Structural behavior of the Bitter plate tf magnet for the Zephyr ignition test reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobrov, E.S.; Becker, H.
1981-01-01
This paper discusses methods and results of the computer structural analysis of the Bitter plate toroidal field magnet design for the ZEPHYR Ignition Test Reactor. The magnet provides a field of 7.06 T at the center of the bore which is 1.76 m from the major toroidal axis. The ignited plasma is located at a major radius of 1.36 m where the magnetic field is 9.11 T. The plasma is moved to this final position following compression in the major radius. The horizontal bore of the magnet is 1.8 m.
Oak, Nikhil R; Lien, John R; Brunfeldt, Alexander; Lawton, Jeffrey N
2018-05-01
A fracture through the proximal radius is a theoretical concern after cortical button distal biceps fixation in an active patient. The permanent, nonossified cortical defect and medullary tunnel is at risk during a fall eliciting rotational and compressive forces. We hypothesized that during simulated torsion and compression, in comparison with unaltered specimens, the cortical button distal biceps repair model would have decreased torsional and compressive strength and would fracture in the vicinity of the bicipital tuberosity bone tunnel. Sixteen fourth-generation composite radius Sawbones models were used in this controlled laboratory study. A bone tunnel was created through the bicipital tuberosity to mimic the exact bone tunnel, 8 mm near cortex and 3.2 mm far cortex, made for the BicepsButton distal biceps tendon repair. The radius was then prepared and mounted on either a torsional or compression testing device and compared with undrilled control specimens. Compression tests resulted in average failure loads of 9015.2 N in controls versus 8253.25 N in drilled specimens ( P = .074). Torsional testing resulted in an average failure torque of 27.3 Nm in controls and 19.3 Nm in drilled specimens ( P = .024). Average fracture angle was 35.1° in controls versus 21.1° in drilled. Gross fracture patterns were similar in compression testing; however, in torsional testing all fractures occurred through the bone tunnel in the drilled group. There are weaknesses in the vicinity of the bone tunnel in the proximal radius during biomechanical stress testing which may not be clinically relevant in nature. In cortical button fixation, distal biceps repairs creates a permanent, nonossified cortical defect with tendon interposed in the bone tunnel, which can alter the biomechanical properties of the proximal radius during compressive and torsional loading.
Stress-dislocation interaction mechanism in low-temperature thermo-compression sintering of Ag NPs
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Tang, Zikai; He, Hu
2018-04-01
The sintering of metal nanoparticles (NPs) has been widely studied in the field of nanotechnology, and low-temperature sintering has become the industry standard. In this study, a molecular dynamics (MD) model was established to study the sintering behaviour of silver NPs during low-temperature thermo-compression. Primarily, we studied the sintering process, in which the ratio of neck radius to particle radius (x/r) changes. Under a uniaxial pressure, the maximum ratio in the temperature range 420-425 K was 1. According to the change of x/r, the process can be broken down into three stages: the neck-formation stage, neck-growth stage, and neck-stability stage. In addition, the relationship between potential energy, internal stress, and dislocation density during sintering is discussed. The results showed that cycling internal stress played an important role in sintering. Under the uniaxial pressure, the stress-dislocation interaction was found to be the major mechanism for thermo-compression sintering because the plastic deformation product dislocation intensified the diffusion of atoms. Also, the displacement vector, the mean square displacement, and the changing crystal structure during sintering were studied.
NASA Astrophysics Data System (ADS)
Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.
2016-03-01
Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.
NASA Astrophysics Data System (ADS)
Zhang, Xueling; Zhu, Weiyao; Cai, Qiang; Shi, Yutao; Wu, Xuehong; Jin, Tingxiang; Yang, Lianzhi; Song, Hongqing
2018-06-01
Although nano- and micro-scale phenomena for fluid flows are ubiquitous in tight oil reservoirs or in nano- or micro-sized channels, the mechanisms behind them remain unclear. In this study, we consider the wall-liquid interaction to investigate the flow mechanisms behind a compressible liquid flow in nano- or micro-sized circular tubes. We assume that the liquid is attracted by the wall surface primarily by the Lifshitz-van der Waals (LW) force, whereas electrostatic forces are negligible. The long-range LW force is thus introduced into the Navier-Stokes equations. The nonlinear equations of motion are decoupled by using the hydrodynamic vorticity-stream functions, from which an approximate analytical perturbation solution is obtained. The proposed model considers the LW force and liquid compressibility to obtain the velocity and pressure fields, which are consistent with experimentally observed micro-size effects. A smaller tube radius implies smaller dimensionless velocity, and when the tube radius decreases to a certain radius Rm, a fluid no longer flows, where Rm is the lower limit of the movable-fluid radius. The radius Rm is calculated, and the results are consistent with previous experimental results. These results reveal that micro-size effects are caused by liquid compressibility and wall-liquid interactions, such as the LW force, for a liquid flowing in nano- or micro-sized channels or pores. The attractive LW force enhances the flow's radial resistance, and the liquid compressibility transmits the radial resistance to the streaming direction via volume deformation, thereby decreasing the streaming velocity.
Tablet compression tooling - Impact of punch face edge modification.
Anbalagan, Parthiban; Heng, Paul Wan Sia; Liew, Celine Valeria
2017-05-30
The influence of punch face edge geometry modification on tablet compression and the properties of the resultant tablets produced on a rotary press were investigated. The results revealed that tablets produced from the punches with radius edge face geometry consistently displayed better physical quality; higher tensile strength and lower capping tendency. Modification of the angled edge of the bevel face to the curved edge of the radius face, enabled deeper punch penetration in the die cavity during the compression cycle, bringing about greater compact densification. Improved die fill packing increased interparticulate bond formation and helped to dissipate destructive elasticity within the compact, consequently reduced tablet expansion during the decompression phase. The positive impact of punch face edge modification was also more noticeable at a higher turret speed. The application of the precompression force along with dwell time extension amplified the tableting performance of radius edge punch face design to a greater extent when compared to bevel edge punch face design. This could be attributed to the enhanced packing efficiency at both precompression and main compression stages. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of Aircraft (Selected Chapters),
1986-09-22
9 - compressed air motor of the drive of the reverser of the thrust of fan; 10 - flexible drive shaft; 11 - gearbox and jack; 12 - moving ring; 13...24 - cutoff and control valve; 25 - main line of pneumatic system; 26 - pneumo-starter; 27 - given by compressed air motor hydraulic pump; 28...kilometer; p - mass air density; p, - on the surface of sea; .A=p/p°- relative density of air ; R - radius of the Earth, a radius turn/bank and so forth; S
Planetary Interiors: Parametric Modeling of Global Geophysical Properties
NASA Astrophysics Data System (ADS)
Montgomery, W.; Jeanloz, R.
2004-12-01
Taking into account a realistic form of equation of state, we parameterize the degree to which bulk geophysical properties of planets are sensitive to gravitational self-compression. For example, the normalized moment of mass of a uniform-composition planet is C/Ma2 = 0.40 only in the limit of zero planetary size or incompressible material, and decreases toward 0.32 for finite compressibility as the planetary radius increases toward a = 104 km (M is planetary mass). Central density correspondingly increases from ρ 0, the surface density, toward 10 * ρ 0. Our calculations, based on the Eulerian finite-strain equation of state, make it possible to distinguish the effects of self-compression from the effects of non-uniformity (due either to changes in bulk composition or in phase with depth) as these influence planetary mass and moment of inertia relative to size. As observations of extra-solar planets can provide estimates of their mass and diameter (hence mean density), our formulation can account for the effects of compression in modeling the internal constitution and evolution of these objects. The effects of compression are especially important for giant and super-giant planets, such as the majority that have been observed to date.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
Pak, A.; Divol, L.; Gregori, G.; ...
2013-05-20
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less
Compression of a mixed antiproton and electron non-neutral plasma to high densities
NASA Astrophysics Data System (ADS)
Aghion, Stefano; Amsler, Claude; Bonomi, Germano; Brusa, Roberto S.; Caccia, Massimo; Caravita, Ruggero; Castelli, Fabrizio; Cerchiari, Giovanni; Comparat, Daniel; Consolati, Giovanni; Demetrio, Andrea; Di Noto, Lea; Doser, Michael; Evans, Craig; Fanì, Mattia; Ferragut, Rafael; Fesel, Julian; Fontana, Andrea; Gerber, Sebastian; Giammarchi, Marco; Gligorova, Angela; Guatieri, Francesco; Haider, Stefan; Hinterberger, Alexander; Holmestad, Helga; Kellerbauer, Alban; Khalidova, Olga; Krasnický, Daniel; Lagomarsino, Vittorio; Lansonneur, Pierre; Lebrun, Patrice; Malbrunot, Chloé; Mariazzi, Sebastiano; Marton, Johann; Matveev, Victor; Mazzotta, Zeudi; Müller, Simon R.; Nebbia, Giancarlo; Nedelec, Patrick; Oberthaler, Markus; Pacifico, Nicola; Pagano, Davide; Penasa, Luca; Petracek, Vojtech; Prelz, Francesco; Prevedelli, Marco; Rienaecker, Benjamin; Robert, Jacques; Røhne, Ole M.; Rotondi, Alberto; Sandaker, Heidi; Santoro, Romualdo; Smestad, Lillian; Sorrentino, Fiodor; Testera, Gemma; Tietje, Ingmari C.; Widmann, Eberhard; Yzombard, Pauline; Zimmer, Christian; Zmeskal, Johann; Zurlo, Nicola; Antonello, Massimiliano
2018-04-01
We describe a multi-step "rotating wall" compression of a mixed cold antiproton-electron non-neutral plasma in a 4.46 T Penning-Malmberg trap developed in the context of the AEḡIS experiment at CERN. Such traps are routinely used for the preparation of cold antiprotons suitable for antihydrogen production. A tenfold antiproton radius compression has been achieved, with a minimum antiproton radius of only 0.17 mm. We describe the experimental conditions necessary to perform such a compression: minimizing the tails of the electron density distribution is paramount to ensure that the antiproton density distribution follows that of the electrons. Such electron density tails are remnants of rotating wall compression and in many cases can remain unnoticed. We observe that the compression dynamics for a pure electron plasma behaves the same way as that of a mixed antiproton and electron plasma. Thanks to this optimized compression method and the high single shot antiproton catching efficiency, we observe for the first time cold and dense non-neutral antiproton plasmas with particle densities n ≥ 1013 m-3, which pave the way for an efficient pulsed antihydrogen production in AEḡIS.
Fluffy dust forms icy planetesimals by static compression
NASA Astrophysics Data System (ADS)
Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji
2013-09-01
Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview
NASA Astrophysics Data System (ADS)
O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General
2016-10-01
Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.
Conventional bone plate fixation of distal radius and ulna fractures in toy breed dogs.
Ramírez, J M; Macías, C
2016-03-01
To describe the outcome of bone plate fixation of distal radius and ulna fractures in toy breed dogs treated with conventional bone plates. Records of 15 toy breed dogs with distal radius and ulna fractures were retrospectively reviewed for signalment, method of fixation, complications and clinical and radiographic assessments. A telephone-based owner questionnaire was conducted to determine long-term function and client satisfaction. Age ranged from 4 months to 6 years. Body weight ranged from 1 to 4 kg. Dynamic compression plates were used in 13 dogs and veterinary cuttable plates were used in 2 dogs as the means of fixation. Full radiographic and clinical follow-up data were available for 10 dogs and follow-up was performed between 6 and 8 weeks postoperatively. At that time, all fractures had healed and return to function was considered excellent in all 10 dogs. Five dogs did not return for hospital evaluation because they were judged by their owners to be free of lameness. In two cases, owners could not be contacted by telephone, but the referring veterinarians reported the dogs to be asymptomatic. No major complications occurred. Conventional bone plates are suitable choices for stabilisation of distal radius and ulna fractures in toy breed dogs and are not necessarily correlated with high rates of complication. © 2016 Australian Veterinary Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang
Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less
Zhao, Jinggeng; Yu, Zhenhai; Hu, Qingyang; ...
2016-12-14
Recently, A 2B 3-type tetradymites have developed into a hot topic in physical and material research fields, where the A and B atoms represent V and VI group elements, respectively. In this study, in situ angle-dispersive X-ray diffraction measurements were performed on Bi 2Te 2Se, BiSbTeSe 2, and Sb 2Te 2Se tetradymites under high pressure. Bi 2Te 2Se transforms from a layered rhombohedral structure (phase I) into 7-fold monoclinic (phase II) and body-centered tetragonal (phase IV) structures at about 8.0 and 14.3 GPa, respectively, without an 8-fold monoclinic structure (phase III) similar to that in Bi 2Te 3. Thus, themore » compression behavior of Bi 2Te 2Se is the same as that of Bi 2Se 3, which could also be obtained from first-principles calculations and in situ high-pressure electrical resistance measurements. Under high pressure, BiSbTeSe 2 and Sb 2Te 2Se undergo similar structural phase transitions to Bi 2Te 2Se, which indicates that the compression process of tellurides can be modulated by doping Se in Te sites. According to these high-pressure investigations of A 2B 3-type tetradymites, the decrease of the B-site atomic radius shrinks the stable pressure range of phase III and expands that of phase II, whereas the decrease of the A-site atomic radius induces a different effect, i.e. expanding the stable pressure range of phase III and shrinking that of phase II. Lastly, the influence of the atomic radius on the compression process of tetradymites is closely related to the chemical composition and the atom arrangement in the quintuple layer.« less
Influence of pore structure on compressive strength of cement mortar.
Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.
Influence of Pore Structure on Compressive Strength of Cement Mortar
Zhao, Haitao; Xiao, Qi; Huang, Donghui
2014-01-01
This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414
Kuemmerle, Jan M; Kühn, Karolin; Bryner, Marco; Fürst, Anton E
2013-10-01
To evaluate if the use of locking head screws (LHS) in the distal holes of a locking compression plate (LCP) applied to the caudal aspect of the ulna to treat equine ulnar fractures is associated with a risk of injury to the lateral cortex of the radius. Controlled laboratory study. Cadaveric equine forelimbs (n = 8 pair). After transverse ulnar osteotomy, osteosynthesis was performed with a narrow 10-13 hole 4.5/5.0 LCP applied to the caudal aspect of each ulna. The distal 3 holes were filled with 4.5 mm cortex screws (CS) in 1 limb (group 1) and with 5.0 mm LHS contralaterally (group 2). CS were inserted in an angle deemed appropriate by the surgeon and LHS were inserted perpendicular to the plate. Implant position and injury to the lateral cortex of the radius were assessed by radiography, CT, and limb dissection. In group 1, injury of the lateral radius cortex did not occur. In group 2, 4 limbs and 6/24 LHS were associated with injury of the lateral radius cortex by penetration of a LHS. This difference was statistically significant. CS were inserted with a mean angle of 17.6° from the sagittal plane in a caudolateral-craniomedial direction. Use of LHS in the distal part of a LCP applied to the caudal aspect of the ulna is associated with a risk of inadvertent injury to the lateral cortex of the radius. © Copyright 2013 by The American College of Veterinary Surgeons.
[APPLICATION OF BUTTERFLY SHAPED LOCKING COMPRESSION PLATE IN COMPLEX DISTAL RADIUS FRACTURES].
Jiang, Zongyuan; Ma, Tao; Xia, Jiang; Hu, Caizhi; Xu, Lei
2014-06-01
To investigate the effectiveness of butterfly shaped locking compression plate for the treatment of complex distal radius fractures. Between June 2011 and January 2013, 20 cases of complex distal radius fractures were treated with butterfly shaped locking compression plate fixation. There were 11 males and 9 females with an average age of 54 years (range, 25-75 years). Injury was caused by falling in 10 cases, by traffic accident in 7 cases, and by falling from height in 3 cases. All of fractures were closed. According to AO classification system, there were 8 cases of type C1, 8 cases of type C2, and 4 cases of type C3. Of them, 9 cases had radial styloid process fracture, 4 cases had sigmoid notch fracture, and 7 cases had both radial styloid process fracture and sigmoid notch fracture. The mean interval between injury and operation was 5.2 days (range, 3-15 days). All incisions healed by first intention; no complications of infection and necrosis occurred. All cases were followed up 14 months on average (range, 10-22 months). All factures healed after 9.3 weeks on average (range, 6-11 weeks). No complications such as displacement of fracture, joint surface subsidence, shortening of the radius, and carpal tunnel syndrome were found during follow-up. At last follow-up, the mean palmar tilt angle was 10.2° (range, 7-15°), and the mean ulnar deviation angle was 21.8° (range, 17-24°). The mean range of motion of the wrist was 45.3° (range, 35-68°) in dorsal extension, 53.5° (range, 40-78°) in palmar flexion, 19.8° (range, 12-27°) in radial inclination, 26.6° (range, 18-31°) in ulnar inclination, 70.2° (range, 45-90°) in pronation, and 68.4° (range, 25-88°) in supination. According to the Dienst scoring system, the results were excellent in 8 cases, good in 10 cases, and fair in 2 cases, and the excellent and good rate was 90%. Treatment of complex distal radius fractures with butterfly shaped locking compression plate can reconstruct normal anatomic structures, especially for radial styloid process and sigmoid notch fractures, and it can get good functional recovery of the wrist and the distal radioulnar joint.
NASA Astrophysics Data System (ADS)
Carter, B.; Luminet, J.-P.
1983-05-01
The gross qualitative behaviour of a star plunging deeply within the Roche tidal radius, RR, of a large black hole to a pericentre radius β-1RR, with β≳3, is examined using a simplified affine star model whose evolution is canonically determined by a Lagrangian formalism. In Phase I, for R≳RR, the star remains in only slightly distorted self-gravitating quasi-equilibrium, but in Phase II its particles undergo approximately free fall in the strong external tidal field within the Roche radius. In Phase III the compression is halted and reversed by the build-up of pressure in a highly flattened pancake configuration, in which adiabatic heating raises the temperature to a maximum given in most cases by Θm ≍ β-2Θ* where Θ* is the equilibrium core temperature. In Phase IV the matter expands again in approximately free fall, and in Phase V, as the star moves outside the Roche radius, pressure and self-gravitational forces again come into play. For stars rich in intermediate weight elements, nuclear energy release by proton capture in Phase III is shown to be important. Consideration of the more spectacular possibility of helium detonation is postponed until Part II.
Synthetic optimization of air turbine for dental handpieces.
Shi, Z Y; Dong, T
2014-01-01
A synthetic optimization of Pelton air turbine in dental handpieces concerning the power output, compressed air consumption and rotation speed in the mean time is implemented by employing a standard design procedure and variable limitation from practical dentistry. The Pareto optimal solution sets acquired by using the Normalized Normal Constraint method are mainly comprised of two piecewise continuous parts. On the Pareto frontier, the supply air stagnation pressure stalls at the lower boundary of the design space, the rotation speed is a constant value within the recommended range from literature, the blade tip clearance insensitive to while the nozzle radius increases with power output and mass flow rate of compressed air to which the residual geometric dimensions are showing an opposite trend within their respective "pieces" compared to the nozzle radius.
Optimum shape of a blunt forebody in hypersonic flow
NASA Technical Reports Server (NTRS)
Maestrello, L.; Ting, L.
1989-01-01
The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.
NASA Astrophysics Data System (ADS)
Lin, Kai-Peng; Stachiv, Ivo; Fang, Te-Hua
2017-07-01
The mechanical properties and deformation mechanism of alumina (Al2O3) ceramic nanopillars and microstructures have been studied using in situ transmission electron microscopy (TEM) compression and nanoindentation experiments. It has been found that the Young’s modulus of Al2O3 nanopillars significantly increases with a decrease of its thickness; it ranges from 54.8 GPa for the nanopillar of radius 175 nm to 347.5 GPa for the one of radius of 75 nm. The hardness of Al2O3 microstructures estimated by the nanoindentation is between 3.19 to 20.60 GPa. The Raman spectra of Al2O3 substrate has a production peak (577.3 cm-1) between 418.3 and 645.2 (cm-1) peaks. The strain hardening behavior of Al2O3 microstructures has been observed and the impact of size on the compressive and bending behavior of Al2O3 micro-pillared structures is also examined and explained.
Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln = Nd, Gd, Er) at high pressure
NASA Astrophysics Data System (ADS)
Turner, Katlyn M.; Tracy, Cameron L.; Mao, Wendy L.; Ewing, Rodney C.
2017-12-01
Lanthanide stannate pyrochlores (Ln2Sn2O7; Ln = Nd, Gd, and Er) were investigated in situ to 50 GPa in order to determine their structural response to compression and compare their response to that of lanthanide titanate, zirconate, and hafnate pyrochlores. The cation radius ratio of A3+/B4+ in pyrochlore oxides (A2B2O7) is thought to be the dominant feature that influences their response on compression. The ionic radius of Sn4+ is intermediate to that of Ti4+, Zr4+, and Hf4+, but the 〈Sn-O〉 bond in stannate pyrochlore is more covalent than the 〈B-O〉 bonds in titanates, zirconate, and hafnates. In stannates, based on in situ Raman spectroscopy, pyrochlore cation and anion sublattices begin to disorder with the onset of compression, first measured at 0.3 GPa. The extent of sublattice disorder versus pressure is greater in stannates with a smaller Ln3+ cation. Stannate pyrochlores (Fd-3m) begin a sluggish transformation to an orthorhombic, cotunnite-like structure at ~28 GPa similar transitions have been observed in titanate, zirconate, and hafnate pyrochlores at varying pressures (18-40 GPa) with cation radius ratio. The extent of the phase transition versus pressure varies directly with the size of the Ln3+ cation. Post-decompression from ~50 GPa, Er2Sn2O7 and Gd2Sn2O7 adopt a pyrochlore structure, rather than the multi-scale defect-fluorite + weberite-type structure adopted by Nd2Sn2O7 that is characteristic of titanate, zirconate, and hafnate pyrochlores under similar conditions. Like pyrochlore titanates, zirconates, and hafnates, the bulk modulus, B 0, of stannates varies linearly and inversely with cation radius ratio from 1 1 1 GPa (Nd2Sn2O7) to 251 GPa (Er2Sn2O7). The trends of bulk moduli in stannates in this study are in excellent agreement with previous experimental studies on stannates and suggest that the size of the Ln3+ cation is the primary determining factor of B 0. Additionally, when normalized to r A/r B, the bulk moduli of stannates are comparable to those of zirconates and hafnates, which vary from titanates. Our results suggest that the cation radius ratio strongly influences the bulk moduli of stannates, as well as their overall compression response.
Treatment of unstable distal radius fractures with Ilizarov circular, nonbridging external fixator.
Tyllianakis, Minos; Mylonas, Spyros; Saridis, Alkis; Kallivokas, Alkiviadis; Kouzelis, Antonis; Megas, Panagiotis
2010-03-01
Unstable distal radius fractures remain a challenge for the treating orthopaedic surgeon. We present a retrospective follow-up study (mean follow-up 12.5 months) of 20 patients with 21 unstable distal radius fractures that were reduced in a closed manner and stabilized with a nonbridging Ilizarov external fixator. Subsequent insertion of olive wires for interfragmentary compression was performed in cases with intra-articular fractures. According to the overall evaluation proposed by Gartland and Werley scoring system 12 wrists were classified as excellent, 6 as good, 2 as fair and 1 as poor. Grade II pin-tract infection in distal fracture fragment was detected in 3 wires from a total of 78 (3.8%) and in 4 half pins out of a total of 9 (44.4%). Pronation was the most frequently impaired movement. This was restricted in 4 patients (19%) in whom a radioulnar transfixing wire was applied. Symptoms of irritation of superficial sensory branch of the radial nerve occurred in 3 patients with an olive wire applied in a closed manner in the distal fragment. Ilizarov method yields functional results comparable to that of other methods whilst it avoids wrist immobilization, open reduction and reoperation for implant removal. The method is associated with a low rate of major complication and satisfactory functional outcome. Copyright 2009 Elsevier Ltd. All rights reserved.
Scale Effects on Magnet Systems of Heliotron-Type Reactors
NASA Astrophysics Data System (ADS)
S, Imagawa; A, Sagara
2005-02-01
For power plants heliotron-type reactors have attractive advantages, such as no current-disruptions, no current-drive, and wide space between helical coils for the maintenance of in-vessel components. However, one disadvantage is that a major radius has to be large enough to obtain large Q-value or to produce sufficient space for blankets. Although the larger radius is considered to increase the construction cost, the influence has not been understood clearly, yet. Scale effects on superconducting magnet systems have been estimated under the conditions of a constant energy confinement time and similar geometrical parameters. Since the necessary magnetic field with a larger radius becomes lower, the increase rate of the weight of the coil support to the major radius is less than the square root. The necessary major radius will be determined mainly by the blanket space. The appropriate major radius will be around 13 m for a reactor similar to the Large Helical Device (LHD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong, E-mail: zhangsn@ihep.ac.cn
We re-estimate the surface magnetic fields of neutron stars (NSs) in Be X-ray binaries (BeXBs) with different models of torque, improved beyond Klus et al. In particular, a new torque model is applied to three models of magnetosphere radius. Unlike the previous models, the new torque model does not lead to divergent results for any fastness parameter. The inferred surface magnetic fields of these NSs for the two compressed magnetosphere models are much higher than that for the uncompressed magnetosphere model. The new torque model using the compressed magnetosphere radius leads to unique solutions near spin equilibrium in all cases, unlike other modelsmore » that usually give two branches of solutions. Although our conclusions are still affected by the simplistic assumptions about the magnetosphere radius calculations, we show several groups of possible surface magnetic field values with our new models when the interaction between the magnetosphere and the infalling accretion plasma is considered. The estimated surface magnetic fields for NSs BeXBs in the Large Magellanic Cloud, the Small Magellanic Cloud and the Milk Way are between the quantum critical field and the maximum “virial” value by the spin equilibrium condition.« less
Thermonuclear inverse magnetic pumping power cycle for stellarator reactor
Ho, Darwin D.; Kulsrud, Russell M.
1991-01-01
The plasma column in a stellarator is compressed and expanded alternatively in minor radius. First a plasma in thermal balance is compressed adiabatically. The volume of the compressed plasma is maintained until the plasma reaches a new thermal equilibrium. The plasma is then expanded to its original volume. As a result of the way a stellarator works, the plasma pressure during compression is less than the corresponding pressure during expansion. Therefore, negative work is done on the plasma over a complete cycle. This work manifests itself as a back-voltage in the toroidal field coils. Direct electrical energy is obtained from this voltage. Alternatively, after the compression step, the plasma can be expanded at constant pressure. The cycle can be made self-sustaining by operating a system of two stellarator reactors in tandem. Part of the energy derived from the expansion phase of a first stellarator reactor is used to compress the plasma in a second stellarator reactor.
Effective Size Analysis of the Diametral Compression (Brazil) Test Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jadaan, Osama M.; Wereszczak, Andrew A
2009-04-01
This study considers the finite element analysis (FEA) simulation and Weibull effective size analysis for the diametral compression (DC) or Brazil specimen loaded with three different push-rod geometries. Those geometries are a flat push-rod, a push-rod whose radius of curvature is larger than that for the DC specimen, and a push-rod whose radius of curvature matches that of the DC specimen. Such established effective size analysis recognizes that the tensile strength of structural ceramics is typically one to two orders of magnitude less than its compressive strength. Therefore, because fracture is much more apt to result from a tensile stressmore » than a compressive one, this traditional analysis only considers the first principal tensile stress field in the mechanically loaded ceramic component for the effective size analysis. The effective areas and effective volumes were computed as function of Weibull modulus using the CARES/Life code. Particular attention was devoted to the effect of mesh sensitivity and localized stress concentration. The effect of specimen width on the stress state was also investigated. The effects of push-rod geometry, the use of steel versus WC push-rods, and considering a frictionless versus no-slip interface between push-rod and specimen on the maximum stresses, where those stresses are located, and the effective area and effective volume results are described. Of the three push-rod geometries, it is concluded that the push-rod (made from WC rather than steel) whose radius of curvature matches that of the DC specimen is the most apt to cause fracture initiation within the specimen's bulk rather than at the loading interface. Therefore, its geometry is the most likely to produce a valid diametral compression strength test. However, the DC specimen remains inefficient in terms of its area and volume efficiencies; namely, the tensile strength of only a few percent of the specimen's entire area or volume is sampled. Given the high probability that a valid (or invalid) test can be proven by ceramic fractographic practices suggests that this test method and specimen is questionable for use with relatively strong structural ceramics.« less
Huang, Jerry I; Peterson, Bret; Bellevue, Kate; Lee, Nicolas; Smith, Sean; Herfat, Safa
2017-04-01
The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.
Quasi-Isentropic Compressibility of Deuterium at a Pressure of 12 TPa
NASA Astrophysics Data System (ADS)
Mochalov, M. A.; Il'kaev, R. I.; Fortov, V. E.; Mikhailov, A. L.; Arinin, V. A.; Blikov, A. O.; Komrakov, V. A.; Maksimkin, I. P.; Ogorodnikov, V. A.; Ryzhkov, A. V.
2018-04-01
An experimental result for the quasi-isentropic compressibility of a strongly nonideal deuterium plasma compressed in a spherical device by the pressure P = 11400 GPa (114 Mbar) to the density ρ ≈ 10g/cm3 has been reported. The characteristics of the experimental device, diagnostic methods, and experimental results have been described. The trajectory of motion of metallic shells compressing a deuterium plasma has been recorded using intense pulsed sources of X rays with the boundary energy of electrons up to 60 MeV. The deuterium plasma density ρ ≈ 10g/cm3 has been determined from the measured radius of the shell at the time of its "stop." The pressure of the compressed plasma has been determined from gas-dynamic calculations taking into account the real characteristics of the experimental device.
Pettibone, Joseph S.; Wheeler, Paul C.
1983-01-01
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
Pettibone, J.S.; Wheeler, P.C.
1981-06-08
An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.
NASA Astrophysics Data System (ADS)
Gornostaev, K. K.; Kovalev, A. V.; Malygina, Y. V.
2018-03-01
In the article the authors have considered the problem of determining the stress-strain state of the elastoplastic pipe with the Mises’ condition in case of plane strain for the compressible material taking into account the temperature. The task was solved using the method of the small parameter. The expressions for the fields of stresses and displacements were received as well as the ratio of the radius of the elastoplastic boundary in the zero and first approximations.
Axial residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1978-01-01
The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facilitya)
NASA Astrophysics Data System (ADS)
Pak, A.; Divol, L.; Gregori, G.; Weber, S.; Atherton, J.; Bennedetti, R.; Bradley, D. K.; Callahan, D.; Casey, D. T.; Dewald, E.; Döppner, T.; Edwards, M. J.; Frenje, J. A.; Glenn, S.; Grim, G. P.; Hicks, D.; Hsing, W. W.; Izumi, N.; Jones, O. S.; Johnson, M. G.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Lindl, J.; Landen, O. L.; Le Pape, S.; Ma, T.; MacPhee, A.; MacGowan, B. J.; MacKinnon, A. J.; Masse, L.; Meezan, N. B.; Moody, J. D.; Olson, R. E.; Ralph, J. E.; Robey, H. F.; Park, H.-S.; Remington, B. A.; Ross, J. S.; Tommasini, R.; Town, R. P. J.; Smalyuk, V.; Glenzer, S. H.; Moses, E. I.
2013-05-01
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ˜20 μm and ˜ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ˜40 μm and a density of >500 g/cm3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. The shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached. Approximately 200 ps after peak compression, a ring of x-ray emission created by the limb-brightening of a spherical shell of shock-heated matter is observed to appear at a radius of ˜100 μm. Hydrodynamic simulations, which model the experiment and include radiation transport, indicate that the sudden appearance of this emission occurs as the post-shock material temperature increases and upstream density decreases, over a scale length of ˜10 μm, as the shock propagates into the lower density (˜1 g/cc), hot (˜250 eV) plasma that exists at the ablation front. The expansion of the shock-heated matter is temporally and spatially resolved and indicates a shock expansion velocity of ˜300 km/s in the laboratory frame. The magnitude and temporal evolution of the luminosity produced from the shock-heated matter was measured at photon energies between 5.9 and 12.4 keV. The observed radial shock expansion, as well as the magnitude and temporal evolution of the luminosity from the shock-heated matter, is consistent with 1-D radiation hydrodynamic simulations. Analytic estimates indicate that the radiation energy flux from the shock-heated matter is of the same order as the in-flowing material energy flux, and suggests that this radiation energy flux modifies the shock front structure. Simulations support these estimates and show the formation of a radiative shock, with a precursor that raises the temperature ahead of the shock front, a sharp μm-scale thick spike in temperature at the shock front, followed by a post-shock cooling layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.
The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0
Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet
NASA Technical Reports Server (NTRS)
Heimerl, George J; Woods, Walter
1946-01-01
Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.
The nonlinear bending response of thin-walled laminated composite cylinders
NASA Technical Reports Server (NTRS)
Fuchs, Hannes P.; Hyer, Michael W.
1992-01-01
The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.
Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.
Cao, Xuan; Cao, Yu; Zhou, Chongwu
2016-01-26
Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Longitudinal residual stresses in boron fibers
NASA Technical Reports Server (NTRS)
Behrendt, D. R.
1976-01-01
A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.
White dwarf stars exceeding the Chandrasekhar mass limit
NASA Astrophysics Data System (ADS)
Tomaschitz, Roman
2018-01-01
The effect of nonlinear ultra-relativistic electron dispersion on the mass-radius relation of high-mass white dwarfs is studied. The dispersion is described by a permeability tensor in the Dirac equation, generated by the ionized high-density stellar matter, which constitutes the neutralizing background of the nearly degenerate electron plasma. The electron dispersion results in a stable mass-radius relation for high-mass white dwarfs, in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic regime, the dispersion relation is a power law whose amplitude and scaling exponent is inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS 4033. Evidence for the existence of super-Chandrasekhar mass white dwarfs is provided by several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass-radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and compression moduli and sound velocities of their white dwarf progenitors.
The High Field Ultra Low Aspect Ratio Tokamak (HF-ULART)
NASA Astrophysics Data System (ADS)
Ribeiro, Celso
2017-10-01
Recently, a medium-size HF-ULART has been proposed. The major objective is to explore the high beta and pressure under the high toroidal field, using present day technology. This might be one of pathway scenarios for a potential ultra-compact pulsed neutron source (UCP-NS) based on the spherical tokamak (ST) concept, which may lead to more steady-state NS or even to a fusion reactor, via realistic design scaling. The HF-ULART pulsed mode operation is created by quasi-simultaneous adiabatic compression (AC) in both minor and major radius of a very high beta plasma, possibly with further help of passive-wall stabilization, as envisaged in the RULART concept. This may help the revival of the studies of the AC technique in tokamaks, alongside the less compact and more complex ST-40 device, currently under construction. In addition, by similarities, studies in HF-ULART as a UCP-NS may also help to test the feasibility of the compact NS via the spheromak concept, which also uses the AC technique. Simulations of AC in HF-ULART plasmas will be presented.
Parametric study of solar thermal rocket nozzle performance
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Landrum, D. Brian; Hawk, Clark W.
1995-01-01
This paper details a numerical investigation of performance losses in low-thrust solar thermal rocket nozzles. The effects of nozzle geometry on three types of losses were studied; finite rate dissociation-recombination kinetic losses, two dimensional axisymmetric divergence losses, and compressible viscous boundary layer losses. Short nozzle lengths and supersonic flow produce short residence times in the nozzle and a nearly frozen flow, resulting in large kinetic losses. Variations in geometry have a minimal effect on kinetic losses. Divergence losses are relatively small, and careful shaping of the nozzle can nearly eliminate them. The boundary layer in these small nozzles can grow to a major fraction of nozzle radius, and cause large losses. These losses are attributed to viscous drag on the nozzle walls and flow blockage by the boundary layer, especially in the throat region. Careful shaping of the nozzle can produce a significant reduction in viscous losses.
NASA Astrophysics Data System (ADS)
Mahdi, M.; Ebrahimi, R.; Shams, M.
2011-06-01
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.
Liu, Cheng; Zhang, Yong-Fang; Li, Sha; Müller, Norbert
2017-01-01
The effects of surface texture on the lubrication performance of a compression ring-cylinder liner system are studied in this paper. By considering the surface roughness of the compression ring and cylinder liner, a mixed lubrication model is presented to investigate the tribological behaviors of a barrel-shaped compression ring-cylinder liner system with spherical dimples on the liner. In order to determine the rupture and reformulation positions of fluid film accurately, the Jacoboson-Floberg-Olsson (JFO) cavitation boundary condition is applied to the mixed lubrication model for ensuring the mass-conservative law. On this basis, the minimum oil film thickness and average friction forces in the compression ring-cylinder liner system are investigated under the engine-like conditions by changing the dimple area density, radius, and depth. The wear load, average friction forces, and power loss of the compression ring-cylinder liner system with and without dimples are also compared for different compression ring face profiles. The results show that the spherical dimples can produce a larger reduction of friction in mixed lubrication region, and reduce power loss significantly in the middle of the strokes. In addition, higher reduction percentages of average friction forces and wear are obtained for smaller crown height or larger axial width. PMID:28732042
Electron core ionization in compressed alkali metal cesium
NASA Astrophysics Data System (ADS)
Degtyareva, V. F.
2018-01-01
Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.
Issues with Strong Compression of Plasma Target by Stabilized Imploding Liner
NASA Astrophysics Data System (ADS)
Turchi, Peter; Frese, Sherry; Frese, Michael
2017-10-01
Strong compression (10:1 in radius) of an FRC by imploding liquid metal liners, stabilized against Rayleigh-Taylor modes, using different scalings for loss based on Bohm vs 100X classical diffusion rates, predict useful compressions with implosion times half the initial energy lifetime. The elongation (length-to-diameter ratio) near peak compression needed to satisfy empirical stability criterion and also retain alpha-particles is about ten. The present paper extends these considerations to issues of the initial FRC, including stability conditions (S*/E) and allowable angular speeds. Furthermore, efficient recovery of the implosion energy and alpha-particle work, in order to reduce the necessary nuclear gain for an economical power reactor, is seen as an important element of the stabilized liner implosion concept for fusion. We describe recent progress in design and construction of the high energy-density prototype of a Stabilized Liner Compressor (SLC) leading to repetitive laboratory experiments to develop the plasma target. Supported by ARPA-E ALPHA Program.
Short intense ion pulses for materials and warm dense matter research
NASA Astrophysics Data System (ADS)
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.
Irradiation of materials with short, intense ion pulses at NDCX-II
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; Friedman, A.; Gilson, E. P.; Grote, D. P.; Ji, Q.; Kaganovich, I. D.; Ludewigt, B.; Persaud, A.; Sierra, C.; Silverman, M.; Stepanov, A. D.; Sulyman, A.; Treffert, F.; Waldron, W. L.; Zimmer, M.; Schenkel, T.
2017-06-01
We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10^11 ions, 1-mm radius, and 2-30 ns FWHM duration have been created with corresponding fluences in the range of 0.1 to 0.7 J/cm^2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV He+ ion beam is neutralized in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing accelerator performance.
The production and measurement of sub-bandage pressure: Laplace's Law revisited.
Thomas, S
2014-05-01
The present study was undertaken to demonstrate that the pressures produced by multiple layers of compression bandages applied to artificial limbs of known circumference with predetermined levels of tension can be predicted accurately using the modified Laplace equation. Up to four layers of different bandage types were applied in a carefully controlled fashion to cylinders of known circumference, with tensions ranging from around 200-2000 grams/10cm width. The pressures generated were measured using pneumatic pressure sensors previously shown to possess the required degree of accuracy for this type of experimental system. Good correlation was observed between the mean and standard deviation of each pair of experimental and calculated pressure values for all combinations of bandage type, application tension and cylinder circumference. Over the clinically relevant range of pressures, the difference between data sets was generally less than 1.0mmHg. The results of this experimental study unequivocally prove that provided accurate values for all the relevant variables are known, it is possible to predict the pressure that will be developed by a compression bandage on a limb of known size. However, it is important to recognise that other factors such as the elastomeric properties of the fabric will have a major effect upon the ability of a bandage system to sustain initial compression values. Furthermore, the variation in radius of curvature around a limb will mean that point pressures readings recorded at individual locations around the circumference may vary dramatically from the average value predicted by the modified Laplace equation, calling into question the value of sub-bandage pressure measuring devices for this application.
NASA Astrophysics Data System (ADS)
Sugimoto, N.; Kugo, K.; Watanabe, Y.
2002-07-01
Asymptotic analysis is carried out to derive a nonlinear wave equation for flexural motions of an elastic beam of circular cross-section travelling along the centre-axis of an air-filled, circular tube placed coaxially. Both the beam and tube are assumed to be long enough for end-effects to be ignored and the aerodynamic loading on the lateral surface of the beam is considered. Assuming a compressible inviscid fluid, the velocity potential of the air is sought systematically in the form of power series in terms of the ratios of the tube radius to a wavelength and of a typical deflection to the radius. Evaluating the pressure force acting on the lateral surface of the beam, the aerodynamic loading including the effects of finite deflection as well as of air's compressibility and axial curvature of the beam are obtained. Although the nonlinearity arises from the kinematical condition on the beam surface, it may be attributed to the presence of the tube wall. With the aerodynamic loading thus obtained, a nonlinear wave equation is derived, whereas linear theory is assumed for the flexural motions of the beam. Some discussions are given on the results.
NASA Astrophysics Data System (ADS)
Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.
2017-09-01
We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
Accretion onto a higher dimensional black hole
NASA Astrophysics Data System (ADS)
John, Anslyn J.; Ghosh, Sushant G.; Maharaj, Sunil D.
2013-11-01
We examine the steady-state spherically symmetric accretion of relativistic fluids, with a polytropic equation of state, onto a higher-dimensional Schwarzschild black hole. The mass accretion rate, critical radius, and flow parameters are determined and compared with results obtained in standard four dimensions. The accretion rate, M˙, is an explicit function of the black hole mass, M, as well as the gas boundary conditions and the dimensionality, D, of the spacetime. We also find the asymptotic compression ratios and temperature profiles below the accretion radius and at the event horizon. This analysis is a generalization of Michel’s solution to higher dimensions and of the Newtonian expressions of Giddings and Mangano, which consider the accretion of TeV black holes.
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
GEOMETRIC CROSS SECTIONS OF DUST AGGREGATES AND A COMPRESSION MODEL FOR AGGREGATE COLLISIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suyama, Toru; Wada, Koji; Tanaka, Hidekazu
2012-07-10
Geometric cross sections of dust aggregates determine their coupling with disk gas, which governs their motions in protoplanetary disks. Collisional outcomes also depend on geometric cross sections of initial aggregates. In a previous paper, we performed three-dimensional N-body simulations of sequential collisions of aggregates composed of a number of sub-micron-sized icy particles and examined radii of gyration (and bulk densities) of the obtained aggregates. We showed that collisional compression of aggregates is not efficient and that aggregates remain fluffy. In the present study, we examine geometric cross sections of the aggregates. Their cross sections decrease due to compression as wellmore » as to their gyration radii. It is found that a relation between the cross section and the gyration radius proposed by Okuzumi et al. is valid for the compressed aggregates. We also refine the compression model proposed in our previous paper. The refined model enables us to calculate the evolution of both gyration radii and cross sections of growing aggregates and reproduces well our numerical results of sequential aggregate collisions. The refined model can describe non-equal-mass collisions as well as equal-mass cases. Although we do not take into account oblique collisions in the present study, oblique collisions would further hinder compression of aggregates.« less
Canonical angular momentum compression near the Brillouin limit
NASA Astrophysics Data System (ADS)
Jeong, E.; Gilson, E.; Fajans, J.
2000-10-01
Near the Brillouin limit, the angular momentum of a trapped, T=0, pure-electron plasma approaches zero. If the plasma expands axially, its density would appear to drop. However, the plasma's canonical angular momentum is not changed by an axial expansion, so the plasma must stay near the Brillouin limit; thus the plasma's density cannot change when it is expanded. The only way for the plasma density to remain constant as the plasma length increases is for the plasma radius to decrease. Dynamically, this decrease is caused by the polarization drift induced by a small decrease in the density. In this poster we present preliminary experimental evidence demonstrating this radial compression. This work was supported by the ONR.
Confinement and controlling the effective compressive stiffness of carbyne
NASA Astrophysics Data System (ADS)
Kocsis, Ashley J.; Aditya Reddy Yedama, Neta; Cranford, Steven W.
2014-08-01
Carbyne is a one-dimensional chain of carbon atoms, consisting of repeating sp-hybridized groups, thereby representing a minimalist molecular rod or chain. While exhibiting exemplary mechanical properties in tension (a 1D modulus on the order of 313 nN and a strength on the order of 11 nN), its use as a structural component at the molecular scale is limited due to its relative weakness in compression and the immediate onset of buckling under load. To circumvent this effect, here, we probe the effect of confinement to enhance the mechanical behavior of carbyne chains in compression. Through full atomistic molecular dynamics, we characterize the mechanical properties of a free (unconfined chain) and explore the effect of confinement radius (R), free chain length (L) and temperature (T) on the effective compressive stiffness of carbyne chains and demonstrate that the stiffness can be tuned over an order of magnitude (from approximately 0.54 kcal mol-1 Å2 to 46 kcal mol-1 Å2) by geometric control. Confinement may inherently stabilize the chains, potentially providing a platform for the synthesis of extraordinarily long chains (tens of nanometers) with variable compressive response.
Jiang, Tao; Nukavarapu, Syam P; Deng, Meng; Jabbarzadeh, Ehsan; Kofron, Michelle D; Doty, Stephen B; Abdel-Fattah, Wafa I; Laurencin, Cato T
2010-09-01
Natural polymer chitosan and synthetic polymer poly(lactide-co-glycolide) (PLAGA) have been investigated for a variety of tissue engineering applications. We have previously reported the fabrication and in vitro evaluation of a novel chitosan/PLAGA sintered microsphere scaffold for load-bearing bone tissue engineering applications. In this study, the in vitro degradation characteristics of the chitosan/PLAGA scaffold and the in vivo bone formation capacity of the chitosan/PLAGA-based scaffolds in a rabbit ulnar critical-sized-defect model were investigated. The chitosan/PLAGA scaffold showed slower degradation than the PLAGA scaffold in vitro. Although chitosan/PLAGA scaffold showed a gradual decrease in compressive properties during the 12-week degradation period, the compressive strength and compressive modulus remained in the range of human trabecular bone. Chitosan/PLAGA-based scaffolds were able to guide bone formation in a rabbit ulnar critical-sized-defect model. Microcomputed tomography analysis demonstrated that successful bridging of the critical-sized defect on the sides both adjacent to and away from the radius occurred using chitosan/PLAGA-based scaffolds. Immobilization of heparin and recombinant human bone morphogenetic protein-2 on the chitosan/PLAGA scaffold surface promoted early bone formation as evidenced by complete bridging of the defect along the radius and significantly enhanced mechanical properties when compared to the chitosan/PLAGA scaffold. Furthermore, histological analysis suggested that chitosan/PLAGA-based scaffolds supported normal bone formation via intramembranous formation. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Malpractice in distal radius fracture management: an analysis of closed claims.
DeNoble, Peter H; Marshall, Astrid C; Barron, O Alton; Catalano, Louis W; Glickel, Steven Z
2014-08-01
Distal radius fractures comprise the majority of hand- and wrist-related malpractice claims. We hypothesized that a majority of lawsuits would be for malunions resulting from nonsurgical treatment. Additional goals of this study were to quantify costs associated with claims, determine independent risk factors for making an indemnity payment, and illustrate trends over time. Seventy closed malpractice claims filed for alleged negligent treatment of distal radius fractures by orthopedic surgeons insured by the largest medical professional liability insurer in New York State (NYS) from 1981 to 2005 were reviewed. We separately reviewed defendants' personal closed malpractice claim histories from 1975 to 2011. Overall incidence of malpractice claims among distal radius fractures treated in NYS was calculated using the NYS Statewide Planning and Research Cooperative System database and the 2008 American Academy of Orthopedic Surgeons census data. The overall incidence of malpractice claims for distal radius fracture management was low. Malunion was the most common complaint across claims regardless of treatment type. Claims for surgically treated fractures increased over time. A majority of claims documented poor doctor-patient relationships. Male plaintiffs in this group were significantly older than males treated for distal radius fractures in NYS. Most defendants had a history of multiple malpractice suits, all were male, and only a small percentage were fellowship-trained in hand surgery. Defendants lacking American Board of Orthopedic Surgery certification were significantly more likely to make indemnity payments. Thirty-eight of 70 cases resulted in an indemnity payment. Malunion and poor doctor-patient relationships are the major features of malpractice litigation involving distal radius fracture management. Older defendant age and lack of American Board of Orthopedic Surgery certification increase the likelihood of making an indemnity payment. Economic and decision analyses II. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Compression mechanisms in the plasma focus pinch
NASA Astrophysics Data System (ADS)
Lee, S.; Saw, S. H.; Ali, Jalil
2017-03-01
The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.
Short intense ion pulses for materials and warm dense matter research
Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...
2015-08-14
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Irradiation of materials with short, intense ion pulses at NDCX-II
Seidl, P. A.; Barnard, J. J.; Feinberg, E.; ...
2017-05-31
Here, we present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11 ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6 eV)] He + ion beam is neutralizedmore » in a drift compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. In conclusion, quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance« less
Irradiation of materials with short, intense ion pulses at NDCX-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidl, P. A.; Barnard, J. J.; Feinberg, E.
Abstract We present an overview of the performance of the Neutralized Drift Compression Experiment-II (NDCX-II) accelerator at Berkeley Lab, and report on recent target experiments on beam-driven melting and transmission ion energy loss measurements with nanosecond and millimeter-scale ion beam pulses and thin tin foils. Bunches with around 10 11ions, 1 mm radius, and 2–30 ns full width at half maximum duration have been created with corresponding fluences in the range of 0.1–0.7 J/cm 2. To achieve these short pulse durations and mm-scale focal spot radii, the 1.1 MeV [megaelectronvolt (10 6eV)] He +ion beam is neutralized in a driftmore » compression section, which removes the space charge defocusing effect during final compression and focusing. The beam space charge and drift compression techniques resemble necessary beam conditions and manipulations in heavy ion inertial fusion accelerators. Quantitative comparison of detailed particle-in-cell simulations with the experiment plays an important role in optimizing accelerator performance.« less
Nelson, Thomas A; Strom, Adam
2017-11-01
Objectives Retrospective evaluation of repairing distal radial and ulnar fractures in small breed dogs with the Synthes 1.5-mm locking Adaption plate system and compare results in a similar group of patients repaired with the Synthes 2.0-mm limited contact-dynamic compression plate (LC-DCP). Methods Electronic medical records from one specialty referral centre were reviewed from March 21, 2010, to October 9, 2015, for patients weighing less than or equal to 4 kg that had a distal one-third radial and ulnar fracture repaired with a Synthes 1.5-mm locking adaption plate or Synthes 2.0-mm LC-DCP. Further inclusion criteria included application of the plate to the cranial surface of the radius via open reduction and internal fixation. Results Six 1.5-mm Adaption plates and 7 2.0-mm LC-DCPs were used to repair 13 distal radial and ulnar fractures in 12 dogs. There were three major complications in the 1.5-mm adaption plate group (one plate fracture, one screw pull-out and one fracture through a distal screw hole) and one major complication in the 2.0-mm LC-DCP group due to a re-fracture. All patients without a complication had good or excellent functional outcome. Clinical Significance The authors recommend that the 1.5-mm Adaption plate be used only when a 2.0-mm LC-DCP would not allow for a minimum of two screws in the distal segment and at the discretion of the surgeon. Schattauer GmbH Stuttgart.
Normally closed microgrippers using a highly stressed diamond-like carbon and Ni bimorph structure
NASA Astrophysics Data System (ADS)
Luo, J. K.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2004-12-01
A normally closed microgripper with a radius of curvature of 18-50 μm using a diamond-like carbon (DLC) and stress free electroplated Ni bimorph structure has been demonstrated. The large curvature in the fingers of the microgrippers is due to the high compressive stress of the DLC layer. The radius of curvature of the figures can be adjusted by the thickness ratio, and the closure of the devices can also be adjusted by varying the finger length. This device works much more efficiently than other bimorph structures due to the large difference in thermal expansion coefficients between the DLC and the Ni layers. Preliminary electrical tests have shown these microgrippers can be opened by 60°-90° at an applied power of <20mW.
Starting of generic inlet with blunted wedges
NASA Astrophysics Data System (ADS)
Borovoy, V.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.
2017-06-01
Bluntness e¨ect of gas-compressing wedges on starting and §ow structure in an air inlet was investigated experimentally. The inlet was of internal compression type with §at walls and rectangular cross section. The experiments were carried out in the wind tunnel UT-1M at Mach numbers M = 5 and 8 and Reynolds numbers Re∞L from 2.8 · 106 to 23 · 106. The §ow characteristics were measured by panoramic optical methods. Data demonstrating in§uence of wedge bluntness radius on the inlet starting were obtained at di¨erent Mach and Reynolds numbers as well as at di¨erent contraction ratios. Ambiguity of the §ow regime in the inlet under certain conditions was found.
Effect of Curvature on the Impact Damage Characteristics and Residual Strength of Composite Plates
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of a study of the response and failure characteristics of thin, cylindrically curved, composite plates subjected to low-speed impact damage are presented. The results indicate that the plate radius and the plate thickness are important structural parameters that influence the nonlinear response of a plate for a given amount of impact energy. Analytical and experimental contact-force results are compared for several plates and the results correlate well. The impact-energy levels required to cause damage initiation and barely visible impact damage are a function of the plate radius for a given plate thickness. The impact-energy levels required to initiate impact damage for plates with a certain range of radii are greater than plates with other radii. The contact-force results corresponding to these impact-energy levels follow a similar trend. Residual strength results for plates with barely visible impact damage suggest that the compression-after-impact residual strength is also a function of plate radius. The residual strength of impact-damaged flat plates appears to be lower than the residual strength of the corresponding cylindrically curved plates.
Surface magnetometer experiments - Internal lunar properties
NASA Technical Reports Server (NTRS)
Dyal, P.; Daily, W. D.; Parkin, C. W.
1973-01-01
Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are respectively 38, 103 (maximum), 3, and 327 gamma (maximum). Simultaneous magnetic field and solar plasma pressure measurements show that the remanent fields at the Apollo 12 and 16 sites are compressed and that the scale size of the Apollo 16 remanent field is 5 less than or equal to L less than 100 km. The global eddy current fields, induced by magnetic step transients in the solar wind, have been analyzed to calculate an electrical conductivity profile. From nightside data it has been found that deeper than 170 km into the moon, the conductivity rises from .0003 mho/m to .01 mho/m at 1000 km depth. Analysis of dayside transient data using a spherically symmetric two-layer model yields a homogeneous conducting core with a radius equal to 0.9 lunar radius and a conductivity of .001 mho/m, surrounded by a nonconducting shell of thickness equal to 0.1 lunar radius.
Fuel Areal-Density Measurements in Laser-Driven Magnetized Inertial Fusion from Secondary Neutrons
NASA Astrophysics Data System (ADS)
Davies, J. R.; Barnak, D. H.; Betti, R.; Glebov, V. Yu.; Knauer, J. P.; Peebles, J. L.
2017-10-01
Laser-driven magnetized liner inertial fusion is being developed on the OMEGA laser to provide the first data at a significantly smaller scale than the Z pulsed-power machine in order to test scaling and to provide more shots with better diagnostic access than Z. In OMEGA experiments, a 0.6-mm-outer-diam plastic cylinder filled with 11 atm of D2 is placed in an axial magnetic field of 10 T, the D2 is preheated by a single beam along the axis, and then the cylinder is compressed by 40 beams. Secondary DT neutron yields provide a measurement of the areal density of the compressed D2 because the compressed fuel is much smaller than the mean free path and the Larmor radius of the T produced in D-D fusion. Measured secondary yields confirm theoretical predictions that preheating and magnetization reduce fuel compression. Higher fuel compression is found to consistently lead to lower neutron yields, which is not predicted by simulations. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000568 and the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.
Hua, Zhen; Wang, Jian-Wei; Lu, Zhen-Fei; Ma, Jian-Wei; Yin, Heng
2018-01-01
The distal radius fracture is one of the common clinical fractures. At present, there are no reports regarding application of the finite element method in studying the mechanism of Colles fracture and the biomechanical behavior when using splint fixation. To explore the mechanism of Colles fracture and the biomechanical behavior when using different fixed splints. Based on the CT scanning images of forearm for a young female volunteer, by using model construction technology combined with RPOE and ANSYS software, a 3-D distal radius fracture forearm finite element model with a real shape and bioactive materials is built. The material tests are performed to obtain the mechanical properties of the paper-based splint, the willow splint and the anatomical splint. The numerical results are compared with the experimental results to verify the correctness of the presented model. Based on the verified model, the stress distribution of different tissues are analyzed. Finally, the clinical tests are performed to observe and verify that the anatomical splint is the best fit for human body. Using the three kinds of splints, the transferred bone stress focus on the distal radius and ulna, which is helpful to maintain the stability of fracture. Also the stress is accumulated in the distal radius which may be attributed to flexion position. Such stress distribution may be helpful to maintain the ulnar declination. By comparing the simulation results with the experimental observations, the anatomical splint has the best fitting to the limb, which can effectively avoid the local compression. The anatomical splint is the most effective for fixing and curing the fracture. The presented model can provide theoretical basis and technical guide for further investigating mechanism of distal radius fracture and clinical application of anatomical splint.
Doinikov, Alexander A; Haac, Jillian F; Dayton, Paul A
2009-02-01
A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the "compression-only" behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2-2.5 microm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20 cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30 x 10(-8) kg/s to 2.63 x 10(-8) kg/s for the range of bubble radii, indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the "compression-only" behavior. As an example, the results of the simulation for a 2.03 microm radius bubble insonified with a 6 cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the "compression-only" behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653-656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius.
[APPLICATION OF COMPRESSION MINI-SCREWS IN TREATMENT OF PATIENTS WITH INJURY OF ELBOW JOINT BONES].
Neverov, V A; Egorov, K S
2015-01-01
A case report presents the experience of application of compression pileateless mini-screws (Gerbert's screws) in treatment of intra-articular fractures, which formed the elbow joint (44 cases). There were performed 32 operations concerning fracture of head of radius, 10 operations on the occasion of fractures of distal section of the humerus and 2 operations on the coronoid process. Long-term treatment results were followed-up in 31 patients during more than 6 months. On basis of analysis of treatment results the authors made a conclusion that the application of mini-screws in case of bone fractures, which formed the elbow joint, allowed realization of stable osteosynthesis after anatomic reposition of articular surfaces, obtaining good anatomical and functional result and shortened the terms of patient's treatment.
Finite element simulation of Reference Point Indentation on bone.
Idkaidek, Ashraf; Agarwal, Vineet; Jasiuk, Iwona
2017-01-01
Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves. Using the commercial finite element analysis software Abaqus, we assess the significance of the RPI parameters. We create an axisymmetric model and employ an isotropic viscoelastic-plastic constitutive relation with damage to simulate indentations on a human cortical bone. Fracture of bone tissue is not simulated for simplicity. The RPI outputs are computed for different simulated test cases and then compared with experimental results, measured using the BioDent, found in literature. The number of cycles, maximum indentation load, indenter tip radius, and the mechanical properties of bone: Young׳s modulus, compressive yield stress, and viscosity and damage constants, are varied. The trends in the RPI parameters are then investigated. We find that the RPI parameters are sensitive to the mechanical properties of bone. An increase in Young׳s modulus of bone causes the force-displacement loading and unloading slopes to increase and the total indentation distance (TID) to decrease. The compressive yield stress is inversely proportional to a creep indentation distance (CID1) and the TID. The viscosity constant is proportional to the CID1 and an average of the energy dissipated (AvED). The maximum indentation load is proportional to the TID, CID1, loading and unloading slopes, and AvED. The damage parameter is proportional to the TID, but it is inversely proportional to both the loading and unloading slopes and the AvED. The value of an indenter tip radius is proportional to the CID1 and inversely proportional to the TID. The number of load cycles is inversely proportional to an average of a creep indentation depth (AvCID) and the AvED. The indentation distance increase (IDI) is strongly inversely proportional to the compressive yield stress, and strongly proportional to the viscosity constant and maximum applied load, but has weak relation with the damage parameter, indenter tip radius, and elastic modulus. This computational study advances our understanding of the RPI outputs and provides a starting point for more comprehensive computational studies of the RPI technique. Copyright © 2016 Elsevier Ltd. All rights reserved.
Duff, W.R.D.; Björkman, K.M.; Kawalilak, C.E.; Kehrig, A.M.; Wiebe, S.; Kontulainen, S.
2017-01-01
Objectives: To define pQCT precision errors, least-significant-changes, and identify associated factors for bone outcomes at the radius and tibia in children. Methods: We obtained duplicate radius and tibia pQCT scans from 35 children (8-14yrs). We report root-mean-squared coefficient of variation (CV%RMS) and 95% limits-of-agreement to characterize repeatability across scan quality and least-significant-changes for bone outcomes at distal (total and trabecular area, content and density; and compressive bone strength) and shaft sites (total area and content; cortical area content, density and thickness; and torsional bone strength). We used Spearman’s rho to identify associations between CV% and time between measurements, child’s age or anthropometrics. Results: After excluding unanalyzable scans (6-10% of scans per bone site), CV%RMS ranged from 4% (total density) to 19% (trabecular content) at the distal radius, 4% (cortical content) to 8% (cortical thickness) at the radius shaft, 2% (total density) to 14% (trabecular content) at the distal tibia and from 2% (cortical content) to 6% (bone strength) at the tibia shaft. Precision errors were within 95% limits-of-agreement across scan quality. Age was associated (rho -0.4 to -0.5, p <0.05) with CV% at the tibia. Conclusion: Bone density outcomes and cortical bone properties appeared most precise (CV%RMS <5%) in children. PMID:28574412
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-02-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-05-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Energy Dependence of Synchrotron X-Ray Rims in Tycho's Supernova Remnant
NASA Technical Reports Server (NTRS)
Tran, Aaron; Williams, Brian J.; Petre, Robert; Ressler, Sean M.; Reynolds, Stephen P.
2015-01-01
Several young supernova remnants exhibit thin X-ray bright rims of synchrotron radiation at their forward shocks. Thin rims require strong magnetic field amplification beyond simple shock compression if rim widths are only limited by electron energy losses. But, magnetic field damping behind the shock could produce similarly thin rims with less extreme field amplification. Variation of rim width with energy may thus discriminate between competing influences on rim widths. We measured rim widths around Tycho's supernova remnant in 5 energy bands using an archival 750 ks Chandra observation. Rims narrow with increasing energy and are well described by either loss-limited or damped scenarios, so X-ray rim width-energy dependence does not uniquely specify a model. But, radio counterparts to thin rims are not loss-limited and better reflect magnetic field structure. Joint radio and X-ray modeling favors magnetic damping in Tycho's SNR with damping lengths approximately 1-5% of remnant radius and magnetic field strengths approximately 50-400 micron G assuming Bohm diffusion. X-ray rim widths are approximately 1% of remnant radius, somewhat smaller than inferred damping lengths. Electron energy losses are important in all models of X-ray rims, suggesting that the distinction between loss-limited and damped models is blurred in soft X-rays. All loss-limited and damping models require magnetic fields approximately greater than 20 micron G, arming the necessity of magnetic field amplification beyond simple compression.
Dynamics of sonoluminescing bubbles within a liquid hammer device.
Urteaga, Raúl; García-Martínez, Pablo Luis; Bonetto, Fabián J
2009-01-01
We studied the dynamics of a single sonoluminescing bubble (SBSL) in a liquid hammer device. In particular, we investigated the phosphoric acid-xenon system, in which pulses up to four orders of magnitude brighter than SBSL in water systems (about 10;{12} photons per pulse) have been previously reported [Chakravarty, Phys. Rev. E 69, 066317 (2004)]. We used stroboscopic photography and a Mie scattering technique in order to measure the radius evolution of the bubbles. Under adequate conditions we may position a bubble at the bottom of the tube (cavity) and a second bubble trapped at the middle of the tube (upper bubble). During its collapse, the cavity produces the compression of the liquid column. This compression drives impulsively the dynamics of the upper bubble. Our measurements reveal that the observed light emissions produced by the upper bubble are generated at its second collapse. We employed a simple numerical model to investigate the conditions that occur during the upper bubble collapse. We found good agreement between numerical and experimental values for the light intensity (fluence) and light pulse widths. Results from the model show that the light emission is increased mainly due to an increase in noble gas ambient radius and not because the maximum temperature increases. Even for the brightest pulses obtained ( 2x10;{13} photons, about 20W of peak power) the maximum temperatures computed for the upper bubble are always lower than 20000K .
The classical D-type expansion of spherical H II regions
NASA Astrophysics Data System (ADS)
Williams, Robin J. R.; Bibas, Thomas G.; Haworth, Thomas J.; Mackey, Jonathan
2018-06-01
Recent numerical and analytic work has highlighted some shortcomings in our understanding of the dynamics of H II region expansion, especially at late times, when the H II region approaches pressure equilibrium with the ambient medium. Here we reconsider the idealized case of a constant radiation source in a uniform and spherically symmetric ambient medium, with an isothermal equation of state. A thick-shell solution is developed which captures the stalling of the ionization front and the decay of the leading shock to a weak compression wave as it escapes to large radii. An acoustic approximation is introduced to capture the late-time damped oscillations of the H II region about the stagnation radius. Putting these together, a matched asymptotic equation is derived for the radius of the ionization front which accounts for both the inertia of the expanding shell and the finite temperature of the ambient medium. The solution to this equation is shown to agree very well with the numerical solution at all times, and is superior to all previously published solutions. The matched asymptotic solution can also accurately model the variation of H II region radius for a time-varying radiation source.
Zhang, Jieyuan; Guan, Junjie; Zhang, Changqing; Wang, Hui; Huang, Wenhai; Guo, Shangchun; Niu, Xin; Xie, Zongping; Wang, Yang
2015-11-20
Bioactive borate glass (BG) has emerged as a promising alternative for bone regeneration due to its high osteoinductivity, osteoconductivity, compressive strength, and biocompatibility. However, the role of BG in large segmental bone repair is unclear and little is known about the underlying mechanism of BG's osteoinductivity. In this study, we demonstrated that BG possessed pro-osteogenic effects in an experimental model of critical-sized radius defects. Transplanting BG to radius defects resulted in better repair of bone defects as compared to widely used β-TCP. Histological and morphological analysis indicated that BG significantly enhanced new bone formation. Furthermore, the degradation rate of the BG was faster than that of β-TCP, which matched the higher bone regeneration rate. In addition, ions from BG enhanced cell viability, ALP activity, and osteogenic-related genes expression. Mechanistically, the critical genes Smad1/5 and Dlx5 in the BMP pathway and p-Smad1/5 proteins were significantly elevated after BG transplantation, and these effects could be blocked by the BMP/Smad specific inhibitor. Taken together, our findings suggest that BG could repair large segmental bone defects through activating the BMP/Smad pathway and osteogenic differentiation in BMSCs.
Liu, Peng; Fan, Liyun; Hayat, Qaisar; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined.
Fan, Liyun; Xu, De; Ma, Xiuzhen; Song, Enzhe
2014-01-01
Analysis consisting of numerical simulations along with lab experiments of interaction effects between key parameters on the electromagnetic force based on response surface methodology (RSM) has been also proposed to optimize the design of high-speed solenoid valve (HSV) and improve its performance. Numerical simulation model of HSV has been developed in Ansoft Maxwell environment and its accuracy has been validated through lab experiments. Effect of change of core structure, coil structure, armature structure, working air gap, and drive current on the electromagnetic force of HSV has been analyzed through simulation model and influence rules of various parameters on the electromagnetic force have been established. The response surface model of the electromagnetic force has been utilized to analyze the interaction effect between major parameters. It has been concluded that six interaction factors including working air gap with armature radius, drive current with armature thickness, coil turns with side pole radius, armature thickness with its radius, armature thickness with side pole radius, and armature radius with side pole radius have significant influence on the electromagnetic force. Optimal match values between coil turns and side pole radius; armature thickness and side pole radius; and armature radius and side pole radius have also been determined. PMID:25243217
NASA Astrophysics Data System (ADS)
Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin
2018-09-01
A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.
Generation of magneto-immersed electron beams
NASA Astrophysics Data System (ADS)
Pikin, A.; Raparia, D.
2018-05-01
There are many applications of electron beams in accelerator facilities: for electron coolers, electron lenses, and electron beam ion sources (EBIS) to mention a few. Most of these applications require magnetic compression of the electron beam to reduce the beam radius with the goal of either matching the circulating ion beam (electron lenses and electron coolers) or increasing the ionization capability for the production of highly charged ions (EBIS). The magnetic compression of the electron beam comes at a cost of increasing share of the transverse component of energy and therefore increased angles of the electron trajectories to the longitudinal axis. Considering the effect of the magnetic mirror, it is highly desirable to produce a laminar electron beam in the electron gun. The analysis of electron guns with different configurations is given in this paper with emphasis on generating laminar electron beams.
Atomic Radius and Charge Parameter Uncertainty in Biomolecular Solvation Energy Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiu; Lei, Huan; Gao, Peiyuan
Atomic radii and charges are two major parameters used in implicit solvent electrostatics and energy calculations. The optimization problem for charges and radii is under-determined, leading to uncertainty in the values of these parameters and in the results of solvation energy calculations using these parameters. This paper presents a method for quantifying this uncertainty in solvation energies using surrogate models based on generalized polynomial chaos (gPC) expansions. There are relatively few atom types used to specify radii parameters in implicit solvation calculations; therefore, surrogate models for these low-dimensional spaces could be constructed using least-squares fitting. However, there are many moremore » types of atomic charges; therefore, construction of surrogate models for the charge parameter space required compressed sensing combined with an iterative rotation method to enhance problem sparsity. We present results for the uncertainty in small molecule solvation energies based on these approaches. Additionally, we explore the correlation between uncertainties due to radii and charges which motivates the need for future work in uncertainty quantification methods for high-dimensional parameter spaces.« less
Strength statistics of single crystals and metallic glasses under small stressed volumes
Gao, Yanfei; Bei, Hongbin
2016-05-13
It has been well documented that plastic deformation of crystalline and amorphous metals/alloys shows a general trend of “smaller is stronger”. The majority of the experimental and modeling studies along this line have been focused on finding and reasoning the scaling slope or exponent in the logarithmic plot of strength versus size. In contrast to this view, here we show that the universal picture should be the thermally activated nucleation mechanisms in small stressed volume, the stochastic behavior as to find the weakest links in intermediate sizes of the stressed volume, and the convolution of these two mechanisms with respectmore » to variables such as indenter radius in nanoindentation pop-in, crystallographic orientation, pre-strain level, sample length as in uniaxial tests, and others. Furthermore, experiments that cover the entire spectrum of length scales and a unified model that treats both thermal activation and spatial stochasticity have discovered new perspectives in understanding and correlating the strength statistics in a vast of observations in nanoindentation, micro-pillar compression, and fiber/whisker tension tests of single crystals and metallic glasses.« less
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-04-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
Smith, N; Sankin, G N; Simmons, W N; Nanke, R; Fehre, J; Zhong, P
2012-01-01
The performance of a newly developed light spot hydrophone (LSHD) in lithotripter field characterization was compared to that of the fiber optic probe hydrophone (FOPH). Pressure waveforms produced by a stable electromagnetic shock wave source were measured by the LSHD and FOPH under identical experimental conditions. In the low energy regime, focus and field acoustic parameters matched well between the two hydrophones. At clinically relevant high energy settings for shock wave lithotripsy, the measured leading compressive pressure waveforms matched closely with each other. However, the LSHD recorded slightly larger |P_| (p < 0.05) and secondary peak compressive pressures (p < 0.01) than the FOPH, leading to about 20% increase in total acoustic pulse energy calculated in a 6 mm radius around the focus (p = 0.06). Tensile pulse durations deviated ~5% (p < 0.01) due to tensile wave shortening from cavitation activity using the LSHD. Intermittent compression spikes and laser light reflection artifacts have been correlated to bubble activity based on simultaneous high-speed imaging analysis. Altogether, both hydrophones are adequate for lithotripter field characterization as specified by the international standard IEC 61846.
Equation of state of iron under core conditions of large rocky exoplanets
NASA Astrophysics Data System (ADS)
Smith, Raymond F.; Fratanduono, Dayne E.; Braun, David G.; Duffy, Thomas S.; Wicks, June K.; Celliers, Peter M.; Ali, Suzanne J.; Fernandez-Pañella, Amalia; Kraus, Richard G.; Swift, Damian C.; Collins, Gilbert W.; Eggert, Jon H.
2018-06-01
The recent discovery of thousands of planets outside our Solar System raises fundamental questions about the variety of planetary types and their corresponding interior structures and dynamics. To better understand these objects, there is a strong need to constrain material properties at the extreme pressures found within planetary interiors1,2. Here we used high-powered lasers at the National Ignition Facility to ramp compress iron over nanosecond timescales to 1.4 TPa (14 million atmospheres)—a pressure four times higher than for previous static compression data. A Lagrangian sound-speed analysis was used to determine pressure, density and sound speed along a continuous isentropic compression path. Our peak pressures are comparable to those predicted at the centre of a terrestrial-type exoplanet of three to four Earth masses3, representing the first absolute equation of state measurements for iron at such conditions. These results provide an experiment-based mass-radius relationship for a hypothetical pure iron planet that can be used to evaluate plausible compositional space for large, rocky exoplanets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lou, Jialin; Xia, Yidong; Luo, Lixiang
2016-09-01
In this study, we use a combination of modeling techniques to describe the relationship between fracture radius that might be accomplished in a hypothetical enhanced geothermal system (EGS) and drilling distance required to create and access those fractures. We use a combination of commonly applied analytical solutions for heat transport in parallel fractures and 3D finite-element method models of more realistic heat extraction geometries. For a conceptual model involving multiple parallel fractures developed perpendicular to an inclined or horizontal borehole, calculations demonstrate that EGS will likely require very large fractures, of greater than 300 m radius, to keep interfracture drillingmore » distances to ~10 km or less. As drilling distances are generally inversely proportional to the square of fracture radius, drilling costs quickly escalate as the fracture radius decreases. It is important to know, however, whether fracture spacing will be dictated by thermal or mechanical considerations, as the relationship between drilling distance and number of fractures is quite different in each case. Information about the likelihood of hydraulically creating very large fractures comes primarily from petroleum recovery industry data describing hydraulic fractures in shale. Those data suggest that fractures with radii on the order of several hundred meters may, indeed, be possible. The results of this study demonstrate that relatively simple calculations can be used to estimate primary design constraints on a system, particularly regarding the relationship between generated fracture radius and the total length of drilling needed in the fracture creation zone. Comparison of the numerical simulations of more realistic geometries than addressed in the analytical solutions suggest that simple proportionalities can readily be derived to relate a particular flow field.« less
Duff, Whitney R D; Chilibeck, Philip D; Candow, Darren G; Gordon, Julianne J; Mason, Riley S; Taylor-Gjevre, Regina; Nair, Bindu; Szafron, Michael; Baxter-Jones, Adam; Zello, Gordon A; Kontulainen, Saija A
2017-04-01
Resistance training with ibuprofen supplementation may improve musculoskeletal health in postmenopausal women. The study purpose was to determine the efficacy of resistance training and ibuprofen supplementation on bone and muscle properties in postmenopausal women. Participants (n = 90, 65.3 ± 4.9 yr) were randomly assigned to: supervised resistance training or stretching (placebo-exercise) with postexercise ibuprofen (400 mg) or placebo supplementation for 3 d·wk (9 months). Baseline and postintervention measurements included distal and shaft scans of the forearm and lower leg using peripheral quantitative computed tomography. Distal site outcomes included cross-sectional area, content, and density for total and trabecular bone, as well as estimated bone strength in compression. Shaft site outcomes included total bone area; cortical bone area, content, and density; estimated bone strength in torsion; and muscle area and density. Exercise-supplement-time interactions for total bone content at the distal radius (P = 0.009) and cortical density at the radius shaft (P = 0.038) were significant. Resistance training with ibuprofen decreased total bone content (-1.5%) at the distal radius in comparison to the resistance training (0.6%; P = 0.032) and ibuprofen alone (0.5%; P = 0.050). Change in cortical density at the radius shaft differed between the stretching with placebo and ibuprofen supplementation groups (-1.8% vs 1.1%; P = 0.050). Resistance training preserved muscle density in the lower leg more so than stretching (-3.1% vs -5.4%; P = 0.015). Ibuprofen consumed immediately after resistance training had a deleterious effect on bone mineral content at the distal radius, whereas resistance training or ibuprofen supplementation individually prevented bone loss. Resistance training prevented muscle density decline in the lower leg.
Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe
2010-11-01
Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.
Experiments and models of MHD jets and their relevance to astrophysics and solar physics
NASA Astrophysics Data System (ADS)
Bellan, Paul
2017-10-01
MHD-driven flows exist in both space and lab plasmas because the MHD force-balance equation J × B - ∇ P = 0 can only be satisfied in situations having an unusual degree of symmetry. In the normal situation where such symmetry does not exist, an arbitrary magnetic field B and its associated current J =μ0- 1 ∇ × B provide a magnetic force F = J × B having the character of a torque, i.e., ∇ × F ≠ 0 . Because ∇ × ∇ P = 0 is a mathematical identity, no pressure gradient can balance this torque so a flow is driven. Additionally, since ideal MHD has magnetic flux frozen into the frame of the moving plasma, the flow convects frozen-in magnetic flux. If the flow slows and piles up, both the plasma and the frozen-in magnetic flux will be compressed. This magnetic flux compression amplifies both the frozen-in B and its associated J . Slowing down thus increases certain components of F , in particular the pinch force associated with the electric current in the flow direction. This increased pinching causes the flow to self-collimate if the leading edge of the flow moves slower than the trailing part so there is compression in the flow frame. The result is that the flow self-collimates and forms a narrow jet. Self-collimating jets with embedded electric current and helical magnetic field are analogous to the straight cylindrical approximation of a tokamak, but now with the length of the cylinder continuously increasing and the radius depending on axial position. The flows are directed from axial regions having small radius to axial regions having large radius. The flow velocity is proportional to the axial electric current and is a significant fraction of the Alfvén velocity. Examples of these MHD-driven flows are astrophysical jets, certain solar coronal situations, and the initial plasma produced by the coaxial magnetized plasma guns used for making spheromaks. The above picture has been developed from laboratory measurements, analytic models, and numerical simulations. Upon attaining a critical length, laboratory jets develop a complex but resolvable sequence of instabilities which is effectively a cascade from the large-scale MHD regime to the small-scale two-fluid and kinetic regimes. This cascade involves kinking, Rayleigh-Taylor instabilities, magnetic reconnection, whistler waves, ion and electron heating, and generation of hard X-rays. An extended model shows how clumps of particles in a weakly ionized accretion disk move like a metaparticle having its charge to mass ratio reduced from that of an ion by the fractional ionization. These weakly charged metaparticles follow an inward spiral trajectory that is neither a cyclotron nor a Kepler orbit and accumulate at small radius where they produce a disk-plane radial EMF that drives astrophysical jets. Supported by DOE, NSF, and AFOSR.
Doinikov, Alexander A.; Haac, Jillian F.; Dayton, Paul A.
2009-01-01
A general theoretical approach to the development of zero-thickness encapsulation models for contrast microbubbles is proposed. The approach describes a procedure that allows one to recast available rheological laws from the bulk form to a surface form which is used in a modified Rayleigh-Plesset equation governing the radial dynamics of a contrast microbubble. By the use of the proposed procedure, the testing of different rheological laws for encapsulation can be carried out. Challenges of existing shell models for lipid-encapsulated microbubbles, such as the dependence of shell parameters on the initial bubble radius and the “compression-only” behavior, are discussed. Analysis of the rheological behavior of lipid encapsulation is made by using experimental radius-time curves for lipid-coated microbubbles with radii in the range 1.2 – 2.5 μm. The curves were acquired for a research phospholipid-coated contrast agent insonified with a 20-cycle, 3.0 MHz, 100 kPa acoustic pulse. The fitting of the experimental data by a model which treats the shell as a viscoelastic solid gives the values of the shell surface viscosity increasing from 0.30×10-8 kg/s to 2.63×10-8 kg/s for the range of bubble radii indicated above. The shell surface elastic modulus increases from 0.054 N/m to 0.37 N/m. It is proposed that this increase may be a result of the lipid coating possessing the properties of both a shear-thinning and a strain-softening material. We hypothesize that these complicated rheological properties do not allow the existing shell models to satisfactorily describe the dynamics of lipid encapsulation. In the existing shell models, the viscous and the elastic shell terms have the linear form which assumes that the viscous and the elastic stresses acting inside the lipid shell are proportional to the shell shear rate and the shell strain, respectively, with constant coefficients of proportionality. The analysis performed in the present paper suggests that a more general, nonlinear theory may be more appropriate. It is shown that the use of the nonlinear theory for shell viscosity allows one to model the “compression-only” behavior. As an example, the results of the simulation for a 2.03- μm-radius bubble insonified with a 6-cycle, 1.8 MHz, 100 kPa acoustic pulse are given. These parameters correspond to the acoustic conditions under which the “compression-only” behavior was observed by de Jong et al. [Ultrasound Med. Biol. 33 (2007) 653–656]. It is also shown that the use of the Cross law for the modeling of the shear-thinning behavior of shell viscosity reduces the variance of experimentally estimated values of the shell viscosity and its dependence on the initial bubble radius. PMID:18990417
Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narkis, J.; Rahman, H. U.; Ney, P.
2016-12-29
1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less
Short Intense Ion Pulses for Materials and Warm Dense Matter Research
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Lidia, S. M.; Persaud, A.; Stettler, M.; Takakuwa, J. H.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I. D.
2015-11-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r <1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. We will describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminium perovskite using the fully integrated accelerator and neutralized drift compression components (arXiv:1506.05839). This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Direct measurement of magnetic flux compression on the Z pulsed-power accelerator
NASA Astrophysics Data System (ADS)
McBride, R. D.; Bliss, D. E.; Martin, M. R.; Jennings, C. A.; Lamppa, D. C.; Dolan, D. H.; Lemke, R. W.; Rovang, D. C.; Rochau, G. A.; Cuneo, M. E.; Sinars, D. B.; Intrator, T. P.; Weber, T. E.
2016-10-01
We report on the progress made to date for directly measuring magnetic flux compression on Z. Each experiment consisted of an initially solid aluminum liner (a cylindrical tube), which was imploded using Z's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-20-T axial seed field, Bz(0), supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by Bz(t) =Bz (0)×[R(0)/R(t)]2, where R is the liner's inner surface radius. With perfect flux conservation, Bz and dBz/dt values exceeding 104 T and 1012 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields directly. We report on our latest efforts to do so using a fiber-optic-based Faraday rotation diagnostic, where the magneto-active portion of the sensor is made from terbium-doped optical fiber. We have now used this diagnostic to measure a flux-compressed magnetic field to over 600 T prior to the imploding liner hitting the on-axis fiber housing. This project was funded in part by Sandia's LDRD program and US DOE-NNSA contract DE-AC04-94AL85000.
Development of 1D Liner Compression Code for IDL
NASA Astrophysics Data System (ADS)
Shimazu, Akihisa; Slough, John; Pancotti, Anthony
2015-11-01
A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.
Anisimova, N Y; Kiselevsky, M V; Sukhorukova, I V; Shvindina, N V; Shtansky, D V
2015-09-01
The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as the replacement of wide bone tissue defects. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochalov, M. A., E-mail: postmaster@ifv.vniief.ru; Il’kaev, R. I.; Fortov, V. E.
We report on the experimental results on the quasi-isentropic compressibility of a strongly nonideal deuterium plasma that have been obtained on setups of cylindrical and spherical geometries in the pressure range of up to P ≈ 5500 GPa. We describe the characteristics of experimental setups, as well as the methods for the diagnostics and interpretation of the experimental results. The trajectory of metal shells that compress the deuterium plasma was detected using powerful pulsed X-ray sources with a maximal electron energy of up to 60 MeV. The values of the plasma density, which varied from ρ ≈ 0.8 g/cm{sup 3}more » to ρ ≈ 6 g/cm{sup 3}, which corresponds to pressure P ≈ 5500 GPa (55 Mbar), were determined from the measured value of the shell radius at the instant that it was stopped. The pressure of the compressed plasma was determined using gasdynamic calculations taking into account the actual characteristics of the experimental setups. We have obtained a strongly compressed deuterium plasma in which electron degeneracy effects under the conditions of strong interparticle interaction are significant. The experimental results have been compared with the theoretical models of a strongly nonideal partly degenerate plasma. We have obtained experimental confirmation of the plasma phase transition in the pressure range near 150 GPa (1.5 Mbar), which is in keeping with the conclusion concerning anomaly in the compressibility of the deuterium plasma drawn in [1].« less
NASA Astrophysics Data System (ADS)
Baumann, Thomas M.; Lapierre, Alain; Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg
2014-07-01
The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r_{80%}=(212± 19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm2 is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.
NASA Astrophysics Data System (ADS)
Jain, Kiran; Tripathy, S. C.; Hill, F.
2018-05-01
In this Letter we explore the relationship between the solar seismic radius and total solar irradiance (TSI) during the last two solar cycles using the uninterrupted data from space-borne instruments on board the Solar and Heliospheric Observatory (SoHO) and the Solar Dynamics Observatory (SDO). The seismic radius is calculated from the fundamental (f) modes of solar oscillations utilizing the observations from SoHO/Michelson Doppler Imager (MDI) and SDO/Helioseismic and Magnetic Imager (HMI), and the TSI measurements are obtained from SoHO/VIRGO. Our study suggests that the major contribution to the TSI variation arises from the changes in magnetic field, while the radius variation plays a secondary role. We find that the solar irradiance increases with decreasing seismic radius; however, the anti-correlation between them is moderately weak. The estimated maximum change in seismic radius during a solar cycle is about 5 km, and is consistent in both solar cycles 23 and 24. Previous studies ;suggest a radius change at the surface of the order of 0.06 arcsec to explain the 0.1% variation in the TSI values during the solar cycle; however, our inferred seismic radius change is significantly smaller, hence the TSI variations cannot be fully explained by the temporal changes in seismic radius.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions, Existing Compression Ignition Stationary RICE >500 HP, and Existing 4SLB Stationary RICE >500 HP Located at...
On causes of the low seismic activity in the Earth's polar latitudes
NASA Astrophysics Data System (ADS)
Levin, Boris; Sasorova, Elena; Domanski, Andrei
2016-04-01
The irregularity of distribution of seismic activity in the world was observed at the beginning of the era of instrumental seismology (B. Gutenberg, C. Richter, K. Kasahara). At the same time, the global nature of the symmetry of this effect has been established only in this millennium, with the participation of authors (Levin B.W., Sasorova E.V., 2010). Analysis of the global earthquake catalogs showed that almost all seismic events over the last century occurred within a limited latitudinal band contained between the 65 N and 65 S. The seismic activity in the polar regions of the planet was manifested very weakly. The reasons for such features were found by following the analysis of the characteristics associated with the theory of the figure of the Earth. In the works of the French mathematician A. Veronne (1912) was the first to introduce the concept of "critical" latitudes (φ1 = ±35°15' 22″) wherein the radius of the ellipsoid of revolution is equal to the radius of the sphere of the same volume. Variation of the radius vector of the ellipsoid at this latitude is equal to zero. There is the boundary between the compressed areas of the polar zones and equatorial region, where the rocks of the Earth are dominated by tensile forces. Analysis of the specific characteristics of the gravity force distribution on the surface of the ellipsoid has shown that there is a distribution of the same character with a singular point at latitude φ2 = ±61° 52' 12″. In case of variations in the angular velocity of the planet's rotation the variation of gravity force at the latitude φ2 is negligible, compared with variations of gravity force on the equator and pole, which exceed the previous value by 3-4 orders. Attempted analysis of the model of the ellipsoid of revolution in the theory of axisymmetric elastic shells has allowed to establish that in the elastic shell of the planet must occur meridional and ring forces. The theory shows that when the flatness (or polar compression) is littleness the whole shell must be compressed, in this case there is a singular point at the latitude φ3 = ±55° 42' 22″. It should be noted that circular forces in the area between the latitudes φ3 with increasing compression force become smaller ring forces of a spherical shell. And outside mentioned area - on the contrary, these forces become more and more. Thus, according to the theory of equilibrium figures of celestial bodies in the higher latitudes (due to variations in rotation velocity and change of the body flatness) should appear specific latitudinal zones where the different characteristics of the body structure and physical parameters undergo the significant changes. The study of such zones can bring us closer to understanding the physics of the emergence of interfaces between areas of high and low seismic activity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP Located at a Major Source of HAP Emissions, Existing Non-Emergency Compression Ignition Stationary RICE >500 HP, and New and Reconstructed 4SLB Burn Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2b Table 2b to Subpart ZZZZ of Part 63...
A theory of post-stall transients in axial compression systems. II - Application
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Moore, F. K.
1985-01-01
Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Postbuckling behavior of axially compressed graphite-epoxy cylindrical panels with circular holes
NASA Technical Reports Server (NTRS)
Knight, N. F., Jr.; Starnes, J. H., Jr.
1984-01-01
The results of an experimental and analytical study of the effects of circular holes on the postbuckling behavior of graphite-epoxy cylindrical panels loaded in axial compression are presented. The STAGSC-1 general shell analysis computer code is used to determine the buckling and postbuckling response of the panels. The loaded, curved ends of the specimens were clamped by fixtures and the unloaded, straight edges were simply supported by knife-edge restraints. The panels are loaded by uniform end shortening to several times the end shortening at buckling. The unstable equilibrium path of the postbuckling response is obtained analytically by using a method based on controlling an equilibrium-path-arc-length parameter instead of the traditional load parameter. The effects of hole diameter, panel radius, and panel thickness on postbuckling response are considered in the study. Experimental results are compared with the analytical results and the failure characteristics of the graphite-epoxy panels are described.
Saturated-unsaturated flow to a partially penetrating well with storage in a compressible aquifer
NASA Astrophysics Data System (ADS)
Mishra, P. K.; Neuman, S. P.
2010-12-01
Mishra and Neuman [2010] developed an analytical solution for flow to a partially penetrating well of zero radius in a compressible unconfined aquifer that allows inferring its saturated and unsaturated hydraulic properties from responses recorded in the saturated and/or the unsaturated zone. We extend their solution to the case of a finite diameter pumping well with storage. Both solutions account for horizontal as well as vertical flows throughout the system. We investigate the effects of storage in the pumping well and delayed piezometer response on drawdowns in the saturated and unsaturated zones as functions of position and time; validate our solution against numerical simulations of drawdown in a synthetic aquifer having unsaturated properties described by the van Genuchten - Mualem constitutive model; and use our solution to analyze drawdown data from a pumping test conducted at the Borden site in Ontario, Canada.
Semi-analytic model of plasma-jet-driven magneto-inertial fusion
Langendorf, Samuel J.; Hsu, Scott C.
2017-03-01
A semi-analytic model for plasma-jet-driven magneto-inertial fusion is presented here. Compressions of a magnetized plasma target by a spherically imploding plasma liner are calculated in one dimension (1D), accounting for compressible hydrodynamics and ionization of the liner material, energy losses due to conduction and radiation, fusion burn and alpha deposition, separate ion and electron temperatures in the target, magnetic pressure, and fuel burn-up. Results show 1D gains of 3–30 at spherical convergence ratio <15 and 20–40 MJ of liner energy, for cases in which the liner thickness is 1 cm and the initial radius of a preheated magnetized target ismore » 4 cm. Some exploration of parameter space and physics settings is presented. The yields observed suggest that there is a possibility of igniting additional dense fuel layers to reach high gain.« less
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; van der Meer, Sander; Emmer, Marcia; Versluis, Michel; de Jong, Nico; Hilgenfeldt, Sascha; Lohse, Detlef
2005-12-01
We present a model applicable to ultrasound contrast agent bubbles that takes into account the physical properties of a lipid monolayer coating on a gas microbubble. Three parameters describe the properties of the shell: a buckling radius, the compressibility of the shell, and a break-up shell tension. The model presents an original non-linear behavior at large amplitude oscillations, termed compression-only, induced by the buckling of the lipid monolayer. This prediction is validated by experimental recordings with the high-speed camera Brandaris 128, operated at several millions of frames per second. The effect of aging, or the resultant of repeated acoustic pressure pulses on bubbles, is predicted by the model. It corrects a flaw in the shell elasticity term previously used in the dynamical equation for coated bubbles. The break-up is modeled by a critical shell tension above which gas is directly exposed to water.
Fluid simulations of plasma turbulence at ion scales: Comparison with Vlasov-Maxwell simulations
NASA Astrophysics Data System (ADS)
Perrone, D.; Passot, T.; Laveder, D.; Valentini, F.; Sulem, P. L.; Zouganelis, I.; Veltri, P.; Servidio, S.
2018-05-01
Comparisons are presented between a hybrid Vlasov-Maxwell (HVM) simulation of turbulence in a collisionless plasma and fluid reductions. These include Hall-magnetohydrodynamics (HMHD) and Landau fluid (LF) or finite Larmor radius-Landau fluid (FLR-LF) models that retain pressure anisotropy and low-frequency kinetic effects such as Landau damping and, for the last model, finite Larmor radius (FLR) corrections. The problem is considered in two space dimensions, when initial conditions involve moderate-amplitude perturbations of a homogeneous equilibrium plasma subject to an out-of-plane magnetic field. LF turns out to provide an accurate description of the velocity field up to the ion Larmor radius scale, and even to smaller scales for the magnetic field. Compressibility nevertheless appears significantly larger at the sub-ion scales in the fluid models than in the HVM simulation. High frequency kinetic effects, such as cyclotron resonances, not retained by fluid descriptions, could be at the origin of this discrepancy. A significant temperature anisotropy is generated, with a bias towards the perpendicular component, the more intense fluctuations being rather spread out and located in a broad vicinity of current sheets. Non-gyrotropic pressure tensor components are measured and are shown to reach a significant fraction of the total pressure fluctuations, with intense regions closely correlated with current sheets.
Does bone measurement on the radius indicate skeletal status. Concise communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazess, R.B.; Peppler, W.W.; Chesney, R.W.
1984-03-01
Single-photon (I-125) absorptiometry was used to measure bone mineral content (BMC) of the distal third of the radius, and dual-photon absorptiometry (Gd-153) was used to measure total-body bone mineral (TBBM), as well as the BMC of major skeletal regions. Measurements were done in normal females, normal males, osteoporotic females, osteoporotic males, and renal patients. The BMC of the radius predicted TBBM well in normal subjects, but was less satisfactory in the patient groups. The spinal BMC was predicted with even lower accuracy from radius measurement. The error in predicting areal density (bone mass per unit projected skeletal area) of themore » lumbar and thoracic spine from the radius BMC divided by its width was smaller, but the regressions differed significantly among normals, osteoporotics, and renal patients. There was a preferential spinal osteopenia in the osteoporotic group and in about half of the renal patients. Bone measurements on the radius can indicate overall skeletal status in normal subjects and to a lesser degree in patients, but these radius measurements are inaccurate, even on the average, as an indicator of spinal state.« less
2010-11-01
material. The rubber is laser -etched with rows of tiny, interconnected channels or galleries, to which air pressure is applied. Any propagating crack... clad one side. The Upper Lobe has a radius of approximately 85” (compound curvature) in the region of interest. As stated previously, the skin is...7079-T6 sheet; clad one side with a varying thickness of 0.050” to 0.071” (varies according to stability requirements for compression combined with
Electronic response to nuclear breathing mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ludwig, Hendrik; Ruffini, Remo; ICRANet, University of Nice-Sophia Antipolis, 28 Av. de Valrose, 06103 Nice Cedex 2
2015-12-17
Based on our previous work on stationary oscillation modes of electrons around giant nuclei, we show how to treat a general driving force on the electron gas, such as the one generated by the breathing mode of the nucleus, by means of the spectral method. As an example we demonstrate this method for a system with Z = 10{sup 4} in β-equilibrium with the electrons compressed up to the nuclear radius. In this case the stationary modes can be obtained analytically, which allows for a very speedy numerical calculation of the final result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alanakyan, Yu. R., E-mail: yralanak@mail.ru
2015-10-15
In this paper, some features of the dynamics of a lightning channel that emerges after the leader-streamer process, are theoretically studied. It is shown that the dynamic pinch effect in the channel becomes possible if a discharge current before the main (quasi-steady) stage of a lightning discharge increases rapidly. The ensuing magnetic compression of the channel increases plasma temperature to several million degrees leading to a soft x-ray flash within the highly ionized plasma. The relation between the plasma temperature and the channel radius during the main stage of a lightning discharge is derived.
Lau, Ernest W
2013-01-01
The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...
2016-01-07
We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...
2014-11-03
The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less
Real-time Implementation of Vision, Inertial, and GPS Sensors to Navigate in an Urban Environment
2015-03-01
25) where RN is the meridian radius of curvature, RE is the transverse radius of the curvature, e is the major eccentricity of the ellipsoid, R is the...for On-Road Vehicles with 1- Point RANSAC [17]. Scaramuzza/et al discuss the use of nonholonomic constraints of a wheeled vehicle, that has an imagery
Balasubramanian, Dhinesh; Sokkalingam Arumugam, Sabari Rajan; Subramani, Lingesan; Joshua Stephen Chellakumar, Isaac JoshuaRamesh Lalvani; Mani, Annamalai
2018-01-01
A numerical study was carried out to study the effect of various combustion bowl parameters on the performance behavior, combustion characteristics, and emission magnitude on a single cylinder diesel engine. A base combustion bowl and 11 different combustion bowls were created by varying the aspect ratio, reentrancy ratio, and bore to bowl ratio. The study was carried out at engine rated speed and a full throttle performance condition, without altering the compression ratio. The results revealed that the combustion bowl parameters could have a huge impact on the performance behavior, combustion characteristics, and emission magnitude of the engine. The bowl parameters, namely throat diameter and toroidal radius, played a crucial role in determining the performance behavior of the combustion bowls. It was observed that the combustion bowl parameters, namely central pip distance, throat diameter, and bowl depth, also could have an impact on the combustion characteristics. And throat diameter and toroidal radius, central pip distance, and toroidal corner radius could have a consequent effect on the emission magnitude of the engine. Of the different combustion bowls tested, combustion bowl 4 was preferable to others owing to the superior performance of 3% of higher indicated mean effective pressure and lower fuel consumption. Interestingly, trade-off for NO x emission was higher only by 2.85% compared with the base bowl. The sensitivity analysis proved that bowl depth, bowl diameter, toroidal radius, and throat diameter played a vital role in the fuel consumption parameter and emission characteristics even at the manufacturing tolerance variations.
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
Short-pulse, compressed ion beams at the Neutralized Drift Compression Experiment
Seidl, P. A.; Barnard, J. J.; Davidson, R. C.; ...
2016-05-01
We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted onmore » the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.« less
Radio emission from supernova remnants in a cloudy interstellar medium
NASA Technical Reports Server (NTRS)
Blandford, R. D.; Cowie, L. L.
1982-01-01
The van der Laan (1962) theory of SNR radio emission is modified in light of the inhomogeneity of the interstellar medium, and in order to allow for particle acceleration in shock fronts. It is proposed that most of the radio emission in 10-20 pc radius SNRs originates in cold interstellar clouds that have been crushed by the high pressure hot gas within the expanding remnant. Under these circumstances, simple reacceleration of ambient interstellar cosmic ray electrons can account for the surface brightness-diameter distribution of observed remnants, with the additional, relativistic particle energy compensating for the decreased filling factor of the radio-emitting regions. Warm interstellar gas, at about 8000 K, may also be compressed within very large SNRs (of radius of 30-100 pc) and account for both the giant radio loops, when these SNRs are seen individually, and the anomalously bright galactic nonthermal radio background, which may be the superposition of a number of such features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhongyu; Shao, Lin, E-mail: lshao@tamu.edu; Chen, Di
Strong electronic stopping power of swift ions in a semiconducting or insulating substrate can lead to localized electron stripping. The subsequent repulsive interactions among charged target atoms can cause Coulomb explosion. Using molecular dynamics simulation, we simulate Coulomb explosion in silicon by introducing an ionization pulse lasting for different periods, and at different substrate temperatures. We find that the longer the pulse period, the larger the melting radius. The observation can be explained by a critical energy density model assuming that melting required thermal energy density is a constant value and the total thermal energy gained from Coulomb explosion ismore » linearly proportional to the ionization period. Our studies also show that melting radius is larger at higher substrate temperatures. The temperature effect is explained due to a longer structural relaxation above the melting temperature at original ionization boundary due to lower heat dissipation rates. Furthermore, simulations show the formation of shock waves, created due to the compression from the melting core.« less
Correlation between obesity and severity of distal radius fractures.
Acosta-Olivo, C; Gonzalez-Saldivar, J C; Villarreal-Villarreal, G; Torres-Botello, A; Gomez-Garcia, E; Tamez-Mata, Y; Peña-Martinez, V
2017-04-01
The incidence of obesity has increased significantly worldwide. Our hypothesis was that patients with obesity have a more severe distal radius fracture and we realized a study to evaluate this correlation between obesity and severity of distal radius fractures caused by low-energy injuries. A total of 114 patients with distal radius fracture were examined in a cross-sectional, observational study. Fractures were classified according to the international AO-Müller/Orthopedic Trauma Association (AO/OTA) classification in order to determine the severity. The patient's Body Mass Index (BMI) was calculated and a Pearson correlation was performed. The patients were predominantly female, and left side was more frequently affected. Most of the fractures were AO/OTA type A (71 patients). The majority of the involved patients in our study were overweighed or obese. We do not observe a direct correlation between grade of obesity and distal radius fracture severity. Based on the results of this study obesity and severity of distal radius fractures do not correlate. Prognostic. Level IV. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Buckling analysis of planar compression micro-springs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jing; Sui, Li; Shi, Gengchen
2015-04-15
Large compression deformation causes micro-springs buckling and loss of load capacity. We analyzed the impact of structural parameters and boundary conditions for planar micro-springs, and obtained the change rules for the two factors that affect buckling. A formula for critical buckling deformation of micro-springs under compressive load was derived based on elastic thin plate theory. Results from this formula were compared with finite element analysis results but these did not always correlate. Therefore, finite element analysis is necessary for micro-spring buckling analysis. We studied the variation of micro-spring critical buckling deformation caused by four structural parameters using ANSYS software undermore » two constraint conditions. The simulation results show that when an x-direction constraint is added, the critical buckling deformation increases by 32.3-297.9%. The critical buckling deformation decreases with increase in micro-spring arc radius or section width and increases with increase in micro-spring thickness or straight beam width. We conducted experiments to confirm the simulation results, and the experimental and simulation trends were found to agree. Buckling analysis of the micro-spring establishes a theoretical foundation for optimizing micro-spring structural parameters and constraint conditions to maximize the critical buckling load.« less
Experimental Design of a Magnetic Flux Compression Experiment
NASA Astrophysics Data System (ADS)
Fuelling, Stephan; Awe, Thomas J.; Bauer, Bruno S.; Goodrich, Tasha; Lindemuth, Irvin R.; Makhin, Volodymyr; Siemon, Richard E.; Atchison, Walter L.; Reinovsky, Robert E.; Salazar, Mike A.; Scudder, David W.; Turchi, Peter J.; Degnan, James H.; Ruden, Edward L.
2007-06-01
Generation of ultrahigh magnetic fields is an interesting topic of high-energy-density physics, and an essential aspect of Magnetized Target Fusion (MTF). To examine plasma formation from conductors impinged upon by ultrahigh magnetic fields, in a geometry similar to that of the MAGO experiments, an experiment is under design to compress magnetic flux in a toroidal cavity, using the Shiva Star or Atlas generator. An initial toroidal bias magnetic field is provided by a current on a central conductor. The central current is generated by diverting a fraction of the liner current using an innovative inductive current divider, thus avoiding the need for an auxiliary power supply. A 50-mm-radius cylindrical aluminum liner implodes along glide planes with velocity of about 5 km/s. Inward liner motion causes electrical closure of the toroidal chamber, after which flux in the chamber is conserved and compressed, yielding magnetic fields of 2-3 MG. Plasma is generated on the liner and central rod surfaces by Ohmic heating. Diagnostics include B-dot probes, Faraday rotation, radiography, filtered photodiodes, and VUV spectroscopy. Optical access to the chamber is provided through small holes in the walls.
Irradiation of Materials using Short, Intense Ion Beams
NASA Astrophysics Data System (ADS)
Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.
2016-10-01
We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).
NASA Astrophysics Data System (ADS)
Largent, Billy T.
The state of matter at extremely high pressures and densities is of fundamental interest to many branches of research, including planetary science, material science, condensed matter physics, and plasma physics. Matter with pressures, or energy densities, above 1 megabar (100 gigapascal) are defined as High Energy Density (HED) plasmas. They are directly relevant to the interiors of planets such as Earth and Jupiter and to the dense fuels in Inertial Confinement Fusion (ICF) experiments. To create HEDP conditions in laboratories, a sample may be compressed by a smoothly varying pressure ramp with minimal temperature increase, following the isentropic thermodynamic process. Isentropic compression of aluminum targets has been done using magnetic pressure produced by megaampere, pulsed power currents having 100 ns rise times. In this research project, magnetically driven, cylindrical isentropic compression has been numerically studied. In cylindrical geometry, material compression and pressure become higher than in planar geometry due to geometrical effects. Based on a semi-analytical model for the Magnetized Liner Inertial Fusion (MagLIF) concept, a code called "SA" was written to design cylindrical compression experiments on the 1.0 MA Zebra pulsed power generator at the Nevada Terawatt Facility (NTF). To test the physics models in the code, temporal progresses of rod compression and pressure were calculated with SA and compared with 1-D magnetohydrodynamic (MHD) codes. The MHD codes incorporated SESAME tables, for equation of state and resistivity, or the classical Spitzer model. A series of simulations were also run to find optimum rod diameters for 1.0 MA and 1.8 MA Zebra current pulses. For a 1.0 MA current peak and 95 ns rise time, a maximum compression of 2.35 ( 6.3 g/cm3) and a pressure of 900 GPa within a 100 mum radius were found for an initial diameter of 1.05 mm. For 1.8 MA peak simulations with the same rise time, the initial diameter of 1.3 mm was optimal with 3.32 ( 9.0 g/cm 3) compression.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-09
... COMMODITY FUTURES TRADING COMMISSION 17 CFR Part 23 RIN 3038-AC96 Confirmation, Portfolio Reconciliation, Portfolio Compression, and Swap Trading Relationship Documentation Requirements for Swap Dealers..., portfolio compression, and swap trading relationship documentation for Swap Dealers and Major Swap...
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.
2017-05-10
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low- β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, andmore » also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, i.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.« less
NASA Astrophysics Data System (ADS)
Gao, Jing; Huang, Weifeng; Wu, Xiang; Qin, Shan
2018-04-01
Carbon-bearing phases in the Earth's interior have profound implications for the long-term Earth carbon cycle. Here we investigate high-pressure behaviors of carbonophosphates bonshtedtite Na3Fe(PO4)(CO3) and sidorenkite Na3Mn(PO4)(CO3) in diamond anvil cells up to ∼12 GPa at room temperature. Modifications in in situ synchrotron X-ray diffraction patterns and Raman spectra confirm the structural stability of carbonophosphates within the pressure region. Fitting the third-order Birch-Murnaghan equation of state to the volume compression curve, the isothermal bulk modulus parameters are obtained to be K0 = 56(1) GPa, K0' = 3.3(1), V0 = 303.3(3) Å3 for Na3Fe(PO4)(CO3) and K0 = 54(1) GPa, K0' = 3.4(1), V0 = 313.4(2) Å3 for Na3Mn(PO4)(CO3). Crystallographic axes exhibit an elastic anisotropy with a more compressible c-axis relative to the ab-plane. An inverse linear correlation between the K0 value and the ionic radius of M2+ (M = Mg, Fe, Mn) is well determined for carbonophosphates. The pressure-dependence responsiveness of [PO4] and [CO3] in carbonophosphates show a negative relationship to the M2+ radius. We also discussed the effect of [PO4] group on the structural variations and high-pressure behaviors of carbonates. Furthermore, the geochemical properties of carbonophosphates hold implications to diamond genesis.
Nonlinear Evolution of Short-wavelength Torsional Alfvén Waves
NASA Astrophysics Data System (ADS)
Shestov, S. V.; Nakariakov, V. M.; Ulyanov, A. S.; Reva, A. A.; Kuzin, S. V.
2017-05-01
We analyze nonlinear evolution of torsional Alfvén waves in a straight magnetic flux tube filled in with a low-β plasma, and surrounded with a plasma of lower density. Such magnetic tubes model, in particular, a segment of a coronal loop or a polar plume. The wavelength is taken comparable to the tube radius. We perform a numerical simulation of the wave propagation using ideal magnetohydrodynamics. We find that a torsional wave nonlinearly induces three kinds of compressive flows: the parallel flow at the Alfvén speed, which constitutes a bulk plasma motion along the magnetic field, the tube wave, and also transverse flows in the radial direction, associated with sausage fast magnetoacoustic modes. In addition, the nonlinear torsional wave steepens and its propagation speed increases. The latter effect leads to the progressive distortion of the torsional wave front, I.e., nonlinear phase mixing. Because of the intrinsic non-uniformity of the torsional wave amplitude across the tube radius, the nonlinear effects are more pronounced in regions with higher wave amplitudes. They are always absent at the axes of the flux tube. In the case of a linear radial profile of the wave amplitude, the nonlinear effects are localized in an annulus region near the tube boundary. Thus, the parallel compressive flows driven by torsional Alfvén waves in the solar and stellar coronae, are essentially non-uniform in the perpendicular direction. The presence of additional sinks for the wave energy reduces the efficiency of the nonlinear parallel cascade in torsional Alfvén waves.
Dowthwaite, Jodi N.; Rosenbaum, Paula F.; Scerpella, Tamara A.
2012-01-01
Purpose We evaluated site-specific skeletal adaptation to loading during growth,comparing radius (RAD) and femoral neck (FN) DXA scans in young female gymnasts (GYM) and non-gymnasts (NON). Methods Subjects from an ongoing longitudinal study (8-26 yrs old) underwent annual DXA scans (proximal femur, forearm, total body) and anthropometry, completing maturity and physical activity questionnaires. This cross-sectional analysis used the most recent data meeting the following criteria: gynecological age ≤2.5 yrs post-menarche; GYM annual mean gymnastic exposure ≥5.0 h/wk in the prior year. Bone geometric and strength indices were derived from scans for 173 subjects (8-17 yrs old) via hip structural analysis (femoral narrow neck, NN) and similar radius formulae (1/3 and Ultradistal (UD)). Maturity was coded as M1 (Tanner I breast), M2 (pre-menarche, ≥Tanner II breast) or M3 (post-menarche). ANOVA and chi square compared descriptive data. Two factor ANCOVA adjusted for age, height, total body non-bone lean mass and percent body fat; significance was tested for main effects and interactions between gymnastic exposure and maturity. Results At the distal radius, GYM means were significantly greater than NON means for all variables (p<0.05). At the proximal femur, GYM exhibited narrower periosteal and endosteal dimensions, but greater indices of cortical thickness, BMC, aBMD and section modulus, with lower buckling ratio (p <0.05). However, significant interactions between maturity and loading were detected for the following: 1) FN bone mineral content (BMC), NN buckling ratio (GYM BMC advantages only in M1 and M3; for BMC and buckling ratio, M1 advantages were greatest; 2) 1/3 radius BMC, width, endosteal diameter, cortical cross-sectional area, section modulus (GYM advantages primarily post-menarche); 3) UD radius BMC and axial compressive strength (GYM advantages were larger with greater maturity, greatest post-menarche). Conclusions Maturity-specific comparisons suggested site-specific skeletal adaptation to loading during growth, with greater advantages at the radius versus the proximal femur. At the radius, GYM advantages included greater bone width, cortical cross-sectional area and cortical thickness; in contrast, at the femoral neck, GYM bone tissue cross-sectional area and cortical thickness were greater, but bone width was narrower than in NON. Future longitudinal analyses will evaluate putative maturity-specific differences. PMID:22342799
Video bandwidth compression system
NASA Astrophysics Data System (ADS)
Ludington, D.
1980-08-01
The objective of this program was the development of a Video Bandwidth Compression brassboard model for use by the Air Force Avionics Laboratory, Wright-Patterson Air Force Base, in evaluation of bandwidth compression techniques for use in tactical weapons and to aid in the selection of particular operational modes to be implemented in an advanced flyable model. The bandwidth compression system is partitioned into two major divisions: the encoder, which processes the input video with a compression algorithm and transmits the most significant information; and the decoder where the compressed data is reconstructed into a video image for display.
Sandia 25-meter compressed helium/air gun
NASA Astrophysics Data System (ADS)
Setchell, R. E.
1982-04-01
For nearly twenty years the Sandia 25-meter compressed gas gun has been an important tool for studying condensed materials subjected to transient shock compression. Major system modifications are now in progress to provide new control, instrumentation, and data acquisition capabilities. These features will ensure that the facility can continue as an effective means of investigating a variety of physical and chemical processes in shock-compressed solids.
Stress wave emission from plasmonic nanobubbles
NASA Astrophysics Data System (ADS)
Brujan, Emil-Alexandru
2017-01-01
Stress wave emission from the collapse of cavitation nanobubbles, generated after irradiation of single-spherical gold nanoparticles with laser pulses, was investigated numerically. The significant parameters of this study are the nanoparticle radius, laser pulse duration, and laser fluence. For conditions comparable to those existing during plasmonic photothermal therapy, a purely compressive pressure wave is emitted during nanobubble collapse, not a shock. In the initial stage of its propagation, the stress wave amplitude is proportional to the inverse of the stress wave radius. The maximum amplitude and the duration of the stress wave decreases with the laser fluence, laser pulse duration, and gold nanoparticle radius. The full width at half maximum duration of the stress wave is almost constant up to a distance of 50 µm from the emission center. The stress wave amplitude is smaller than 5 MPa, while the stress wave duration is smaller than 35 ns. The stress wave propagation results in minor mechanical effects on biological tissue that are restricted to very small dimensions on a cellular or sub-cellular level. The stress wave is, however, able to produce breaching of the human cell membrane and bacterial wall even at distances as large as 50 µm from the emission centre. The experimentally observed melting of gold nanoparticles comes from the large temperature reached inside the nanoparticles during laser irradiation and not from the propagation of the stress wave into the surrounding liquid during nanobubble rebound.
Convection in Slab and Spheroidal Geometries
NASA Technical Reports Server (NTRS)
Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.
2000-01-01
Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.
Applicability of Mixing Length Theory to a Turbulent Vortex System
NASA Technical Reports Server (NTRS)
Ragsdale, Robert G.
1961-01-01
The ability of mixing length theory to correlate vortex data is evaluated. Expressions are derived for eddy diffusivity by applying the techniques of von Karman and Prandtl which have been established for pipe flow. Total and static pressures were measured from the outer radius to the exhaust-nozzle radius of a vortex generator for a range of mass flows. These data are combined with Navier-Stokes solutions for this region of a compressible vortex to determine turbulent Reynolds numbers. The Reynolds number is related to Prandtl and Karman functions for various assumed boundary conditions, and the experimental data are used to determine the usefulness of these expressions. The following conclusions were reached: (1) Mixing length functions developed by applying von Karman's similarity hypothesis to vortex motion correlate the data better than do Prandtl functions obtained with the assumption that mixing length is proportional to radius. (2) Some of the expressions developed do not adequately represent the experimental data. (3) The data are correlated with acceptable scatter by evaluating the fluid radial inertia at the outer boundary and the shear stress at the inner boundary. The universal constant K was found to be 0.04 to 0.08, rather than the value of 0.4 which is accepted for rectilinear flow. (4) The data are best correlated by a modified Karman expression which includes an effect of radial inertia, as well as shear stress, on eddy diffusivity.
Synek, Alexander; Chevalier, Yan; Schröder, Christian; Pahr, Dieter H; Baumbach, Sebastian F
2016-04-01
The variety of experimental setups used during in vitro testing of distal radius fracture treatments impairs interstudy comparison and might lead to contradictory results. Setups particularly differ with respect to their boundary conditions, but the influence on the experimental outcome is unknown. The aim of this biomechanical study was to investigate the effects of 2 common boundary conditions on the biomechanical properties of an extra-articular distal radius fracture treated using volar plate osteosynthesis. Uniaxial compression tests were performed on 10 synthetic radii that were randomized into a proximally constrained group (ProxConst) or proximally movable group (ProxMove). The load was applied distally through a ball joint to enable distal fragment rotation. A significantly larger (ProxConst vs ProxMove) stiffness (671.6 ± 118.9 N·mm(-1) vs 259.6 ± 49.4 N·mm(-1)), elastic limit (186.2 ± 24.4 N vs 75.4 ± 20.2 N), and failure load (504.9 ± 142.5 N vs 200.7 ± 49.0 N) were found for the ProxConst group. The residual tilt did not differ significantly between the 2 groups. We concluded that the boundary conditions have a profound impact on the experimental outcome and should be considered more carefully in both study design and interstudy comparison.
Numerical experiments on the PF1000 plasma focus device operated with nitrogen and oxygen gases
NASA Astrophysics Data System (ADS)
Akel, M.; Ismael, Sh.; Lee, S.; Saw, S. H.; Kunze, H. J.
2017-06-01
The indicative values of reduced Pease-Braginskii (P-B) currents are estimated for a nitrogen and oxygen plasma focus. The values of depletion times indicate that in N2 and O2 with estimated 3-4% of pinch energy radiating away over the duration of the pinch, we may expect some cooling effects leading to small reductions in radius ratio. In other gases with higher atomic number, the pinch duration is much more than the depletion time, so radiative contraction may be anticipated. The Lee model was employed to study the soft X-ray from PF1000 operated with nitrogen and oxygen. We found nitrogen soft X-ray yield in the water window region of 3.13 kJ, with the corresponding efficiency of 0.9% of the stored energy (E0), while for the oxygen it was found to be Ysxr = 4.9 kJ, with the efficiency of 1.4% E0. The very modest enhancement of compression (radius ratios around 0.1) in the pinches of these two gases gives rise to rather modest pinch energy densities (PEDs) under 109 Jm-3. This is in contrast to Kr or Xe where it had been shown that the radiative collapse leads to radius ratios of 0.007 and 0.003, respectively, with PEDs going to large values considerably exceeding 1012 Jm-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayasaki, K.; Sohn, B.W.; Jung, T.
2015-07-01
We study the warping and tearing of a geometrically thin, non-self-gravitating disk surrounding binary supermassive black holes on an eccentric orbit. The circumbinary disk is significantly misaligned with the binary orbital plane, and is subject to the time-dependent tidal torques. In principle, such a disk is warped and precesses, and is torn into mutually misaligned rings in the region, where the tidal precession torques are stronger than the local viscous torques. We derive the tidal-warp and tearing radii of the misaligned circumbinary disks around eccentric SMBH binaries. We find that in disks with the viscosity parameter α larger than amore » critical value depending on the disk aspect ratio, the disk warping appears outside the tearing radius. This condition is expressed for small amplitude warps as α > √H/(3r) for H/r∼<0.1, where H is the disk scale height. If α < √H/(3r), only the disk tearing occurs because the tidal warp radius is inside the tearing radius, where most of disk material is likely to rapidly accrete onto SMBHs. In warped and torn disks, both the tidal-warp and the tearing radii most strongly depend on the binary semi-major axis, although they also mildly depend on the other orbital and disk parameters. This strong dependence enables us to estimate the semi-major axis, once the tidal warp or tearing radius is determined observationally: for the tidal warp radius of 0.1 pc, the semi-major axis is estimated to be ∼10{sup −2} pc for 10{sup 7} M{sub ⊙} black hole with typical orbital and disk parameters. We also briefly discuss the possibility that central objects of observed warped maser disks in active galactic nuclei are supermassive black hole binaries.« less
Colwell, Clifford W
2014-11-01
Venous thromboembolic (VTE) events, either deep vein thromboses (DVT) or pulmonary emboli (PE), are important complications in patients undergoing knee or hip arthroplasty. Symptomatic VTE rates observed in total joint arthroplasty patients using the mobile compression device with home use capability were non-inferior to rates reported for pharmacological prophylaxis, including warfarin, enoxaparin, rivaroxaban, and dabigatran. Major bleeding in total hip arthroplasty was less using the mobile compression device than using low molecular weight heparin. A cost analysis demonstrated a cost savings based on decreased major bleeding. Use of a mobile compression device with or without aspirin for patients undergoing total joint arthroplasty provides a non-inferior risk for developing VTE compared with current pharmacological protocols.
Axisymmetric buckling of the circular graphene sheets with the nonlocal continuum plate model
NASA Astrophysics Data System (ADS)
Farajpour, A.; Mohammadi, M.; Shahidi, A. R.; Mahzoon, M.
2011-08-01
In this article, the buckling behavior of nanoscale circular plates under uniform radial compression is studied. Small-scale effect is taken into consideration. Using nonlocal elasticity theory the governing equations are derived for the circular single-layered graphene sheets (SLGS). Explicit expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate and mode numbers are investigated.
Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics.
Dowthwaite, J N; Scerpella, T A
2011-01-01
Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON): were compared with girls exposed to gymnastics during growth (EX/GYM: ), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts' bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM: vs. NON: , adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Sixteen postmenarcheal EX/GYM: (age 16.7 years; gynecological age 3.4 years) and 13 NON: (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM: exhibited greater CSA and bone strength indices than NON; EX/GYM: exhibited 79% larger intramedullary CSA than NON: (p < 0.05). EX/GYM: had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM: demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking.
Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics
Scerpella, T. A.
2011-01-01
Summary Development of optimal skeletal strength should decrease adult bone fragility. Nongymnasts (NON) were compared with girls exposed to gymnastics during growth (EX/GYM), using peripheral quantitative computed tomography (pQCT) to evaluate postmenarcheal bone geometry, density, and strength. Pre- and perimenarcheal gymnastic loading yields advantages in indices of postmenarcheal bone geometry and skeletal strength. Introduction Two prior studies using pQCT have reported bone density and size advantages in Tanner I/II gymnasts, but none describe gymnasts’ bone properties later in adolescence. The current study used pQCT to evaluate whether girls exposed to gymnastics during late childhood growth and perimenarcheal growth exhibited greater indices of distal radius geometry, density, and skeletal strength. Methods Postmenarcheal subjects underwent 4% and 33% distal radius pQCT scans, yielding: 1) vBMD and cross-sectional areas (CSA) (total bone, compartments); 2) polar strength-strain index; 3) index of structural strength in axial compression. Output was compared for EX/GYM vs. NON, adjusting for gynecological age and stature (maturity and body size), reporting means, standard errors, and significance. Results Sixteen postmenarcheal EX/GYM (age 16.7 years; gynecological age 3.4 years) and 13 NON (age 16.2 years; gynecological age 3.6 years) were evaluated. At both diaphysis and metaphysis, EX/GYM exhibited greater CSA and bone strength indices than NON; EX/GYM exhibited 79% larger intramedullary CSA than NON (p<0.05). EX/GYM had significantly higher 4% trabecular vBMD; differences were not detected for 4% total vBMD and 33% cortical vBMD. Conclusions Following pre-/perimenarcheal gymnastic exposure, relative to nongymnasts, postmenarcheal EX/GYM demonstrated greater indices of distal radius geometry and skeletal strength (metaphysis and diaphysis) with greater metaphyseal trabecular vBMD; larger intramedullary cavity size was particularly striking. PMID:20419293
Ho, Christine A; Richards, B Stephens; Ezaki, Marybeth
2014-09-01
Although amniotic band syndrome is relatively rare, reports of pseudarthrosis in conjunction with amniotic band syndrome are even rarer, as are reports of impending vascular compromise in the neonatal period. Careful serial examinations and timely surgical intervention can successfully avoid the catastrophic event of limb loss. We report on a case of upper extremity amniotic band syndrome with pseudarthrosis of the radius and ulna that was complicated by vascular compromise in a neonate. Chart and radiographic data for this single case were reviewed and reported retrospectively. A 1-day-old neonate born at 28 3/7 weeks of gestational age was transferred to our institution for increased swelling to the forearm distal to a congenital band associated with an underlying radius and ulna pseudarthrosis. Although the forearm and hand were soft and viable initially, severe edema and swelling occurred after fluid resuscitation, and on the fourth day of life, the patient underwent simple band releases at bedside with 2 longitudinal incisions over the radius and ulna. Circulation was restored, and the pseudarthrosis healed with no further surgical intervention. Successful delayed reconstruction of the band with Z-plasties was performed when the baby was 7 months of age. In this case, a relatively simple, straightforward procedure that is familiar to most pediatric orthopaedists salvaged a compromised neonatal limb with amniotic band syndrome and allowed healing of a pseudarthrosis, allowing more complex reconstruction to be performed in a delayed, elective manner. Careful observation is necessary in the neonatal period of the baby with a severe band; a viable, well-perfused, compressible extremity may still be at risk.
Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe
2011-01-01
Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.
Observation of Compressible Plasma Mix in Cylindrically Convergent Implosions
NASA Astrophysics Data System (ADS)
Barnes, Cris W.; Batha, Steven H.; Lanier, Nicholas E.; Magelssen, Glenn R.; Tubbs, David L.; Dunne, A. M.; Rothman, Steven R.; Youngs, David L.
2000-10-01
An understanding of hydrodynamic mix in convergent geometry will be of key importance in the development of a robust ignition/burn capability on NIF, LMJ and future pulsed power machines. We have made use of the OMEGA laser facility at the University of Rochester to investigate directly the mix evolution in a convergent geometry, compressible plasma regime. The experiments comprise a plastic cylindrical shell imploded by direct laser irradiation. The cylindrical shell surrounds a lower density plastic foam which provides sufficient back pressure to allow the implosion to stagnate at a sufficiently high radius to permit quantitative radiographic diagnosis of the interface evolution near turnaround. The susceptibility to mix of the shell-foam interface is varied by choosing different density material for the inner shell surface (thus varying the Atwood number). This allows the study of shock-induced Richtmyer-Meshkov growth during the coasting phase, and Rayleigh-Taylor growth during the stagnation phase. The experimental results will be described along with calculational predictions using various radiation hydrodynamics codes and turbulent mix models.
NASA Technical Reports Server (NTRS)
Tremblin, P.; Chabrier, G.; Mayne, N. J.; Amundsen, D. S.; Baraffe, I.; Debras, F.; Drummond, B.; Manners, J.; Fromang, S.
2017-01-01
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth's atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproduce the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.
Reevaluating the Mass-Radius Relation for Low-mass, Main-sequence Stars
NASA Astrophysics Data System (ADS)
Feiden, Gregory A.; Chaboyer, Brian
2012-09-01
We examine the agreement between the observed and theoretical low-mass (<0.8 M ⊙) stellar main-sequence mass-radius relationship by comparing detached eclipsing binary (DEB) data with a new, large grid of stellar evolution models. The new grid allows for a realistic variation in the age and metallicity of the DEB population, characteristic of the local galactic neighborhood. Overall, our models do a reasonable job of reproducing the observational data. A large majority of the models match the observed stellar radii to within 4%, with a mean absolute error of 2.3%. These results represent a factor of two improvement compared to previous examinations of the low-mass mass-radius relationship. The improved agreement between models and observations brings the radius deviations within the limits imposed by potential starspot-related uncertainties for 92% of the stars in our DEB sample.
Relative role of different radii in the dynamics of 8B+58Ni reaction
NASA Astrophysics Data System (ADS)
Kaur, Amandeep; Sandhu, Kirandeep; Sharma, Manoj K.
2018-05-01
In the present work, we intend to analyze the significance of three different radius terms in the framework of dynamical cluster-decay model (DCM) based calculations. In the majority of DCM based calculations the impact of mass- dependent radius R(A) is extensively analyzed. The other two factors on which the radius term may depend are, the neutron- proton asymmetry and the charge of the decaying fragments. Hence, the asymmetry dependent radius term R(I) and charge dependent radius term R(Z) are incorporated in DCM based calculations to investigate their effect on the reaction dynamics involved. Here, we present an extension of an earlier work based on the decay of 66As* compound nucleus by including R(I) and R(Z) radii in addition to the R(A) term. The effect of replacement of R(A) with R(I) and R(Z) is analyzed via fragmentation structure, tunneling probabilities (P) and other barrier characteristics like barrier height (VB), barrier position (RB), barrier turning point Ra etc. The role of temperature, deformations and angular momentum is duly incorporated in the present calculations.
Shen, Qi; Liu, Zhanqiang; Hua, Yang; Zhao, Jinfu; Lv, Woyun; Mohsan, Aziz Ul Hassan
2018-06-14
Service performance of components such as fatigue life are dramatically influenced by the machined surface and subsurface residual stresses. This paper aims at achieving a better understanding of the influence of cutting edge microgeometry on machined surface residual stresses during orthogonal dry cutting of Inconel 718. Numerical and experimental investigations have been conducted in this research. The cutting edge microgeometry factors of average cutting edge radius S¯, form-factor K , and chamfer were investigated. An increasing trend for the magnitudes of both tensile and compressive residual stresses was observed by using larger S¯ or introducing a chamfer on the cutting edges. The ploughing depth has been predicted based on the stagnation zone. The increase of ploughing depth means that more material was ironed on the workpiece subsurface, which resulted in an increase in the compressive residual stress. The thermal loads were leading factors that affected the surface tensile residual stress. For the unsymmetrical honed cutting edge with K = 2, the friction between tool and workpiece and tensile residual stress tended to be high, while for the unsymmetrical honed cutting edge with K = 0.5, the high ploughing depth led to a higher compressive residual stress. This paper provides guidance for regulating machine-induced residual stress by edge preparation.
Building Better Planet Populations for EXOSIMS
NASA Astrophysics Data System (ADS)
Garrett, Daniel; Savransky, Dmitry
2018-01-01
The Exoplanet Open-Source Imaging Mission Simulator (EXOSIMS) software package simulates ensembles of space-based direct imaging surveys to provide a variety of science and engineering yield distributions for proposed mission designs. These mission simulations rely heavily on assumed distributions of planetary population parameters including semi-major axis, planetary radius, eccentricity, albedo, and orbital orientation to provide heuristics for target selection and to simulate planetary systems for detection and characterization. The distributions are encoded in PlanetPopulation modules within EXOSIMS which are selected by the user in the input JSON script when a simulation is run. The earliest written PlanetPopulation modules available in EXOSIMS are based on planet population models where the planetary parameters are considered to be independent from one another. While independent parameters allow for quick computation of heuristics and sampling for simulated planetary systems, results from planet-finding surveys have shown that many parameters (e.g., semi-major axis/orbital period and planetary radius) are not independent. We present new PlanetPopulation modules for EXOSIMS which are built on models based on planet-finding survey results where semi-major axis and planetary radius are not independent and provide methods for sampling their joint distribution. These new modules enhance the ability of EXOSIMS to simulate realistic planetary systems and give more realistic science yield distributions.
The Dissipation Range of Interstellar Turbulence
NASA Astrophysics Data System (ADS)
Spangler, Steven R.; Buffo, J. J.
2013-06-01
Turbulence may play an important role in a number of interstellar processes. One of these is heating of the interstellar gas, as the turbulent energy is dissipated and changed into thermal energy of the gas, or at least other forms of energy. There have been very promising recent results on the mechanism for dissipation of turbulence in the Solar Wind (Howes et al, Phys. Plasm. 18, 102305, 2011). In the Solar Wind, the dissipation arises because small-scale irregularities develop properties of kinetic Alfven waves, and apparently damp like kinetic Alfven waves. A property of kinetic Alfven waves is that they become significantly compressive on size scales of order the ion Larmor radius. Much is known about the plasma properties of ionized components of interstellar medium such as HII regions and the Diffuse Ionized Gas (DIG) phase, including information on the turbulence in these media. The technique of radio wave scintillations can yield properties of HII region and DIG turbulence on scales of order the ion Larmor radius, which we refer to as the dissipation scale. In this paper, we collect results from a number of published radio scattering measurements of interstellar turbulence on the dissipation scale. These studies show evidence for a spectral break on the dissipation scale, but no evidence for enhanced compressibility of the fluctuations. The simplest explanation of our result is that turbulence in the ionized interstellar medium does not possess properties of kinetic Alfven waves. This could point to an important difference with Solar Wind turbulence. New observations, particularly with the Very Long Baseline Array (VLBA) could yield much better measurements of the power spectrum of interstellar turbulence in the dissipation range. This research was supported at the University of Iowa by grants AST09-07911 and ATM09-56901 from the National Science Foundation.
Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea, E-mail: alis@ucolick.org
Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with amore » lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.« less
Local structures around the substituted elements in mixed layered oxides
Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka
2017-01-01
The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008
NASA Astrophysics Data System (ADS)
Malinverno, A.; Saito, S.
2013-12-01
Borehole breakouts are sub-vertical hole enlargements that form on opposite sides of the borehole wall by local rock failure due to non-uniform stress. In a vertical borehole, the breakout direction is perpendicular to the maximum principal horizontal stress. Hence, borehole breakouts are key indicators of the present state of stress in the subsurface. Borehole breakouts were imaged by logging-while drilling (LWD) measurements collected in the Costa Rica Seismogenesis Project (CRISP, IODP Expedition 334). The borehole radius was estimated from azimuthal LWD density and ultrasonic measurements. The density-based borehole radius is based on the difference in scattered gamma rays measured by a near and a far detector, which is a function of the standoff between the tool and the borehole. Borehole radius can also be measured from the travel time of an ultrasonic wave reflected by the borehole wall. Density and ultrasonic measurements are sampled in 16 azimuthal sectors, i.e., every 22.5°. These measurements are processed to generate images that fully cover the borehole wall and that display borehole breakouts as two parallel, vertical bands of large hole radius 180° apart. For a quantitative interpretation, we fitted a simple borehole shape to the measured borehole radii using a Monte Carlo sampling algorithm that quantifies the uncertainty in the estimated borehole shape. The borehole shape is the outer boundary of a figure consisting of a concentric circle and an ellipse. The ellipse defines the width, depth, and orientation of the breakouts. We fitted the measured radii in 2 m depth intervals and identified reliable breakouts where the breakout depth was significant and where the orientation uncertainty and the angle spanned by the breakout were small. The results show breakout orientations that differ by about 90° in Sites U1378 (about 15 km landward of the deformation front, 525 m water depth) and U1379 (about 25 km landward of the deformation front, 126 m water depth). The maximum principal horizontal stress is directed NNE-SSW at Site U1378 and WSW-ENE at Site U1379. These directions are approximately parallel and perpendicular to NNE-directed GPS deformation vectors on land. On erosive convergent margins, a transition is expected to take place from a compressive regime near a frontal wedge to extension and subsidence moving landward of the deformation front. Our working hypothesis is that this transition may take place between Sites U1378, where the breakout orientation is consistent with NNE-SSW compression, and Site U1379, where the breakouts indicate NNE-SSW extension.
Mid-term functional outcome after the internal fixation of distal radius fractures
2012-01-01
Background Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. Methods 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation = 10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. Results The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). Conclusion This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention. PMID:22280557
Mid-term functional outcome after the internal fixation of distal radius fractures.
Phadnis, Joideep; Trompeter, Alex; Gallagher, Kieran; Bradshaw, Lucy; Elliott, David S; Newman, Kevin J
2012-01-26
Distal radius fracture is a common injury with a variety of operative and non-operative management options. There remains debate as to the optimal treatment for a given patient and fracture. Despite the popularity of volar locking plate fixation, there are few large cohort or long term follow up studies to justify this modality. Our aim was to report the functional outcome of a large number of patients at a significant follow up time after fixation of their distal radius with a volar locking plate. 180 patients with 183 fractures and a mean age of 62.4 years were followed up retrospectively at a mean of 30 months (Standard deviation=10.4). Functional assessment was performed using the Disabilities of the Arm, Shoulder and Hand (DASH) and modified MAYO wrist scores. Statistical analysis was performed to identify possible variables affecting outcome and radiographs were assessed to determine time to fracture union. The median DASH score was 2.3 and median MAYO score was 90 for the whole group. Overall, 133 patients (74%) had a good or excellent DASH and MAYO score. Statistical analysis showed that no specific variable including gender, age, fracture type, post-operative immobilisation or surgeon grade significantly affected outcome. Complications occurred in 27 patients (15%) and in 11 patients were major (6%). This single centre large population series demonstrates good to excellent results in the majority of patients after volar locking plate fixation of the distal radius, with complication rates comparable to other non-operative and operative treatment modalities. On this basis we recommend this mode of fixation for distal radius fractures requiting operative intervention.
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.
1998-10-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.
Late extensor pollicis longus rupture following plate fixation in Galeazzi fracture dislocation
Sabat, Dhananjaya; Dabas, Vineet; Dhal, Anil
2014-01-01
Late rupture of extensor pollicis longus (EPL) tendon after Galeazzi fracture dislocation fixation is an unknown entity though it is a well-established complication following distal radius fractures. We report the case of a 55-year old male who presented with late EPL tendon rupture 4 months following internal fixation of Galeazzi fracture dislocation with a Locking Compression Plate (LCP). He was managed with extensor indicis proprius (EIP) transfer to restore thumb extension. At 4 years followup, functional result of the transfer was good. We identify possible pitfalls with this particular patient and discuss how to avoid them in future. PMID:25143650
Improved Boundary Conditions for Cell-centered Difference Schemes
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Klopfer, Goetz H.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
Cell-centered finite-volume (CCFV) schemes have certain attractive properties for the solution of the equations governing compressible fluid flow. Among others, they provide a natural vehicle for specifying flux conditions at the boundaries of the physical domain. Unfortunately, they lead to slow convergence for numerical programs utilizing them. In this report a method for investigating and improving the convergence of CCFV schemes is presented, which focuses on the effect of the numerical boundary conditions. The key to the method is the computation of the spectral radius of the iteration matrix of the entire demoralized system of equations, not just of the interior point scheme or the boundary conditions.
Numerical studies of transverse curvature effects on transonic flow stability
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.; Daudpota, Q. I.
1992-01-01
A numerical study of transverse curvature effects on compressible flow temporal stability for transonic to low supersonic Mach numbers is presented for axisymmetric modes. The mean flows studied include a similar boundary-layer profile and a nonsimilar axisymmetric boundary-layer solution. The effect of neglecting curvature in the mean flow produces only small quantitative changes in the disturbance growth rate. For transonic Mach numbers (1-1.4) and aerodynamically relevant Reynolds numbers (5000-10,000 based on displacement thickness), the maximum growth rate is found to increase with curvature - the maximum occurring at a nondimensional radius (based on displacement thickness) between 30 and 100.
NASA Astrophysics Data System (ADS)
Klein, R.; Gravier, E.; Morel, P.; Besse, N.; Bertrand, P.
2009-08-01
Describing turbulent transport in fusion plasmas is a major concern in magnetic confinement fusion. It is now widely known that kinetic and fluid descriptions can lead to significantly different properties. Although more accurate, the kinetic calculation of turbulent transport is much more demanding of computer resources than fluid simulations. An alternative approach is based on a water-bag representation of the distribution function that is not an approximation but rather a special class of initial conditions, allowing one to reduce the full kinetic Vlasov equation into a set of hydrodynamics equations while keeping its kinetic character [P. Morel, E. Gravier, N. Besse et al., Phys. Plasmas 14, 112109 (2007)]. In this paper, the water-bag concept is used in a gyrokinetic context to study finite Larmor radius effects with the possibility of using the full Larmor radius distribution instead of an averaged Larmor radius. The resulting model is used to study the ion temperature gradient (ITG) instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblin, P.; Chabrier, G.; Mayne, N. J.
The anomalously large radii of strongly irradiated exoplanets have remained a major puzzle in astronomy. Based on a two-dimensional steady-state atmospheric circulation model, the validity of which is assessed by comparison to three-dimensional calculations, we reveal a new mechanism, namely the advection of the potential temperature due to mass and longitudinal momentum conservation, a process occurring in the Earth’s atmosphere or oceans. In the deep atmosphere, the vanishing heating flux forces the atmospheric structure to converge to a hotter adiabat than the one obtained with 1D calculations, implying a larger radius for the planet. Not only do the calculations reproducemore » the observed radius of HD 209458b, but also reproduce the observed correlation between radius inflation and irradiation for transiting planets. Vertical advection of potential temperature induced by non-uniform atmospheric heating thus provides a robust mechanism to explain the inflated radii of irradiated hot Jupiters.« less
Influence of Nose Radius of Blunt Cones on Drag in Supersonic and Hypersonic Flows
NASA Astrophysics Data System (ADS)
Hemateja, A.; Teja, B. Ravi; Dileep Kumar, A.; Rakesh, S. G.
2017-08-01
The objects moving at high speeds encounter forces which tend to decelerate the objects. This resistance in the medium is termed as drag which is one of the major concerns while designing high speed aircrafts. Another key factor which influences the design is the heat transfer. The main challenge faced by aerospace industries is to design the shape of the flying object that travels at high speeds with optimum values of heat generation and drag. This study deals with computational analysis of sharp and blunt cones with varying cone angles and nose radii. The effect of nose radius on the drag is studied at supersonic and hypersonic flows and at various angles of attack. It is observed that as the nose radius is increased, the heat transfer reduces & the drag increases and vice-versa. Looking at the results, the optimum value of nose radius can be chosen depending on the need of the problem.
NASA Astrophysics Data System (ADS)
Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke
2008-08-01
A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.
Burst fractures of the lumbar spine in frontal crashes.
Kaufman, Robert P; Ching, Randal P; Willis, Margaret M; Mack, Christopher D; Gross, Joel A; Bulger, Eileen M
2013-10-01
In the United States, major compression and burst type fractures (>20% height loss) of the lumbar spine occur as a result of motor vehicle crashes, despite the improvements in restraint technologies. Lumbar burst fractures typically require an axial compressive load and have been known to occur during a non-horizontal crash event that involve high vertical components of loading. Recently these fracture patterns have also been observed in pure horizontal frontal crashes. This study sought to examine the contributing factors that would induce an axial compressive force to the lumbar spine in frontal motor vehicle crashes. We searched the National Automotive Sampling System (NASS, 1993-2011) and Crash Injury Research and Engineering Network (CIREN, 1996-2012) databases to identify all patients with major compression lumbar spine (MCLS) fractures and then specifically examined those involved in frontal crashes. National trends were assessed based on weighted NASS estimates. Using a case-control study design, NASS and CIREN cases were utilized and a conditional logistic regression was performed to assess driver and vehicle characteristics. CIREN case studies and biomechanical data were used to illustrate the kinematics and define the mechanism of injury. During the study period 132 NASS cases involved major compression lumbar spine fractures for all crash directions. Nationally weighted, this accounted for 800 cases annually with 44% of these in horizontal frontal crashes. The proportion of frontal crashes resulting in MCLS fractures was 2.5 times greater in late model vehicles (since 2000) as compared to 1990s models. Belted occupants in frontal crashes had a 5 times greater odds of a MCLS fracture than those not belted, and an increase in age also greatly increased the odds. In CIREN, 19 cases were isolated as horizontal frontal crashes and 12 of these involved a major compression lumbar burst fracture primarily at L1. All were belted and almost all occurred in late model vehicles with belt pretensioners and buckets seats. Major compression burst fractures of the lumbar spine in frontal crashes were induced via a dynamic axial force transmitted to the pelvis/buttocks into the seat cushion/pan involving belted occupants in late model vehicles with increasing age as a significant factor. Copyright © 2013 Elsevier Ltd. All rights reserved.
The compression mechanism of garnets based on in situ observations
NASA Astrophysics Data System (ADS)
Dymshits, Anna; Sharygin, Igor; Litasov, Konstantin; Shatskiy, Anton
2014-05-01
Previously it was showed that the bulk modulus of garnet is strongly affected by the bulk modulus of the dodecahedra, while compressibility of other individual polyhedra displays no correlation with the compressibility of the structure as a whole (Milman et al., 2001). If so, Na-majorite (Na-maj) would have the smallest bulk modulus of all silicate garnets, as a phase with a predicted dodecahedral bulk modulus of approximately 70 GPa (Hazen et al., 1994). In fact Na-maj has the largest bulk modulus among the silicate garnets. This behavior must reflect the all-mineral framework of Na-maj with very small cell volume and silicon in the octahedral position. Thus, we conclude that not only the dodecahedral sites, but also the behavior of the garnet framework and relative sizes of the 8- and 6-coordinated cations, control garnet compression. The octahedral site in Na-maj is quite small (1.79 Å) and contains only silicon in comparison to the pyrope (1.85 Å) or majorite (1.88 Å). The small and highly charged octahedra shares four edges with the dodecahedra and thus restrict the volume of the large and low charged dodecahedra. In spite Na-maj has a large average X-cation radius (RNa = 1.07 Å) its dodecahedral volume is relatively small (V = 21.23 and 21.26 Å3). Pacalo et al. (1992) suggested that XO8 polyhedra act as braces and controls the amount of rotation between tetrahedra and octahedra within the corner-linked chains. In case of pyrope XO8 cite is not filled up and polyhedra within the corner-linked chains can rotate freely to accommodate applied stress. In case of Na-maj the dodecahedral site is filled up and rotational freedom is minimized. The dodecahedral site in knorringite (Knr) contains cation with a small radius (Mg-O = 2.22 and 2.34 Å), so XO8 polyhedra is not filled up and can rotate freely to accommodate applied stress. In case of uvarovite not only octahedral but the dodecahedral site is also large (Ca-O = 2.35 and 2.51 Å), so the rotational freedom is minimized and such relations between the XO8 and YO6 sites provide evidence for comparatively more rigid structure. In case of uvarovite the bulk modulus is 162 GPa (Leger et al., 1990), while for Knr we obtain 154 GPa. Such relations between the XO8 and YO6 sites provide evidence for comparatively more rigid structure. As a result, Na-maj with all octahedral sites occupied by silicon has the largest value of the bulk modulus among garnets. It would be interesting to study compressibility of Li-majorite expressed by Yang et al. (2009). That phase has smaller cell volume (1430 Å3) and X-O distance (2.26 Å) but the same YO6 polyhedra fully occupied by silicon. The study was supported by Ministry of Education and Science of Russian Federation, project Nos 14.B25.31.0032, MK-265.2014.5, Russian Foundation for Basic Research No 14-05-00957-a. Hazen, R.M., Downs, R.T., Conrad, P.G., Finger, L.W., Gasparik, T. Comparative compressibilities of majorite-type garnets // Physics and Chemistry of Minerals, 1994, v.21, p.344-349. Leger, J., Redon, A., Chateau, C. Compressions of synthetic pyrope, spessartine and uvarovite garnets up to 25 GPa // Physics and Chemistry of Minerals, 1990, v.17, p.161-167. Milman, V., Akhmatskaya, E., Nobes, R., Winkler, B., Pickard, C., White, J. Systematic ab initio study of the compressibility of silicate garnets // Acta Crystallographica Section B: Structural Science, 2001, v.57, p.163-177. Yang, H., Konzett, J., Frost, D.J., Downs, R.T. X-ray diffraction and Raman spectroscopic study of clinopyroxenes with six-coordinated Si in the Na(Mg0.5Si0.5)Si2O6-NaAlSi2O6 system // American Mineralogist, 2009, v.94, p.942-949.
Use of locking compression plates in ulnar fractures of 18 horses.
Jacobs, Carrie C; Levine, David G; Richardson, Dean W
2017-02-01
To describe the outcome, clinical findings, and complications associated with the use of the locking compression plate (LCP) for various types of ulnar fractures in horses. Retrospective case series. Client owned horses (n = 18). Medical records, radiographs, and follow-up for horses having an ulnar fracture repaired using at least 1 LCP were reviewed. Fifteen of 18 horses had fractures of the ulna only, and 3 horses had fractures of the ulna and proximal radius. All 18 horses were discharged from the hospital. Complications occurred in 5 horses; incisional infection (n = 4, 22%), implant-associated infection (n = 2, 11%), and colic (n = 1, 6%). Follow-up was available for all horses at a range of 13-120 months and 15 horses (83%) were sound for their intended purpose and 3 horses (17%) were euthanatized. One horse was euthanatized for complications associated with original injury and surgery. The LCP is a viable method of internal fixation for various types of ulnar fractures, with most horses in this series returning to soundness. © 2017 The American College of Veterinary Surgeons.
Flow in a porous nozzle with massive wall injection
NASA Technical Reports Server (NTRS)
Kinney, R. B.
1973-01-01
An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.
Magnetic flux conservation in an imploding plasma.
García-Rubio, F; Sanz, J; Betti, R
2018-01-01
The theory of magnetic flux conservation is developed for a subsonic plasma implosion and used to describe the magnetic flux degradation in the MagLIF concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)10.1063/1.3333505]. Depending on the initial magnetic Lewis and Péclet numbers and the electron Hall parameter, the implosion falls into either a superdiffusive regime in which the magnetization decreases or a magnetized regime in which the magnetization increases. Scaling laws for magnetic field, temperature, and magnetic flux losses in the hot spot of radius R are obtained for both regimes. The Nernst velocity convects the magnetic field outwards, pushing it against the liner and enhancing the magnetic field diffusion, thereby reducing the magnetic field compression and degrading the implosion performance. However, in the magnetized regime, the core of the hot spot becomes magnetically insulated and undergoes an ideal adiabatic compression (T∼R^{-4/3} compared to T∼R^{-2/3} without magnetic field), while the detrimental Nernst term is confined to the outer part of the hot spot. Its effect is drastically reduced, improving the magnetic flux conservation.
Fixation of osteoporotic fractures in the upper limb with a locking compression plate.
Neuhaus, V; King, J D; Jupiter, J B
2012-01-01
Locking Compression Plate (LCP) has the advantageous feature that screws can be locked in the plate leaving an angular stable construct. There is no need to have contact between the plate and the bone to achieve stability resulting from friction of the plate-bone-construct. Therefore the plate does not need to be contoured exactly to the bone and the healing bone's periosteal blood supply is not affected. The LCP is used as a bridging plate to gain relative stability in multi-fragmentary, diaphyseal or metaphyseal fractures. Depending on the fracture, the combination hole can also allow the LCP to achieve absolute stability similar to conventional fixation techniques. Osteoporotic fractures have significant impact on morbidity and mortality. Proximal humeral and distal radius fractures are typical examples. These osteoporotic and often comminuted fractures are ideal settings/indications for LCP utilization in the upper extremity. However, the data quality is due to mostly small study populations not so powerful. Unquestionably there has been a clear and fashionable trend to choose operative treatment for these fractures, because the angular stability allows stable fixation and early functional mobilization.
Investigations of static properties of two-dimensional bulk polymer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, M.; Ceperley, D.; Frisch, H.L.
1981-12-01
The static properties of two dimensional excluded volume continuum multichain systems are investigated by a ''reptation'' Monte Carlo algorithm. All beads interact via a repulsive (shifted) Lennard-Jones potential. In addition, nearest neighbors along chains are linked by a quasiharmonic potential which permits limited pair extensions. Chain lengths of 5, 10, 20, 32, 50, and 70 beads have been studied. Studies at densities of 0.1, 0.3, and 0.5 demonstrate that chain dimensions are compressed as the concentration is increased. Both the mean square end-to-end distance , and the mean square radius of gyration have a power law dependence upon l-1,more » the number of bonds, with exponent approximately 1.44 for rho = 0.1, 1.33 for rho = 0.3, and 1.20 for rho = 0.5. The asphericity ratios indicate the extent of compression as the density is increased. In addition, nonexcluded volume chains are studied via straightforward Monte Carlo integration. and have a power law dependence upon l-1 with exponent 1.00.« less
High pressure studies of A2Mo3O12 negative thermal expansion materials (A2=Al2, Fe2, FeAl, AlGa)
NASA Astrophysics Data System (ADS)
Young, Lindsay; Gadient, Jennifer; Gao, Xiaodong; Lind, Cora
2016-05-01
High pressure powder X-ray diffraction studies of several A2Mo3O12 materials (A2=Al2, Fe2, FeAl, and AlGa) were conducted up to 6-7 GPa. All materials adopted a monoclinic structure under ambient conditions, and displayed similar phase transition behavior upon compression. The initial isotropic compressibility first became anisotropic, followed by a small but distinct drop in cell volume. These patterns could be described by a distorted variant of the ambient pressure polymorph. At higher pressures, a distinct high pressure phase formed. Indexing results confirmed that all materials adopted the same high pressure phase. All changes were reversible on decompression, although some hysteresis was observed. The similarity of the high pressure cells to previously reported Ga2Mo3O12 suggested that this material undergoes the same sequence of transitions as all materials investigated in this paper. It was found that the transition pressures for all phase changes increased with decreasing radius of the A-site cations.
Structure and rheological behavior of casein micelle suspensions during ultrafiltration process
NASA Astrophysics Data System (ADS)
Pignon, F.; Belina, G.; Narayanan, T.; Paubel, X.; Magnin, A.; Gésan-Guiziou, G.
2004-10-01
The stability and mechanism underlying the formation of deposits of casein micelles during ultrafiltration process were investigated by small-angle and ultra small-angle x-ray scattering (SAXS and USAXS). The casein micelle dispersions consisted of phospho-caseinate model powders and the measurements probed length scales ranging from 1 to 2000 nm. Rheometric and frontal filtration measurements were combined with SAXS to establish the relationship between the rheological behavior of deposits (shear and/or compression) and the corresponding microstructure. The results revealed two characteristic length scales for the equilibrium structure with radius of gyrations Rg, about 100 and 5.6 nm pertaining to the globular micelles and their non-globular internal structure, respectively. The SAXS measurements further indicated that the increase of temperature from 20 to 70 °C or the decrease of pH from 6.6 to 6 lead to agglomeration of the globular micelles. In situ scattering measurements showed that the decrease of permeation flows is directly related to the deformation and compression of the micelles in the immediate vicinity of the membrane.
Electron dynamics in a plasma focus. [electron acceleration
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.; Winters, P. A.
1977-01-01
Results are presented of a numerical integration of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields deduced from experiments. Fields due to two different models are investigated. For the first model, the fields are those due to a circular distribution of axial current filaments. As the current filaments collapse toward the axis, large azimuthal magnetic and axial electric fields are induced. These fields effectively heat the electrons to a temperature of approximately 8 keV and accelerate electrons within the radius of the filaments to high axial velocities. Similar results are obtained for the current-reduction phase of focus formation. For the second model, the fields are those due to a uniform current distribution. Both the current-reduction and the compression phases were studied. These is little heating or acceleration of electrons during the compression phase because the electrons are tied to the magnetic field. However, during the current-reduction phase, electrons near the axis are accelerated toward the center electrode and reach energies of 100 keV. A criterion is obtained which limits the runaway electron current to about 400 A.
Magnetic flux conservation in an imploding plasma
NASA Astrophysics Data System (ADS)
García-Rubio, F.; Sanz, J.; Betti, R.
2018-01-01
The theory of magnetic flux conservation is developed for a subsonic plasma implosion and used to describe the magnetic flux degradation in the MagLIF concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010), 10.1063/1.3333505]. Depending on the initial magnetic Lewis and Péclet numbers and the electron Hall parameter, the implosion falls into either a superdiffusive regime in which the magnetization decreases or a magnetized regime in which the magnetization increases. Scaling laws for magnetic field, temperature, and magnetic flux losses in the hot spot of radius R are obtained for both regimes. The Nernst velocity convects the magnetic field outwards, pushing it against the liner and enhancing the magnetic field diffusion, thereby reducing the magnetic field compression and degrading the implosion performance. However, in the magnetized regime, the core of the hot spot becomes magnetically insulated and undergoes an ideal adiabatic compression (T ˜R-4 /3 compared to T ˜R-2 /3 without magnetic field), while the detrimental Nernst term is confined to the outer part of the hot spot. Its effect is drastically reduced, improving the magnetic flux conservation.
Data compression for full motion video transmission
NASA Technical Reports Server (NTRS)
Whyte, Wayne A., Jr.; Sayood, Khalid
1991-01-01
Clearly transmission of visual information will be a major, if not dominant, factor in determining the requirements for, and assessing the performance of the Space Exploration Initiative (SEI) communications systems. Projected image/video requirements which are currently anticipated for SEI mission scenarios are presented. Based on this information and projected link performance figures, the image/video data compression requirements which would allow link closure are identified. Finally several approaches which could satisfy some of the compression requirements are presented and possible future approaches which show promise for more substantial compression performance improvement are discussed.
Santoni, Brandon G; Aira, Jazmine R; Diaz, Miguel A; Kyle Stoops, T; Simon, Peter
2017-08-01
Distal radius fractures are common musculoskeletal injuries and many can be treated non-operatively with cast immobilization. A thermo-formable brace has been developed for management of such fractures, but no data exist regarding its comparative stabilizing efficacy to fiberglass casting. A worst-case distal radius fracture was created in 6 cadaveric forearms. A radiolucent loading fixture was created to apply cantilever bending/compression loads ranging from 4.5N to 66.7N across the simulated fracture in the: (1) non-stabilized, (2) braced; and (3) casted forearms, each forearm serving as its own control. Fracture fragment translations and rotations were measured radiographically using orthogonal radiographs and a 2D-3D, CT-based transformation methodology. Under 4.5N of load in the non-stabilized condition, average sagittal plane rotation and 3D center of mass translation of the fracture fragment were 12.3° and 5.3mm, respectively. At the 4.5N load step, fragment rotation with the brace (avg. 0.0°) and cast (0.1°) reduced sagittal plane rotation compared to the non-stabilized forearm (P<0.001). There were no significant differences in measured sagittal plane fracture fragment rotations or 3D fragment translations between the brace or cast at any of the four load steps (4.5N, 22.2N, 44.5N, and 66.7N, P≥0.138). In this in vitro radiographic study utilizing 6 cadaveric forearms with simulated severe-case, unstable and comminuted distal radius fractures, the thermo-formable brace stabilized the fracture in a manner that was not radiographically or biomechanically different from traditional fiberglass casting. Study results support the use of the thermo-formable brace clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding turbulence in compressing plasmas and its exploitation or prevention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulencemore » need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.« less
Understanding Turbulence in Compressing Plasmas and Its Exploitation or Prevention
NASA Astrophysics Data System (ADS)
Davidovits, Seth
Unprecedented densities and temperatures are now achieved in compressions of plasma, by lasers and by pulsed power, in major experimental facilities. These compressions, carried out at the largest scale at the National Ignition Facility and at the Z Pulsed Power Facility, have important applications, including fusion, X-ray production, and materials research. Several experimental and simulation results suggest that the plasma in some of these compressions is turbulent. In fact, measurements suggest that in certain laboratory plasma compressions the turbulent energy is a dominant energy component. Similarly, turbulence is dominant in some compressing astrophysical plasmas, such as in molecular clouds. Turbulence need not be dominant to be important; even small quantities could greatly influence experiments that are sensitive to mixing of non-fuel into fuel, such as compressions seeking fusion ignition. Despite its important role in major settings, bulk plasma turbulence under compression is insufficiently understood to answer or even to pose some of the most fundamental questions about it. This thesis both identifies and answers key questions in compressing turbulent motion, while providing a description of the behavior of three-dimensional, isotropic, compressions of homogeneous turbulence with a plasma viscosity. This description includes a simple, but successful, new model for the turbulent energy of plasma undergoing compression. The unique features of compressing turbulence with a plasma viscosity are shown, including the sensitivity of the turbulence to plasma ionization, and a "sudden viscous dissipation'' effect which rapidly converts plasma turbulent energy into thermal energy. This thesis then examines turbulence in both laboratory compression experiments and molecular clouds. It importantly shows: the possibility of exploiting turbulence to make fusion or X-ray production more efficient; conditions under which hot-spot turbulence can be prevented; and a lower bound on the growth of turbulence in molecular clouds. This bound raises questions about the level of dissipation in existing molecular cloud models. Finally, the observations originally motivating the thesis, Z-pinch measurements suggesting dominant turbulent energy, are reexamined by self-consistently accounting for the impact of the turbulence on the spectroscopic analysis. This is found to strengthen the evidence that the multiple observations describe a highly turbulent plasma state.
Wave Augmented Diffuser for Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Skoch, Gary J. (Inventor); Paxson, Daniel E. (Inventor)
2001-01-01
A wave augmented diffuser for a centrifugal compressor surrounds the outlet of an impeller that rotates on a drive shaft having an axis of rotation. The impeller brings flow in in an axial direction and imparts kinetic energy to the flow discharging it in radial and tangential directions. The flow is discharged into a plurality of circumferentially disposed wave chambers. The wave chambers are periodically opened and closed by a rotary valve such that the flow through the diffuser is unsteady. The valve includes a plurality of valve openings that are periodically brought into and out of fluid communication with the wave chambers. When the wave chambers are closed, a reflected compression wave moves upstream towards the diffuser bringing the flow into the wave chamber to rest. This action recovers the kinetic energy from the flow and limits any boundary layer growth. The flow is then discharged in an axial direction through an opening in the valve plate when the valve plate is rotated to an open position. The diffuser thus efficiently raises the static pressure of the fluid and discharges an axially directed flow at a radius that is predominantly below the maximum radius of the diffuser.
Simulations of hypersonic, high-enthalpy separated flow over a 'tick' configuration
NASA Astrophysics Data System (ADS)
Moss, J. N.; O'Byrne, S.; Deepak, N. R.; Gai, S. L.
2012-11-01
The effect of slip is investigated in direct simulation Monte Carlo and Navier-Stokes-based computations of the separated flow between an expansion and a following compression surface, a geometry we call the 'tick' configuration. This configuration has been chosen as a test of separated flow with zero initial boundary layer thickness, a flowfield well suited to Chapman's analytical separated flow theories. The predicted size of the separated region is different for the two codes, although both codes meet their respective particle or grid resolution requirements. Unlike previous comparisons involving cylinder flares or double cones, the separation does not occur in a region of elevated density, and is therefore well suited to the direct simulation Monte Carlo method because the effect of slip at the surface is significant. The reasons for the difference between the two calculations are hypothesized to be a combination of significant rarefaction effects near the expansion surface and the non-zero radius of the leading edge. When the leading edge radius is accounted for, the rarefaction effect at the leading edge is less significant and the behavior of the flowfields predicted by the two methods becomes more similar.
NASA Technical Reports Server (NTRS)
Cameron, J. R.
1972-01-01
The bone mineral content, BMC, determined by monoenergetic photon absorption technique, of 29 different locations on the long bones and vertebral columns of 24 skeletons was measured. Compressive tests were made on bone from these locations in which the maximum load and maximum stress were measured. Also the ultimate strain, modulus of elasticity and energy absorbed to failure were determined for compact bone from the femoral diaphysis and cancellous bone from the eighth through eleventh thoracic vertebrae. Correlations and predictive relationships between these parameters were examined to investigate the applicability of using the BMC at sites normally measured in vivo, i.e. radius and ulna in estimating the BMC and/or strength of the spine or femoral neck. It was found that the BMC at sites on the same bone were highly correlated r = 0.95 or better; the BMC at sites on different bones were also highly interrelated, r = 0.85. The BMC at various sites on the long bones could be estimated to between 10 and 15 per cent from the BMC of sites on the radius or ulna.
NASA Astrophysics Data System (ADS)
Goodson, Matthew D.; Heitsch, Fabian; Eklund, Karl; Williams, Virginia A.
2017-07-01
Turbulence models attempt to account for unresolved dynamics and diffusion in hydrodynamical simulations. We develop a common framework for two-equation Reynolds-averaged Navier-Stokes turbulence models, and we implement six models in the athena code. We verify each implementation with the standard subsonic mixing layer, although the level of agreement depends on the definition of the mixing layer width. We then test the validity of each model into the supersonic regime, showing that compressibility corrections can improve agreement with experiment. For models with buoyancy effects, we also verify our implementation via the growth of the Rayleigh-Taylor instability in a stratified medium. The models are then applied to the ubiquitous astrophysical shock-cloud interaction in three dimensions. We focus on the mixing of shock and cloud material, comparing results from turbulence models to high-resolution simulations (up to 200 cells per cloud radius) and ensemble-averaged simulations. We find that the turbulence models lead to increased spreading and mixing of the cloud, although no two models predict the same result. Increased mixing is also observed in inviscid simulations at resolutions greater than 100 cells per radius, which suggests that the turbulent mixing begins to be resolved.
Clinical and Molecular Characterization of Osteogenesis Imperfecta Type V
Brizola, Evelise; Mattos, Eduardo P.; Ferrari, Jessica; Freire, Patricia O.A.; Germer, Raquel; Llerena Jr, Juan C.; Félix, Têmis M.
2015-01-01
Osteogenesis imperfecta type V (OI-V) has a wide clinical variability, with distinct clinical/radiological features, such as calcification of the interosseous membrane (CIM) between the radius-ulna and/or tibia-fibula, hyperplastic callus (HPC) formation, dislocation of the radial head (DRH), and absence of dentinogenesis imperfecta (DI). Recently, a single heterozygous mutation (c.-14C>T) in the 5′UTR of the IFITM5 gene was identified to be causative for OI-V. Here, we describe 7 individuals from 5 unrelated families that carry the c.-14C>T IFITM5 mutation. The clinical findings in these cases are: absence of DI in all patients, presence of blue sclera in 2 cases, and 4 patients with DRH. Radiographic findings revealed HPC in 3 cases. All patients presented CIM between the radius and ulna, while 4 patients presented additional CIM between the tibia and fibula. Spinal fractures by vertebral compression were observed in all individuals. The proportion of cases identified with this mutation represents 4% of OI cases at our institution. The clinical identification of OI-V is crucial, as this mutation has an autosomal dominant inheritance with variable expressivity. PMID:26648832
Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life
Noraphaiphipaksa, Nitikorn; Manonukul, Anchalee; Kanchanomai, Chaosuan
2017-01-01
Fretting fatigue experiments and finite element analysis were carried out to investigate the influence of cylindrical-on-flat contact on crack nucleation, crack path and fatigue life of medium-carbon steel. The location of crack nucleation was predicted using the maximum shear stress range criterion and the maximum relative slip amplitude criterion. The prediction using the maximum relative slip amplitude criterion gave the better agreement with the experimental result, and should be used for the prediction of the location of crack nucleation. Crack openings under compressive bulk stresses were found in the fretting fatigues with flat-on-flat contact and cylindrical-on-flat contacts, i.e., fretting-contact-induced crack openings. The crack opening stress of specimen with flat-on-flat contact was lower than those of specimens with cylindrical-on-flat contacts, while that of specimen with 60-mm radius contact pad was lower than that of specimen with 15-mm radius contact pad. The fretting fatigue lives were estimated by integrating the fatigue crack growth curve from an initial propagating crack length to a critical crack length. The predictions of fretting fatigue life with consideration of crack opening were in good agreement with the experimental results. PMID:28772522
Tides on Self-gravitating, Compressible Bodies
NASA Astrophysics Data System (ADS)
Hurford, T. A.; Greenberg, R.
2001-11-01
Most modern derivations of tidal amplitude follow the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We have solved the more general case of arbitrary compressibility, which allows for a more straightforward derivation [2,3]. We find the h2 love number of a body of radius R, density ρ , by solving the deformation equation [4], μ ∇ 2 u = ρ ∇U - (λ + μ ) ∇ (∇ ṡ u) where μ is the rigidity of the body and λ the Lamé constant. The potential U is the sum of (a) the tide raising potential, (b) the potential of surface mass shifted above or below the spherical surface, (c) potential due to the internal density changes and (d) the change in potential of each bit of volume due to its displacement u. A self-consistent solution can be obtained with U = \\sum_{q=0}^{\\infty} b_{(2+2q)} r^{(2+2q)} ( {3}/{2} \\cos2 \\theta - {1}/{2} ). In [1] and [3] only the r2 term was considered, which was valid only if compressibility is small or elasticity governs deformation (i.e. ρ g R << (λ + 2 μ )). The solution with only the r2 term reduces to Love's [1] solution in the limit of zero compressibility (λ = ∞ ). However, for rock μ ~ λ [4], in which case h2 is enhanced by ~ 3 %, and solutions for greater compressibility give up to 8 % enhancement of tidal amplitude. If ρ g R is significant, higher order r(2q+2) terms are important and even greater corrections are required to the classical tidal amplitude. [1] Love, A.E.H., New York Dover Publications, 1944 [2] Hurford, T.A. and R. Greenberg, Lunar Plan. Sci. XXXII 1741, 2001 [3] Hurford, T.A. and R. Greenberg, 2001 DDA meeting, Bull. Amer. Astron. Soc. in press [4] Kaula, W.M., John Wiley & Sons, Inc., 1968
Steady properly-banked turns of turbojet-propelled airplanes
NASA Technical Reports Server (NTRS)
Miele, Angelo
1955-01-01
The problem of a jet-propelled airplane held in a steady turn is treated both in the very general case and also in the particular case when the polar curve can be approximated by a parabola. Once the general solution has been obtained, some typical maneuvers are next studied such as, the turn of maximum bank, of maximum angular velocity, and of minimum radius of curvature. After a brief comparison is made between the turning characteristics of conventional airplanes and jet airplanes, and after the effect of compressibility upon the turn is examined, the effects of the salient aerodynamic and structural parameters upon the behavior of the plane in curvilinear flight are summarized in the conclusions.
Effects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.
Qian, Weixin; Doi, Kentaro; Kawano, Satoyuki
2017-03-14
Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been elucidated. In this study, a Langevin dynamics simulation was used to investigate the electrokinetic transport of single-stranded DNA (ssDNA) in a cylindrical nanochannel, employing a coarse-grained bead-spring model that quantitatively reproduced the radius of gyration, diffusion coefficient, and electrophoretic mobility of the polymer. Using this practical scale model, transport regimes of ssDNA with respect to the ζ-potential of the channel wall, the ion concentration, and the polymer length were successfully characterized. It was found that the relationship between the radius of gyration of ssDNA and the channel radius is critical to the formation of deformation regimes in a narrow channel. We conclude that a combination of electroosmotic flow velocity gradients and electric fields due to electrically polarized channel surfaces affects the alignment of molecular conformations, such that the ssDNA is stretched/compressed at negative/positive ζ-potentials in comparatively low-concentration solutions. Furthermore, this work suggests the possibility of controlling the center-of-mass position by tuning the salt concentration. These results should be applicable to the design of molecular manipulation techniques based on liquid flows in micro/nanofluidic devices. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Pulse wave velocity as a diagnostic index: The effect of wall thickness
NASA Astrophysics Data System (ADS)
Hodis, Simona
2018-06-01
Vascular compliance is a major determinant of wave propagation within the vascular system, and hence the measurement of pulse wave velocity (PWV) is commonly used clinically as a method of detecting vascular stiffening. The accuracy of that assessment is important because vascular stiffening is a major risk factor for hypertension. PWV is usually measured by timing a pressure wave as it travels from the carotid artery to the femoral or radial artery and estimating the distance that it traveled in each case to obtain the required velocity. A major assumption on which this technique is based is that the vessel wall thickness h is negligibly small compared with the vessel radius a . The extent to which this assumption is satisfied in the cardiovascular system is not known because the ratio h /a varies widely across different regions of the vascular tree and under different pathological conditions. Using the PWV as a diagnostic test without knowing the effect of wall thickness on the measurement could lead to error when interpreting the PWV value as an index of vessel wall compliance. The aim of the present study was to extend the validity of the current practice of assessing wall stiffness by developing a method of analysis that goes beyond the assumption of a thin wall. We analyzed PWVs calculated with different wall models, depending on the ratio of wall thickness to vessel radius and the results showed that PWV is not reliable when it is estimated with the classic thin wall theory if the vessel wall is not around 25% of vessel radius. If the arterial wall is thicker than 25% of vessel radius, then the wave velocity calculated with the thin wall theory could be overestimated and in the clinical setting, this could lead to a false positive. For thicker walls, a thick wall model presented here should be considered to account for the stresses within the wall thickness that become dominant compared with the wall inertia.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE...
Ballooning modes localized near the null point of a divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, W. A.; Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550
2014-04-15
The stability of ballooning modes localized to the null point in both the standard and snowflake divertors is considered. Ideal magnetohydrodynamics is used. A series expansion of the flux function is performed in the vicinity of the null point with the lowest, non-vanishing term retained for each divertor configuration. The energy principle is used with a trial function to determine a sufficient instability threshold. It is shown that this threshold depends on the orientation of the flux surfaces with respect to the major radius with a critical angle appearing due to the convergence of the field lines away from themore » null point. When the angle the major radius forms with respect to the flux surfaces exceeds this critical angle, the system is stabilized. Further, the scaling of the instability threshold with the aspect ratio and the ratio of the scrape-off-layer width to the major radius is shown. It is concluded that ballooning modes are not a likely candidate for driving convection in the vicinity of the null for parameters relevant to existing machines. However, the results place a lower bound on the width of the heat flux in the private flux region. To explain convective mixing in the vicinity of the null point, new consideration should be given to an axisymmetric mixing mode [W. A. Farmer and D. D. Ryutov, Phys. Plasmas 20, 092117 (2013)] as a possible candidate to explain current experimental results.« less
Bone microarchitecture in adolescent boys with autism spectrum disorder.
Neumeyer, Ann M; Cano Sokoloff, Natalia; McDonnell, Erin; Macklin, Eric A; McDougle, Christopher J; Misra, Madhusmita
2017-04-01
Boys with autism spectrum disorder (ASD) have lower areal bone mineral density (aBMD) than typically developing controls (TDC). Studies of volumetric BMD (vBMD) and bone microarchitecture provide information about fracture risk beyond that provided by aBMD but are currently lacking in ASD. To assess ultradistal radius and distal tibia vBMD, bone microarchitecture and strength estimates in adolescent boys with ASD compared to TDC. Cross-sectional study of 34 boys (16 ASD, 18 TDC) that assessed (i) aBMD at the whole body (WB), WB less head (WBLH), hip and spine using dual X-ray absorptiometry (DXA), (ii) vBMD and bone microarchitecture at the ultradistal radius and distal tibia using high-resolution peripheral quantitative CT (HRpQCT), and (iii) bone strength estimates (stiffness and failure load) using micro-finite element analysis (FEA). We controlled for age in all groupwise comparisons of HRpQCT and FEA measures. Activity questionnaires, food records, physical exam, and fasting levels of 25(OH) vitamin D and bone markers (C-terminal collagen crosslinks and N-terminal telopeptide (CTX and NTX) for bone resorption, N-terminal propeptide of Type 1 procollagen (P1NP) for bone formation) were obtained. ASD participants were slightly younger than TDC participants (13.6 vs. 14.2years, p=0.44). Tanner stage, height Z-scores and fasting serum bone marker levels did not differ between groups. ASD participants had higher BMI Z-scores, percent body fat, IGF-1 Z-scores, and lower lean mass and aBMD Z-scores than TDC at the WB, WBLH, and femoral neck (P<0.1). At the radius, ASD participants had lower trabecular thickness (0.063 vs. 0.070mm, p=0.004), compressive stiffness (56.7 vs. 69.7kN/mm, p=0.030) and failure load (3.0 vs. 3.7kN, p=0.031) than TDC. ASD participants also had 61% smaller cortical area (6.6 vs. 16.4mm 2 , p=0.051) and thickness (0.08 vs. 0.22mm, p=0.054) compared to TDC. At the tibia, ASD participants had lower compressive stiffness (183 vs. 210kN/mm, p=0.048) and failure load (9.4 vs. 10.8kN, p=0.043) and 23% smaller cortical area (60.3 vs. 81.5mm 2 , p=0.078) compared to TDC. A lower proportion of ASD participants were categorized as "very physically active" (20% vs. 72%, p=0.005). Differences in physical activity, calcium intake and IGF-1 responsiveness may contribute to group differences in stiffness and failure load. Bone microarchitectural parameters are impaired in ASD, with reductions in bone strength estimates (stiffness and failure load) at the ultradistal radius and distal tibia. This may result from lower physical activity and calcium intake, and decreased IGF-1 responsiveness. Copyright © 2017 Elsevier Inc. All rights reserved.
The humeral origin of the brachioradialis muscle: an unusual site of high radial nerve compression.
Cherchel, A; Zirak, C; De Mey, A
2013-11-01
Radial nerve compression is seldom encountered in the upper arm, and most commonly described compression syndromes have their anatomical cause in the forearm. The teres major, the triceps muscle, the intermuscular septum region and the space between the brachialis and brachioradialis muscles have all been identified as radial nerve compression sites above the elbow. We describe the case of a 38-year-old male patient who presented with dorso-lateral forearm pain and paraesthesias without neurological deficit. Surgical exploration revealed radial nerve compression at the humeral origin of the brachioradialis muscle. Liberation of the nerve at this site was successful at relieving the symptoms. To our knowledge, this compression site has not been described in the literature. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.
2018-05-01
A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
NASA Astrophysics Data System (ADS)
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
Improved Techniques for Video Compression and Communication
ERIC Educational Resources Information Center
Chen, Haoming
2016-01-01
Video compression and communication has been an important field over the past decades and critical for many applications, e.g., video on demand, video-conferencing, and remote education. In many applications, providing low-delay and error-resilient video transmission and increasing the coding efficiency are two major challenges. Low-delay and…
Study of CdTe quantum dots grown using a two-step annealing method
NASA Astrophysics Data System (ADS)
Sharma, Kriti; Pandey, Praveen K.; Nagpal, Swati; Bhatnagar, P. K.; Mathur, P. C.
2006-02-01
High size dispersion, large average radius of quantum dot and low-volume ratio has been a major hurdle in the development of quantum dot based devices. In the present paper, we have grown CdTe quantum dots in a borosilicate glass matrix using a two-step annealing method. Results of optical characterization and the theoretical model of absorption spectra have shown that quantum dots grown using two-step annealing have lower average radius, lesser size dispersion, higher volume ratio and higher decrease in bulk free energy as compared to quantum dots grown conventionally.
A small mode volume tunable microcavity: Development and characterization
NASA Astrophysics Data System (ADS)
Greuter, Lukas; Starosielec, Sebastian; Najer, Daniel; Ludwig, Arne; Duempelmann, Luc; Rohner, Dominik; Warburton, Richard J.
2014-09-01
We report the realization of a spatially and spectrally tunable air-gap Fabry-Pérot type microcavity of high finesse and cubic-wavelength-scale mode volume. These properties are attractive in the fields of opto-mechanics, quantum sensing, and foremost cavity quantum electrodynamics. The major design feature is a miniaturized concave mirror with atomically smooth surface and radius of curvature as low as 10 μm produced by CO2 laser ablation of fused silica. We demonstrate excellent mode-matching of a focussed laser beam to the microcavity mode and confirm from the frequencies of the resonator modes that the effective optical radius matches the physical radius. With these small radii, we demonstrate wavelength-size beam waists. We also show that the microcavity is sufficiently rigid for practical applications: in a cryostat at 4 K, the root-mean-square microcavity length fluctuations are below 5 pm.
Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, D.; Vorberger, J.; Pak, A.
The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less
NASA Astrophysics Data System (ADS)
Ardit, M.; Dondi, M.; Merli, M.; Cruciani, G.
2018-02-01
(Mg ,Fe ) Si O3 perovskite is the most abundant mineral of the Earth's lower mantle, and compounds with the perovskite structure are perhaps the most widely employed ceramics. Hence, they attract both geophysicists and material scientists. Several investigations attempted to predict their structural evolution at high pressure, and recent advancements highlighted that perovskites having ions with the same formal valence at both polyhedral sites (i.e., 3 +:3 + ) define different compressional patterns when transition metal ions (TMI) are involved. In this study, in situ high-pressure synchrotron XRD measurements coupled with ab initio simulations of the electronic population of NdCr O3 perovskite are compared with the compressional feature of NdGa O3 . Almost identical from a steric point of view (C r3 + and G a3 + have almost the same ionic radius), the different electronic configuration of octahedrally coordinated ions - which leads to a redistribution of electrons at the 3 d orbitals for C r3 + - allows the crystal field stabilization energy (CFSE) to act as a vehicle of octahedral softening in NdCr O3 or it turns octahedra into rigid units when CFSE is null as in NdGa O3 . Besides to highlight that different electronic configurations can act as a primary effect during compression of perovskite compounds, our findings have a deep repercussion on the way the compressibility of perovskites have to be modeled.
Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions
Kraus, D.; Vorberger, J.; Pak, A.; ...
2017-08-21
The effects of hydrocarbon reactions and diamond precipitation on the internal structure and evolution of icy giant planets such as Neptune and Uranus have been discussed for more than three decades. Inside these celestial bodies, simple hydrocarbons such as methane, which are highly abundant in the atmospheres, are believed to undergo structural transitions that release hydrogen from deeper layers and may lead to compact stratified cores. Indeed, from the surface towards the core, the isentropes of Uranus and Neptune intersect a temperature–pressure regime in which methane first transforms into a mixture of hydrocarbon polymers, whereas, in deeper layers, a phasemore » separation into diamond and hydrogen may be possible. Here in this paper, we show experimental evidence for this phase separation process obtained by in situ X-ray diffraction from polystyrene (C 8H 8) n samples dynamically compressed to conditions around 150 GPa and 5,000 K; these conditions resemble the environment around 10,000 km below the surfaces of Neptune and Uranus. Our findings demonstrate the necessity of high pressures for initiating carbon–hydrogen separation and imply that diamond precipitation may require pressures about ten times as high as previously indicated by static compression experiments. In conclusion, our results will inform mass–radius relationships of carbon-bearing exoplanets, provide constraints for their internal layer structure and improve evolutionary models of Uranus and Neptune, in which carbon–hydrogen separation could influence the convective heat transport.« less
Influence of asymmetrical drawing radius deviation in micro deep drawing
NASA Astrophysics Data System (ADS)
Heinrich, L.; Kobayashi, H.; Shimizu, T.; Yang, M.; Vollertsen, F.
2017-09-01
Nowadays, an increasing demand for small metal parts in electronic and automotive industries can be observed. Deep drawing is a well-suited technology for the production of such parts due to its excellent qualities for mass production. However, the downscaling of the forming process leads to new challenges in tooling and process design, such as high relative deviation of tool geometry or blank displacement compared to the macro scale. FEM simulation has been a widely-used tool to investigate the influence of symmetrical process deviations as for instance a global variance of the drawing radius. This study shows a different approach that allows to determine the impact of asymmetrical process deviations on micro deep drawing. In this particular case the impact of an asymmetrical drawing radius deviation and blank displacement on cup geometry deviation was investigated for different drawing ratios by experiments and FEM simulation. It was found that both variations result in an increasing cup height deviation. Nevertheless, with increasing drawing ratio a constant drawing radius deviation has an increasing impact, while blank displacement results in a decreasing offset of the cups geometry. This is explained by different mechanisms that result in an uneven cup geometry. While blank displacement leads to material surplus on one side of the cup, an unsymmetrical radius deviation on the other hand generates uneven stretching of the cups wall. This is intensified for higher drawing ratios. It can be concluded that the effect of uneven radius geometry proves to be of major importance for the production of accurately shaped micro cups and cannot be compensated by intentional blank displacement.
Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.
1983-01-01
Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.
Orientation-dependent deformation mechanisms of bcc niobium nanoparticles
NASA Astrophysics Data System (ADS)
Bian, J. J.; Yang, L.; Niu, X. R.; Wang, G. F.
2018-07-01
Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyse the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [1 1 0] compression, while it obeys the Hertzian contact model in [1 1 1] and [0 0 1] compressions. In plastic deformation regime, full dislocation gliding is dominated in [1 1 0] compression, while deformation twinning is prominent in [1 1 1] compression, and these two mechanisms coexist in [0 0 1] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviours of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.
NASA Technical Reports Server (NTRS)
Ghia, K. N.; Ghia, U.
1996-01-01
The first major area of this study was to develop a vorticity-velocity formulation and numerical solution algorithms suitable for the analyses of incompressible as well as low-to- moderate-speed compressible flows. Research performed towards contributing to the determination of the appropriate vorticity and dilation creation boundary conditions suggested to temporarily set aside this approach and use a primitive-variable approach other than the pseudo-compressibility approach used. The second major area of study was initiated to comprehensively examine the INS-2D and INS-3D programs from the point of view of boundary conditions. The research carried out was documented in the form of two technical papers which are included in Appendices A and B; the boundary-condition related issues for INS-3D are briefly mentioned.
Two-dimensional compressible flow in centrifugal compressors with straight blades
NASA Technical Reports Server (NTRS)
Stanitz, John D; Ellis, Gaylord O
1950-01-01
Six numerical examples are presented for steady, two-dimensional, compressible, nonviscous flow in centrifugal compressors with thin straight blades, the center lines of which generate the surface of a right circular cone when rotated about the axis of the compressor. A seventh example is presented for incompressible flow. The solutions were obtained in a region of the compressors, including the impeller tip, that was considered to be unaffected by the diffuser vanes or by the impeller-inlet configuration. Each solution applies to radial and mixed flow compressors with various cone angles but with the same angle between blades on the conic flow surface. The solution also apply to radial and mixed flow turbines with the rotation and the flow direction reversed. The effects of variations in the following parameters were investigated: (1) flow rate, (2) impeller-tip speed, (3) variation of passage height with radius, and (4) angle between blades on conic flow surface. The numerical results are presented in plots of the streamlines and constant Mach number lines. Correlation equations are developed whereby the flow conditions in any impeller with straight blades can be determined (in the region investigated by this analysis) for all operating conditions.
NASA Astrophysics Data System (ADS)
Cheema, Mohammad Arif; Siddiq, Mohammad; Barbosa, Silvia; Castro, Emilio; Egea, José A.; Antelo, Luis T.; Taboada, Pablo; Mosquera, Víctor
2007-07-01
Thioridazine hydrochloride is a drug used in treatment of mental illness that shows side effects. Therefore, it is interesting to study the change of the physico-chemical properties of the drug in different environments to understand the mechanism of action of the drug. Thioridazine can be considered as a hydrotrope if we considered that the term comprise hydrophilic and hydrophobic moieties that form aggregates by a stacking mechanism as it is the case of all the phenothiazine tranquillizing drugs. The association properties of the amphiphilic phenothiazine drug thioridazine hydrochloride were investigated by density, ultrasound, isothermal titration calorimetry and dynamic light scattering (DLS), yielding values of the critical concentration, adiabatic apparent compressibilities and hydrodynamic radius. The DLS data were analyzed according to the treatment of the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory to study the stability of the system. The aim of the study is to obtain information about the physico-chemical characterization of the drug in aqueous solution and the effect of ethanol on the aggregate stability of this amphiphilic drug. The phenothiazine tranquillizing drugs have interesting association characteristics that derive from their rigid, tricyclic hydrophobic groups.
Impact of surface energy on the shock properties of granular explosives.
Bidault, X; Pineau, N
2018-01-21
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
Models of cylindrical bubble pulsation
Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863
Impact of surface energy on the shock properties of granular explosives
NASA Astrophysics Data System (ADS)
Bidault, X.; Pineau, N.
2018-01-01
This paper presents the first part of a two-fold molecular dynamics study of the impact of the granularity on the shock properties of high explosives. Recent experimental studies show that the granularity can have a substantial impact on the properties of detonation products {i.e., variations in the size distributions of detonation nanodiamonds [V. Pichot et al., Sci. Rep. 3, 2159 (2013)]}. These variations can have two origins: the surface energy, which is a priori enhanced from micro- to nano-scale, and the porosity induced by the granular structure. In this first report, we study the impact of the surface-energy contribution on the inert shock compression of TATB, TNT, α-RDX, and β-HMX nano-grains (triaminotrinitrobenzene, trinitrotoluene, hexogen and octogen, respectively). We compute the radius-dependent surface energy and combine it with an ab initio-based equation of state in order to obtain the resulting shock properties through the Rankine-Hugoniot relations. We find that the enhancement of the surface energy results in a moderate overheating under shock compression. This contribution is minor with respect to porosity, when compared to a simple macroscopic model. This result motivates further atomistic studies on the impact of nanoporosity networks on the shock properties.
Buckling of pressure-loaded, long, shear deformable, cylindrical laminated shells
NASA Astrophysics Data System (ADS)
Anastasiadis, John S.; Simitses, George J.
A higher-order shell theory was developed (kinematic relations, constitutive relations, equilibrium equations and boundary conditions), which includes initial geometric imperfections and transverse shear effects for a laminated cylindrical shell under the action of pressure, axial compression and in-plane shear. Through the perturbation technique, buckling equations are derived for the corresponding 'perfect geometry' symmetric laminated configuration. Critical pressures are computed for very long cylinders for several stacking sequences, several radius-to-total-thickness ratios, three lamina materials (boron/epoxy, graphite/epoxy, and Kevlar/epoxy), and three shell theories: classical, first-order shear deformable and higher- (third-)order shear deformable. The results provide valuable information concerning the applicability (accurate prediction of buckling pressures) of the various shell theories.
Small amplitude Kinetic Alfven waves in a superthermal electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Adnan, Muhammad; Mahmood, Sahahzad; Qamar, Anisa; Tribeche, Mouloud
2016-11-01
We are investigating the propagating properties of coupled Kinetic Alfven-acoustic waves in a low beta plasma having superthermal electrons and positrons. Using the standard reductive perturbation method, a nonlinear Korteweg-de Vries (KdV) type equation is derived which describes the evolution of Kinetic Alfven waves. It is found that nonlinearity and Larmor radius effects can compromise and give rise to solitary structures. The parametric role of superthermality and positron content on the characteristics of solitary wave structures is also investigated. It is found that only sub-Alfvenic and compressive solitons are supported in the present model. The present study may find applications in a low β electron-positron-ion plasma having superthermal electrons and positrons.
High-rate deformation and fracture of steel 09G2S
NASA Astrophysics Data System (ADS)
Balandin, Vl. Vas.; Balandin, Vl. Vl.; Bragov, A. M.; Igumnov, L. A.; Konstantinov, A. Yu.; Lomunov, A. K.
2014-11-01
The results of experimental and theoretical studies of steel 09G2S deformation and fracture laws in a wide range of strain rates and temperature variations are given. The dynamic deformation curves and the ultimate characteristics of plasticity in high-rate strain were determined by the Kolsky method in compression, extension, and shear tests. The elastoplastic properties and spall strength were studied by using the gaseous gun of calibre 57 mm and the interferometer VISAR according to the plane-wave experiment technique. The data obtained by the Kolsky method were used to determine the parameters of the Johnson-Cook model which, in the framework of the theory of flow, describes how the yield surface radius depends on the strain, strain rate, and temperature.
Column compression strength of tubular packaging forms made from paper
Thomas J. Urbanik; Sung K. Lee; Charles G. Johnson
2006-01-01
Tubular packaging forms fabricated and shaped from rolled paper are used as reinforcing corner posts for major appliances packaged in corrugated containers. Tests of column compression strength simulate the expected performance loads from appliances stacked in warehouses. Column strength depends on tube geometry, paper properties, basis weight, and number of...
Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone
Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.
2015-01-01
In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688
Age-related changes in the fracture resistance of male Fischer F344 rat bone.
Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S
2016-02-01
In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue. Published by Elsevier Inc.
Su, Alvin W; Chen, Yunchan; Wailes, Dustin H; Wong, Van W; Cai, Shengqiang; Chen, Albert C; Bugbee, William D; Sah, Robert L
2018-01-01
An osteochondral graft (OCG) is an effective treatment for articular cartilage and osteochondral defects. Impact of an OCG during insertion into the osteochondral recipient site (OCR) can cause chondrocyte death and matrix damage. The aim of the present study was to analyze the effects of graft-host interference fit and a modified OCG geometry on OCG insertion biomechanics and cartilage damage. The effects of interference fit (radius of OCG - radius of OCR), loose (0.00 mm), moderate (0.05 mm), tight (0.10 mm), and of a tight fit with OCG geometry modification (central region of decreased radius), were analyzed for OCG cylinders and OCR blocks from adult bovine knee joints with an instrumented drop tower apparatus. An increasingly tight (OCG - OCR) interference fit led to increased taps for insertion, peak axial force, graft cartilage axial compression, cumulative and total energy delivery to cartilage, lower time of peak axial force, lesser graft advancement during each tap, higher total crack length in the cartilage surface, and lower chondrocyte viability. The modified OCG, with reduction of diameter in the central area, altered the biomechanical insertion variables and biological consequences to be similar to those of the moderate interference fit scenario. Micro-computed tomography confirmed structural interference between the OCR bone and both the proximal and distal bone segments of the OCGs, with the central regions being slightly separated for the modified OCGs. These results clarify OCG insertion biomechanics and mechanobiology, and introduce a simple modification of OCGs that facilitates insertion with reduced energy while maintaining a structural interference fit. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:377-386, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Occurrence and core-envelope structure of 1-4× Earth-size planets around Sun-like stars.
Marcy, Geoffrey W; Weiss, Lauren M; Petigura, Erik A; Isaacson, Howard; Howard, Andrew W; Buchhave, Lars A
2014-09-02
Small planets, 1-4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1-2 R⊕ planets with orbital periods under 100 d, and 11% have 1-2 R⊕ planets that receive 1-4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth-Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1-4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ = 2:32 + 3:19 R=R ⊕ [g cm(-3)]. Larger planets, in the radius range 1.5-4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ''mini-Neptunes.'' The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life's biochemical origins.
Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars
Marcy, Geoffrey W.; Weiss, Lauren M.; Petigura, Erik A.; Isaacson, Howard; Howard, Andrew W.; Buchhave, Lars A.
2014-01-01
Small planets, 1–4× the size of Earth, are extremely common around Sun-like stars, and surprisingly so, as they are missing in our solar system. Recent detections have yielded enough information about this class of exoplanets to begin characterizing their occurrence rates, orbits, masses, densities, and internal structures. The Kepler mission finds the smallest planets to be most common, as 26% of Sun-like stars have small, 1–2 R⊕ planets with orbital periods under 100 d, and 11% have 1–2 R⊕ planets that receive 1–4× the incident stellar flux that warms our Earth. These Earth-size planets are sprinkled uniformly with orbital distance (logarithmically) out to 0.4 the Earth–Sun distance, and probably beyond. Mass measurements for 33 transiting planets of 1–4 R⊕ show that the smallest of them, R < 1.5 R⊕, have the density expected for rocky planets. Their densities increase with increasing radius, likely caused by gravitational compression. Including solar system planets yields a relation: ρ=2.32+3.19R/R⊕ [g cm−3]. Larger planets, in the radius range 1.5–4.0 R⊕, have densities that decline with increasing radius, revealing increasing amounts of low-density material (H and He or ices) in an envelope surrounding a rocky core, befitting the appellation ‘‘mini-Neptunes.’’ The gas giant planets occur preferentially around stars that are rich in heavy elements, while rocky planets occur around stars having a range of heavy element abundances. Defining habitable zones remains difficult, without benefit of either detections of life elsewhere or an understanding of life’s biochemical origins. PMID:24912169
NASA Astrophysics Data System (ADS)
Shi, Chang-Sheng; Zhang, Shuang-Nan; Li, Xiang-Dong
2018-05-01
We recalculate the modes of the magnetohydrodynamics (MHD) waves in the MHD model (Shi, Zhang & Li 2014) of the kilohertz quasi-periodic oscillations (kHz QPOs) in neutron star low mass X-ray binaries (NS-LMXBs), in which the compressed magnetosphere is considered. A method on point-by-point scanning for every parameter of a normal LMXBs is proposed to determine the wave number in a NS-LMXB. Then dependence of the twin kHz QPO frequencies on accretion rates (\\dot{M}) is obtained with the wave number and magnetic field (B*) determined by our method. Based on the MHD model, a new explanation of the parallel tracks, i.e. the slowly varying effective magnetic field leads to the shift of parallel tracks in a source, is presented. In this study, we obtain a simple power-law relation between the kHz QPO frequencies and \\dot{M}/B_{\\ast }^2 in those sources. Finally, we study the dependence of kHz quasi-periodic oscillation frequencies on the spin, mass and radius of a neutron star. We find that the effective magnetic field, the spin, mass and radius of a neutron star lead to the parallel tracks in different sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Aakash A.
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
CONVECTION IN OBLATE SOLAR-TYPE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Junfeng; Liang, Chunlei; Miesch, Mark S.
2016-10-10
We present the first global 3D simulations of thermal convection in the oblate envelopes of rapidly rotating solar-type stars. This has been achieved by exploiting the capabilities of the new compressible high-order unstructured spectral difference (CHORUS) code. We consider rotation rates up to 85% of the critical (breakup) rotation rate, which yields an equatorial radius that is up to 17% larger than the polar radius. This substantial oblateness enhances the disparity between polar and equatorial modes of convection. We find that the convection redistributes the heat flux emitted from the outer surface, leading to an enhancement of the heat fluxmore » in the polar and equatorial regions. This finding implies that lower-mass stars with convective envelopes may not have darker equators as predicted by classical gravity darkening arguments. The vigorous high-latitude convection also establishes elongated axisymmetric circulation cells and zonal jets in the polar regions. Though the overall amplitude of the surface differential rotation, ΔΩ, is insensitive to the oblateness, the oblateness does limit the fractional kinetic energy contained in the differential rotation to no more than 61%. Furthermore, we argue that this level of differential rotation is not enough to have a significant impact on the oblateness of the star.« less
Gas and stellar spiral arms and their offsets in the grand-design spiral galaxy M51
NASA Astrophysics Data System (ADS)
Egusa, Fumi; Mentuch Cooper, Erin; Koda, Jin; Baba, Junichi
2017-02-01
Theoretical studies on the response of interstellar gas to a gravitational potential disc with a quasi-stationary spiral arm pattern suggest that the gas experiences a sudden compression due to standing shock waves at spiral arms. This mechanism, called a galactic shock wave, predicts that gas spiral arms move from downstream to upstream of stellar arms with increasing radius inside a corotation radius. In order to investigate if this mechanism is at work in the grand-design spiral galaxy M51, we have measured azimuthal offsets between the peaks of stellar mass and gas mass distributions in its two spiral arms. The stellar mass distribution is created by the spatially resolved spectral energy distribution fitting to optical and near-infrared images, while the gas mass distribution is obtained by high-resolution CO and H I data. For the inner region (r ≤ 150 arcsec), we find that one arm is consistent with the galactic shock while the other is not. For the outer region, results are less certain due to the narrower range of offset values, the weakness of stellar arms, and the smaller number of successful offset measurements. The results suggest that the nature of two inner spiral arms is different, which is likely due to an interaction with the companion galaxy.
Fabrication and characterization of diamond-like carbon/Ni bimorph normally closed microcages
NASA Astrophysics Data System (ADS)
Luo, J. K.; He, J. H.; Fu, Y. Q.; Flewitt, A. J.; Spearing, S. M.; Fleck, N. A.; Milne, W. I.
2005-08-01
Normally closed microcages based on highly compressively stressed diamond-like carbon (DLC) and electroplated Ni bimorph structures have been simulated, fabricated and characterized. Finite-element and analytical models were used to simulate the device performance. It was found that the radius of curvature of the bimorph layer can be adjusted by varying the DLC film stress, the total layer thickness and the thickness ratio of the DLC to Ni layers. The angular deflection of the bimorph structures can also be adjusted by varying the finger length. The radius of curvature of the microcage was in the range of 18-50 µm, suitable for capturing and confining micro-objects with sizes of 20-100 µm. The operation of this type of device is very efficient due to the large difference in thermal expansion coefficients of the DLC and the Ni layers. Electrical tests have shown that these microcages can be opened by ~90° utilizing a power smaller than 20 mW. The operating temperatures of the devices under various pulsed currents were extracted through the change in electrical resistance of the devices. The results showed that an average temperature in the range of 400-450 °C is needed to open this type of microcage by ~90°, consistent with the results from analytical simulation and finite-element modelling.
NASA Technical Reports Server (NTRS)
Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey (Technical Monitor)
1995-01-01
The recent HST discovery of a double nucleus in M31 brings into prominence the question how long, a second core can survive within the nuclear regions of a galaxy. Physical conditions in the nuclear regions of a typical galaxy help a second core survive, so it can orbit for a long time. possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Our method allows the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 pc comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter core (P1) in M31. We use these physical principles to discuss M31's double nucleus, but they apply to other galaxies as well. and in other astronomical situations such as dumbbell galaxies. galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.
Multiple Core Galaxies: Implications for M31
NASA Technical Reports Server (NTRS)
Smith, B. F.; Miller, R. H.; Cuzzi, Jeffrey N. (Technical Monitor)
1994-01-01
It is generally perceived that two cores cannot survive very long within the nuclear regions of a galaxy. The recent HST discovery of a double nucleus in M31 brings this question into prominence. Physical conditions in the nuclear regions of a typical galaxy help a second core survive so it can orbit for a long time, possibly for thousands of orbits. Given the nearly uniform mass density in a core, tidal forces within a core radius are compressive in all directions and help the core survive the buffeting it takes as it orbits near the center of the galaxy. We use numerical experiments to illustrate these physical principles. Modifications to the experimental method allow the full power of the experiments to be concentrated on the nuclear regions. Spatial resolution of about 0.2 parsec comfortably resolves detail within the 1.4 parsec core radius of the second, but brighter, core (P1) in M31. The same physical principles apply in other astronomical situations, such as dumbbell galaxies, galaxies orbiting near the center of a galaxy cluster, and subclustering in galaxy clusters. The experiments also illustrate that galaxy encounters and merging are quite sensitive to external tidal forces, such as those produced by the gravitational potential in a group or cluster of galaxies.
Characterizing the collapse of a cavitation bubble cloud in a focused ultrasound field
NASA Astrophysics Data System (ADS)
Maeda, Kazuki; Colonius, Tim
2017-11-01
We study the coherent collapse of clouds of cavitation bubbles generated by the passage of a pulse of ultrasound. In order to characterize such collapse, we conduct a parametric study on the dynamics of a spherical bubble cloud with a radius of r = O(1) mm interacting with traveling ultrasound waves with an amplitude of pa = O(102 -106) Pa and a wavelength of λ = O(1 - 10) mm in water. Bubbles with a radius of O(10) um are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto Cartesian grids that defines the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. We identified that coherent collapse occurs when λ >> r , regardless of the value of pa, while it only occurs for sufficiently high pa when λ r . For the long wavelength case, the results agree with the theory on linearized dynamics of d'Agostino and Brennen (1989). We extend the theory to short wave length case. Finally, we analyze the far-field acoustics scattered by individual bubbles and correlate them with the cloud collapse, for applications to acoustic imaging of bubble cloud dynamics. Funding supported by NIH P01-DK043881.
Sahai, Aakash A.
2017-08-23
We show the excitation of a nonlinear ion-wake mode by plasma electron modes in the bubble regime driven by intense energy sources, using analytical theory and simulations. The ion wake is shown to be a driven nonlinear ion-acoustic wave in the form of a long-lived cylindrical ion soliton which limits the repetition rate of a plasma-based particle accelerator in the bubble regime. We present the application of this evacuated and radially outwards propagating ion-wake channel with an electron skin-depth scale radius for the “crunch-in” regime of hollow-channel plasma. It is shown that the time-asymmetric focusing force phases in the bubblemore » couple to ion motion significantly differently than in the linear electron mode. The electron compression in the back of the bubble sucks in the ions whereas the space charge within the bubble cavity expels them, driving a cylindrical ion-soliton structure at the bubble radius. Once formed, the soliton is sustained and driven radially outwards by the thermal pressure of the wake energy in electrons. Particle-in-cell simulations are used to study the ion-wake soliton structure, its driven propagation and its use for positron acceleration in the crunch-in regime.« less
Walenkamp, Monique M J; Bentohami, Abdelali; Slaar, Annelie; Beerekamp, M S H Suzan; Maas, Mario; Jager, L C Cara; Sosef, Nico L; van Velde, Romuald; Ultee, Jan M; Steyerberg, Ewout W; Goslings, J C Carel; Schep, Niels W L
2016-01-01
Although only 39% of patients with wrist trauma have sustained a fracture, the majority of patients is routinely referred for radiography. The purpose of this study was to derive and externally validate a clinical decision rule that selects patients with acute wrist trauma in the Emergency Department (ED) for radiography. This multicenter prospective study consisted of three components: (1) derivation of a clinical prediction model for detecting wrist fractures in patients following wrist trauma; (2) external validation of this model; and (3) design of a clinical decision rule. The study was conducted in the EDs of five Dutch hospitals: one academic hospital (derivation cohort) and four regional hospitals (external validation cohort). We included all adult patients with acute wrist trauma. The main outcome was fracture of the wrist (distal radius, distal ulna or carpal bones) diagnosed on conventional X-rays. A total of 882 patients were analyzed; 487 in the derivation cohort and 395 in the validation cohort. We derived a clinical prediction model with eight variables: age; sex, swelling of the wrist; swelling of the anatomical snuffbox, visible deformation; distal radius tender to palpation; pain on radial deviation and painful axial compression of the thumb. The Area Under the Curve at external validation of this model was 0.81 (95% CI: 0.77-0.85). The sensitivity and specificity of the Amsterdam Wrist Rules (AWR) in the external validation cohort were 98% (95% CI: 95-99%) and 21% (95% CI: 15%-28). The negative predictive value was 90% (95% CI: 81-99%). The Amsterdam Wrist Rules is a clinical prediction rule with a high sensitivity and negative predictive value for fractures of the wrist. Although external validation showed low specificity and 100 % sensitivity could not be achieved, the Amsterdam Wrist Rules can provide physicians in the Emergency Department with a useful screening tool to select patients with acute wrist trauma for radiography. The upcoming implementation study will further reveal the impact of the Amsterdam Wrist Rules on the anticipated reduction of X-rays requested, missed fractures, Emergency Department waiting times and health care costs.
47 CFR 73.686 - Field strength measurements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... earth radius, of the largest available scale. (c) Collection of field strength data to determine... measurements in inclement weather or when major weather fronts are moving through the measurement area. (iii....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...
Recent and active tectonics of the external zone of the Northern Apennines (Italy)
NASA Astrophysics Data System (ADS)
Boccaletti, Mario; Corti, Giacomo; Martelli, Luca
2011-08-01
We present a comprehensive study of the recent and active tectonics of the external part of the Northern Apennines (Italy) by using morphotectonic, geological-structural, and stratigraphic analysis, compared with the current seismicity of the region. This analysis suggests that the external part of the Northern Apennines is characterised by presence of three major systems of Quaternary compressive structures corresponding to (1) the Apenninic watershed, (2) the Apennines-Po Plain margin (pede-Apenninic thrust front), and (3) the Emilia, Ferrara, and Adriatic Fold systems buried below the Po Plain. Geological data and interpreted seismic sections indicate a roughly N-S Quaternary deformation direction, with rates <2.5 mm/year. The shortening decreased since the Pliocene, when our data indicate compression in a NNW-SSE direction and rates up to 7 mm/year. The trend and kinematics of the structures affecting the Apennines-Po Plain margin and the Po Plain subsoil fit well the pattern of the current seismicity of the area, as well as recent GPS and geodetic levelling data, pointing to a current activity of these thrust systems controlled by an overall compressive stress field. Close to the Apenninic watershed, earthquake focal mechanisms indicate that shallow extension is associated to deep compression. The extensional events may be related to a secondary extensional stress field developing on the hangingwall of the thrust system affecting the Apenninic watershed; alternatively, this thrust system may have been recently deactivated and overprinted by active normal faulting. Deeper compressive events are related to the activity of both a major basement thrust that connects at surface with the pede-Apenninic thrust front and a major Moho structure.
NASA Technical Reports Server (NTRS)
Robinson, Julie A.; Webb, Edward L.; Evangelista, Arlene
2000-01-01
Studies that utilize astronaut-acquired orbital photographs for visual or digital classification require high-quality data to ensure accuracy. The majority of images available must be digitized from film and electronically transferred to scientific users. This study examined the effect of scanning spatial resolution (1200, 2400 pixels per inch [21.2 and 10.6 microns/pixel]), scanning density range option (Auto, Full) and compression ratio (non-lossy [TIFF], and lossy JPEG 10:1, 46:1, 83:1) on digital classification results of an orbital photograph from the NASA - Johnson Space Center archive. Qualitative results suggested that 1200 ppi was acceptable for visual interpretive uses for major land cover types. Moreover, Auto scanning density range was superior to Full density range. Quantitative assessment of the processing steps indicated that, while 2400 ppi scanning spatial resolution resulted in more classified polygons as well as a substantially greater proportion of polygons < 0.2 ha, overall agreement between 1200 ppi and 2400 ppi was quite high. JPEG compression up to approximately 46:1 also did not appear to have a major impact on quantitative classification characteristics. We conclude that both 1200 and 2400 ppi scanning resolutions are acceptable options for this level of land cover classification, as well as a compression ratio at or below approximately 46:1. Auto range density should always be used during scanning because it acquires more of the information from the film. The particular combination of scanning spatial resolution and compression level will require a case-by-case decision and will depend upon memory capabilities, analytical objectives and the spatial properties of the objects in the image.
Eschler, Anica; Röpenack, Paula; Herlyn, Philipp K E; Roesner, Jan; Pille, Kristin; Büsing, Kirsten; Vollmar, Brigitte; Mittlmeier, Thomas; Gradl, Georg
2015-10-01
Vertebral compression fractures (VCFs) are one of the most common injuries in the aging population presenting with an annual incidence of 1.4 million new cases in Europe. Current treatment strategies focus on cement-associated solutions (kyphoplasty/vertebroplasty techniques). Specific cement-associated problems as leakage, embolism and the adjacent fracture disease are reported adding to open questions like general fracture healing properties of the osteoporotic spine. In order to analyze those queries animal models are of great interest; however, both technical difficulties in the induction of experimental osteoporosis in animal as well as the lack of a standardized fracture model impede current and future in vivo studies. This study introduces a standardized animal model of an osteoporotic VCF type A3.1 that may enable further in-depth analysis of the afore mentioned topics. Twenty-four 5-year-old female Merino sheep (mean body weight: 67 kg; range 57-79) were ovariectomized (OP1) and underwent 5.5 months of weekly corticosteroid injections (dexamethasone and dexamethasone-sodium-phosphate), adding to a calcium/phosphorus/vitamin D-deficient diet. Osteoporosis induction was documented by pQCT and micro-CT BMD (bone mineral density) as well as 3D histomorphometric analysis postoperatively of the sheep distal radius and spine. Non osteoporotic sheep served as controls. Induction of a VCF of the second lumbar vertebra was performed via a mini-lumbotomy surgical approach with a standardized manual compression mode (OP2). PQCT analysis revealed osteoporosis of the distal radius with significantly reduced BMD values (0.19 g/cm(3), range 0.13-0.22 vs. 0.27 g/cm(3), range 0.23-0.32). Micro-CT documented significant lowering of BMD values for the second lumbar vertebrae (0.11 g/cm(3), range 0.10-0.12) in comparison to the control group (0.14 g/cm(3), range 0.12-0.17). An incomplete burst fracture type A3.1 was achieved in all cases and resulted in a significant decrease in body angle and vertebral height (KA 4.9°, range: 2-12; SI 4.5%, range: 2-12). With OP1, one minor complication (lesion of small bowel) occurred, while no complications occurred with OP2. A suitable spinal fracture model for creation of VCFs in osteoporotic sheep was developed. The technique may promote the development of improved surgical solutions for VCF treatment in the experimental and clinical setting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Equation of state of MgSiO3 post-perovskite
NASA Astrophysics Data System (ADS)
Sakai, T.; Dekura, H.; Hirao, N.
2014-12-01
Super-Earths which have a few times of the Earth's mass have been found in the extra solar system one after another. MgSiO3 post-perovskite (PPv) is an abundant silicate phase in such huge terrestrial planet's mantle (Tsuchiya and Tsuchiya, 2011). For preliminary internal structure estimation, the mass-radius relation was used (Zeng et al. 2013). Above 120 GPa, the mass-radius relation for MgSiO3 end-member is calculated from the equations of state (EoS) of PPv. Although the pressure condition of super-Earth's mantle reaches several hundreds GPa, the previously reported EoSs of PPv by the diamond anvil cell (DAC) experiment were limited up to around 150 GPa. These EoSs were extrapolated to multi-megabar condition for the calculation of the mass-radius relation. The large extrapolation yields uncertainty. The direct determination of the compression behavior of PPv at multi-megabar pressure is, therefore, important to understand the super-Earth's interior. Here we report PPv EoS up to 275 GPa based on DAC experiment and up to 1 TPa and 6000 K by ab initio calculation based on the density-functional theory in the same manner as Tsuchiya et al. (2004). Volume data were obtained up to 275 GPa by the DAC experiment and fitted to the third order Birch-Murnaghan EoS and the Vinet EoS. The experimental EoS agrees excellently with the calculated ab initio volume data within 0.5 % up to 500 GPa and 3000 K. The volume differences between the present result and those calculated by Caracas and Cohen (2008) were about 2.0-2.6 % in pressure range of 100-500 GPa at room temperature, while the volume differences were only 1 % with respect to the EoS based on shock experiment data (Mosenfelder et al. 2009) in the same pressure range. The present EoS shows internal consistency among DAC, shock and ab initio data up to 500 GPa within 1% in volume. Our new EoS provides more precise mass-radius relation for MgSiO3 end-member.
Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A
2015-10-01
Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Fontaine, Fabrice; Rabinowicz, Michel; Bystricky, Micha
2017-04-01
Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis, 20 km thick and 150 km in radius, at 50-70 km depth where the temperature varies from 600°C to 750°C. It lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, a timing that is controlled by the visco-elastic relaxation time at 50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively, thus rendering this basal compression a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., 150 km away from the plume head. There, melts propagate through dikes upwards to 35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host magmatic reservoirs where melts pond, until further differentiation can relaunch ascension up to the surface and form a volcanic edifice. In a second stage, as the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at 15 km depth. It implies that now the melts pond at 15 km and form another magmatic reservoir lying just underneath the crust. These two processes explain the ponding of primary (shield) melts at 35 km and 15 km depths as partialy recorded below La Reunion, Mauritius or Hawaii volcanoes with seismic tomography.
One and two fluid numerical investigations of solar wind gas releases
NASA Astrophysics Data System (ADS)
Harold, James Benedict
1993-01-01
The dynamics of gas releases into high Mach number flowing plasmas are investigated. Emphasis is placed on systems of intermediate magnetization for which the scale size of the release lies between the ion and electron Larmor radii. The study is motivated by the December 1984 AMPTE (Active Magnetospheric Particle Tracer Explorer) solar wind barium release in which, contrary to the predictions of MHD theory, the barium cloud shifted transverse to the solar wind (in the uwind x B0 direction) before eventually turning downstream. Particular emphasis is given to identifying mechanisms responsible for this lateral motion. A modified MHD cold fluid approach that takes advantage of the supersonic nature of the problem forms the basis of this work. Two specific models are developed which incorporate large effective ion Larmor radius effects. The first is for a single ion species, the second for two ion species. Two physical effects are identified which are not present in the conventional MHD system: the Hall effect, based on a Hall magnetic drift wave, and a hybrid electrostatic ion cyclotron mode. Linear analysis shows that the effect of the Hall term is to propagate the upwind magnetic field compression azimuthally to the downwind side of the cloud, leading to a quasi-steady state field compression on the -uwind x BO side of the cloud. The cyclotron mode can lead to a similar compression through deflection of the solar wind ions into the uwind x BO direction. In each case the resulting compression leads to a transverse acceleration of the cloud. The relative importance of these two mechanisms is shown to depend on deltac / rc, the ratio of the collisionless skin depth to the cloud size. Nonlinear, two-dimensional simulations are performed for each model. These simulations produce the expected field compressions and the resultant lateral acceleration, in general qualitative agreement with the AMPTE experiment. The dependence of these mechanisms on the ratio deltac / rc is demonstrated. While no simulations are performed that precisely duplicate the parameters of the AMPTE release, the results suggest that the Hall effect, and possibly deflection of the solar wind by the cyclotron mode, constitute plausible mechanisms for the AMPTE shift.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...
Code of Federal Regulations, 2014 CFR
2014-01-01
... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and events may include: (1) United States Naval Flight Demonstration Team (Blue Angels); (2) United... nautical mile radius from the center of the demonstration and an altitude 17000 mean sea level (for high...
Wavelet compression of noisy tomographic images
NASA Astrophysics Data System (ADS)
Kappeler, Christian; Mueller, Stefan P.
1995-09-01
3D data acquisition is increasingly used in positron emission tomography (PET) to collect a larger fraction of the emitted radiation. A major practical difficulty with data storage and transmission in 3D-PET is the large size of the data sets. A typical dynamic study contains about 200 Mbyte of data. PET images inherently have a high level of photon noise and therefore usually are evaluated after being processed by a smoothing filter. In this work we examined lossy compression schemes under the postulate not induce image modifications exceeding those resulting from low pass filtering. The standard we will refer to is the Hanning filter. Resolution and inhomogeneity serve as figures of merit for quantification of image quality. The images to be compressed are transformed to a wavelet representation using Daubechies12 wavelets and compressed after filtering by thresholding. We do not include further compression by quantization and coding here. Achievable compression factors at this level of processing are thirty to fifty.
NASA Technical Reports Server (NTRS)
Barrie, A. C.; Smith, S. E.; Dorelli, J. C.; Gershman, D. J.; Yeh, P.; Schiff, C.; Avanov, L. A.
2017-01-01
Data compression has been a staple of imaging instruments for years. Recently, plasma measurements have utilized compression with relatively low compression ratios. The Fast Plasma Investigation (FPI) on board the Magnetospheric Multiscale (MMS) mission generates data roughly 100 times faster than previous plasma instruments, requiring a higher compression ratio to fit within the telemetry allocation. This study investigates the performance of a space-based compression standard employing a Discrete Wavelet Transform and a Bit Plane Encoder (DWT/BPE) in compressing FPI plasma count data. Data from the first 6 months of FPI operation are analyzed to explore the error modes evident in the data and how to adapt to them. While approximately half of the Dual Electron Spectrometer (DES) maps had some level of loss, it was found that there is little effect on the plasma moments and that errors present in individual sky maps are typically minor. The majority of Dual Ion Spectrometer burst sky maps compressed in a lossless fashion, with no error introduced during compression. Because of induced compression error, the size limit for DES burst images has been increased for Phase 1B. Additionally, it was found that the floating point compression mode yielded better results when images have significant compression error, leading to floating point mode being used for the fast survey mode of operation for Phase 1B. Despite the suggested tweaks, it was found that wavelet-based compression, and a DWT/BPE algorithm in particular, is highly suitable to data compression for plasma measurement instruments and can be recommended for future missions.
Supernova Collisions with the Heliosphere
NASA Astrophysics Data System (ADS)
Fields, Brian D.; Athanassiadou, Themis; Johnson, Scott R.
2008-05-01
Nearby supernova explosions—within a few tens of pc of the solar system—have become a subject of intense scrutiny, due to the discovery of live undersea 60Fe from an event 2.8 Myr ago. A key open question concerns the delivery of supernova ejecta to the Earth, in particular penetration of the heliosphere by the supernova remnant (SNR). We present the first systematic numerical hydrodynamical study of the interaction between a supernova blast and the solar wind. Our simulations explore dynamic pressure regimes that are factors >=10 above those in other studies of the heliosphere under exotic conditions, for supernovae exploding at a range of distances through different interstellar environments, and interacting with solar winds of varying strengths. Our results are qualitatively consistent with the structure of the contemporary heliosphere modeled by previous work, but compressed to within the inner solar system. We demonstrate that key characteristics of the resulting heliospheric structure follow simple scaling laws that can be understood in terms of pressure-balance arguments, and which are in agreement with previous work. Our models show that a 10 pc supernova event, incident on a solar-wind outflow with the mean observed properties, compresses the heliopause to just beyond 1 AU. We also demonstrate scenarios where the supernova remnant compresses the heliopause to within 1 AU, in which cases supernova material will be directly deposited on Earth. Since 8 pc marks the nominal "kill radius" for severe biosphere damage, any extinction-level events should have left terrestrial deposits of supernova debris. We conclude with a brief discussion of the effect of our approximations and the impact of additional physics.
VizieR Online Data Catalog: Transits of PH3 b, c, and d through January, 2019 (Schmitt+, 2014)
NASA Astrophysics Data System (ADS)
Schmitt, J. R.; Agol, E.; Deck, K. M.; Rogers, L. A.; Gazak, J. Z.; Fischer, D. A.; Wang, J.; Holman, M. J.; Jek, K. J.; Margossian, C.; Omohundro, M. R.; Winarski, T.; Brewer, J. M.; Giguere, M. J.; Lintott, C.; Lynn, S.; Parrish, M.; Schawinski, K.; Schwamb, M. E.; Simpson, R.; Smith, A. M.
2017-05-01
Using quarters 1-16 of the Kepler data, we extracted and flattened each transit using the IDL AutoKep program (Gazak et al. 2012AdAst2012E..30G). For the high signal-to-noise transits of the outer planet, we used short cadence data where available. We then used a new, modified version of the IDL program TAP (Carter & Winn, 2009ApJ...704...51C; Gazak et al. 2012AdAst2012E..30G; Eastman et al. 2013PASP..125...83E) to fit for the orbital parameters of each planet: impact parameter (b), duration (T), the ratio of planet radius to stellar radius (Rp/R*), the midtransit times, linear limb darkening, quadratic limb darkening (Kipping, 2013MNRAS.435.2152K), and white and red noise. The ratio of semi-major axis to the radius of the star (a/R*) and the inclination (i) can be derived from these parameters. (1 data file).
NASA Astrophysics Data System (ADS)
Zamora, J. C.; Aumann, T.; Bagchi, S.; Bönig, S.; Csatlós, M.; Dillmann, I.; Dimopoulou, C.; Egelhof, P.; Eremin, V.; Furuno, T.; Geissel, H.; Gernhäuser, R.; Harakeh, M. N.; Hartig, A.-L.; Ilieva, S.; Kalantar-Nayestanaki, N.; Kiselev, O.; Kollmus, H.; Kozhuharov, C.; Krasznahorkay, A.; Kröll, Th.; Kuilman, M.; Litvinov, S.; Litvinov, Yu. A.; Mahjour-Shafiei, M.; Mutterer, M.; Nagae, D.; Najafi, M. A.; Nociforo, C.; Nolden, F.; Popp, U.; Rigollet, C.; Roy, S.; Scheidenberger, C.; von Schmid, M.; Steck, M.; Streicher, B.; Stuhl, L.; Thürauf, M.; Uesaka, T.; Weick, H.; Winfield, J. S.; Winters, D.; Woods, P. J.; Yamaguchi, T.; Yue, K.; Zenihiro, J.
2017-09-01
A novel method for measuring nuclear reactions in inverse kinematics with stored ion beams was successfully used to extract the nuclear-matter radius of 58Ni. The experiment was performed at the experimental heavy-ion storage ring at the GSI facility using a stored 58Ni beam at energies of 100 and 150 MeV/u and an internal helium gas-jet target. Elastically scattered α -recoils at low momentum transfers were measured with an in-ring detector system compatible with ultrahigh vacuum. Experimental angular distributions were fitted using density-dependent optical model potentials within the eikonal approximation. This permitted the extraction of the point-matter root-mean-square radius of 58Ni with an average value of 3.70(7) fm. Results from this work are in good agreement with several experiments performed in the past in normal kinematics. This pioneering experiment demonstrates a major breakthrough towards future investigations with far-from-stability stored beams using the present technique.
Artificial gravity: head movements during short-radius centrifugation
NASA Technical Reports Server (NTRS)
Young, L. R.; Hecht, H.; Lyne, L. E.; Sienko, K. H.; Cheung, C. C.; Kavelaars, J.
2001-01-01
Short-radius centrifugation is a potential countermeasure to long-term weightlessness. Unfortunately, head movements in a rotating environment induce serious discomfort, non-compensatory vestibulo-ocular reflexes, and subjective illusions of body tilt. In two experiments we investigated the effects of pitch and yaw head movements in participants placed supine on a rotating bed with their head at the center of rotation, feet at the rim. The vast majority of participants experienced motion sickness, inappropriate vertical nystagmus and illusory tilt and roll as predicted by a semicircular canal model. However, a small but significant number of the 28 participants experienced tilt in the predicted plane but in the opposite direction. Heart rate was elevated following one-second duration head turns. Significant adaptation occurred following a series of head turns in the light. Vertical nystagmus, motion sickness and illusory tilt all decreased with adaptation. Consequences for artificial gravity produced by short-radius centrifuges as a countermeasure are discussed. Grant numbers: NCC 9-58. c 2001. Elsevier Science Ltd. All rights reserved.
Nature's technical ceramic: the avian eggshell
Hahn, Eric N.; Sherman, Vincent R.; Pissarenko, Andrei; Rohrbach, Samuel D.; Fernandes, Daniel J.
2017-01-01
Avian eggshells may break easily when impacted at a localized point; however, they exhibit impressive resistance when subjected to a well-distributed compressive load. For example, a common demonstration of material strength is firmly squeezing a chicken egg along its major axis between one's hands without breaking it. This research provides insight into the underlying mechanics by evaluating both macroscopic and microstructural features. Eggs of different size, varying from quail (30 mm) to ostrich (150 mm), are investigated. Compression experiments were conducted along the major axis of the egg using force-distributing rubber cushions between steel plates and the egg. The force at failure increases with egg size, reaching loads upwards of 5000 N for ostrich eggs. The corresponding strength, however, decreases with increasing shell thickness (intimately related to egg size); this is rationalized by a micro-defects model. Failure occurs by axial splitting parallel to the loading direction—the result of hoop tensile stresses due to the applied compressive load. Finite-element analysis is successfully employed to correlate the applied compressive force to tensile breaking strength for the eggs, and the influence of geometric ratio and microstructural heterogeneities on the shell's strength and fracture toughness is established. PMID:28123095
Bulk Viscosity of Bubbly Magmas and the Amplification of Pressure Waves
NASA Astrophysics Data System (ADS)
Navon, O.; Lensky, N. G.; Neuberg, J. W.; Lyakhovsky, V.
2001-12-01
The bulk viscosity of magma is needed in order to describe the dynamics of a compressible bubbly magma flowing in conduits and to follow the attenuation of pressure waves travelling through a compressible magma. We developed a model for the bulk viscosity of a suspension of gas bubbles in an incompressible Newtonian liquid that exsolves volatiles (e.g. magma). The suspension is modeled as a close pack of spherical cells, consisting of gas bubbles centered in spherical shells of a volatile-bearing liquid. Following a drop in the ambient pressure the resulting dilatational motion and driving pressure are obtained in terms of the two-phase cell parameters, i.e. bubble radius and gas pressure. By definition, the bulk viscosity of a fluid is the relation between changes of the driving pressure with respect to changes in the resulted expansion strain-rate. Thus, we can use the two-phase solution to define the bulk viscosity of a hypothetical cell, composed of a homogeneously compressible, one-phase, continuous fluid. The resulted bulk viscosity is highly non-linear. At the beginning of the expansion process, when gas exsolution is efficient, the expansion rate grows exponentially while the driving pressure decreases slightly. That means that bulk viscosity is formally negative. The negative value reflects the release of the energy stored in the supersaturated liquid (melt) and its conversion to mechanical work during exsolution. Later, when bubbles are large enough and the gas influx decreases significantly, the strain rate decelerates and the bulk viscosity becomes positive as expected in a dissipative system. We demonstrate that amplification of seismic wave travelling through a volcanic conduit filled with a volatile saturated magma may be attributed to the negative bulk viscosity of the compressible magma. Amplification of an expansion wave may, at some level in the conduit, damage the conduit walls and initiate opening of new pathways for magma to erupt.
Polarization and Compressibility of Oblique Kinetic Alfven Waves
NASA Technical Reports Server (NTRS)
Hunana, Peter; Goldstein, M. L.; Passot, T.; Sulem, P. L.; Laveder, D.; Zank, G. P.
2012-01-01
Even though solar wind, as a collisionless plasma, is properly described by the kineticMaxwell-Vlasov description, it can be argued that much of our understanding of solar wind observational data comes from an interpretation and numerical modeling which is based on a fluid description of magnetohydrodynamics. In recent years, there has been a significant interest in better understanding the importance of kinetic effects, i.e. the differences between the kinetic and usual fluid descriptions. Here we concentrate on physical properties of oblique kinetic Alfvn waves (KAWs), which are often recognized as one of the key ingredients in the solar wind turbulence cascade. We use three different fluid models with various degrees of complexity and calculate polarization and magnetic compressibility of oblique KAWs (propagation angle q = 88), which we compare to solutions derived from linear kinetic theory. We explore a wide range of possible proton plasma b = [0.1,10.0] and a wide range of length scales krL = [0.001,10.0]. It is shown that the classical isotropic two-fluid model is very compressible in comparison with kinetic theory and that the largest discrepancy occurs at scales larger than the proton gyroscale. We also show that the two-fluid model contains a large error in the polarization of electric field, even at scales krL 1. Furthermore, to understand these discrepancies between the two-fluid model and the kinetic theory, we employ two versions of the Landau fluid model that incorporate linear low-frequency kinetic effects such as Landau damping and finite Larmor radius (FLR) corrections into the fluid description. It is shown that Landau damping significantly reduces the magnetic compressibility and that FLR corrections (i.e. nongyrotropic contributions) are required to correctly capture the polarization.We also show that, in addition to Landau damping, FLR corrections are necessary to accurately describe the damping rate of KAWs. We conclude that kinetic effects are important even at scales which are significantly larger than the proton gyroscale krL 1.
Lasche, George P.
1988-01-01
A high-power-density laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems.
NASA Astrophysics Data System (ADS)
Lipson, Andrei; Castano, Carlos; Miley, George; Lipson, Andrei; Lyakhov, Boris; Mitin, Alexander
2006-02-01
Transport and magnetic properties of hydrogen cycled PdHx and Pd/PdO:Hx (x ~ (4/6) × 10-4) nano-composite consisting of a Pd matrix with hydrogen trapped inside dislocation cores have been studied. The results suggest emergence of a high-temperature superconductivity state of a condensed hydrogen phase confined inside deep dislocation cores in the Pd matrix. The possible role of hydrogen/deuterium filled dislocation nano-tubes is discussed. These dislocation cores could be considered as active centers of LENR triggering due to (i) short D-D separation distance (~Bohr radius); (ii) high-local D-loading in the Pd and the corresponding effective lattice compression; (iii) a large optic phonon energy resulting in a most effective lattice-nuclei energy transfer.
Convective penetration in a young sun
NASA Astrophysics Data System (ADS)
Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; MUSIC developers group
2018-01-01
To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. This model provides a scenario that can explain the observed lithium abundance in the sun and in solar-like stars at a range of ages.
Bone matrix structure in different seasons of cervid antlerogenesis and gestation
NASA Astrophysics Data System (ADS)
Silvennoinen, Raimo V. J.; Nygren, Kaarlo; Rouvinen, Juha; Petrova, Valentina V.
1994-05-01
During the antlerogenesis and gestation, substantial amounts of mineral compounds are removed from the skeleton and transferred to the growing antler or foetus. We have used holographic nondestructive testing for sorting out biomechanically aberrant radioulnar bones of European moose and radiological methods to study, whether observed aberrations are due to changes of the structure of the long bones (radius). In males, these changes were studied in three phases of antler cycle: antlerless season, antler growing and mature antler. In females, the studies were made with samples of adult individuals in and after gestation period. We studied x-ray diffraction responses of the bones before and after compression up to saturation level. Our results are indicating that compact and spongy part of the bones are giving seasonally different biomechanical responses.
Lasche, G.P.
1987-02-20
A high-power-density-laser or charged-particle-beam fusion reactor system maximizes the directed kinetic energy imparted to a large mass of liquid lithium by a centrally located fusion target. A fusion target is embedded in a large mass of lithium, of sufficient radius to act as a tritium breeding blanket, and provided with ports for the access of beam energy to implode the target. The directed kinetic energy is converted directly to electricity with high efficiency by work done against a pulsed magnetic field applied exterior to the lithium. Because the system maximizes the blanket thickness per unit volume of lithium, neutron-induced radioactivities in the reaction chamber wall are several orders of magnitude less than is typical of other fusion reactor systems. 25 figs.
Investigation of compressible vortex flow characteristics
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1977-01-01
The nature of intense air vortices was studied and the factors which determine the intensity and rate of decay of both single and pairs of vortices were investigated. Vortex parameters of axial pressure differential, circulation, outflow rates, separation distance and directions of rotation were varied. Unconfined vortices, generated by a single rotating cage, were intensified by an increasing axial pressure gradient. Breakdown occurred when the axial gradient became negligible. The core radius was a function of the axial gradient. Dual vortices, generated by two counterrotating cages, rotated opposite to the attached cages. With minimum spacing only one vortex was formed which rotated in a direction opposite to the attached cage. When one cage rotated at half the speed of the other cage, one vortex formed at the higher speed cage rotating in the cage direction.
Puente, Gabriela F; García-Martínez, Pablo; Bonetto, Fabián J
2007-01-01
We present theoretical calculations of an argon bubble in a liquid solution of 85%wt sulfuric acid and 15%wt water in single-bubble sonoluminescence. We used a model without free parameters to be adjusted. We predict from first principles the region in parameter space for stable bubble evolution, the temporal evolution of the bubble radius, the maximum temperature, pressures, and the light spectra due to thermal emissions. We also used a partial differential equation based model (hydrocode) to compute the temperature and pressure evolutions at the center of the bubble during maximum compression. We found the behavior of this liquid mixture to be very different from water in several aspects. Most of the models in sonoluminescence were compared with water experimental results.
VR/LE engine with a variable R/L during a single cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rychter, T.J.; Teodorczyk, A.
1985-01-01
A new concept of an engine, called a Variable R/L Engine (VR/LE) is presented. The main feature of the engine is the continuous change of the crank-radius to connecting-rod-length ratio (R/L) during the single engine cycle. The variations of the phase angle result in changes of all the engine stroke lengths and also-they are causing the changes of the thermodynamic cycle of the engine. Therefore the phase angle variations make it possible to regulate continuously the compression ratio and the displacement volume of the engine within the range which depends on the engine mechanism geometry. The presented concept can bemore » applied to all the types of the IC piston engines, independently of their size and operation principle.« less
Accretion onto a noncommutative geometry inspired black hole
NASA Astrophysics Data System (ADS)
Kumar, Rahul; Ghosh, Sushant G.
2017-09-01
The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.
The next large helical devices
NASA Astrophysics Data System (ADS)
Iiyoshi, Atsuo; Yamazaki, Kozo
1995-06-01
Helical systems have the strong advantage of inherent steady-state operation for fusion reactors. Two large helical devices with fully superconducting coil systems are presently under design and construction. One is the LHD (Large Helical Device) [Fusion Technol. 17, 169 (1990)] with major radius=3.9 m and magnetic field=3-4 T, that is under construction during 1990-1997 at NIFS (National Institute for Fusion Science), Nagoya/Toki, Japan; it features continuous helical coils and a clean helical divertor focusing on edge configuration optimization. The other one in the W7-X (Wendelstein 7-X) [in Plasma Physics and Controlled Fusion Nuclear Research, 1990, (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] with major radius=5.5 m and magnetic field=3 T, that is under review at IPP (Max-Planck Institute for Plasma Physics), Garching, Germany; it has adopted a modular coil system after elaborate optimization studies. These two programs are complementary in promoting world helical fusion research and in extending the understanding of toroidal plasmas through comparisons with large tokamaks.
Karasik, David; Demissie, Serkalem; Lu, Darlene; Broe, Kerry E; Boyd, Steven K; Liu, Ching-Ti; Hsu, Yi-Hsiang; Bouxsein, Mary L; Kiel, Douglas P
2017-11-01
Genetic factors contribute to the risk of bone fractures, partly because of effects on bone strength. High-resolution peripheral quantitative computed tomography (HR-pQCT) estimates bone strength using micro-finite element analysis (µFEA). The goal of this study was to investigate if the bone failure load estimated by HR-pQCT-based µFEA is heritable and to what extent it shares genetic regulation with areal bone mineral density (aBMD). Bone microarchitecture was measured by HR-pQCT at the ultradistal tibia and ultradistal radius in adults from the Framingham Heart Study (n = 1087, mean age 72 years; 57% women). Radial and tibial failure load in compression were estimated by µFEA. Femoral neck (FN) and ultradistal forearm (UD) aBMD were measured by dual-energy X-ray absorptiometry (DXA). Heritability (h 2 ) of failure load and aBMD and genetic correlations between them was estimated adjusting for covariates (age and sex). Failure load values at the non-weight-bearing ultradistal radius and at the weight-bearing ultradistal tibia were highly correlated (r = 0.906; p < 0.001). Estimates of h 2 adjusted for covariates were 0.522 for the radius and 0.497 for the tibia. Additional adjustment for height did not impact on the h 2 results, but adjustment for aBMD at the UD and FN somewhat decreased h 2 point estimates: 0.222 and 0.380 for radius and tibia, respectively. In bivariate analysis, there was a high phenotypic and genetic correlation between covariate-adjusted failure load at the radius and UD aBMD (ρ P = 0.826, ρ G = 0.954, respectively), whereas environmental correlations were lower (ρ E = 0.696), all highly significant (p < 0.001). Similar correlations were observed between tibial failure load and femoral neck aBMD (ρ P = 0.577, ρ G = 0.703, both p < 0.001; ρ E = 0.432, p < 0.05). These data from adult members of families from a population-based cohort suggest that bone strength of distal extremities estimated by micro-finite element analysis is heritable and shares some genetic composition with areal BMD, regardless of the skeletal site. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.
Johnson, Jeffrey P; Krupinski, Elizabeth A; Yan, Michelle; Roehrig, Hans; Graham, Anna R; Weinstein, Ronald S
2011-02-01
A major issue in telepathology is the extremely large and growing size of digitized "virtual" slides, which can require several gigabytes of storage and cause significant delays in data transmission for remote image interpretation and interactive visualization by pathologists. Compression can reduce this massive amount of virtual slide data, but reversible (lossless) methods limit data reduction to less than 50%, while lossy compression can degrade image quality and diagnostic accuracy. "Visually lossless" compression offers the potential for using higher compression levels without noticeable artifacts, but requires a rate-control strategy that adapts to image content and loss visibility. We investigated the utility of a visual discrimination model (VDM) and other distortion metrics for predicting JPEG 2000 bit rates corresponding to visually lossless compression of virtual slides for breast biopsy specimens. Threshold bit rates were determined experimentally with human observers for a variety of tissue regions cropped from virtual slides. For test images compressed to their visually lossless thresholds, just-noticeable difference (JND) metrics computed by the VDM were nearly constant at the 95th percentile level or higher, and were significantly less variable than peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) metrics. Our results suggest that VDM metrics could be used to guide the compression of virtual slides to achieve visually lossless compression while providing 5-12 times the data reduction of reversible methods.
1999-12-01
compression technology . The ubiquity of routed Internet Protocol (IP) networks, and the desire to trim telephony costs are the major driving forces of the...mid- s, data and voice began to merge, propelled by advances in compression technology . The ubiquity of routed Internet Protocol (IP) networks...transmit voice over IP networks that are privately owned or publicly utilized. If we have the technology to transmit Voice over the Internet then why not
Porosity and the ecology of icy satellites
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1993-01-01
The case for a significant role for porosity in the structure and evolution of icy bodies in the Solar System has been difficult to establish. We present a relevant new data set and a series of structure models including a mechanical compression, not thermal creep, model for porosity that accounts satisfactorily for observed densities, moments of inertia, geologic activity, and sizes of tectonic features on icy satellites. Several types of observational data sets have been used to infer significant porosity, but until recently, alternative explanations have been preferred. Our first area of concern is the occurrence of cryovolcanism as a function of satellite radius; simple radiogenic heating models of icy satellites suggest minimum radii for melting and surface cryovolcanism to be 400 to 500 km, yet inferred melt deposits are seen on satellites half that size. One possible explanation is a deep, low conductivity regolith which lowers conductivity and raises internal temperatures, but other possibilities include tidal heating or crustal compositions of low conductivity. Our second area of concern is the occurrence and magnitude of tectonic strain; tectonic structures have been seen on icy satellites as small as Mimas and Proteus. The structures are almost exclusively extensional, with only a few possible compression Al features, and inferred global strains are on the order of 1 percent expansion. Expansions of this order in small bodies like Mimas and prevention of late compressional tectonics due to formation of ice mantles in larger bodies like Rhea are attained only in structure models including low-conductivity, and thus possibly high porosity, crusts. Thirdly, inferred moments of inertia less than 0.4 in Mimas and Tethys can be explained by high-porosity crusts, but also by differentiation of a high density core. Finally, the relatively low densities of smaller satellites like Mimas and Miranda relative to larger neighbors can be explained by deep porosity, but also by bulk compositional differences. Recent work has strengthened the case for significant porosity. Halley's nucleus was found to have a density near 0.6 g/cu cm, Janus and Epimethus were proposed to have densities near 0.7 g/cu cm, densities almost certainly due to high porosity. The irregular-spherical shape transition of icy satellites was quantitatively explained by low conductivity regoliths. A creative structure/thermal history model for Mimas simultaneously accounts quantitatively for Mimas' low density and moment of inertia by invoking initial high-porosity and subsequent compaction in the deep interior by thermal creep. The main problem with this promising model is that approximately 7 percent predicts a reduction in Mimas' radius, implying significant compressional failure and prevention of extensional tectonics, in contradiction to the observed extensional features and inferred 1 percent expansion in radius.
[Larsen syndrome: two reports of cases with spinal cord compromise].
Martín Fernández-Mayoralas, D; Fernández-Jaén, A; Muñoz-Jareño, N; Calleja-Pérez, B; San Antonio-Arce, V; Martínez-Boniche, H
Larsen syndrome is characterised by untreatable congenital dislocation of multiple body joints, along with marked foot deformities. These patients have a flattened face with a short nose, a broad depressed nasal bridge and a prominent forehead. In this clinical note our aim is to report two cases that coursed with spinal cord compromise. Case 1: an 18-month-old female with congenital dislocation of knees and hips. The patient had a flat face, sunken root of nose, and carp mouth. Magnetic resonance imaging of the spine showed severe cervical kyphosis secondary to malformation and hypoplasia of the cervical vertebral bodies and important compression of the spinal cord. Clinically, there were also signs of upper motor neuron syndrome, which was especially prominent in the lower limbs. Case 2: a 14-year-old male with a characteristic face and dislocation of the head of the radius. The patient presented amyotrophy of the muscles in the right hand and clinical signs of lower motor neuron syndrome due to neuronal damage secondary to spinal malformations. Larsen syndrome is an infrequent osteochondrodysplasia. Alteration of the spine is common and may give rise to spinal cord compression with varying clinical repercussions which require surgical treatment in the early years of the patient's life.
NASA Technical Reports Server (NTRS)
Cranmer, Steven R.; Owocki, Stanley P.
1995-01-01
We calculate the radiative driving force for winds around rapidly rotating oblate B stars, and we estimate the impact these forces should have on the production of a wind compressed disk. The effects of limb darkening, gravity darkening, oblateness, and an arbitrary wind velocity field are included in the computation of vector 'oblate finite disk' (OFD) factors, which depend on both radius and colatitude in the wind. The impact of limb darkening alone, with or without rotation, can increase the mass loss by as much as 10% over values computed using the standard uniformly bright spherical finite disk factor. For rapidly rotating stars, limb darkening makes 'sub-stellar' gravity darkening the dominant effect in the radial and latitudinal OFD factors, and lessens the impact of gravity darkening at other visible latitudes (nearer to the oblate limb). Thus, the radial radiative driving is generally stronger over the poles and weaker over the equator, following the gravity darkening at these latitudes. The nonradial radiative driving is considerably smaller in magnitude than the radial component, but is directed both away from the equatorial plane and in a retrograde azimuthal direction, acting to decrease the effective stellar rotation velocity. These forces thus weaken the equatorward wind compression compared to wind models computed with nonrotating finite disk factors.
Experimental characterization of broadband electrostatic noise due to plasma compression
NASA Astrophysics Data System (ADS)
Dubois, Ami M.; Thomas, Edward, Jr.; Amatucci, William E.; Ganguli, Gurudas
2015-11-01
For a wide variety of laboratory and space plasma environments, theory states that plasmas are unstable to transverse shear flows over a very broad frequency range, where the shear scale length (LE) compared to the ion gyro-radius (ρi) determines the character of the shear-driven instability that may prevail. During active periods in the Earth's magnetosphere, such sheared flows are intensified and broadband electrostatic noise (BEN) is often observed by satellites traversing natural boundary layers. An interpenetrating magnetized plasma configuration is used to create a transverse velocity shear profile similar to that found at natural space plasma boundary layers. The continuous variation and the associated transition of the instability regimes driven by the shear flow mechanism are demonstrated in a single laboratory experiment. For the first time, broadband wave emission, which is correlated to increasing/decreasing stress (i.e., ρi/LE) on a plasma boundary layer, is found under controlled and repeatable conditions. This result provides evidence that the compression/relaxation of a plasma boundary layer leads to a BEN signature and holds out the promise for understanding the cause and effect of the in situ observation of BEN by satellites. This project was supported with funding from the U.S. Department of Energy, the Defense Threat Reduction Agency, and NRL Base Funds.
Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.
2013-10-01
Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.
Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les
2012-12-01
This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.
Spectroscopy of the Perseus Cluster
NASA Technical Reports Server (NTRS)
Jones, Christine; Mushotzky, Richard F. (Technical Monitor)
2004-01-01
We present preliminary results of a XMM-Newton 50 ks observation of the Perseus Cluster that provides an unprecedented view of the central 0.5 Mpc region. The projected gas temperature declines smoothly by a factor of 2 from a maximum value of approx. 7 keV in the outer regions to just above 3 keV at the cluster center. Over this same range, the heavy-element abundance rises slowly from 0.4 to 0.5 solar as the radius decreases from 14 ft. to 5 ft., and then it rises to a peak of almost 0.7 solar at 1&farcm;25 before declining to 0.4 at the center. Th global east-west asymmetry of the gas temperature and surface brightness distributions, approximately aligned with the chain of bright galaxies, suggests an ongoing merger, although the modest degree of the observed asymmetry certainly excludes a major merger interpretation. The chain of galaxies probably traces the filament along which accretion started some time ago and is continuing at the present time. A cold and dense (low-entropy) cluster core like Perseus is probably well "protected" against the penetration of the gas of infalling groups and poor clusters, whereas in non-cooling core clusters such as Coma and A1367, infalling subclusters can penetrate deeply into the core region. In Perseus, gas associated with infalling groups may be stripped completely at the outskirts of the main cluster and only compression waves (shocks) may reach the central regions. We argue, and show supporting simulations, that the passage of such a wave(s) can qualitatively explain the overall horseshoe shaped appearance of the gas temperature map (the hot horseshoe surrounds the colder, low-entropy core) as well as other features of the Perseus Cluster core. These simulations also show that as compression waves traverse the cluster core, they can induce oscillatory motion of the cluster gas that can generate multiple sharp "edges" on opposite sides of the central galaxy. Gas motions induced by mergers may be a natural way to explain the high frequency of "edges" seen in clusters with cooling cores.
Winter, Hanno; Holmer, Christoph; Buhr, Heinz-Johannes; Lindner, Gerd; Lauster, Roland; Kraft, Marc; Ritz, Jörg-Peter
2010-01-01
Vessel sealing has been well-established in surgical practice in recent years. Bipolar radiofrequency-induced thermofusion (BIRTH) of intestinal tissue might replace traditionally used staples or sutures in the near future. In this experimental study, the influence of compressive pressure, fusion temperature, and duration of heating on the quality of intestinal anastomosis was investigated to obtain the relevant major parameters for the in vivo use of this system. An experimental setup for a closed-loop temperature-controlled bipolar radiofrequency-induced thermofusion of porcine intestinal tissue was developed. Twenty-four colon samples were harvested from nine different Saalower-Kräuter pigs and then anastomosed altering compressive pressure on five different levels to explore its influence on anastomotic bursting pressure. The anastomotic bursting strength depends on the compressive pressure applied to the colonic fusion site. An optimal interval of compressive pressure (CP = 1.125 N/mm(2)) in respect of a high amount of burst pressure was detected. A correlation (r = 0.54, p = 0.015) of burst pressure to delta compression indicated that increasing colonic wall thickness probably strengthens the anastomotic fusion. This study is a first step to enlighten the major parameters of tissue fusion, though effects and interactions of various main parameters of bipolar radiofrequency-induced thermofusion of colonic tissue remain unclear. Further studies exploring the main effects and interactions of tissue and process parameters to the quality of the fusion site have to follow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalin, B.A.; Gladkov, V.P.; Volkov, N.V.
Penetration of alien atoms (Be, Ni) into Be, Al, Zr, Si and diamond was investigated under Ar{sup +} ion bombardment of samples having thermally evaporated films of 30--50 nm. Sputtering was carried out using a wide energy spectrum beam of Ar{sup +} ions of 9.4 keV to dose D = 1 {times} 10{sup 16}--10{sup 19} ion/cm{sup 2}. Implanted atom distribution in the targets was measured by Rutherford backscattering spectrometry (RBS) of H{sup +} and He{sup +} ions with energy of 1.6 MeV as well as secondary ion mass-spectrometry (SIMS). During the bombardment, the penetration depth of Ar atoms increases withmore » dose linearly. This depth is more than 3--20 times deeper than the projected range of bombarding ions and recoil atoms. This is a deep action effect. The analysis shows that the experimental data for foreign atoms penetration depth are similar to the data calculated for atom migration through the interstitial site in a field of internal (lateral) compressive stresses created in the near-surface layer of the substrate as a result of implantation. Under these experimental conditions atom ratio r{sub i}/r{sub m} (r{sub i} -- radius of dopant, r{sub m} -- radius target of substrate) can play a principal determining role.« less
NASA Astrophysics Data System (ADS)
Li, Qian; Matula, Thomas J.; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-01
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
The Effect of Quantum Fluctuations in Compact Star Observables
NASA Astrophysics Data System (ADS)
Pósfay, P.; Barnaföldi, G. G.; Jakovác, A.
2018-05-01
Astrophysical measurements regarding compact stars are just ahead of a big evolution jump, since the NICER experiment deployed on ISS on 2017 June 14. This will provide soon data that would enable the determination of compact star radius with less than 10% error. This can be further constrained by the new observation of gravitational waves originated from merging neutron stars, GW170817. This poses new challenges to nuclear models aiming to explain the structure of super dense nuclear matter found in neutron stars. Detailed studies of the QCD phase diagram show the importance of bosonic quantum fluctuations in the cold dense matter equation of state. Here we used a demonstrative model with one bosonic and one fermionic degree of freedom coupled by Yukawa coupling, we show the effect of bosonic quantum fluctuations on compact star observables such as mass, radius, and compactness. We have also calculated the difference in the value of compressibility which is caused by quantum fluctuations. The above-mentioned quantities are calculated in the mean field, one-loop, and in high order many loop approximation. The results show that the magnitude of these effects is in the range of 4-5%, which place it into the region where modern measurements may detect it. This forms a base for further investigations that how these results carry over to more complicated models.
The Spatial-Kinematic Structure of the Region of Massive Star Formation S255N on Various Scales
NASA Astrophysics Data System (ADS)
Zemlyanukha, P. M.; Zinchenko, I. I.; Salii, S. V.; Ryabukhina, O. L.; Liu, S.-Y.
2018-05-01
The results of a detailed analysis of SMA, VLA, and IRAM observations of the region of massive star formation S255N in CO(2-1), N2H+(3-2), NH3(1, 1), C18O(2-1) and some other lines is presented. Combining interferometer and single-dish data has enabled a more detailed investigation of the gas kinematics in the moleclar core on various spatial scales. There are no signs of rotation or isotropic compression on the scale of the region as whole. The largest fragments of gas (≈0.3 pc) are located near the boundary of the regions of ionized hydrogen S255 and S257. Some smaller-scale fragments are associated with protostellar clumps. The kinetic temperatures of these fragments lie in the range 10-80 K. A circumstellar torus with inner radius R in ≈ 8000 AU and outer radius R out ≈ 12 000 AU has been detected around the clump SMA1. The rotation profile indicates the existence of a central object with mass ≈8.5/ sin2( i) M ⊙. SMA1 is resolved into two clumps, SMA1-NE and SMA1-SE, whose temperatures are≈150Kand≈25 K, respectively. To all appearances, the torus is involved in the accretion of surrounding gas onto the two protostellar clumps.
NASA Astrophysics Data System (ADS)
Gao, WenZhi; Li, ZhuFei; Yang, JiMing
2015-10-01
A hybrid CFD/characteristic method (CCM) was proposed for fast design and evaluation of hypersonic inlet flow with nose bluntness, which targets the combined advantages of CFD and method of characteristics. Both the accuracy and efficiency of the developed CCM were verified reliably, and it was well demonstrated for the external surfaces design of a hypersonic forebody/inlet with nose bluntness. With the help of CCM method, effects of nose bluntness on forebody shock shapes and the flowfield qualities which dominate inlet performance were examined and analyzed on the two-dimensional and axisymmetric configurations. The results showed that blunt effects of a wedge forebody are more substantial than that of related cone cases. For a conical forebody with a properly blunted nose, a recovery of the shock front back to that of corresponding sharp nose is exhibited, accompanied with a gradually fading out of entropy layer effects. Consequently a simplification is thought to be reasonable for an axisymmetric inlet with a proper compression angle, and a blunt nose of limited radius can be idealized as a sharp nose, as the spillage and flow variations at the entrance are negligible, even though the nose scale increases to 10% cowl lip radius. Whereas for two-dimensional inlets, the blunt effects are substantial since not only the inlet capturing/starting capabilities, but also the flow uniformities are obviously degraded.
Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-21
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
Jain, Mohit J; Mavani, Kinjal J
2016-12-01
The management of highly comminuted distal radius fractures still remains a major treatment challenge. Articular comminution and compromised bone quality are the culprits. One novel approach is the technique of Internal Distraction Plating which involves "bridging" the fracture with the use of a standard 3.5mm plate applied dorsally in distraction from the radius, proximal to the fracture, to the long finger metacarpal distally, bypassing the comminuted segment. The plate is removed once fracture union has been achieved. The present study was conducted with the aim to evaluate the role of internal dorsal distraction plating as an alternative method in the treatment of fracture distal radius in terms of special indications, technique and outcome. This study was a prospective longitudinal study on 20 patients (mean age 62 years) treated with internal distraction plating for comminuted distal radius fractures with specific indications. Regular follow-ups with standard radiographs and analysis were done upto 24 months. Functional outcome were assessed by DASH Score and the Gartland and Werley demerit score. At final follow-up, all fractures had united and X-rays showed mean palmar tilt of 7°, positive ulnar variance of 0.5mm, radial inclination of 18° and average loss of 2mm of radial height. Mean range of motion values for wrist flexion 46°, extension 50°, pronation 79° and supination 77° At final follow-up, the mean DASH score was 32. 85% patient had excellent to good result as per Gartland and Werley demerit score. This construct has yield satisfactory clinical and radiographic results with these very challenging injuries. The purpose of this study was to report the radiographic and the functional outcomes of treatment with this technique. External fixator and volar plating in communited distal end radius fractures are not always satisfactory in old age with osteoporotic bone because of complications associated with them. The current technique represents an alternative that provides union of the comminuted distal radius fracture with anatomical alignment, optimal range of motion and with minimal clinical disability.
[Distal radius fractures--retrospective quality control after conservative and operative therapy].
Sommer, C; Brendebach, L; Meier, R; Leutenegger, A
2001-01-01
The distal radius fracture is the most frequent fracture in the adult patient. The wide spectrum of different types of fracture and the coexisting factors make the choice for the optimal treatment difficult. As an interne quality control we retrospectively evaluated all patients with distal radius fractures treated in 1995 at our institution. The study included 69 adult patients with 71 distal radius fractures. After on average 26 months 58 patients with 59 fractures were clinically and radiologically evaluated. The patients were asked to give supplementary information about their follow-up treatment as well as any remaining physical difficulties and limitations in the daily life. All x-rays of the broken radius were carefully analysed and compared with the opposite side. The final results were evaluated according to the "Demerit Point System". Patients were treated with five different therapeutical methods. 76.3% of the patients showed a very good/good final result. In 56.7% of the cases secondary fracture dislocation occurred; the dislocation-rate of fractures treated with percutaneous k-wires was 93.3%! A clear correlation between secondary displacement and final results was found. A main factor for an optimal outcome is the anatomic restoration of length and axis of the distal radius as well as of joint congruency, also moderate angular deformities are well tolerated. Our collective showed an unexpected high rate of secondary displacement, especially in the k-wire group. The reasons for this unsatisfactory event are manifold: too optimistic indication, insufficient follow-up examination in the first four to six weeks, inconsequent change to a more stable fixation method in case of a secondary dislocation. The results of this retrospective evaluation had a major impact on our concept of treatment. The dorso-radial double-plate technique combined with bone graft will be more used in the future especially in younger patients. The new standardised concept is the base of a present prospective study.
Structural evolution of gypsum under high pressure: single-crystal X-ray experiments revisited
NASA Astrophysics Data System (ADS)
Li, Tsung-Lung; Lee, Pei-Lun
2018-05-01
The structures of gypsum at pressures up to approximately 4 GPa are studied with density functional theory (DFT) and thoroughly compared with single-crystal X-ray diffraction experiments reported in the literature [Comodi et al. in (Am Miner 93:1530-1537, 2008)]. It is found that the exchange-correlation density functional revPBE (revised Perdew-Burke-Ernzerhof) in conjunction with a nonlocal van der Waals (vdW) correction is capable of modeling the lattice constants, axial compressibility, and bulk modulus with good accuracy, suggesting that the inclusion of the vdW functional is crucially important for understanding the structure of hydrous minerals. To gain further physical insights, the geometric parameters associated with the constituting components of gypsum (water molecules, SO4 tetrahedra, and CaO8 polyhedra) are analyzed and compared with the experimental values. DFT simulations show that, under pressure, the polyhedral layers remain as nearly planar sheets of interconnecting SO4 tetrahedra and CaO8 polyhedra without further crinkling. DFT analysis on the layer compressibility along the major crystal axis reveals that, in contrast to experimental reports, the hydrous interlayer is less compressible than the polyhedral layer. Squeezed by the lateral pressure, the water molecules in the hydrous interlayer become better affixed along the major axis, making the interlayer harder to compress along this axis.
Traction-compression-closure for exomphalos major.
Morabito, Antonino; Owen, Anthony; Bianchi, Adrian
2006-11-01
We present our experience with traction-compression-closure (TCC) for exomphalos major (EM) to achieve a safe and embryologically correct midline supraumbilical aesthetic closure with preservation of the umbilicus. Nineteen neonates with EM were paralyzed and ventilated. The abdominal domain was increased by upward cord traction to assist liver-bowel reduction by gravity and sac ligation, followed by circumferential elastic body binder compression. The supraumbilical abdominal wall anomaly cicatrized spontaneously or was closed surgically as a midline scar, with preservation of the umbilicus. Over 7 years (1998-2004), 19 patients with EM were treated by TCC, 18 of whom survived. The patients' median gestational age was 36 weeks (range, 24-40 weeks); their median birth weight was 2312 g (range, 890-3000 g). The median time to reduction was 4 days (range, 3-5 days), whereas that to full enteral feeds was 6 days (range, 4-6 days). Mechanical ventilation for 7 days (range, 6-8 days) was not associated with any morbidity, and the time to home discharge was 11 days (range, 8-12 days). Five patients did not require any surgery. There was no episode of sac rupture or infection. Abdominal expansion by vertical cord traction followed by compression reduction (TCC) under muscle relaxation and ventilation is time well spent toward a safe and aesthetic midline abdominal wall closure without tension for EM.
NASA Technical Reports Server (NTRS)
Bryson, L. L.; Mccarty, J. E.
1973-01-01
Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.
Historical development of worldwide supersonic aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1983-01-01
Some major milestones in the progression of airplane speeds from subsonic to supersonic are traced. Historical background is included on work done prior to the Twentieth Century, but the major emphasis is on the Twentieth Century developments after the man carrying airplane became a practical reality. The techniques of increasing airplane speed revolve around means of increasing the propulsive force and means of reducing the airframe resistance (drag). With the changes in speed, the attendant changes in flow patterns due to the compressibility of air introduce some aerodynamic problems. In addition, geometric changes introduced to combat the effects of compressibility also promote aerodynamic problems. Some of the solutions to these problems are illustrated, and many design features that evolved are discussed.
Evaluation of Subgrid-Scale Models for Large Eddy Simulation of Compressible Flows
NASA Technical Reports Server (NTRS)
Blaisdell, Gregory A.
1996-01-01
The objective of this project was to evaluate and develop subgrid-scale (SGS) turbulence models for large eddy simulations (LES) of compressible flows. During the first phase of the project results from LES using the dynamic SGS model were compared to those of direct numerical simulations (DNS) of compressible homogeneous turbulence. The second phase of the project involved implementing the dynamic SGS model in a NASA code for simulating supersonic flow over a flat-plate. The model has been successfully coded and a series of simulations has been completed. One of the major findings of the work is that numerical errors associated with the finite differencing scheme used in the code can overwhelm the SGS model and adversely affect the LES results. Attached to this overview are three submitted papers: 'Evaluation of the Dynamic Model for Simulations of Compressible Decaying Isotropic Turbulence'; 'The effect of the formulation of nonlinear terms on aliasing errors in spectral methods'; and 'Large-Eddy Simulation of a Spatially Evolving Compressible Boundary Layer Flow'.
The human genome contracts again.
Pavlichin, Dmitri S; Weissman, Tsachy; Yona, Golan
2013-09-01
The number of human genomes that have been sequenced completely for different individuals has increased rapidly in recent years. Storing and transferring complete genomes between computers for the purpose of applying various applications and analysis tools will soon become a major hurdle, hindering the analysis phase. Therefore, there is a growing need to compress these data efficiently. Here, we describe a technique to compress human genomes based on entropy coding, using a reference genome and known Single Nucleotide Polymorphisms (SNPs). Furthermore, we explore several intrinsic features of genomes and information in other genomic databases to further improve the compression attained. Using these methods, we compress James Watson's genome to 2.5 megabytes (MB), improving on recent work by 37%. Similar compression is obtained for most genomes available from the 1000 Genomes Project. Our biologically inspired techniques promise even greater gains for genomes of lower organisms and for human genomes as more genomic data become available. Code is available at sourceforge.net/projects/genomezip/
Compression-RSA technique: A more efficient encryption-decryption procedure
NASA Astrophysics Data System (ADS)
Mandangan, Arif; Mei, Loh Chai; Hung, Chang Ee; Che Hussin, Che Haziqah
2014-06-01
The efficiency of encryption-decryption procedures has become a major problem in asymmetric cryptography. Compression-RSA technique is developed to overcome the efficiency problem by compressing the numbers of kplaintext, where k∈Z+ and k > 2, becoming only 2 plaintext. That means, no matter how large the numbers of plaintext, they will be compressed to only 2 plaintext. The encryption-decryption procedures are expected to be more efficient since these procedures only receive 2 inputs to be processed instead of kinputs. However, it is observed that as the numbers of original plaintext are increasing, the size of the new plaintext becomes bigger. As a consequence, it will probably affect the efficiency of encryption-decryption procedures, especially for RSA cryptosystem since both of its encryption-decryption procedures involve exponential operations. In this paper, we evaluated the relationship between the numbers of original plaintext and the size of the new plaintext. In addition, we conducted several experiments to show that the RSA cryptosystem with embedded Compression-RSA technique is more efficient than the ordinary RSA cryptosystem.
Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L
2017-07-01
Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.
Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments.
Haïkel, Y; Serfaty, R; Bateman, G; Senger, B; Allemann, C
1999-06-01
The absence of adequate testing standards for engine-driven nickel-titanium (NiTi) instruments necessitates further study of these instruments in all areas. This study examined three groups of engine-driven rotary NiTi endodontic instruments (Profile, Hero, and Quantec) and assessed the times for dynamic fracture in relation to the radius of curvature to which the instruments were subjected during preparation, with the instrument diameter determined by size and taper and the mode by which the fracture occurred. Ten instruments were randomly selected representing each size and taper for each group and for each radius of curvature: 600 in total. The instruments were rotated at 350 rpm and introduced into a tempered steel curve that simulated a canal. Two radii of curvature of canals were used: 5 and 10 mm. Time at fracture was noted for all files, and the fracture faces of each file were analyzed with scanning electron microscopy. Radius of curvature was found to be the most significant factor in determining the fatigue resistance of the files. As radius of curvature decreased, fracture time decreased. Taper of files was found to be significant in determining fracture time. As diameter increased, fracture time decreased. In all cases, fracture was found to be of a ductile nature, thus implicating cyclic fatigue as a major cause of failure and necessitating further analyses and setting of standards in this area.
Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control
Morgan, J.W.; Wandless, G.A.
1980-01-01
Rare earth element (REE) abundances were measured by neutron activation analysis in anhydrite (CaSO4), barite (BaSO4), siderite (FeCO3) and galena (PbS). A simple crystal-chemical model qualitatively describes the relative affinities for REE substitution in anhydrite, barite, and siderite. When normalized to 'crustal' abundances (as an approximation to the hydrothermal fluid REE pattern), log REE abundance is a surprisingly linear function of (ionic radius of major cation-ionic radius of REE)2 for the three hydrothermal minerals, individually and collectively. An important exception, however, is Eu, which is anomalously enriched in barite and depleted in siderite relative to REE of neighboring atomic number and trivalent ionic radius. In principle, REE analyses of suitable pairs of co-existing hydrothermal minerals, combined with appropriate experimental data, could yield both the REE content and the temperature of the parental hydrothermal fluid. The REE have only very weak chalcophilic tendencies, and this is reflected by the very low abundances in galena-La, 0.6 ppb; Sm, 0.06 ppb; the remainder are below detection limits. ?? 1980.
Watrous, Gwyneth K; Moens, Noel M M
2017-04-01
This retrospective study evaluated complication rates for radius and ulna fractures in small breed dogs in which 1.5 mm to 2.7 mm cuttable bone plates were used for internal fixation. The medical records of all cases from 2004 to 2011 that were presented to our clinic were reviewed. Inclusion criteria were: dogs with body weight < 9 kg, fracture of the radius and ulna with open reduction, and internal fixation utilizing a cuttable bone plate. Thirty-four fractures in 31 dogs met the inclusion criteria. Of 25 dogs that were available for follow-up, all achieved union, minor complications occurred in 9, and major complications occurred in 8. External coaptation was responsible for complications in 8 cases and the need for coaptation needs to be investigated. Excluding minor complications, 32% of patients required at least 1 additional surgery or additional hospitalization. All but 2 of the dogs returned to full function. The 1.5 mm straight plate was successfully used in all dogs with a body weight of 0.9 to 2.6 kg.
Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers
Davies, Edward; Christodoulides, Paul; Florides, George; Kalli, Kyriacos
2014-01-01
A finite element analysis (FEA) model has been constructed to predict the thermo-fluidic and optical properties of a microstructure optical fiber (MOF) accounting for changes in external temperature, input water velocity and optical fiber geometry. Modeling a water laminar flow within a water channel has shown that the steady-state temperature is dependent on the water channel radius while independent of the input velocity. There is a critical channel radius below which the steady-state temperature of the water channel is constant, while above, the temperature decreases. However, the distance required to reach steady state within the water channel is dependent on both the input velocity and the channel radius. The MOF has been found capable of supporting multiple modes. Despite the large thermo-optic coefficient of water, the bound modes’ response to temperature was dominated by the thermo-optic coefficient of glass. This is attributed to the majority of the light being confined within the glass, which increased with increasing external temperature due to a larger difference in the refractive index between the glass core and the water channel. PMID:28788263
Watrous, Gwyneth K.; Moens, Noel M.M.
2017-01-01
This retrospective study evaluated complication rates for radius and ulna fractures in small breed dogs in which 1.5 mm to 2.7 mm cuttable bone plates were used for internal fixation. The medical records of all cases from 2004 to 2011 that were presented to our clinic were reviewed. Inclusion criteria were: dogs with body weight < 9 kg, fracture of the radius and ulna with open reduction, and internal fixation utilizing a cuttable bone plate. Thirty-four fractures in 31 dogs met the inclusion criteria. Of 25 dogs that were available for follow-up, all achieved union, minor complications occurred in 9, and major complications occurred in 8. External coaptation was responsible for complications in 8 cases and the need for coaptation needs to be investigated. Excluding minor complications, 32% of patients required at least 1 additional surgery or additional hospitalization. All but 2 of the dogs returned to full function. The 1.5 mm straight plate was successfully used in all dogs with a body weight of 0.9 to 2.6 kg. PMID:28373730
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortiz-Ramŕez, Pablo, E-mail: rapeitor@ug.uchile.cl; Larroquette, Philippe; Camilla, S.
The intrinsic spatial efficiency method is a new absolute method to determine the efficiency of a gamma spectroscopy system for any extended source. In the original work the method was experimentally demonstrated and validated for homogeneous cylindrical sources containing {sup 137}Cs, whose sizes varied over a small range (29.5 mm radius and 15.0 to 25.9 mm height). In this work we present an extension of the validation over a wide range of sizes. The dimensions of the cylindrical sources vary between 10 to 40 mm height and 8 to 30 mm radius. The cylindrical sources were prepared using the referencemore » material IAEA-372, which had a specific activity of 11320 Bq/kg at july 2006. The obtained results were better for the sources with 29 mm radius showing relative bias lesser than 5% and for the sources with 10 mm height showing relative bias lesser than 6%. In comparison with the obtained results in the work where we present the method, the majority of these results show an excellent agreement.« less
Gomez-Marin, Alex; Stephens, Greg J; Brown, André E X
2016-08-01
Regularities in animal behaviour offer insights into the underlying organizational and functional principles of nervous systems and automated tracking provides the opportunity to extract features of behaviour directly from large-scale video data. Yet how to effectively analyse such behavioural data remains an open question. Here, we explore whether a minimum description length principle can be exploited to identify meaningful behaviours and phenotypes. We apply a dictionary compression algorithm to behavioural sequences from the nematode worm Caenorhabditis elegans freely crawling on an agar plate both with and without food and during chemotaxis. We find that the motifs identified by the compression algorithm are rare but relevant for comparisons between worms in different environments, suggesting that hierarchical compression can be a useful step in behaviour analysis. We also use compressibility as a new quantitative phenotype and find that the behaviour of wild-isolated strains of C. elegans is more compressible than that of the laboratory strain N2 as well as the majority of mutant strains examined. Importantly, in distinction to more conventional phenotypes such as overall motor activity or aggregation behaviour, the increased compressibility of wild isolates is not explained by the loss of function of the gene npr-1, which suggests that erratic locomotion is a laboratory-derived trait with a novel genetic basis. Because hierarchical compression can be applied to any sequence, we anticipate that compressibility can offer insights into the organization of behaviour in other animals including humans. © 2016 The Authors.
Convective penetration in stars
NASA Astrophysics Data System (ADS)
Pratt, Jane; Baraffe, Isabelle; Goffrey, Tom; Constantino, Tom; Popov, M. V.; Walder, Rolf; Folini, Doris; TOFU Collaboration
To interpret the high-quality data produced from recent space-missions it is necessary to study convection under realistic stellar conditions. We describe the multi-dimensional, time implicit, fully compressible, hydrodynamic, implicit large eddy simulation code MUSIC, currently being developed at the University of Exeter. We use MUSIC to study convection during an early stage in the evolution of our sun where the convection zone covers approximately half of the solar radius. This model of the young sun possesses a realistic stratification in density, temperature, and luminosity. We approach convection in a stellar context using extreme value theory and derive a new model for convective penetration, targeted for one-dimensional stellar evolution calculations. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework (FP7/2007-2013)/ERC Grant agreement no. 320478.
NASA Astrophysics Data System (ADS)
Kraiko, A. N.; Valiyev, Kh. F.
2016-10-01
The new model of the Big Bang and the Universe expansion is constructed. It is based on solutions in classical and in relativistic statements of problem on the dispersion into the void of the gas compressed into a point or in a finite, but for further negligible, volume. If to restrict in relativistic statement gas speed value v by the speed of light (υ =| v |
The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor
NASA Astrophysics Data System (ADS)
Haines, M. G.
1982-01-01
A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.
Mugnai, Raffaele; Tarallo, Luigi; Capra, Francesco; Catani, Fabio
2018-05-25
As the popularity of volar locked plate fixation for distal radius fractures has increased, so have the number and variety of implants, including variations in plate design, the size and angle of the screws, the locking screw mechanism, and the material of the plates. carbon-fiber reinforced polyetheretherketone (CFR-PEEK) plate features similar biomechanical properties to metallic plates, representing, therefore, an optimal alternative for the treatment of distal radius fractures. three different materials-composed plates were evaluated: stainless steel volar lateral column (Zimmer); titanium DVR (Hand Innovations); CFR-PEEK DiPHOS-RM (Lima Corporate). Six plates for each type were implanted in sawbones and an extra-articular rectangular osteotomy was created. Three plates for each material were tested for load to failure and bending stiffness in axial compression. Moreover, 3 constructs for each plate were evaluated after dynamically loading for 6000 cycles of fatigue. the mean bending stiffness pre-fatigue was significantly higher for the stainless steel plate. The titanium plate yielded the higher load to failure both pre and post fatigue. After cyclic loading, the bending stiffness increased by a mean of 24% for the stainless steel plate; 33% for the titanium; and 17% for the CFR-PEEK plate. The mean load to failure post-fatigue increased by a mean of 10% for the stainless steel and 14% for CFR-PEEK plates, whereas it decreased (-16%) for the titanium plate. Statistical analysis between groups reported significant values (p <.001) for all comparisons except for Hand Innovations vs. Zimmer bending stiffness post fatigue (p = .197). the significant higher load to failure of the titanium plate, makes it indicated for patients with higher functional requirements or at higher risk of trauma in the post-operative period. The CFR-PEEK plate showed material-specific disadvantages, represented by little tolerance to plastic deformation, and lower load to failure. N/A. Copyright © 2018. Published by Elsevier Masson SAS.
Macrobend optical sensing for pose measurement in soft robot arms
NASA Astrophysics Data System (ADS)
Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar
2015-12-01
This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.
Viscoelastic modeling of the fusion of multicellular tumor spheroids in growth phase.
Dechristé, Guillaume; Fehrenbach, Jérôme; Griseti, Elena; Lobjois, Valérie; Poignard, Clair
2018-06-08
Since several decades, the experiments have highlighted the analogy of fusing cell aggregates with liquid droplets. The physical macroscopic models have been derived under incompressible assumptions. The aim of this paper is to provide a 3D model of growing spheroids, which is more relevant regarding embryo cell aggregates or tumor cell spheroids. We extend the past approach to a compressible 3D framework in order to account for the tumor spheroid growth. We exhibit the crucial importance of the effective surface tension, and of the inner pressure of the spheroid to describe precisely the fusion. The experimental data were obtained on spheroids of colon carcinoma human cells (HCT116 cell line). After 3 or 6 days of culture, two identical spheroids were transferred in one well and their fusion was monitored by live videomicroscopy acquisition each 2 h during 72 h. From these images the neck radius and the diameter of the assembly of the fusing spheroids are extracted. The numerical model is fitted with the experiments. It is worth noting that the time evolution of both neck radius and spheroid diameter are quantitatively obtained. The interesting feature lies in the fact that such measurements characterise the macroscopic rheological properties of the tumor spheroids. The experimental determination of the kinetics of neck radius and overall diameter during spheroids fusion characterises the rheological properties of the spheroids. The consistency of the model is shown by fitting the model with two different experiments, enhancing the importance of both surface tension and cell proliferation. The paper sheds new light on the macroscopic rheological properties of tumor spheroids. It emphasizes the role of the surface tension and the inner pressure in the fusion of growing spheroid. Under geometrical assumptions, the model reduces to a 2-parameter differential equation fit with experimental measurements. The 3-D partial differential system makes it possible to study the fusion of spheroids in non-symmetrical or more general frameworks. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Lingling
Three-dimensional simulations of the formation and implosion of plasma liners for the Plasma Jet Induced Magneto Inertial Fusion (PJMIF) have been performed using multiscale simulation technique based on the FronTier code. In the PJMIF concept, a plasma liner, formed by merging of a large number of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the nuclear fusion ignition. The propagation of a single jet with Mach number 60 from the plasma gun to the merging point was studied using the FronTier code. The simulation result was used as input to the 3D jet merger problem. The merger of 144, 125, and 625 jets and the formation and heating of plasma liner by compression waves have been studied and compared with recent theoretical predictions. The main result of the study is the prediction of the average Mach number reduction and the description of the liner structure and properties. We have also compared the effect of different merging radii. Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets have also been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium - xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, On the efficacy of imploding plasma liners for magnetized fusion target compression, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium - tritium targets compressed by Mach 60 deuterium liners. In the most optimal setup for a given chamber size that contained a target with the initial radius of 20 cm compressed by 10 cm thick, Mach 60 xenon liner, the target ignition and fusion energy gain of 10 was achieved. Simulations also showed that composite deuterium - xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated. The study of the dependence of the ram pressure amplification on radial compressibility showed a good agreement with the theory. The study concludes that a liner with higher Mach number and lower adiabatic index gamma (the radio of specific heats) will generate higher ram pressure amplification and higher fusion energy gain. We implemented a second order embedded boundary method for the Maxwell equations in geometrically complex domains. The numerical scheme is second order in both space and time. Comparing to the first order stair-step approximation of complex geometries within the FDTD method, this method can avoid spurious solution introduced by the stair step approximation. Unlike the finite element method and the FE-FD hybrid method, no triangulation is needed for this scheme. This method preserves the simplicity of the embedded boundary method and it is easy to implement. We will also propose a conservative (symplectic) fourth order scheme for uniform geometry boundary.
Nagwani, Naresh Kumar; Deo, Shirish V
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.
Nagwani, Naresh Kumar; Deo, Shirish V.
2014-01-01
Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939
Citation analysis of the 100 most common articles regarding distal radius fractures.
Jones, Richard; Hughes, Travis; Lawson, Kevin; DeSilva, Gregory
2017-01-01
Bibliometric studies are increasingly being utilized as a tool for gauging the impact of different literature within a given field. The purpose of this study was to identify the most cited articles related to the management of distal radius fractures to better understand how the evidence of this topic has been shaped and changed over time. We utilized the ISI web of science database to conduct a search for the term "distal radius fracture" under the "orthopaedics" research area heading, and sorted the results by number of times cited. The 100 most cited articles published in orthopedic journals were then analyzed for number of citations, source journal, year of publication, number of authors, study type, level of evidence, and clinical outcomes utilized. The 100 most cited articles identified were published between 1951 and 2009. Total number of citations ranged between 525 and 67, and came from ten different orthopedic journals. The largest number of articles came from J Hand Surg Am and J Bone Joint Surg Am, each with 32. Consistent with previous analyses of orthopedic literature, the articles were primarily clinical, and of these, 53/76 were case series. The vast majority were evidence level IV. Only a small percentage of articles utilized patient reported outcome measures. These data show that despite distal radius fractures being a common fracture encountered by physicians, very few of the articles were high quality studies, and only a low proportion of the studies include patient reported outcome measures. Surgeons should take this lack of high-level evidence into consideration when referencing classic papers in this field. Analysis of the 100 most cited distal radius fracture articles allows for delineation of which articles are most common in the field and if a higher level of evidence correlates positively with citation quantity.
Granular Media-Based Tunable Passive Vibration Suppressor
NASA Technical Reports Server (NTRS)
Dillon, Robert P.; Davis, Gregory L.; Shapiro, Andrew A.; Borgonia, John Paul C.; Kahn, Daniel L.; Boechler, Nicholas; Boechler,, Chiara
2013-01-01
and vibration suppression device is composed of statically compressed chains of spherical particles. The device superimposes a combination of dissipative damping and dispersive effects. The dissipative damping resulting from the elastic wave attenuation properties of the bulk material selected for the granular media is independent of particle geometry and periodicity, and can be accordingly designed based on the dissipative (or viscoelastic) properties of the material. For instance, a viscoelastic polymer might be selected where broadband damping is desired. In contrast, the dispersive effects result from the periodic arrangement and geometry of particles composing a linear granular chain. A uniform (monatomic) chain of statically compressed spherical particles will have a low-pass filter effect, with a cutoff frequency tunable as a function of particle mass, elastic modulus, Poisson fs ratio, radius, and static compression. Elastic waves with frequency content above this cutoff frequency will exhibit an exponential decay in amplitude as a function of propagation distance. System design targeting a specific application is conducted using a combination of theoretical, computational, and experimental techniques to appropriately select the particle radii, material (and thus elastic modulus and Poisson fs ratio), and static compression to satisfy estimated requirements derived for shock and/or vibration protection needs under particular operational conditions. The selection of a chain of polymer spheres with an elastic modulus .3 provided the appropriate dispersive filtering effect for that exercise; however, different operational scenarios may require the use of other polymers, metals, ceramics, or a combination thereof, configured as an array of spherical particles. The device is a linear array of spherical particles compressed in a container with a mechanism for attachment to the shock and/or vibration source, and a mechanism for attachment to the article requiring isolation (Figure 1). This configuration is referred to as a single-axis vibration suppressor. This invention also includes further designs for the integration of the single-axis vibration suppressor into a six-degree-of-freedom hexapod "Stewart"mounting configuration (Figure 2). By integrating each singleaxis vibration suppressor into a hexapod formation, a payload will be protected in all six degrees of freedom from shock and/or vibration. Additionally, to further enable the application of this device to multiple operational scenarios, particularly in the case of high loads, the vibration suppressor devices can be used in parallel in any array configuration.
MHD Instabilities in Simple Plasma Configuration
1984-01-01
current near the plasma boundary) which can be detected outside the plasma ring . A concept which has proved to b- of great significance for the stability...decrease in the major radius of the plasma ring , a significant loss of plasma energy and particles (from the core of the plasma) and a decrease in the
NASA Astrophysics Data System (ADS)
Lupato, G.
1993-04-01
The author illustrates an empirical correlation linking planet distances from the Sun to some physical characteristics of the central body such as mass, equatorial radius, density. Such a formula is applicable, with good approximation, also to the major planet satellite systems.
Low Complexity Compression and Speed Enhancement for Optical Scanning Holography
Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Kim, T.; Kim, Y. S.
2016-01-01
In this paper we report a low complexity compression method that is suitable for compact optical scanning holography (OSH) systems with different optical settings. Our proposed method can be divided into 2 major parts. First, an automatic decision maker is applied to select the rows of holographic pixels to be scanned. This process enhances the speed of acquiring a hologram, and also lowers the data rate. Second, each row of down-sampled pixels is converted into a one-bit representation with delta modulation (DM). Existing DM-based hologram compression techniques suffers from the disadvantage that a core parameter, commonly known as the step size, has to be determined in advance. However, the correct value of the step size for compressing each row of hologram is dependent on the dynamic range of the pixels, which could deviate significantly with the object scene, as well as OSH systems with different opical settings. We have overcome this problem by incorporating a dynamic step-size adjustment scheme. The proposed method is applied in the compression of holograms that are acquired with 2 different OSH systems, demonstrating a compression ratio of over two orders of magnitude, while preserving favorable fidelity on the reconstructed images. PMID:27708410
The ARIES Advanced and Conservative Tokamak Power Plant Study
Kessel, C. E; Tillak, M. S; Najmabadi, F.; ...
2015-12-22
Tokamak power plants are studied with advanced and conservative design philosophies to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared with older studies. The advanced configuration assumes a self-cooled lead lithium blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q₉₅ of 4.5, aᵦ total N of 5.75, an H98 of 1.65,more » an n/n Gr of 1.0, and a peak divertor heat flux of 13.7 MW/m² . The conservative configuration assumes a dual-coolant lead lithium blanket concept with reduced activation ferritic martensitic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma has a major radius of 9.75 m, a toroidal field of 8.75 T, a q₉₅ of 8.0, aᵦ total N of 2.5, an H₉₈ of 1.25, an n/n Gr of 1.3, and a peak divertor heat flux of 10 MW/m² . The divertor heat flux treatment with a narrow power scrape off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range 10 to 15 MW/m² . Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Other papers in this issue provide more detailed discussion of the work summarized here.« less
The ARIES Advanced And Conservative Tokamak (ACT) Power Plant Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessel, C. E.; Poli, F. M.; Ghantous, K.
2014-03-05
Tokamak power plants are studied with advanced and conservative design philosophies in order to identify the impacts on the resulting designs and to provide guidance to critical research needs. Incorporating updated physics understanding, and using more sophisticated engineering and physics analysis, the tokamak configurations have developed a more credible basis compared to older studies. The advanced configuration assumes a self-cooled lead lithium (SCLL) blanket concept with SiC composite structural material with 58% thermal conversion efficiency. This plasma has a major radius of 6.25 m, a toroidal field of 6.0 T, a q95 of 4.5, a βN total of 5.75, Hmore » 98 of 1.65, n/nGr of 1.0, and peak divertor heat flux of 13.7 MW/m 2. The conservative configuration assumes a dual coolant lead lithium (DCLL) blanket concept with ferritic steel structural material and helium coolant, achieving a thermal conversion efficiency of 45%. The plasma major radius is 9.75 m, a toroidal field of 8.75 T, a q95 of 8.0, a βN total of 2.5, H 98 of 1.25, n/n Gr of 1.3, and peak divertor heat flux of 10 MW/m 2. The divertor heat flux treatment with a narrow power scrape-off width has driven the plasmas to larger major radius. Edge and divertor plasma simulations are targeting a basis for high radiated power fraction in the divertor, which is necessary for solutions to keep the peak heat flux in the range of 10-15 MW/m 2. Combinations of the advanced and conservative approaches show intermediate sizes. A new systems code using a database approach has been used and shows that the operating point is really an operating zone with some range of plasma and engineering parameters and very similar costs of electricity. Papers in this issue provide more detailed discussion of the work summarized here.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤ 500...
Evidence of Absence of Tidal Features in the Outskirts of Ultra Diffuse Galaxies in the Coma Cluster
NASA Astrophysics Data System (ADS)
Mowla, Lamiya; van Dokkum, Pieter; Merritt, Allison; Abraham, Roberto; Yagi, Masafumi; Koda, Jin
2017-12-01
We study the presence of tidal features associated with ultra diffuse galaxies (UDGs) in galaxy clusters. Specifically, we stack deep Subaru images of UDGs in the Coma cluster to determine whether they show position angle twists at large radii. Selecting galaxies with central surface brightness μ (g,0)> 24 magarcsec-2 and projected half-light radius {r}e> 1.5 {kpc}, we identify 287 UDGs in the Yagi et al. catalog of low surface brightness Coma objects. The UDGs have apparent spheroidal shapes with median Sérsic index < n> =0.8 and median axis ratio < b/a> =0.7. The images are processed by masking all background objects and rotating to align the major axis before stacking them in bins of properties such as axis ratio, angle of major axis with respect to the cluster center, and separation from cluster center. Our image stacks reach further than 7 kpc (≳4r e). Analysis of the isophotes of the stacks reveals that the ellipticity remains constant up to the last measured point, which means that the individual galaxies have a non-varying position angle and axis ratio and show no evidence for tidal disruption out to ˜ 4{r}e. We demonstrate this explicitly by comparing our stacks with stacks of model UDGs with and without tidal features in their outskirts. We infer that the average tidal radius of the Coma UDGs is >7 kpc and estimate that the average dark matter fraction within the tidal radius of the UDGs inhabiting the innermost 0.5 Mpc of Coma is >99%.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.
Sermsathanasawadi, Nuttawut; Chatjaturapat, Choedpong; Pianchareonsin, Rattana; Puangpunngam, Nattawut; Wongwanit, Chumpol; Chinsakchai, Khamin; Ruangsetakit, Chanean; Mutirangura, Pramook
2017-08-01
Compression bandaging is a major treatment of chronic venous ulcers. Its efficacy depends on the applied pressure, which is dependent on the skill of the individual applying the bandage. To improve the quality of bandaging by reducing the variability in compression bandage interface pressures, we changed elastic bandages into a customised version by marking them with circular ink stamps, applied when the stretch achieves an interface pressure between 35 and 45 mmHg. Repeated applications by 20 residents of the customised bandage and non-marked bandage to one smaller and one larger leg were evaluated by measuring the sub-bandage pressure. The results demonstrated that the target pressure range is more often attained with the customised bandage compared with the non-marked bandage. The customised bandage improved the efficacy of compression bandaging for venous ulcers, with optimal sub-bandage pressure. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Low Power LDPC Code Decoder Architecture Based on Intermediate Message Compression Technique
NASA Astrophysics Data System (ADS)
Shimizu, Kazunori; Togawa, Nozomu; Ikenaga, Takeshi; Goto, Satoshi
Reducing the power dissipation for LDPC code decoder is a major challenging task to apply it to the practical digital communication systems. In this paper, we propose a low power LDPC code decoder architecture based on an intermediate message-compression technique which features as follows: (i) An intermediate message compression technique enables the decoder to reduce the required memory capacity and write power dissipation. (ii) A clock gated shift register based intermediate message memory architecture enables the decoder to decompress the compressed messages in a single clock cycle while reducing the read power dissipation. The combination of the above two techniques enables the decoder to reduce the power dissipation while keeping the decoding throughput. The simulation results show that the proposed architecture improves the power efficiency up to 52% and 18% compared to that of the decoder based on the overlapped schedule and the rapid convergence schedule without the proposed techniques respectively.
Ion transport restriction in mechanically strained separator membranes
NASA Astrophysics Data System (ADS)
Cannarella, John; Arnold, Craig B.
2013-03-01
We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.
Safiuddin, Md.; Raman, Sudharshan N.; Abdus Salam, Md.; Jumaat, Mohd. Zamin
2016-01-01
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R2) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN. PMID:28773520
Safiuddin, Md; Raman, Sudharshan N; Abdus Salam, Md; Jumaat, Mohd Zamin
2016-05-20
Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination ( R ²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
Resource efficient data compression algorithms for demanding, WSN based biomedical applications.
Antonopoulos, Christos P; Voros, Nikolaos S
2016-02-01
During the last few years, medical research areas of critical importance such as Epilepsy monitoring and study, increasingly utilize wireless sensor network technologies in order to achieve better understanding and significant breakthroughs. However, the limited memory and communication bandwidth offered by WSN platforms comprise a significant shortcoming to such demanding application scenarios. Although, data compression can mitigate such deficiencies there is a lack of objective and comprehensive evaluation of relative approaches and even more on specialized approaches targeting specific demanding applications. The research work presented in this paper focuses on implementing and offering an in-depth experimental study regarding prominent, already existing as well as novel proposed compression algorithms. All algorithms have been implemented in a common Matlab framework. A major contribution of this paper, that differentiates it from similar research efforts, is the employment of real world Electroencephalography (EEG) and Electrocardiography (ECG) datasets comprising the two most demanding Epilepsy modalities. Emphasis is put on WSN applications, thus the respective metrics focus on compression rate and execution latency for the selected datasets. The evaluation results reveal significant performance and behavioral characteristics of the algorithms related to their complexity and the relative negative effect on compression latency as opposed to the increased compression rate. It is noted that the proposed schemes managed to offer considerable advantage especially aiming to achieve the optimum tradeoff between compression rate-latency. Specifically, proposed algorithm managed to combine highly completive level of compression while ensuring minimum latency thus exhibiting real-time capabilities. Additionally, one of the proposed schemes is compared against state-of-the-art general-purpose compression algorithms also exhibiting considerable advantages as far as the compression rate is concerned. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimichele, W.A.; McBrinn, G.E.; Phillips, T.L.
1991-08-01
The Secor Coal of Oklahoma (Boggy Formation, lower Desmoinesian/Westphalian D equivalent) is one of the few coals discovered, to date, in which Anabathra pulcherrima (=Paralycopodites brevifolius) was a dominant element. Anabathra and Lepidophloios define the major assemblages in the coal, which also contains elements of medullosan pteridosperms and Cardiocarpus spinatus producing cordaites. The Lepidophloios to Medullosa gradient is not obscured by the numerous Anabathra-dominated zones, and a disturbance element is suggested in association with Anabathra abundance. Comparison of the coal-ball flora with a clastic-compression flora from the roof of the coal reveals widely divergent patterns of dominance and diversity. Themore » compression flora is strongly dominated by medullosan pteridosperms with subdominant marattialean tree ferns. As in most instances, the compression flora from the immediate roof of the coal is not an accurate representation of the peat-forming vegetation, at either the level of species composition or the relative abundance of major groups of plants. The swamp and surrounding clastic deltaic environments were edaphically distinct and supported separate floras between which there was limited species exchange.« less
Walenkamp, Monique M J; Bentohami, Abdelali; Slaar, Annelie; Beerekamp, M Suzan H; Maas, Mario; Jager, L Cara; Sosef, Nico L; van Velde, Romuald; Ultee, Jan M; Steyerberg, Ewout W; Goslings, J Carel; Schep, Niels W L
2015-12-18
Although only 39 % of patients with wrist trauma have sustained a fracture, the majority of patients is routinely referred for radiography. The purpose of this study was to derive and externally validate a clinical decision rule that selects patients with acute wrist trauma in the Emergency Department (ED) for radiography. This multicenter prospective study consisted of three components: (1) derivation of a clinical prediction model for detecting wrist fractures in patients following wrist trauma; (2) external validation of this model; and (3) design of a clinical decision rule. The study was conducted in the EDs of five Dutch hospitals: one academic hospital (derivation cohort) and four regional hospitals (external validation cohort). We included all adult patients with acute wrist trauma. The main outcome was fracture of the wrist (distal radius, distal ulna or carpal bones) diagnosed on conventional X-rays. A total of 882 patients were analyzed; 487 in the derivation cohort and 395 in the validation cohort. We derived a clinical prediction model with eight variables: age; sex, swelling of the wrist; swelling of the anatomical snuffbox, visible deformation; distal radius tender to palpation; pain on radial deviation and painful axial compression of the thumb. The Area Under the Curve at external validation of this model was 0.81 (95 % CI: 0.77-0.85). The sensitivity and specificity of the Amsterdam Wrist Rules (AWR) in the external validation cohort were 98 % (95 % CI: 95-99 %) and 21 % (95 % CI: 15 %-28). The negative predictive value was 90 % (95 % CI: 81-99 %). The Amsterdam Wrist Rules is a clinical prediction rule with a high sensitivity and negative predictive value for fractures of the wrist. Although external validation showed low specificity and 100 % sensitivity could not be achieved, the Amsterdam Wrist Rules can provide physicians in the Emergency Department with a useful screening tool to select patients with acute wrist trauma for radiography. The upcoming implementation study will further reveal the impact of the Amsterdam Wrist Rules on the anticipated reduction of X-rays requested, missed fractures, Emergency Department waiting times and health care costs. This study was registered in the Dutch Trial Registry, reference number NTR2544 on October 1(st), 2010.
Context Modeler for Wavelet Compression of Spectral Hyperspectral Images
NASA Technical Reports Server (NTRS)
Kiely, Aaron; Xie, Hua; Klimesh, matthew; Aranki, Nazeeh
2010-01-01
A context-modeling sub-algorithm has been developed as part of an algorithm that effects three-dimensional (3D) wavelet-based compression of hyperspectral image data. The context-modeling subalgorithm, hereafter denoted the context modeler, provides estimates of probability distributions of wavelet-transformed data being encoded. These estimates are utilized by an entropy coding subalgorithm that is another major component of the compression algorithm. The estimates make it possible to compress the image data more effectively than would otherwise be possible. The following background discussion is prerequisite to a meaningful summary of the context modeler. This discussion is presented relative to ICER-3D, which is the name attached to a particular compression algorithm and the software that implements it. The ICER-3D software is summarized briefly in the preceding article, ICER-3D Hyperspectral Image Compression Software (NPO-43238). Some aspects of this algorithm were previously described, in a slightly more general context than the ICER-3D software, in "Improving 3D Wavelet-Based Compression of Hyperspectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. In turn, ICER-3D is a product of generalization of ICER, another previously reported algorithm and computer program that can perform both lossless and lossy wavelet-based compression and decompression of gray-scale-image data. In ICER-3D, hyperspectral image data are decomposed using a 3D discrete wavelet transform (DWT). Following wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass subbands prior to encoding. The resulting data are converted to sign-magnitude form and compressed. In ICER-3D, compression is progressive, in that compressed information is ordered so that as more of the compressed data stream is received, successive reconstructions of the hyperspectral image data are of successively higher overall fidelity.
Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slough, John
To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuummore » and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the final year of the grant. Modifications planned to correct this deficiency included a larger FRC source as well as a much larger liner driver energy storage system. Due to discontinuation of the grant neither of these improvements were carried out.« less
An Earth-sized planet in the habitable zone of a cool star.
Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck
2014-04-18
The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.
Engineering aspects of the HT-6M Tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-05-01
The HT-6M is a medium-sized tokamak being built in China. The principal aim of the project is to study high-power auxiliary heating (1-MW neutral beam injection, 1-MW ion cyclotron resonance heating, and 100-kW electron cyclotron resonance heating), high-..beta.. experiments, the transport process, and the formation and diffusion process of impurities. The main device parameters are: major plasma radius R = 65 cm, minor plasma radius a = 20 cm, plasma current I/subP/ = 150 kA, discharge time tau = 150 ms, toroidal field B/subT/ = 15 kG. Simplicity of construction, accessibility to the plasma, reliability in operation, and convenience formore » maintenance were particularly emphasized in the design. The important design features of the device and power supply system are described.« less
Venous thromboembolism prophylaxis in gynecologic surgery: a systematic review.
Rahn, David D; Mamik, Mamta M; Sanses, Tatiana V D; Matteson, Kristen A; Aschkenazi, Sarit O; Washington, Blair B; Steinberg, Adam C; Harvie, Heidi S; Lukban, James C; Uhlig, Katrin; Balk, Ethan M; Sung, Vivian W
2011-11-01
To comprehensively review and critically assess the available gynecologic surgery venous thromboembolism prophylaxis literature and provide clinical practice guidelines. MEDLINE and Cochrane databases from inception to July 2010. We included randomized controlled trials in gynecologic surgery populations. Interventions and comparators included graduated compression stockings, intermittent pneumatic compression, unfractionated heparin, and low molecular weight heparin; placebo and routine postoperative care were allowed as comparators. One thousand two hundred sixty-six articles were screened, and 14 randomized controlled trials (five benign gynecologic, nine gynecologic oncology) met eligibility criteria. In addition, nine prospective or retrospective studies with at least 150 women were identified and provided data on venous thromboembolism risk stratification, gynecologic laparoscopy, and urogynecologic populations. Two reviewers independently screened articles with discrepancies adjudicated by a third. Eligible randomized controlled trials were extracted for these characteristics: study, participant, surgery, intervention, comparator, and outcomes data, including venous thromboembolism incidence and bleeding complications. Studies were individually and collectively assessed for methodologic quality and strength of evidence. Overall incidence of clinical venous thromboembolism was 0-2% in the benign gynecologic population. With use of intermittent pneumatic compression for benign major procedures, venous thromboembolism incidence was less than 1%. No venous thromboembolisms were identified in prospective studies of benign laparoscopic procedures. Overall quality of evidence in the benign gynecologic literature was poor. Gynecologic-oncology randomized controlled trials reported venous thromboembolism incidence (including "silent" venous thromboembolisms) of 0-14.8% with prophylaxis and up to 34.6% without prophylaxis. Fair quality of evidence supports that unfractionated heparin and intermittent pneumatic compression are both superior to placebo or no intervention but insufficient to determine whether heparins are superior to intermittent pneumatic compression for venous thromboembolism prevention. Combining two of three risks (aged 60 years or older, cancer, or personal venous thromboembolism history) substantially elevated the risk of venous thromboembolism. Intermittent pneumatic compression provides sufficient prophylaxis for the majority of gynecology patients undergoing benign surgery. Additional risk factors warrant the use of combined mechanical and pharmacologic prophylaxis.
Energy Absorption in Chopped Carbon Fiber Compression Molded Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starbuck, J.M.
2001-07-20
In passenger vehicles the ability to absorb energy due to impact and be survivable for the occupant is called the ''crashworthiness'' of the structure. To identify and quantify the energy absorbing mechanisms in candidate automotive composite materials, test methodologies were developed for conducting progressive crush tests on composite plate specimens. The test method development and experimental set-up focused on isolating the damage modes associated with the frond formation that occurs in dynamic testing of composite tubes. Quasi-static progressive crush tests were performed on composite plates manufactured from chopped carbon fiber with an epoxy resin system using compression molding techniques. Themore » carbon fiber was Toray T700 and the epoxy resin was YLA RS-35. The effect of various material and test parameters on energy absorption was evaluated by varying the following parameters during testing: fiber volume fraction, fiber length, fiber tow size, specimen width, profile radius, and profile constraint condition. It was demonstrated during testing that the use of a roller constraint directed the crushing process and the load deflection curves were similar to progressive crushing of tubes. Of all the parameters evaluated, the fiber length appeared to be the most critical material parameter, with shorter fibers having a higher specific energy absorption than longer fibers. The combination of material parameters that yielded the highest energy absorbing material was identified.« less
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Hotspot ignition using a Z-pinch precursor plasma in a magneto-inertial ICF scheme
NASA Astrophysics Data System (ADS)
Chittenden, J. P.; Vincent, P.; Jennings, C. A.; Ciardi, A.
2006-01-01
Precursor plasma flow is a common feature of wire array Z-pinches. The precursor flow represents a fraction of the mass of the array which arrives on the axis early in time and remains confined at high density by the inertia of further material bombarding the axis. Later on, the main implosion of the Z-pinch then compresses this precursor to substantially higher density. We show that if the same system can be generated with a Deuterium-Tritium plasma then the precursor provides an ideal target for a cylindrical magneto-inertial ICF scheme. The implosion of the DT Z-pinch produces a dense, low temperature shell which compressively heats the precursor target to high temperatures and tamps its expansion. The azimuthal magnetic field in the hotspot is sufficient to reduce the Larmor radius for the alpha particles to much less than the hotspot size, which dramatically reduces the pR required for ignition. A computational analysis of this approach is presented, including a study of the thermonuclear burn wave propagation. The robustness of the scheme with respect to instabilities, confinement time and drive parameters is examined. The results indicate that a high energy gain can be achieved using Z-pinches with 50-100 MA currents and a few hundred nanosecond rise-times. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.
Leung, T K; Lin, J M; Chu, C L; Wu, Y S; Chao, Y J
2012-12-01
Most applications of gradual pressure-decline compressing stockings (GPDCS) are used in the United States and Western European countries, with over a decade of clinical experiments. Up to know, there is no standard establishment of gradual pressure-decline compressing stockings for Asian patients with venous insufficiency and varicose vein formations. We collected data on volunteer candidates of varicose vein for general measurements and assessments and magnetic resonance imaging (MRI) by non-contrast enhanced MRV techniques, and for post processing data analysis. Clinical use of GPCDS provide a mild to moderate improvement in the varicose vein conditions of patients with deep venous insufficiency by improving their deep vein circulation, by general measurements; recording major symptoms and complaint; comfort and stretching/flexibility to the candidates after using GPDCS; and area changes/flow velocity changes/available hemoglobin changes in deep veins monitored by MRI. The benefits and data collected in these results may help in developing compression stockings standards in Taiwanese and Asian countries, and to establishing criterias for product sizes, compression levels, and related parameters.
Compression Behavior of Fluted-Core Composite Panels
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Oremont, Leonard; Guzman, J. Carlos; McCarville, Douglas; Rose, Cheryl A.; Hilburger, Mark W.
2011-01-01
In recent years, fiber-reinforced composites have become more accepted for aerospace applications. Specifically, during NASA s recent efforts to develop new launch vehicles, composite materials were considered and baselined for a number of structures. Because of mass and stiffness requirements, sandwich composites are often selected for many applications. However, there are a number of manufacturing and in-service concerns associated with traditional honeycomb-core sandwich composites that in certain instances may be alleviated through the use of other core materials or construction methods. Fluted-core, which consists of integral angled web members with structural radius fillers spaced between laminate face sheets, is one such construction alternative and is considered herein. Two different fluted-core designs were considered: a subscale design and a full-scale design sized for a heavy-lift-launch-vehicle interstage. In particular, axial compression of fluted-core composites was evaluated with experiments and finite-element analyses (FEA); axial compression is the primary loading condition in dry launch-vehicle barrel sections. Detailed finite-element models were developed to represent all components of the fluted-core construction, and geometrically nonlinear analyses were conducted to predict both buckling and material failures. Good agreement was obtained between test data and analyses, for both local buckling and ultimate material failure. Though the local buckling events are not catastrophic, the resulting deformations contribute to material failures. Consequently, an important observation is that the material failure loads and modes would not be captured by either linear analyses or nonlinear smeared-shell analyses. Compression-after-impact (CAI) performance of fluted core composites was also investigated by experimentally testing samples impacted with 6 ft.-lb. impact energies. It was found that such impacts reduced the ultimate load carrying capability by approximately 40% on the subscale test articles and by less than 20% on the full-scale test articles. Nondestructive inspection of the damage zones indicated that the detectable damage was limited to no more than one flute on either side of any given impact. More study is needed, but this may indicate that an inherent damage-arrest capability of fluted core could provide benefits over traditional sandwich designs in certain weight-critical applications.
Tidal Amplitude for a Self-gravitating, Compressible Sphere
NASA Astrophysics Data System (ADS)
Hurford, T. A.; Greenberg, R.
2001-11-01
Most modern evaluations of tidal amplitude derive from the approach presented by Love [1]. Love's analysis for a homogeneous sphere assumed an incompressible material, which required introduction of a non-rigorously justified pressure term. We solve the more general case of arbitrary compressibility, which allows for a more straightforward derivation. We find the h2 love number of a body of radius R, density ρ , and surface gravity g to be h2 = \\Bigg[\\frac{{5}/{2}}{1+\\frac{19 \\mu}{2 \\rho g R}}\\Bigg] \\Bigg\\{ \\frac{2 \\rho g R (35+28\\frac{\\mu}{\\lambda}) + 19 \\mu (35+28\\frac{\\mu}{\\lambda})} {2 \\rho g R (35+31\\frac{\\mu}{\\lambda}) + 19 \\mu (35+{490}/{19}\\frac{\\mu}{\\lambda})}\\Bigg\\} λ the Lamé constant. This h2 is the product of Love's expression for h2 (in square brackets) and a ``compressibility-correction'' factor (in \\{\\} brackets). Unlike Love's expression, this result is valid for any degree of compressibility (i.e. any λ ). For the incompressible case (λ -> ∞ ) the correction factor approaches 1, so that h2 matches the classical form given by Love. In reality, of course, materials are not incompressible and the difference between our solution and Love's is significant. Assuming that the elastic terms dominate over the gravitational contribution (i.e. 19 μ /(2 ρ g R) >> 1), our solution can be ~ 7% percent larger than Love's solution for large μ /λ . If the gravity dominates (i.e. 19 μ /(2 ρ g R) << 1), our solution is ~ 10 % smaller than Love's solution for large μ /λ . For example, a rocky body (μ /λ ~ 1 [2]), Earth-sized (19μ /(2 ρ g R) ~ 1) body, h2 would be reduced by about 1% from the classical formula. Similarly, under some circumstances the l2 Love number for a uniform sphere could be 22% smaller than Love's evaluation. [1] Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York Dover Publications, 1944 [2] Kaula, W.M., An Introduction to Planetary Physics: The Terrestrial Planets, John Wiley & Sons, Inc., 1968
Maximizing the Semi-Major Axis for a Freely Coning Solar Sailcraft.
1984-12-01
than ten degrees seem to be veil behaved and predictable in that there are no other local maxima within a 10’ radius of any given maxima. Convergence...and Mcdi. V.J.. " Analitical Evaluation of Solar Radiation Induced Orbital Perturbation of Space Structures" Journal of AstronaMUCIca Sincs Vol. XXV. No
Feeling Wall Tension in an Interactive Demonstration of Laplace's Law
ERIC Educational Resources Information Center
Letic, Milorad
2012-01-01
Laplace's Law plays a major role in explanations of the wall tension of structures like blood vessels, the bladder, the uterus in pregnancy, bronchioles, eyeballs, and the behavior of aneurisms or the enlarged heart. The general relation of Laplace's law, expressing that the product of the radius of curvature (r) and pressure (P) is equal to wall…
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... requirements of this section and the applicable individual specification to minimize the potential for the loss...
Vasudeva, Mohit; Sharma, Sumeet; Mohapatra, S K; Kundu, Krishnendu
2016-01-01
As a substitute to petroleum-derived diesel, biodiesel has high potential as a renewable and environment friendly energy source. For petroleum importing countries the choice of feedstock for biodiesel production within the geographical region is a major influential factor. Crude rice bran oil is found to be good and viable feedstock for biodiesel production. A two step esterification is carried out for higher free fatty acid crude rice bran oil. Blends of 10, 20 and 40 % by vol. crude rice bran biodiesel are tested in a variable compression ratio diesel engine at compression ratio 15, 16, 17 and 18. Engine performance and exhaust emission parameters are examined. Cylinder pressure-crank angle variation is also plotted. The increase in compression ratio from 15 to 18 resulted in 18.6 % decrease in brake specific fuel consumption and 14.66 % increase in brake thermal efficiency on an average. Cylinder pressure increases by 15 % when compression ratio is increased. Carbon monoxide emission decreased by 22.27 %, hydrocarbon decreased by 38.4 %, carbon dioxide increased by 17.43 % and oxides of nitrogen as NOx emission increased by 22.76 % on an average when compression ratio is increased from 15 to 18. The blends of crude rice bran biodiesel show better results than diesel with increase in compression ratio.
Theoretical studies on band structure and optical gain of GaInAsN/GaAs /GaAs cylindrical quantum dot
NASA Astrophysics Data System (ADS)
Mal, Indranil; Samajdar, Dip Prakash; John Peter, A.
2018-07-01
Electronic band structure, effective masses, band offsets and optical gain of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot systems are investigated using 10 band k·p Hamiltonian for various nitrogen and indium concentrations. The calculations include the effects of strain generated due to the lattice mismatch and the effective band gap of GaInAsN/GaAs heterostructures. The variation of conduction band, light hole and heavy hole band offsets with indium and nitrogen compositions in the alloy are obtained. The band structure of Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot is found in the crystal directions Δ (100) and Λ (111) using 10 band k·p Hamiltonian. The optical gain of the cylindrical quantum dot structures as functions of surface carrier concentration and the dot radius is investigated. Our results show that the tensile strain of 1.34% generates a band gap of 0.59 eV and the compressive strain of 2.2% produces a band gap of 1.28 eV and the introduction of N atoms has no effect on the spin orbit split off band. The variation of optical gain with the dot size and the carrier concentration indicates that the optical gain increases with the decrease in the radius of the quantum dot. The results may be useful for the potential applications in optical devices.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
A SUPER-EARTH TRANSITING A NAKED-EYE STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winn, Joshua N.; Matthews, Jaymie M.; Kallinger, Thomas
We have detected transits of the innermost planet 'e' orbiting 55 Cnc (V = 6.0), based on two weeks of nearly continuous photometric monitoring with the MOST space telescope. The transits occur with the period (0.74 days) and phase that had been predicted by Dawson and Fabrycky, and with the expected duration and depth for the crossing of a Sun-like star by a hot super-Earth. Assuming the star's mass and radius to be 0.963{sup +0.051}{sub -0.029} M{sub sun} and 0.943 {+-} 0.010 R{sub sun}, the planet's mass, radius, and mean density are 8.63 {+-} 0.35 M{sub +}, 2.00 {+-} 0.14more » R{sub +}, and 5.9{sup +1.5}{sub -1.1} g cm{sup -3}, respectively. The mean density is comparable to that of Earth, despite the greater mass and consequently greater compression of the interior of 55 Cnc e. This suggests a rock-iron composition supplemented by a significant mass of water, gas, or other light elements. Outside of transits, we detected a sinusoidal signal resembling the expected signal due to the changing illuminated phase of the planet, but with a full range (168 {+-} 70 ppm) too large to be reflected light or thermal emission. This signal has no straightforward interpretation and should be checked with further observations. The host star of 55 Cnc e is brighter than that of any other known transiting planet, which will facilitate future investigations.« less
THE INTERSTELLAR MEDIUM IN THE KEPLER SEARCH VOLUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Marshall C.; Redfield, Seth; Jensen, Adam G., E-mail: mjohnson@astro.as.utexas.edu
2015-07-10
The properties of the interstellar medium (ISM) surrounding a planetary system can impact planetary climate through a number of mechanisms, including changing the size of the astrosphere (one of the major shields for cosmic rays) as well as direct deposition of material into planetary atmospheres. In order to constrain the ambient ISM conditions for exoplanetary systems, we present observations of interstellar Na i and K i absorption toward seventeen early type stars in the Kepler prime mission field of view (FOV). We identify 39 Na i and 8 K i velocity components, and attribute these to 11 ISM clouds. Sixmore » of these are detected toward more than one star, and for these clouds we put limits on the cloud properties, including distance and hydrogen number density. We identify one cloud with significant (≳1.5 cm{sup −3}) hydrogen number density located within the nominal ∼100 pc boundary of the Local Bubble. We identify systems with confirmed planets within the Kepler FOV that could lie within these ISM clouds, and estimate upper limits on the astrosphere sizes of these systems under the assumption that they do lie within these clouds. Under this condition, the Kepler-20, 42, and 445 multiplanet systems could have compressed astrospheres much smaller than the present-day heliosphere. Among the known habitable zone planet hosts, Kepler-186 could have an astrosphere somewhat smaller than the heliosphere, while Kepler-437 and KOI-4427 could have astrospheres much larger than the heliosphere. The thick disk star Kepler-444 may have an astrosphere just a few AU in radius.« less
Rajapaksha, Ajith; Stanley, Christopher B.; Todd, Brian A.
2015-02-17
Macromolecular crowding can alter the structure and function of biological macromolecules. We used small angle scattering (SAS) to measure the change in size of a protein complex, superoxide dismutase (SOD), induced by macromolecular crowding. Crowding was induced using 400 MW polyethylene glycol (PEG), triethylene glycol (TEG), methyl- -glucoside ( -MG) and trimethylamine N-oxide (TMAO). Parallel small angle neutron scattering (SANS) and small angle x-ray scattering (SAXS) allowed us to unambiguously attribute apparent changes in radius of gyration to changes in the structure of SOD. For a 40% PEG solution, we find that the volume of SOD was reduced by 9%.more » Considering the osmotic pressure due to PEG, this deformation corresponds to a highly compressible structure. SAXS done in the presence of TEG suggests that for further deformation beyond a 9% decrease in volume the resistance to deformation may increase dramatically.« less
Vibration characteristics of a steadily rotating slender ring
NASA Technical Reports Server (NTRS)
Lallman, F. J.
1980-01-01
Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.
Benchmark cyclic plastic notch strain measurements
NASA Technical Reports Server (NTRS)
Sharpe, W. N., Jr.; Ward, M.
1983-01-01
Plastic strains at the roots of notched specimens of Inconel 718 subjected to tension-compression cycling at 650 C are reported. These strains were measured with a laser-based technique over a gage length of 0.1 mm and are intended to serve as 'benchmark' data for further development of experimental, analytical, and computational approaches. The specimens were 250 mm by 2.5 mm in the test section with double notches of 4.9 mm radius subjected to axial loading sufficient to cause yielding at the notch root on the tensile portion of the first cycle. The tests were run for 1000 cycles at 10 cpm or until cracks initiated at the notch root. The experimental techniques are described, and then representative data for the various load spectra are presented. All the data for each cycle of every test are available on floppy disks from NASA.
NASA Astrophysics Data System (ADS)
Bambina, Alexandre; Yamaguchi, Shuhei; Iwai, Akinori; Miyagi, Shigeyuki; Sakai, Osamu
2018-01-01
Limitation of the cloak-size reduction is investigated numerically by a finite-difference time-domain (FDTD) method. A metallic pole that imitates an antenna is cloaked with an anisotropic and parameter-gradient medium against electromagnetic-wave propagation in microwave range. The cloaking structure is a metamaterial submerged in a plasma confined in a vacuum chamber made of glass. The smooth-permittivity plasma can be compressed in the radial direction, which enables us to decrease the size of the cloak. Theoretical analysis is performed numerically by comparing scattering waves in various cases; there exists a high reduction of the scattering wave when the radius of the cloak is larger than a quarter of one wavelength. This result indicates that the required size of the cloaking layer is more than an object scale in the Rayleigh scattering regime.
Function representation with circle inversion map systems
NASA Astrophysics Data System (ADS)
Boreland, Bryson; Kunze, Herb
2017-01-01
The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lopez, Osvaldo F.
1991-01-01
Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.
Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg
2015-01-01
We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843
Flow in a discrete slotted nozzle with massive injection. [water table tests
NASA Technical Reports Server (NTRS)
Perkins, H. C.
1974-01-01
An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.
Random lattice structures. Modelling, manufacture and FEA of their mechanical response
NASA Astrophysics Data System (ADS)
Maliaris, G.; Sarafis, I. T.; Lazaridis, T.; Varoutoglou, A.; Tsakataras, G.
2016-11-01
The implementation of lightweight structures in various applications, especially in Aerospace/ Automotive industries and Orthopaedics, has become a necessity due to their exceptional mechanical properties with respect to reduced weight. In this work we present a Voronoi tessellation based algorithm, which has been developed for modelling stochastic lattice structures. With the proposed algorithm, is possible to generate CAD geometry with controllable structural parameters, such as porosity, cell number and strut thickness. The digital structures were transformed into physical objects through the combination of 3D printing technics and investment casting. This process was applied to check the mechanical behaviour of generated digital models. Until now, the only way to materialize such structures into physical objects, was feasible through 3D printing methods such as Selective Laser Sintering/ Melting (SLS/ SLM). Investment casting possesses numerous advantages against SLS or SLA, with the major one being the material variety. On the other hand, several trials are required in order to calibrate the process parameters to have successful castings, which is the major drawback of investment casting. The manufactured specimens were subjected to compression tests, where their mechanical response was registered in the form of compressive load - displacement curves. Also, a finite element model was developed, using the specimens’ CAD data and compression test parameters. The FE assisted calculation of specimen plastic deformation is identical with the one of the physical object, which validates the conclusions drawn from the simulation results. As it was observed, strut contact is initiated when specimen deformation is approximately 5mm. Although FE calculated compressive force follows the same trend for the first 3mm of compression, then diverges because of the elasto-plastic FE model type definition and the occurred remeshing steps.
Role of physical properties of liquids in cavitation erosion
NASA Technical Reports Server (NTRS)
Thiruvengadam, A.
1974-01-01
The dependence of erosion rates on the ambient temperature of water is discussed. The assumption that the gas inside the bubble is compressed adiabatically during collapse gives better agreement with experiments than the assumption that the gas is isothermally compressed. Acoustic impedance is an important liquid parameter that governs the erosion intensity in vibratory devices. The investigation reveals that the major physical properties of liquids governing the intensity of erosion include density, sound speed, surface tension, vapor pressure, gas content, and nuclei distribution.
Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.
Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming
2016-07-28
Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plavchan, Peter; Bilinski, Christopher
The discovery of ''hot Jupiters'' very close to their parent stars confirmed that Jovian planets migrate inward via several potential mechanisms. We present empirical constraints on planet migration halting mechanisms. We compute model density functions of close-in exoplanets in the orbital semi-major axis-stellar mass plane to represent planet migration that is halted via several mechanisms, including the interior 1:2 resonance with the magnetospheric disk truncation radius, the interior 1:2 resonance with the dust sublimation radius, and several scenarios for tidal halting. The models differ in the predicted power-law dependence of the exoplanet orbital semi-major axis as a function of stellarmore » mass, and thus we also include a power-law model with the exponent as a free parameter. We use a Bayesian analysis to assess the model success in reproducing empirical distributions of confirmed exoplanets and Kepler candidates that orbit interior to 0.1 AU. Our results confirm a correlation of the halting distance with stellar mass. Tidal halting provides the best fit to the empirical distribution of confirmed Jovian exoplanets at a statistically robust level, consistent with the Kozai mechanism and the spin-orbit misalignment of a substantial fraction of hot Jupiters. We can rule out migration halting at the interior 1:2 resonances with the magnetospheric disk truncation radius and the interior 1:2 resonance with the dust disk sublimation radius, a uniform random distribution, and a distribution with no dependence on stellar mass. Note that our results do not rule out Type-II migration, but rather eliminate the role of a circumstellar disk in stopping exoplanet migration. For Kepler candidates, which have a more restricted range in stellar mass compared to confirmed planets, we are unable to discern between the tidal dissipation and magnetospheric disk truncation braking mechanisms at a statistically significant level. The power-law model favors exponents in the range of 0.38-0.9. This is larger than that predicted for tidal halting (0.23-0.33), which suggests that additional physics may be missing in the tidal halting theory.« less
Cecere, N; Hakem, S; Demoulin, N; Hubert, C; Jabbour, N; Goffette, P; Pirson, Y; Morelle, J
2015-10-01
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited kidney disorder, and liver involvement represents one of its major extra-renal manifestations. Although asymptomatic in most patients, polycystic liver disease (PLD) can lead to organ compression, severe disability and even become life-threatening, thereby warranting early recognition and appropriate management. We report the case of a 56-year-old woman with ADPKD and severe weight loss secondary to a giant hepatic cyst compressing the pylorus. Partial hepatectomy was required after failure of cyst aspiration and sclerotherapy, and patient's condition improved rapidly. We discuss the presentation and classification of compressing liver cysts, and the available therapeutic alternatives for this potentially severe complication of ADPKD.
Vinay, S; Khan, S K; Braybrooke, J R
2011-01-01
Vertebral haemangiomas are recognized to be one of the commonest benign tumours of the vertebral column, occurring mostly in the thoracic spine. The vast majority of these are asymptomatic. Infrequently, these can turn symptomatic and cause neurological deficit (cord compression) through any of four reported mechanisms: (1) epidural extension; (2) expansion of the involved vertebra(e) causing spinal canal stenosis; (3) spontaneous epidural haemorrhage; (4) pathological burst fracture. Thoracic haemangiomas have been reported to be more likely to produce cord compression than lumbar haemangiomas. A forty-nine year old male with acute onset spinal cord compression from a pathological fracture in a first lumbar vertebral haemangioma. An MRI delineated the haemangioma and extent of bleeding that caused the cord compression. These were confirmed during surgery and the haematoma was evacuated. The spine was instrumented from T12 to L2, and a cement vertebroplasty was performed intra-operatively. Written consent for publication was obtained from the patient. The junctional location of the first lumbar vertebra, and the structural weakness from normal bone being replaced by the haemangioma, probably caused it to fracture under axial loading. This pathological fracture caused bleeding from the vascularized bone, resulting in cord compression.
Vinay, S; Khan, SK; Braybrooke, JR
2011-01-01
Context Vertebral haemangiomas are recognized to be one of the commonest benign tumours of the vertebral column, occurring mostly in the thoracic spine. The vast majority of these are asymptomatic. Infrequently, these can turn symptomatic and cause neurological deficit (cord compression) through any of four reported mechanisms: (1) epidural extension; (2) expansion of the involved vertebra(e) causing spinal canal stenosis; (3) spontaneous epidural haemorrhage; (4) pathological burst fracture. Thoracic haemangiomas have been reported to be more likely to produce cord compression than lumbar haemangiomas. Findings A forty-nine year old male with acute onset spinal cord compression from a pathological fracture in a first lumbar vertebral haemangioma. An MRI delineated the haemangioma and extent of bleeding that caused the cord compression. These were confirmed during surgery and the haematoma was evacuated. The spine was instrumented from T12 to L2, and a cement vertebroplasty was performed intra-operatively. Written consent for publication was obtained from the patient. Clinical Relevance The junctional location of the first lumbar vertebra, and the structural weakness from normal bone being replaced by the haemangioma, probably caused it to fracture under axial loading. This pathological fracture caused bleeding from the vascularized bone, resulting in cord compression. PMID:21756575
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
NRGC: a novel referential genome compression algorithm.
Saha, Subrata; Rajasekaran, Sanguthevar
2016-11-15
Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Compressive sensing for efficient health monitoring and effective damage detection of structures
NASA Astrophysics Data System (ADS)
Jayawardhana, Madhuka; Zhu, Xinqun; Liyanapathirana, Ranjith; Gunawardana, Upul
2017-02-01
Real world Structural Health Monitoring (SHM) systems consist of sensors in the scale of hundreds, each sensor generating extremely large amounts of data, often arousing the issue of the cost associated with data transfer and storage. Sensor energy is a major component included in this cost factor, especially in Wireless Sensor Networks (WSN). Data compression is one of the techniques that is being explored to mitigate the effects of these issues. In contrast to traditional data compression techniques, Compressive Sensing (CS) - a very recent development - introduces the means of accurately reproducing a signal by acquiring much less number of samples than that defined by Nyquist's theorem. CS achieves this task by exploiting the sparsity of the signal. By the reduced amount of data samples, CS may help reduce the energy consumption and storage costs associated with SHM systems. This paper investigates CS based data acquisition in SHM, in particular, the implications of CS on damage detection and localization. CS is implemented in a simulation environment to compress structural response data from a Reinforced Concrete (RC) structure. Promising results were obtained from the compressed data reconstruction process as well as the subsequent damage identification process using the reconstructed data. A reconstruction accuracy of 99% could be achieved at a Compression Ratio (CR) of 2.48 using the experimental data. Further analysis using the reconstructed signals provided accurate damage detection and localization results using two damage detection algorithms, showing that CS has not compromised the crucial information on structural damages during the compression process.
NASA Astrophysics Data System (ADS)
Gerbault, Muriel; Fontaine, Fabrice J.; Rabinowicz, Michel; Bystricky, Misha
2017-03-01
Surface volcanism at la Réunion and Hawaii occurs with an offset of 150-180 km upstream to the plume axis with respect to the plate motion. This striking observation raises questions about the forcing of plume-lithosphere thermo-mechanical interactions on melt trajectories beneath these islands. Based on visco-elasto-plastic numerical models handled at kilometric resolution, we propose to explain this offset by the development of compressional stresses at the base of the lithosphere, that result from elastic plate bending above the upward load exerted by the plume head. This horizontal compression adopts a disc shape centered around the plume axis: (i) it is 20 km thick, (ii) it has a 150 km radius, (iii) it lays at the base of the elastic part of the lithosphere, i.e., around ∼50-70 km depth where the temperature varies from ∼600 °C to ∼750 °C, (iv) it lasts for 5 to 10 My in an oceanic plate of age greater than 70 My, and (vi) it is controlled by the visco-elastic relaxation time at ∼50-70 km depth. This period of time exceeds the time during which both the Somalian/East-African and Pacific plates drift over the Reunion and Hawaii plumes, respectively. This indicates that this basal compression is actually a persistent feature. It is inferred that the buoyant melts percolating in the plume head pond below this zone of compression and eventually spread laterally until the most compressive principal elastic stresses reverse to the vertical, i.e., ∼150 km away from the plume head. There, melts propagate through dikes upwards to ∼35 km depth, where the plate curvature reverses and ambient compression diminishes. This 30-35 km depth may thus host a magmatic reservoir where melts transported by dykes pond. Only after further magmatic differentiation can dykes resume their ascension up to the surface and begin forming a volcanic edifice. As the volcano grows because of melt accumulation at the top of the plate, the lithosphere is flexed downwards, inducing extra tensile stress at 30-35 km depth and compression at ∼15 km depth (induced by the edifice load). It implies that now the melts pond at ∼15 km and form another magmatic reservoir lying just underneath the crust. These processes explain the ponding of primary (shield) melts at ∼35 km and ∼15 km depths as recorded below La Reunion, Mauritius or Hawaii volcanoes, all shifted by ∼150 km with respect to the plume axis.
49 CFR 178.345-8 - Accident damage protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accidental loss of lading. The device must break at no more than 70 percent of the load that would be... major radius of the tank shell. The device must break at no more than 70 percent of the load that would... for the loss of lading due to an accident. (1) Any dome, sump, or washout cover plate projecting from...
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
Rapid-Rate Compression Testing of Sheet Materials at High Temperatures
NASA Technical Reports Server (NTRS)
Bernett, E. C.; Gerberich, W. W.
1961-01-01
This Report describes the test equipment that was developed and the procedures that were used to evaluate structural sheet-material compression properties at preselected constant strain rates and/or loads. Electrical self-resistance was used to achieve a rapid heating rate of 200 F/sec. Four materials were tested at maximum temperatures which ranged from 600 F for the aluminum alloy to 2000 F for the Ni-Cr-Co iron-base alloy. Tests at 0.1, 0.001, and 0.00001 in./in./sec showed that strain rate has a major effect on the measured strength, especially at the high temperatures. The tests, under conditions of constant temperature and constant compression stress, showed that creep deformation can be a critical factor even when the time involved is on the order of a few seconds or less. The theoretical and practical aspects of rapid-rate compression testing are presented, and suggestions are made regarding possible modifications of the equipment which would improve the over-all capabilities.
Low-complexity transcoding algorithm from H.264/AVC to SVC using data mining
NASA Astrophysics Data System (ADS)
Garrido-Cantos, Rosario; De Cock, Jan; Martínez, Jose Luis; Van Leuven, Sebastian; Cuenca, Pedro; Garrido, Antonio
2013-12-01
Nowadays, networks and terminals with diverse characteristics of bandwidth and capabilities coexist. To ensure a good quality of experience, this diverse environment demands adaptability of the video stream. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a low-complexity algorithm to convert an H.264/AVC bitstream without scalability to scalable bitstreams with temporal scalability in baseline and main profiles by accelerating the mode decision task of the scalable video coding encoding stage using machine learning tools. The results show that when our technique is applied, the complexity is reduced by 87% while maintaining coding efficiency.
Monitoring and diagnosis of Alzheimer's disease using noninvasive compressive sensing EEG
NASA Astrophysics Data System (ADS)
Morabito, F. C.; Labate, D.; Morabito, G.; Palamara, I.; Szu, H.
2013-05-01
The majority of elderly with Alzheimer's Disease (AD) receive care at home from caregivers. In contrast to standard tethered clinical settings, a wireless, real-time, body-area smartphone-based remote monitoring of electroencephalogram (EEG) can be extremely advantageous for home care of those patients. Such wearable tools pave the way to personalized medicine, for example giving the opportunity to control the progression of the disease and the effect of drugs. By applying Compressive Sensing (CS) techniques it is in principle possible to overcome the difficulty raised by smartphones spatial-temporal throughput rate bottleneck. Unfortunately, EEG and other physiological signals are often non-sparse. In this paper, it is instead shown that the EEG of AD patients becomes actually more compressible with the progression of the disease. EEG of Mild Cognitive Impaired (MCI) subjects is also showing clear tendency to enhanced compressibility. This feature favor the use of CS techniques and ultimately the use of telemonitoring with wearable sensors.
Compressional behavior of omphacite to 47 GPa
Zhang, Dongzhou; Hu, Yi; Dera, Przemyslaw K.
2016-07-08
Omphacite is an important mineral component of eclogite. Single crystal synchrotron X-ray diffraction data on natural (Ca,Na)(Mg,Fe,Al)Si 2O 6 omphacite have been collected at the Advanced Photon Source beamlines 13-BM-C and 13-ID-D up to 47 GPa at ambient temperature. Unit cell parameter and crystal structure refinements were carried out to constrain the isothermal equation of state and compression mechanism. The 3rd order Birch-Murnaghan equation of state (BM3) fit of all data gives V o = 423.9(3) Å3, K To = 116(2) GPa and K To’ = 4.3(2). These elastic parameters are consistent with the general trend of the diopside-jadeite join.more » The eight-coordinated polyhedra (M2 and M21) are the most compressible, and contribute to majority of the unit cell compression, while the SiO 4 tetrahedra (Si1 and Si2) behave as rigid structural units and are the most incompressible. Axial compressibilities are determined by fitting linearized BM 3 equation of state to pressure dependences of unit cell parameters. Throughout the investigated pressure range, the b-axis is more compressible than the c-axis. Here, the axial compressibility of the α-axis is the largest among the three axes at 0 GPa, yet it quickly drops to the smallest at pressures above 5 GPa, which is explained by the rotation of the stiffest compression axis toward the a-axis with the increase of pressure.« less
Soderdahl, D W; Henderson, S R; Hansberry, K L
1997-05-01
Intermittent pneumatic compression of the calf and/or thigh effectively decreases the incidence of deep venous thrombosis and other thrombotic sequelae but clinical data comparing these modalities are currently lacking. A total of 90 patients undergoing major urological surgery was randomly assigned to receive calf length or thigh length pneumatic compression for antithrombotic prophylaxis. Duplex ultrasound of the lower extremities was performed preoperatively and twice postoperatively to evaluate for deep venous thrombosis. Health care providers in the operating room, recovery room and ward were asked to compare the compression systems, and a cost analysis was performed. A total of 47 patients wore the thigh length sequential pneumatic sleeves and 43 wore calf length uniform compression systems. A pulmonary embolus without evidence of deep venous thrombosis was detected in 1 patient (2%) using the thigh length system. A thrombus was detected in the common femoral vein by duplex ultrasonography in 1 patient (2%) with the calf length system. Nursing personnel found the calf length sleeves easier to apply and more comfortable by patient account but they were satisfied with both systems. There was a significant cost savings with the calf length pneumatic compression system. Calf and thigh length pneumatic compression systems similarly decrease the risk of deep venous thrombosis in patients undergoing urological surgery. The calf length system has the added advantage of being less expensive and easier to use.
Mantsopoulos, Konstantinos; Klintworth, Nils; Iro, Heinrich; Bozzato, Alessandro
2015-09-01
Our aim in this study was to determine normal shear wave elastography (SWE) values for the parenchyma of the major salivary glands and to evaluate the influences of gender, smoking, side and type of gland and varying amounts of ultrasound probe pressure on SWE values. Twenty-five consecutive healthy patients were examined with ultrasound. SWE velocities were measured with acoustic radiation force imaging in the hilum and central region of both glands with "normal" and very low pressure. Mean SWE velocities were 1.854 m/s for the parotid gland and 1.932 m/s for the submandibular gland. No statistically significant differences were detected between males and females, smokers and non-smokers, parotid and submandibular gland and left and right sides. Greater pre-compression with the ultrasound probe resulted in a statistically significant increase in the SWE values of both salivary glands (p < 0.000). The degree of pre-compression by the ultrasound transducer should be standardized, so that the reliability and reproducibility of this innovative method can be improved. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Alterations of bone microstructure and strength in end-stage renal failure.
Trombetti, A; Stoermann, C; Chevalley, T; Van Rietbergen, B; Herrmann, F R; Martin, P-Y; Rizzoli, R
2013-05-01
End-stage renal disease (ESRD) patients have a high risk of fractures. We evaluated bone microstructure and finite-element analysis-estimated strength and stiffness in patients with ESRD by high-resolution peripheral computed tomography. We observed an alteration of cortical and trabecular bone microstructure and of bone strength and stiffness in ESRD patients. Fragility fractures are common in ESRD patients on dialysis. Alterations of bone microstructure contribute to skeletal fragility, independently of areal bone mineral density. We compared microstructure and finite-element analysis estimates of strength and stiffness by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 33 ESRD patients on dialysis (17 females and 16 males; mean age, 47.0 ± 12.6 years) and 33 age-matched healthy controls. Dialyzed women had lower radius and tibia cortical density with higher radius cortical porosity and lower tibia cortical thickness, compared to controls. Radius trabecular number was lower with higher heterogeneity of the trabecular network. Male patients displayed only a lower radius cortical density. Radius and tibia cortical thickness correlated negatively with bone-specific alkaline phosphatase (BALP). Microstructure did not correlate with parathyroid hormone (PTH) levels. Cortical porosity correlated positively with "Kidney Disease: Improving Global Outcomes" working group PTH level categories (r = 0.36, p < 0.04). BMI correlated positively with trabecular number (r = 0.4, p < 0.02) and negatively with trabecular spacing (r = -0.37, p < 0.03) and trabecular network heterogeneity (r = -0.4, p < 0.02). Biomechanics positively correlated with BMI and negatively with BALP. Cortical and trabecular bone microstructure and calculated bone strength are altered in ESRD patients, predominantly in women. Bone microstructure and biomechanical assessment by HR-pQCT may be of major clinical relevance in the evaluation of bone fragility in ESRD patients.
An efficient and extensible approach for compressing phylogenetic trees
2011-01-01
Background Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. Results On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. Conclusions TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community. PMID:22165819
An efficient and extensible approach for compressing phylogenetic trees.
Matthews, Suzanne J; Williams, Tiffani L
2011-10-18
Biologists require new algorithms to efficiently compress and store their large collections of phylogenetic trees. Our previous work showed that TreeZip is a promising approach for compressing phylogenetic trees. In this paper, we extend our TreeZip algorithm by handling trees with weighted branches. Furthermore, by using the compressed TreeZip file as input, we have designed an extensible decompressor that can extract subcollections of trees, compute majority and strict consensus trees, and merge tree collections using set operations such as union, intersection, and set difference. On unweighted phylogenetic trees, TreeZip is able to compress Newick files in excess of 98%. On weighted phylogenetic trees, TreeZip is able to compress a Newick file by at least 73%. TreeZip can be combined with 7zip with little overhead, allowing space savings in excess of 99% (unweighted) and 92%(weighted). Unlike TreeZip, 7zip is not immune to branch rotations, and performs worse as the level of variability in the Newick string representation increases. Finally, since the TreeZip compressed text (TRZ) file contains all the semantic information in a collection of trees, we can easily filter and decompress a subset of trees of interest (such as the set of unique trees), or build the resulting consensus tree in a matter of seconds. We also show the ease of which set operations can be performed on TRZ files, at speeds quicker than those performed on Newick or 7zip compressed Newick files, and without loss of space savings. TreeZip is an efficient approach for compressing large collections of phylogenetic trees. The semantic and compact nature of the TRZ file allow it to be operated upon directly and quickly, without a need to decompress the original Newick file. We believe that TreeZip will be vital for compressing and archiving trees in the biological community.
Böl, Markus; Kruse, Roland; Ehret, Alexander E; Leichsenring, Kay; Siebert, Tobias
2012-10-11
Due to the increasing developments in modelling of biological material, adequate parameter identification techniques are urgently needed. The majority of recent contributions on passive muscle tissue identify material parameters solely by comparing characteristic, compressive stress-stretch curves from experiments and simulation. In doing so, different assumptions concerning e.g. the sample geometry or the degree of friction between the sample and the platens are required. In most cases these assumptions are grossly simplified leading to incorrect material parameters. In order to overcome such oversimplifications, in this paper a more reliable parameter identification technique is presented: we use the inverse finite element method (iFEM) to identify the optimal parameter set by comparison of the compressive stress-stretch response including the realistic geometries of the samples and the presence of friction at the compressed sample faces. Moreover, we judge the quality of the parameter identification by comparing the simulated and experimental deformed shapes of the samples. Besides this, the study includes a comprehensive set of compressive stress-stretch data on rabbit soleus muscle and the determination of static friction coefficients between muscle and PTFE. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy metabolism of intervertebral disc under mechanical loading.
Wang, Chong; Gonzales, Silvia; Levene, Howard; Gu, Weiyong; Huang, Chun-Yuh Charles
2013-11-01
Intervertebral disc (IVD) degeneration is closely associated with low back pain (LBP), which is a major health concern in the U.S. Cellular biosynthesis of extracellular matrix (ECM), which is important for maintaining tissue integrity and preventing tissue degeneration, is an energy demanding process. Due to impaired nutrient support in avascular IVD, adenosine triphosphate (ATP) supply could be a limiting factor for maintaining normal ECM synthesis. Therefore, the objective of this study was to investigate the energy metabolism in the annulus fibrosus (AF) and nucleus pulposus (NP) of porcine IVD under static and dynamic compressions. Under compression, pH decreased and the contents of lactate and ATP increased significantly in both AF and NP regions, suggesting that compression can promote ATP production via glycolysis and reduce pH by increasing lactate accumulation. A high level of extracellular ATP content was detected in the NP region and regulated by compressive loading. Since ATP can serve not only as an intra-cellular energy currency, but also as a regulator of a variety of cellular activities extracellularly through the purinergic signaling pathway, our findings suggest that compression-mediated ATP metabolism could be a novel mechanobiological pathway for regulating IVD metabolism. © 2013 Orthopaedic Research Society.
Kröll, Josef; Spörri, Jörg; Gilgien, Matthias; Schwameder, Hermann; Müller, Erich
2016-01-01
Background Kinetic energy (Ekin) increases with speed by the power of 2 and is considered a major risk factor for injuries in alpine ski racing. There is no empirical knowledge about the effect of ski geometry on Ekin. Consequently, the aim of this study was to investigate the influence of sidecut radius on the progress of Ekin while skiing through a multigate section in giant slalom (GS). Methods 5 European-Cup level athletes skied on three different pairs of GS skis varying in sidecut radii (30, 35 and 40 m). Each athlete's position over time within a six gate section (including flat and steep terrain) was captured by the use of a differential Global Navigational Satellite System. Ekin, speed, time and path length were analysed for each pair of skis used. Results When using skis with greater sidecut radius, average Ekin was significantly lower over the entire six gate section, but not locally at every turn cycle. Particular decreases of Ekin were observed for both turns on the flat terrain, as well as for the turn at the terrain transition and the first turn on the steep terrain. The observed decreases in Ekin were found to be primarily explainable by increases in turn time. Conclusions With respect to typical sport mechanisms that cause severe knee injuries, using skis with greater sidecut radius potentially provides additional injury preventative gain, particularly in specific areas within a run. However, this injury preventative gain during falls in GS should not be overestimated. PMID:26702015
Catastrophic Thinking Is Associated With Finger Stiffness After Distal Radius Fracture Surgery.
Teunis, Teun; Bot, Arjan G J; Thornton, Emily R; Ring, David
2015-10-01
To identify demographic, injury-related, or psychologic factors associated with finger stiffness at suture removal and 6 weeks after distal radius fracture surgery. We hypothesize that there are no factors associated with distance to palmar crease at suture removal. Prospective cohort study. Level I Academic Urban Trauma Center. One hundred sixteen adult patients underwent open reduction and internal fixation of their distal radius fractures; 96 of whom were also available 6 weeks after surgery. None. At suture removal, we recorded patients' demographics, AO fracture type, carpal tunnel release at the time of surgery, pain catastrophizing scale, Whiteley Index, Patient Health Questionnaire-9, and disabilities of the arm, shoulder, and hand questionnaire, 11-point ordinal measure of pain intensity, distance to palmar crease, and active flexion of the thumb through the small finger. At 6 weeks after surgery, we measured motion, disabilities of the arm, shoulder, and hand, and pain intensity. Prereduction and postsurgery radiographic fracture characteristics were assessed. Female sex, being married, specific surgeons, carpal tunnel release, AO type C fractures, and greater catastrophic thinking were associated with increased distance to palmar crease at suture removal. At 6 weeks, greater catastrophic thinking was the only factor associated with increased distance to palmar crease. Catastrophic thinking was a consistent and major determinant of finger stiffness at suture removal and 6 weeks after injury. Future research should assess if treatments that ameliorate catastrophic thinking can facilitate recovery of finger motion after operative treatment of a distal radius fracture. Prognostic Level I. See Instructions for Authors for a complete description of levels of evidence.
NASA Astrophysics Data System (ADS)
Cruz, Patricia; Diaz, Marcos; Birkby, Jayne; Barrado, David; Sipöcz, Brigitta; Hodgkin, Simon
2018-06-01
We present the characterization of five new short-period low-mass eclipsing binaries (LMEBs) from the WFCAM Transit Survey. The analysis was performed by using the photometric WFCAM J-mag data and additional low- and intermediate-resolution spectroscopic data to obtain both orbital and physical properties of the studied sample. The light curves and the measured radial velocity curves were modelled simultaneously with the JKTEBOP code, with Markov chain Monte Carlo simulations for the error estimates. The best-model fit have revealed that the investigated detached binaries are in very close orbits, with orbital separations of 2.9 ≤ a ≤ 6.7 R⊙ and short periods of 0.59 ≤ Porb ≤ 1.72 d, approximately. We have derived stellar masses between 0.24 and 0.72 M⊙ and radii ranging from 0.42 to 0.67 R⊙. The great majority of the LMEBs in our sample has an estimated radius far from the predicted values according to evolutionary models. The components with derived masses of M < 0.6 M⊙ present a radius inflation of {˜ }9 per cent or more. This general behaviour follows the trend of inflation for partially radiative stars proposed previously. These systems add to the increasing sample of low-mass stellar radii that are not well-reproduced by stellar models. They further highlight the need to understand the magnetic activity and physical state of small stars. Missions like TESS will provide many such systems to perform high-precision radius measurements to tightly constrain low-mass stellar evolution models.
Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Nemeth, Michael P.
2010-01-01
Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.
Abbott, J. Dawn; Lombardero, Manuel S.; Barsness, Gregory W.; Pena-Sing, Ivan; Buitrón, L. Virginia; Singh, Premranjan; Woodhead, Gail; Tardif, Jean-Claude; Kelsey, Sheryl F.
2012-01-01
Background Peripheral arterial disease (PAD) increases cardiovascular risk in many patient populations. The risks associated with an abnormal ankle-brachial index (ABI) in patients with type 2 diabetes (T2D) and stable coronary artery disease (CAD) have not been well described with respect to thresholds and types of cardiovascular events. Methods We examined 2368 patients in the Bypass Angioplasty Revascularization Investigation 2 Diabetes (BARI 2D) trial that underwent ABIassessment at baseline. Death and major cardiovascular events (death, myocardial infarction (MI) and stroke) during follow-up (average 4.3 years) were assessed across the ABI spectrum and by categorizedABI: low (≤0.90), normal (0.91–1.3), high (>1.3), or non-compressible. Results A total of 12,568 person-years were available for mortality analysis. During follow-up, 316 patients died and 549 suffered major cardiovascular events. After adjustment for potential confounders, with normal ABI as the referent group, a low ABI conferred an increased risk of death (relative risk (RR) 1.6; C.I. 1.2, 2.2; p=.0005) and major cardiovascular events (RR 1.4; C.I. 1.1, 1.7; p=.004). Patients with a high ABI had similar outcomes as patients with a normal ABI, but risk again increased in patients with a non-compressible ABI with a risk of death (RR1.9; C.I. 1.3, 2.8; p=.001) and major cardiovascular event (RR 1.5, C.I. 1.1, 2.1; p=.01). Conclusions In patients with CAD and T2D ABI screening and identification of ABI abnormalities including a low ABI (<1.0) or non-compressible artery provide incremental prognostic information. PMID:23067918
Possibility of reducing CO2 emissions from internal combustion engines
NASA Astrophysics Data System (ADS)
Drabik, Dawid; Mamala, Jarosław; Śmieja, Michał; Prażnowski, Krzysztof
2017-10-01
Article defines on the possibility of reduction CO2 of the internal combustion engine and presents the analysis based on originally conducted studies. The increase in overall engine efficiency is sought after by all engineers dealing with engine construction, one of the major ways to reduce CO2 emissions is to increase the compression ratio. The application of the compression ratio that has been increased constructional in the engine will, on one hand, bring about the increase in the theoretical efficiency, but, on the other hand, require a system for pressure control at a higher engine load in order to prevent engine knocking. For the purposes of the article there was carried out a number of studies and compiled results, and on their basis determined what have a major impact on the reducing CO2.
Reference-free compression of high throughput sequencing data with a probabilistic de Bruijn graph.
Benoit, Gaëtan; Lemaitre, Claire; Lavenier, Dominique; Drezen, Erwan; Dayris, Thibault; Uricaru, Raluca; Rizk, Guillaume
2015-09-14
Data volumes generated by next-generation sequencing (NGS) technologies is now a major concern for both data storage and transmission. This triggered the need for more efficient methods than general purpose compression tools, such as the widely used gzip method. We present a novel reference-free method meant to compress data issued from high throughput sequencing technologies. Our approach, implemented in the software LEON, employs techniques derived from existing assembly principles. The method is based on a reference probabilistic de Bruijn Graph, built de novo from the set of reads and stored in a Bloom filter. Each read is encoded as a path in this graph, by memorizing an anchoring kmer and a list of bifurcations. The same probabilistic de Bruijn Graph is used to perform a lossy transformation of the quality scores, which allows to obtain higher compression rates without losing pertinent information for downstream analyses. LEON was run on various real sequencing datasets (whole genome, exome, RNA-seq or metagenomics). In all cases, LEON showed higher overall compression ratios than state-of-the-art compression software. On a C. elegans whole genome sequencing dataset, LEON divided the original file size by more than 20. LEON is an open source software, distributed under GNU affero GPL License, available for download at http://gatb.inria.fr/software/leon/.
Machine compliance in compression tests
NASA Astrophysics Data System (ADS)
Sousa, Pedro; Ivens, Jan; Lomov, Stepan V.
2018-05-01
The compression behavior of a material cannot be accurately determined if the machine compliance is not accounted prior to the measurements. This work discusses the machine compliance during a compressibility test with fiberglass fabrics. The thickness variation was measured during loading and unloading cycles with a relaxation stage of 30 minutes between them. The measurements were performed using an indirect technique based on the comparison between the displacement at a free compression cycle and the displacement with a sample. Relating to the free test, it has been noticed the nonexistence of machine relaxation during relaxation stage. Considering relaxation or not, the characteristic curves for a free compression cycle can be overlapped precisely in the majority of the points. For the compression test with sample, it was noticed a non-physical decrease of about 30 µm during the relaxation stage, what can be explained by the greater fabric relaxation in relation to the machine relaxation. Beyond the technique normally used, another technique was used which allows a constant thickness during relaxation. Within this second method, machine displacement with sample is simply subtracted to the machine displacement without sample being imposed as constant. If imposed as a constant it will remain constant during relaxation stage and it will suddenly decrease after relaxation. If constantly calculated it will decrease gradually during relaxation stage. Independently of the technique used the final result will remain unchanged. The uncertainty introduced by this imprecision is about ±15 µm.
Fahlman, A; Hooker, S K; Olszowka, A; Bostrom, B L; Jones, D R
2009-01-01
We developed a mathematical model to investigate the effect of lung compression and collapse (pulmonary shunt) on the uptake and removal of O(2), CO(2) and N(2) in blood and tissue of breath-hold diving mammals. We investigated the consequences of pressure (diving depth) and respiratory volume on pulmonary shunt and gas exchange as pressure compressed the alveoli. The model showed good agreement with previous studies of measured arterial O(2) tensions (Pa(O)(2)) from freely diving Weddell seals and measured arterial and venous N(2) tensions from captive elephant seals compressed in a hyperbaric chamber. Pulmonary compression resulted in a rapid spike in Pa(O)(2) and arterial CO(2) tension, followed by cyclical variation with a periodicity determined by Q(tot). The model showed that changes in diving lung volume are an efficient behavioural means to adjust the extent of gas exchange with depth. Differing models of lung compression and collapse depth caused major differences in blood and tissue N(2) estimates. Our integrated modelling approach contradicted predictions from simple models, and emphasised the complex nature of physiological interactions between circulation, lung compression and gas exchange. Overall, our work suggests the need for caution in interpretation of previous model results based on assumed collapse depths and all-or-nothing lung collapse models.
Wavelet compression techniques for hyperspectral data
NASA Technical Reports Server (NTRS)
Evans, Bruce; Ringer, Brian; Yeates, Mathew
1994-01-01
Hyperspectral sensors are electro-optic sensors which typically operate in visible and near infrared bands. Their characteristic property is the ability to resolve a relatively large number (i.e., tens to hundreds) of contiguous spectral bands to produce a detailed profile of the electromagnetic spectrum. In contrast, multispectral sensors measure relatively few non-contiguous spectral bands. Like multispectral sensors, hyperspectral sensors are often also imaging sensors, measuring spectra over an array of spatial resolution cells. The data produced may thus be viewed as a three dimensional array of samples in which two dimensions correspond to spatial position and the third to wavelength. Because they multiply the already large storage/transmission bandwidth requirements of conventional digital images, hyperspectral sensors generate formidable torrents of data. Their fine spectral resolution typically results in high redundancy in the spectral dimension, so that hyperspectral data sets are excellent candidates for compression. Although there have been a number of studies of compression algorithms for multispectral data, we are not aware of any published results for hyperspectral data. Three algorithms for hyperspectral data compression are compared. They were selected as representatives of three major approaches for extending conventional lossy image compression techniques to hyperspectral data. The simplest approach treats the data as an ensemble of images and compresses each image independently, ignoring the correlation between spectral bands. The second approach transforms the data to decorrelate the spectral bands, and then compresses the transformed data as a set of independent images. The third approach directly generalizes two-dimensional transform coding by applying a three-dimensional transform as part of the usual transform-quantize-entropy code procedure. The algorithms studied all use the discrete wavelet transform. In the first two cases, a wavelet transform coder was used for the two-dimensional compression. The third case used a three dimensional extension of this same algorithm.
Compression of Morbidity and Mortality: New Perspectives1
Stallard, Eric
2017-01-01
Compression of morbidity is a reduction over time in the total lifetime days of chronic disability, reflecting a balance between (1) morbidity incidence rates and (2) case-continuance rates—generated by case-fatality and case-recovery rates. Chronic disability includes limitations in activities of daily living and cognitive impairment, which can be covered by long-term care insurance. Morbidity improvement can lead to a compression of morbidity if the reductions in age-specific prevalence rates are sufficiently large to overcome the increases in lifetime disability due to concurrent mortality improvements and progressively higher disability prevalence rates with increasing age. Compression of mortality is a reduction over time in the variance of age at death. Such reductions are generally accompanied by increases in the mean age at death; otherwise, for the variances to decrease, the death rates above the mean age at death would need to increase, and this has rarely been the case. Mortality improvement is a reduction over time in the age-specific death rates and a corresponding increase in the cumulative survival probabilities and age-specific residual life expectancies. Mortality improvement does not necessarily imply concurrent compression of mortality. This paper reviews these concepts, describes how they are related, shows how they apply to changes in mortality over the past century and to changes in morbidity over the past 30 years, and discusses their implications for future changes in the United States. The major findings of the empirical analyses are the substantial slowdowns in the degree of mortality compression over the past half century and the unexpectedly large degree of morbidity compression that occurred over the morbidity/disability study period 1984–2004; evidence from other published sources suggests that morbidity compression may be continuing. PMID:28740358
ERIC Educational Resources Information Center
Shore, Jane
This monograph explores the major categories of alternative work patterns, e.g., flexitime, permanent part-time employment, job sharing, the compressed work week, and reduced work time. Advantages and disadvantages of each type are discussed, and new insight is offered into an unexplored dimension of the major types of alternative work patterns:…
Code of Federal Regulations, 2010 CFR
2010-07-01
..., non-black start CI 500 HP a. Limit concentration of CO in the stationary RICE exhaust to 23 ppmvd or... Ignition Stationary Rice Located at Major Sources of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary Rice Located at Major Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must...
ERIC Educational Resources Information Center
Riley, Erin; Felse, P. Arthur
2017-01-01
Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…
NASA Astrophysics Data System (ADS)
Tong, Fulin; Li, Xinliang; Duan, Yanhui; Yu, Changping
2017-12-01
Numerical investigations on a supersonic turbulent boundary layer over a longitudinal curved compression ramp are conducted using direct numerical simulation for a free stream Mach number M∞ = 2.9 and Reynolds number Reθ = 2300. The total turning angle is 24°, and the concave curvature radius is 15 times the thickness of the incoming turbulent boundary layer. Under the selected conditions, the shock foot is transferred to a fan of the compression wave because of the weaker adverse pressure gradient. The time-averaged flow-field in the curved ramp is statistically attached where the instantaneous flow-field is close to the intermittent transitory detachment state. Studies on coherent vortex structures have shown that large-scale vortex packets are enhanced significantly when the concave curvature is aligned in the spanwise direction. Consistent with findings of previous experiments, the effect of the concave curvature on the logarithmic region of the mean velocity profiles is found to be small. The intensity of the turbulent fluctuations is amplified across the curved ramp. Based on the analysis of the Reynolds stress anisotropy tensor, the evolutions of the turbulence state in the inner and outer layers of the boundary layer are considerably different. The curvature effect on the transport mechanism of the turbulent kinetic energy is studied using the balance analysis of the contributing terms in the transport equation. Furthermore, the Görtler instability in the curved ramp is quantitatively analyzed using a stability criterion. The instantaneous streamwise vorticity confirms the existence of the Görtler-like structures. These structures are characterized by an unsteady motion. In addition, the dynamic mode decomposition analysis of the instantaneous flow field at the spanwise/wall-normal plane reveals that four dynamical relevant modes with performance loss of 16% provide an optimal low-order representation of the essential characteristics of the numerical data. The spatial structures of the dominated low-frequency dynamic modes are found to be similar to that of the Görtler-like vortices.
Gefen, Amit
2008-01-01
Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (p<0.001), thereby indicating on the sensitivity of this parameter to the pathoanatomical changes that occur in the buttocks with paraplegia. Data of CII correlated reasonably with the gold standard calculations of MRI-FE muscle stresses (correlation coefficient 0.65). Since CII measurements do not require highly-specialized biomechanical numerical analyses such as MRI-FE, CII has the potential to serve as a practical, quick, and cost-effective approximation of the loading intensity in muscles of wheelchair-bound or bedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.
[The VB system: a new modular osteosynthesis material involving both screws and wires].
Dubert, T; Valenti, P; Dinh, A; Osman, N
2002-01-01
VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.
Scerpella, Tamara A; Bernardoni, Brittney; Wang, Sijian; Rathouz, Paul J; Li, Quefeng; Dowthwaite, Jodi N
2016-04-01
We examined site-specific bone development in relation to childhood and adolescent artistic gymnastics exposure, comparing up to 10years of prospectively acquired longitudinal data in 44 subjects, including 31 non-gymnasts (NON) and 13 gymnasts (GYM) who participated in gymnastics from pre-menarche to ≥1.9years post-menarche. Subjects underwent annual regional and whole-body DXA scans; indices of bone geometry and strength were calculated. Anthropometrics, physical activity, and maturity were assessed annually, coincident with DXA scans. Non-linear mixed effect models centered growth in bone outcomes at menarche and adjusted for menarcheal age, height, and non-bone fat-free mass to evaluate GYM-NON differences. A POST-QUIT variable assessed the withdrawal effect of quitting gymnastics. Curves for bone area, mass (BMC), and strength indices were higher in GYM than NON at both distal radius metaphysis and diaphysis (p<0.0001). At the femoral neck, greater GYM BMC (p<0.01), narrower GYM endosteal diameter (p<0.02), and similar periosteal width (p=0.09) yielded GYM advantages in narrow neck cortical thickness and buckling ratio (both p<0.001; lower BR indicates lower fracture risk). Lumbar spine and sub-head BMC were greater in GYM than NON (p<0.036). Following gymnastics cessation, GYM slopes increased for distal radius diaphysis parameters (p≤0.01) and for narrow neck BR (p=0.02). At the distal radius metaphysis, GYM BMC and compressive strength slopes decreased, as did slopes for lumbar spine BMC, femoral neck BMC, and narrow neck cortical thickness (p<0.02). In conclusion, advantages in bone mass, geometry, and strength at multiple skeletal sites were noted across growth and into young adulthood in girls who participated in gymnastics loading to at least 1.9years post-menarche. Following gymnastics cessation, advantages at cortical bone sites improved or stabilized, while advantages at corticocancellous sites stabilized or diminished. Additional longitudinal observation is necessary to determine whether residual loading benefits enhance lifelong skeletal strength. Copyright © 2016 Elsevier Inc. All rights reserved.
Pikin, A; Beebe, E N; Raparia, D
2013-03-01
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current up to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 ÷ 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 ÷ 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Antoni, Andrea
During a common envelope (CE) episode in a binary system, the engulfed companion spirals to tighter orbital separations under the influence of drag from the surrounding envelope material. As this object sweeps through material with a steep radial gradient of density, net angular momentum is introduced into the flow, potentially leading to the formation of an accretion disk. The presence of a disk would have dramatic consequences for the outcome of the interaction because accretion might be accompanied by strong, polar outflows with enough energy to unbind the entire envelope. Without a detailed understanding of the necessary conditions for diskmore » formation during CE, therefore, it is difficult to accurately predict the population of merging compact binaries. This paper examines the conditions for disk formation around objects embedded within CEs using the “wind tunnel” formalism developed by MacLeod et al. We find that the formation of disks is highly dependent on the compressibility of the envelope material. Disks form only in the most compressible of stellar envelope gas, found in envelopes’ outer layers in zones of partial ionization. These zones are largest in low-mass stellar envelopes, but comprise small portions of the envelope mass and radius in all cases. We conclude that disk formation and associated accretion feedback in CE is rare, and if it occurs, transitory. The implication for LIGO black hole binary assembly is that by avoiding strong accretion feedback, CE interactions should still result in the substantial orbital tightening needed to produce merging binaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.; Beebe, E. N.; Raparia, D.
Increasing the current density of the electron beam in the ion trap of the Electron Beam Ion Source (EBIS) in BNL's Relativistic Heavy Ion Collider facility would confer several essential benefits. They include increasing the ions' charge states, and therefore, the ions' energy out of the Booster for NASA applications, reducing the influx of residual ions in the ion trap, lowering the average power load on the electron collector, and possibly also reducing the emittance of the extracted ion beam. Here, we discuss our findings from a computer simulation of an electron gun with electrostatic compression for electron current upmore » to 10 A that can deliver a high-current-density electron beam for EBIS. The magnetic field in the cathode-anode gap is formed with a magnetic shield surrounding the gun electrodes and the residual magnetic field on the cathode is (5 Division-Sign 6) Gs. It was demonstrated that for optimized gun geometry within the electron beam current range of (0.5 Division-Sign 10) A the amplitude of radial beam oscillations can be maintained close to 4% of the beam radius by adjusting the injection magnetic field generated by a separate magnetic coil. Simulating the performance of the gun by varying geometrical parameters indicated that the original gun model is close to optimum and the requirements to the precision of positioning the gun elements can be easily met with conventional technology.« less
Anatomy of the lactating human breast redefined with ultrasound imaging
Ramsay, DT; Kent, JC; Hartmann, RA; Hartman, PE
2005-01-01
The aim of this study was to use ultrasound imaging to re-investigate the anatomy of the lactating breast. The breasts of 21 fully lactating women (1–6 months post partum) were scanned using an ACUSON XP10 (5–10 MHz linear array probe). The number of main ducts was measured, ductal morphology was determined, and the distribution of glandular and adipose tissue was recorded. Milk ducts appeared as hypoechoic tubular structures with echogenic walls that often contained echoes. Ducts were easily compressed and did not display typical sinuses. All ducts branched within the areolar radius, the first branch occurring 8.0 ± 5.5 mm from the nipple. Duct diameter was 1.9 ± 0.6 mm, 2.0 ± 90.7 mm and the number of main ducts was 9.6 ± 2.9, 9.2 ± 2.9, for left and right breast, respectively. Milk ducts are superficial, easily compressible and echoes within the duct represent fat globules in breastmilk. The low number and size of the ducts, the rapid branching under the areola and the absence of sinuses suggest that ducts transport breastmilk, rather than store it. The distribution of adipose and glandular tissue showed wide variation between women but not between breasts within women. The proportion of glandular and fat tissue and the number and size of ducts were not related to milk production. This study highlights inconsistencies in anatomical literature that impact on breast physiology, breastfeeding management and ultrasound assessment. PMID:15960763
Analysis of the LSC microbunching instability in MaRIE linac reference design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yampolsky, Nikolai
In this report we estimate the effect of the microbunching instability in the MaRIE XFEL linac. The reference design for the linac is described in a separate report. The parameters of the L1, L2, and L3 linacs as well as BC1 and BC2 bunch compressors were the same as in the referenced report. The beam dynamics was assumed to be linear along the accelerator (which is a reasonable assumption for estimating the effect of the microbunching instability). The parameters of the bunch also match the parameters described in the referenced report. Additionally, it was assumed that the beam radius ismore » equal to R = 100 m and does not change along linac. This assumption needs to be revisited at later studies. The beam dynamics during acceleration was accounted in the matrix formalism using a Matlab code. The input parameters for the linacs are: RF peak gradient, RF frequency, RF phase, linac length, and initial beam energy. The energy gain and the imposed chirp are calculated based on the RF parameters self-consistently. The bunch compressors are accounted in the matrix formalism as well. Each chicane is characterized by the beam energy and the R56 matrix element. It was confirmed that the linac and beam parameters described previously provide two-stage bunch compression with compression ratios of 10 and 20 resulting in the bunch of 3kA peak current.« less
Tow-Steered Panels With Holes Subjected to Compression or Shear Loads
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Tatting, Brian F.; Guerdal, Zafer
2005-01-01
Tailoring composite laminates to vary the fiber orientations within a fiber layer of a laminate to address non-uniform stress states and provide structural advantages such as the alteration of principal load paths has potential application to future low-cost, light-weight structures for commercial transport aircraft. Evaluation of this approach requires the determination of the effectiveness of stiffness tailoring through the use of curvilinear fiber paths in flat panels including the reduction of stress concentrations around the holes and the increase in load carrying capability. Panels were designed through the use of an optimization code using a genetic algorithm and fabricated using a tow-steering approach. Manufacturing limitations, such as the radius of curvature of tows the machine could support, avoidance of wrinkling of fibers and minimization of gaps between fibers were considered in the design process. Variable stiffness tow-steered panels constructed with curvilinear fiber paths were fabricated so that the design methodology could be verified through experimentation. Finite element analysis where each element s stacking sequence was accurately defined is used to verify the behavior predicted based on the design code. Experiments on variable stiffness flat panels with central circular holes were conducted with the panels loaded in axial compression or shear. Tape and tow-steered panels are used to demonstrate the buckling, post-buckling and failure behavior of elastically tailored panels. The experimental results presented establish the buckling performance improvements attainable by elastic tailoring of composite laminates.
Design and Numerical Simulation of Radial Inflow Turbine Volute
NASA Astrophysics Data System (ADS)
Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang
2014-12-01
The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.
Electron beam simulation from gun to collector: Towards a complete solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.
An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less
Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il; National Research Tomsk Polytechnic University, Tomsk, 634050
The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were dividedmore » in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.« less
Surface Finish and Residual Stresses Induced by Orthogonal Dry Machining of AA7075-T651
Jomaa, Walid; Songmene, Victor; Bocher, Philippe
2014-01-01
The surface finish was extensively studied in usual machining processes (turning, milling, and drilling). For these processes, the surface finish is strongly influenced by the cutting feed and the tool nose radius. However, a basic understanding of tool/surface finish interaction and residual stress generation has been lacking. This paper aims to investigate the surface finish and residual stresses under the orthogonal cutting since it can provide this information by avoiding the effect of the tool nose radius. The orthogonal machining of AA7075-T651 alloy through a series of cutting experiments was performed under dry conditions. Surface finish was studied using height and amplitude distribution roughness parameters. SEM and EDS were used to analyze surface damage and built-up edge (BUE) formation. An analysis of the surface topography showed that the surface roughness was sensitive to changes in cutting parameters. It was found that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles play a determinant role in controlling the surface finish during dry orthogonal machining of the AA7075-T651 alloy. Hoop stress was predominantly compressive on the surface and tended to be tensile with increased cutting speed. The reverse occurred for the surface axial stress. The smaller the cutting feed, the greater is the effect of cutting speed on both axial and hoop stresses. By controlling the cutting speed and feed, it is possible to generate a benchmark residual stress state and good surface finish using dry machining. PMID:28788534
Dynamics of ion beam charge neutralization by ferroelectric plasma sources
Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; ...
2016-04-27
Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar + beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3more » V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less
MESSENGER and Mariner 10 Flyby Observations of Magnetotail Structure and Dynamics at Mercury
NASA Technical Reports Server (NTRS)
Slavin, James A.; Anderson, Brian Jay; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Gold, Robert E.; Ho, George C.; Imber, Suzanne M.; Korth, Haje; Krimigis, Stamatios, M.;
2012-01-01
The first (M1), second (M2), and third (M3) MESSENGER flybys of Mercury traversed the planet's magnetotail from 1.25 to 3.25 RM downstream of the planet, where R(sub M) is Mercury's radius (2440 km). The encounters took place under northward, southward, and variable-polarity interplanetary magnetic field (IMF), respectively. The magnetic field strength B in Mercury's magnetotail follows a power law decrease with increasing antisunward distance |X|, B approximately |X|(sup G), with G varying from -5.4 for northward to -1.6 for southward IMF. Low-latitude boundary layers (LLBLs) containing strong northward magnetic field were detected at the tail flanks during two of the flybys. The observed thickness of the LLBL was 33% and 16% of the radius of the tail during M1 and M3, respectively, but the boundary layer was completely absent during M2. Clear signatures of tail reconnection are evident in the M2 and M3 magnetic field measurements. Plasmoids and traveling compression regions were observed during M2 and M3 with typical durations of approximately 1-3 s, suggesting diameters of approximately 500-1500 km. Overall, the response of Mercury's magnetotail to the steady southward IMF during M2 appeared very similar to steady magnetospheric convection events at Earth, which are believed to be driven by quasi-continuous reconnection. In contrast, the M3 measurements are dominated by tail loading and unloading events that resemble the large-scale magnetic field reconfigurations observed during magnetospheric substorms at Earth.
Bone microarchitecture and estimated bone strength in men with active acromegaly.
Silva, Paula P B; Amlashi, Fatemeh G; Yu, Elaine W; Pulaski-Liebert, Karen J; Gerweck, Anu V; Fazeli, Pouneh K; Lawson, Elizabeth; Nachtigall, Lisa B; Biller, Beverly M K; Miller, Karen K; Klibanski, Anne; Bouxsein, Mary; Tritos, Nicholas A
2017-11-01
Both acromegaly and adult growth hormone deficiency (GHD) are associated with increased fracture risk. Sufficient data are lacking regarding cortical bone microarchitecture and bone strength, as assessed by microfinite element analysis (µFEA). To elucidate both cortical and trabecular bone microarchitecture and estimated bone strength in men with active acromegaly or GHD compared to healthy controls. Cross-sectional study at a clinical research center, including 48 men (16 with acromegaly, 16 with GHD and 16 healthy controls). Areal bone mineral density (aBMD), cortical and trabecular bone microarchitecture and estimated bone strength (µFEA) at the radius and tibia. aBMD was not different between the 3 groups at any skeletal site. At the radius, patients with acromegaly had greater cortical area ( P < 0.0001), cortical thickness ( P = 0.0038), cortical pore volume ( P < 0.0001) and cortical porosity ( P = 0.0008), but lower trabecular bone density ( P = 0.0010) compared to controls. At the tibia, patients with acromegaly had lower trabecular bone density ( P = 0.0082), but no differences in cortical bone microstructure. Compressive strength and failure load did not significantly differ between groups. These findings persisted after excluding patients with hypogonadism. Bone microarchitecture was not deficient in patients with GHD. Both cortical and trabecular microarchitecture are altered in men with acromegaly. Our data indicate that GH excess is associated with distinct effects in cortical vs trabecular bone compartments. Our observations also affirm the limitations of aBMD testing in the evaluation of patients with acromegaly. © 2017 European Society of Endocrinology.
DSMC Simulations of High Mach Number Taylor-Couette Flow
NASA Astrophysics Data System (ADS)
Pradhan, Sahadev
2017-11-01
The main focus of this work is to characterise the Taylor-Couette flow of an ideal gas between two coaxial cylinders at Mach number Ma =(Uw /√{ kbTw / m }) in the range 0.01
ERIC Educational Resources Information Center
Talbot, Chris; And Others
1991-01-01
Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…
Geslin, Benoît; Le Féon, Violette; Folschweiller, Morgane; Flacher, Floriane; Carmignac, David; Motard, Eric; Perret, Samuel; Dajoz, Isabelle
2016-09-01
Given the predicted expansion of cities throughout the world, understanding the effect of urbanization on bee fauna is a major issue for the conservation of bees. The aim of this study was to understand how urbanization affects wild bee assemblages along a gradient of impervious surfaces and to determine the influence of landscape composition and floral resource availability on these assemblages. We chose 12 sites with a proportion of impervious surfaces (soil covered by parking, roads, and buildings) ranging from 0.06% to 64.31% within a 500 m radius. We collected using pan trapping and estimated the landscape composition of the sites within a 500 m radius and the species richness of plant assemblages within a 200 m radius. We collected 1104 bees from 74 species. The proportion of impervious surfaces at the landscape scale had a negative effect on wild bee abundance and species richness, whereas local flower composition had no effect. Ground-nesting bees were particularly sensitive to the urbanization gradient. This study provides new evidences of the impact of urbanization on bee assemblages and the proportion of impervious surfaces at the landscape scale emerged as a key factor that drives those assemblages.
Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates
Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming
2016-01-01
Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981
Interaction energy for a fullerene encapsulated in a carbon nanotorus
NASA Astrophysics Data System (ADS)
Sarapat, Pakhapoom; Baowan, Duangkamon; Hill, James M.
2018-06-01
The interaction energy of a fullerene symmetrically situated inside a carbon nanotorus is studied. For these non-bonded molecules, the main interaction originates from the van der Waals energy which is modelled by the 6-12 Lennard-Jones potential. Upon utilising the continuum approximation which assumes that there are infinitely many atoms that are uniformly distributed over the surfaces of the molecules, the total interaction energy between the two structures is obtained as a surface integral over the spherical and the toroidal surfaces. This analytical energy is employed to determine the most stable configuration of the torus encapsulating the fullerene. The results show that a torus with major radius around 20-22 Å and minor radius greater than 6.31 Å gives rise to the most stable arrangement. This study will pave the way for future developments in biomolecules design and drug delivery system.
Response of an eddy-permitting ocean model to the assimilation of sparse in situ data
NASA Astrophysics Data System (ADS)
Li, Jian-Guo; Killworth, Peter D.; Smeed, David A.
2003-04-01
The response of an eddy-permitting ocean model to changes introduced by data assimilation is studied when the available in situ data are sparse in both space and time (typical for the majority of the ocean). Temperature and salinity (T&S) profiles from the WOCE upper ocean thermal data set were assimilated into a primitive equation ocean model over the North Atlantic, using a simple nudging scheme with a time window of about 2 days and a horizontal spatial radius of about 1°. When data are sparse the model returns to its unassimilated behavior, locally "forgetting" or rejecting the assimilation, on timescales determined by the local advection and diffusion. Increasing the spatial weighting radius effectively reduces both processes and hence lengthens the model restoring time (and with it, the impact of assimilation). Increasing the nudging factor enhances the assimilation effect but has little effect on the model restoring time.
Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept
NASA Astrophysics Data System (ADS)
Dannberg, Juliane; Sobolev, Stephan V.
2015-04-01
The Earth's biggest magmatic events are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models predict large plume heads that cause kilometre-scale surface uplift, and narrow (100 km radius) plume tails that remain in the mantle after the plume head spreads below the lithosphere. However, in many cases, such uplifts and narrow plume tails are not observed. Here using numerical models, we show that the issue can be resolved if major mantle plumes contain up to 15-20% of recycled oceanic crust in a form of dense eclogite, which drastically decreases their buoyancy and makes it depth dependent. We demonstrate that, despite their low buoyancy, large enough thermochemical plumes can rise through the whole mantle causing only negligible surface uplift. Their tails are bulky (>200 km radius) and remain in the upper mantle for 100 millions of years.
Anisotropic Galaxy-Galaxy Lensing in the Illustris-1 Simulation
NASA Astrophysics Data System (ADS)
Brainerd, Tereasa G.
2017-06-01
In Cold Dark Matter universes, the dark matter halos of galaxies are expected to be triaxial, leading to a surface mass density that is not circularly symmetric. In principle, this "flattening" of the dark matter halos of galaxies should be observable as an anisotropy in the weak galaxy-galaxy lensing signal. The degree to which the weak lensing signal is observed to be anisotropic, however, will depend strongly on the degree to which mass (i.e., the dark matter) is aligned with light in the lensing galaxies. That is, the anisotropy will be maximized when the major axis of the projected mass distribution is well aligned with the projected light distribution of the lens galaxies. Observational studies of anisotropic galaxy-galaxy lensing have found an anisotropic weak lensing signal around massive, red galaxies. Detecting the signal around blue, disky galaxies has, however, been more elusive. A possible explanation for this is that mass and light are well aligned within red galaxies and poorly aligned within blue galaxies (an explanation that is supported by studies of the locations of satellites of large, relatively isolated galaxies). Here we compute the weak lensing signal of isolated central galaxies in the Illustris-1 simulation. We compute the anisotropy of the weak lensing signal using two definitions of the geometry: [1] the major axis of the projected dark matter mass distribution and [2] the major axis of the projected stellar mass. On projected scales less than 15% of the virial radius, an anisotropy of order 10% is found for both definitions of the geometry. On larger scales, the anisotropy computed relative to the major axis of the projected light distribution is less than the anisotropy computed relative to the major axis of the projected dark matter. On projected scales of order the virial radius, the anisotropy obtained when using the major axis of the light is an order of magnitude less than the anisotropy obtained when using the major axis of the dark matter. The suppression of the anisotropy when using the major axis of the light to define the geometry is indicative of a significant misalignment of mass and light in the Illustris-1 galaxies at large physical radii.
NASA Astrophysics Data System (ADS)
Alfalou, Ayman; Elbouz, Marwa; Jridi, Maher; Loussert, Alain
2009-09-01
In some recognition form applications (which require multiple images: facial identification or sign-language), many images should be transmitted or stored. This requires the use of communication systems with a good security level (encryption) and an acceptable transmission rate (compression rate). In the literature, several encryption and compression techniques can be found. In order to use optical correlation, encryption and compression techniques cannot be deployed independently and in a cascade manner. Otherwise, our system will suffer from two major problems. In fact, we cannot simply use these techniques in a cascade manner without considering the impact of one technique over another. Secondly, a standard compression can affect the correlation decision, because the correlation is sensitive to the loss of information. To solve both problems, we developed a new technique to simultaneously compress & encrypt multiple images using a BPOF optimized filter. The main idea of our approach consists in multiplexing the spectrums of different transformed images by a Discrete Cosine Transform (DCT). To this end, the spectral plane should be divided into several areas and each of them corresponds to the spectrum of one image. On the other hand, Encryption is achieved using the multiplexing, a specific rotation functions, biometric encryption keys and random phase keys. A random phase key is widely used in optical encryption approaches. Finally, many simulations have been conducted. Obtained results corroborate the good performance of our approach. We should also mention that the recording of the multiplexed and encrypted spectra is optimized using an adapted quantification technique to improve the overall compression rate.
NASA Astrophysics Data System (ADS)
Neubauer, F.; Cao, S.
2012-04-01
Structures of hangingwall units of major detachment systems in extensional settings leading to metamorphic core complexes are equally important to the generally well-studied footwall rocks. Here, we describe hanging-wall structures of the North-Cycladic Detachment System on Naxos Island of the Aegean Sea and found that they well monitor the structural evolution of hanging blocks complementary to the footwall structures, vertical fluid flow as well as late-stage inversion of the whole extensional system. On Naxos, Upper Oligocene-Miocene and Pliocene sedimentary successions are deposited on the hangingwall unit, which is largely an ophiolite. The Upper Oligocene-Miocene and Pliocene sedimentary successions are separated by a hiatus arguing for a two-step evolution. Whereas the first step, Miocene, indicate moderate subsidence and relief, and only denudation of the hangingwall unit, the Pliocene conglomerates indicate a sharply increasing relief and an over-steepened topography. Hydrothermal systems developed in hangingwall rock succession (e.g. Miocene at Steladia) play an important role and resulted in large-scale silica precipitation and associated alteration similar as these found in subvolcanic epithermal systems. This constrains a close link between footwall granodiorite intrusion and near-surface processes. The Pliocene coarse boulder conglomerate with its abundant first appearance of granite/granodiorite, and subsequent marble-rich debris on distant places like Palatia indicate a sudden erosion and high-gradient relief leading to erosion of the mantle of the migmatite dome during Pliocene. On Naxos, we recognize, therefore, a three-stage tectonic evolution in the hangingwall unit: (i) moderate subsidence of an Upper Oligocene-Miocene basin, in part below sea level; (2) a second stage with deposition of Pliocene coarse conglomerates, and (iii) post-Pliocene faulting affecting the conglomerates. During the second stage, surface exposure of the metamorphic core complex was reached resulting in catastrophic alluvial fans. Structural data from the Upper Oligocene-Miocene rocks indicate that NNE-SSW extension still prevailed up to the Miocene/Pliocene boundary. Together with structural data from Pliocene conglomerates, we can distinguish between three major events: The first stage is characterized by mostly NNE-dipping and subordinate SSW-dipping normal faults indicating together ca. NNE-SSW extension. A second palaeostress tensor group (B) mainly comprises ca. NW-trending dextral and WSW-trending sinistral strike-slip faults indicating together ca. E-W strike-slip compression and monitor, therefore, inversion and compression perpendicular to the previous extension direction. The third palaeostress tensor group (C) is characterized by dominating mostly NE-trending subvertical sinistral strike-slip faults and steep NNW-trending dextral strike-slip faults constituting together ca. N-S strike-slip compression. In a few cases, S- to SW-dipping reverse faults also occur. On a general level, our study allows for the following major conclusions: (1) Structures of hangingwall units of major detachments above metamorphic core complexes are equally important compared to the generally well-studied footwall rocks. They allow date several tectonic events not necessarily found in footwall rocks. (2) On Naxos, we can distinguish between three major tectonic events, which are in accordance with large-scale tectonic processes in the Aegean Sea: (a) ca. NNE-SSW extension; (b) ca. E-W strike-slip compression and monitor therefore inversion and compression perpendicular to the previous extension direction, and (c) N-S strike-slip compression.
NASA Technical Reports Server (NTRS)
Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)
1987-01-01
A composite battery separator comprises a support element (10) having an open pore structure such as a ribbed lattice and at least one liquid permeable sheet (20,22) to distribute the compressive force evenly onto the surfaces of the layers (24, 26) of negative active material and positive active material. In a non-flooded battery cell the compressible, porous material (18), such as a glass mat which absorbs the electrolyte, is compressed into a major portion of the pores or openings (16) in the support element. The unfilled pores in the material (18) form a gas diffusion path as the channels (41) formed between adjacent ribs in the lattice element (30,36). Facing two lattice elements (30, 31) with acute angled cross-ribs (34, 38) facing each other prevents the elements from interlocking and distorting a porous, separator (42) disposed between the lattice elements.
Composite materials research and education program: The NASA-Virginia Tech composites program
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1980-01-01
Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.
Adaptive intercolor error prediction coder for lossless color (rgb) picutre compression
NASA Astrophysics Data System (ADS)
Mann, Y.; Peretz, Y.; Mitchell, Harvey B.
2001-09-01
Most of the current lossless compression algorithms, including the new international baseline JPEG-LS algorithm, do not exploit the interspectral correlations that exist between the color planes in an input color picture. To improve the compression performance (i.e., lower the bit rate) it is necessary to exploit these correlations. A major concern is to find efficient methods for exploiting the correlations that, at the same time, are compatible with and can be incorporated into the JPEG-LS algorithm. One such algorithm is the method of intercolor error prediction (IEP), which when used with the JPEG-LS algorithm, results on average in a reduction of 8% in the overall bit rate. We show how the IEP algorithm can be simply modified and that it nearly doubles the size of the reduction in bit rate to 15%.
Simulation study on compressive laminar optical tomography for cardiac action potential propagation
Harada, Takumi; Tomii, Naoki; Manago, Shota; Kobayashi, Etsuko; Sakuma, Ichiro
2017-01-01
To measure the activity of tissue at the microscopic level, laminar optical tomography (LOT), which is a microscopic form of diffuse optical tomography, has been developed. However, obtaining sufficient recording speed to determine rapidly changing dynamic activity remains major challenges. For a high frame rate of the reconstructed data, we here propose a new LOT method using compressed sensing theory, called compressive laminar optical tomography (CLOT), in which novel digital micromirror device-based illumination and data reduction in a single reconstruction are applied. In the simulation experiments, the reconstructed volumetric images of the action potentials that were acquired from 5 measured images with random pattern featured a wave border at least to a depth of 2.5 mm. Consequently, it was shown that CLOT has potential for over 200 fps required for the cardiac electrophysiological phenomena. PMID:28736675
Geodetic measurement of deformation east of the San Andreas Fault in Central California
NASA Technical Reports Server (NTRS)
Sauber, Jeanne; Solomon, Sean C.; Lisowski, Michael
1988-01-01
The shear strain rates in the Diablo Range of California have been calculated, and the slip rate along the Calaveras and Paicines faults in Central California have been estimated, on the basis of triangulation and trilateration data from two geodetic networks located between the western edge of the Great Valley and the San Andreas Fault. The orientation of the principal compressive strain predicted from the azimuth of the major structures in the region is N 25 deg E, leading to an average shear strain value that corresponds to a relative shortening rate of 4.5 + or - 2.4 mm/yr. It is inferred that the measured strain is due to compression across the fold of this area. The hypothesized uniform, fault-normal compression within the Coast Ranges is not supported by these results.
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yu, Qingchun
2017-07-01
With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.
Extraction of Oxygen from the Martian Atmosphere
NASA Technical Reports Server (NTRS)
England, C.
2004-01-01
A mechanical process was designed for direct extraction of molecular oxygen from the martian atmosphere based on liquefaction of the majority component, CO2, followed by separation of the lower-boiling components. The atmospheric gases are compressed from about 0.007 bar to 13 bar and then cooled to liquefy most of the CO2. The uncondensed gases are further compressed to 30 bar or more, and then cooled again to recover water as ice and to remove much of the remaining CO2. The final gaseous products consisting mostly of nitrogen, oxygen, and carbon monoxide are liquefied and purified by cryogenic distillation. The liquefied CO2 is expanded back to the low-pressure atmosphere with the addition of heat to recover a majority of the compression energy and to produce the needed mechanical work. Energy for the process is needed primarily as heat to drive the CO2-based expansion power system. When properly configured, the extraction process can be a net producer of electricity. The conceptual design, termed 'MARRS' for Mars Atmosphere Resource Recovery System, was based on the NASA/JSC Mars Reference Mission (MRM) requirement for oxygen. This mission requires both liquid oxygen for propellant, and gaseous oxygen as a component of air for the mission crew. With single redundancy both for propellant and crew air, the oxygen requirement for the MRM is estimated at 5.8 kg/hr. The process thermal power needed is about 120 kW, which can be provided at 300-500 C. A lower-cost nuclear reactor made largely of stainless steel could serve as the heat source. The chief development needed for MARRS is an efficient atmospheric compression technology, all other steps being derived from conventional chemical engineering separations. The conceptual design describes an exceptionally low-mass compression system that can be made from ultra-lightweight and deployable structures. This system adapts to the rapidly changing martian environment to supply the atmospheric resource to MARRS at constant conditions.
Low-molecular-weight heparin and mortality in acutely ill medical patients.
Kakkar, Ajay K; Cimminiello, Claudio; Goldhaber, Samuel Z; Parakh, Rajiv; Wang, Chen; Bergmann, Jean-François
2011-12-29
Although thromboprophylaxis reduces the incidence of venous thromboembolism in acutely ill medical patients, an associated reduction in the rate of death from any cause has not been shown. We conducted a double-blind, placebo-controlled, randomized trial to assess the effect of subcutaneous enoxaparin (40 mg daily) as compared with placebo--both administered for 10±4 days in patients who were wearing elastic stockings with graduated compression--on the rate of death from any cause among hospitalized, acutely ill medical patients at participating sites in China, India, Korea, Malaysia, Mexico, the Philippines, and Tunisia. Inclusion criteria were an age of at least 40 years and hospitalization for acute decompensated heart failure, severe systemic infection with at least one risk factor for venous thromboembolism, or active cancer. The primary efficacy outcome was the rate of death from any cause at 30 days after randomization. The primary safety outcome was the rate of major bleeding during and up to 48 hours after the treatment period. A total of 8307 patients were randomly assigned to receive enoxaparin plus elastic stockings with graduated compression (4171 patients) or placebo plus elastic stockings with graduated compression (4136 patients) and were included in the intention-to-treat population. The rate of death from any cause at day 30 was 4.9% in the enoxaparin group as compared with 4.8% in the placebo group (risk ratio, 1.0; 95% confidence interval [CI], 0.8 to 1.2; P=0.83). The rate of major bleeding was 0.4% in the enoxaparin group and 0.3% in the placebo group (risk ratio, 1.4; 95% CI, 0.7 to 3.1; P=0.35). The use of enoxaparin plus elastic stockings with graduated compression, as compared with elastic stockings with graduated compression alone, was not associated with a reduction in the rate of death from any cause among hospitalized, acutely ill medical patients. (Funded by Sanofi; LIFENOX ClinicalTrials.gov number, NCT00622648.).
A comprehensive characterization of asphalt mixtures in compression.
DOT National Transportation Integrated Search
2013-08-01
Permanent deformation (i.e., rutting) is one of the major distresses in asphalt pavements, and it consists of : irrecoverable deformation due to viscoplastic flow and viscofracture fatigue damage. The mechanisms of rutting have not : been well addres...
Pentoxifylline for treating venous leg ulcers.
Jull, A; Arroll, B; Parag, V; Waters, J
2007-07-18
Healing of venous leg ulcers is improved by the use of compression bandaging but some venous ulcers remain unhealed, and some people are unsuitable for compression therapy. Pentoxifylline, a drug which helps blood flow, has been used to treat venous leg ulcers. An earlier version of this review included 9 randomised controlled trials, but more research has been since been conducted and an updated review is required. To assess the effects of pentoxifylline (oxpentifylline or Trental 400) for treating venous leg ulcers, compared with placebo, or other therapies, in the presence or absence of compression therapy. For this second update we searched the Cochrane Wounds Group Specialised Register, CENTRAL, MEDLINE, EMBASE and Cinahl (date of last search was February 2007), and reference lists of relevant articles. Randomised trials comparing pentoxifylline with placebo or other therapy in the presence or absence of compression, in people with venous leg ulcers. Details from eligible trials were extracted and summarised by one author using a coding sheet. Data extraction was independently verified by one other author. Twelve trials involving 864 participants were included. The quality of trials was variable. Eleven trials compared pentoxifylline with placebo or no treatment; in seven of these trials patients received compression therapy. In one trial pentoxifylline was compared with defibrotide in patients who also received compression. Combining 11 trials that compared pentoxifylline with placebo or no treatment (with or without compression) demonstrated that pentoxifylline is more effective than placebo in terms of complete ulcer healing or significant improvement (RR 1.70, 95% CI 1.30 to 2.24). Significant heterogeneity was associated with differences in sample populations (hard-to-heal samples compared with "normal" healing samples). Pentoxifylline plus compression is more effective than placebo plus compression (RR 1.56, 95% CI 1.14 to 2.13). Pentoxifylline in the absence of compression appears to be more effective than placebo or no treatment (RR 2.25, 95% CI 1.49 to 3.39). A comparison between pentoxifylline and defibrotide found no statistically significant difference in healing rates. More adverse effects were reported in people receiving pentoxifylline (RR 1.56, 95% CI 1.10 to 2.22). Nearly three-quarters (72%) of the reported adverse effects were gastrointestinal. Pentoxifylline is an effective adjunct to compression bandaging for treating venous ulcers and may be effective in the absence of compression. The majority of adverse effects were gastrointestinal disturbances.
Piedra, María; García-Unzueta, María T; Berja, Ana; Paule, Blanca; Lavín, Bernardo A; Valero, Carmen; Riancho, José A; Amado, José A
2011-12-20
Primary hyperparathyroidism (PHPT) affects mainly cortical bone. It is thought that parathyroid hormone (PTH) indirectly regulates the activity of osteoclasts by means of the osteoprotegerin/ligand of the receptor activator of nuclear factor-κβ (OPG/RANKL) system. Several studies have confirmed that OPG (osteoprotegerin) and RANKL (ligand of the receptor activator of nuclear factor-κβ) loci are determinants of bone mineral density (BMD) in the general population. The aim of this study is to analyze the relationship between fractures and BMD and the rs3102735 (163 A/G), rs3134070 (245 T/G) and rs2073618 (1181 G/C) SNPs of the OPG and the rs2277438 SNP of the RANKL, in patients with sporadic PHPT. We enrolled 298 Caucasian patients with PHPT and 328 healthy volunteers in a cross-sectional study. We analyzed anthropometric data, history of fractures or renal lithiasis, biochemical determinants including markers for bone remodelling, BMD measurements in the lumbar spine, total hip, femoral neck and distal radius, and genotyping for the SNPs to be studied. Regarding the age of diagnosis, BMI, menopause status, frequency of fractures or renal lithiasis, we found no differences between genotypes in any of the SNPs studied in the PHPT group. Significant lower BMD in the distal radius with similar PTH levels was found in the minor allele homozygotes (GG) compared to heterozygotes and major allele homozygotes in both OPG rs3102735 (163 A/G) and OPG rs3134070 (245 T/G) SNPs in those with PHPT compared to control subjects. We found no differences between genotypes of the OPG rs2073618 (1181 G/C) SNP with regard to BMD in the PHPT subjects. In the evaluation of rs2277438 SNP of the RANKL in PHPT patients, we found a non significant trend towards lower BMD in the 1/3 distal radius and at total hip in the minor allele homocygotes (GG) genotype group versus heterocygotes and major allele homocygotes (AA). Our study provides the first evaluation of the relationship between SNPs of the OPG/RANK system and sporadic PHPT. Subjects with PHPT and minor homocygote genotype (GG) for the OPG rs3102735 (163 A/G) and OPG rs3134070 (245 T/G) SNPs have lower BMD in the distal radius, and this association does not appear to be mediated by differences in PTH serum levels.
Effects of fiber, matrix, and interphase on carbon fiber composite compression strength
NASA Technical Reports Server (NTRS)
Nairn, John A.; Harper, Sheila I.; Bascom, Willard D.
1994-01-01
The major goal of this project was to obtain basic information on compression failure properties of carbon fiber composites. To do this, we investigated fiber effects, matrix effects, and fiber/matrix interface effects. Using each of nine fiber types, we prepared embedded single-fiber specimens, single-ply specimens, and full laminates. From the single-fiber specimens, in addition to the standard fragmentation test analysis, we were able to use the low crack density data to provide information about the distribution of fiber flaws. The single-ply specimens provided evidence of a correlation between the size of kink band zones and the quality of the interface. Results of the laminate compression experiments mostly agreed with the results from single-ply experiments, although the ultimate compression strengths of laminates were higher. Generally, these experiments showed a strong effect of interfacial properties. Matrix effects were examined using laminates subjected to precracking under mixed-mode loading conditions. A large effect of precracking conditions on the mode 1 toughness of the laminates was found. In order to control the properties of the fiber/matrix interface, we prepared composites of carbon fiber and polycarbonate and subjected these to annealing. The changes in interfacial properties directly correlated with changes in compression strength.
In situ observation of stishovite formation in shock-compressed fused silica
NASA Astrophysics Data System (ADS)
Tracy, Sally June; Turneaure, Stefan; Duffy, Thomas
2017-06-01
Silica, SiO2, has widespread applications ranging from optical components to refractory materials and is of geological importance as one of the major oxide components of the Earth's crust and mantle. The response of silica phases to dynamic loading has long been of interest for understanding the structural evolution of this fundamental oxide. Under shock compression both crystalline quartz and fused silica are characterized by the occurrence of a broad `mixed-phase region' (15-40 GPa) and a dense, high-pressure phase with much lower compressibility. Despite decades of study, the nature of this transformation and the identity of the high-pressure phase(s) remain poorly understood. In situ x-ray diffraction experiments on shock-compressed fused silica were conducted at the Dynamic Compression Sector of the Advanced Photon Source. The lattice-level structure was investigated through time-resolved x-ray diffraction measurements on samples reaching peak stress ranging from 12 to 47 GPa. Our results demonstrate that SiO2 adopts a dense amorphous structure in the `mixed-phase region' and abruptly transforms to stishovite above 34 GPa. These results provide clear evidence that high-pressure crystalline silicate phases can form from amorphous starting materials on the time-scale of laboratory shock experiments.
Three-dimensional density and compressible magnetic structure in solar wind turbulence
NASA Astrophysics Data System (ADS)
Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe
2018-03-01
The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.
NASA Technical Reports Server (NTRS)
Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)
2003-01-01
The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the arithmetic average roughness (Ra) and waviness (Wa) for the composite surfaces.
Liu, Yue; Li, Nan; Mariyappan, Arul Kumar; ...
2017-06-07
Basal slip and {01more » $$\\bar{1}$$2} twinning are two major plastic deformation mechanisms in hexagonal closed-packed magnesium. Here in this paper, we quantify the critical stresses associated with basal slip and twinning in single-crystal and bi-crystal magnesium samples by performing in situ compression of micropillars with different diameters in a scanning electron microscope. The micropillars are designed to favor either slip or twinning under uniaxial compression. Compression tests imply a negligible size effect related to basal slip and twinning as pillar diameter is greater than 10 μm. The critical resolved shear stresses are deduced to be 29 MPa for twinning and 6 MPa for basal slip from a series of micropillar compression tests. Employing full-field elasto-visco-plastic simulations, we further interpret the experimental observations in terms of the local stress distribution associated with multiple twinning, twin nucleation, and twin growth. Our simulation results suggest that the twinning features being studied should not be close to the top surface of the micropillar because of local stress perturbations induced by the hard indenter.« less
Intestinal injury mechanisms after blunt abdominal impact.
Cripps, N P; Cooper, G J
1997-03-01
Intestinal injury is frequent after non-penetrating abdominal trauma, particularly after modern, high-energy transfer impacts. Under these circumstances, delay in the diagnosis of perforation is a major contributor to morbidity and mortality. This study establishes patterns of intestinal injury after blunt trauma by non-penetrating projectiles and examines relationships between injury distribution and abdominal wall motion. Projectile impacts of variable momentum were produced in 31 anaesthetised pigs to cause abdominal wall motion of varying magnitude and velocity. No small bowel injury was observed at initial impact velocity of less than 40 m/s despite gross abdominal compression. At higher velocity, injury to the small bowel was frequent, irrespective of the degree of abdominal compression (P = 0.00044). Large bowel injury was observed at all impact velocities and at all degrees of abdominal compression. This study confirms the potential for intestinal injury in high velocity, low momentum impacts which do not greatly compress the abdominal cavity and demonstrates apparent differences in injury mechanisms for the small bowel and colon. Familiarity with injury mechanisms may reduce delays in the diagnosis of intestinal perforation in both military and civilian situations.
A FASTQ compressor based on integer-mapped k-mer indexing for biologist.
Zhang, Yeting; Patel, Khyati; Endrawis, Tony; Bowers, Autumn; Sun, Yazhou
2016-03-15
Next generation sequencing (NGS) technologies have gained considerable popularity among biologists. For example, RNA-seq, which provides both genomic and functional information, has been widely used by recent functional and evolutionary studies, especially in non-model organisms. However, storing and transmitting these large data sets (primarily in FASTQ format) have become genuine challenges, especially for biologists with little informatics experience. Data compression is thus a necessity. KIC, a FASTQ compressor based on a new integer-mapped k-mer indexing method, was developed (available at http://www.ysunlab.org/kic.jsp). It offers high compression ratio on sequence data, outstanding user-friendliness with graphic user interfaces, and proven reliability. Evaluated on multiple large RNA-seq data sets from both human and plants, it was found that the compression ratio of KIC had exceeded all major generic compressors, and was comparable to those of the latest dedicated compressors. KIC enables researchers with minimal informatics training to take advantage of the latest sequence compression technologies, easily manage large FASTQ data sets, and reduce storage and transmission cost. Copyright © 2015 Elsevier B.V. All rights reserved.
Lessons Learned in the High-Speed Aerodynamic Research Programs of the NACA/NASA
NASA Technical Reports Server (NTRS)
Spearman, M. Leroy
2004-01-01
The achievement of flight with manned, powered, heavier-than-air aircraft in 1903 marked the beginning of a new era in the means of transportation. A special advantage for aircraft was in speed. However, when an aircraft penetrates the air at very high speeds, the disturbed air is compressed and there are changes in the density, pressure and temperature of the air. These compressibility effects change the aerodynamic characteristics of an aircraft and introduce problems in drag, stability and control. Many aircraft designed in the post-World War II era were plagued with the effects of compressibility. Accordingly, the study of the aerodynamic behavior of aircraft, spacecraft and missiles at high-speed became a major part of the research activity of the NACA/NASA. The intent of the research was to determine the causes and provide some solutions for the aerodynamic problems resulting from the effects of compressibility. The purpose of this paper is to review some of the high-speed aerodynamic research work conducted at the Langley Research Center from the viewpoint of the author who has been active in much of the effort.
De Arburn Parent, Rebecca; Benamou, Jérôme; Gatineau, Matthieu; Clerfond, Pierre; Planté, Jérôme
2017-06-15
OBJECTIVE To determine outcomes and complication rates of open reduction and cranial bone plate fixation of fractures involving the distal aspect of the radius and ulna in miniature- and toy-breed dogs. DESIGN Retrospective case series. ANIMALS 102 miniature- and toy-breed dogs (105 fractures) weighing ≤ 7 kg (15.4 lb) that had undergone open reduction and cranial bone plate fixation of a fracture involving the distal aspect of the radius and ulna from 2008 through 2015. PROCEDURES Medical records were reviewed and information extracted regarding dog and fracture characteristics, surgical variables, and follow-up examination data (including postoperative complications). Postoperative radiographs were examined for distal fragment size, implant placement, apposition, alignment, and healing stage. A long-term follow-up questionnaire was completed by telephone interview with dog owners at least 6 months after surgery. RESULTS Mean length of the distal bone fragment in all fractures was 19.2 mm, with a mean distal-to-total radial length ratio of 0.21. At last follow-up examination (typically 6 weeks after surgery), 97 (95%) dogs had no signs of lameness; minor lameness was identified in 5 (5%) dogs. Complications developed in 26 (25%) fractures (23 [22%] minor and 3 [3%] major complications). Sixty-eight of 71 (96%) owners rated the overall and long-term outcome as excellent and 3 (4%) as good; 68 of 71 (96%) dogs reportedly had no signs of residual lameness. CONCLUSIONS AND CLINICAL RELEVANCE Open reduction and cranial bone plate fixation for the treatment of radius-ulna fractures in miniature- and toy-breed dogs provided an excellent outcome with a low complication rate.
Liu, X Sherry; Walker, Marcella D; McMahon, Donald J; Udesky, Julia; Liu, George; Bilezikian, John P; Guo, X Edward
2013-01-01
Despite lower areal bone mineral density (aBMD), Chinese-American women have fewer fractures than white women. We hypothesized that better skeletal microstructure in Chinese-American women in part could account for this paradox. Individual trabecula segmentation (ITS), a novel image-analysis technique, and micro–finite-element analysis (μFEA) were applied to high-resolution peripheral quantitative computed tomography (HR-pQCT) images to determine bone microarchitecture and strength in premenopausal Chinese-American and white women. Chinese-American women had 95% and 80% higher plate bone volume fraction at the distal radius and tibia, respectively, as well as 20% and 18% higher plate number density compared with white women (p < .001). With similar rodlike characteristics, the plate-to-rod ratio was twice as high in the Chinese-American than in white trabecular bone (p < .001). Plate-rod junction density, a parameter indicating trabecular network connections, was 37% and 29% greater at the distal radius and tibia, respectively, in Chinese-American women (p < .002). Moreover, the orientation of the trabecular bone network was more axially aligned in Chinese-American women because axial bone volume fraction was 51% and 32% higher at the distal radius and tibia, respectively, than in white women (p < .001). These striking differences in trabecular bone microstructure translated into 55% to 68% (distal radius, p < .001) and 29% to 43% (distal tibia, p < .01) greater trabecular bone strength, as assessed by Young’s moduli, in the Chinese-American versus the white group. The observation that Chinese-American women have a major microstructural advantage over white women may help to explain why their risk of fracture is lower despite their lower BMD. PMID:21351150
The mass disruption of Jupiter Family comets
NASA Astrophysics Data System (ADS)
Belton, Michael J. S.
2015-01-01
I show that the size-distribution of small scattered-disk trans-neptunian objects when derived from the observed size-distribution of Jupiter Family comets (JFCs) and other observational constraints implies that a large percentage (94-97%) of newly arrived active comets within a range of 0.2-15.4 km effective radius must physically disrupt, i.e., macroscopically disintegrate, within their median dynamical lifetime. Additional observational constraints include the numbers of dormant and active nuclei in the near-Earth object (NEO) population and the slope of their size distributions. I show that the cumulative power-law slope (-2.86 to -3.15) of the scattered-disk TNO hot population between 0.2 and 15.4 km effective radius is only weakly dependent on the size-dependence of the otherwise unknown disruption mechanism. Evidently, as JFC nuclei from the scattered disk evolve into the inner Solar System only a fraction achieve dormancy while the vast majority of small nuclei (e.g., primarily those with effective radius <2 km) break-up. The percentage disruption rate appears to be comparable with that of the dynamically distinct Oort cloud and Halley type comets (Levison, H.F., Morbidelli, A., Dones, L., Jedicke, R., Wiegert, P.A., Bottke Jr., W.F. [2002]. Science 296, 2212-2215) suggesting that all types of comet nuclei may have similar structural characteristics even though they may have different source regions and thermal histories. The typical disruption rate for a 1 km radius active nucleus is ∼5 × 10-5 disruptions/year and the dormancy rate is typically 3 times less. We also estimate that average fragmentation rates range from 0.01 to 0.04 events/year/comet, somewhat above the lower limit of 0.01 events/year/comet observed by Chen and Jewitt (Chen, J., Jewitt, D.C. [1994]. Icarus 108, 265-271).
F. Antony; L. R. Schimleck; R. F. Daniels; Alexander Clark; D. B. Hall
2010-01-01
Loblolly pine (Pinus taeda L.) is a major plantation species grown in the southern United States, producing wood having a multitude of uses including pulp and lumber production. Specific gravity (SG) is an important property used to measure the quality of wood produced, and it varies regionally and within the tree with height and radius. SG at different height levels...
Complications associated with distraction plate fixation of wrist fractures.
Hanel, Douglas P; Ruhlman, Scott David; Katolik, Leo I; Allan, Christopher H
2010-05-01
This article discusses the major and minor complications of distal plating in the light of a cohort study carried out by the authors, who reviewed all patients undergoing bridge distraction plate fixation of distal radius fractures by three surgeons in a single level I trauma center. The article discusses the effectiveness and the complication rates associated with the technique. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Yu, Bo; Chen, Yuren; Wang, Ruiyun; Dong, Yongjie
2016-10-01
Turning right has a significant impact on urban road traffic safety. Driving into the curve inappropriately or with improper turning speed often leads to a series of potential accidents and hidden dangers. For a long time, the design speed at intersections has been used to determine the physical radius of curbs and channelization, and drivers are expected to drive in accordance with the design speed. However, a large number of real vehicle tests show that for the road without an exclusive right-turn lane, there is not a good correlation between the physical radius of curbs and the turning right speeds. In this paper, shape parameters of the driver's visual lane model are put forward and they have relatively high correlations with right-turn speeds. Hence, an evaluation method about safety reliability of turning right from urban major roads onto minor ones based on driver's visual perception is proposed. For existing roads, the evaluation object could be real driving videos; for those under construction roads, the evaluation object could be visual scenes obtained from a driving simulation device. Findings in this research will make a contribution to the optimization of right-turn design at intersections and lead to the development of auxiliary driving technology. Copyright © 2015 Elsevier Ltd. All rights reserved.
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows
NASA Astrophysics Data System (ADS)
Khlifi, Hechmi; Abdallah, J.; Aïcha, H.; Taïeb, L.
2011-01-01
In this study, a Reynolds stress closure, including the Pantano and Sarkar model of the mean part of the pressure-strain correlation is used for the computation of compressible homogeneous at high-speed shear flow. Several studies concerning the compressible homogeneous shear flow show that the changes of the turbulence structures are principally due to the structural compressibility effects which significantly affect the pressure field and then the pressure-strain correlation. Eventually, this term appears as the main term responsible for the changes in the magnitude of the Reynolds stress anisotropies. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter may be appropriate to study the changes in turbulence structures that arise from structural compressibility effects. Thus, the incompressible model of the pressure strain correlation and its corrected form by using the turbulent Mach turbulent only, fail to correctly evaluate the compressibility effects at high shear flow. An extension of the widely used incompressible Launder, Reece and Rodi model on compressible homogeneous shear flow is the major aim of the present work. From this extension, the standard coefficients C become a function of the extra compressibility parameters (the turbulent Mach number M and the gradient Mach number M) through the Pantano and Sarkar model. Application of the model on compressible homogeneous shear flow by considering various initial conditions shows reasonable agreement with the DNS results of Simone et al. and Sarkar. The observed trend of the dramatic increase in the normal Reynolds stress anisotropies, the significant decrease in the Reynolds shear stress anisotropy and the increase of the turbulent kinetic energy amplification rate with increasing the gradient Mach number are well predicted by the model. The ability of the model to predict the equilibrium states for the flow in cases A to A from DNS results of Sarkar is examined, the results appear to be very encouraging. Thus, both parameters M and M should be used to model significant structural compressibility effects at high-speed shear flow.
Bartel, Esther Maria; Neubauer, Franz; Genser, Johann; Heberer, Bianca
2014-01-01
This study focuses on the analysis of structures and kinematics of a N–S profile along the axis of maximum shortening of the European Eastern Alps. The area includes the southern Austroalpine unit in the north and the Southalpine unit, which is a part of the Adriatic indenter. The stratigraphically different units are separated by the Periadriatic fault, the major strike-slip fault within the Alps. In order to assess the kinematics of these units, mainly fault-slip data from north and south of the Periadriatic fault were analyzed. We distinguish a succession of five main kinematic groups in both units: (1) N–S compression; (2) NW–SE compression; (3) NE–SW compression, σ3 changes gradually from subvertical to subhorizontal; (4) N–S compression; and (5) NW–SE compression. Our study reveals that the deformation sequence on either sides of the PAF is similar. The mean orientations of the principal stress axes, however, show small, but consistent differences: The subhorizontal axes north of the Periadriatic fault plunge northward, in the south southward. A counterclockwise (CCW) rotation of the southern part in respect to the north is evident and in line with the well-known counterclockwise rotation of the Adriatic indenter as well as dextral displacement of the N-fanning stress-field along the Periadriatic fault. Opposing plunge directions are interpreted as a primary feature of the internal stress-field within an orogenic wedge further increased during ongoing compression. PMID:27064736
DLA based compressed sensing for high resolution MR microscopy of neuronal tissue
NASA Astrophysics Data System (ADS)
Nguyen, Khieu-Van; Li, Jing-Rebecca; Radecki, Guillaume; Ciobanu, Luisa
2015-10-01
In this work we present the implementation of compressed sensing (CS) on a high field preclinical scanner (17.2 T) using an undersampling trajectory based on the diffusion limited aggregation (DLA) random growth model. When applied to a library of images this approach performs better than the traditional undersampling based on the polynomial probability density function. In addition, we show that the method is applicable to imaging live neuronal tissues, allowing significantly shorter acquisition times while maintaining the image quality necessary for identifying the majority of neurons via an automatic cell segmentation algorithm.
Vapor Compression Distillation Flight Experiment
NASA Technical Reports Server (NTRS)
Hutchens, Cindy F.
2002-01-01
One of the major requirements associated with operating the International Space Station is the transportation -- space shuttle and Russian Progress spacecraft launches - necessary to re-supply station crews with food and water. The Vapor Compression Distillation (VCD) Flight Experiment, managed by NASA's Marshall Space Flight Center in Huntsville, Ala., is a full-scale demonstration of technology being developed to recycle crewmember urine and wastewater aboard the International Space Station and thereby reduce the amount of water that must be re-supplied. Based on results of the VCD Flight Experiment, an operational urine processor will be installed in Node 3 of the space station in 2005.
A theory of local and global processes which affect solar wind electrons. 2: Experimental support
NASA Technical Reports Server (NTRS)
Scudder, J. D.; Olbert, S.
1979-01-01
The microscopic characteristics of the Coulomb cross section show that there are three natural subpopulations for plasma electrons: the subthermals with local kinetic energy E kT sub c; the transthermals with kT sub c E 7 kT sub c and the extrathermals E 7 kT sub c. Data from three experimental groups on three different spacecraft in the interplanetary medium over a radial range are presented to support the five interrelations projected between solar wind electron properties and changes in the interplanetary medium: (1) subthermals respond primarily to local changes (compression and rarefactions) in stream dynamics; (2) the extrathermal fraction of the ambient electron density should be anti-correlated with the asymptotic bulk speed; (3) the extrathermal "temperature" should be anti-correlated with the local wind speed at 1 AU; (4) the heat flux carried by electrons should be anti-correlated with the local bulk speed; and (5) the extrathermal differential 'temperature' should be nearly independent of radius within 1 AU.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Fratanduono, Dayne E.; Coppari, Federica; Newman, Matthew G.; Duffy, Thomas S.
2018-01-01
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets. PMID:29707632
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.; ...
2018-04-25
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Variable-pulse-shape pulsed-power accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas
A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less
Numerical simulation of exploding pusher targets
NASA Astrophysics Data System (ADS)
Atzeni, S.; Rosenberg, M. J.; Gatu Johnson, M.; Petrasso, R. D.
2017-10-01
Exploding pusher targets, i.e. gas-filled large aspect-ratio glass or plastic shells, driven by a strong laser-generated shock, are widely used as pulsed sources of neutrons and fast charged particles. Recent experiments on exploding pushers provided evidence for the transition from a purely fluid behavior to a kinetic one. Indeed, fluid models largely overpredict yield and temperature as the Knudsen number Kn (ratio of ion mean-free path to compressed gas radius) is comparable or larger than one. At Kn = 0.3 - 1, fluid codes reasonably estimate integral quantities as yield and neutron-averaged temperatures, but do not reproduce burn radii, burn profiles and DD/DHe3 yield ratio. This motivated a detailed simulation study of intermediate-Kn exploding pushers. We will show how simulation results depend on models for laser-interaction, electron conductivity (flux-limited local vs nonlocal), viscosity (physical vs artificial), and ion mixing. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), and Eurofusion Project AWP17-ENR-IFE-CEA-01.
An Experimental Investigation of the Flow Structure of Supersonic Impinging Jets
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James; Wernet, Mark
2002-01-01
An experimental investigation into the jet structure associated with sound production by a supersonic impinging jet is presented. Large plate impinging tones are investigated for a nozzle pressure ratio (NPR) of 4 and nozzle-to-plate spacings between 1 and 5 nozzle exit diameters, where NPR is equal to the ratio of the stagnation pressure to the pressure at the nozzle lip. Results from phase-locked shadowgraph and phase-averaged digital particle image velocimetry (DPIV) studies indicate that, during the oscillation cycle, the Mach disk oscillates axially, a well defined recirculation zone is created in the subsonic impingement region and moves toward the plate, and the compression and expansion regions in the outer supersonic flow move downstream, Sound appears to be generated in the wall jet at approximately 2.6R from the jet axis, where R is the nozzle exit radius. The oscillatory motion in the wall jet is the result of the periodic fluid motion in the near wall region.
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wicks, June K.; Smith, Raymond F.; Fratanduono, Dayne E.
In this paper, the high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as ten times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ X-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-7wt.%Si adopts the hexagonal close packed (hcp) structure over the measured pressure range, whereas Fe-15wt.%Si is observed in a body-centered cubic (bcc) structure. This study representsmore » the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3 Earth-mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for such planets.« less
Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays
NASA Astrophysics Data System (ADS)
Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.
2015-10-01
Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.
The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
1994-01-01
The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.
Collection and hauling of cereal grain chaff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reding, B.; Leduc, P.; Stumborg, M.
1993-12-31
Cereal grain chaff has been identified by Energy Mines and Resources, Canada, and Agriculture Canada, as a suitable feedstock for ethanol production. Canada produces 13,300,000 t (14,600,000 ton) of cereal grain chaff annually; mainly in the prairie region. Work conducted at the Prairie Agricultural Machinery Institute (PAMI), Humboldt, Saskatchewan, has determined that the collection of chaff for centralized processing is a problem due to low bulk density in its natural state. This problem can be overcome by densification using either compression or size reduction. Either method will be economical in a chaff shed radius of 140 km (87 mi) whenmore » chaff is densified to 160 kg/m{sup 3} (10 lb/ft{sup 3}). The size reduction method of densification may be economical to hauling distances exceeding 166 km (103 mi), particularly if size reduction is a required part of ethanol processing. Further work is under way to develop the required equipment modifications to allow existing farm equipment to be used for this purpose.« less
Positron Radiography of Ignition-Relevant ICF Capsules
NASA Astrophysics Data System (ADS)
Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David
2017-10-01
X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.
Sonoluminescence at Carthage: Sound into Light
NASA Astrophysics Data System (ADS)
Swanson, Lukas K.; Arion, D.; Crosby, K.
2006-12-01
Single bubble sonoluminescence is a phenomenon in which acoustic energy traps and compresses a bubble resulting in the emission of light through an, as of yet, unidentified mechanism. Mathematical modeling of the single bubble system allows for theoretical predictions of the bubbles interior atmosphere such as radius, pressure and temperature as a function of time. Profiling of the light through polarization measurements, wavelength specific filter imaging as well as raw image analysis may give further insight as to the dynamics of the trapped bubble and a possible mechanism. Results of the linear polarization measurements indicate that the light emitted is not linearly polarized. Long exposures of the light clearly reproduce previously reported data of the high energy, short wavelength end of the visible spectrum by the bluish-violet glow emanating from the bubble. The procedure and design improvements of the apparatus that were made make the phenomenon of sonoluminescence more accessible to study as an undergraduate. My AAPT sponsors are Prof. Douglas Arion and Prof. Kevin Crosby.
Research on wire rope deformation distribution of WR-CVT
NASA Astrophysics Data System (ADS)
Zhang, Wu; Guo, Wei; Zhang, Chuanwei; Lu, Zhengxiong; Xu, Xiaobin
2017-07-01
A wire rope continuously variable transmissions (WR-CVT) has been introduced in the paper, in view of its less research, this paper mainly studied the deformation distribution of 6×7+IWS bending wire rope. The results shown that in the same section, half of the side strands are in a stretched state and half are in a compressed state. When the transmission ratio i=2.35, the maximum deformation and the minimum deformation are decrease when section U1 to U2, U3 transition. Wire deformation distribution when the transmission ratio i=0.42 is similar to that of i=0.2.35. Wire deformation amount and the deformation difference decrease as the transmission ratio decreases, this shows that the increase in the bending radius of the wire will make the wire deformation more uniform, and the reduction of the deformation difference will also reduce the wear. This study provides a basis for the study of fatigue and wears failure of WR-CVT components.
Rheological State Diagrams for Rough Colloids in Shear Flow.
Hsiao, Lilian C; Jamali, Safa; Glynos, Emmanouil; Green, Peter F; Larson, Ronald G; Solomon, Michael J
2017-10-13
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghai, S.
2008-01-01
This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).
Rheological State Diagrams for Rough Colloids in Shear Flow
NASA Astrophysics Data System (ADS)
Hsiao, Lilian C.; Jamali, Safa; Glynos, Emmanouil; Green, Peter F.; Larson, Ronald G.; Solomon, Michael J.
2017-10-01
To assess the role of particle roughness in the rheological phenomena of concentrated colloidal suspensions, we develop model colloids with varying surface roughness length scales up to 10% of the particle radius. Increasing surface roughness shifts the onset of both shear thickening and dilatancy towards lower volume fractions and critical stresses. Experimental data are supported by computer simulations of spherical colloids with adjustable friction coefficients, demonstrating that a reduction in the onset stress of thickening and a sign change in the first normal stresses occur when friction competes with lubrication. In the quasi-Newtonian flow regime, roughness increases the effective packing fraction of colloids. As the shear stress increases and suspensions of rough colloids approach jamming, the first normal stresses switch signs and the critical force required to generate contacts is drastically reduced. This is likely a signature of the lubrication films giving way to roughness-induced tangential interactions that bring about load-bearing contacts in the compression axis of flow.
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Goldstein, Melvyn L.
2011-01-01
Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.
The effect of changes in compression ratio upon engine performance
NASA Technical Reports Server (NTRS)
Sparrow, Stanwood W
1925-01-01
This report is based upon engine tests made at the Bureau of Standards during 1920, 1921, 1922, and 1923. The majority of these tests were of aviation engines and were made in the Altitude Laboratory. For a small portion of the work a single cylinder experimental engine was used. This, however, was operated only at sea-level pressures. The report shows that an increase in break horsepower and a decrease in the pounds of fuel used per brake horsepower hour usually results from an increase in compression ratio. This holds true at least up to the highest ratio investigated, 14 to 1, provided there is no serious preignition or detonation at any ratio. To avoid preignition and detonation when employing high-compression ratios, it is often necessary to use some fuel other than gasoline. It has been found that the consumption of some of these fuels in pounds per brake horsepower hour is so much greater than the consumption of gasoline that it offsets the decrease derived from the use of the high-compression ratio. The changes in indicated thermal efficiency with changes in compression ratio are in close agreement with what would be anticipated from a consideration of the air cycle efficiencies at the various ratios. In so far as these tests are concerned there is no evidence that a change in compression ratio produces an appreciable, consistent change in friction horsepower, volumetric efficiency, or in the range of fuel-air ratios over which the engine can operate. The ratio between the heat loss to the jacket water and the heat converted into brake horsepower or indicated horsepower decreases with increase in compression ratio. (author)
A closed-loop compressive-sensing-based neural recording system.
Zhang, Jie; Mitra, Srinjoy; Suo, Yuanming; Cheng, Andrew; Xiong, Tao; Michon, Frederic; Welkenhuysen, Marleen; Kloosterman, Fabian; Chin, Peter S; Hsiao, Steven; Tran, Trac D; Yazicioglu, Firat; Etienne-Cummings, Ralph
2015-06-01
This paper describes a low power closed-loop compressive sensing (CS) based neural recording system. This system provides an efficient method to reduce data transmission bandwidth for implantable neural recording devices. By doing so, this technique reduces a majority of system power consumption which is dissipated at data readout interface. The design of the system is scalable and is a viable option for large scale integration of electrodes or recording sites onto a single device. The entire system consists of an application-specific integrated circuit (ASIC) with 4 recording readout channels with CS circuits, a real time off-chip CS recovery block and a recovery quality evaluation block that provides a closed feedback to adaptively adjust compression rate. Since CS performance is strongly signal dependent, the ASIC has been tested in vivo and with standard public neural databases. Implemented using efficient digital circuit, this system is able to achieve >10 times data compression on the entire neural spike band (500-6KHz) while consuming only 0.83uW (0.53 V voltage supply) additional digital power per electrode. When only the spikes are desired, the system is able to further compress the detected spikes by around 16 times. Unlike other similar systems, the characteristic spikes and inter-spike data can both be recovered which guarantes a >95% spike classification success rate. The compression circuit occupied 0.11mm(2)/electrode in a 180nm CMOS process. The complete signal processing circuit consumes <16uW/electrode. Power and area efficiency demonstrated by the system make it an ideal candidate for integration into large recording arrays containing thousands of electrode. Closed-loop recording and reconstruction performance evaluation further improves the robustness of the compression method, thus making the system more practical for long term recording.
Visualization and analysis of flow structures in an open cavity
NASA Astrophysics Data System (ADS)
Liu, Jun; Cai, Jinsheng; Yang, Dangguo; Wu, Junqiang; Wang, Xiansheng
2018-05-01
A numerical study is performed on the supersonic flow over an open cavity at Mach number of 1.5. A newly developed visualization method is employed to visualize the complicated flow structures, which provide an insight into major flow physics. Four types of shock/compressive waves which existed in experimental schlieren are observed in numerical visualization results. Furthermore, other flow structures such as multi-scale vortices are also obtained in the numerical results. And a new type of shocklet which is beneath large vortices is found. The shocklet beneath the vortex originates from leading edge, then, is strengthened by successive interactions between feedback compressive waves and its attached vortex. Finally, it collides against the trailing surface and generates a large number of feedback compressive waves and intensive pressure fluctuations. It is suggested that the shocklets beneath vortex play an important role of cavity self-sustained oscillation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ∼4× compared to the original design at a convergence ratiomore » of ∼2. Corresponding simulations give a fuel adiabat of ∼1.6, similar to the original goal and consistent with ignition requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less
ElGamal cryptosystem with embedded compression-crypto technique
NASA Astrophysics Data System (ADS)
Mandangan, Arif; Yin, Lee Souk; Hung, Chang Ee; Hussin, Che Haziqah Che
2014-12-01
Key distribution problem in symmetric cryptography has been solved by the emergence of asymmetric cryptosystem. Due to its mathematical complexity, computation efficiency becomes a major problem in the real life application of asymmetric cryptosystem. This scenario encourage various researches regarding the enhancement of computation efficiency of asymmetric cryptosystems. ElGamal cryptosystem is one of the most established asymmetric cryptosystem. By using proper parameters, ElGamal cryptosystem is able to provide a good level of information security. On the other hand, Compression-Crypto technique is a technique used to reduce the number of plaintext to be encrypted from k∈ Z+, k > 2 plaintext become only 2 plaintext. Instead of encrypting k plaintext, we only need to encrypt these 2 plaintext. In this paper, we embed the Compression-Crypto technique into the ElGamal cryptosystem. To show that the embedded ElGamal cryptosystem works, we provide proofs on the decryption processes to recover the encrypted plaintext.
MacPhee, A. G.; Peterson, J. L.; Casey, D. T.; ...
2015-08-01
Hydrodynamic instabilities and poor fuel compression are major factors for capsule performance degradation in ignition experiments on the National Ignition Facility. Using a recently developed laser drive profile with a decaying first shock to tune the ablative Richtmyer-Meshkov (ARM) instability and subsequent in-flight Rayleigh-Taylor growth, we have demonstrated reduced growth compared to the standard ignition pulse whilst maintaining conditions for a low fuel adiabat needed for increased compression. Here, using in-flight x-ray radiography of pre-machined modulations, the first growth measurements using this new ARM-tuned drive have demonstrated instability growth reduction of ~4× compared to the original design at a convergencemore » ratio of ~2. Corresponding simulations give a fuel adiabat of ~1.6, similar to the original goal and consistent with ignition requirements.« less
Impurity seeding for tokamak power exhaust: from present devices via ITER to DEMO
NASA Astrophysics Data System (ADS)
Kallenbach, A.; Bernert, M.; Dux, R.; Casali, L.; Eich, T.; Giannone, L.; Herrmann, A.; McDermott, R.; Mlynek, A.; Müller, H. W.; Reimold, F.; Schweinzer, J.; Sertoli, M.; Tardini, G.; Treutterer, W.; Viezzer, E.; Wenninger, R.; Wischmeier, M.; the ASDEX Upgrade Team
2013-12-01
A future fusion reactor is expected to have all-metal plasma facing materials (PFMs) to ensure low erosion rates, low tritium retention and stability against high neutron fluences. As a consequence, intrinsic radiation losses in the plasma edge and divertor are low in comparison to devices with carbon PFMs. To avoid localized overheating in the divertor, intrinsic low-Z and medium-Z impurities have to be inserted into the plasma to convert a major part of the power flux into radiation and to facilitate partial divertor detachment. For burning plasma conditions in ITER, which operates not far above the L-H threshold power, a high divertor radiation level will be mandatory to avoid thermal overload of divertor components. Moreover, in a prototype reactor, DEMO, a high main plasma radiation level will be required in addition for dissipation of the much higher alpha heating power. For divertor plasma conditions in present day tokamaks and in ITER, nitrogen appears most suitable regarding its radiative characteristics. If elevated main chamber radiation is desired as well, argon is the best candidate for the simultaneous enhancement of core and divertor radiation, provided sufficient divertor compression can be obtained. The parameter Psep/R, the power flux through the separatrix normalized by the major radius, is suggested as a suitable scaling (for a given electron density) for the extrapolation of present day divertor conditions to larger devices. The scaling for main chamber radiation from small to large devices has a higher, more favourable dependence of about Prad,main/R2. Krypton provides the smallest fuel dilution for DEMO conditions, but has a more centrally peaked radiation profile compared to argon. For investigation of the different effects of main chamber and divertor radiation and for optimization of their distribution, a double radiative feedback system has been implemented in ASDEX Upgrade (AUG). About half the ITER/DEMO values of Psep/R have been achieved so far, and close to DEMO values of Prad,main/R2, albeit at lower Psep/R. Further increase of this parameter may be achieved by increasing the neutral pressure or improving the divertor geometry.
NASA Astrophysics Data System (ADS)
Stevens, Daniel; Gaudi, Scott; Beatty, Thomas; Siverd, Robert
2018-05-01
Double-lined eclipsing binaries (EBs) have been the gold standard for direct, precise (less than a few percent), and accurate measurements of stellar masses and radii. However, with the availability of Gaia parallaxes and nearly complete spectral energy distributions (SEDs) of millions of stars, it will soon be possible to make such measurements for the much larger number of single-lined EBs such as high mass-ratio systems and transiting planets, both of which are routinely found by transit surveys. Combining high-precision eclipse photometry and radial velocity (RV) observations of the primary star enables measurements of the primary star's density, the ratio of stellar radii, and a combination of the stars' masses. Broad-band photometry from the ultraviolet to the infrared plus a Gaia parallax and an effective temperature of the primary from either the SED or high-resolution spectra, allow one to measure the radius (and mass via the density) of the primary. The radius and mass of the secondary can then be determined in the usual way with the radius ratio and RVs, and the companion's effective temperature can be determined from a secondary eclipse measurement and the primary star's effective temperature. For single-lined EBs, the precision of ingress/egress duration measurements dominates the error budget of the masses and companion radius. We propose to observe one primary and secondary eclipse of the F+M binary TYC 4223-1012-1, an M dwarf on a 16.5-day orbit around an F dwarf. Ground-based data poorly constrain TYC 4223-1012-1's masses due to the near-impossibility of observing the full 10-hr eclipse from the ground. By combining extant RV and SED data with the Spitzer data, we expect to measure the mass, radius, and effective temperature of the M dwarf to a few percent. This is comparable to the precision of the best-characterized literature M dwarfs, but at an orbital period far beyond the majority of such systems, where tidal effects should be negligible.
NASA Astrophysics Data System (ADS)
Takagi, Hiroshi; Wu, Wenjie
2016-03-01
Even though the maximum wind radius (R
2014-01-01
Background Distal radius fractures are among the most common fractures seen in the hospital emergency department. Of these, over 40% are considered unstable and require some form of fixation. In recent years with the advent of low profile plating, open reduction and internal fixation (ORIF) using volar plates has become the surgical treatment of choice in many hospitals. However, it is currently unknown which plating system has the lowest complication rate and/or superior clinical and radiological outcomes following surgery. Few studies have compared different types of plates, which may have various features, different plate and screw designs or may be manufactured from different materials (for example, stainless steel or titanium). This study will specifically investigate and compare the clinical and radiological outcomes and complication rates of two commonly used volar plating systems for fixation of distal radius fractures: one made from stainless steel (Trimed™ Volar Plate, Trimed™, California, USA) and the other made from titanium (Medartis® Aptus Volar Plate, Medartis®, Basel, Switzerland). The primary aim of this study is to determine if there is a difference on the Patient Reported Wrist Evaluation six months following ORIF using a volar plate for adult patients with a distal radius fracture. Methods/Design This study will implement a randomized prospective clinical trial study design evaluating the outcomes of two different types of volar plates: one plate manufactured from stainless steel (Trimed™ Volar Plate) and one plate manufactured from titanium (Medartis® Aptus Volar Plate). The surgery will be performed at a major trauma hospital in Brisbane, Australia. Outcome measures including function, adverse events, range of movement, strength, disability, radiological findings and health-related quality of life will be collected at 6 weeks, 3, 6, 12 and 24 months following surgery. A parallel economic analysis will also be performed. This randomized clinical trial is due to deliver results in December 2016. Discussion Results from this trial will contribute to the evidence on operative management of distal radius fractures and plate material type. Trial registration ACTRN12612000969864 PMID:24612524
SCALCE: boosting sequence compression algorithms using locally consistent encoding.
Hach, Faraz; Numanagic, Ibrahim; Alkan, Can; Sahinalp, S Cenk
2012-12-01
The high throughput sequencing (HTS) platforms generate unprecedented amounts of data that introduce challenges for the computational infrastructure. Data management, storage and analysis have become major logistical obstacles for those adopting the new platforms. The requirement for large investment for this purpose almost signalled the end of the Sequence Read Archive hosted at the National Center for Biotechnology Information (NCBI), which holds most of the sequence data generated world wide. Currently, most HTS data are compressed through general purpose algorithms such as gzip. These algorithms are not designed for compressing data generated by the HTS platforms; for example, they do not take advantage of the specific nature of genomic sequence data, that is, limited alphabet size and high similarity among reads. Fast and efficient compression algorithms designed specifically for HTS data should be able to address some of the issues in data management, storage and communication. Such algorithms would also help with analysis provided they offer additional capabilities such as random access to any read and indexing for efficient sequence similarity search. Here we present SCALCE, a 'boosting' scheme based on Locally Consistent Parsing technique, which reorganizes the reads in a way that results in a higher compression speed and compression rate, independent of the compression algorithm in use and without using a reference genome. Our tests indicate that SCALCE can improve the compression rate achieved through gzip by a factor of 4.19-when the goal is to compress the reads alone. In fact, on SCALCE reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with a single core and 6 GB memory. Interestingly even the running time of SCALCE + gzip improves that of gzip alone by a factor of 2.09. When compared with the recently published BEETL, which aims to sort the (inverted) reads in lexicographic order for improving bzip2, SCALCE + gzip provides up to 2.01 times better compression while improving the running time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as well as the read names, in addition to the reads themselves. This is achieved by compressing the quality scores through order-3 Arithmetic Coding (AC) and the read names through gzip through the reordering SCALCE provides on the reads. This way, in comparison with gzip compression of the unordered FASTQ files (including reads, read names and quality scores), SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement in the compression rate and 1.26 improvement in running time. Our algorithm, SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding), is implemented in C++ with both gzip and bzip2 compression options. It also supports multithreading when gzip option is selected, and the pigz binary is available. It is available at http://scalce.sourceforge.net. fhach@cs.sfu.ca or cenk@cs.sfu.ca Supplementary data are available at Bioinformatics online.
Calvert, George T; Cummings, Judd E; Bowles, Austin J; Jones, Kevin B; Wurtz, L Daniel; Randall, R Lor
2014-03-01
Aseptic failure of massive endoprostheses used in the reconstruction of major skeletal defects remains a major clinical problem. Fixation using compressive osseointegration was developed as an alternative to cemented and traditional press-fit fixation in an effort to decrease aseptic failure rates. The purpose of this study was to answer the following questions: (1) What is the survivorship of this technique at minimum 2-year followup? (2) Were patient demographic variables (age, sex) or anatomic location associated with implant failure? (3) Were there any prosthesis-related variables (eg, spindle size) associated with failure? (4) Was there a discernible learning curve associated with the use of the new device as defined by a difference in failure rate early in the series versus later on? The first 50 cases using compressive osseointegration fixation from two tertiary referral centers were retrospectively studied. Rates of component removal for any reason and for aseptic failure were calculated. Demographic, surgical, and oncologic factors were analyzed using regression analysis to assess for association with implant failure. Minimum followup was 2 years with a mean of 66 months. Median age at the time of surgery was 14.5 years. A total of 15 (30%) implants were removed for any reason. Of these revisions, seven (14%) were the result of aseptic failure. Five of the seven aseptic failures occurred at less than 1 year (average, 8.3 months), and none occurred beyond 17 months. With the limited numbers available, no demographic, surgical, or prosthesis-related factors correlated with failure. Most aseptic failures of compressive osseointegration occurred early. Longer followup is needed to determine if this technique is superior to other forms of fixation.
Chen, Y R; Wu, Y F; Tang, J B; Giddins, G
2014-05-01
The functional neutral of wrist movement is about 10° extension yet the distal radius has a volar tilt. This has not previously been explained. Assuming that the contact area between the carpus and the distal radius increased in wrist extension this would also help stabilize the carpus on the distal radius in positions where typically there is greater loading. To test this hypothesis we reconstructed three-dimensional structures of the carpal bones and distal radius using computed tomography scans of 13 normal wrists. The contact areas of the scaphoid with the distal radius were measured and were found progressively increased from flexion 20°, neutral, extension 20°, to extension 40°. The maximal increases in the contact area of the scaphoid and the distal radius was at full wrist extension. No significant changes in the contact areas of the lunate with the distal radius were found between the different positions. The contact characteristics provide greater stability to the carpus on the distal radius, and to help spread forces from impact to the wrist reducing the transmitted peak forces and thus the risk of distal radius and carpal injuries.
Steady State Model for Solar Coronal Loops
NASA Astrophysics Data System (ADS)
Sugiyama, L.; Asgari-Targhi, M.
2017-12-01
Solar coronal loops on the surface of the sun provide background magnetic and plasma structures for the release of a significant amount of the sun's energy, through energetic solar flares and coronal mass ejections and more gradual processes. Understanding their steady states is the first step in understanding loop dynamics. A consistent MHD steady state model, for a curved magnetic flux rope that contains plasma, has been developed[1] for simple coronal loops with both ends anchored in the photosphere. Plasma pressure or current makes the loop unstable to expansion in major radius and must be balanced by external forces, such as the solar gravity. The MHD momentum equation has a well defined small parameter ordering in the loop inverse aspect ratio ɛ=a/Ro (minor/major radius). Different types of common coronal loops fall in different parameter regimes, determined by the relative values of the plasma beta β=po/(Bo2/2μo), the MHD gravity parameter Ĝ≡ga/vA2 (the gravitational acceleration g normalized to the minor radius a and shear Alfvén velocity vA), and ɛ. The largest possible gravity, Ĝ ɛ1β, corresponds to the largest loops because it reduces the plasma density at the top of the loop exponentially compared to its lower ends, reducing the downward gravitational force -ρĜ there. The thin loops that are ubiquitous in solar active regions have ``high'' beta, β ɛ1, for ɛ≃0.02, and fit the predicted model scalings. The thicker loops that can give rise to flares and CMEs have ``low'' beta, β ɛ2. Cool loops, such as solar filaments outside active regions, that have a central pressure lower than that of the surrounding corona would have the strongest stability against radial expansion. The model raises a number of questions about the connection of loops to the photosphere and the force-free nature of the magnetic field there. [1] L. Sugiyama, M. Asgari-Targhi, Phys. Plasmas 24, 022904 (2017).
Perceptual Image Compression in Telemedicine
NASA Technical Reports Server (NTRS)
Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)
1996-01-01
The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications of our technology to the special problems of telemedicine.
ERIC Educational Resources Information Center
Xizhen, Zhuang
2007-01-01
This article presents a preliminary analysis of a rural junior high school. This school is situated in S town, J county, Shandong province, and, in keeping with the procedure followed for naming the majority of schools in China by location of school + type of school, this school is called S Junior High. J county is one of Shandong's poor counties,…
ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng
2018-02-01
Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.
Wang, Decai; Liu, Bin; Huang, Shengsong; Huang, Wenyong; He, Mingguang
2014-09-01
A cross-sectional study was conducted to explore the relationship between refractive error and ocular biometrics in children from the Guangzhou twin eye study. Twin participants aged 7-15 years were selected from Guangzhou Twin Eye Study. Ocular examinations included visual acuity measurement, ocular motility evaluation, autorefraction under cycloplegia, and anterior segment, media, and fundus examination. Axial length (AL), anterior chamber depth (ACD), and corneal curvature radius were measured using partial coherence laser interferometry. A multivariate linear regression model was used for statistical analysis. Twin children from Guangzhou city showed a decreased spherical equivalent with age, whereas both AL and ACD were increased and corneal curvature radius remained unchanged. When adjusted by age and gender, the data from 77% of twins presenting with spherical equivalent changes indicated that these were caused by predictable variables (R2 = 0.77, P < 0.001). Primary factors affecting children's refraction included axial length (β = -0.97,P < 0.001), ACD (β = 0.33, P < 0.001), and curvature radius (β = 2.10, P < 0.001). Girls had a higher tendency for myopic status than did boys (β = -0.26, P < 0.001). Age exerted no effect upon the changes in refraction (β = -0.01, P = 0.25). Refraction is correlated with ocular biometrics. Refractive status is largely determined by axial length as the major factor.
Kallemeier, Patricia M; Manske, Paul R; Davis, Benjamin; Goldfarb, Charles A
2007-11-01
A relationship between symbrachydactyly and transverse deficiency has been suggested but has not been critically investigated or established by scientific studies. The purpose of this investigation was to evaluate a large group of patients with transverse deficiency of the forearm for clinical and radiologic features typically seen in patients with symbrachydactyly. A retrospective review of the medical records of 291 patients with a diagnosis of upper-extremity transverse deficiency at the level of the forearm was performed. Patient charts, photographs, and radiographs were evaluated for manifestations of symbrachydactyly; specifically, we clinically assessed for the presence of nubbins and skin invaginations and radiologically assessed for hypoplasia of the proximal radius and ulna. Two hundred seven patients had soft tissue nubbins at the end of their amputation stumps including 38 with the additional finding of skin invagination at the distal end. Another 36 extremities had a skin invagination alone. Twenty-nine of the extremities without nubbins or skin invaginations had hypoplasia of the proximal radius and ulna. Thus, 272 of the 291 extremities with transverse deficiency had manifestations of symbrachydactyly. The majority of patients with the diagnosis of transverse deficiency have soft tissue nubbins, skin invaginations, or hypoplasia of the proximal radius and ulna at the end of their amputation stumps. These clinical and radiologic features support the concept that transverse deficiency through the forearm represents a proximal continuum of symbrachydactyly.
Zhang, Huiting; Xie, Junshuai; Xiao, Sa; Zhao, Xiuchao; Zhang, Ming; Shi, Lei; Wang, Ke; Wu, Guangyao; Sun, Xianping; Ye, Chaohui; Zhou, Xin
2018-05-04
To demonstrate the feasibility of compressed sensing (CS) to accelerate the acquisition of hyperpolarized (HP) 129 Xe multi-b diffusion MRI for quantitative assessments of lung microstructural morphometry. Six healthy subjects and six chronic obstructive pulmonary disease (COPD) subjects underwent HP 129 Xe multi-b diffusion MRI (b = 0, 10, 20, 30, and 40 s/cm 2 ). First, a fully sampled (FS) acquisition of HP 129 Xe multi-b diffusion MRI was conducted in one healthy subject. The acquired FS dataset was retrospectively undersampled in the phase encoding direction, and an optimal twofold undersampled pattern was then obtained by minimizing mean absolute error (MAE) between retrospective CS (rCS) and FS MR images. Next, the FS and CS acquisitions during separate breath holds were performed on five healthy subjects (including the above one). Additionally, the FS and CS synchronous acquisitions during a single breath hold were performed on the sixth healthy subject and one COPD subject. However, only CS acquisitions were conducted in the rest of the five COPD subjects. Finally, all the acquired FS, rCS and CS MR images were used to obtain morphometric parameters, including acinar duct radius (R), acinar lumen radius (r), alveolar sleeve depth (h), mean linear intercept (L m ), and surface-to-volume ratio (SVR). The Wilcoxon signed-rank test and the Bland-Altman plot were employed to assess the fidelity of the CS reconstruction. Moreover, the t-test was used to demonstrate the effectiveness of the multi-b diffusion MRI with CS in clinical applications. The retrospective results demonstrated that there was no statistically significant difference between rCS and FS measurements using the Wilcoxon signed-rank test (P > 0.05). Good agreement between measurements obtained with the CS and FS acquisitions during separate breath holds was demonstrated in Bland-Altman plots of slice differences. Specifically, the mean biases of the R, r, h, L m , and SVR between the CS and FS acquisitions were 1.0%, 2.6%, -0.03%, 1.5%, and -5.5%, respectively. Good agreement between measurements with the CS and FS acquisitions was also observed during the single breath-hold experiments. Furthermore, there were significant differences between the morphometric parameters for the healthy and COPD subjects (P < 0.05). Our study has shown that HP 129 Xe multi-b diffusion MRI with CS could be beneficial in lung microstructural assessments by acquiring less data while maintaining the consistent results with the FS acquisitions. © 2018 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Corrigan, Jackie
2004-01-01
A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
NASA Astrophysics Data System (ADS)
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
NASA Technical Reports Server (NTRS)
Nemeth, Michael P.
2013-01-01
Nondimensional linear-bifurcation buckling equations for balanced, symmetrically laminated cylinders with negligible shell-wall anisotropies and subjected to uniform axial compression loads are presented. These equations are solved exactly for the practical case of simply supported ends. Nondimensional quantities are used to characterize the buckling behavior that consist of a stiffness-weighted length-to-radius parameter, a stiffness-weighted shell-thinness parameter, a shell-wall nonhomogeneity parameter, two orthotropy parameters, and a nondimensional buckling load. Ranges for the nondimensional parameters are established that encompass a wide range of laminated-wall constructions and numerous generic plots of nondimensional buckling load versus a stiffness-weighted length-to-radius ratio are presented for various combinations of the other parameters. These plots are expected to include many practical cases of interest to designers. Additionally, these plots show how the parameter values affect the distribution and size of the festoons forming each response curve and how they affect the attenuation of each response curve to the corresponding solution for an infinitely long cylinder. To aid in preliminary design studies, approximate formulas for the nondimensional buckling load are derived, and validated against the corresponding exact solution, that give the attenuated buckling response of an infinitely long cylinder in terms of the nondimensional parameters presented herein. A relatively small number of "master curves" are identified that give a nondimensional measure of the buckling load of an infinitely long cylinder as a function of the orthotropy and wall inhomogeneity parameters. These curves reduce greatly the complexity of the design-variable space as compared to representations that use dimensional quantities as design variables. As a result of their inherent simplicity, these master curves are anticipated to be useful in the ongoing development of buckling-design technology.
Modeling of the dolphin's clicking sound source: The influence of the critical parameters
NASA Astrophysics Data System (ADS)
Dubrovsky, N. A.; Gladilin, A.; Møhl, B.; Wahlberg, M.
2004-07-01
A physical and a mathematical models of the dolphin’s source of echolocation clicks have been recently proposed. The physical model includes a bottle of pressurized air connected to the atmosphere with an underwater rubber tube. A compressing rubber ring is placed on the underwater portion of the tube. The ring blocks the air jet passing through the tube from the bottle. This ring can be brought into self-oscillation by the air jet. In the simplest case, the ring displacement follows a repeated triangular waveform. Because the acoustic pressure gradient is proportional to the second time derivative of the displacement, clicks arise at the bends of the displacement waveform. The mathematical model describes the dipole oscillations of a sphere “frozen” in the ring and calculates the waveform and the sound pressure of the generated clicks. The critical parameters of the mathematical model are the radius of the sphere and the peak value and duration of the triangular displacement curve. This model allows one to solve both the forward (deriving the properties of acoustic clicks from the known source parameters) and the inverse (calculating the source parameters from the acoustic data) problems. Data from click records of Odontocetes were used to derive both the displacement waveforms and the size of the “frozen sphere” or a structure functionally similar to it. The mathematical model predicts a maximum source level of up to 235 dB re 1 μPa at 1-m range when using a 5-cm radius of the “frozen” sphere and a 4-mm maximal displacement. The predicted sound pressure level is similar to that of the clicks produced by Odontocetest.
Assessment of a novel biomechanical fracture model for distal radius fractures
2012-01-01
Background Distal radius fractures (DRF) are one of the most common fractures and often need surgical treatment, which has been validated through biomechanical tests. Currently a number of different fracture models are used, none of which resemble the in vivo fracture location. The aim of the study was to develop a new standardized fracture model for DRF (AO-23.A3) and compare its biomechanical behavior to the current gold standard. Methods Variable angle locking volar plates (ADAPTIVE, Medartis) were mounted on 10 pairs of fresh-frozen radii. The osteotomy location was alternated within each pair (New: 10 mm wedge 8 mm / 12 mm proximal to the dorsal / volar apex of the articular surface; Gold standard: 10 mm wedge 20 mm proximal to the articular surface). Each specimen was tested in cyclic axial compression (increasing load by 100 N per cycle) until failure or −3 mm displacement. Parameters assessed were stiffness, displacement and dissipated work calculated for each cycle and ultimate load. Significance was tested using a linear mixed model and Wald test as well as t-tests. Results 7 female and 3 male pairs of radii aged 74 ± 9 years were tested. In most cases (7/10), the two groups showed similar mechanical behavior at low loads with increasing differences at increasing loads. Overall the novel fracture model showed a significant different biomechanical behavior than the gold standard model (p < 0,001). The average final loads resisted were significantly lower in the novel model (860 N ± 232 N vs. 1250 N ± 341 N; p = 0.001). Conclusion The novel biomechanical fracture model for DRF more closely mimics the in vivo fracture site and shows a significantly different biomechanical behavior with increasing loads when compared to the current gold standard. PMID:23244634
Towards efficient backward-in-time adjoint computations using data compression techniques
Cyr, E. C.; Shadid, J. N.; Wildey, T.
2014-12-16
In the context of a posteriori error estimation for nonlinear time-dependent partial differential equations, the state-of-the-practice is to use adjoint approaches which require the solution of a backward-in-time problem defined by a linearization of the forward problem. One of the major obstacles in the practical application of these approaches, we found, is the need to store, or recompute, the forward solution to define the adjoint problem and to evaluate the error representation. Our study considers the use of data compression techniques to approximate forward solutions employed in the backward-in-time integration. The development derives an error representation that accounts for themore » difference between the standard-approach and the compressed approximation of the forward solution. This representation is algorithmically similar to the standard representation and only requires the computation of the quantity of interest for the forward solution and the data-compressed reconstructed solution (i.e. scalar quantities that can be evaluated as the forward problem is integrated). This approach is then compared with existing techniques, such as checkpointing and time-averaged adjoints. Lastly, we provide numerical results indicating the potential efficiency of our approach on a transient diffusion–reaction equation and on the Navier–Stokes equations. These results demonstrate memory compression ratios up to 450×450× while maintaining reasonable accuracy in the error-estimates.« less
NASA Technical Reports Server (NTRS)
Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph
2015-01-01
In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.