic time periods. Such variability is apparent from orbit to orbit (˜9 h) of the spacecraft and is observed to be ˜50-100% of the nominal flux. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument, also aboard the Van Allen Probes spacecraft, we identify that a dominant source of this variability is from ULF waveforms with periods of tens of seconds. These periods correspond to the bounce resonant timescales of the ring current He ions being measured by RBSPICE. A statistical survey using the particle and field data for one full spacecraft precession period (approximately 2 years) shows that the wave and He ion flux variations are generally anticorrelated, suggesting the bounce resonant pitch angle scattering process as a major component in the scattering of He ions.
Predicting Deforestation Patterns in Loreto, Peru from 2000-2010 Using a Nested GLM Approach
NASA Astrophysics Data System (ADS)
Vijay, V.; Jenkins, C.; Finer, M.; Pimm, S.
2013-12-01
Loreto is the largest province in Peru, covering about 370,000 km2. Because of its remote location in the Amazonian rainforest, it is also one of the most sparsely populated. Though a majority of the region remains covered by forest, deforestation is being driven by human encroachment through industrial activities and the spread of colonization and agriculture. The importance of accurate predictive modeling of deforestation has spawned an extensive body of literature on the topic. We present a nested GLM approach based on predictions of deforestation from 2000-2010 and using variables representing the expected drivers of deforestation. Models were constructed using 2000 to 2005 changes and tested against data for 2005 to 2010. The most complex model, which included transportation variables (roads and navigable rivers), spatial contagion processes, population centers and industrial activities, performed better in predicting the 2005 to 2010 changes (75.8% accurate) than did a simpler model using only transportation variables (69.2% accurate). Finally we contrast the GLM approach with a more complex spatially articulated model.
Budiman-Mak, Elly; Epstein, Noam; Brennan, Meghan; Stuck, Rodney; Guihan, Marylou; Huo, Zhiping; Emanuele, Nicholas; Sohn, Min-Woong
2016-04-01
Systolic blood pressure (SBP) variability is emerging as a new risk factor for cardiovascular diseases, diabetic nephropathy, and other atherosclerotic conditions. Our objective is to examine whether it has any prognostic value for lower-extremity amputations. This is a nested case-control study of a cohort of patients with diabetes aged<60 years and treated in the US Department of Veterans Healthcare system in 2003. They were followed over five years for any above-ankle (major) amputations. For each case with a major amputation (event), we randomly selected up to five matched controls based on age, sex, race/ethnicity, and calendar time. SBP variability was computed using three or more blood pressure measures taken during the one-year period before the event. Patients were classified into quartiles according to their SBP variability. The study sample included 1038 cases and 2932 controls. Compared to Quartile 1 (lowest variability), Quartile 2 had 1.4 times (OR=1.44, 95% CI=1.00-2.07) and Quartiles 3 and 4 (highest) had 2.5 times (OR for Quartile 3=2.62, 95% CI=1.85-3.72; OR for Quartile 4=2.50, 95% CI=1.74-3.59) higher risk of major amputation (P for trend<0.001). This gradient relationship held in both normotensive and hypertensive groups as well as for individuals without prior peripheral vascular disease. This is the first study to show a significant graded relationship between SBP variability and risk of major amputation among non-elderly persons with diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Barbagallo, Simone; Corradi, Luca; de Ville de Goyet, Jean; Iannucci, Marina; Porro, Ivan; Rosso, Nicola; Tanfani, Elena; Testi, Angela
2015-05-17
The Operating Room (OR) is a key resource of all major hospitals, but it also accounts for up 40% of resource costs. Improving cost effectiveness, while maintaining a quality of care, is a universal objective. These goals imply an optimization of planning and a scheduling of the activities involved. This is highly challenging due to the inherent variable and unpredictable nature of surgery. A Business Process Modeling Notation (BPMN 2.0) was used for the representation of the "OR Process" (being defined as the sequence of all of the elementary steps between "patient ready for surgery" to "patient operated upon") as a general pathway ("path"). The path was then both further standardized as much as possible and, at the same time, keeping all of the key-elements that would allow one to address or define the other steps of planning, and the inherent and wide variability in terms of patient specificity. The path was used to schedule OR activity, room-by-room, and day-by-day, feeding the process from a "waiting list database" and using a mathematical optimization model with the objective of ending up in an optimized planning. The OR process was defined with special attention paid to flows, timing and resource involvement. Standardization involved a dynamics operation and defined an expected operating time for each operation. The optimization model has been implemented and tested on real clinical data. The comparison of the results reported with the real data, shows that by using the optimization model, allows for the scheduling of about 30% more patients than in actual practice, as well as to better exploit the OR efficiency, increasing the average operating room utilization rate up to 20%. The optimization of OR activity planning is essential in order to manage the hospital's waiting list. Optimal planning is facilitated by defining the operation as a standard pathway where all variables are taken into account. By allowing a precise scheduling, it feeds the process of planning and, further up-stream, the management of a waiting list in an interactive and bi-directional dynamic process.
Rosenbaum, Daryl A; Mora, Dana C; Arcury, Thomas A; Chen, Haiying; Quandt, Sara A
2014-01-01
Between-employer differences in working conditions may lead to variable injury rates. The objective of this paper is to assess the difference in the prevalence of epicondylitis, rotator cuff syndrome, and low back pain among immigrant Latino poultry workers at plants of three different employers. Data were collected from a cross-sectional study among 286 poultry processing workers. Community-based sampling was used to recruit participants in western North Carolina. Rotator cuff syndrome (26.7%) and low back pain (27.9%) were more prevalent among employees of one specific employer. Multivariate analysis showed significant associations of low back pain and rotator cuff syndrome with age, task performed in the processing line, and employer. Employer is a major predictor of musculoskeletal disorders and pain. Line speed and work pace may account for these differences and provide an opportunity for regulation and intervention to protect the health of workers.
Scale-up and economic analysis of biodiesel production from municipal primary sewage sludge.
Olkiewicz, Magdalena; Torres, Carmen M; Jiménez, Laureano; Font, Josep; Bengoa, Christophe
2016-08-01
Municipal wastewater sludge is a promising lipid feedstock for biodiesel production, but the need to eliminate the high water content before lipid extraction is the main limitation for scaling up. This study evaluates the economic feasibility of biodiesel production directly from liquid primary sludge based on experimental data at laboratory scale. Computational tools were used for the modelling of the process scale-up and the different configurations of lipid extraction to optimise this step, as it is the most expensive. The operational variables with a major influence in the cost were the extraction time and the amount of solvent. The optimised extraction process had a break-even price of biodiesel of 1232 $/t, being economically competitive with the current cost of fossil diesel. The proposed biodiesel production process from waste sludge eliminates the expensive step of sludge drying, lowering the biodiesel price. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spike-Timing of Orbitofrontal Neurons Is Synchronized With Breathing.
Kőszeghy, Áron; Lasztóczi, Bálint; Forro, Thomas; Klausberger, Thomas
2018-01-01
The orbitofrontal cortex (OFC) has been implicated in a multiplicity of complex brain functions, including representations of expected outcome properties, post-decision confidence, momentary food-reward values, complex flavors and odors. As breathing rhythm has an influence on odor processing at primary olfactory areas, we tested the hypothesis that it may also influence neuronal activity in the OFC, a prefrontal area involved also in higher order processing of odors. We recorded spike timing of orbitofrontal neurons as well as local field potentials (LFPs) in awake, head-fixed mice, together with the breathing rhythm. We observed that a large majority of orbitofrontal neurons showed robust phase-coupling to breathing during immobility and running. The phase coupling of action potentials to breathing was significantly stronger in orbitofrontal neurons compared to cells in the medial prefrontal cortex. The characteristic synchronization of orbitofrontal neurons with breathing might provide a temporal framework for multi-variable processing of olfactory, gustatory and reward-value relationships.
Dry fermentation of agricultural residues
NASA Astrophysics Data System (ADS)
Jewell, W. J.; Chandler, J. A.; Dellorto, S.; Fanfoni, K. J.; Fast, S.; Jackson, D.; Kabrick, R. M.
1981-09-01
A dry fermentation process is discussed which converts agricultural residues to methane, using the residues in their as produced state. The process appears to simplify and enhance the possibilities for using crop residues as an energy source. The major process variables investigated include temperature, the amount and type of inoculum, buffer requirements, compaction, and pretreatment to control the initial available organic components that create pH problems. A pilot-scale reactor operation on corn stover at a temperature of 550 C, with 25 percent initial total solids, a seed-to-feed ratio of 2.5 percent, and a buffer-to-feed ratio of 8 percent achieved 33 percent total volatile solids destruction in 60 days. Volumetric biogas yields from this unit were greater than 1 vol/vol day for 12 days, and greater than 0.5 vol/vol day for 32 days, at a substrate density of 169 kg/m (3).
Aconitum alkaloid content and the high toxicity of aconite tincture.
Chan, Thomas Y K
2012-10-10
Although proprietary medicines and decoction of processed aconite roots are the most widely used, tincture accounts for the great majority of aconite poisoning cases in China, indicating that it is much more toxic than other formulations. Aconite tincture is often self-prepared at home and raw aconite plants or roots are often used. Even if processed aconite roots were used to make the tincture, the amount of Aconitum alkaloids is highly variable, depending on the adequacy of processing and quality control. Aconitum alkaloids dissolve efficiently in alcohol. For these reasons, tincture contains very high concentrations of Aconitum alkaloids. Despite its high intrinsic toxicity, overdose of aconite tincture by the users has been common. Severe aconite poisoning can be complicated by fatal ventricular tachyarrhythmias and asystole. The public should be repeatedly warned of the danger of taking aconite tincture by mouth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Incorporating signal-dependent noise for hyperspectral target detection
NASA Astrophysics Data System (ADS)
Morman, Christopher J.; Meola, Joseph
2015-05-01
The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.
Shoreline changes and its impact on archaeological sites in West Greenland
NASA Astrophysics Data System (ADS)
Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.
2017-12-01
Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.
Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya
2017-03-01
The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chouaib, Wafa; Caldwell, Peter V.; Alila, Younes
2018-04-01
This paper advances the physical understanding of the flow duration curve (FDC) regional variation. It provides a process-based analysis of the interaction between climate and landscape properties to explain disparities in FDC shapes. We used (i) long term measured flow and precipitation data over 73 catchments from the eastern US. (ii) We calibrated the Sacramento model (SAC-SMA) to simulate soil moisture and flow components FDCs. The catchments classification based on storm characteristics pointed to the effect of catchments landscape properties on the precipitation variability and consequently on the FDC shapes. The landscape properties effect was pronounce such that low value of the slope of FDC (SFDC)-hinting at limited flow variability-were present in regions of high precipitation variability. Whereas, in regions with low precipitation variability the SFDCs were of larger values. The topographic index distribution, at the catchment scale, indicated that saturation excess overland flow mitigated the flow variability under conditions of low elevations with large soil moisture storage capacity and high infiltration rates. The SFDCs increased due to the predominant subsurface stormflow in catchments at high elevations with limited soil moisture storage capacity and low infiltration rates. Our analyses also highlighted the major role of soil infiltration rates on the FDC despite the impact of the predominant runoff generation mechanism and catchment elevation. In conditions of slow infiltration rates in soils of large moisture storage capacity (at low elevations) and predominant saturation excess, the SFDCs were of larger values. On the other hand, the SFDCs decreased in catchments of prevalent subsurface stormflow and poorly drained soils of small soil moisture storage capacity. The analysis of the flow components FDCs demonstrated that the interflow contribution to the response was the higher in catchments with large value of slope of the FDC. The surface flow FDC was the most affected by the precipitation as it tracked the precipitation duration curve (PDC). In catchments with low SFDCs, this became less applicable as surface flow FDC diverged from PDC at the upper tail (> 40% of the flow percentile). The interflow and baseflow FDCs illustrated most the filtering effect on the precipitation. The process understanding we achieved in this study is key for flow simulation and assessment in addition to future works focusing on process-based FDC predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flory, John Andrew; Padilla, Denise D.; Gauthier, John H.
Upcoming weapon programs require an aggressive increase in Application Specific Integrated Circuit (ASIC) production at Sandia National Laboratories (SNL). SNL has developed unique modeling and optimization tools that have been instrumental in improving ASIC production productivity and efficiency, identifying optimal operational and tactical execution plans under resource constraints, and providing confidence in successful mission execution. With ten products and unprecedented levels of demand, a single set of shared resources, highly variable processes, and the need for external supplier task synchronization, scheduling is an integral part of successful manufacturing. The scheduler uses an iterative multi-objective genetic algorithm and a multi-dimensional performancemore » evaluator. Schedule feasibility is assessed using a discrete event simulation (DES) that incorporates operational uncertainty, variability, and resource availability. The tools provide rapid scenario assessments and responses to variances in the operational environment, and have been used to inform major equipment investments and workforce planning decisions in multiple SNL facilities.« less
NASA Astrophysics Data System (ADS)
Sun, De-Zheng; Bryan, Frank
Largely following the order in which the lectures were given in the graduate class on climate dynamics at the University of Colorado, the book starts with the topic of moist convection in the tropics. Summarizing decades-long research into a succinct article, Moncrieff [this volume] reviews the state of the art of understanding of organized precipitating convective systems with an eye to improving the representation of such systems in global weather and climate models. Moncrieff also addresses in this chapter the multi-scale convective organization in the Madden-Julian Oscillation, a major source of intraseasonal variability in the tropics. The second chapter proceeds to a prominent phenomenon on the seasonal time scale: monsoons. In covering this topic, Li [this volume] focuses his analysis on the Asian monsoon and dissects the physical processes that are responsible for its intraseasonal and interannual variability. All three subcomponents of the Asian monsoon are covered here: the Indian monsoon, the East Asian monsoon, and the Western North Pacific monsoon.
High flow and riparian vegetation along the San Miguel River, Colorado
Friedman, J.M.; Auble, G.T.
2000-01-01
Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.
Daily pan evaporation modelling using a neuro-fuzzy computing technique
NASA Astrophysics Data System (ADS)
Kişi, Özgür
2006-10-01
SummaryEvaporation, as a major component of the hydrologic cycle, is important in water resources development and management. This paper investigates the abilities of neuro-fuzzy (NF) technique to improve the accuracy of daily evaporation estimation. Five different NF models comprising various combinations of daily climatic variables, that is, air temperature, solar radiation, wind speed, pressure and humidity are developed to evaluate degree of effect of each of these variables on evaporation. A comparison is made between the estimates provided by the NF model and the artificial neural networks (ANNs). The Stephens-Stewart (SS) method is also considered for the comparison. Various statistic measures are used to evaluate the performance of the models. Based on the comparisons, it was found that the NF computing technique could be employed successfully in modelling evaporation process from the available climatic data. The ANN also found to perform better than the SS method.
Multi-objective aerodynamic shape optimization of small livestock trailers
NASA Astrophysics Data System (ADS)
Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.
2013-11-01
This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.
Recurrence measure of conditional dependence and applications.
Ramos, Antônio M T; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E N; Kurths, Jürgen; Marwan, Norbert
2017-05-01
Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.
Recurrence measure of conditional dependence and applications
NASA Astrophysics Data System (ADS)
Ramos, Antônio M. T.; Builes-Jaramillo, Alejandro; Poveda, Germán; Goswami, Bedartha; Macau, Elbert E. N.; Kurths, Jürgen; Marwan, Norbert
2017-05-01
Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Here we propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts.
Developing an Emergency Physician Productivity Index Using Descriptive Health Analytics.
Khalifa, Mohamed
2015-01-01
Emergency department (ED) crowding became a major barrier to receiving timely emergency care. At King Faisal Specialist Hospital and Research Center, Saudi Arabia, we identified variables and factors affecting crowding and performance to develop indicators to help evaluation and improvement. Measuring efficiency of work and activity of throughput processes; it was important to develop an ED physician productivity index. Data on all ED patients' encounters over the last six months of 2014 were retrieved and descriptive health analytics methods were used. Three variables were identified for their influence on productivity and performance; Number of Treated Patients per Physician, Patient Acuity Level and Treatment Time. The study suggested a formula to calculate the productivity index of each physician through dividing the Number of Treated Patients by Patient Acuity Level squared and Treatment Time to identify physicians with low productivity index and investigate causes and factors.
Noonan syndrome and clinically related disorders
Tartaglia, Marco; Gelb, Bruce D.; Zenker, Martin
2010-01-01
Noonan syndrome is a relatively common, clinically variable developmental disorder. Cardinal features include postnatally reduced growth, distinctive facial dysmorphism, congenital heart defects and hypertrophic cardiomyopathy, variable cognitive deficit and skeletal, ectodermal and hematologic anomalies. Noonan syndrome is transmitted as an autosomal dominant trait, and is genetically heterogeneous. So far, heterozygous mutations in nine genes (PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1 and CBL) have been documented to underlie this disorder or clinically related phenotypes. Based on these recent discoveries, the diagnosis can now be confirmed molecularly in approximately 75% of affected individuals. Affected genes encode for proteins participating in the RAS-mitogen-activated protein kinases (MAPK) signal transduction pathway, which is implicated in several developmental processes controlling morphology determination, organogenesis, synaptic plasticity and growth. Here, we provide an overview of clinical aspects of this disorder and closely related conditions, the molecular mechanisms underlying pathogenesis, and major genotype-phenotype correlations. PMID:21396583
Mangwandi, Chirangano; Adams, Michael J; Hounslow, Michael J; Salman, Agba D
2012-05-10
Being able to predict the properties of granules from the knowledge of the process and formulation variables is what most industries are striving for. This research uses experimental design to investigate the effect of process variables and formulation variables on mechanical properties of pharmaceutical granules manufactured from a classical blend of lactose and starch using hydroxypropyl cellulose (HPC) as the binder. The process parameters investigated were granulation time and impeller speed whilst the formulation variables were starch-to-lactose ratio and HPC concentration. The granule properties investigated include granule packing coefficient and granule strength. The effect of some components of the formulation on mechanical properties would also depend on the process variables used in granulation process. This implies that by subjecting the same formulation to different process conditions results in products with different properties. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Gabb, T. P.; Telesman, J.; Kantzos, P. T.; Bonacuse, P. J.; Barrie, R. L.
2002-01-01
The fatigue lives of modern powder metallurgy (PM) disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary due to the different steps of materials/component processing and machining. One of these variables, the presence of nonmetallic inclusions, has been shown to significantly degrade low-cycle fatigue (LCF) life. Nonmetallic inclusions are inherent defects in powder alloys that are a by-product of powder-processing techniques. Contamination of the powder can occur in the melt, during powder atomization, or during any of the various handling processes through consolidation. In modern nickel disk powder processing facilities, the levels of inclusion contamination have been reduced to less than 1 part per million by weight. Despite the efforts of manufacturers to ensure the cleanliness of their powder production processes, the presence of inclusions remains a source of great concern for the designer. the objective of this study was to investigate the effects on fatigue life of these inclusions. Since natural inclusions occur so infrequently, elevated levels of inclusions were carefully introduced in a nickel-based disk superalloy, Udimet 720 (registered trademark of Special Metals Corporation), produced using PM processing. Multiple strain-controlled fatigue tests were then performed on this material at 650 C. Analyses were performed to compare the LCF lives and failure initiation sites as functions of inclusion content and fatigue conditions. A large majority of the failures in specimens with introduced inclusions occurred at cracks initiating from inclusions at the specimen surface. The inclusions could reduce fatigue life by up to 100 times. These effects were found to be dependent on strain range and strain ratio. Tests at lower strain ranges and higher strain ratios produced larger effects of inclusions on life.
Regional Climate Simulation and Data Assimilation with Variable-Resolution GCMs
NASA Technical Reports Server (NTRS)
Fox-Rabinovitz, Michael S.
2002-01-01
Variable resolution GCMs using a global stretched grid (SG) with enhanced regional resolution over one or multiple areas of interest represents a viable new approach to regional climateklimate change and data assimilation studies and applications. The multiple areas of interest, at least one within each global quadrant, include the major global mountains and major global monsoonal circulations over North America, South America, India-China, and Australia. They also can include the polar domains, and the European and African regions. The SG-approach provides an efficient regional downscaling to mesoscales, and it is an ideal tool for representing consistent interactions of globaYlarge- and regionallmeso- scales while preserving the high quality of global circulation. Basically, the SG-GCM simulations are no different from those of the traditional uniform-grid GCM simulations besides using a variable-resolution grid. Several existing SG-GCMs developed by major centers and groups are briefly described. The major discussion is based on the GEOS (Goddard Earth Observing System) SG-GCM regional climate simulations.
Data Reduction Functions for the Langley 14- by 22-Foot Subsonic Tunnel
NASA Technical Reports Server (NTRS)
Boney, Andy D.
2014-01-01
The Langley 14- by 22-Foot Subsonic Tunnel's data reduction software utilizes six major functions to compute the acquired data. These functions calculate engineering units, tunnel parameters, flowmeters, jet exhaust measurements, balance loads/model attitudes, and model /wall pressures. The input (required) variables, the output (computed) variables, and the equations and/or subfunction(s) associated with each major function are discussed.
NASA Astrophysics Data System (ADS)
Akanda, Ali Shafqat; Jutla, Antarpreet S.; Alam, Munirul; de Magny, Guillaume Constantin; Siddique, A. Kasem; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.; Islam, Shafiqul
2011-03-01
Cholera remains a major public health threat in many developing countries around the world. The striking seasonality and annual recurrence of this infectious disease in endemic areas remain of considerable interest to scientists and public health workers. Despite major advances in the ecological and microbiological understanding of Vibrio cholerae, the causative agent of the disease, the role of underlying large-scale hydroclimatic processes in propagating the disease for different seasons and spatial locations is not well understood. Here we show that the cholera outbreaks in the Bengal Delta region are propagated from the coastal to the inland areas and from spring to fall by two distinctly different transmission cycles, premonsoon and postmonsoon, influenced by coastal and terrestrial hydroclimatic processes, respectively. A coupled analysis of the regional hydroclimate and cholera incidence reveals a strong association of the space-time variability of incidence peaks with seasonal processes and extreme climatic events. We explain how the asymmetric seasonal hydroclimatology affects regional cholera dynamics by providing a coastal growth environment for bacteria in spring, while propagating the disease to fall by monsoon flooding. Our findings may serve as the basis for "climate-informed" early warnings and for prompting effective means for intervention and preempting epidemic cholera outbreaks in vulnerable regions.
Rate and Predictors of Persistent Major Depressive Disorder in a Nationally Representative Sample.
Walker, Elizabeth Reisinger; Druss, Benjamin G
2015-08-01
This study examined predictors of persistent major depressive disorder over 10 years, focusing on the effects of clinical variables, physical health, and social support. Data from the National Survey of Midlife Development in the United States in 1995-1996 and 2004-2006 were analyzed. Logistic regression was used to predict non-recovery from major depression among individuals who met clinical-based criteria for major depressive disorder at baseline. Fifteen percent of the total sample was classified as having major depression in 1995-1996; of these individuals, 37 % had major depression in 2004-2006. Baseline variables that were significantly associated with persistent major depression at follow-up were being female, having never married, having two or more chronic medical conditions, experiencing activity limitation, and less contact with family. Therefore, treatment strategies focused on physical health, social support, and mental health needs are necessary to comprehensively address the factors that contribute to persistent major depressive disorder.
Microprocessor activity controls differential miRNA biogenesis In Vivo.
Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson
2014-10-23
In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dverstorp, B.; Andersson, J.
1995-12-01
Performance Assessment of a nuclear waste repository implies an analysis of a complex system with many interacting processes. Even if some of these processes may be known to large detail, problems arise when combining all information, and means of abstracting information from complex detailed models into models that couple different processes are needed. Clearly, one of the major objectives of performance assessment, to calculate doses or other performance indicators, implies an enormous abstraction of information compared to all information that is used as input. Other problems are that the knowledge of different parts or processes is strongly variable and adjustments,more » interpretations, are needed when combining models from different disciplines. In addition, people as well as computers, even today, always have a limited capacity to process information and choices have to be made. However, because abstraction of information clearly is unavoidable in performance assessment the validity of choices made, always need to be scrutinized and judgements made need to be updated in an iterative process.« less
River water quality assessment using environmentric techniques: case study of Jakara River Basin.
Mustapha, Adamu; Aris, Ahmad Zaharin; Juahir, Hafizan; Ramli, Mohammad Firuz; Kura, Nura Umar
2013-08-01
Jakara River Basin has been extensively studied to assess the overall water quality and to identify the major variables responsible for water quality variations in the basin. A total of 27 sampling points were selected in the riverine network of the Upper Jakara River Basin. Water samples were collected in triplicate and analyzed for physicochemical variables. Pearson product-moment correlation analysis was conducted to evaluate the relationship of water quality parameters and revealed a significant relationship between salinity, conductivity with dissolved solids (DS) and 5-day biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and nitrogen in form of ammonia (NH4). Partial correlation analysis (r p) results showed that there is a strong relationship between salinity and turbidity (r p=0.930, p=0.001) and BOD5 and COD (r p=0.839, p=0.001) controlling for the linear effects of conductivity and NH4, respectively. Principal component analysis and or factor analysis was used to investigate the origin of each water quality parameter in the Jakara Basin and identified three major factors explaining 68.11 % of the total variance in water quality. The major variations are related to anthropogenic activities (irrigation agricultural, construction activities, clearing of land, and domestic waste disposal) and natural processes (erosion of river bank and runoff). Discriminant analysis (DA) was applied on the dataset to maximize the similarities between group relative to within-group variance of the parameters. DA provided better results with great discriminatory ability using eight variables (DO, BOD5, COD, SS, NH4, conductivity, salinity, and DS) as the most statistically significantly responsible for surface water quality variation in the area. The present study, however, makes several noteworthy contributions to the existing knowledge on the spatial variations of surface water quality and is believed to serve as a baseline data for further studies. Future research should therefore concentrate on the investigation of temporal variations of water quality in the basin.
Space-Time Variability in River Flow Regimes of Northeast Turkey
NASA Astrophysics Data System (ADS)
Saris, F.; Hannah, D. M.; Eastwood, W. J.
2011-12-01
The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows that April-May and May-June peak shape classes together with low and intermediate magnitude classes are the most frequent and persistent flow regimes. This research has advanced understanding of hydroclimatological processes in northeast Turkey by identifying river flow regimes and together with explanations regarding the controlling factors on river flow variability.
Uncertainty estimates of altimetric Global Mean Sea Level timeseries
NASA Astrophysics Data System (ADS)
Scharffenberg, Martin; Hemming, Michael; Stammer, Detlef
2016-04-01
An attempt is being presented concerned with providing uncertainty measures for global mean sea level time series. For this purpose sea surface height (SSH) fields, simulated by the high resolution STORM/NCEP model for the period 1993 - 2010, were subsampled along altimeter tracks and processed similar to techniques used by five working groups to estimate GMSL. Results suggest that the spatial and temporal resolution have a substantial impact on GMSL estimates. Major impacts can especially result from the interpolation technique or the treatment of SSH outliers and easily lead to artificial temporal variability in the resulting time series.
2010-03-01
and the data m anagement proce sses and procedures practiced by the SA EMS system were evolving, with changes and im provements in both variables...but limited) new monitor configuration and SA EMS processes a nd procedures adapted to the features of the new monitor. The first of the three... procedures for both the new m onitor and the S A EMS system over the upcom ing year. The two remaining data co llection inte rvals planned f or Phase 2 w ere
Handbook of solar-terrestrial data systems, version 1
NASA Technical Reports Server (NTRS)
1991-01-01
The interaction between the solar wind and the earth's magnetic field creates a large magnetic cavity which is termed the magnetosphere. Energy derived from the solar wind is ultimately dissipated by particle acceleration-precipitation and Joule heating in the magnetosphere-ionosphere. The rate of energy dissipation is highly variable, with peak levels during geomagnetic storms and substorms. The degree to which solar wind and magnetospheric conditions control the energy dissipation processes remains one of the major outstanding questions in magnetospheric physics. A conference on Solar Wind-Magnetospheric Coupling was convened to discuss these issues and this handbook is the result.
Perspectives on the manufacture of combination vaccines.
Vose, J R
2001-12-15
Evolving regulatory requirements in the United States and Europe create major challenges for manufacturers tasked with production of vaccines that contain > or =9 separate antigens capable of protecting against infectious diseases, such as diphtheria, tetanus, pertussis, polio, hepatitis B, and Haemophilus influenza b, in a single shot. This article describes 10 steps that can facilitate the process of licensing these complex vaccines. It also points out problems associated with the use of animal tests for the crucial step of potency testing for batch release caused by the inherent variability of such tests and the difficulties of interpreting their results.
Predicting arsenic in drinking water wells of the Central Valley, California
Ayotte, Joseph; Nolan, Bernard T.; Gronberg, JoAnn M.
2016-01-01
Probabilities of arsenic in groundwater at depths used for domestic and public supply in the Central Valley of California are predicted using weak-learner ensemble models (boosted regression trees, BRT) and more traditional linear models (logistic regression, LR). Both methods captured major processes that affect arsenic concentrations, such as the chemical evolution of groundwater, redox differences, and the influence of aquifer geochemistry. Inferred flow-path length was the most important variable but near-surface-aquifer geochemical data also were significant. A unique feature of this study was that previously predicted nitrate concentrations in three dimensions were themselves predictive of arsenic and indicated an important redox effect at >10 μg/L, indicating low arsenic where nitrate was high. Additionally, a variable representing three-dimensional aquifer texture from the Central Valley Hydrologic Model was an important predictor, indicating high arsenic associated with fine-grained aquifer sediment. BRT outperformed LR at the 5 μg/L threshold in all five predictive performance measures and at 10 μg/L in four out of five measures. BRT yielded higher prediction sensitivity (39%) than LR (18%) at the 10 μg/L threshold–a useful outcome because a major objective of the modeling was to improve our ability to predict high arsenic areas.
Geologic constraints on the macroevolutionary history of marine animals
Peters, Shanan E.
2005-01-01
The causes of mass extinctions and the nature of taxonomic radiations are central questions in paleobiology. Several episodes of taxonomic turnover in the fossil record, particularly the major mass extinctions, are generally thought to transcend known biases in the geologic record and are widely interpreted as distinct macroevolutionary phenomena that require unique forcing mechanisms. Here, by using a previously undescribed compilation of the durations of sedimentary rock sequences, I compare the rates of expansion and truncation of preserved marine sedimentary basins to rates of origination and extinction among Phanerozoic marine animal genera. Many features of the highly variable record of taxonomic first and last occurrences in the marine animal fossil record, including the major mass extinctions, the frequency distribution of genus longevities, and short- and long-term patterns of genus diversity, can be predicted on the basis of the temporal continuity and quantity of preserved sedimentary rock. Although these results suggest that geologically mediated sampling biases have distorted macroevolutionary patterns in the fossil record, preservation biases alone cannot easily explain the extent to which the sedimentary record duplicates paleobiological patterns. Instead, these results suggest that the processes responsible for producing variability in the sedimentary rock record, such as plate tectonics and sea-level change, may have been dominant and consistent macroevolutionary forces throughout the Phanerozoic. PMID:16105949
Cheeseman, John M
2015-04-01
The effective development of salt tolerant crops requires an understanding that the evolution of halophytes, glycophytes and our major grain crops has involved significantly different processes. Halophytes (and other edaphic endemics) generally arose through colonization of habitats in severe disequilibrium by pre-adapted individuals, rather than by gradual adaptation from populations of 'glycophytes'. Glycophytes, by contrast, occur in low sodium ecosystems, where sodium was and is the major limiting nutrient in herbivore diets, suggesting that their evolution reflects the fact that low sodium individuals experienced lower herbivory and had higher fitness. For domestication/evolution of crop plants, the selective pressure was human imposed and involved humans co-opting functions of defense and reproductive security. Unintended consequences of this included loss of tolerance to various stresses and loss of the genetic variability needed to correct that. Understanding, combining and manipulating all three modes of evolution are now critical to the development of salt tolerant crops, particularly those that will offer food security in countries with few economic resources and limited infrastructure. Such efforts will require exploiting the genetic structures of recently evolved halophytes, the genetic variability of model plants, and endemic halophytes and 'minor' crops that already exist. © 2014 The Author. New Phytologist © 2014 New Phytologist Trust.
Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen
NASA Technical Reports Server (NTRS)
Demello, William Zamboni; Hines, Mark E.
1992-01-01
The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.
A nonlinear cointegration approach with applications to structural health monitoring
NASA Astrophysics Data System (ADS)
Shi, H.; Worden, K.; Cross, E. J.
2016-09-01
One major obstacle to the implementation of structural health monitoring (SHM) is the effect of operational and environmental variabilities, which may corrupt the signal of structural degradation. Recently, an approach inspired from the community of econometrics, called cointegration, has been employed to eliminate the adverse influence from operational and environmental changes and still maintain sensitivity to structural damage. However, the linear nature of cointegration may limit its application when confronting nonlinear relations between system responses. This paper proposes a nonlinear cointegration method based on Gaussian process regression (GPR); the method is constructed under the Engle-Granger framework, and tests for unit root processes are conducted both before and after the GPR is applied. The proposed approach is examined with real engineering data from the monitoring of the Z24 Bridge.
Intelligent laser soldering inspection and process control
NASA Technical Reports Server (NTRS)
Vanzetti, Riccardo
1987-01-01
Component assembly on printed circuitry keeps making giant strides toward denser packaging and smaller dimensions. From a single layer to multilayer, from through holes to surface mounted components and tape applied bonds, unrelenting progress results in new, difficult problems in assembling, soldering, inspecting and controlling the manufacturing process of the new electronics. Among the major problems are the variables introduced by human operators. The small dimensions and the tight assembly tolerances are now successfully met by machines which are faster and more precise than the human hand. The same is true for soldering. But visual inspection of the solder joints is now so severely limited by the ever shrinking area accessible to the human eye that the inspector's diagnosis cannot be trusted any longer. Solutions to correcting these problems are discussed.
ERIC Educational Resources Information Center
Malmberg, Lars-Erik; Lim, Wee H. T.; Tolvanen, Asko; Nurmi, Jari-Erik
2016-01-01
In order to advance our understanding of educational processes, we present a tutorial of intraindividual variability. An adaptive educational process is characterised by stable (less variability), and a maladaptive process is characterised by instable (more variability) learning experiences from one learning situation to the next. We outline step…
Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan
2017-09-01
In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Long-term variability of T Tauri stars using WASP
NASA Astrophysics Data System (ADS)
Rigon, Laura; Scholz, Alexander; Anderson, David; West, Richard
2017-03-01
We present a reference study of the long-term optical variability of young stars using data from the WASP project. Our primary sample is a group of well-studied classical T Tauri stars (CTTSs), mostly in Taurus-Auriga. WASP light curves cover time-scales of up to 7 yr and typically contain 10 000-30 000 data points. We quantify the variability as a function of time-scale using the time-dependent standard deviation 'pooled sigma'. We find that the overwhelming majority of CTTSs have a low-level variability with σ < 0.3 mag dominated by time-scales of a few weeks, consistent with rotational modulation. Thus, for most young stars, monitoring over a month is sufficient to constrain the total amount of variability over time-scales of up to a decade. The fraction of stars with a strong optical variability (σ > 0.3 mag) is 21 per cent in our sample and 21 per cent in an unbiased control sample. An even smaller fraction (13 per cent in our sample, 6 per cent in the control) show evidence for an increase in variability amplitude as a function of time-scale from weeks to months or years. The presence of long-term variability correlates with the spectral slope at 3-5 μm, which is an indicator of inner disc geometry, and with the U-B band slope, which is an accretion diagnostics. This shows that the long-term variations in CTTSs are predominantly driven by processes in the inner disc and in the accretion zone. Four of the stars with long-term variations show periods of 20-60 d, significantly longer than the rotation periods and stable over months to years. One possible explanation is cyclic changes in the interaction between the disc and the stellar magnetic field.
Insights into HLA-G Genetics Provided by Worldwide Haplotype Diversity
Castelli, Erick C.; Ramalho, Jaqueline; Porto, Iane O. P.; Lima, Thálitta H. A.; Felício, Leandro P.; Sabbagh, Audrey; Donadi, Eduardo A.; Mendes-Junior, Celso T.
2014-01-01
Human leukocyte antigen G (HLA-G) belongs to the family of non-classical HLA class I genes, located within the major histocompatibility complex (MHC). HLA-G has been the target of most recent research regarding the function of class I non-classical genes. The main features that distinguish HLA-G from classical class I genes are (a) limited protein variability, (b) alternative splicing generating several membrane bound and soluble isoforms, (c) short cytoplasmic tail, (d) modulation of immune response (immune tolerance), and (e) restricted expression to certain tissues. In the present work, we describe the HLA-G gene structure and address the HLA-G variability and haplotype diversity among several populations around the world, considering each of its major segments [promoter, coding, and 3′ untranslated region (UTR)]. For this purpose, we developed a pipeline to reevaluate the 1000Genomes data and recover miscalled or missing genotypes and haplotypes. It became clear that the overall structure of the HLA-G molecule has been maintained during the evolutionary process and that most of the variation sites found in the HLA-G coding region are either coding synonymous or intronic mutations. In addition, only a few frequent and divergent extended haplotypes are found when the promoter, coding, and 3′UTRs are evaluated together. The divergence is particularly evident for the regulatory regions. The population comparisons confirmed that most of the HLA-G variability has originated before human dispersion from Africa and that the allele and haplotype frequencies have probably been shaped by strong selective pressures. PMID:25339953
North American Megadroughts in the Common Era: Reconstructions and Simulations
NASA Technical Reports Server (NTRS)
Cook, Benjamin I.; Cook, Edward R.; Smerdon, Jason E.; Seager, Richard; Williams, A. Park; Coats, Sloan; Stahle, David W.; Villanueva Diaz, Jose
2016-01-01
During the Medieval Climate Anomaly (MCA), Western North America experienced episodes of intense aridity that persisted for multiple decades or longer. These megadroughts are well documented in many proxy records, but the causal mechanisms are poorly understood. General circulation models (GCMs) simulate megadroughts, but do not reproduce the temporal clustering of events during the MCA, suggesting they are not caused by the time history of volcanic or solar forcing. Instead, GCMs generate megadroughts through (1) internal atmospheric variability, (2) sea-surface temperatures, and (3) land surface and dust aerosol feedbacks. While no hypothesis has been definitively rejected, and no GCM has accurately reproduced all features (e.g., timing, duration, and extent) of any specific megadrought, their persistence suggests a role for processes that impart memory to the climate system (land surface and ocean dynamics). Over the 21st century, GCMs project an increase in the risk of megadrought occurrence through greenhouse gas forced reductions in precipitation and increases in evaporative demand. This drying is robust across models and multiple drought indicators, but major uncertainties still need to be resolved. These include the potential moderation of vegetation evaporative losses at higher atmospheric [CO2], variations in land surface model complexity, and decadal to multidecadal modes of natural climate variability that could delay or advance onset of aridification over the the next several decades. Because future droughts will arise from both natural variability and greenhouse gas forced trends in hydroclimate, improving our understanding of the natural drivers of persistent multidecadal megadroughts should be a major research priority.
The climatic implications of the Holocene floods in the north-western Himalaya, India
NASA Astrophysics Data System (ADS)
Sharma, S.; Shukla, A. D.; Bartarya, S.; Marh, B.; Juyal, N.
2016-12-01
Understanding the growing trend of extreme hydrological events in response to climate variabilities is a major area of interest in the climate change science. More important so as the predictions suggest increased frequency and/or magnitude of floods in the Himalayan region due to more intense/frequent coupling between the Indian Summer Monsoon (ISM) and the mid-latitude westerlies. In view of this, studies pertaining to the geological evidence of extreme hydrological events (paleofloods) become important as these not only extend beyond the instrumental records but ensures better understanding of the pattern of river response to the extreme climate variability.The Satluj River in the north-western Himalaya is infamous for its history of recurrent and devastating floods for which there is no data beyond the historical record. The present study in the middle Satluj valley is a contribution towards expanding the cognizance of the climate and geomorphic processes responsible for the Holocene extreme events. Based on sedimentology and grain size variability a total of 24 flood events of increasing magnitude are identified. The geochemical data indicate that the flood sediments were mostly generated and transported from the Higher Himalayan Crystalline with some contribution from the Trans-Himalaya. The optical chronology allow us to identify four major flood clusters which are dated between 13-11 ka; 8-4 ka; 4-2 ka and < 2 ka respectively. Climatically, these correspond to the cooler/relatively drier climatic condition (weak monsoon) and broadly correlate with the phases of negative Arctic Oscillation (‒AO) and negative North Atlantic Oscillation (-NAO).
Portrayal of Alcohol Brands Popular Among Underage Youth on YouTube: A Content Analysis.
Primack, Brian A; Colditz, Jason B; Rosen, Eva B; Giles, Leila M; Jackson, Kristina M; Kraemer, Kevin L
2017-09-01
We characterized leading YouTube videos featuring alcohol brand references and examined video characteristics associated with each brand and video category. We systematically captured the 137 most relevant and popular videos on YouTube portraying alcohol brands that are popular among underage youth. We used an iterative process to codebook development. We coded variables within domains of video type, character sociodemographics, production quality, and negative and positive associations with alcohol use. All variables were double coded, and Cohen's kappa was greater than .80 for all variables except age, which was eliminated. There were 96,860,936 combined views for all videos. The most common video type was "traditional advertisements," which comprised 40% of videos. Of the videos, 20% were "guides" and 10% focused on chugging a bottle of distilled spirits. While 95% of videos featured males, 40% featured females. Alcohol intoxication was present in 19% of videos. Aggression, addiction, and injuries were uncommonly identified (2%, 3%, and 4%, respectively), but 47% of videos contained humor. Traditional advertisements represented the majority of videos related to Bud Light (83%) but only 18% of Grey Goose and 8% of Hennessy videos. Intoxication was most present in chugging demonstrations (77%), whereas addiction was only portrayed in music videos (22%). Videos containing humor ranged from 11% for music-related videos to 77% for traditional advertisements. YouTube videos depicting the alcohol brands favored by underage youth are heavily viewed, and the majority are traditional or narrative advertisements. Understanding characteristics associated with different brands and video categories may aid in intervention development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division
2007-01-01
The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less
Variable diffusion in stock market fluctuations
NASA Astrophysics Data System (ADS)
Hua, Jia-Chen; Chen, Lijian; Falcon, Liberty; McCauley, Joseph L.; Gunaratne, Gemunu H.
2015-02-01
We analyze intraday fluctuations in several stock indices to investigate the underlying stochastic processes using techniques appropriate for processes with nonstationary increments. The five most actively traded stocks each contains two time intervals during the day where the variance of increments can be fit by power law scaling in time. The fluctuations in return within these intervals follow asymptotic bi-exponential distributions. The autocorrelation function for increments vanishes rapidly, but decays slowly for absolute and squared increments. Based on these results, we propose an intraday stochastic model with linear variable diffusion coefficient as a lowest order approximation to the real dynamics of financial markets, and to test the effects of time averaging techniques typically used for financial time series analysis. We find that our model replicates major stylized facts associated with empirical financial time series. We also find that ensemble averaging techniques can be used to identify the underlying dynamics correctly, whereas time averages fail in this task. Our work indicates that ensemble average approaches will yield new insight into the study of financial markets' dynamics. Our proposed model also provides new insight into the modeling of financial markets dynamics in microscopic time scales.
Prospects and pitfalls of occupational hazard mapping: 'between these lines there be dragons'.
Koehler, Kirsten A; Volckens, John
2011-10-01
Hazard data mapping is a promising new technique that can enhance the process of occupational exposure assessment and risk communication. Hazard maps have the potential to improve worker health by providing key input for the design of hazard intervention and control strategies. Hazard maps are developed with aid from direct-reading instruments, which can collect highly spatially and temporally resolved data in a relatively short period of time. However, quantifying spatial-temporal variability in the occupational environment is not a straightforward process, and our lack of understanding of how to ascertain and model spatial and temporal variability is a limiting factor in the use and interpretation of workplace hazard maps. We provide an example of how sources of and exposures to workplace hazards may be mischaracterized in a hazard map due to a lack of completeness and representativeness of collected measurement data. Based on this example, we believe that a major priority for research in this emerging area should focus on the development of a statistical framework to quantify uncertainty in spatially and temporally varying data. In conjunction with this need is one for the development of guidelines and procedures for the proper sampling, generation, and evaluation of workplace hazard maps.
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
Managing patient pathways to achieve lung cancer waiting time targets: mixed methods study
Ip, Hugh; Amer, Tarik; Dangoor, Michael; Zamir, Affan; Gibbings-Isaac, Darryl; Kochhar, Ranjeev; Heymann, Timothy
2012-01-01
Objectives England's National Health Service (NHS) introduced a 62-day target, from referral to treatment, to make lung cancer patient pathways more efficient. This study aims to understand pathway delays that lead to breaches of the target when patients need care in both secondary and tertiary setting, so more than one institution is involved. Design Mixed methods cross case analysis. Setting Two tertiary referral hospitals in London. Participants Database records of 53 patients were analysed. Nineteen sets of patient notes were used for pathway mapping. Seventeen doctors, four nurses, eight managers and administrators were interviewed. Main outcome measures Qualitative methods include pathway mapping and semi-structured interviews. Quantitative analysis of patient pathway times from cancer services records. Results The majority of the patient pathway (68.4%) is spent in secondary centres. There is more variability in the processes of secondary centres but tertiary centres do not have perfect processes either. Three themes emerged from discussions: information flows, pathway performance and the role of the multidisciplinary approach. Conclusions The actions of secondary centres have a greater influence on whether a patient breaches the 62-day target, compared with tertiary centres. Nevertheless variability exists in both, with potential for improvement. PMID:23162682
NASA Astrophysics Data System (ADS)
Wang, Shixin; Zuo, Hongchao; Zhao, Shuman; Zhang, Jiankai; Lu, Sha
2017-03-01
Existing studies show that the change in the meridional position of East Asian westerly jet (EAWJ) is associated with rainfall anomalies in Yangtze-Huaihe River Valley (YHRV) in summer. However, the dynamic mechanism has not been resolved yet. The present study reveals underlying mechanisms for this impact for early summer and midsummer, separately. Mechanism1: associated with EAWJ's anomalously southward displacement, the 500-hPa westerly wind over YHRV is strengthened through midtropospheric horizontal circulation anomalies; the westerly anomalies are related to the formation of warm advection anomalies over YHRV, which cause increased rainfall through adiabatic ascent motion and convective activities; the major difference in these processes between early summer and midsummer is the midtropospheric circulation anomaly pattern. Mechanism 2: associated with EAWJ's anomalously southward displacement, the large day-to-day variability of midtropospheric temperature advection in midlatitudes is displaced southward by the jet's trapping transient eddies; this change enhances the day-to-day variability of temperature advection over YHRV, which in turn causes the increased rainfall in most part of YHRV through "lower-bound effect" (rainfall amount can not become negative); there is not much difference in these processes between early summer and midsummer.
Jayasumana, Channa; Ranasinghe, Omesh; Ranasinghe, Sachini; Siriwardhana, Imalka; Gunatilake, Sarath; Siribaddana, Sisira
2016-11-01
Chronic Interstitial Nephritis in Agricultural Communities (CINAC) causes major morbidity and mortality for farmers in North-Central province (NCP) of Sri Lanka. To prevent the CINAC, reverse osmosis (RO) plants are established to purify the water and reduce the exposure to possible nephrotoxins through drinking water. We assessed RO plant maintenance and efficacy in NCP. We have interviewed 10 RO plant operators on plant establishment, maintenance, usage and funding. We also measured total dissolved solids (TDS in ppm) to assess the efficacy of the RO process. Most RO plants were operated by community-based organizations. They provide clean and sustainable water source for many in the NCP for a nominal fee, which tends to be variable. The RO plant operators carry out RO plant maintenance. However, maintenance procedures and quality management practices tend to vary from an operator to another. RO process itself has the ability to lower the TDS of the water. On average, RO process reduces the TDS to 29 ppm. The RO process reduces the impurities in water available to many individuals within CINAC endemic regions. However, there variation in maintenance, quality management, and day-to-day care between operators can be a cause for concern. This variability can affect the quality of water produced by RO plant, its maintenance cost and lifespan. Thus, uniform regulation and training is needed to reduce cost of maintenance and increase the efficacy of RO plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heubach, J.G.; Weimer, W.C.; Bruce, W.A.
Facility master planning is critical to the future productivity of a laboratory and the quality of worklife for the laboratory staff. For organizations undergoing programmatic re-direction, a master facility planning approach linked to the organization`s strategic planning process is even more important. Major changes in an organization such as programmatic re-direction can significantly impact a broad range of variables which exceed the expertise of traditional planning teams, e.g., capacity variability, work team organization, organizational culture, and work process simplification. By expanding the diversity of the participants of the planning team, there is a greater likelihood that a research organization`s scientific,more » organizational, economic, and employees` needs can be meshed in the strategic plan and facility plan. Recent recommendations from facility planners suggest drawing from diverse fields in building multi-disciplinary planning teams: Architecture, engineering, natural science, social psychology, and strategic planning (Gibson,1993). For organizations undergoing significant operational or culture change, the master facility planning team should also include members with expertise in organizational effectiveness, industrial engineering, human resources, and environmental psychology. A recent planning and design project provides an example which illustrates the use of an expanded multi-disciplinary team engaged in planning laboratory renovations for a research organization undergoing programmatic re-direction. The purpose of the proposed poster session is to present a multi-disciplinary master facility planning process linked to an organization`s strategic planning process or organizational strategies.« less
Dixon, Donna
2012-04-01
The relationships of students' preadmission academic variables, sex, undergraduate major, and undergraduate institution to academic performance in medical school have not been thoroughly examined. To determine the ability of students' preadmission academic variables to predict osteopathic medical school performance and whether students' sex, undergraduate major, or undergraduate institution influence osteopathic medical school performance. The study followed students who graduated from New York College of Osteopathic Medicine of New York Institute of Technology in Old Westbury between 2003 and 2006. Student preadmission data were Medical College Admission Test (MCAT) scores, undergraduate grade point averages (GPAs), sex, undergraduate major, and undergraduate institutional selectivity. Medical school performance variables were GPAs, clinical performance (ie, clinical subject examinations and clerkship evaluations), and scores on the Comprehensive Osteopathic Medical Licensing Examination-USA (COMLEX-USA) Level 1 and Level 2-Clinical Evaluation (CE). Data were analyzed with Pearson product moment correlation coefficients and multivariate linear regression analyses. Differences between student groups were compared with the independent-samples, 2-tailed t test. A total of 737 students were included. All preadmission academic variables, except nonscience undergraduate GPA, were statistically significant predictors of performance on COMLEX-USA Level 1, and all preadmission academic variables were statistically significant predictors of performance on COMLEX-USA Level 2-CE. The MCAT score for biological sciences had the highest correlation among all variables with COMLEX-USA Level 1 performance (Pearson r=0.304; P<.001) and Level 2-CE performance (Pearson r=0.272; P<.001). All preadmission variables were moderately correlated with the mean clinical subject examination scores. The mean clerkship evaluation score was moderately correlated with mean clinical examination results (Pearson r=0.267; P<.001) and COMLEX-USA Level 2-CE performance (Pearson r=0.301; P<.001). Clinical subject examination scores were highly correlated with COMLEX-USA Level 2-CE scores (Pearson r=0.817; P<.001). No statistically significant difference in medical school performance was found between students with science and nonscience undergraduate majors, nor was undergraduate institutional selectivity a factor influencing performance. Students' preadmission academic variables were predictive of osteopathic medical school performance, including GPAs, clinical performance, and COMLEX-USA Level 1 and Level 2-CE results. Clinical performance was predictive of COMLEX-USA Level 2-CE performance.
A difficult Arctic science issue: Midlatitude weather linkages
NASA Astrophysics Data System (ADS)
Overland, James E.
2016-09-01
There is at present unresolved uncertainty whether Arctic amplification (increased air temperatures and loss of sea ice) impacts the location and intensities of recent major weather events in midlatitudes. There are three major impediments. The first is the null hypothesis where the shortness of time series since major amplification (∼15 years) is dominated by the variance of the physical process in the attribution calculation. This makes it impossible to robustly distinguish the influence of Arctic forcing of regional circulation from random events. The second is the large chaotic jet stream variability at midlatitudes producing a small Arctic forcing signal-to-noise ratio. Third, there are other potential external forcings of hemispheric circulation, such as teleconnections driven by tropical and midlatitude sea surface temperature anomalies. It is, however, important to note and understand recent emerging case studies. There is evidence for a causal connection of Barents-Kara sea ice loss, a stronger Siberian High, and cold air outbreaks into eastern Asia. Recent cold air penetrating into the southeastern United States was related to a shift in the long-wave atmospheric wind pattern and reinforced by warmer temperatures west of Greenland. Arctic Linkages is a major research challenge that benefits from an international focus on the topic.
NASA Astrophysics Data System (ADS)
Jaumann, Peter Josef
1995-01-01
Estimates of past natural climatic variability on long time scales (centuries to millennia) are crucial in testing climate models. The process of model validation takes advantage of long general circulation model (GCM) integrations, instrumental and satellite observations, and paleoclimatic records. Here I use paleoclimatic proxy records from central North America spanning the last 150 ka to characterize climatic variability on sub-orbital time scales. A terrestrial last interglacial (~ 130 to 75 kyr BP) pollen sequence from south-central Illinois, U.S.A., contains climatic variance in frequency bands between 1 cycle/10 kyr and 1 cycle/1 kyr. The temporal variance is best developed as alternating cycles of pollen assemblages indicative of wet and dry conditions. Spectral cross-correlations between selected pollen types and potential forcings (ETP (eccentricity, tilt, precession), SPECMAP delta^{18}O) implicate oceanic and solar processes as possible mechanisms driving last interglacial vegetation and climate change in the Midwestern U.S. During the last glacial stage (LGS; 20 to 16 kyr BP) a lacustrine sequence from the central Mississippi River valley experienced major flooding events caused by intermittent melting of the Laurentide ice sheet. Rock -magnetic and grain size data confirm the physical record of flood clays. Correlation of the flood clays to the Greenland (GRIP) ice core is weak. However, the Laurentide melting events seem to fall temporally between the releases of minor LGS iceberg discharges into the North Atlantic. The GRIP delta^{18}O and the Midwestern U.S. magnetic susceptibility time series indicate sub-Milankovitch climate variability modes. Mapping, multivariate, and time series analyses of Holocene (8 to 1 ka) pollen sequences from central North America suggest spatial patterns of vegetation and climate change on sub-orbital to millennial time scales. The rate, magnitude, and spatial patterns of change varied considerably over the study region. Major climatic variance contained in several well-dated pollen time series ranges between 1 cycle/6 kyr and 1 cycle/0.6 kyr. Singular and cross -spectral analyses, again, suggest solar and oceanic forcing. Although it is difficult to attribute past climatic changes to specific forcings, the geologic record of past global change will prove invaluable in the assessment of long-term future climate change and prediction.
Affective Computing and the Impact of Gender and Age
Rukavina, Stefanie; Gruss, Sascha; Hoffmann, Holger; Tan, Jun-Wen; Walter, Steffen; Traue, Harald C.
2016-01-01
Affective computing aims at the detection of users’ mental states, in particular, emotions and dispositions during human-computer interactions. Detection can be achieved by measuring multimodal signals, namely, speech, facial expressions and/or psychobiology. Over the past years, one major approach was to identify the best features for each signal using different classification methods. Although this is of high priority, other subject-specific variables should not be neglected. In our study, we analyzed the effect of gender, age, personality and gender roles on the extracted psychobiological features (derived from skin conductance level, facial electromyography and heart rate variability) as well as the influence on the classification results. In an experimental human-computer interaction, five different affective states with picture material from the International Affective Picture System and ULM pictures were induced. A total of 127 subjects participated in the study. Among all potentially influencing variables (gender has been reported to be influential), age was the only variable that correlated significantly with psychobiological responses. In summary, the conducted classification processes resulted in 20% classification accuracy differences according to age and gender, especially when comparing the neutral condition with four other affective states. We suggest taking age and gender specifically into account for future studies in affective computing, as these may lead to an improvement of emotion recognition accuracy. PMID:26939129
Ecological determinants of mean family age of angiosperm trees in forest communities in China
NASA Astrophysics Data System (ADS)
Qian, Hong; Chen, Shengbin
2016-06-01
Species assemblage in a local community is determined by the interplay of evolutionary and ecological processes. The Tropical Niche Conservatism hypothesis proposes mechanisms underlying patterns of biodiversity in biological communities along environmental gradients. This hypothesis predicts that, among other things, clades in areas with warm or wet environments are, on average, older than those in areas with cold or dry environments. Focusing on angiosperm trees in forests, this study tested the age-related prediction of the Tropical Niche Conservatism hypothesis. We related the mean family age of angiosperm trees in 57 local forests from across China with 23 current and paleo-environmental variables, which included all major temperature- and precipitation-related variables. Our study shows that the mean family age of angiosperm trees in local forests was positively correlated with temperature and precipitation. This finding is consistent with the age-related prediction of the Tropical Niche Conservatism hypothesis. Approximately 85% of the variance in the mean family age of angiosperm trees was explained by temperature-related variables, and 81% of the variance in the mean family age of angiosperm trees was explained by precipitation-related variables. Climatic conditions at the Last Glacial Maximum did not explain additional variation in mean family age after accounting for current environmental conditions.
Taylor, Mark; Bryan, Rebecca; Galloway, Francis
2013-02-01
It is becoming increasingly difficult to differentiate the performance of new joint replacement designs using available preclinical test methods. Finite element analysis is commonly used and the majority of published studies are performed on representative anatomy, assuming optimal implant placement, subjected to idealised loading conditions. There are significant differences between patients and accounting for this variability will lead to better assessment of the risk of failure. This review paper provides a comprehensive overview of the techniques available to account for patient variability. There is a brief overview of patient-specific model generation techniques, followed by a review of multisubject patient-specific studies performed on the intact and implanted femur and tibia. In particular, the challenges and limitations of manually generating models for such studies are discussed. To efficiently account for patient variability, the application of statistical shape and intensity models (SSIM) are being developed. Such models have the potential to synthetically generate thousands of representative models generated from a much smaller training set. Combined with the automation of the prosthesis implantation process, SSIM provides a potentially powerful tool for assessing the next generation of implant designs. The potential application of SSIM are discussed along with their limitations. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Selle, B.; Schwientek, M.
2012-04-01
Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables and environmental tracers indicating groundwater age were analysed for deep groundwater from production wells. For deep groundwater, we found that microbial turnover was stronger influenced by local availability of energy sources than by travel times of groundwater to the wells. Groundwater quality primarily reflected the input of pollutants determined by landuse, e.g. agrochemicals. We concluded that for water quality in the Ammer catchment, conservative mixing of waters with different origin is more important than reactive transport processes along the flow path.
Arylimidamide-Azole Combinations Against Leishmaniasis
2015-09-01
potency of posaconazole in an amastigote macrophage assay2, the only azole to demonstrate activity in vitro against CL species, showed variable activity ...ranging from no activity observed against L. panamensis and L. guyanensis to modest activity against L. tropica to potent activity against L. major...species, and the potency is variable; while posaconazole is active against Old World CL species such as L. major and L. tropica it is not active
Characteristics of regional aerosols: Southern Arizona and eastern Pacific Ocean
NASA Astrophysics Data System (ADS)
Prabhakar, Gouri
Atmospheric aerosols impact the quality of our life in many direct and indirect ways. Inhalation of aerosols can have harmful effects on human health. Aerosols also have climatic impacts by absorbing or scattering solar radiation, or more indirectly through their interactions with clouds. Despite a better understanding of several relevant aerosol properties and processes in the past years, they remain the largest uncertainty in the estimate of global radiative forcing. The uncertainties arise because although aerosols are ubiquitous in the Earth's atmosphere they are highly variable in space, time and their physicochemical properties. This makes in-situ measurements of aerosols vital in our effort towards reducing uncertainties in the estimate of global radiative forcing due to aerosols. This study is an effort to characterize atmospheric aerosols at a regional scale, in southern Arizona and eastern Pacific Ocean, based on ground and airborne observations of aerosols. Metals and metalloids in particles with aerodynamic diameter (Dp) smaller than 2.5 μm are found to be ubiquitous in southern Arizona. The major sources of the elements considered in the study are identified to be crustal dust, smelting/mining activities and fuel combustion. The spatial and temporal variability in the mass concentrations of these elements depend both on the source strength and meteorological conditions. Aircraft measurements of aerosol and cloud properties collected during various field campaigns over the eastern Pacific Ocean are used to study the sources of nitrate in stratocumulus cloud water and the relevant processes. The major sources of nitrate in cloud water in the region are emissions from ships and wildfires. Different pathways for nitrate to enter cloud water and the role of meteorology in these processes are examined. Observations of microphysical properties of ambient aerosols in ship plumes are examined. The study shows that there is an enhancement in the number concentration of giant cloud condensation nuclei (Dp > 2 microm) in ship plumes relative to the unperturbed background regions over the ocean.
Wu, Huiquan; White, Maury; Khan, Mansoor A
2011-02-28
The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.
Statham, Melissa McCarty; Willging, J Paul
2010-10-01
Guidelines issued by the Association of Operating Room Nurses and the Association of Professionals in Infection Control and Epidemiology recommend high-level disinfection (HLD) for semicritical instruments, such as flexible endoscopes. We aim to examine the durability of endoscopes to continued use and automated HLD. We report the number of duty cycles a flexible endoscope can withstand before repairs should be anticipated. Retrospective review. A total of 4,336 endoscopic exams and subsequent disinfection cycles were performed with 60 flexible endoscopes in an outpatient tertiary pediatric otolaryngology practice from 2005 to 2009. All endoscopes were systemically cleaned with mechanical cleansing followed by leak testing, enzymatic cleaning, and exposure to Orthophthaldehyde (0.55%) for 5 minutes at a temperature of at least 25°C, followed by rinsing for 3 minutes. A total of 77 repairs were performed, 48 major (average cost $3,815.97), and 29 minor (average cost $326.85). On average, the 2.2-mm flexible endoscopes were utilized for 61.9 examinations before major repair was needed, whereas the 3.6 mm endoscopes were utilized for 154.5 exams before needing minor repairs. No major repairs have been needed to date on the 3.6-mm endoscopes. Automated endoscope reprocessor use for HLD is an effective means to disinfect and process flexible endoscopes. This minimizes variability in the processing of the endoscopes and maximizes the rate of successful HLD. Even when utilizing standardized, automated HLD and limiting the number of personnel processing the endoscopes, smaller fiberoptic endoscopes demonstrate a shortened time interval between repairs than that seen with the larger endoscopes. Laryngoscope, 2010.
Modeling Atmospheric CO2 Processes to Constrain the Missing Sink
NASA Technical Reports Server (NTRS)
Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.
2005-01-01
We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.
Controls and variability of solute and sedimentary fluxes in Arctic and sub-Arctic Environments
NASA Astrophysics Data System (ADS)
Dixon, John
2015-04-01
Six major factors consistently emerge as controls on the spatial and temporal variability in sediment and solute fluxes in cold climates. They are climatic, geologic, physiographic or relief, biologic, hydrologic, and regolith factors. The impact of these factors on sediment and solute mass transfer in Arctic and sub-Arctic environments is examined. Comparison of non-glacierized Arctic vs. subarctic drainage basins reveals the effects of these controls. All drainage basins exhibit considerable variability in rates of sediment and solute fluxes. For the non-glacierized drainage basins there is a consistent increase in sediment mass transfer by slope processes and fluvial processes as relief increases. Similarly, a consistent increase in sediment mass transfer by slope and fluvial processes is observed as total precipitation increases. Similar patterns are also observed with respect to solute transport and relief and precipitation. Lithologic factors are most strongly observed in the contrast between volcanic vs. plutonic igneous bedrock substrates. Basins underlain by volcanic rocks display greater mass transfers than those underlain by plutonic rocks. Biologic influences are most strongly expressed by variations in extent of vegetation cover and the degree of human interference, with human impacted basins generating greater fluxes. For glacierized basins the fundamental difference to non-glacierized basins is an overall increase in mean annual mass transfers of sediment and a generally smaller magnitude solute transfer. The principal role of geology is observed with respect to lithology. Catchments underlain by limestone demonstrate substantially greater solute mass transfers than sediment transfer. The influence of relief is seen in the contrast in mass transfers between upland and lowland drainage basins with upland basins generating greater sediment and solute transfers than lowland basins. For glacierized basins the effects of biology and regolith appear to be largely overridden by the hydrologic impacts of glacierization.
Selecting the process variables for filament winding
NASA Technical Reports Server (NTRS)
Calius, E.; Springer, G. S.
1986-01-01
A model is described which can be used to determine the appropriate values of the process variables for filament winding cylinders. The process variables which can be selected by the model include the winding speed, fiber tension, initial resin degree of cure, and the temperatures applied during winding, curing, and post-curing. The effects of these process variables on the properties of the cylinder during and after manufacture are illustrated by a numerical example.
Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.
Ioannou, L A; Li Puma, G; Fatta-Kassinos, D
2015-04-09
Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
Improved Uncertainty Quantification in Groundwater Flux Estimation Using GRACE
NASA Astrophysics Data System (ADS)
Reager, J. T., II; Rao, P.; Famiglietti, J. S.; Turmon, M.
2015-12-01
Groundwater change is difficult to monitor over large scales. One of the most successful approaches is in the remote sensing of time-variable gravity using NASA Gravity Recovery and Climate Experiment (GRACE) mission data, and successful case studies have created the opportunity to move towards a global groundwater monitoring framework for the world's largest aquifers. To achieve these estimates, several approximations are applied, including those in GRACE processing corrections, the formulation of the formal GRACE errors, destriping and signal recovery, and the numerical model estimation of snow water, surface water and soil moisture storage states used to isolate a groundwater component. A major weakness in these approaches is inconsistency: different studies have used different sources of primary and ancillary data, and may achieve different results based on alternative choices in these approximations. In this study, we present two cases of groundwater change estimation in California and the Colorado River basin, selected for their good data availability and varied climates. We achieve a robust numerical estimate of post-processing uncertainties resulting from land-surface model structural shortcomings and model resolution errors. Groundwater variations should demonstrate less variability than the overlying soil moisture state does, as groundwater has a longer memory of past events due to buffering by infiltration and drainage rate limits. We apply a model ensemble approach in a Bayesian framework constrained by the assumption of decreasing signal variability with depth in the soil column. We also discuss time variable errors vs. time constant errors, across-scale errors v. across-model errors, and error spectral content (across scales and across model). More robust uncertainty quantification for GRACE-based groundwater estimates would take all of these issues into account, allowing for more fair use in management applications and for better integration of GRACE-based measurements with observations from other sources.
NASA Astrophysics Data System (ADS)
Roedig, Edna; Cuntz, Matthias; Huth, Andreas
2015-04-01
The effects of climatic inter-annual fluctuations and human activities on the global carbon cycle are uncertain and currently a major issue in global vegetation models. Individual-based forest gap models, on the other hand, model vegetation structure and dynamics on a small spatial (<100 ha) and large temporal scale (>1000 years). They are well-established tools to reproduce successions of highly-diverse forest ecosystems and investigate disturbances as logging or fire events. However, the parameterizations of the relationships between short-term climate variability and forest model processes are often uncertain in these models (e.g. daily variable temperature and gross primary production (GPP)) and cannot be constrained from forest inventories. We addressed this uncertainty and linked high-resolution Eddy-covariance (EC) data with an individual-based forest gap model. The forest model FORMIND was applied to three diverse tropical forest sites in the Amazonian rainforest. Species diversity was categorized into three plant functional types. The parametrizations for the steady-state of biomass and forest structure were calibrated and validated with different forest inventories. The parameterizations of relationships between short-term climate variability and forest model processes were evaluated with EC-data on a daily time step. The validations of the steady-state showed that the forest model could reproduce biomass and forest structures from forest inventories. The daily estimations of carbon fluxes showed that the forest model reproduces GPP as observed by the EC-method. Daily fluctuations of GPP were clearly reflected as a response to daily climate variability. Ecosystem respiration remains a challenge on a daily time step due to a simplified soil respiration approach. In the long-term, however, the dynamic forest model is expected to estimate carbon budgets for highly-diverse tropical forests where EC-measurements are rare.
NASA Astrophysics Data System (ADS)
Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard
2018-07-01
This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.
Neighborhood Predictors of Cognitive Training Outcomes and Trajectories in ACTIVE
Meyer, Oanh L.; Sisco, Shannon M.; Harvey, Danielle; Zahodne, Laura B.; Glymour, M. Maria; Manly, Jennifer J.; Marsiske, Michael
2015-01-01
We examined the influence of neighborhood socioeconomic position (SEP), racial/ethnic composition, and living in a major city on cognitive trajectories and intervention outcomes. Data came from the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study (N = 2,438). Mixed effects analyses examined associations between neighborhood variables and memory, reasoning, speed of processing, and everyday cognition, estimating differences in initial gains (potentially related to practice) and long-term rate of change over 10 years. The effect of reasoning training on initial gain was weaker for individuals in a major city. For everyday cognition, there was a stronger initial gain for memory-trained and control participants in areas with more racial/ethnic minorities, and for speed-trained and control individuals in higher SEP areas. The racial/ethnic minority effect was no longer significant after adjustment for multiple comparisons. Neighborhood factors may be more important in practice-related improvement than in long-term change. PMID:26667987
Status, Alert System, and Prediction of Cyanobacterial Bloom in South Korea
Srivastava, Ankita; Ahn, Chi-Yong; Asthana, Ravi Kumar; Lee, Hyung-Gwan; Oh, Hee-Mock
2015-01-01
Bloom-forming freshwater cyanobacterial genera pose a major ecological problem due to their ability to produce toxins and other bioactive compounds, which can have important implications in illnesses of humans and livestock. Cyanobacteria such as Microcystis, Anabaena, Oscillatoria, Phormidium, and Aphanizomenon species producing microcystins and anatoxin-a have been predominantly documented from most South Korean lakes and reservoirs. With the increase in frequency of such blooms, various monitoring approaches, treatment processes, and prediction models have been developed in due course. In this paper we review the field studies and current knowledge on toxin producing cyanobacterial species and ecological variables that regulate toxin production and bloom formation in major rivers (Han, Geum, Nakdong, and Yeongsan) and reservoirs in South Korea. In addition, development of new, fast, and high-throughput techniques for effective monitoring is also discussed with cyanobacterial bloom advisory practices, current management strategies, and their implications in South Korean freshwater bodies. PMID:25705675
NASA Astrophysics Data System (ADS)
Ballinger, Marcel Y.; Larson, Timothy V.
2014-12-01
Research and development (R&D) facility emissions are difficult to characterize due to their variable processes, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compound (VOC) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified between 9 and 11 source-related factors contributing to stack emissions, depending on the building. Similar factors between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions; other factors had similar profiles for two or more buildings but not all four. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit.
Study of process variables associated with manufacturing hermetically-sealed nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Miller, L.; Doan, D. J.; Carr, E. S.
1971-01-01
A program to determine and study the critical process variables associated with the manufacture of aerospace, hermetically-sealed, nickel-cadmium cells is described. The determination and study of the process variables associated with the positive and negative plaque impregnation/polarization process are emphasized. The experimental data resulting from the implementation of fractional factorial design experiments are analyzed by means of a linear multiple regression analysis technique. This analysis permits the selection of preferred levels for certain process variables to achieve desirable impregnated plaque characteristics.
The Effects Of Urban Landscape Patterns On Rainfall-Runoff Processes At Small Scale
NASA Astrophysics Data System (ADS)
Chen, L.
2016-12-01
Many studies have indicated that urban landscape change may alter rainfall-runoff processes. However, how urban landscape pattern affect this process is little addressed. In this study, the hydrological effects of landscape pattern on rainfall-runoff processes at small-scale was explored. Twelve residential blocks with independent drainage systems in Beijing were selected as case study areas. Impervious metrics of these blocks, i.e., total impervious area (TIA) and directly connected impervious area (DCIA), were identified. A drainage index describing catchment general drainage load and the overland flow distance, Ad, was estimated and used as one of the landscape spatial metrics. Three scenarios were designed to test the potential influence of impervious surface pattern on runoff processes. Runoff variables including total and peak runoff depth (Qt and Qp) were simulated under different rainfall conditions by Storm Water Management Model (SWMM). The relationship between landscape patterns and runoff variables were analyzed, and further among the three scenarios. The results demonstrated that, in small urban blocks, spatial patterns have inherent influences on rainfall-runoff processes. Specifically, (1) Imperviousness acts as effective indicators in predicting both Qt and Qp. As rainfall intensity increases, the major affecting factor changes from DCIA to TIA for both Qt and Qp; (2) Increasing the size of drainage area dominated by each drainage inlet will benefit the block peak flow mitigation; (3) Different spatial concentrations of impervious surfaces have inherent influences on Qp, when impervious surfaces located away from the outlet can reduce the peak flow discharge. These findings may provide insights into the role of urban landscape patterns in driving rainfall-runoff responses in urbanization, which is essential for urban planning and stormwater management.
Effects of diurnal temperature range and drought on wheat yield in Spain
NASA Astrophysics Data System (ADS)
Hernandez-Barrera, S.; Rodriguez-Puebla, C.; Challinor, A. J.
2017-07-01
This study aims to provide new insight on the wheat yield historical response to climate processes throughout Spain by using statistical methods. Our data includes observed wheat yield, pseudo-observations E-OBS for the period 1979 to 2014, and outputs of general circulation models in phase 5 of the Coupled Models Inter-comparison Project (CMIP5) for the period 1901 to 2099. In investigating the relationship between climate and wheat variability, we have applied the approach known as the partial least-square regression, which captures the relevant climate drivers accounting for variations in wheat yield. We found that drought occurring in autumn and spring and the diurnal range of temperature experienced during the winter are major processes to characterize the wheat yield variability in Spain. These observable climate processes are used for an empirical model that is utilized in assessing the wheat yield trends in Spain under different climate conditions. To isolate the trend within the wheat time series, we implemented the adaptive approach known as Ensemble Empirical Mode Decomposition. Wheat yields in the twenty-first century are experiencing a downward trend that we claim is a consequence of widespread drought over the Iberian Peninsula and an increase in the diurnal range of temperature. These results are important to inform about the wheat vulnerability in this region to coming changes and to develop adaptation strategies.
River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions
NASA Astrophysics Data System (ADS)
Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.
2007-10-01
River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
Instrument Selection for Randomized Controlled Trials Why This and Not That?
Records, Kathie; Keller, Colleen; Ainsworth, Barbara; Permana, Paska
2011-01-01
A fundamental linchpin for obtaining rigorous findings in quantitative research involves the selection of survey instruments. Psychometric recommendations are available for the processes for scale development and testing and guidance for selection of established scales. These processes are necessary to address the validity link between the phenomena under investigation, the empirical measures and, ultimately, the theoretical ties between these and the world views of the participants. Detailed information is most often provided about study design and protocols, but far less frequently is a detailed theoretical explanation provided for why specific instruments are chosen. Guidance to inform choices is often difficult to find when scales are needed for specific cultural, ethnic, or racial groups. This paper details the rationale underlying instrument selection for measurement of the major processes (intervention, mediator and moderator variables, outcome variables) in an ongoing study of postpartum Latinas, Madres para la Salud [Mothers for Health]. The rationale underpinning our choices includes a discussion of alternatives, when appropriate. These exemplars may provide direction for other intervention researchers who are working with specific cultural, racial, or ethnic groups or for other investigators who are seeking to select the ‘best’ instrument. Thoughtful consideration of measurement and articulation of the rationale underlying our choices facilitates the maintenance of rigor within the study design and improves our ability to assess study outcomes. PMID:21986392
Via patterning in the 7-nm node using immersion lithography and graphoepitaxy directed self-assembly
NASA Astrophysics Data System (ADS)
Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel
2017-04-01
Insertion of a graphoepitaxy directed self-assembly process as a via patterning technology into integrated circuit fabrication is seriously considered for the 7-nm node and beyond. At these dimensions, a graphoepitaxy process using a cylindrical block copolymer that enables hole multiplication can alleviate costs by extending 193-nm immersion-based lithography and significantly reducing the number of masks that would be required per layer. To be considered for implementation, it needs to be proved that this approach can achieve the required pattern quality in terms of defects and variability using a representative, aperiodic design. The patterning of a via layer from an actual 7-nm node logic layout is demonstrated using immersion lithography and graphoepitaxy directed self-assembly in a fab-like environment. The performance of the process is characterized in detail on a full 300-mm wafer scale. The local variability in an edge placement error of the obtained patterns (4.0 nm 3σ for singlets) is in line with the recent results in the field and significantly less than of the prepattern (4.9 nm 3σ for singlets). In addition, it is expected that pattern quality can be further improved through an improved mask design and optical proximity correction. No major complications for insertion of the graphoepitaxy directed self-assembly into device manufacturing were observed.
NASA Astrophysics Data System (ADS)
Yuan, C.; Lau, W. K. M.; Li, Z.
2016-12-01
In recent years, the discovery of the Asian Tropopause Aerosol Layer (ATAL) from NASA satellite observations has sparked much interests in research on its composition, origin and relationships to the transport processes of atmospheric constituents in the upper troposphere and lower stratosphere (UTLS) and the variability of the Asian Monsoon Anticyclone (AMA). In this paper, based on analysis of MERRA2 reanalysis data, we present results showing that: 1) water vapor, aerosols and chemical gases (BC, OC, dust and CO) originated for the earth surface contribute significantly to the composition of the ATAL during the Asian summer monsoon, 2) one of the major pathways is via the strong large-scale vertical motion, and convective ascent over the Northern Himalayan Foothills during the peak phase of the Indian monsoon, 3) once transported into the UTLS , atmospheric constituents are capped by the Tropopuase inversion Layer (TIL) and advected around within and in the vicinity of the AMA forming the ATAL, 4) the ATAL is modulated by UTLS transport processes which undergo intrinsic monsoon intraseasonal oscillations with 20-30 day quasi-periodicity, coupled to lower tropospheric monsoon dynamics and diabatic heating processes, 5) the pre-monsoon accumulation of absorbing aerosols (BC, OC and dust) over the Indo-Gangetic Plain is more than likely to play an important role in enhancing the UTLS transport of atmospheric constituents from the earth surface to the ATAL.
Zhou, Jin; Heim, Derek
2014-11-01
To review the current literature and critically examine theories used to explain the link between athletic status and hazardous alcohol consumption, and highlight emergent perspectives. A search of online databases (Google Scholar, PubMed, ScienceDirect, PsychINFO) and a systematic methodology were used to identify relevant studies for inclusion. Sixty-six articles were included for review (publishing dates ranging from 1989 to 2013). The majority of the studies were from the USA (n = 52), with cross-sectional surveys the most utilized method of data collection. The literature outlines a number of important sport-specific factors that may be motivating drinking behaviour among student athletes. Moreover, social processes appear particularly important for sport-associated drinking. However there is still paucity in the theoretical underpinnings for this relationship, and the processes through which membership of a sports group may shape its members drinking. The role of identity emerged as an important variable to consider when exploring engagement of health behaviours, such as alcohol consumption. With the aim of reducing alcohol-related harm, the impact of sports group membership on psychosocial variables such as social identity and well-being warrants further exploration. Future research should explore the role of identity and group-level processes when examining the engagement of drinking behaviours of student sportspeople. © The Author 2014. Medical Council on Alcohol and Oxford University Press. All rights reserved.
An evaluation of accessibility and content of microsurgery fellowship websites.
Hu, Jiayi; Zhen, Meng; Olteanu, Cristina; Avram, Ronen
2016-01-01
Websites for residency and fellowship programs serve as effective educational and recruitment tools. To evaluate the accessibility and content of fellowship websites that are commonly used by microsurgery applicants for career development. A list of one-year microsurgery fellowship websites (MFWs) was compiled by visiting the centralized American Society for Reconstructive Microsurgery (ASRM) website, followed by performing an extensive 'Google' search in October 2015. Accessibility of MFWs was assessed. Website content regarding key recruitment and education variables was also comprehensively reviewed. Website content was correlated with program characteristics using t tests and ANOVA (two-tailed; P<0.05 was considered to be statistically significant). A list of 53 eligible programs was compiled. Only 15 of 51 (29%) ASRM program links were functional. On average, the combined content from ASRM website and individual MFWs had 2.91 of 6 recruitment variables and 1.32 of 6 education variables, respectively. The majority of programs listed 'eligibility criteria' (87%) and 'general information' (87%). 'Evaluation criteria' were most poorly reported (4%). Recruitment score was higher for United States programs compared with international counterparts (51% versus 33%, respectively; P=0.02). It was also higher in programs that focus on 'extremity' versus 'breast' (58% versus 37%; P=0.0028). Education scores did not differ according to location, program size, subspecialty of focus or participation in the Microsurgery Match process. Information regarding recruitment and education on most MFWs is scarce. Academic institutions should keep website content up to date and comprehensive to better assist candidates in the application process.
Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M
2016-07-01
High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments. © 2016 John Wiley & Sons Ltd.
De la Fuente, Jesus; Zapata, Lucía; Martínez-Vicente, Jose M.; Sander, Paul; Cardelle-Elawar, María
2014-01-01
The present investigation examines how personal self-regulation (presage variable) and regulatory teaching (process variable of teaching) relate to learning approaches, strategies for coping with stress, and self-regulated learning (process variables of learning) and, finally, how they relate to performance and satisfaction with the learning process (product variables). The objective was to clarify the associative and predictive relations between these variables, as contextualized in two different models that use the presage-process-product paradigm (the Biggs and DEDEPRO models). A total of 1101 university students participated in the study. The design was cross-sectional and retrospective with attributional (or selection) variables, using correlations and structural analysis. The results provide consistent and significant empirical evidence for the relationships hypothesized, incorporating variables that are part of and influence the teaching–learning process in Higher Education. Findings confirm the importance of interactive relationships within the teaching–learning process, where personal self-regulation is assumed to take place in connection with regulatory teaching. Variables that are involved in the relationships validated here reinforce the idea that both personal factors and teaching and learning factors should be taken into consideration when dealing with a formal teaching–learning context at university. PMID:25964764
Atmospheric component of the MPI-M Earth System Model: ECHAM6
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Giorgetta, Marco; Esch, Monika; Mauritsen, Thorsten; Crueger, Traute; Rast, Sebastian; Salzmann, Marc; Schmidt, Hauke; Bader, Jürgen; Block, Karoline; Brokopf, Renate; Fast, Irina; Kinne, Stefan; Kornblueh, Luis; Lohmann, Ulrike; Pincus, Robert; Reichler, Thomas; Roeckner, Erich
2013-06-01
ECHAM6, the sixth generation of the atmospheric general circulation model ECHAM, is described. Major changes with respect to its predecessor affect the representation of shortwave radiative transfer, the height of the model top. Minor changes have been made to model tuning and convective triggering. Several model configurations, differing in horizontal and vertical resolution, are compared. As horizontal resolution is increased beyond T63, the simulated climate improves but changes are incremental; major biases appear to be limited by the parameterization of small-scale physical processes, such as clouds and convection. Higher vertical resolution in the middle atmosphere leads to a systematic reduction in temperature biases in the upper troposphere, and a better representation of the middle atmosphere and its modes of variability. ECHAM6 represents the present climate as well as, or better than, its predecessor. The most marked improvements are evident in the circulation of the extratropics. ECHAM6 continues to have a good representation of tropical variability. A number of biases, however, remain. These include a poor representation of low-level clouds, systematic shifts in major precipitation features, biases in the partitioning of precipitation between land and sea (particularly in the tropics), and midlatitude jets that appear to be insufficiently poleward. The response of ECHAM6 to increasing concentrations of greenhouse gases is similar to that of ECHAM5. The equilibrium climate sensitivity of the mixed-resolution (T63L95) configuration is between 2.9 and 3.4 K and is somewhat larger for the 47 level model. Cloud feedbacks and adjustments contribute positively to warming from increasing greenhouse gases.
ERIC Educational Resources Information Center
Loveday, Christine Hawk
2012-01-01
The purpose of this study was to determine if there was a relationship among selected demographic variables and donor or nondonor status of alumni and employees at the participating university. The variables involving alumni were gender, highest degree earned, and college of major study. The variables regarding employees were gender and position.…
NASA Technical Reports Server (NTRS)
Ichoku, Charles M.
2010-01-01
The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the distribution of Saharan dust and other airborne matter around the region and to other parts of the world, the genesis of global atmospheric circulation, and the birth of such major (and often catastrophic) events as hurricanes. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.
Validating of Atmospheric Signals Associated with some of the Major Earthquakes in Asia (2003-2009)
NASA Technical Reports Server (NTRS)
Ouzounov, D. P.; Pulinets, S.; Liu, J. Y.; Hattori, K.; Oarritm N,; Taylor, P. T.
2010-01-01
The recent catastrophic earthquake in Haiti (January 2010) has provided and renewed interest in the important question of the existence of precursory signals related to strong earthquakes. Latest studies (VESTO workshop in Japan 2009) have shown that there were precursory atmospheric signals observed on the ground and in space associated with several recent earthquakes. The major question, still widely debated in the scientific community is whether such signals systematically precede major earthquakes. To address this problem we have started to validate the anomalous atmospheric signals during the occurrence of large earthquakes. Our approach is based on integration analysis of several physical and environmental parameters (thermal infrared radiation, electron concentration in the ionosphere, Radon/ion activities, air temperature and seismicity) that were found to be associated with earthquakes. We performed hind-cast detection over three different regions with high seismicity Taiwan, Japan and Kamchatka for the period of 2003-2009. We are using existing thermal satellite data (Aqua and POES); in situ atmospheric data (NOAA/NCEP); and ionospheric variability data (GPS/TEC and DEMETER). The first part of this validation included 42 major earthquakes (M greater than 5.9): 10 events in Taiwan, 15 events in Japan, 15 events in Kamchatka and four most recent events for M8.0 Wenchuan earthquake (May 2008) in China and M7.9 Samoa earthquakes (Sep 2009). Our initial results suggest a systematic appearance of atmospheric anomalies near the epicentral area, 1 to 5 days prior to the largest earthquakes, that could be explained by a coupling process between the observed physical parameters, and the earthquake preparation processes.
Response of the upper atmosphere to variations in the solar soft x-ray irradiance. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bailey, Scott Martin
1995-01-01
Terrestrial far ultraviolet (FUV) airglow emissions have been suggested as a means for remote sensing the structure of the upper atmosphere. The energy which leads to the excitation of FUV airglow emissions is solar irradiance at extreme ultraviolet (EUV) and soft x-ray wavelengths. Solar irradiance at these wavelengths is known to be highly variable; studies of nitric oxide (NO) in the lower thermosphere have suggested a variability of more than an order of magnitude in the solar soft x-ray irradiance. To properly interpret the FUV airflow, the magnitude of the solar energy deposition must be known. Previous analyses have used the electron impact excited Lyman-Birge-Hopfield (LBH) bands of N2 to infer the flux of photoelectrons in the atmosphere and thus to infer the magnitude of the solar irradiance. This dissertation presents the first simultaneous measurements of the FUV airglow, the major atmospheric constituent densities, and the solar EUV and soft x-ray irradiances. The measurements were made on three flights of an identical sounding rocket payload at different levels of solar activity. The linear response in brightness of the LBH bands to variations in solar irradiance is demonstrated. In addition to the N2 LBH bands, atomic oxygen lines at 135.6 and 130.4 nm are also studied. Unlike the LBH bands, these emissions undergo radiative transfer effects in the atmosphere. The OI emission at 135.6 nm is found to be well modeled using a radiative transfer calculation and the known excitation processes. Unfortunately, the assumed processes leading to OI 130.4 nm excitation are found to be insufficient to reproduce the observed variability of this emission. Production of NO in the atmosphere is examined; it is shown that a lower than previously reported variability in the solar soft x-ray irradiance is required to explain the variability of NO.
Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westendorf, Tiffany; Caraher, Joel; Chen, Wei
2015-03-31
The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-emore » project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.« less
Understanding scale dependency of climatic processes with diarrheal disease
NASA Astrophysics Data System (ADS)
Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.
2015-12-01
The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.
Why and How We Age, and Is That Process Modifiable?
NASA Astrophysics Data System (ADS)
Arking, R.
Aging is an almost-universal biological process that is better understood in terms of an evolutionary explanation than in terms of a medical or adaptationist explanation. The major advances in human longevity which took place in developed countries during the past century arose from decreases in external (e.g., environmental) sources of mortality, and not from any effect on the aging process. Laboratory studies show that the aging process is under genetic control, can be manipulated, and can be expressed in three different phenotypes. The adult lifespan consists of the health span (ages 20-55 yrs) and the senescent span (ages 55+), with a relatively short but variable transition phase between the two. The most socially desirable phenotype would be that where the transition phase is delayed and the health span extended with little effect on the senescent span. The genetic, nutritional, cell-signaling and pharmecutical interventions inducing this phenotype are discussed. The genetic architecture of senescence is discussed and its stochastic nature made clear. The social and ethical consequences of pharmecutical intervention into the aging process are briefly discussed.
Relative Role of Horizontal and Vertical Processes in Arctic Amplification
NASA Astrophysics Data System (ADS)
Kim, K. Y.
2017-12-01
The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.
Lara, M E; Klein, D N; Kasch, K L
2000-11-01
Three variables have been hypothesized to play important roles in prolonging the course of depressive episodes: a ruminative response style, significant interpersonal relationships, and childhood adversity. The authors examined whether these variables predicted the short-term course of major depressive disorder (MDD). Participants (n = 84) were college students with a recent-onset major depressive episode. Assessments included several interview and self-report measures, and data on interpersonal relationships were obtained from close confidants. Follow-up interviews were conducted 6 months later. After controlling for baseline severity, harsh discipline in childhood significantly predicted mean level of depression across the follow-up and level of depression at follow-up. Harsh discipline was also significantly associated with relapse but not with recovery. After controlling for baseline severity, rumination and the interpersonal variables did not predict the outcome of MDD.
The role of internal variability for decadal carbon uptake anomalies in the Southern Ocean
NASA Astrophysics Data System (ADS)
Spring, Aaron; Hi, Hongmei; Ilyina, Tatiana
2017-04-01
The Southern Ocean is a major sink for anthropogenic CO2 emissions and hence it plays an essential role in modulating global carbon cycle and climate change. Previous studies based on observations (e.g., Landschützer et al. 2015) show pronounced decadal variations of carbon uptake in the Southern Ocean in recent decades and this variability is largely driven by internal climate variability. However, due to limited ensemble size of simulations, the variability of this important ocean sink is still poorly assessed by the state-of-the-art earth system models (ESMs). To assess the internal variability of carbon sink in the Southern Ocean, we use a large ensemble of 100 member simulations based on the Max Planck Institute-ESM (MPI-ESM). The large ensemble of simulations is generated via perturbed initial conditions in the ocean and atmosphere. Each ensemble member includes a historical simulation from 1850 to 2005 with an extension until 2100 under Representative Concentration Pathway (RCP) 4.5 future projections. Here we use model simulations from 1980-2015 to compare with available observation-based dataset. We found several ensemble members showing decadal decreasing trends in the carbon sink, which are similar to the trend shown in observations. This result suggests that MPI-ESM large ensemble simulations are able to reproduce decadal variation of carbon sink in the Southern Ocean. Moreover, the decreasing trends of Southern Ocean carbon sink in MPI-ESM are mainly contributed by region between 50-60°S. To understand the internal variability of the air-sea carbon fluxes in the Southern Ocean, we further investigate the variability of underlying processes, such as physical climate variability and ocean biological processes. Our results indicate two main drivers for the decadal decreasing trend of carbon sink: i) Intensified winds enhance upwelling of old carbon-rich waters, this leads to increase of the ocean surface pCO2; ii) Primary production is reduced in area from 50-60°S, probably induced by reduced euphotic water column stability; therefore the biological drawdown of ocean surface pCO2 is weakened accordingly and hence the ocean is in favor of carbon outgassing. Landschützer, et al. (2015): The reinvigoration of the Southern Ocean carbon sink, Science, 349, 1221-1224.
Center for Research and Development in Teaching.
ERIC Educational Resources Information Center
Bush, Robert N.; Gage, N.L.
1968-01-01
The major portion of this report summarizes prior research at the Stanford Center for Research and Development in Teaching within the framework of three domains of variables: the behavioral or directly observable variables; the personological or those inferred from tests; and those institutional variables which affect the social, technological,…
Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A
1996-10-01
Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.
Pacholewicz, Ewa; Swart, Arno; Wagenaar, Jaap A; Lipman, Len J A; Havelaar, Arie H
2016-12-01
This study aimed at identifying explanatory variables that were associated with Campylobacter and Escherichia coli concentrations throughout processing in two commercial broiler slaughterhouses. Quantative data on Campylobacter and E. coli along the processing line were collected. Moreover, information on batch characteristics, slaughterhouse practices, process performance, and environmental variables was collected through questionnaires, observations, and measurements, resulting in data on 19 potential explanatory variables. Analysis was conducted separately in each slaughterhouse to identify which variables were related to changes in concentrations of Campylobacter and E. coli during the processing steps: scalding, defeathering, evisceration, and chilling. Associations with explanatory variables were different in the slaughterhouses studied. In the first slaughterhouse, there was only one significant association: poorer uniformity of the weight of carcasses within a batch with less decrease in E. coli concentrations after defeathering. In the second slaughterhouse, significant statistical associations were found with variables, including age, uniformity, average weight of carcasses, Campylobacter concentrations in excreta and ceca, and E. coli concentrations in excreta. Bacterial concentrations in excreta and ceca were found to be the most prominent variables, because they were associated with concentration on carcasses at various processing points. Although the slaughterhouses produced specific products and had different batch characteristics and processing parameters, the effect of the significant variables was not always the same for each slaughterhouse. Therefore, each slaughterhouse needs to determine its particular relevant measures for hygiene control and process management. This identification could be supported by monitoring changes in bacterial concentrations during processing in individual slaughterhouses. In addition, the possibility that management and food handling practices in slaughterhouses contribute to the differences in bacterial contamination between slaughterhouses needs further investigation.
Surface Ocean-Lower Atmosphere Studies: SOLAS
NASA Astrophysics Data System (ADS)
Wanninkhof, R.; Dickerson, R.; Barber, R.; Capone, D. G.; Duce, R.; Erickson, D.; Keene, W. C.; Lenschow, D.; Matrai, P. A.; McGillis, W.; McGillicuddy, D.; Penner, J.; Pszenny, A.
2002-05-01
The US Surface Ocean - Lower Atmosphere Study (US SOLAS) is a component of an international program (SOLAS) with an overall goal: to achieve a quantitative understanding of the key biogeochemical-physical interactions between the ocean and atmosphere, and of how this coupled system affects and is affected by climateand environmental change. There is increasing evidence that the biogeochemical cycles containing the building blocks of life such as carbon, nitrogen, and sulfur have been perturbed. These changes result in appreciable impacts and feedbacks in the SOLA region. The exact nature of the impacts and feedbacks are poorly constrained because of sparse observations, in particular relating to the connectivity and interrelationships between the major biogeochemical cycles and their interaction with physical forcing. It is in these areas that the research and the interdisciplinary research approaches advocated in US SOLAS will provide high returns. The research in US SOLAS will be heavily focused on process studies of the natural variability of key processes, anthropogenic perturbation of the processes, and the positive and negative feedbacks the processes will have on the biogeochemical cycles in the SOLA region. A major objective is to integrate the process study findings with the results from large-scale observations and with small and large- scale modeling and remote sensing efforts to improve our mechanistic understanding of large scale biogeochemical and physical phenomena and feedbacks. US SOLAS held an open workshop in May 2001 to lay the groundwork for the SOLAS program in the United States. Resulting highlights and issues will be summarized around 4 major themes: (1) Boundary-layer Physics, (2) Dynamics of long-lived climate relevant compounds, (3) Dynamics of short-lived climate relevant compounds, and (4) Atmospheric effects on marine biogeochemical processes. Comprehensive reports from the working groups of U.S. SOLAS, and the international science plan which served as overall guidance, can be found at We will explore possible dedicated, interdisciplinary ocean-atmosphere projects as examples of the critical interconnectivity of atmospheric, interfacial, and upper ocean processes to study phenomena of critical importance in understanding the earth's system.
Heralded processes on continuous-variable spaces as quantum maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreyrol, Franck; Spagnolo, Nicolò; Blandino, Rémi
2014-12-04
Heralding processes, which only work when a measurement on a part of the system give the good result, are particularly interesting for continuous-variables. They permit non-Gaussian transformations that are necessary for several continuous-variable quantum information tasks. However if maps and quantum process tomography are commonly used to describe quantum transformations in discrete-variable space, they are much rarer in the continuous-variable domain. Also, no convenient tool for representing maps in a way more adapted to the particularities of continuous variables have yet been explored. In this paper we try to fill this gap by presenting such a tool.
Gan, Zhaoyu; Diao, Feici; Wei, Qinling; Wu, Xiaoli; Cheng, Minfeng; Guan, Nianhong; Zhang, Ming; Zhang, Jinbei
2011-11-01
A correct timely diagnosis of bipolar depression remains a big challenge for clinicians. This study aimed to develop a clinical characteristic based model to predict the diagnosis of bipolar disorder among patients with current major depressive episodes. A prospective study was carried out on 344 patients with current major depressive episodes, with 268 completing 1-year follow-up. Data were collected through structured interviews. Univariate binary logistic regression was conducted to select potential predictive variables among 19 initial variables, and then multivariate binary logistic regression was performed to analyze the combination of risk factors and build a predictive model. Receiver operating characteristic (ROC) curve was plotted. Of 19 initial variables, 13 variables were preliminarily selected, and then forward stepwise exercise produced a final model consisting of 6 variables: age at first onset, maximum duration of depressive episodes, somatalgia, hypersomnia, diurnal variation of mood, irritability. The correct prediction rate of this model was 78% (95%CI: 75%-86%) and the area under the ROC curve was 0.85 (95%CI: 0.80-0.90). The cut-off point for age at first onset was 28.5 years old, while the cut-off point for maximum duration of depressive episode was 7.5 months. The limitations of this study include small sample size, relatively short follow-up period and lack of treatment information. Our predictive models based on six clinical characteristics of major depressive episodes prove to be robust and can help differentiate bipolar depression from unipolar depression. Copyright © 2011 Elsevier B.V. All rights reserved.
Predictors of student success in entry-level science courses
NASA Astrophysics Data System (ADS)
Singh, Mamta K.
Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.
Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing
NASA Astrophysics Data System (ADS)
Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.
2014-12-01
Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.
NASA Astrophysics Data System (ADS)
Rohling, E. J.; Liu, Q. S.; Roberts, A. P.; Stanford, J. D.; Rasmussen, S. O.; Langen, P. L.; Siddall, M.
2009-12-01
Previous studies have suggested a sound chronological correlation between the Hulu Cave record (East Asian monsoon) and Greenland ice-core records, which implies a dominant control of northern hemisphere climate processes on monsoon intensity. We present an objective, straightforward statistical evaluation that challenges this generally accepted paradigm for sub-orbital variability. We propose a more flexible, global interpretation, which takes into account a broad range of variability in the signal structures in the Hulu Cave and polar ice-core records, rather than a limited number of major transitions. Our analysis employs the layer-counted Greenland Ice-Core Chronology 2005 (GICC05), which was developed for Greenland records and has since been applied - via methane synchronisation - to the high-resolution δ 18O ice series from EPICA Dronning Maud Land (EDML). The GICC05 chronology allows these ice-core records to be compared to the U-Th dated Hulu Cave record within relatively narrow (˜3%) bounds of age uncertainty. Following previous suggestions, our proposed interpretation suggests that the East Asian monsoon is influenced by a combination of northern hemisphere 'pull' (which is more intense during boreal warm periods), and southern hemisphere 'push' (which is more intense monsoon during austral cold periods). Our analysis strongly suggests a dominant control on millennial-scale monsoon variability by southern hemisphere climate changes during glacial times when the monsoon is weak overall, and control by northern hemisphere climate changes during deglacial and interglacial times when the monsoon is strong. The deduced temporally variable relationship with southern hemisphere climate records offers a statistically more plausible reason for the apparent coincidence of major East Asian monsoon transitions with northern hemisphere (Dansgaard-Oeschger, DO) climate events during glacial times, than the traditional a priori interpretation of strict northern hemisphere control.
NASA Astrophysics Data System (ADS)
Wendler, L.; Csatho, B. M.; Schenk, A. F.
2017-12-01
The several distinct glaciers of Upernavik Isstrøm in NW Greenland exhibit variable thinning, retreat, and velocity behaviors, despite being in close proximity, draining into the same fjord, and experiencing similar climatic conditions. This study reconstructed the 1985-2016 surface elevation change history for each Upernavik glacier. The data sets used included altimetry data collected by NASA's ATM, LVIS, and ICESat systems and digital elevation models (DEMs) derived from 1985 aerial photographs; ASTER, SPOT, and Worldview-1 and 2 satellite stereo imagery. The Surface Elevation Reconstruction and Change detection (SERAC) program was used to combine the data and correct the DEMs for fusing with the altimetry data. The spatiotemporal pattern of ice surface change was partitioned into changes related to surface processes and ice dynamics. The resulting ice thickness change time series were compared to other data sets, such as bed elevation, SMB anomalies, runoff, as well as marginal retreat derived from satellite imagery corresponding to the ASTER DEMs, to investigate possible forcings causing the variable behavior of the glaciers. Major findings include detection of rapid dynamic thinning of glacier 1 between 2005 and 2006, during a period of a stable calving front position. Continuing thinning and speed-up led to a loss of contact with a pinning point causing a major retreat between 2007 and 2008. This sequence of events contradicts previously held hypotheses that major thinning was caused by reduced backstress when a long-lived floating tongue disintegrated. Also, our results show a period of large thinning on glacier 2 between 2010 and 2011, after the retreat of the front resulted in a loss of contact between the glacier and one of its flanking outcrops suggesting that reduction of lateral drag might have contributed to the thinning. While the study reinforces that bed topography is a major factor in controlling outlet glacier dynamic thinning, it also highlights the importance of other factors, such as variations in calving rates and lateral drag. The study produced improved surface elevation change histories of the Upernavik glaciers that are the most detailed and accurate to date and will be important for future numerical modeling studies of outlet glacier dynamic processes.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Proctor, Robert W.
2002-01-01
The purpose of this paper was to provide insight into the nature of response selection by reviewing the literature on stimulus-response compatibility (SRC) effects and the psychological refractory period (PRP) effect individually and jointly. The empirical findings and theoretical explanations of SRC effects that have been studied within a single-task context suggest that there are two response-selection routes-automatic activation and intentional translation. In contrast, all major PRP models reviewed in this paper have treated response selection as a single processing stage. In particular, the response-selection bottleneck (RSB) model assumes that the processing of Task 1 and Task 2 comprises two separate streams and that the PRP effect is due to a bottleneck located at response selection. Yet, considerable evidence from studies of SRC in the PRP paradigm shows that the processing of the two tasks is more interactive than is suggested by the RSB model and by most other models of the PRP effect. The major implication drawn from the studies of SRC effects in the PRP context is that response activation is a distinct process from final response selection. Response activation is based on both long-term and short-term task-defined S-R associations and occurs automatically and in parallel for the two tasks. The final response selection is an intentional act required even for highly compatible and practiced tasks and is restricted to processing one task at a time. Investigations of SRC effects and response-selection variables in dual-task contexts should be conducted more systematically because they provide significant insight into the nature of response-selection mechanisms.
NASA Astrophysics Data System (ADS)
Damé, Luc; Keckhut, Philippe; Hauchecorne, Alain; Meftah, Mustapha; Bekki, Slimane
2016-07-01
We present the SUITS/SWUSV microsatellite mission investigation: "Solar Ultraviolet Influence on Troposphere/Stratosphere, a Space Weather & Ultraviolet Solar Variability" mission. SUITS/SWUSV was developed to determine the origins of the Sun's activity, understand the flaring process (high energy flare characterization) and onset of CMEs (forecasting). Another major objective is to determine the dynamics and coupling of Earth's atmosphere and its response to solar variability (in particular UV) and terrestrial inputs. It therefore includes the prediction and detection of major eruptions and coronal mass ejections (Lyman-Alpha and Herzberg continuum imaging) the solar forcing on the climate through radiation and their interactions with the local stratosphere (UV spectral irradiance measures from 170 to 400 nm). The mission is proposed on a sun-synchronous polar orbit 18h-6h (for almost constant observing) and proposes a 7 instruments model payload of 65 kg - 65 W with: SUAVE (Solar Ultraviolet Advanced Variability Experiment), an optimized telescope for FUV (Lyman-Alpha) and MUV (200-220 nm Herzberg continuum) imaging (sources of variability); SOLSIM (Solar Spectral Irradiance Monitor), a spectrometer with 0.65 nm spectral resolution from 170 to 340 nm; SUPR (Solar Ultraviolet Passband Radiometers), with UV filter radiometers at Lyman-Alpha, Herzberg, MgII index, CN bandhead and UV bands coverage up to 400 nm; HEBS (High Energy Burst Spectrometers), a large energy coverage (a few tens of keV to a few hundreds of MeV) instrument to characterize large flares; EPT-HET (Electron-Proton Telescope - High Energy Telescope), measuring electrons, protons, and heavy ions over a large energy range; ERBO (Earth Radiative Budget and Ozone) NADIR oriented; and a vector magnetometer. Complete accommodation of the payload has been performed on a PROBA type platform very nicely. Heritage is important both for instruments (SODISM and PREMOS on PICARD, LYRA on PROBA-2, SOLSPEC on ISS,...) and platform (PROBA-2, PROBA-V,...), leading to high TRL levels (>7). SUITS/SWUSV was initially designed in view of the ESA/CAS AO for a Small Mission; it is now envisaged for a joint CNES/NASA opportunity with Europeans and Americans partners for a possible flight in 2021.
Lerner, E Brooke; Dayan, Peter S; Brown, Kathleen; Fuchs, Susan; Leonard, Julie; Borgialli, Dominic; Babcock, Lynn; Hoyle, John D; Kwok, Maria; Lillis, Kathleen; Nigrovic, Lise E; Mahajan, Prashant; Rogers, Alexander; Schwartz, Hamilton; Soprano, Joyce; Tsarouhas, Nicholas; Turnipseed, Samuel; Funai, Tomohiko; Foltin, George
2014-01-01
To describe pediatric patients transported by the Pediatric Emergency Care Applied Research Network's (PECARN's) affiliated emergency medical service (EMS) agencies and the process of submitting and aggregating data from diverse agencies. We conducted a retrospective analysis of electronic patient care data from PECARN's partner EMS agencies. Data were collected on all EMS runs for patients less than 19 years old treated between 2004 and 2006. We conducted analyses only for variables with usable data submitted by a majority of participating agencies. The investigators aggregated data between study sites by recoding it into categories and then summarized it using descriptive statistics. Sixteen EMS agencies agreed to participate. Fourteen agencies (88%) across 11 states were able to submit patient data. Two of these agencies were helicopter agencies (HEMS). Mean time to data submission was 378 days (SD 175). For the 12 ground EMS agencies that submitted data, there were 514,880 transports, with a mean patient age of 9.6 years (SD 6.4); 53% were male, and 48% were treated by advanced life support (ALS) providers. Twenty-two variables were aggregated and analyzed, but not all agencies were able to submit all analyzed variables and for most variables there were missing data. Based on the available data, median response time was 6 minutes (IQR: 4-9), scene time 15 minutes (IQR: 11-21), and transport time 9 minutes (IQR: 6-13). The most common chief complaints were traumatic injury (28%), general illness (10%), and respiratory distress (9%). Vascular access was obtained for 14% of patients, 3% received asthma medication, <1% pain medication, <1% assisted ventilation, <1% seizure medication, <1% an advanced airway, and <1% CPR. Respiratory rate, pulse, systolic blood pressure, and GCS were categorized by age and the majority of children were in the normal range except for systolic blood pressure in those under one year old. Despite advances in data definitions and increased use of electronic databases nationally, data aggregation across EMS agencies was challenging, in part due to variable data collection methods and missing data. In our sample, only a small proportion of pediatric EMS patients required prehospital medications or interventions.
Liu, Fengjie; Wang, Wen-Xiong
2015-09-01
Marine mussels have long been used as biomonitors of contamination of trace elements, but little is known about whether variation in tissue trace elements is significantly associated with those of macronutrients and major cations. The authors examined the variability of macronutrients and major cations and their potential relationships with bioaccumulation of trace elements. The authors analyzed the concentrations of macronutrients (C, N, P, S), major cations (Na, Mg, K, Ca), and trace elements (Al, V, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Pb) in the whole soft tissues of marine mussels Mytilus edulis and Perna viridis collected globally from 21 sites. The results showed that 12% to 84% of the variances in the trace elements was associated with major cations, and the tissue concentration of major cations such as Na and Mg in mussels was a good proxy for ambient seawater concentrations of the major cations. Specifically, bioaccumulation of most of the trace elements was significantly associated with major cations, and the relationships of major cations with trace cations and trace oxyanions were totally opposite. Furthermore, 14% to 69% of the variances in the trace elements were significantly associated with macronutrients. Notably, more than half of the variance in the tissue concentrations of As, Cd, V, Ba, and Pb was explained by the variance in macronutrients in one or both species. Because the tissue macronutrient concentrations were strongly associated with animal growth and reproduction, the observed coupling relationships indicated that these biological processes strongly influenced the bioaccumulation of some trace elements. The present study indicated that simultaneous quantification of macronutrients and major cations with trace elements can improve the interpretation of biomonitoring data. © 2015 SETAC.
Zhang, X.; McGuire, A.D.; Ruess, Roger W.
2006-01-01
A major challenge confronting the scientific community is to understand both patterns of and controls over spatial and temporal variability of carbon exchange between boreal forest ecosystems and the atmosphere. An understanding of the sources of variability of carbon processes at fine scales and how these contribute to uncertainties in estimating carbon fluxes is relevant to representing these processes at coarse scales. To explore some of the challenges and uncertainties in estimating carbon fluxes at fine to coarse scales, we conducted a modeling analysis of canopy foliar maintenance respiration for black spruce ecosystems of Alaska by scaling empirical hourly models of foliar maintenance respiration (Rm) to estimate canopy foliar Rm for individual stands. We used variation in foliar N concentration among stands to develop hourly stand-specific models and then developed an hourly pooled model. An uncertainty analysis identified that the most important parameter affecting estimates of canopy foliar Rm was one that describes R m at 0??C per g N, which explained more than 55% of variance in annual estimates of canopy foliar Rm. The comparison of simulated annual canopy foliar Rm identified significant differences between stand-specific and pooled models for each stand. This result indicates that control over foliar N concentration should be considered in models that estimate canopy foliar Rm of black spruce stands across the landscape. In this study, we also temporally scaled the hourly stand-level models to estimate canopy foliar Rm of black spruce stands using mean monthly temperature data. Comparisons of monthly Rm between the hourly and monthly versions of the models indicated that there was very little difference between the estimates of hourly and monthly models, suggesting that hourly models can be aggregated to use monthly input data with little loss of precision. We conclude that uncertainties in the use of a coarse-scale model for estimating canopy foliar Rm at regional scales depend on uncertainties in representing needle-level respiration and on uncertainties in representing the spatial variability of canopy foliar N across a region. The development of spatial data sets of canopy foliar N represents a major challenge in estimating canopy foliar maintenance respiration at regional scales. ?? Springer 2006.
Cesari, D; De Benedetto, G E; Bonasoni, P; Busetto, M; Dinoi, A; Merico, E; Chirizzi, D; Cristofanelli, P; Donateo, A; Grasso, F M; Marinoni, A; Pennetta, A; Contini, D
2018-01-15
Comparison of fine and coarse fractions in terms of sources and dynamics is scarce in southeast Mediterranean countries; differences are relevant because of the importance of natural sources like sea spray and Saharan dust advection, because most of the monitoring networks are limited to PM 10 . In this work, the main seasonal variabilities of sources and processes involving fine and coarse PM (particulate matter) were studied at the Environmental-Climate Observatory of Lecce (Southern Italy). Simultaneous PM 2.5 and PM 10 samples were collected between July 2013 and July 2014 and chemically analysed to determine concentrations of several species: OC (organic carbon) and EC (elemental carbon) via thermo-optical analysis, 9 major ions via IC, and 23 metals via ICP-MS. Data was processed through mass closure analysis and Positive Matrix Factorization (PMF) receptor model characterizing seasonal variabilities of nine sources contributions. Organic and inorganic secondary aerosol accounts for 43% of PM 2.5 and 12% of PM 2.5-10 with small seasonal changes. SIA (secondary inorganic aerosol) seasonal pattern is opposite to that of SOC (secondary organic carbon). SOC is larger during the cold period, sulphate (the major contributor to SIA) is larger during summer. Two forms of nitrate were identified: NaNO 3 , correlated with chloride depletion and aging of sea-spray, mainly present in PM 2.5-10 ; NH 4 NO 3 more abundant in PM 2.5 . Biomass burning is a relevant source with larger contribution during autumn and winter because of the influence of domestic heating, however, is not negligible in spring and summer, because of the contributions of fires and agricultural practices. Mass closure analysis and PMF results identify two soil sources: crustal associated to long range transport and carbonates associated to local resuspended dust. Both sources contributes to the coarse fraction and have different dynamics with crustal source contributing mainly in high winds from SE conditions and carbonates during high winds from North direction. Copyright © 2017 Elsevier B.V. All rights reserved.
Volcanoclastics of the Walvis Ridge
NASA Astrophysics Data System (ADS)
Eroshenko, D. V.; Kharin, G. S.
2018-03-01
The paper generalizes the distribution of volcanoclastic material in the Cenozoic sedimentary cover of the Walvis Ridge, made on the basis of the DSDP (Deep Sea Drilling Projects) and ODP (Ocean Drilling Program). The cycles of volcanoclastic accumulation have been distinguished. It has been proved that the distribution of the material in the Paleogene primary reflects the dynamics of volcanism of the ridge itself. The sources of volcanoclastics have been determined. The possibility of the existence of Early Eocene submarine volcanoes in the central part of the ridge has been shown. The dynamics of volcanism of the ridge has been compared with the variability of major climatic markers in sediments, indicating the unity of volcanic processes in the region and processes that led to an increase in the index of 13C content in sediments and CO2 content in the atmosphere.
On-chip continuous-variable quantum entanglement
NASA Astrophysics Data System (ADS)
Masada, Genta; Furusawa, Akira
2016-09-01
Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.
Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution
NASA Astrophysics Data System (ADS)
Donges, J. F.; Donner, R. V.; Trauth, M. H.; Marwan, N.; Schellnhuber, H. J.; Kurths, J.
2012-04-01
Potential paleoclimatic driving mechanisms acting on human evolution present an open problem of cross-disciplinary scientific interest. The analysis of paleoclimate archives encoding the environmental variability in East Africa during the last 5 Ma (million years) has triggered an ongoing debate about possible candidate processes and evolutionary mechanisms. In this work, we apply a novel nonlinear statistical technique, recurrence network analysis, to three distinct marine records of terrigenous dust flux. Our method enables us to identify three epochs with transitions between qualitatively different types of environmental variability in North and East Africa during the (i) Mid-Pliocene (3.35-3.15 Ma BP (before present)), (ii) Early Pleistocene (2.25-1.6 Ma BP), and (iii) Mid-Pleistocene (1.1-0.7 Ma BP). A deeper examination of these transition periods reveals potential climatic drivers, including (i) large-scale changes in ocean currents due to a spatial shift of the Indonesian throughflow in combination with an intensification of Northern Hemisphere glaciation, (ii) a global reorganization of the atmospheric Walker circulation induced in the tropical Pacific and Indian Ocean, and (iii) shifts in the dominating temporal variability pattern of glacial activity during the Mid-Pleistocene, respectively. A reexamination of the available fossil record demonstrates statistically significant coincidences between the detected transition periods and major steps in hominin evolution. This suggests that the observed shifts between more regular and more erratic environmental variability may have acted as a trigger for rapid change in the development of humankind in Africa.
Richardson, James K.; Eckner, James T.; Allet, Lara; Kim, Hogene; Ashton-Miller, James
2016-01-01
Objective To identify relationships between complex and simple clinical measures of reaction time (RTclin), and indicators of balance in older subjects with and without diabetic peripheral neuropathy (DPN). Design Prospective cohort design. Complex RTclin Accuracy, Simple RTclin Latency, and their ratio were determined using a novel device in 42 subjects (age = 69.1 ± 8.3 yrs), 26 with DPN and 16 without. Dependent variables included unipedal stance time (UST), step width variability and range on an uneven surface, and major fall-related injury over 12 months. Results In the DPN subjects the ratio of Complex RTclin Accuracy:Simple RTclin Latency was strongly associated with longer UST (r/p = .653/.004), and decreased step width variability and range (r/p = −.696/.001 and −.782/<.001, respectively) on an uneven surface. Additionally, the two DPN subjects sustaining major injuries had lower Complex RTclin Accuracy:Simple: RTclin Latency than those without. Conclusions The ratio of Complex RTclin Accuracy:Simple RTclin Latency is a potent predictor of UST and frontal plane gait variability in response to perturbations, and may predict major fall injury in older subjects with DPN. These short latency neurocognitive measures may compensate for lower limb neuromuscular impairments, and provide a more comprehensive understanding of balance and fall risk. PMID:27552354
Crutze, C; Pétré, B; Dardenne, N; Donneau, A-F; Streel, S; Albert, A; Scheen, A; Husson, E; Guillaume, M
2017-06-01
Overweight and obesity are major public health problems of growing concern. Few studies have investigated the representations and perceptions of subjects with overweight and obesity, especially in the general population, as compared to people in a medical weight loss process. The objective of this study was to fill this gap by enabling participants to express their feelings and experience about their overweight, and to assess the extent of the body mass index (BMI) as a determinant of these perceptions. A total of 4155 persons participated in an exploratory study conducted in Wallonia (Belgium). Data were collected by means of a web-based questionnaire. This study investigated the following parameters: sociodemographic and anthropometric factors, perceived health, quality of life, diet perception, enrolment in a weight loss process and weight loss target. The influence of BMI was considered, on one hand, looking at how the above variables evolve according to BMI category, secondly, as a mediation factor in the relationship between socioeconomic level and these same variables. A large majority (87.5%) of subjects were overweight (32.2%) or obese (obese class I 29.9%, class II 14.8%, class III 10.6%). Perceived health was found to deteriorate with the BMI (P<0.0001); obese class III had a 5.9-fold risk to present bad perceived health compared to subjects with normal weight. The physical and psychological quality of life reported by the subjects decreased significantly with the BMI (P<0.0001) particularly for the physical quality of life. The percentage of poor diet perception (frustration, weight gain, aggressiveness, inefficacy and impossibility) as well as the weight loss targeted by the subjects increased with the BMI. Between overweight subjects and obese class III subjects, weight loss target increased from 13% to 34% of the initial weight. The majority of subjects judged that diet represents "aggressiveness", "weight gain" and "impossibility". A partial mediation role of BMI was identified in the relationship between social status and the variables of interest. This study focused on a sample of people from the general population. It confirmed previous results of others studies. All results gave a feeling of resignation and powerlessness which can seize obese individuals (especially when BMI increases). As a consequence, there is a need for more adapted weight management to achieve a genuine therapeutic alliance. Copyright © 2017. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Noack, Vera; Knopf, Stefan; Konrad, Wilfried; Scheer, Dirk; Class, Holger
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the hazards associated with the geological storage of CO2. Thus, in a site-specific risk assessment, models for predicting the fate of the displaced brine are required. Practical simulation of brine displacement involves decisions regarding the complexity of the model. The choice of an appropriate level of model complexity depends on multiple criteria: the target variable of interest, the relevant physical processes, the computational demand, the availability of data, and the data uncertainty. In this study, we set up a regional-scale geological model for a realistic (but not real) onshore site in the North German Basin with characteristic geological features for that region. A major aim of this work is to identify the relevant parameters controlling saltwater intrusion in a complex structural setting and to test the applicability of different model simplifications. The model that is used to identify relevant parameters fully couples flow in shallow freshwater aquifers and deep saline aquifers. This model also includes variable-density transport of salt and realistically incorporates surface boundary conditions with groundwater recharge. The complexity of this model is then reduced in several steps, by neglecting physical processes (two-phase flow near the injection well, variable-density flow) and by simplifying the complex geometry of the geological model. The results indicate that the initial salt distribution prior to the injection of CO2 is one of the key parameters controlling shallow aquifer salinization. However, determining the initial salt distribution involves large uncertainties in the regional-scale hydrogeological parameterization and requires complex and computationally demanding models (regional-scale variable-density salt transport). In order to evaluate strategies for minimizing leakage into shallow aquifers, other target variables can be considered, such as the volumetric leakage rate into shallow aquifers or the pressure buildup in the injection horizon. Our results show that simplified models, which neglect variable-density salt transport, can reach an acceptable agreement with more complex models.
Quantum anonymous voting with unweighted continuous-variable graph states
NASA Astrophysics Data System (ADS)
Guo, Ying; Feng, Yanyan; Zeng, Guihua
2016-08-01
Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.
Reasoning about Multiple Variables: Control of Variables Is Not the Only Challenge
ERIC Educational Resources Information Center
Kuhn, Deanna
2007-01-01
Thirty fourth-grade students participated in an extended intervention previously successful in fostering skills of scientific investigation and inference, notably control of variables (COV). The intervention was similarly successful for a majority of students in the present study, enabling them to isolate the three causal and two noncausal…
Factors affecting the evolution of coastal wetlands of the Laurentian Great Lakes: An overview
Mayer, T.; Edsall, T.; Munawar, M.
2004-01-01
Coastal wetlands play a pivotal role in the Great Lakes ecosystem. As buffer zones between the land and open waters of the Great Lakes, they perform a variety of essential functions providing both direct and indirect anthropogenic benefits. Geology, morphology and climate are the dominant variables that influence Laurentian Great Lakes wetland development. However, anthropogenic factors are the major contributors to alteration of natural wetland processes. This paper provides an overview of natural and anthropogenic factors important in Great Lakes coastal wetland development and provides statistical information describing the Great Lakes Basin. A brief description of wetlands classification and research issues is also presented.
Interdisciplinary and multilevel optimum design
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.
1986-01-01
Interactions among engineering disciplines and subsystems in engineering system design are surveyed and specific instances of such interactions are described. Examination of the interactions that a traditional design process in which the numerical values of major design variables are decided consecutively is likely to lead to a suboptimal design. Supporting numerical examples are a glider and a space antenna. Under an alternative approach introduced, the design and its sensitivity data from the subsystems and disciplines are generated concurrently and then made available to the system designer enabling him to modify the system design so as to improve its performance. Examples of a framework structure and an airliner wing illustrate that approach.
Soil moisture needs in earth sciences
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1992-01-01
The author reviews the development of passive and active microwave techniques for measuring soil moisture with respect to how the data may be used. New science programs such as the EOS, the GEWEX Continental-Scale International Project (GCIP) and STORM, a mesoscale meteorology and hydrology project, will have to account for soil moisture either as a storage in water balance computations or as a state variable in-process modeling. The author discusses future soil moisture needs such as frequency of measurement, accuracy, depth, and spatial resolution, as well as the concomitant model development that must proceed concurrently if the development in microwave technology is to have a major impact in these areas.
Exploring Black Hole Accretion in Active Galactic Nuclei with Simbol-X
NASA Astrophysics Data System (ADS)
Goosmann, R. W.; Dovčiak, M.; Mouchet, M.; Czerny, B.; Karas, V.; Gonçalves, A.
2009-05-01
A major goal of the Simbol-X mission is to improve our knowledge about black hole accretion. By opening up the X-ray window above 10 keV with unprecedented sensitivity and resolution we obtain new constraints on the X-ray spectral and variability properties of active galactic nuclei. To interpret the future data, detailed X-ray modeling of the dynamics and radiation processes in the black hole vicinity is required. Relativistic effects must be taken into account, which then allow to constrain the fundamental black hole parameters and the emission pattern of the accretion disk from the spectra that will be obtained with Simbol-X.
Kraus, T W; Weber, W; Mieth, M; Funk, H; Klar, E; Herfarth, C
2000-03-01
Surgical hospitals can be seen as operational or even industrial production systems. Doctors have a major impact on both medical performance and costs. For active participation in the management process, knowledge of industrial controlling mechanisms is required. German hospitals currently receive no procedure-related financial revenues, such as prices or tariffs for defined medical treatment activities. Maximum clinical revenues are, furthermore, limited by principles of planned economy and can be increased only slightly by greater medical performance. Costs are the only target that can be autonomously influenced by the management. Operative controlling in hospitals aims at horizontal and vertical coordination of subunits and decentralization of process regulations. Hospital medical performance is not clearly defined, its quantitative measurement very problematic. Process-orientated clinical activities are not taken into account. A high percentage of hospital costs are fixed and can be influenced only by major structural interventions in the long term. Variable costs are primarily dependent on the quantity of clinical activities, but also heavily influenced by patient structure (comorbidity and risk profile). The various forms of industrial cost calculations, such as internal budgeting, internal markets or flexible plan-cost balancing, cannot be directly applied in hospital management. Based on these analyses, current operational concepts and strategic trends are listed to describe cost-management options in hospitals with focus on the German health reforms.
Aircraft digital flight control technical review
NASA Technical Reports Server (NTRS)
Davenport, Otha B.; Leggett, David B.
1993-01-01
The Aircraft Digital Flight Control Technical Review was initiated by two pilot induced oscillation (PIO) incidents in the spring and summer of 1992. Maj. Gen. Franklin (PEO) wondered why the Air Force development process for digital flight control systems was not preventing PIO problems. Consequently, a technical review team was formed to examine the development process and determine why PIO problems continued to occur. The team was also to identify the 'best practices' used in the various programs. The charter of the team was to focus on the PIO problem, assess the current development process, and document the 'best practices.' The team reviewed all major USAF aircraft programs with digital flight controls, specifically, the F-15E, F-16C/D, F-22, F-111, C-17, and B-2. The team interviewed contractor, System Program Office (SPO), and Combined Test Force (CTF) personnel on these programs. The team also went to NAS Patuxent River to interview USN personnel about the F/A-18 program. The team also reviewed experimental USAF and NASA systems with digital flight control systems: X-29, X-31, F-15 STOL and Maneuver Technology Demonstrator (SMTD), and the Variable In-Flight Stability Test Aircraft (VISTA). The team also discussed the problem with other experts in the field including Ralph Smith and personnel from Calspan. The major conclusions and recommendations from the review are presented.
Caldwell, Yoko Tsui; Steffen, Patrick R
2018-01-05
Heart rate variability (HRV) is a significant marker of health outcomes with decreased HRV predicting increased disease risk. HRV is decreased in major depressive disorder (MDD) but existing treatments for depression do not return heart rate variability to normal levels even with successful treatment of depression. Heart rate variability biofeedback (HRVB) increases heart rate variability but no studies to date have examined whether combining HRVB with psychotherapy improves outcome in MDD treatment. The present study used a randomized controlled design to compare the effects of HRVB combined with psychotherapy on MDD relative to a psychotherapy treatment as usual group and to a non-depressed control group. The HRVB+psychotherapy group showed a larger increase in HRV and a larger decrease in depressive symptoms relative to the other groups over a six-week period, whereas the psychotherapy group only did not improve HRV. Results support the supplementation of psychotherapy with HRVB in the treatment of MDD. Copyright © 2018 Elsevier B.V. All rights reserved.
Langevin, Christian D.; Shoemaker, W. Barclay; Guo, Weixing
2003-01-01
SEAWAT-2000 is the latest release of the SEAWAT computer program for simulation of three-dimensional, variable-density, transient ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified version of MODFLOW-2000 and MT3DMS into a single computer program. The code was developed using the MODFLOW-2000 concept of a process, which is defined as ?part of the code that solves a fundamental equation by a specified numerical method.? SEAWAT-2000 contains all of the processes distributed with MODFLOW-2000 and also includes the Variable-Density Flow Process (as an alternative to the constant-density Ground-Water Flow Process) and the Integrated MT3DMS Transport Process. Processes may be active or inactive, depending on simulation objectives; however, not all processes are compatible. For example, the Sensitivity and Parameter Estimation Processes are not compatible with the Variable-Density Flow and Integrated MT3DMS Transport Processes. The SEAWAT-2000 computer code was tested with the common variable-density benchmark problems and also with problems representing evaporation from a salt lake and rotation of immiscible fluids.
Contribution of rivers and floodplains to the global terrestrial water storage variability
NASA Astrophysics Data System (ADS)
Getirana, A.; Kumar, S.; Girotto, M.; Rodell, M.
2017-12-01
Since the launch of the GRACE mission in 2002, the scientific community has gained significant insight into terrestrial water storage (TWS) variations around the world. Still, understanding of the relationship between TWS variations and changes in its individual components (groundwater, soil moisture, surface waters, snow, and vegetation water storage) has not advanced beyond small-scale studies based on in situ data. Although a few studies have demonstrated the impact that surface water storage (SWS) has on TWS in tropical basins, the vast majority of investigations on TWS decomposition systematically neglect SWS by assuming that its contribution to TWS is trivial. Even though that assumption might be a close representation of the truth in specific locations, the actual impact of SWS on the global TWS change and its spatial variability is unknown. This study aims to quantify the contribution of rivers and floodplains on the global terrestrial water storage (TWS) variability. We use state-of-the-art models to simulate land surface processes and river dynamics in order to separate TWS into its main components. Based on a proposed impact index, we show that surface water storage (SWS) contributes to 7% of TWS globally, but that contribution highly varies spatially. The primary contribution of SWS to TWS is in the tropics, and in major rivers flowing over arid regions or at high latitudes. About 20-23% of both Amazon and Nile basins' TWS changes are due to SWS. SWS has low impact in Western U.S., Northern Africa, Middle-East and central Asia. Based on comparisons against GRACE-based estimates, we conclude that using SWS significantly improves TWS simulations in most South America, Africa and Northern India, confirming the need for SWS as a key component of TWS change.
NASA Astrophysics Data System (ADS)
Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette
2012-11-01
In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).
General Circulation Model Simulations of the Annual Cycle of Martian Climate
NASA Astrophysics Data System (ADS)
Wilson, R.; Richardson, M.; Rodin, A.
Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.
Ortíz-Gómez, L D; López-Canul, B; Arankowsky-Sandoval, G
2014-12-01
Comorbidity of major depression with substance abuse increases the risk of committing suicide. The objective of this work was to determine the psychological and socio-demographic factors associated with depression and suicide attempts in patients rehabilitating for drug consumption. 57 Patients attending a center for drug abuse treatment answered the following instruments: the Mini-international neuropsychiatric interview, a questionnaire of general information and background data on consumption of substances, depression and suicide attempts, and the Spanish adaptation of the Holmes and Rahe scale for the assessment of life events. Chi-square and logistic regression tests were used to establish associations between variables. 68.4% of the Patients had current major depression, of these, 75.4% experienced it before the onset of substance abuse. Patients attempting suicide before drug use corresponded to 26%, whilst 28.1% attempted suicide within the last year. Current depression-related variables were receiving a diagnosis of depression prior to the consumption of drugs and the first used drugs, which were alcohol or marijuana. The adverse life event "Familial drug abuse history", was also significantly related to depression (p=0.02). Variables associated with current suicide attempts were: receiving a diagnosis of depression prior to the consumption of drugs (p=0.02), and suicide attempts previous to drug use (p<0.003). A limitation of this study was the small size of the sample. Patients with depression who attempted suicide prior to the use of drugs also experienced these conditions during the rehabilitation process. Substance use in the family was a risk factor for both, underscoring the need of actions aimed at preventing addictions in the household environment. Copyright © 2014. Published by Elsevier B.V.
Yusufov, Miryam; Dalrymple, Kristy; Bernstein, Michael H; Walsh, Emily; Rosenstein, Lia; Chelminski, Iwona; Zimmerman, Mark
2017-01-15
Previous research suggests a relationship between weight and depression/suicidality, although few studies have examined the mechanisms underlying this association. This study examined the mediating role of self-esteem in the relationship between BMI and depression/suicidality, as well as the moderating role of gender in the mediated pathways. As part of a screening process in consideration for bariatric surgery, 3,101 adults (81.4% female, 18.6% male) were assessed one time. Five univariate mediation and five univariate moderated-mediation models were hypothesized and analyzed. For the mediation models, we entered five outcome variables separately: 1) severity of depressed mood, 2) diagnosis of Major Depressive Disorder, 3) lifetime history of suicide attempts, 4) suicidal ideation at the time of evaluation, and 5) severity of suicidality, BMI as the independent variable, and self-esteem as the mediator. For the moderated-mediated models, gender was examined as a moderator to examine whether self-esteem was a stronger mediator for one gender, compared to the other. Findings supported the mediating role of self-esteem across all five outcomes. Further, the mediated effect was moderated by gender, such that the mediation effect was stronger for males, compared to females. The majority of the sample consisted of White females, limiting broad applicability of findings. All variables were assessed simultaneously, at baseline, limiting the ability to make causal attributions. Study findings suggest that self-esteem may help explain the relationship between BMI and depression/suicidality, particularly for men. Thus, interventions targeting self-esteem may be useful for improving psychological outcomes among those presenting for bariatric surgery. Copyright © 2016 Elsevier B.V. All rights reserved.
Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale.
Viaud, Valérie; Merot, Philippe; Baudry, Jacques
2004-10-01
Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question. The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow-outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.
Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun
2018-09-01
Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal blooms formation and subsequent predicting. Copyright © 2018 Elsevier Ltd. All rights reserved.
Analysis of Summer-Time Ozone and Precursor Species in the Southeast United States
NASA Technical Reports Server (NTRS)
Johnson, Matthew
2016-01-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Analysis of Summer-time Ozone and Precursor Species in the Southeast United States
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Kuang, S.; Newchurch, M.; Hair, J. W.
2015-12-01
Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to ~12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25° × 0.3125° resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
Baraki, Zeray; Girmay, Fiseha; Kidanu, Kalayou; Gerensea, Hadgu; Gezehgne, Dejen; Teklay, Hafte
2017-01-01
The nursing process is a systematic method of planning, delivering, and evaluating individualized care for clients in any state of health or illness. Many countries have adopted the nursing process as the standard of care to guide nursing practice; however, the problem is its implementation. If nurses fail to carry out the necessary nursing care through the nursing process; the effectiveness of patient progress may be compromised and can lead to preventable adverse events. This study was aimed to assess the implementation of nursing process and associated factors among nurses working in selected hospitals of central and northwest zones of Tigray, Ethiopia, 2015. A cross sectional observational study design was utilized. Data was collected from 200 participants using structured self-administered questionnaire which was contextually adapted from standardized, reliable and validated measures. The data were entered using Epi Info version 7 and analyzed using SPSS version 20 software. Data were summarized and described using descriptive statistics and multivariate logistic regression was used to determine the relationship of independent and dependent variable. Then, finally, data were presented in tables, graphs, frequency percentage of different variables. Seventy (35%) of participants have implemented nursing process. Different factors showed significant association. Nurses who worked in a stressful atmosphere of the workplace were 99% less likely to implement the nursing process than nurses who worked at a very good atmosphere. The nurses with an educational level of BSc. Degree were 6.972 times more likely to implement the nursing process than those who were diploma qualified. Nurses with no consistent material supply to use the nursing process were 95.1% less likely to implement the nursing process than nurses with consistent material supply. The majority of the participants were not implementing the nursing process properly. There are many factors that hinder them from applying the nursing process of which level of education, knowledge of nurses, skill of nurses, atmosphere of the work place, shortage of material supply to use the nursing process and high number of patient load were scientifically significant for the association test.
NASA Astrophysics Data System (ADS)
Martin, Adrian P.; Lévy, Marina; van Gennip, Simon; Pardo, Silvia; Srokosz, Meric; Allen, John; Painter, Stuart C.; Pidcock, Roz
2015-09-01
Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km-1 km). The causes and consequences of physical processes at these scales ("eddy advection") influencing biogeochemistry have received much attention. Less studied, the nonlinear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed "eddy reactions." Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modeling work has previously suggested that the neglected eddy reactions may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing, and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates and not taken as a justification for ignoring eddy reactions. Compared to modeling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.
Taipale-Kovalainen, Krista; Karttunen, Anssi-Pekka; Ketolainen, Jarkko; Korhonen, Ossi
2018-03-30
The objective of this study was to devise robust and stable continuous manufacturing process settings, by exploring the design space after an investigation of the lubrication-based parameters influencing the continuous direct compression tableting of high dose paracetamol tablets. Experimental design was used to generate a structured study plan which involved 19 runs. The formulation variables studied were the type of lubricant (magnesium stearate or stearic acid) and its concentration (0.5, 1.0 and 1.5%). Process variables were total production feed rate (5, 10.5 and 16kg/h), mixer speed rpm (500, 850 and 1200rpm), and mixer inlet port for lubricant (A or B). The continuous direct compression tableting line consisted of loss-in-weight feeders, a continuous mixer and a tablet press. The Quality Target Product Profile (QTPP) was defined for the final product, as the flowability of powder blends (2.5s), tablet strength (147N), dissolution in 2.5min (90%) and ejection force (425N). A design space was identified which fulfilled all the requirements of QTPP. The type and concentration of lubricant exerted the greatest influence on the design space. For example, stearic acid increased the tablet strength. Interestingly, the studied process parameters had only a very minor effect on the quality of the final product and the design space. It is concluded that the continuous direct compression tableting process itself is insensitive and can cope with changes in lubrication, whereas formulation parameters exert a major influence on the end product quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Remote Sensing Based Monitoring of Aquatic Carbon Dynamics; Developments of the CarbMonit Project
NASA Astrophysics Data System (ADS)
Ma, Ronghua; Loiselle, Steven; Zhang, Yuchao; Duan, Hongtao; Villa, Paolo; Donati, Alessandro; Li, Jing; Xue, Kun
2016-08-01
Inland waterbodies are some of the most productive on the planet (autochthonous production) and play a fundamental role in the transformation, transport and capture of carbon from terrestrial sources (allochthonous carbon). Carbon dynamics are regulated by a combination of biotic and abiotic processes: catchment import and export, detritus dynamics, photosynthetic and respiratory processes in the water column and sediment. Climate change and regional development combine to influence many of these processes, including catchment conditions, lake hydrology and organic matter degradation. The use of spatially extensive approaches is fundamental to explore the key transformation dynamics between organic and inorganic carbon pools.In the CarbMonit project, leading research institutions in China and Italy have worked in close collaboration to examine key mechanisms in aquatic carbon dynamics through the development of new technologies. The focus has been on the development of algorithms and modelling tools to examine spatial dynamics in three dimensions and temporal variability of the two major organic carbon pools, particular and dissolved organic carbon. Field measurements in major lakes are being used to create algorithms for multispectral and hyperspectral sensor data. The results of these activities are being used to estimate the generation and loss of aquatic carbon with respect to the dynamics of potential source and sink mechanisms. Particular efforts have been made to develop approaches based on the availability of medium- spectral resolution satellite sensor data. The results of the collaboration have been significant, with partners presenting results at major conferences throughout the world (ASLO 2015, COWM 2016, SIL 2016, IOCS 2013, EST, 2016. There have also been a number of collaborative publications [1-23], some of the mostrecent are presented below.
NASA Astrophysics Data System (ADS)
Shouquan Cheng, Chad; Li, Qian; Li, Guilong
2010-05-01
The synoptic weather typing approach has become popular in evaluating the impacts of climate change on a variety of environmental problems. One of the reasons is its ability to categorize a complex set of meteorological variables as a coherent index, which can facilitate analyses of local climate change impacts. The weather typing method has been successfully applied in Environment Canada for several research projects to analyze climatic change impacts on a number of extreme weather events, such as freezing rain, heavy rainfall, high-/low-flow events, air pollution, and human health. These studies comprise of three major parts: (1) historical simulation modeling to verify the extreme weather events, (2) statistical downscaling to provide station-scale future hourly/daily climate data, and (3) projections of changes in frequency and intensity of future extreme weather events in this century. To achieve these goals, in addition to synoptic weather typing, the modeling conceptualizations in meteorology and hydrology and a number of linear/nonlinear regression techniques were applied. Furthermore, a formal model result verification process has been built into each of the three parts of the projects. The results of the verification, based on historical observations of the outcome variables predicted by the models, showed very good agreement. The modeled results from these projects found that the frequency and intensity of future extreme weather events are projected to significantly increase under a changing climate in this century. This talk will introduce these research projects and outline the modeling exercise and result verification process. The major findings on future projections from the studies will be summarized in the presentation as well. One of the major conclusions from the studies is that the procedures (including synoptic weather typing) used in the studies are useful for climate change impact analysis on future extreme weather events. The implication of the significant increases in frequency and intensity of future extreme weather events would be useful to be considered when revising engineering infrastructure design standards and developing adaptation strategies and policies.
[Donors' personal profile in Tuscany's network of milk banks].
Strambi, M; Anselmi, A; Coppi, S
2012-10-01
An investigation on human milk donors among the milk banks of Tuscany's network was carried out. Milk banks select, collect, check, process, store and deliver human milk, whose donors should have certain physical and psychological well-being features. The aim of the study was to describe a personal and social profile of milk donors. The study included a sample of 100 milk donors and a sample of 100 non-milk donor mothers; a questionnaire that collected data about mothers' general information, clinical history, pregnancy and delivery, weight variations, state of health, lifestyle, breastfeeding and knowledge about milk banks was administered to all of them. Then information about food history of mothers has also been collected. First the samples of donors were analysed for all variables considered. Subsequently the samples of donors were compared with the samples of non-donors: statistical analysis was carried out with χ2 test and documented significant differences between donors and non-donors for the majority of variables considered in the questionnaire and for food history. Milk donors have a good state of health, and the integration in milk donation initiative headed towards a healthier lifestyle. It is necessary to promote an advertising campaign to integrate social and sanitary politics, fitting to local socio-economical contest. Furthermore, the improvement of milk banks of public hospitals is necessary, as hospitals are places of major stream both of potential donors and newborns.
The Genetic Diversity of the Americas.
Adhikari, Kaustubh; Chacón-Duque, Juan Camilo; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Ruiz-Linares, Andrés
2017-08-31
The history of the Americas involved the encounter of millions of Native Americans, Europeans, and Africans. A variable admixture of these three continental groups has taken place throughout the continent, influenced by demography and a range of social factors. This variable admixture has had a major influence on the genetic makeup of populations across the continent. Here, we summarize the demographic history of the region, highlight some social factors that affected historical admixture, and review major patterns of ancestry across the Western Hemisphere based on genetic data.
Reversal of hepatic fibrosis: pathophysiological basis of antifibrotic therapies
Ismail, Mona H; Pinzani, Massimo
2011-01-01
Chronic liver injuries of different etiologies eventually lead to fibrosis, a scarring process associated with increased and altered deposition of extracellular matrix in the liver. Progression of fibrosis has a major worldwide clinical impact due to the high number of patients affected by chronic liver disease which can lead to severe complications, expensive treatment, a possible need for liver transplantation, and death. Liver fibrogenesis is characterized by activation of hepatic stellate cells and other extracellular matrix producing cells. Liver fibrosis may regress following specific therapeutic interventions. Other than removing agents causing chronic liver damage, no antifibrotic drug is currently available in clinical practice. The extent of liver fibrosis is variable between individuals, even after controlling for exogenous factors. Thus, host genetic factors are considered to play an important role in the process of liver scarring. Until recently it was believed that this process was irreversible. However, emerging experimental and clinical evidence is starting to show that even cirrhosis in its early stages is potentially reversible. PMID:24367223
Lithographic performance of recent DUV photoresists
NASA Astrophysics Data System (ADS)
Streefkerk, Bob; van Ingen Schenau, Koen; Buijk, Corine
1998-06-01
Commercially available photoresists from the major photoresist vendors are investigated using a PAS 5500/300 wafer stepper, a 31.1 mm diameter field size high throughput wafer stepper with variable NA capability up to 0.63. The critical dimension (CD) investigated is 0.25 micrometers and lower for dense and isolated lines and 0.25 micrometers for dense contact holes. The photoresist process performance is quantified by measuring exposure-defocus windows for a specific resolution using a CD SEM. Photoresists that are comparable with or better than APEX-E with RTC top coat, which is the current base line process for lines and spaces imaging performance, are Clariant AZ-DX1300 and Shin Etsu SEPR-4103PB50. Most recent photoresists have much improved delay performance when compared to APEX without top coat. Improvement, when an organic BARC is applied, depends on the actual photoresist characteristics. The optimal photoresist found for 0.25 micrometers contact holes is TOK DP015 C. This process operates at optimal conditions.
Epigenomics and human adaptation to high altitude.
Julian, Colleen G
2017-11-01
Over the past decade, major technological and analytical advancements have propelled efforts toward identifying the molecular mechanisms that govern human adaptation to high altitude. Despite remarkable progress with respect to the identification of adaptive genomic signals that are strongly associated with the "hypoxia-tolerant" physiological characteristics of high-altitude populations, many questions regarding the fundamental biological processes underlying human adaptation remain unanswered. Vital to address these enduring questions will be determining the role of epigenetic processes, or non-sequence-based features of the genome, that are not only critical for the regulation of transcriptional responses to hypoxia but heritable across generations. This review proposes that epigenomic processes are involved in shaping patterns of adaptation to high altitude by influencing adaptive potential and phenotypic variability under conditions of limited oxygen supply. Improved understanding of the interaction between genetic, epigenetic, and environmental factors holds great promise to provide deeper insight into the mechanisms underlying human adaptive potential, and clarify its implications for biomedical research. Copyright © 2017 the American Physiological Society.
Mass media in health promotion: an analysis using an extended information-processing model.
Flay, B R; DiTecco, D; Schlegel, R P
1980-01-01
The information-processing model of the attitude and behavior change process was critically examined and extended from six to 12 levels for a better analysis of change due to mass media campaigns. Findings from social psychology and communications research, and from evaluations of mass media health promotion programs, were reviewed to determine how source, message, channel, receiver, and destination variables affect each of the levels of change of major interest (knowledge, beliefs, attitudes, intentions and behavior). Factors found to most likely induce permanent attitude and behavior change (most important in health promotion) were: presentation and repetition over long time periods, via multiple sources, at different times (including "prime" or high-exposure times), by multiple sources, in novel and involving ways, with appeals to multiple motives, development of social support, and provisions of appropriate behavioral skills, alternatives, and reinforcement (preferably in ways that get the active participation of the audience). Suggestions for evaluation of mass media programs that take account of this complexity were advanced.
Attachment-related psychodynamics.
Shaver, Phillip R; Mikulincer, Mario
2002-09-01
Because there has been relatively little communication and cross-fertilization between the two major lines of research on adult attachment, one based on coded narrative assessments of defensive processes, the other on simple self-reports of 'attachment style' in close relationships, we here explain and review recent work based on a combination of self-report and other kinds of method, including behavioral observations and unconscious priming techniques. The review indicates that considerable progress has been made in testing central hypotheses derived from attachment theory and in exploring unconscious, psychodynamic processes related to affect-regulation and attachment-system activation. The combination of self-report assessment of attachment style and experimental manipulation of other theoretically pertinent variables allows researchers to test causal hypotheses. We present a model of normative and individual-difference processes related to attachment and identify areas in which further research is needed and likely to be successful. One long-range goal is to create a more complete theory of personality built on attachment theory and other object relations theories.
Kajita, Mihoko; Fujita, Yasuyuki
2015-07-01
During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.
Elevated temperature deformation of thoria dispersed nickel-chromium
NASA Technical Reports Server (NTRS)
Kane, R. D.; Ebert, L. J.
1974-01-01
The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph
2015-01-01
In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.
Sugar consumption pattern of 13-year-old school children in Belgaum city, Karnataka.
Hegde, P P; Ashok Kumar, B R; Ankola, A
2005-01-01
To determine the sugar consumption pattern of the school children in Belgaum city and to organize for a diet-counseling program. Easy availability of sugar containing food and high consumption of these sweets if continued unabated, the dental caries among children would become a major public health problem. In this instance, Dietary counseling can be just appropriate to inhibit the carious process. 342 school children aged 13 years, from four schools in Belgaum city participated in the study. The pattern of sugar consumption was assessed using a 4-day diet diary. Analysis was done according to the method described by Nizel and Papas (Nutrition in clinical dentistry, 1989, 277) and the variables were: the sweet score, At meal sugar exposure (AMSE), Between meal sugar exposure (BMSE) and Total sugar exposure (TSE). The mean, standard deviation and/or frequency were calculated for all variables. Student's t-test was used to statistically analyze the gender difference. The mean ± SD of the recorded variables were: sweet score 31 ± 12.78/day, AMSE 0.88 ± 0.33/day, BMSE 3.95 ± 0.87/day, and TSE 4.83 ± 0.96/day. No statistical significant gender difference with respect to the variables was observed. 'Tell Show And Do' Diet counseling session will perhaps have a greater impact as compared to the most common strategy of simply exhorting the children to eat less sugar.
Robust optimization of a tandem grating solar thermal absorber
NASA Astrophysics Data System (ADS)
Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae
2018-04-01
Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.
Enhanced Biennial Variability in the Pacific due to Atlantic Capacitor Effect after the Early 1990s
NASA Astrophysics Data System (ADS)
WANG, L.; Yu, J. Y.; Paek, H.
2016-12-01
The El Niño-Southern Oscillation (ENSO) and Pacific subtropical highs (PSHs) have major impacts on social and ecological systems through their influences on severe natural hazards including tropical storms, coastal erosions, droughts and floods. The ability to forecast ENSO and PSHs requires an understanding of the underlying physical mechanisms that drive their variability. Here we present an Atlantic capacitor effect mechanism to suggest the Atlantic as a key pacemaker of the biennial variability in the Pacific including ENSO and PSHs in recent decades, while the pacemaker was previously considered to be mainly lied within the Pacific or Indian Oceans. The "charging" (i.e., ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and "discharging" (i.e., the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) process works alternately, generating the biennial rhythmic changes in the Pacific. After the early-1990s, the positive phase of the Atlantic Multidecadal Oscillation and global warming provides more favorable background states over the NTA that enable the Atlantic capacitor effect to operate more efficiently, giving rise to enhanced biennial variability in the Pacific which may increase the occurrence frequency of severe natural hazard events. The results highlight the increasing important role of the Atlantic-Pacific coupling as an important pacemaker of the ENSO cycle in recent decades.
Seismologic applications of GRACE time-variable gravity measurements
NASA Astrophysics Data System (ADS)
Li, Jin; Chen, Jianli; Zhang, Zizhan
2014-04-01
The Gravity Recovery and Climate Experiment (GRACE) has been measuring temporal and spatial variations of mass redistribution within the Earth system since 2002. As large earthquakes cause significant mass changes on and under the Earth's surface, GRACE provides a new means from space to observe mass redistribution due to earthquake deformations. GRACE serves as a good complement to other earthquake measurements because of its extensive spatial coverage and being free from terrestrial restriction. During its over 10 years mission, GRACE has successfully detected seismic gravitational changes of several giant earthquakes, which include the 2004 Sumatra-Andaman earthquake, 2010 Maule (Chile) earthquake, and 2011 Tohoku-Oki (Japan) earthquake. In this review, we describe by examples how to process GRACE time-variable gravity data to retrieve seismic signals, and summarize the results of recent studies that apply GRACE observations to detect co- and post-seismic signals and constrain fault slip models and viscous lithospheric structures. We also discuss major problems and give an outlook in this field of GRACE application.
Semi-supervised clustering methods
Bair, Eric
2013-01-01
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as “semi-supervised clustering” methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided. PMID:24729830
Luo, Jie; Qi, Shihua; Xie, Xianming; Gu, X W Sophie; Wang, Jinji
2017-01-01
Guiyu is a well-known electronic waste dismantling and recycling town in south China. Concentrations and distribution of the 21 mineral elements and 16 polycyclic aromatic hydrocarbons (PAHs) collected there were evaluated. Principal component analyses (PCA) applied to the data matrix of PAHs in the soil extracted three major factors explaining 85.7% of the total variability identified as traffic emission, coal combustion, and an unidentified source. By using metallic or metalloid element concentrations as variables, five principal components (PCs) were identified and accounted for 70.4% of the information included in the initial data matrix, which can be denoted as e-waste dismantling-related contamination, two different geological origins, anthropogenic influenced source, and marine aerosols. Combining the 21 metallic and metalloid element datasets with the 16 PAH concentrations can narrow down the coarse source and decrease the unidentified contribution to soil in the present study and therefore effectively assists the source identification process.
Semi-supervised clustering methods.
Bair, Eric
2013-01-01
Cluster analysis methods seek to partition a data set into homogeneous subgroups. It is useful in a wide variety of applications, including document processing and modern genetics. Conventional clustering methods are unsupervised, meaning that there is no outcome variable nor is anything known about the relationship between the observations in the data set. In many situations, however, information about the clusters is available in addition to the values of the features. For example, the cluster labels of some observations may be known, or certain observations may be known to belong to the same cluster. In other cases, one may wish to identify clusters that are associated with a particular outcome variable. This review describes several clustering algorithms (known as "semi-supervised clustering" methods) that can be applied in these situations. The majority of these methods are modifications of the popular k-means clustering method, and several of them will be described in detail. A brief description of some other semi-supervised clustering algorithms is also provided.
Editorial: Let's talk about sex - the gender binary revisited.
Oldehinkel, Albertine J
2017-08-01
Sex refers to biological differences and gender to socioculturally delineated masculine and feminine roles. Sex or gender are included as a covariate or effect modifier in the majority of child psychology and psychiatry studies, and differences found between boys and girls have inspired many researchers to postulate underlying mechanisms. Empirical tests of whether including these proposed explanatory variables actually reduces the variance explained by gender are lagging behind somewhat. That is a pity, because a lot can be gained from a greater focus on the active agents of specific gender differences. As opposed to biological sex as such, some of the processes explaining why a specific outcome shows gender differences may be changeable and so possible prevention targets. Moreover, while the sex binary may be reasonable adequate as a classification variable, the gender binary is far from perfect. Gender is a multidimensional, partly context-dependent factor, and the dichotomy generally used in research does not do justice to the diversity existing within boys and girls. © 2017 Association for Child and Adolescent Mental Health.
A data-based conservation planning tool for Florida panthers
Murrow, Jennifer L.; Thatcher, Cindy A.; Van Manen, Frank T.; Clark, Joseph D.
2013-01-01
Habitat loss and fragmentation are the greatest threats to the endangered Florida panther (Puma concolor coryi). We developed a data-based habitat model and user-friendly interface so that land managers can objectively evaluate Florida panther habitat. We used a geographic information system (GIS) and the Mahalanobis distance statistic (D2) to develop a model based on broad-scale landscape characteristics associated with panther home ranges. Variables in our model were Euclidean distance to natural land cover, road density, distance to major roads, human density, amount of natural land cover, amount of semi-natural land cover, amount of permanent or semi-permanent flooded area–open water, and a cost–distance variable. We then developed a Florida Panther Habitat Estimator tool, which automates and replicates the GIS processes used to apply the statistical habitat model. The estimator can be used by persons with moderate GIS skills to quantify effects of land-use changes on panther habitat at local and landscape scales. Example applications of the tool are presented.
Langenheder, Silke; Bulling, Mark T; Prosser, James I; Solan, Martin
2012-07-30
Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.
A lengthy look at the daily grind: time series analysis of events, mood, stress, and satisfaction.
Fuller, Julie A; Stanton, Jeffrey M; Fisher, Gwenith G; Spitzmuller, Christiane; Russell, Steven S; Smith, Patricia C
2003-12-01
The present study investigated processes by which job stress and satisfaction unfold over time by examining the relations between daily stressful events, mood, and these variables. Using a Web-based daily survey of stressor events, perceived strain, mood, and job satisfaction completed by 14 university workers, 1,060 occasions of data were collected. Transfer function analysis, a multivariate version of time series analysis, was used to examine the data for relationships among the measured variables after factoring out the contaminating influences of serial dependency. Results revealed a contrast effect in which a stressful event associated positively with higher strain on the same day and associated negatively with strain on the following day. Perceived strain increased over the course of a semester for a majority of participants, suggesting that effects of stress build over time. Finally, the data were consistent with the notion that job satisfaction is a distal outcome that is mediated by perceived strain. ((c) 2003 APA, all rights reserved)
Gosselin, Patrick; Langlois, Frédéric; Freeston, Mark H; Ladouceur, Robert; Laberge, Myriam; Lemay, Dominique
2007-02-01
Studies aiming to better understand worry have neglected children and adolescents. This constitutes an important limitation considering that excessive worry is frequent among adolescents and that patients suffering from excessive worries associate the beginning of their disorder with adolescence. This study evaluates the cognitive variables associated with worry in a sample of 777 adolescents. It attempts to determine whether cognitive avoidance and false beliefs about the usefulness of worries are present and associated with worries in adolescence. The results showed that participants with a high level of worry used more avoidance strategies and held more beliefs about worry. The results also revealed that avoidance of stimuli that trigger unpleasant thoughts and thought substitution were the major avoidance strategies related to worry among adolescents. The belief that worry helps to avoid future negative events was also related to worry. These findings may suggest that adolescents' worries are maintained by processes similar to those observed among adults.
Complexity associated with the optimisation of capability options in military operations
NASA Astrophysics Data System (ADS)
Pincombe, A.; Bender, A.; Allen, G.
2005-12-01
In the context of a military operation, even if the intended actions, the geographic location, and the capabilities of the opposition are known, there are still some critical uncertainties that could have a major impact on the effectiveness of a given set of capabilities. These uncertainties include unpredictable events and the response alternatives that are available to the command and control elements of the capability set. They greatly complicate any a priori mathematical description. In a forecasting approach, the most likely future might be chosen and a solution sought that is optimal for that case. With scenario analysis, futures are proposed on the basis of critical uncertainties and the option that is most robust is chosen. We use scenario analysis but our approach is different in that we focus on the complexity and use the coupling between scenarios and options to create information on ideal options. The approach makes use of both soft and hard operations research methods, with subject matter expertise being used to define plausible responses to scenarios. In each scenario, uncertainty affects only a subset of the system-inherent variables and the variables that describe system-environment interactions. It is this scenario-specific reduction of variables that makes the problem mathematically tractable. The process we define is significantly different to existing scenario analysis processes, so we have named it adversarial scenario analysis. It can be used in conjunction with other methods, including recent improvements to the scenario analysis process. To illustrate the approach, we undertake a tactical level scenario analysis for a logistics problem that is defined by a network, expected throughputs to end users, the transport capacity available, the infrastructure at the nodes and the capacities of roads, stocks etc. The throughput capacity, e.g. the effectiveness, of the system relies on all of these variables and on the couplings between them. The system is initially in equilibrium for a given level of demand. However, different, and simpler, solutions emerge as the balance of couplings and the importance of variables change. The scenarios describe such changes in conditions. For each scenario it was possible to define measures that describe the differences between options. As with agent-based distillations, the solution is essentially qualitative and exploratory, bringing awareness of possible future difficulties and of the capabilities that are necessary if we are to deal successfully with those difficulties.
Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation.
Dutta, Sourav; Zografos, Odysseas; Gurunarayanan, Surya; Radu, Iuliana; Soree, Bart; Catthoor, Francky; Naeemi, Azad
2017-12-19
Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality - the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 μm 2 for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.
Genes and Schizophrenia: Beyond Schizophrenia: The Role of DISC1 in Major Mental Illness
Hennah, William; Thomson, Pippa; Peltonen, Leena; Porteous, David
2006-01-01
Schizophrenia and related disorders have a major genetic component, but despite much effort and many claims, few genes have been consistently replicated and fewer have biological support. One recent exception is “Disrupted in Schizophrenia 1” (DISC1), which was identified at the breakpoint on chromosome 1 of the balanced translocation (1;11)(q42.1;q14.3) that co-segregated in a large Scottish family with a wide spectrum of major mental illnesses. Since then, genetic analysis has implicated DISC1 in schizophrenia, schizoaffective disorder, bipolar affective disorder, and major depression. Importantly, evidence is emerging from genetic studies for a causal relationship between DISC1 and directly measurable trait variables such as working memory, cognitive aging, and decreased gray matter volume in the prefrontal cortex, abnormalities in hippocampal structure and function, and reduction in the amplitude of the P300 event-related potential. Further, DISC1 binds a number of proteins known to be involved in essential processes of neuronal function, including neuronal migration, neurite outgrowth, cytoskeletal modulation, and signal transduction. Thus, both genetic and functional data provide evidence for a critical role for DISC1 in schizophrenia and related disorders, supporting the neurodevelopmental hypothesis for the molecular pathogenesis of these devastating illnesses. PMID:16699061
Yeung, Wing-Fai; Chung, Ka-Fai; Zhang, Nevin Lian-Wen; Zhang, Shi Ping; Yung, Kam-Ping; Chen, Pei-Xian; Ho, Yan-Yee
2016-01-01
Chinese medicine (CM) syndrome (zheng) differentiation is based on the co-occurrence of CM manifestation profiles, such as signs and symptoms, and pulse and tongue features. Insomnia is a symptom that frequently occurs in major depressive disorder despite adequate antidepressant treatment. This study aims to identify co-occurrence patterns in participants with persistent insomnia and major depressive disorder from clinical feature data using latent tree analysis, and to compare the latent variables with relevant CM syndromes. One hundred and forty-two participants with persistent insomnia and a history of major depressive disorder completed a standardized checklist (the Chinese Medicine Insomnia Symptom Checklist) specially developed for CM syndrome classification of insomnia. The checklist covers symptoms and signs, including tongue and pulse features. The clinical features assessed by the checklist were analyzed using Lantern software. CM practitioners with relevant experience compared the clinical feature variables under each latent variable with reference to relevant CM syndromes, based on a previous review of CM syndromes. The symptom data were analyzed to build the latent tree model and the model with the highest Bayes information criterion score was regarded as the best model. This model contained 18 latent variables, each of which divided participants into two clusters. Six clusters represented more than 50 % of the sample. The clinical feature co-occurrence patterns of these six clusters were interpreted as the CM syndromes Liver qi stagnation transforming into fire, Liver fire flaming upward, Stomach disharmony, Hyperactivity of fire due to yin deficiency, Heart-kidney noninteraction, and Qi deficiency of the heart and gallbladder. The clinical feature variables that contributed significant cumulative information coverage (at least 95 %) were identified. Latent tree model analysis on a sample of depressed participants with insomnia revealed 13 clinical feature co-occurrence patterns, four mutual-exclusion patterns, and one pattern with a single clinical feature variable.
The College Mathematics Experience and Changes in Majors: A Structural Model Analysis.
ERIC Educational Resources Information Center
Whiteley, Meredith A.; Fenske, Robert H.
1990-01-01
Testing of a structural equation model with college mathematics experience as the focal variable in 745 students' final decisions concerning major or dropping out over 4 years of college yielded separate model estimates for 3 fields: scientific/technical, quantitative business, and business management majors. (Author/MSE)
Different origins of garnet in high pressure to ultrahigh pressure metamorphic rocks
NASA Astrophysics Data System (ADS)
Xia, Qiong-Xia; Zhou, Li-Gang
2017-09-01
Garnet in high-pressure (HP) to ultrahigh-pressure (UHP) metamorphic rocks in subduction zone commonly shows considerable zonation in major and trace elements as well as mineral inclusions, which bears information on its growth mechanism via metamorphic or peritectic reactions in coexistence with relic minerals and metamorphic fluids or anatectic melts at subduction-zone conditions. It provides an important target to retrieve physicochemical changes in subduction-zone processes, including those not only in pressure and temperature but also in the durations of metamorphism and anatexis. Garnet from different compositions of HP to UHP metamorphic rocks may show different types of major and trace element zonation, as well as mineral inclusions. Discrimination between the different origins of garnet provides important constraints on pressure and temperature and the evolution history for the HP to UHP metamorphic rocks. Magmatic garnet may occur as relics in granitic gneisses despite metamorphic modification at subduction-zone conditions, with spessartine-increasing or flat major element profiles from inner to outer core and exceptionally higher contents of trace elements than metamorphic mantle and rim. Metamorphic garnet can grow at different metamorphic stages during prograde subduction and retrograde exhumation, with spessartine-decreasing from core to rim if the intracrystalline diffusion is not too fast. The compositional profiles of metamorphic garnet in the abundances of grossular, almandine and pyrope are variable depending on the composition of host rocks and co-existing minerals. Peritectic garnet grows through peritectic reactions during partial melting of HP to UHP rocks, with the composition of major elements to be controlled by anatectic P-T conditions and the compositions of parental rocks and anatectic melts. Trace element profiles in garnet with different origins are also variable depending on the coexisting mineral assemblages, the garnet-forming reactions and the property of metamorphic fluids or anatectic melts. Mineral inclusions not only present key clues to identify the different origins of garnet, but also serve as sound candidates for the temporal constraint on garnet growth.
A review of reporting of participant recruitment and retention in RCTs in six major journals
Toerien, Merran; Brookes, Sara T; Metcalfe, Chris; de Salis, Isabel; Tomlin, Zelda; Peters, Tim J; Sterne, Jonathan; Donovan, Jenny L
2009-01-01
Background Poor recruitment and retention of participants in randomised controlled trials (RCTs) is problematic but common. Clear and detailed reporting of participant flow is essential to assess the generalisability and comparability of RCTs. Despite improved reporting since the implementation of the CONSORT statement, important problems remain. This paper aims: (i) to update and extend previous reviews evaluating reporting of participant recruitment and retention in RCTs; (ii) to quantify the level of participation throughout RCTs. Methods We reviewed all reports of RCTs of health care interventions and/or processes with individual randomisation, published July–December 2004 in six major journals. Short, secondary or interim reports, and Phase I/II trials were excluded. Data recorded were: general RCT details; inclusion of flow diagram; participant flow throughout trial; reasons for non-participation/withdrawal; target sample sizes. Results 133 reports were reviewed. Overall, 79% included a flow diagram, but over a third were incomplete. The majority reported the flow of participants at each stage of the trial after randomisation. However, 40% failed to report the numbers assessed for eligibility. Percentages of participants retained at each stage were high: for example, 90% of eligible individuals were randomised, and 93% of those randomised were outcome assessed. On average, trials met their sample size targets. However, there were some substantial shortfalls: for example 21% of trials reporting a sample size calculation failed to achieve adequate numbers at randomisation, and 48% at outcome assessment. Reporting of losses to follow up was variable and difficult to interpret. Conclusion The majority of RCTs reported the flow of participants well after randomisation, although only two-thirds included a complete flow chart and there was great variability over the definition of "lost to follow up". Reporting of participant eligibility was poor, making assessments of recruitment practice and external validity difficult. Reporting of participant flow throughout RCTs could be improved by small changes to the CONSORT chart. PMID:19591685
A review of reporting of participant recruitment and retention in RCTs in six major journals.
Toerien, Merran; Brookes, Sara T; Metcalfe, Chris; de Salis, Isabel; Tomlin, Zelda; Peters, Tim J; Sterne, Jonathan; Donovan, Jenny L
2009-07-10
Poor recruitment and retention of participants in randomised controlled trials (RCTs) is problematic but common. Clear and detailed reporting of participant flow is essential to assess the generalisability and comparability of RCTs. Despite improved reporting since the implementation of the CONSORT statement, important problems remain. This paper aims: (i) to update and extend previous reviews evaluating reporting of participant recruitment and retention in RCTs; (ii) to quantify the level of participation throughout RCTs. We reviewed all reports of RCTs of health care interventions and/or processes with individual randomisation, published July-December 2004 in six major journals. Short, secondary or interim reports, and Phase I/II trials were excluded. Data recorded were: general RCT details; inclusion of flow diagram; participant flow throughout trial; reasons for non-participation/withdrawal; target sample sizes. 133 reports were reviewed. Overall, 79% included a flow diagram, but over a third were incomplete. The majority reported the flow of participants at each stage of the trial after randomisation. However, 40% failed to report the numbers assessed for eligibility. Percentages of participants retained at each stage were high: for example, 90% of eligible individuals were randomised, and 93% of those randomised were outcome assessed. On average, trials met their sample size targets. However, there were some substantial shortfalls: for example 21% of trials reporting a sample size calculation failed to achieve adequate numbers at randomisation, and 48% at outcome assessment. Reporting of losses to follow up was variable and difficult to interpret. The majority of RCTs reported the flow of participants well after randomisation, although only two-thirds included a complete flow chart and there was great variability over the definition of "lost to follow up". Reporting of participant eligibility was poor, making assessments of recruitment practice and external validity difficult. Reporting of participant flow throughout RCTs could be improved by small changes to the CONSORT chart.
Factors Related to the Choice of Science as a Major among Negro College Students.
ERIC Educational Resources Information Center
Tilford, Michael Phillip
The purpose of this study was to identify some of the characteristics of Negro college students who majored in science in comparison to those who were non-majors. The science majors were sub-divided into pure science and applied science groups for some analyses. Twelve variables were investigated: (1) ACT composite scores, (2) ACT science scores,…
Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J
2016-07-01
Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.
Oxytocin and Stress-related Disorders: Neurobiological Mechanisms and Treatment Opportunities
Sippel, Lauren M.; Allington, Casey E.; Pietrzak, Robert H.; Harpaz-Rotem, Ilan; Mayes, Linda C.; Olff, Miranda
2017-01-01
Novel pharmacotherapies that improve outcomes for individuals with stress-related psychiatric disorders are needed. The neurohormone oxytocin (OT) is a promising candidate given its influence on the social–emotional brain. In this review, we present an overview of evidence supporting OT’s utility for treating major depressive disorder and posttraumatic stress disorder. We first discuss endogenous OT, which research suggests is not yet a reliable biomarker of stress-related disorders. Second, we review effects of intranasal (IN) OT on processes relevant to stress-related disorders in healthy populations (anhedonia, reward processing, psychosocial stress reactivity, fear/anxiety, and social behavior) and their neurobiological mechanisms (e.g., the salience network and hypothalamic–pituitary–adrenal axis). Third, we present the sparse but promising findings from clinical populations, followed by discussion of critical moderating variables to consider in the service of maximizing the therapeutic potential of OT (e.g., patient sex and child maltreatment). We also identify heterogeneous findings and limitations of existing research, including reliance on single-dose studies in psychiatrically healthy samples and unanswered questions regarding the effectiveness of IN drug delivery and dosing schedules. Well-controlled multidose studies including women and measures of potentially moderating variables are sorely needed and would inform our understanding of the utility of OT for preventing and treating stress-related psychiatric disorders. PMID:28649672
Song, Yukun; Cheng, Shasha; Wang, Huihui; Zhu, Bei-Wei; Zhou, Dayong; Yang, Peiqiang; Tan, Mingqian
2018-01-24
A nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) system with a 45 mm variable temperature (VT) sample probe (VT-NMR-MRI) was developed as an innovative technique for in situ monitoring of food phase transition. The system was designed to allow for dual deployment in either a freezing (-37 °C) or high temperature (150 °C) environment. The major breakthrough of the developed VT-NMR-MRI system is that it is able to measure the water states simultaneously in situ during food processing. The performance of the VT-NMR-MRI system was evaluated by measuring the phase transition for salmon flesh and hen egg samples. The NMR relaxometry results demonstrated that the freezing point of salmon flesh was -8.08 °C, and the salmon flesh denaturation temperature was 42.16 °C. The protein denaturation of egg was 70.61 °C, and the protein denaturation occurred at 24.12 min. Meanwhile, the use of MRI in phase transition of food was also investigated to gain internal structural information. All these results showed that the VT-NMR-MRI system provided an effective means for in situ monitoring of phase transition in food processing.
Delsignore, Aba
2008-08-01
To examine whether and how different patterns of psychotherapy history (no prior therapy, successful therapy experience, and unsuccessful therapy experience) affect the outcome of future treatment among patients undergoing cognitive-behavioural group therapy for social anxiety disorder. Fifty-seven patients with varying histories of psychotherapy participating in cognitive-behavioural group treatment for social anxiety disorder were included in the study. Symptom severity (including anxiety, depression, self-efficacy, and global symptom severity) was assessed at pre- and posttreatment. A therapist-rated measure of patient therapy engagement was included as a process variable. First-time therapy patients showed more favourable pretreatment variables and achieved greater benefit from group therapy. Among patients with unsuccessful therapy experience, substantial gains were attained by those who were able to actively engage in the therapy process. Patients rating previous therapies as successful could benefit the least and tended to stagnate. Possible explanations for group differences and clinical implications are discussed. Prior psychotherapy experience affects the course of cognitive-behavioural group therapy in patients with social phobias. While patients with negative therapy experience may need extensive support in being and remaining actively engaged, those rating previous therapies as successful should be assessed very carefully and may benefit from a major focus on relational aspects.
Rumination, experiential avoidance, and dysfunctional thinking in eating disorders
Rawal, Adhip; Park, Rebecca J.; Williams, J. Mark G.
2010-01-01
The majority of research in eating disorders (ED) has investigated the content of disorder-specific thoughts, while few studies have addressed underlying cognitive-affective processes. A better understanding of processes underpinning ED may have important implications for treatment development. Two studies were conducted that investigated levels of rumination, beliefs about rumination, experiential avoidance, and aspects of schematic thinking in individuals with eating pathology. The latter was assessed with a newly designed ED-Sentence Completion Task (ED-SCT). Study 1 (N = 177) examined relations between ED psychopathology and these variables in a student population. Extending this, Study 2 (N = 26) assessed differences between patients with anorexia nervosa and healthy control participants. The results showed that ED psychopathology was related to disorder-specific cognitions, experiential avoidance as well as ruminative brooding but not reflection. A follow-up of anorexia nervosa patients indicated that changes in ED psychopathology were associated with changes in dysfunctional attitudes and maladaptive cognitive-affective processes. These findings highlight cognitive processes that may play an important role in the maintenance of eating pathology. PMID:20598670
Surfactant effects on alpha factors in full-scale wastewater aeration systems.
Rosso, D; Larson, L E; Stenstrom, M K
2006-01-01
Aeration is an essential process in the majority of wastewater treatment processes, and accounts for the largest fraction of plant energy costs. Aeration systems can achieve wastewater oxygenation by shearing the surface (surface aerators) or releasing bubbles at the bottom of the tank (coarse- or fine-bubble aerators). Surfactants accumulate on gas-liquid interfaces and reduce mass transfer rates. This reduction in general is larger for fine-bubble aerators. This study was conducted to evaluate mass transfer effects on the characterization and specification of aeration systems in clean and process water conditions. Tests at different interfacial turbulence regimes were analysed, showing higher gas transfer depression for lower turbulence regimes. Higher turbulence regimes can offset contamination effects, at the expense of operating efficiency. This phenomenon is characteristic of surface aerators and coarse bubble diffusers and is here discussed. The results explain the variability of alpha factors measured at small scale, due to uncontrolled energy density. Results are also reported in dimensionless empirical correlations that describe mass transfer as a function of physiochemical and geometrical characteristics of the aeration process.
Runge, Kristin K; Chung, Jennifer H; Su, Leona Yi-Fan; Brossard, Dominique; Scheufele, Dietram A
2018-09-01
In March 2012 ABC World News Report aired a series of reports on lean finely textured beef (LFTB) that resulted in a 10-year low for beef prices and the bankruptcy of a major firm that produced LFTB. Using a random sample survey, we tested the effects of the media frame "pink slime" and industry frame "lean finely textured beef," alongside media use, food-related knowledge, trust in food-related institutions and preference for local, fresh, organic and GMO-free foods on perceptions of risk related to ground beef containing pink slime/LFTB, processed foods and red meat. The "pink slime" frame was strongly and positively associated with risk related to ground beef, but not risk related to red meat or processed foods. Attention to news stories about pink slime/LFTB was strongly associated with risk related to ground beef and processed foods, but not red meat. We found varying effects of food values, knowledge and trust on all three dependent variables. Implications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Determining the influence and effects of manufacturing variables on sulfur dioxide cells
NASA Technical Reports Server (NTRS)
Zajac, W. V.; Thomas, M. A.; Barnes, J. A.; Bis, R., F.; Davis, P. B.; Debold, F. C.; Gemmill, G. W.; Kowalchik, L. A.
1986-01-01
A survey of the Li/SO2 manufacturing community was conducted to determine where variability exists in processing. The upper and lower limits of these processing variables might, by themselves or by interacting with other variables, influence safety, performance, and reliability. A number of important variables were identified and a comprehensive design experiment is being proposed to make the proper determinations.
From the Last Interglacial to the Anthropocene: Modelling a Complete Glacial Cycle (PalMod)
NASA Astrophysics Data System (ADS)
Brücher, Tim; Latif, Mojib
2017-04-01
We will give a short overview and update on the current status of the national climate modelling initiative PalMod (Paleo Modelling, www.palmod.de). PalMod focuses on the understanding of the climate system dynamics and its variability during the last glacial cycle. The initiative is funded by the German Federal Ministry of Education and Research (BMBF) and its specific topics are: (i) to identify and quantify the relative contributions of the fundamental processes which determined the Earth's climate trajectory and variability during the last glacial cycle, (ii) to simulate with comprehensive Earth System Models (ESMs) the climate from the peak of the last interglacial - the Eemian warm period - up to the present, including the changes in the spectrum of variability, and (iii) to assess possible future climate trajectories beyond this century during the next millennia with sophisticated ESMs tested in such a way. The research is intended to be conducted over a period of 10 years, but with shorter funding cycles. PalMod kicked off in February 2016. The first phase focuses on the last deglaciation (app. the last 23.000 years). From the ESM perspective PalMod pushes forward model development by coupling ESM with dynamical ice sheet models. Computer scientists work on speeding up climate models using different concepts (like parallelisation in time) and one working group is dedicated to perform a comprehensive data synthesis to validate model performance. The envisioned approach is innovative in three respects. First, the consortium aims at simulating a full glacial cycle in transient mode and with comprehensive ESMs which allow full interactions between the physical and biogeochemical components of the Earth system, including ice sheets. Second, we shall address climate variability during the last glacial cycle on a large range of time scales, from interannual to multi-millennial, and attempt to quantify the relative contributions of external forcing and processes internal to the Earth system to climate variability at different time scales. Third, in order to achieve a higher level of understanding of natural climate variability at time scales of millennia, its governing processes and implications for the future climate, we bring together three different research communities: the Earth system modeling community, the proxy data community and the computational science community. The consortium consists of 18 partners including all major modelling centers within Germany. The funding comprises approximately 65 PostDoc positions and more than 120 scientists are involved. PalMod is coordinated at the Helmholtz Centre for Ocean Research Kiel (GEOMAR).
Coordinating Transit Transfers in Real Time
DOT National Transportation Integrated Search
2016-05-06
Transfers are a major source of travel time variability for transit passengers. Coordinating transfers between transit routes in real time can reduce passenger waiting times and travel time variability, but these benefits need to be contrasted with t...
High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay
NASA Astrophysics Data System (ADS)
Updyke, T. G.; Dusek, G.; Atkinson, L. P.
2016-02-01
Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.
Use of canonical variate analysis biplot in examination of choline content data of some foods.
Alkan, Baris; Atakan, Cemal
2011-03-01
Adequate intake (AI) of choline as part of the daily diet can help prevent major diseases. Low choline intake is a major risk factor for liver and several neurological disorders. Extreme choline consumption may cause diseases such as hypotension, sweating, diarrhea, and fishy body odor. The AI of choline is 425 mg/day for adult women; higher for pregnant and lactating women. The AI for adult men is 550 mg/day. The total choline content of foods is calculated as the sum of free choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin. These are called the choline variables. Observed values of choline variables may be different in amounts of nutrients. So different food groups in terms of choline variables are useful to compare. The present paper shows the advantages of using canonical variate analysis biplot to optimally separate groups and explore the differentiality of choline variables amounts in foods.
Variable selection and model choice in geoadditive regression models.
Kneib, Thomas; Hothorn, Torsten; Tutz, Gerhard
2009-06-01
Model choice and variable selection are issues of major concern in practical regression analyses, arising in many biometric applications such as habitat suitability analyses, where the aim is to identify the influence of potentially many environmental conditions on certain species. We describe regression models for breeding bird communities that facilitate both model choice and variable selection, by a boosting algorithm that works within a class of geoadditive regression models comprising spatial effects, nonparametric effects of continuous covariates, interaction surfaces, and varying coefficients. The major modeling components are penalized splines and their bivariate tensor product extensions. All smooth model terms are represented as the sum of a parametric component and a smooth component with one degree of freedom to obtain a fair comparison between the model terms. A generic representation of the geoadditive model allows us to devise a general boosting algorithm that automatically performs model choice and variable selection.