Science.gov

Sample records for major rice ecosystems

  1. Residues of chlorantraniliprole in rice field ecosystem.

    PubMed

    Zhang, Jin-Ming; Chai, Wei-Gang; Wu, Yin-Liang

    2012-04-01

    The fate of chlorantraniliprole was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of chlorantraniliprole in soil, rice straw, paddy water and brown rice. Chlorantraniliprole residues were extracted from samples with acetonitrile. The extract was cleaned up with QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The average recoveries were 76.9-82.4% from soil, 83.6-89.3% from rice straw, 95.2-103.1% from paddy water and 84.9-87.7% from brown rice. The relative standard deviation was less than 15%. The limits of detection (LODs) of chlorantraniliprole calculated as a sample concentration (S/N ratio of 3) were 0.012 μg L(-1) for paddy water, 0.15 μg kg(-1) for soil, brown rice and rice straw. The results of the kinetics study of chlorantraniliprole residue showed that chlorantraniliprole degradation in soil, water and rice straw coincided with C=0.01939e(-0.0434t), C=0.01425e(-0.8111t), and C=1.171e(-0.198t), respectively; the half-lives were about 16.0 d, 0.85 d and 3.50 d, respectively. The degradation rate of chlorantraniliprole in water was the fastest, followed by rice straw. The final residues of chlorantraniliprole on brown rice were lower than maximum residue limit (MRL) of 0.02 mg kg(-1) after 14 d Pre-Harvest Interval (PHI). Therefore, a dosage of 150 mL a.i.hm(-2) was recommended, which could be considered as safe to human beings and animals.

  2. Understanding the nature of methane emission from rice ecosystems as basis of mitigation strategies

    SciTech Connect

    Buendia, L.V.; Neue, H.U.; Wassmann, R.

    1996-12-31

    Methane is considered as an important Greenhouse gas and rice fields are one of the major atmospheric methane sources. The paper aims to develop sampling strategies and formulate mitigation options based on diel (day and night) and seasonal pattern of methane emission. The study was conducted in 4 countries to measure methane flux using an automatic closed chamber system. A 24-hour bihourly methane emissions were continuously obtained during the whole growing season. Daily and seasonal pattern of methane fluxes from different rice ecosystems were evaluated. Diel pattern of methane emission from irrigated rice fields, in all sites, displayed similar pattern from planting to flowering. Fluxes at 0600, 1200, and 1800 h were important components of the total diel flux. A proposed sampling frequency to accurately estimate methane emission within the growing season was designed based on the magnitude of daily flux variation. Total methane emission from different ecosystems follow the order: deepwater rice > irrigated rice > rainfed rice. Application of pig manure increased total emission by 10 times of that without manure. Green manure application increased emission by 49% of that applied only with inorganic fertilizer. Removal of floodwater at 10 DAP and 35 DAP, within a period of 4 days, inhibited production and emission of methane. The level of variation in daily methane emission and seasonal emission pattern provides useful information for accurate determination of methane fluxes. Characterization of seasonal emission pattern as to ecologies, fertilizer amendments, and water management gives an idea of where to focus mitigation strategies for sustainable rice production.

  3. Residues and dynamics of pymetrozine in rice field ecosystem.

    PubMed

    Li, Cun; Yang, Ting; Huangfu, Weiguo; Wu, Yinliang

    2011-02-01

    The fate of pymetrozine was studied in rice field ecosystem, and a simple and reliable analytical method for determination of pymetrozine in soil, rice straw, paddy water and brown rice was developed. Pymetrozine residues were extracted from samples, cleaned up by solid phase extraction (SPE) and then determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The average recovery was 81.2-88.1% from soil, 83.4-88.6% from rice straw, 87.3-94.1% from paddy water and 82.9-85.3% from brown rice. The relative standard deviation (RSD) was less than 15%. The limits of detection (LODs) of pymetrozine calculated as a sample concentration were 0.0003 mg kg(-1) (mg L(-1)) for soil and paddy water, 0.001 mg kg(-1) for brown rice and rice straw. The results of kinetics study of pymetrozine residue showed that pymetrozine degradation in water, soil, and rice straw coincided with C=0.194e(-0.986t), C=0.044e(-0.099t), and C=0.988e(-0.780t), respectively; the half-lives were about 0.70 d, 7.0 d and 0.89 d, respectively. The degradation rate of pymetrozine in water was the fastest, followed by rice straw. The highest final pymetrozine residues in brown rice were 0.01 mg kg(-1), which was lower than the EU's upper limit of 0.02 mg kg(-1) in rice. Therefore, a dosage of 300-600 g a.i.hm(-2) was recommended, which could be considered as safe to human beings and animals.

  4. Dissipation and residue of pymetrozine in rice field ecosystem.

    PubMed

    Zhang, Yanfeng; Zhang, Li; Xu, Peng; Li, Jianzhong; Wang, Huili

    2015-03-01

    The dissipation and residue of pymetrozine in rice field ecosystem were studied based on a novel and reliable analytical method for pymetrozine in paddy water, soil, rice straw, brown rice, and rice husk. The pymetrozine residues were extracted with acetonitrile and cleaned up by Carb-NH2 SPE cartridge and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS-MS). The dissipation of pymetrozine followed first-order kinetics and its half-lives ranged from 1.7 to 1.8 days in paddy water, 5.1 to 5.7 days in soil, and 2.3 to 2.6 days in rice straw, respectively. At harvest time, the highest final residues of pymetrozine varied in soil among three geographical fields and were below the limit of detection in rice tissues. The recommended dosage was considered to be safe for human beings and animals, and the results were helpful in setting maximum residue limit for pymetrozine in rice.

  5. Transgenic Bacillus thuringiensis (Bt) rice is safer to aquatic ecosystems than its non-transgenic counterpart.

    PubMed

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.

  6. Transgenic Bacillus thuringiensis (Bt) Rice Is Safer to Aquatic Ecosystems than Its Non-Transgenic Counterpart

    PubMed Central

    Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan

    2014-01-01

    Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems. PMID:25105299

  7. Environmental fate of rice paddy pesticides in a model ecosystem.

    PubMed

    Tomizawa, C; Kazano, H

    1979-01-01

    The distribution and metabolic fate of several rice paddy pesticides were evaluated in a modified model ecosystem. Among the three BHC isomers, beta-isomer was the most stable and bioconcentrated in all of the organisms. Alpha- and gamma-isomers were moderately persistent and degraded to some extent during the 33 day period. Disulfoton was relatively persistent due to the transformation to its oxidation products. Pyridaphenthion was fairly biodegradable. N-Phenyl maleic hydrazide derived from the hydrolysis of pyridaphenthion was not detected in the organisms though it was found in the aquarium water after 33 days. Cartap and edifenphos were considerably biodegradable, and the ratio of the conversion to water soluble metabolites was very high. There was a distinct difference in the persistence of Kitazin P and edifenphos in the aquarium water. It appeared that the hydrolysis rate of the pesticides affected their fate in the organisms. PCP appeared to be moderately biodegradable. CNP was considerably stable and stored in the organisms though the concentration in the aquarium water was relatively low. The persistence and distribution of the pesticides in the model ecosystem were dependent on their chemical structures. In spite of the limitation derived from short experimental period, the model ecosystem may be applicable for predicting the environmental fate of pesticides.

  8. Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya.

    PubMed

    Mwangangi, Joseph; Shililu, Josephat; Muturi, Ephantus; Gu, Weidong; Mbogo, Charles; Kabiru, Ephantus; Jacob, Benjamin; Githure, John; Novak, Robert

    2006-12-01

    We determined changes in species composition and densities of immature stages of Anopheles arabiensis mosquitoes in relation to rice growth cycle in order to generate data for developing larval control strategies in rice ecosystems. Experimental rice paddies (6.3m x 3.15m) exposed to natural colonization of mosquitoes were sampled weekly for two rice growing cycles between February 2004 and March 2005. Overall, 21,325 Anopheles larvae were collected, of which 91.9% were 1st and 2nd instars and 8.1% were 3rd and 4th instars. An. arabiensis was the predominant species (84.1%) with other species, An. pharoensis (13.5%), An. funestus (2.1%), An. coustani (0.3%), and An. maculipalpis (0.1%) accounting for only a small proportion of the anophelines collected. Culex quinquefasciatus (65.7%) was the predominant species among the non-anopheline species. Others species collected included: C. annulioris (9.9%), C. poicilipes (7.3%), C. tigripes (7.2%), C. duttoni (0.6%), Aedes aegypti (5.3%), Ae. cumminsii (3.5%), and Ae. vittatus (0.7%). The densities of the major anopheline species were closely related to rice stage and condition of the rice field. An. arabiensis, the predominant species, was most abundant over a three-week period after transplanting. Low densities of larvae were collected during the late vegetative, reproductive, and ripening phases of rice. An increase in larval density ten days post-transplanting was found to correlate with the application of fertilizer (sulphate of ammonia). Culicine and aedine species densities were significantly higher during the post-harvesting period. Our results suggest that the transplanting stage is favorable for the growth of immature stages of An. arabiensis and provides a narrow window for targeted larval intervention in rice.

  9. Methane emission from a simulated rice field ecosystem as influenced by hydroquinone and dicyandiamide.

    PubMed

    Xu, X; Wang, Y; Zheng, X; Wang, M; Wang, Z; Zhou, L; Van Cleemput, O

    2000-12-18

    A simple apparatus for collecting methane emission from a simulated rice field ecosystem was formed. With no wheat straw powder amended all treatments with inhibitor(s) had so much lower methane emission during rice growth than the treatment with urea alone (control), which was contrary to methane emission from the cut rice-soil system. Especially for treatments with dicyandiamide (DCD) and with DCD plus hydroquinone (HQ), the total amount of methane emission from the soil system and intact rice-soil system was 68.25-46.64% and 46.89-41.78% of the control, respectively. Hence, DCD, especially in combination with HQ, not only increased methane oxidation in the floodwater-soil interface following application of urea, but also significantly enhanced methane oxidation in rice root rhizosphere, particularly from its tillering to booting stage. Wheat straw powder incorporated into flooded surface layer soil significantly weakened the above-mentioned simulating effects. Regression analysis indicated that methane emission from the rice field ecosystem was related to the turnover of ammonium-N in flooded surface layer soil. Diminishing methane emissions from the rice field ecosystem was significantly beneficial to the growth of rice.

  10. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem

  11. Modeling impacts of water and fertilizer management on the ecosystem service of rice rotated cropping system in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yu, C.; Li, C.

    2015-12-01

    Sustainable agricultural intensification demand optimum resource managements of agro-ecosystems. Detailed information on the impacts of water use and nutrient application on agro-ecosystem services including crop yields, greenhouse gas (GHG) emissions and nitrogen (N) loss is the key to guide field managements. In this study, we use the DeNitrification-DeComposition (DNDC) model to simulate the biogeochemical processes for rice rotated cropping systems in China. We set varied scenarios of water use in more than 1600 counties, and derived optimal rates of N application for each county in accordance to water use scenarios. Our results suggest that 0.88 ± 0.33 Tg per year (mean ± standard deviation) of synthetic N could be reduced without reducing rice yields, which accounts for 15.7 ± 5.9% of current N application in China. Field managements with shallow flooding and optimal N applications could enhance ecosystem services on a national scale, leading to 34.3% reduction of GHG emissions (CH4, N2O, and CO2), 2.8% reduction of overall N loss (NH3 volatilization, denitrification and N leaching) and 1.7% increase of rice yields, as compared to current management conditions. Among provinces with major rice production, Jiangsu, Yunnan, Guizhou, and Hubei could achieve more than 40% reduction of GHG emissions under appropriate water managements, while Zhejiang, Guangdong, and Fujian could reduce more than 30% N loss with optimal N applications. Our modeling efforts suggest that China is likely to benefit from reforming water and fertilization managements for rice rotated cropping system in terms of sustainable crop yields, GHG emission mitigation and N loss reduction, and the reformation should be prioritized in the above-mentioned provinces. Keywords: water regime, nitrogen fertilization, sustainable management, ecological modeling, DNDC

  12. Field evaluation of rice varieties for resistance to major diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development and use of improved disease resistant rice varieties remains of foremost importance to rice producers, with field evaluation under local environments essential. In this study, we evaluated new and existing varieties, potential releases, and Texas elite breeding lines for resistance t...

  13. Study of mosquito fauna in rice ecosystems around Hanoi, northern Vietnam.

    PubMed

    Ohba, Shin-ya; Van Soai, Nguyen; Van Anh, Dinh Thi; Nguyen, Yen T; Takagi, Masahiro

    2015-02-01

    mosquito ecology and strengthen mosquito control strategies to be applied in rice ecosystems Vietnam in the future.

  14. Evaluating health of paddy rice field ecosystem with remote sensing and GIS in Lower Yangtze River Plain, China

    NASA Astrophysics Data System (ADS)

    Li, Jingjing; Qin, Zhihao; Li, Wenjuan; Lin, Lu

    2008-10-01

    A paddy rice ecosystem is a farming system composed of paddy, animals, microbes and other environmental factors in specific time and space, with particular temporal and spatial dynamics. Since paddy rice is a main grain crop to feed above half of population in China, the performance of paddy rice ecosystem is highly concerned to yield level of paddy and food supply safety in China. Therefore, monitoring the performance of paddy rice ecosystem is very important to obtain the required information for evaluation of ecosystem health. In the study we intend to develop an approach to monitor the ecosystem performance spatially and dynamically in a regional scale using MODIS remote sensing data and GIS spatial mapping. On the basis of key factors governing the paddy rice ecosystem, we accordingly develop the following three indicators for the evaluation: Crop growing index (CGI), environmental Index (EI), and pests-diseases index (PDI). Then, we integrated the three indicators into a model with different weight coefficients to calculate Comprehensive ecosystem health index (CEHI) to evaluate the performance and functioning of paddy rice ecosystem in a regional scale. CGI indicates the health status of paddy rice calculated from the normalizing enhanced vegetation Index (EVI) retrieved from MODIS data. EI is estimated from temperature Index (TI) and precipitation Index (PI) indicating heat and water stress on the rice field. PDI reflects the damage brought by pests and diseases, which can be estimated using the information obtained from governmental websites. Applying the approach to Lower Yangtze River Plain, we monitor and evaluate the performance of paddy rice ecosystem in various stages of rice growing period in 2006. The results indicated that the performance of the ecosystem was generally very encouraging. During booting stage and heading and blooming stage, the health level was the highest in Anhui province, which is the main paddy rice producer in the region

  15. Degradation kinetics of the insecticide spinetoram in a rice field ecosystem.

    PubMed

    Zhao, Li; Chen, Guo; Zhao, Jian; Zhang, Yan; Zhu, Yong; Yang, Ting; Wu, Yin-Liang

    2015-01-01

    The fate of spinetoram was studied in a rice field ecosystem, and an efficient method for the determination of spinetoram (XDE-175-J and XDE-175-L) in soil, rice straw, paddy water, husk and brown rice was developed. Spinetoram residues were extracted from samples with a salting out extraction procedure. The extracts were diluted with 0.10% formic acid in water and analysed with liquid chromatography tandem mass spectrometry (LC-MS/MS) on a Waters Acquity BEH C18 column. The calibration curve was linear in the range 0.125-100 μg L(-1) and r>0.999. The average recovery was 82.9-89.0% from soil, 78.5-92.1% from rice straw, 93.6-100.3% from paddy water, 79.1-87.9% from brown rice and 72.7-82.9% from husk. The relative standard deviation (RSD) was less than 10%. These results are all within the accepted range for pesticide residue determination. The field test results showed that spinetoram degradation in paddy water, soil and rice straw coincided with C=0.0132e(-1.9685t), C=0.0308e(-0.1018t) and C=0.8530e(-0.6223t), respectively. The half-lives of spinetoram in paddy water, soil and rice straw were 0.35, 6.8 and 1.1 d, respectively. The final residue level was lower than the maximum residue limit (MRL) of 0.05 mg kg(-1) for spinetoram in rice with a harvest interval of 7d. A dosage of 450 mL ha(-1) was recommended, which can be considered safe for human beings and animals. The results of this study will contribute to establishing the scientific basis of the dosage of spinetoram for agricultural fields.

  16. ENVIRONMENTAL IMPACT ASSESSMENT OF BIO-ETHANOL MADE FROM RICE STRAW CONSIDERING LAND OCCUPATION EFFECTS ON ECOSYSTEM

    NASA Astrophysics Data System (ADS)

    Motoshita, Masaharu; Yang, Cuifen; Genchi, Yutaka; Tahara, Kiyotaka; Inaba, Atsushi

    Most of rice straw produced as a byproduct is not or low utilized in Japan. However, it may be available for the production of bio-ethanol without threatening food supply because of its characteristics as one of the lignocellulosic materials. Though it has already been revealed in previous studies that bio-ethanol made from rice straw can contribute to reducing energy consumption and repressing greenhouse gas emissions, effects on ecosystem due to land occupation for rice straw production and ethanol refinery plant have not been evaluated. Thus, environmental impacts of bio-ethanol made from rice straw including effects on ecosystem caused by land occupation were evaluated in this study. Some differences among three representative assessment methods could be found in results of the effect on ecosystem due to land occupation for rice straw production and ethanol refinery plant. However, it is common among all assessment methods that the effect on ecosystem caused by land occupation dominates large part of total environmental impact of ethanol made from rice straw (72-83% of total impact). Bio-ethanol made from rice straw showed larger environmental impact compared to that of gasoline due to land occupation. The improvement of the operating rate and the productivity of ethanol refinery plants is especially necessary for repressing the environm ental impacts related to bio-ethanol production made from rice straw.

  17. Identification of major rice allergen and their clinical significance in children

    PubMed Central

    Jeon, You Hoon; Oh, Se Jo; Yang, Hyeon Jong; Lee, Soo Young

    2011-01-01

    Purpose Recently, an increase in the number of patients sensitized to rice allergen with or without clinical symptoms has been reported. This study was designed to determine the major allergens in rice and their clinical significance. Methods Twenty-four children (15 boys and 9 girls; mean age, 16.3 months) with allergic disease, who were sensitized to rice antigen (by UniCAP) in the Pediatric Allergy Respiratory Center at Soonchunhyang University Hospital, were enrolled in this study. The allergenicity of various types of rice (raw, cooked, and heat-treated, simulated gastric fluid [SGF], and simulated intestinal fluid [SIF]) was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoglobulin E (IgE) immunoblots. The patients' medical records, including laboratory data and allergy symptoms after ingestion of rice were reviewed. Results Patients were sensitized to an average of 13.5 food antigens and their mean total IgE was 6,888.7 kU/L. In SDS-PAGE, more than 16 protein bands were observed in the raw rice, whereas only 14-16 kDa and 31-35 kDa protein bands were observed in cooked rice. The common SDS-PAGE protein bands observed in SGF-, SIF-, and heat-treated rice were 9, 14, and 31 kDa. In a heated-rice IgE immunoblot, protein bands of 9, 14, and 31-33 kDa were found in 27.8%, 38.9%, and 38.9% of all sera, respectively, and in 50%, 50%, and 75%, of ser a from the 4 symptomatic patients, respectively. Conclusion The 9-, 14-, and 31-kDa protein bands appeared to be the major allergens responsible for rice allergy symptoms. PMID:22232624

  18. Major Ecosystems in China: Dynamics and Challenges for Sustainable Management

    NASA Astrophysics Data System (ADS)

    Lü, Yihe; Fu, Bojie; Wei, Wei; Yu, Xiubo; Sun, Ranhao

    2011-07-01

    Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China's ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.

  19. Arsenic load in rice ecosystem and its mitigation through deficit irrigation.

    PubMed

    Mukherjee, Arkabanee; Kundu, M; Basu, B; Sinha, B; Chatterjee, M; Bairagya, M Das; Singh, U K; Sarkar, S

    2017-03-20

    Rice the staple food is a notable intake source of arsenic to the rural population of eastern India through food-chain. A field survey was carried out to study the variation of arsenic load in different parts of rice genotype Shatabdi (most popular genotype of the region) exposed to varying level of arsenic present in the irrigation water and soil. As irrigation is the primary source of arsenic contamination, a study was conducted to assess arsenic load in rice ecosystem under deficit irrigation practices like intermittent ponding (IP), saturation (SAT) and aerobic (AER) imposed during stress allowable stage (16-40 days after transplanting) of the crop (genotype Shatabdi). Present survey showed that arsenic content in water and soil influenced the arsenic load of rice grain. Variation in arsenic among different water and soil samples influenced grain arsenic load to the maximum extent followed by straw. Deviation in root arsenic load due to variation in water and soil arsenic content was lowest. Arsenic concentration of grain is strongly related to the arsenic content of both irrigation water and soil. However, water has 10% higher impact on grain arsenic load over soil. Translocation of arsenic from root to shoot decreased with the increase in arsenic content of water. Imposition of saturated and aerobic environment reduced both yield and grain arsenic load. In contrast under IP a marked decrease in grain arsenic content recorded with insignificant reduction in yield. Deficit irrigation resulted in significant reduction (17.6-25%) in arsenic content of polished rice and the values were lower than that of the toxic level (<0.2 mg kg(-1)). In contrast the decrease in yield was to the tune of 0.9% under IP regime over CP.

  20. Characterization of rice (Oryza sativa L.) genotypes on the basis of morpho-physiological and biochemical traits grown under aerobic situation in rainfed ecosystem .

    PubMed

    Kumar, Santosh; Dwivedi, Sharad Kumar; Singh, S S; Kumar, Sanjeev; Sundaram, R K; Shivani; Mall, A K

    2015-07-01

    The objective of the present study was to examine the effect of aerobic situation on yield, physiological and biochemical traits of advanced breeding lines of rice. Experiment was conducted with two set of rice genotypes under two water regimes (aerobic and irrigated), during three consecutive wet seasons 2010-2012. Significant decrease in yield was observed in rice genotypes grown under aerobic situation as compared to the irrigated ones. Promising rice genotypes having the ability to maintain high plant biomass, harvest index, early vegetative vigour, improved physiological and biochemical traits in terms of relative water content (RWC), leaf area index (LAI), total soluble sugar, starch, protien and proline content help to sustain higher grain yield under aerobic situation. The yield gap between aerobic and irrigated rice ranged between 24% to 68%. Grain yield showed positive correlation with harvest index (0.434), test weight (0.647), plant biomass (0.411) and effective tiller numbers (0.473), whereas spikelet sterility was negative associated (-0.380). The current study suggested that promising genotypes viz., IR77298-14-1-2-130-2, IR84899-B-182-3-1-1-2, IR84887-B-157-38-1-1-3 and IR 84899-B-179-1-1-1-2 for aerobic situation, showing yield advantage due to better performance of physiological and biochemical traits, might be adopted in large area of rainfed ecosystem as well as in irrigated areas where water scarcity was a major problem.

  1. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE â¤500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE...

  2. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤...

  3. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE â¤500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE...

  4. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary RICE Located at a Major Source of HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ignition Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ⤠500 HP Located at a Major Source of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary RICE Located at a Major Source of HAP Emissions and Existing Spark Ignition Stationary RICE ≤...

  5. Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice

    NASA Astrophysics Data System (ADS)

    Hatala, Jaclyn A.; Detto, Matteo; Baldocchi, Dennis D.

    2012-03-01

    Understanding the relative contribution of environmental and substrate controls on rice paddy methanogenesis is critical for developing mechanistic models of landscape-scale methane (CH4) flux. A diurnal pattern in observed rice paddy CH4 flux has been attributed to fluctuations in soil temperature physically driving diffusive CH4 transport from the soil to atmosphere. Here we make direct landscape-scale measurements of carbon dioxide and CH4 fluxes and show that gross ecosystem photosynthesis (GEP) is the dominant cause of the diurnal pattern in CH4 flux, even after accounting for the effects of soil temperature. The time series of GEP and CH4 flux show strong spectral coherency throughout the rice growing season at the diurnal timescale, where the peak in GEP leads that of CH4 flux by 1.3 ± 0.08 hours. By applying the method of conditional Granger causality in the spectral domain, we demonstrated that the diurnal pattern in CH4 flux is primarily caused by GEP.

  6. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice

    PubMed Central

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-01-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen. PMID:27436950

  7. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice.

    PubMed

    Maeda, Satoru; Hayashi, Nagao; Sasaya, Takahide; Mori, Masaki

    2016-06-01

    Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.

  8. Major QTLs Control Resistance to Rice Hoja Blanca Virus and Its Vector Tagosodes orizicolus

    PubMed Central

    Romero, Luz E.; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J.; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C.; Martinez, César P.; Calvert, Lee; Lorieux, Mathias

    2013-01-01

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease. PMID:24240781

  9. Major QTLs control resistance to rice hoja blanca virus and its vector Tagosodes orizicolus.

    PubMed

    Romero, Luz E; Lozano, Ivan; Garavito, Andrea; Carabali, Silvio J; Triana, Monica; Villareal, Natalia; Reyes, Luis; Duque, Myriam C; Martinez, César P; Calvert, Lee; Lorieux, Mathias

    2014-01-10

    Rice hoja blanca (white leaf) disease can cause severe yield losses in rice in the Americas. The disease is caused by the rice hoja blanca virus (RHBV), which is transmitted by the planthopper vector Tagosodes orizicolus. Because classical breeding schemes for this disease rely on expensive, time-consuming screenings, there is a need for alternatives such as marker-aided selection. The varieties Fedearroz 2000 and Fedearroz 50, which are resistant to RHBV and to the feeding damage caused by T. orizicolus, were crossed with the susceptible line WC366 to produce segregating F2:3 populations. The F3 families were scored for their resistance level to RHBV and T. orizicolus. The F2:3 lines of both crosses were genotyped using microsatellite markers. One major QTL on the short arm of chromosome 4 was identified for resistance to RHBV in the two populations. Two major QTL on chromosomes 5 and 7 were identified for resistance to T. orizicolus in the Fd2000 × WC366 and Fd50 × WC366 crosses, respectively. This comparative study using two distinct rice populations allowed for a better understanding of how the resistance to RHBV and its vector are controlled genetically. Simple marker-aided breeding schemes based on QTL information can be designed to improve rice germplasm to reduce losses caused by this important disease.

  10. New insight for two major rice blast R genes: Pi-ta and Pi-km

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In rice breeding programs across the world, the introgression of major resistance (R) genes remains the most cost-effective method to control blast epidemics caused by the fungal pathogen Magnaporthe oryzae. During the last two years, we have examined two loci, on chromosome 12 and 11, which harbor ...

  11. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance.

    PubMed

    Yao, Nasser; Lee, Cheng-Ruei; Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.

  12. Differences among Major Taxa in the Extent of Ecological Knowledge across Four Major Ecosystems

    PubMed Central

    Fisher, Rebecca; Knowlton, Nancy; Brainard, Russell E.; Caley, M. Julian

    2011-01-01

    Existing knowledge shapes our understanding of ecosystems and is critical for ecosystem-based management of the world's natural resources. Typically this knowledge is biased among taxa, with some taxa far better studied than others, but the extent of this bias is poorly known. In conjunction with the publically available World Registry of Marine Species database (WoRMS) and one of the world's premier electronic scientific literature databases (Web of Science®), a text mining approach is used to examine the distribution of existing ecological knowledge among taxa in coral reef, mangrove, seagrass and kelp bed ecosystems. We found that for each of these ecosystems, most research has been limited to a few groups of organisms. While this bias clearly reflects the perceived importance of some taxa as commercially or ecologically valuable, the relative lack of research of other taxonomic groups highlights the problem that some key taxa and associated ecosystem processes they affect may be poorly understood or completely ignored. The approach outlined here could be applied to any type of ecosystem for analyzing previous research effort and identifying knowledge gaps in order to improve ecosystem-based conservation and management. PMID:22073172

  13. Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice.

    PubMed

    Gao, He; Jin, Mingna; Zheng, Xiao-Ming; Chen, Jun; Yuan, Dingyang; Xin, Yeyun; Wang, Maoqing; Huang, Dongyi; Zhang, Zhe; Zhou, Kunneng; Sheng, Peike; Ma, Jin; Ma, Weiwei; Deng, Huafeng; Jiang, Ling; Liu, Shijia; Wang, Haiyang; Wu, Chuanyin; Yuan, Longping; Wan, Jianmin

    2014-11-18

    Success of modern agriculture relies heavily on breeding of crops with maximal regional adaptability and yield potentials. A major limiting factor for crop cultivation is their flowering time, which is strongly regulated by day length (photoperiod) and temperature. Here we report identification and characterization of Days to heading 7 (DTH7), a major genetic locus underlying photoperiod sensitivity and grain yield in rice. Map-based cloning reveals that DTH7 encodes a pseudo-response regulator protein and its expression is regulated by photoperiod. We show that in long days DTH7 acts downstream of the photoreceptor phytochrome B to repress the expression of Ehd1, an up-regulator of the "florigen" genes (Hd3a and RFT1), leading to delayed flowering. Further, we find that haplotype combinations of DTH7 with Grain number, plant height, and heading date 7 (Ghd7) and DTH8 correlate well with the heading date and grain yield of rice under different photoperiod conditions. Our data provide not only a macroscopic view of the genetic control of photoperiod sensitivity in rice but also a foundation for breeding of rice cultivars better adapted to the target environments using rational design.

  14. Residues of carbosulfan and its metabolites carbofuran and 3-hydroxy carbofuran in rice field ecosystem in China.

    PubMed

    Zhang, Chang P; He, Hong M; Yu, Jian Z; Hu, Xiu Q; Zhu, Ya H; Wang, Qiang

    2016-01-01

    The fate of carbosulfan (seed treatment dry powder) was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of carbosulfan, carbofuran, and 3-hydroxyl carbofuran in brown rice, rice straw, paddy water, and soil. The target compounds were extracted using acetonitrile or dichloromethane, cleaned up on acidic alumina or florisil solid phase extraction (SPE) cartridge, and analyzed by gas chromatography. The average recoveries of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice, rice straw, paddy water, and soil ranged from 72.71% to 105.07%, with relative standard deviations of 2.00-8.80%. The limits of quantitation (LOQs) of carbosulfan, carbofuran and 3-hydroxy carbofuran in the samples (brown rice, rice straw, paddy water and soil) were 0.011, 0.0091, 0.014, 0.010 mg kg(-1), 0.016, 0.019, 0.025, 0.013 mg kg(-1), and 0.031, 0.039, 0.035, 0.036 mg kg(-1), respectively. The trials results showed that the half-lives of carbosulfan, carbofuran and 3-hydroxy carbofuran in rice straw were 4.0, 2.6 days, 3.9, 6.0 days, and 5.8, 7.0 days in Zhejiang and Hunan, respectively. Carbosulfan, carbofuran and 3-hydroxy carbofuran were detected in soils. Carbosulfan and 3-hydroxy carbofuran were almost undetectable in paddy water. Carbofuran was detected in paddy water. The final residues of carbosulfan, carbofuran and 3-hydroxy carbofuran in brown rice were lower than 0.05 mg kg(-1), which were lower than 0.5 mg kg(-1) (MRL of carbosulfan) or 0.1 mg kg(-1) (MRL of carbofuran). Therefore, a dosage of 420 g active ingredient per 100 kg seed was recommended, which could be considered as safe to human beings and animals. These would contribute to provide the scientific basis of using this insecticide.

  15. QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

    PubMed Central

    Semagn, Kassa; Sow, Mounirou; Nwilene, Francis; Kolade, Olufisayo; Bocco, Roland; Oyetunji, Olumoye; Mitchell-Olds, Thomas; Ndjiondjop, Marie-Noëlle

    2016-01-01

    African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders. PMID:27508500

  16. Modeling impacts of water and fertilizer management on ecosystem services from rice rotated crop systems in China

    NASA Astrophysics Data System (ADS)

    Chen, Han; Yu, Chaoqing; Li, Changsheng; Huang, Xiao; Zhang, Jie; Yue, Yali; Huang, Guorui

    2015-04-01

    Sustainable intensification in agriculture has stressed the need for management practices that could increase crop yields while simultaneously reducing environmental impacts. It is well recognized that water and nutrient management hold great promise to address these goals. This study uses the DNDC biogeochemical model to stimulate the impacts of water regime and nitrogen fertilizer management interactions on ecosystem services of rice rotated crop systems in China. County-level optimal nitrogen fertilizer application rates under various water management practices were captured and then multiple scenarios of water and nitrogen fertilizer management were set to more than 1600 counties with rice rotations in China. Results indicate that an national average of 15.7±5.9% (the mean value and standard deviation derive from variability of three water management practices) reduction of nitrogen fertilizer inputs can be achieved without significantly sacrificing rice yields. On a national scale, shallow flooding with optimal N application rates appear most potential to enhance ecosystem services, which led to 10.6% reduction of nitrogen fertilizer inputs, 34.3% decrease of total GHG emissions, 2.8% less of overall N loss (NH3 volatilization, denitrification and N leaching) and a 1.7% increase of rice yields compared to the baseline scenario. Regional GHG emissions mitigation derived from water regime change vary with soil properties and the multiple crop index. Among the main production regions of rice in China, the highest reduction happened in Jiangxu, Yunnan, Guizhou and Hubei (more than 40% reduction) with high SOC, high multiple crop index and low clay fraction. The highest reduction of GHG emissions derived from reducing current N application rate to optimal rate appeared in Zhejiang, Guangdong, Jiangsu where the serious over-application of mineral N exit. It was concluded that process models like DNDC would act an essential tool to identify sustainable agricultural

  17. 40 CFR Table 2c to Subpart Zzzz of... - Requirements for Existing Compression Ignition Stationary Rice Located at Major Sources of HAP...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Ignition Stationary Rice Located at Major Sources of HAP Emissions 2c Table 2c to Subpart ZZZZ of Part 63... Stationary Rice Located at Major Sources of HAP Emissions As stated in §§ 63.6600 and 63.6640, you must comply with the following requirements for existing compression ignition stationary RICE: For...

  18. Improving of Rice Blast Resistances in Japonica by Pyramiding Major R Genes.

    PubMed

    Xiao, Ning; Wu, Yunyu; Pan, Cunhong; Yu, Ling; Chen, Yu; Liu, Guangqing; Li, Yuhong; Zhang, Xiaoxiang; Wang, Zhiping; Dai, Zhengyuan; Liang, Chengzhi; Li, Aihong

    2016-01-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a major constraint to rice production worldwide. In this study, we developed monogenic near-isogenic lines (NILs) NIL (Pi9), NIL (Pizt) , and NIL (Pi54) carrying genes Pi9, Pizt, and Pi54, respectively, by marker assisted backcross breeding using 07GY31 as the japonica genetic background with good agronomic traits. Polygene pyramid lines (PPLs) PPL (Pi9+Pi54) combining Pi9 with Pi54, and PPL (Pizt+Pi54) combining Pizt with Pi54 were then developed using corresponding NILs with genetic background recovery rates of more than 97%. Compared to 07GY31, the above NILs and PPLs exhibited significantly enhanced resistance frequencies (RFs) for both leaf and panicle blasts. RFs of both PPLs for leaf blast were somewhat higher than those of their own parental NILs, respectively, and PPL (Pizt)(+)(Pi54) exhibited higher RF for panicle blast than NIL (Pizt) and NIL (Pi54) (P < 0.001), hinting an additive effect on the resistance. However, PPL (Pi9+Pi54) exhibited lower RF for panicle blast than NIL (Pi9) (P < 0.001), failing to realize an additive effect. PPL (Pizt)(+)(Pi54) showed higher resistant level for panicle blast and better additive effects on the resistance than PPL (Pi9+Pi54). It was suggested that major R genes interacted with each other in a way more complex than additive effect in determining panicle blast resistance levels. Genotyping by sequencing analysis and extreme-phenotype genome-wide association study further confirmed the above results. Moreover, data showed that pyramiding multiple resistance genes did not affect the performance of basic agronomic traits. So the way to enhance levels of leaf and panicle blast resistances for rice breeding in this study is effective and may serve as a reference for breeders. Key Message: Resistant levels of rice blast is resulted from different combinations of major R genes, PPL (Pizt)(+)(Pi54) showed higher resistant level and better additive effects on

  19. Improving of Rice Blast Resistances in Japonica by Pyramiding Major R Genes

    PubMed Central

    Xiao, Ning; Wu, Yunyu; Pan, Cunhong; Yu, Ling; Chen, Yu; Liu, Guangqing; Li, Yuhong; Zhang, Xiaoxiang; Wang, Zhiping; Dai, Zhengyuan; Liang, Chengzhi; Li, Aihong

    2017-01-01

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is a major constraint to rice production worldwide. In this study, we developed monogenic near-isogenic lines (NILs) NILPi9, NILPizt, and NILPi54 carrying genes Pi9, Pizt, and Pi54, respectively, by marker assisted backcross breeding using 07GY31 as the japonica genetic background with good agronomic traits. Polygene pyramid lines (PPLs) PPLPi9+Pi54 combining Pi9 with Pi54, and PPLPizt+Pi54 combining Pizt with Pi54 were then developed using corresponding NILs with genetic background recovery rates of more than 97%. Compared to 07GY31, the above NILs and PPLs exhibited significantly enhanced resistance frequencies (RFs) for both leaf and panicle blasts. RFs of both PPLs for leaf blast were somewhat higher than those of their own parental NILs, respectively, and PPLPizt+Pi54 exhibited higher RF for panicle blast than NILPizt and NILPi54 (P < 0.001), hinting an additive effect on the resistance. However, PPLPi9+Pi54 exhibited lower RF for panicle blast than NILPi9 (P < 0.001), failing to realize an additive effect. PPLPizt+Pi54 showed higher resistant level for panicle blast and better additive effects on the resistance than PPLPi9+Pi54. It was suggested that major R genes interacted with each other in a way more complex than additive effect in determining panicle blast resistance levels. Genotyping by sequencing analysis and extreme-phenotype genome-wide association study further confirmed the above results. Moreover, data showed that pyramiding multiple resistance genes did not affect the performance of basic agronomic traits. So the way to enhance levels of leaf and panicle blast resistances for rice breeding in this study is effective and may serve as a reference for breeders. Key Message: Resistant levels of rice blast is resulted from different combinations of major R genes, PPLPizt+Pi54 showed higher resistant level and better additive effects on the panicle blast resistance than PPLPi9+Pi54. PMID

  20. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice

    PubMed Central

    Vikram, Prashant; Swamy, B. P. Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C.; Amante, Modesto; Kumar, Arvind

    2016-01-01

    Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress. PMID:27018583

  1. Linkages and Interactions Analysis of Major Effect Drought Grain Yield QTLs in Rice.

    PubMed

    Vikram, Prashant; Swamy, B P Mallikarjuna; Dixit, Shalabh; Trinidad, Jennylyn; Sta Cruz, Ma Teresa; Maturan, Paul C; Amante, Modesto; Kumar, Arvind

    2016-01-01

    Quantitative trait loci conferring high grain yield under drought in rice are important genomic resources for climate resilient breeding. Major and consistent drought grain yield QTLs usually co-locate with flowering and/or plant height QTLs, which could be due to either linkage or pleiotropy. Five mapping populations used for the identification of major and consistent drought grain yield QTLs underwent multiple-trait, multiple-interval mapping test (MT-MIM) to estimate the significance of pleiotropy effects. Results indicated towards possible linkages between the drought grain yield QTLs with co-locating flowering and/or plant height QTLs. Linkages of days to flowering and plant height were eliminated through a marker-assisted breeding approach. Drought grain yield QTLs also showed interaction effects with flowering QTLs. Drought responsiveness of the flowering locus on chromosome 3 (qDTY3.2) has been revealed through allelic analysis. Considering linkage and interaction effects associated with drought QTLs, a comprehensive marker-assisted breeding strategy was followed to develop rice genotypes with improved grain yield under drought stress.

  2. The use of Chironomus riparius larvae to assess effects of pesticides from rice fields in adjacent freshwater ecosystems.

    PubMed

    Faria, Mafalda S; Nogueira, António J A; Soares, Amadeu M V M

    2007-06-01

    A bioassay with Chironomus riparius larvae, using larval development and growth as endpoints, was carried out inside a rice field and in the adjacent wetland channel in Portugal, during pesticide treatments (molinate, endosulfan and propanil) to determine impact caused by pesticide contamination in freshwater ecosystems. The bioassay was also performed under laboratory conditions, to assess whether in situ and laboratory bioassays demonstrated comparable results. Growth was inhibited by concentrations of endosulfan (2.3 and 1.9 microgL(-1) averages) in water from rice field in both the field and laboratory, and by concentrations of endosulfan (0.55 and 0.76 microgL(-1) averages) in water from the wetland channel in the laboratory bioassay, while development was not affected. C. riparius larvae were not affected by molinate and propanil concentrations. The results indicate that endosulfan treatments in rice fields may cause an ecological impairment in adjacent freshwater ecosystems. The results also indicate that laboratory testing can be used to assess in situ toxicity caused by pesticide contamination.

  3. Diversity of Gram negative bacteria antagonistic against major pathogens of rice from rice seed in the tropic environment.

    PubMed

    Xie, Guan-Lin; Soad, Algam; Swings, J; Mew, T W

    2003-01-01

    With the use of a seed washing technique, more than 4000 Gram negative bacteria were isolated by two improved isolation methods from 446 batches of 1 kg rice seed samples obtained from 22 provinces in the Philippines. They were initially characterized on the basis of colony morphology and results of biochemical and pathogenicity tests. Six hundred and fifty-two strains were further identified by Biolog, from which 133 were selected for fatty acid methylester (FAME) analysis together with 80 standard reference strains. Sixteen species or types of Pseudomonas and 17 genera of non-pseudomonads were identified, more than one third of which have not been recorded in rice. The most predominant species observed were P.putida and P. fulva. About 17% of the strains of Pseudomonas and 2% of the non pseudomonads were antagonistic to one or more fungal or bacterial pathogens of rice. Rice seed is an important source of biological control agents.

  4. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China.

    PubMed

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-02

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  5. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    PubMed Central

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-01-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI. PMID:26626733

  6. Differences in net global warming potential and greenhouse gas intensity between major rice-based cropping systems in China

    NASA Astrophysics Data System (ADS)

    Xiong, Zhengqin; Liu, Yinglie; Wu, Zhen; Zhang, Xiaolin; Liu, Pingli; Huang, Taiqing

    2015-12-01

    Double rice (DR) and upland crop-single rice (UR) systems are the major rice-based cropping systems in China, yet differences in net global warming potential (NGWP) and greenhouse gas intensity (GHGI) between the two systems are poorly documented. Accordingly, a 3-year field experiment was conducted to simultaneously measure methane (CH4) and nitrous oxide (N2O) emissions and changes in soil organic carbon (SOC) in oil rape-rice-rice and wheat-rice (representing DR and UR, respectively) systems with straw incorporation (0, 3 and 6 t/ha) during the rice-growing seasons. Compared with the UR system, the annual CH4, N2O, grain yield and NGWP were significantly increased in the DR system, though little effect on SOC sequestration or GHGI was observed without straw incorporation. Straw incorporation increased CH4 emission and SOC sequestration but had no significant effect on N2O emission in both systems. Averaged over the three study years, straw incorporation had no significant effect on NGWP and GHGI in the UR system, whereas these parameters were greatly increased in the DR system, i.e., by 108% (3 t/ha) and 180% (6 t/ha) for NGWP and 103% (3 t/ha) and 168% (6 t/ha) for GHGI.

  7. Application of a novel method PCR-ligase detection reaction for tracking predator-prey trophic links in insect-resistant GM rice ecosystem.

    PubMed

    Li, Kai; Tian, Junce; Wang, Qinxi; Chen, Qiang; Chen, Mao; Wang, Huan; Zhou, Yuxun; Peng, Yufa; Xiao, Junhua; Ye, Gongyin

    2011-11-01

    Insect-resistant genetically modified (IRGM) rice is on the verge of commercial release in China, however, its potential non-target effect on non-target insect natural enemies remains controversial. Tracking trophic interactions between predators and preys in IRGM rice ecosystem can provide new insights into better understanding of the ecological risks of IRGM rice. In the present study, a novel method based on ligase detection reaction (LDR), PCR-LDR was introduced to track 15 prey species in the gut of a predaceous spider Pirata subpiraticus, a dominant natural enemy in rice field. Our results indicated that PCR-LDR could provide high specificity and sensitivity in tracking prey-predator interactions in rice ecosystems. PCR-LDR could detect as little as 1,000 th of DNA mixture. Reliable detection of DNA samples of prey species using PCR-LDR could be significantly affected by digestion time and prey species. In the analysis of 200 field-collected P. subpiraticus and 105 field-collected Tetragnatha maxillosa individuals using PCR-LDR, prey remains were identified in 78.3 and 74.3% of the individuals, respectively, from which significant predation differences between the two spider species were observed. Predation behavior of the spider species was not significantly different between Bt and non-Bt control rice lines. These results indicated that PCR-LDR can be used as an important tool for ecological studies, especially on the interactions between predators and preys in IRGM rice or other similar ecosystems.

  8. Water management impacts on arsenic behavior and rhizosphere bacterial communities and activities in a rice agro-ecosystem.

    PubMed

    Das, Suvendu; Chou, Mon-Lin; Jean, Jiin-Shuh; Liu, Chia-Chuan; Yang, Huai-Jen

    2016-01-15

    Although rice cultivated under water-saturated conditions as opposed to submerged conditions has received considerable attention with regard to reducing As levels in rice grain, the rhizosphere microbiome potentially influencing As-biotransformation and bioavailability in a rice ecosystem has rarely been studied. In this study, the impacts of flooded, non-flooded and alternate wetting and drying (AWD) practices on rhizosphere bacterial composition and activities that could potentially impact As speciation and accumulation in rhizosphere soil and pore water, As fractions in rhizosphere soil and As speciation and distribution in plant parts were assessed. The results revealed that in addition to pore water As concentration, non-specifically sorbed As fraction, specifically sorbed As fraction and amorphous iron oxide bound As fraction in soil were bio-available to rice plants. In the flooded treatment, As(III) in the pore water was the predominant As species, accounting for 87.3-93.6% of the total As, whereas in the non-flooded and AWD treatments, As(V) was the dominant As species, accounting for 89.6-96.2% and 73.0-83.0%, respectively. The genera Ohtaekwangia, Geobacter, Anaeromyxobacter, Desulfuromonas, Desulfocapsa, Desulfobulbus, and Lacibacter were found in relatively high abundance in the flooded soil, whereas the genera Acinetobacter, Ignavibacterium, Thiobacillus, and Lysobacter were detected in relatively high abundance in the non-flooded soil. Admittedly, the decrease in As level in rice cultivated under the non-flooded and AWD conditions was mostly linked to a relatively high soil redox potential, low As(III) concentration in the soil pore water, a decrease in the relative abundance of As-, Fe- and sulfur-reducing bacteria and an increase in the relative abundance of As-, Fe- and sulfur-oxidizing bacteria in the rhizosphere soil of the rice. This study demonstrated that with substantial reduction in grain As levels and higher water productivity, AWD

  9. Impact of education on knowledge, agricultural practices, and community actions for mosquito control and mosquito-borne disease prevention in rice ecosystems in Sri Lanka.

    PubMed

    Yasuoka, Junko; Mangione, Thomas W; Spielman, Andrew; Levins, Richard

    2006-06-01

    Mosquito-borne diseases are a major public health threat in Sri Lanka. A 20-week pilot education program to improve community knowledge and mosquito control with participatory and non-chemical approaches was developed, implemented, and evaluated using pre-educational and post-educational surveys in two intervention and two comparison villages. Correlates of baseline knowledge were sex, number of family members, ratio of family members with malaria history, school education level, and availability of electricity at the residence. Participation in the educational program led to improved knowledge of mosquito ecology and disease epidemiology, changes in agricultural practices, and an increase in environmentally sound measures for mosquito control and disease prevention. The variety of actions at the post-educational stage were determined by improved knowledge, but not by sociodemographic characteristics. Such community-based educational interventions are effective in increasing understanding and active involvement in mosquito control and disease prevention in rice ecosystems regardless of sociodemographic characteristics.

  10. A global synthesis reveals biodiversity loss as a major driver of ecosystem change.

    PubMed

    Hooper, David U; Adair, E Carol; Cardinale, Bradley J; Byrnes, Jarrett E K; Hungate, Bruce A; Matulich, Kristin L; Gonzalez, Andrew; Duffy, J Emmett; Gamfeldt, Lars; O'Connor, Mary I

    2012-05-02

    Evidence is mounting that extinctions are altering key processes important to the productivity and sustainability of Earth's ecosystems. Further species loss will accelerate change in ecosystem processes, but it is unclear how these effects compare to the direct effects of other forms of environmental change that are both driving diversity loss and altering ecosystem function. Here we use a suite of meta-analyses of published data to show that the effects of species loss on productivity and decomposition--two processes important in all ecosystems--are of comparable magnitude to the effects of many other global environmental changes. In experiments, intermediate levels of species loss (21-40%) reduced plant production by 5-10%, comparable to previously documented effects of ultraviolet radiation and climate warming. Higher levels of extinction (41-60%) had effects rivalling those of ozone, acidification, elevated CO(2) and nutrient pollution. At intermediate levels, species loss generally had equal or greater effects on decomposition than did elevated CO(2) and nitrogen addition. The identity of species lost also had a large effect on changes in productivity and decomposition, generating a wide range of plausible outcomes for extinction. Despite the need for more studies on interactive effects of diversity loss and environmental changes, our analyses clearly show that the ecosystem consequences of local species loss are as quantitatively significant as the direct effects of several global change stressors that have mobilized major international concern and remediation efforts.

  11. Sun-induced chlorophyll fluorescence reveals strong representation of photosynthesis at ecosystem level in rice paddy field in Japan

    NASA Astrophysics Data System (ADS)

    Kato, T.; Tsujimoto, K.; Nasahara, K. N.; Akitsu, T.; Ono, K.; Miyata, A.

    2015-12-01

    Chlorophyll fluorescence emission from ecosystem induced by sunlight (Sun-Induced Fluorescence: SIF) is now a key factor to accurately estimate the ecosystem-level photosynthesis activity as suggested by satellite studies, and has been recently detected by satellites [Frankenberg et al., 2011; Guanter et al., 2012; Joiner et al., 2013] and measured at field stations [Daumard et al., 2010; Porcar-Castell, 2011]. However, the few example of field-based assessment on the representation ability reduces its value for the availability to better understand the dynamics in CO2uptake by land ecosystem. To elucidate the potential of SIF to estimate ecosystem GPP in typical Asian crop type, the canopy-top SIF was calculated from the spectrum data in Japanese rice paddy field in Mase in central Japan (36°03'N, 140°01'E, 11 m a.s.l.), and compared with eddy-tower measured GPP on half-hourly and daily bases during seven years from 2006 to 2012. The rice (Oriza sativa L.; cultivar Koshihikari) was transplanted in May and harvested in September normally. The SIF was estimated from the spectrums of downward Sun irradiance and upward canopy-reflected radiance measured at the height of 3m above ground by HemiSpherical Spectro-Radiometer (HSSR), consisting of the spectroradiometer (MS-700, Eko inc., Tokyo, Japan) with the full-width at half maximum (FWHM) of 10 nm and wavelength interval of 3.3 nm. The SIF around 760nm (O2-A band: Fs760) was calculated according to the Fraunhofer Line Depth principle [Maier et al., 2003] with several additional arrangements. The GPP increased almost linearly as both Fs760 and APAR (Absorbed Photosyntethically Active Radiation) increased based on monthly-averaged diurnal courses during the growing season in 2006. The slopes of their regression lines differed much among the months in APAR, but in Fs760. These nearly constant relationships among the months between GPP and Fs760 were kept for all the observation years. Daily averaged GPP and Fs760

  12. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy

    NASA Astrophysics Data System (ADS)

    Knox, Sara Helen; Matthes, Jaclyn Hatala; Sturtevant, Cove; Oikawa, Patricia Y.; Verfaillie, Joseph; Baldocchi, Dennis

    2016-03-01

    We present 6.5 years of eddy covariance measurements of fluxes of methane (FCH4) and carbon dioxide (FCO2) from a flooded rice paddy in Northern California, USA. A pronounced warming trend throughout the study associated with drought and record high temperatures strongly influenced carbon (C) budgets and provided insights into biophysical controls of FCO2 and FCH4. Wavelet analysis indicated that photosynthesis (gross ecosystem production, GEP) induced the diel pattern in FCH4, but soil temperature (Ts) modulated its amplitude. Forward stepwise linear models and neural networking modeling were used to assess the variables regulating seasonal FCH4. As expected due to their competence in modeling nonlinear relationships, neural network models explained considerably more of the variance in daily average FCH4 than linear models. During the growing season, GEP and water levels typically explained most of the variance in daily average FCH4. However, Ts explained much of the interannual variability in annual and growing season CH4 sums. Higher Ts also increased the annual and growing season ratio of FCH4 to GEP. The observation that the FCH4 to GEP ratio scales predictably with Ts may help improve global estimates of FCH4 from rice agriculture. Additionally, Ts strongly influenced ecosystem respiration, resulting in large interannual variability in the net C budget at the paddy, emphasizing the need for long-term measurements particularly under changing climatic conditions.

  13. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems

    PubMed Central

    Dossa, Gerbert S.; Sparks, Adam; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Attempting to achieve long-lasting and stable resistance using uniformly deployed rice varieties is not a sustainable approach. The real situation appears to be much more complex and dynamic, one in which pathogens quickly adapt to resistant varieties. To prevent disease epidemics, deployment should be customized and this decision will require interdisciplinary actions. This perspective article aims to highlight the current progress on disease resistance deployment to control bacterial blight in rice. Although the model system rice-Xanthomonas oryzae pv. oryzae has distinctive features that underpin the need for a case-by-case analysis, strategies to integrate those elements into a unique decision tool could be easily extended to other crops. PMID:25999970

  14. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems.

    PubMed

    Dossa, Gerbert S; Sparks, Adam; Cruz, Casiana Vera; Oliva, Ricardo

    2015-01-01

    Attempting to achieve long-lasting and stable resistance using uniformly deployed rice varieties is not a sustainable approach. The real situation appears to be much more complex and dynamic, one in which pathogens quickly adapt to resistant varieties. To prevent disease epidemics, deployment should be customized and this decision will require interdisciplinary actions. This perspective article aims to highlight the current progress on disease resistance deployment to control bacterial blight in rice. Although the model system rice-Xanthomonas oryzae pv. oryzae has distinctive features that underpin the need for a case-by-case analysis, strategies to integrate those elements into a unique decision tool could be easily extended to other crops.

  15. Active atmosphere-ecosystem exchange of the vast majority of detected volatile organic compounds.

    PubMed

    Park, J-H; Goldstein, A H; Timkovsky, J; Fares, S; Weber, R; Karlik, J; Holzinger, R

    2013-08-09

    Numerous volatile organic compounds (VOCs) exist in Earth's atmosphere, most of which originate from biogenic emissions. Despite VOCs' critical role in tropospheric chemistry, studies for evaluating their atmosphere-ecosystem exchange (emission and deposition) have been limited to a few dominant compounds owing to a lack of appropriate measurement techniques. Using a high-mass resolution proton transfer reaction-time of flight-mass spectrometer and an absolute value eddy-covariance method, we directly measured 186 organic ions with net deposition, and 494 that have bidirectional flux. This observation of active atmosphere-ecosystem exchange of the vast majority of detected VOCs poses a challenge to current emission, air quality, and global climate models, which do not account for this extremely large range of compounds. This observation also provides new insight for understanding the atmospheric VOC budget.

  16. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems.

    PubMed

    De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol

    2014-07-01

    Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances

  17. Monitoring seasonal progress of rice stubble burning in major rice growing districts of Haryana, India, using multidate AWiFS data

    NASA Astrophysics Data System (ADS)

    Yadav, M.; Prawasi, R.; Jangra, S.; Rana, P.; Kumari, K.; Lal, S.; Jakhar, K.; Sharma, S.; Hooda, R. S.

    2014-11-01

    The present paper describes the methodology and results of assessment of seasonal progress of rice stubble burning for 10 major rice growing districts of Haryana state in India. These 10 districts contribute about 84 per cent of total rice area of the state. As the rice fields are immediately required to be vacated for the sowing of next crop the farmers opt for mechanized harvesting and easy way out of burning the stubbles in the field. Such burning result in release of polluting gases and aerosols. Besides, the heating of the soil kills the useful micro-flora of the soil causing soil degradation. Multi-date AWiFS data from Resourcesat 1 and 2 satellites acquired between October 16, 2013 to November 26, 2013 were used for estimating paddy stubble burning areas at different intervals for the year 2013 crop growing season. In season collected ground truth data using hand held GPS along with field photographs were used to identify paddy stubble burning areas and other land features. Complete enumeration approach and Iterative Self-organizing Data Analysis Technique (ISODATA) unsupervised classifier was used for digital analysis. Normalized Difference Vegetation Index (NDVI) of each date was also used with other spectral bands of temporal images. To improve the classification accuracy the non-agricultural areas were masked out. The area was estimated by computing pixels under the classified image mask. Progress of paddy stubble burning was estimated at different intervals for the year 2013 using available cloud free multi-date IRS-P6 AWiFS data to identify the crucial period when stubbles burning takes place in major area so that preventive measures can be taken to curb the menace.

  18. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests.

    PubMed

    Metcalfe, Daniel B; Asner, Gregory P; Martin, Roberta E; Silva Espejo, Javier E; Huasco, Walter Huaraca; Farfán Amézquita, Felix F; Carranza-Jimenez, Loreli; Galiano Cabrera, Darcy F; Baca, Liliana Durand; Sinca, Felipe; Huaraca Quispe, Lidia P; Taype, Ivonne Alzamora; Mora, Luzmila Eguiluz; Dávila, Angela Rozas; Solórzano, Marlene Mamani; Puma Vilca, Beisit L; Laupa Román, Judith M; Guerra Bustios, Patricia C; Revilla, Norma Salinas; Tupayachi, Raul; Girardin, Cécile A J; Doughty, Christopher E; Malhi, Yadvinder

    2014-03-01

    The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests.

  19. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems.

    PubMed

    Linares, C; Vidal, M; Canals, M; Kersting, D K; Amblas, D; Aspillaga, E; Cebrián, E; Delgado-Huertas, A; Díaz, D; Garrabou, J; Hereu, B; Navarro, L; Teixidó, N; Ballesteros, E

    2015-11-07

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications.

  20. Persistent natural acidification drives major distribution shifts in marine benthic ecosystems

    PubMed Central

    Linares, C.; Vidal, M.; Canals, M.; Kersting, D. K.; Amblas, D.; Aspillaga, E.; Cebrián, E.; Delgado-Huertas, A.; Díaz, D.; Garrabou, J.; Hereu, B.; Navarro, L.; Teixidó, N.; Ballesteros, E.

    2015-01-01

    Ocean acidification is receiving increasing attention because of its potential to affect marine ecosystems. Rare CO2 vents offer a unique opportunity to investigate the response of benthic ecosystems to acidification. However, the benthic habitats investigated so far are mainly found at very shallow water (less than or equal to 5 m depth) and therefore are not representative of the broad range of continental shelf habitats. Here, we show that a decrease from pH 8.1 to 7.9 observed in a CO2 vent system at 40 m depth leads to a dramatic shift in highly diverse and structurally complex habitats. Forests of the kelp Laminaria rodriguezii usually found at larger depths (greater than 65 m) replace the otherwise dominant habitats (i.e. coralligenous outcrops and rhodolith beds), which are mainly characterized by calcifying organisms. Only the aragonite-calcifying algae are able to survive in acidified waters, while high-magnesium-calcite organisms are almost completely absent. Although a long-term survey of the venting area would be necessary to fully understand the effects of the variability of pH and other carbonate parameters over the structure and functioning of the investigated mesophotic habitats, our results suggest that in addition of significant changes at species level, moderate ocean acidification may entail major shifts in the distribution and dominance of key benthic ecosystems at regional scale, which could have broad ecological and socio-economic implications. PMID:26511045

  1. Rapid Identification of Major QTLs Associated with Rice Grain Weight and Their Utilization

    PubMed Central

    Xu, Feifei; Sun, Xiao; Chen, Yaling; Huang, Yan; Tong, Chuan; Bao, Jinsong

    2015-01-01

    To uncover the genetics of rice grain weight, we constructed an RIL population derived from a cross between a large grain accession M201 and a small size variety JY293. Specific Locus Amplified Fragment Sequencing (SLAF-Seq) technology was used to genotype two bulked DNA pools made from individual DNA of the heaviest 30 lines and the lightest 30 lines according to the 1000 grain weight (TGW). Bulked segregant analysis (BSA) was used to identify SLAFs strongly associated with TGW. Two marker-intensive regions at 24,600,000–24,850,000 bp and 25,000,000–25,350,000 bp on chromosome 3 were identified tightly related to the TGW. Then a linkage map of chromosome 3 was constructed with SSR markers and some SLAF derived single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping for TGW, grain length, grain width, and grain thickness revealed one major QTL in the second hot-region and two other minor QTLs for grain weight. These three QTLs displayed hierarchical effects on grain length and grain weight in order of qTGW3.2 (qGL3) qTGW3.1 (GS3) qTGW3.3. Multiple comparisons of means among the eight combinations of 3 QTLs revealed that the lines with two of three QTLs deriving from M201 displayed a large grain weight phenotype (TGW 40.2g, average data of three years) and lines with both qTGW3.1 and qTGW3.3 alleles from M201 (42.5g) had similar grain weight to the qTGW3.2 (40.8g) alone. Two strategies with similar effectiveness were proposed to improve grain weight by marker-assisted selection (MAS). One is to introduce the novel qTGW3.2 allele alone, and the other is to pyramid qTGW3.1 and qTGW3.3 alleles together. One new allele of GS3 (39 bp deletion in intron 1) and two SNPs in coding sequence of qGL3 identified in this study from M201 are useful in pyramiding elite alleles for molecular breeding for improvement of rice yield. PMID:25815721

  2. Combination Patterns of Major R Genes Determine the Level of Resistance to the M. oryzae in Rice (Oryza sativa L.).

    PubMed

    Wu, Yunyu; Xiao, Ning; Yu, Ling; Pan, Cunhong; Li, Yuhong; Zhang, Xiaoxiang; Liu, Guangqing; Dai, Zhengyuan; Pan, Xuebiao; Li, Aihong

    2015-01-01

    Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as 'Pi9+Pi54', 'Pid3+Pigm', 'Pi5+Pid3+Pigm', 'Pi5+Pi54+Pid3+Pigm', 'Pi5+Pid3' and 'Pi5+Pit+Pid3' in indica-type accessions and 'Pik+Pib', 'Pik+Pita', 'Pik+Pb1', 'Pizt+Pia' and 'Pizt+Pita' in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance.

  3. Comparison and heritability of major rice end-use quality traits among diverse accessions grown in both tropical and temperate USA environments and genetic marker implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing environment has been well-documented as playing a large role in effecting the end-use quality traits of rice. Apparent amylose content (AAC) and gelatinization temperature (GT) are considered to be the two most important end-use quality characteristics in rice, defining the major classes tha...

  4. Development of pyramidal lines with two major QTLs conferring resistance to sheath blight in rice (Oryza sativa L.)

    NASA Astrophysics Data System (ADS)

    Hossain, Md Kamal; Jena, Kshirod; Bhuiyan, Md Atiqur Rahman; Ratnam, Wickneswari

    2014-09-01

    Sheath blight is an emerging threat in rice cultivation. It is animportant disease caused by the soil-borne necrotrophic pathogenic fungus, Rhizoctonia solani Kühn. However, to date neither known major genes for quantitative resistance, nor any rice lines immune to this disease has been identified. The disease resistance is quantitative in nature. Numerous genes are involved in this resistance process. There are few quantitative trait loci (QTLs) detected conferring improved resistance against the disease. Teqing and Tetepshowimproved resistance having QTLs, qSB-9 and qSBR11-1, respectively. Since, these QTLs demonstrates additive effects, pyramiding of these QTLs might be an option to increase the sheath blight resistance in rice. Nine rice cultivars were screened at greenhouse conditions. Results showed that Tetep and Teqing had the lowest disease ratings. UKMRC2a new high yielding cultivar was as recipient parent. Crosses between UKMRC2 and Teqing, and UKMRC2 and Tetep were made and confirmed. Subsequently 4-way crosses between the two F1s were performed to develop pyramidal lines.

  5. Effect of tillage and water management on GHG emissions from Mediterranean rice growing ecosystems

    NASA Astrophysics Data System (ADS)

    Fangueiro, David; Becerra, Daniel; Albarrán, Ángel; Peña, David; Sanchez-Llerena, Javier; Rato-Nunes, José Manuel; López-Piñeiro, Antonio

    2017-02-01

    Paddy rice fields are an important source of greenhouse gases (GHG), especially methane. In the present work, we assessed the impact on GHG emissions of two main parameters of rice production: aerobic rice production was compared with traditional flooded rice production and conventional tillage (CT) was compared with short-term and long-term no-tillage (NT) management. A field experiment was performed over three years and the GHG emissions were measured during each year. Five treatments (3 replicates) were considered: NTS7: no-tillage over seven years and sprinkler irrigation; NTS: no-tillage and sprinkler irrigation; CTS: conventional tillage and sprinkler irrigation; NTF: no-tillage and flooding; CTF: conventional tillage and flooding. The use of sprinkler irrigation rather than flooding led to decreases in nitrous oxide and methane emissions of ∼40% and more than 99%, respectively, over the 3-year experiment. The use of sprinkler irrigation compared with flooded irrigation reduced the global warming potential (GWP) about 40% and 36% in no-tillage and conventional tillage treatments, respectively. Treatment NTF decreased CH4 emissions, relative to CTF, by ∼60% over three years but the effect of NT on N2O emissions was not clear: a decrease or no effect was mostly observed in the NT treatments, relative to CT. A decrease of ∼40% in the total GHG emissions was observed in the NT treatments, relative to CT. No or small differences between NTS and NTS7 in terms of gaseous emissions were found. The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha-1;CTF 8926 kg ha-1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha-1 in 2012) and water savings are sustainable in the long term. Considering the yield-scaled GWP of the emissions, NT gave a decrease of up to 42

  6. Coupling of Belowground Carbon Cycling and Stoichiometry from Organisms to Ecosystems along a Soil C Gradient Under Rice Cultivation

    NASA Astrophysics Data System (ADS)

    Hartman, W.; Ye, R.; Horwath, W. R.; Tringe, S. G.

    2015-12-01

    Ecological stoichiometry is a framework linking biogeochemical cycles to organism functional traits that has been widely applied in aquatic ecosystems, animals and plants, but is poorly explored in soil microbes. We evaluated relationships among soil stoichiometry, carbon (C) cycling, and microbial community structure and function along a soil gradient spanning ~5-25% C in cultivated rice fields with experimental nitrogen (N) amendments. We found rates of soil C turnover were associated with nutrient stoichiometry and phosphorus (P) availability at ecosystem, community, and organism scales. At the ecosystem scale, soil C turnover was highest in mineral soils with lower C content and N:P ratios, and was positively correlated with soil inorganic P. Effects of N fertilization on soil C cycling also appeared to be mediated by soil P availability, while microbial community composition (by 16S rRNA sequencing) was not altered by N addition. Microbial communities varied along the soil C gradient, corresponding with highly covariant soil %C, N:P ratios, C quality, and carbon turnover. In contrast, we observed unambiguous shifts in microbial community function, imputed from taxonomy and directly assessed by shotgun sequenced metagenomes. The abundance of genes for carbohydrate utilization decreased with increasing soil C (and declining C turnover), while genes for aromatic C uptake, N fixation and P scavenging increased along with potential incorporation of C into biomass pools. Ecosystem and community-scale associations between C and nutrient substrate availability were also reflected in patterns of resource allocation among individual genomes (imputed and assembled). Microbes associated with higher rates of soil C turnover harbored more genes for carbohydrate utilization, fewer genes for obtaining energetically costly forms of C, N and P, more ribosomal RNA gene copies, and potentially lower C use efficiency. We suggest genome clustering by functional gene suites might

  7. Long-term changes in soil pH across major forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhe; Li, Pin; He, Honglin; Zhao, Xia; Datta, Arindam; Ma, Wenhong; Zhang, Ying; Liu, Xuejun; Han, Wenxuan; Wilson, Maxwell C.; Fang, Jingyun

    2015-02-01

    Atmospheric acidic deposition has been a major environmental problem since the industrial revolution. However, our understanding of the effect of acidic deposition on soil pH is inconclusive. Here we examined temporal variations in topsoil pH and their relationships with atmospheric sulfur and nitrogen deposition across China's forests from the 1980s to the 2000s. To accomplish this goal, we conducted artificial neural network simulations using historical soil inventory data from the 1980s and a data set synthesized from literature published after 2000. Our results indicated that significant decreases in soil pH occurred in broadleaved forests, while minor changes were observed in coniferous and mixed coniferous and broadleaved forests. The magnitude of soil pH change was negatively correlated with atmospheric sulfur and nitrogen deposition. This relationship highlights the need for stringent measures that reduce sulfur and nitrogen emissions so as to maintain ecosystem structure and function.

  8. Elevated CO2 facilitates C and N accumulation in a rice paddy ecosystem.

    PubMed

    Guo, Jia; Zhang, Mingqian; Wang, Xiaowen; Zhang, Weijian

    2015-03-01

    Elevated CO2 can stimulate wetland carbon (C) and nitrogen (N) exports through gaseous and dissolved pathways, however, the consequent influences on the C and N pools are still not fully known. Therefore, we set up a free-air CO2 enrichment experiment in a paddy field in Eastern China. After five year fumigation, we studied C and N in the plant-water-soil system. The results showed: (1) elevated CO2 stimulated rice aboveground biomass and N accumulations by 19.1% and 12.5%, respectively. (2) Elevated CO2 significantly increased paddy soil TOC and TN contents by 12.5% and 15.5%, respectively in the 0-15 cm layer, and 22.7% and 26.0% in the 15-30 cm soil layer. (3) Averaged across the rice growing period, elevated CO2 greatly increased TOC and TN contents in the surface water by 7.6% and 11.4%, respectively. (4) The TOC/TN ratio and natural δ15N value in the surface soil showed a decreasing trend under elevated CO2. The above results indicate that elevated CO2 can benefit C and N accumulation in paddy fields. Given the similarity between the paddies and natural wetlands, our results also suggest a great potential for long-term C and N accumulation in natural wetlands under future climate patterns.

  9. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems

    PubMed Central

    Burkholder, JoAnn; Eggleston, David; Glasgow, Howard; Brownie, Cavell; Reed, Robert; Janowitz, Gerald; Posey, Martin; Melia, Greg; Kinder, Carol; Corbett, Reide; Toms, David; Alphin, Troy; Deamer, Nora; Springer, Jeffrey

    2004-01-01

    Ecosystem-level impacts of two hurricane seasons were compared several years after the storms in the largest lagoonal estuary in the U.S., the Albemarle–Pamlico Estuarine System. A segmented linear regression flow model was developed to compare mass-water transport and nutrient loadings to a major artery, the Neuse River Estuary (NRE), and to estimate mean annual versus storm-related volume delivery to the NRE and Pamlico Sound. Significantly less water volume was delivered by Hurricane Fran (1996), but massive fish kills occurred in association with severe dissolved oxygen deficits and high contaminant loadings (total nitrogen, total phosphorus, suspended solids, and fecal bacteria). The high water volume of the second hurricane season (Hurricanes Dennis, Floyd, and Irene in 1999) delivered generally comparable but more dilute contaminant loads, and no major fish kills were reported. There were no discernable long-term adverse impacts on water quality. Populations of undesirable organisms, such as toxic dinoflagellates, were displaced down-estuary to habitats less conducive for growth. The response of fisheries was species-dependent: there was no apparent impact of the hurricanes on commercial landings of bivalve molluscs or shrimp. In contrast, interacting effects of hurricane floodwaters in 1999 and intensive fishing pressure led to striking reductions in blue crabs. Overall, the data support the premise that, in shallow estuaries frequently disturbed by hurricanes, there can be relatively rapid recovery in water quality and biota, and benefit from the scouring activity of these storms. PMID:15199179

  10. Interacting Factors Driving a Major Loss of Large Trees with Cavities in a Forest Ecosystem

    PubMed Central

    Lindenmayer, David B.; Blanchard, Wade; McBurney, Lachlan; Blair, David; Banks, Sam; Likens, Gene E.; Franklin, Jerry F.; Laurance, William F.; Stein, John A. R.; Gibbons, Philip

    2012-01-01

    Large trees with cavities provide critical ecological functions in forests worldwide, including vital nesting and denning resources for many species. However, many ecosystems are experiencing increasingly rapid loss of large trees or a failure to recruit new large trees or both. We quantify this problem in a globally iconic ecosystem in southeastern Australia – forests dominated by the world's tallest angiosperms, Mountain Ash (Eucalyptus regnans). Tree, stand and landscape-level factors influencing the death and collapse of large living cavity trees and the decay and collapse of dead trees with cavities are documented using a suite of long-term datasets gathered between 1983 and 2011. The historical rate of tree mortality on unburned sites between 1997 and 2011 was >14% with a mortality spike in the driest period (2006–2009). Following a major wildfire in 2009, 79% of large living trees with cavities died and 57–100% of large dead trees were destroyed on burned sites. Repeated measurements between 1997 and 2011 revealed no recruitment of any new large trees with cavities on any of our unburned or burned sites. Transition probability matrices of large trees with cavities through increasingly decayed condition states projects a severe shortage of large trees with cavities by 2039 that will continue until at least 2067. This large cavity tree crisis in Mountain Ash forests is a product of: (1) the prolonged time required (>120 years) for initiation of cavities; and (2) repeated past wildfires and widespread logging operations. These latter factors have resulted in all landscapes being dominated by stands ≤72 years and just 1.16% of forest being unburned and unlogged. We discuss how the features that make Mountain Ash forests vulnerable to a decline in large tree abundance are shared with many forest types worldwide. PMID:23071486

  11. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality.

    PubMed

    Hu, Lanjuan; Li, Ning; Xu, Chunming; Zhong, Silin; Lin, Xiuyun; Yang, Jingjing; Zhou, Tianqi; Yuliang, Anzhi; Wu, Ying; Chen, Yun-Ru; Cao, Xiaofeng; Zemach, Assaf; Rustgi, Sachin; von Wettstein, Diter; Liu, Bao

    2014-07-22

    Cytosine methylation at CG sites ((m)CG) plays critical roles in development, epigenetic inheritance, and genome stability in mammals and plants. In the dicot model plant Arabidopsis thaliana, methyltransferase 1 (MET1), a principal CG methylase, functions to maintain (m)CG during DNA replication, with its null mutation resulting in global hypomethylation and pleiotropic developmental defects. Null mutation of a critical CG methylase has not been characterized at a whole-genome level in other higher eukaryotes, leaving the generality of the Arabidopsis findings largely speculative. Rice is a model plant of monocots, to which many of our important crops belong. Here we have characterized a null mutant of OsMet1-2, the major CG methylase in rice. We found that seeds homozygous for OsMet1-2 gene mutation (OsMET1-2(-/-)), which directly segregated from normal heterozygote plants (OsMET1-2(+/-)), were seriously maldeveloped, and all germinated seedlings underwent swift necrotic death. Compared with wild type, genome-wide loss of (m)CG occurred in the mutant methylome, which was accompanied by a plethora of quantitative molecular phenotypes including dysregulated expression of diverse protein-coding genes, activation and repression of transposable elements, and altered small RNA profiles. Our results have revealed conservation but also distinct functional differences in CG methylases between rice and Arabidopsis.

  12. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant.

    PubMed

    Li, Hongyan; Fitzgerald, Melissa A; Prakash, Sangeeta; Nicholson, Timothy M; Gilbert, Robert G

    2017-03-06

    The stickiness of cooked rice is important for eating quality and consumer acceptance. The first molecular understanding of stickiness is obtained from leaching and molecular structural characteristics during cooking. Starch is a highly branched glucose polymer. We find (i) the molecular size of leached amylopectin is 30 times smaller than that of native amylopectin while (ii) that of leached amylose is 5 times smaller than that of native amylose, (iii) the chain-length distribution (CLD: the number of monomer units in a chain on the branched polymer) of leached amylopectin is similar to native amylopectin while (iv) the CLD of leached amylose is much narrower than that of the native amylose, and (v) mainly amylopectin, not amylose, leaches out of the granule and rice kernel during cooking. Stickiness is found to increase with decreasing amylose content in the whole grain, and, in the leachate, with increasing total amount of amylopectin, the proportion of short amylopectin chains, and amylopectin molecular size. Molecular adhesion mechanisms are put forward to explain this result. This molecular structural mechanism provides a new tool for rice breeders to select cultivars with desirable palatability by quantifying the components and molecular structure of leached starch.

  13. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant

    PubMed Central

    Li, Hongyan; Fitzgerald, Melissa A.; Prakash, Sangeeta; Nicholson, Timothy M.; Gilbert, Robert G.

    2017-01-01

    The stickiness of cooked rice is important for eating quality and consumer acceptance. The first molecular understanding of stickiness is obtained from leaching and molecular structural characteristics during cooking. Starch is a highly branched glucose polymer. We find (i) the molecular size of leached amylopectin is 30 times smaller than that of native amylopectin while (ii) that of leached amylose is 5 times smaller than that of native amylose, (iii) the chain-length distribution (CLD: the number of monomer units in a chain on the branched polymer) of leached amylopectin is similar to native amylopectin while (iv) the CLD of leached amylose is much narrower than that of the native amylose, and (v) mainly amylopectin, not amylose, leaches out of the granule and rice kernel during cooking. Stickiness is found to increase with decreasing amylose content in the whole grain, and, in the leachate, with increasing total amount of amylopectin, the proportion of short amylopectin chains, and amylopectin molecular size. Molecular adhesion mechanisms are put forward to explain this result. This molecular structural mechanism provides a new tool for rice breeders to select cultivars with desirable palatability by quantifying the components and molecular structure of leached starch. PMID:28262830

  14. Major Phenolic Compounds, Antioxidant Capacity and Antidiabetic Potential of Rice Bean (Vigna umbellata L.) in China

    PubMed Central

    Yao, Yang; Cheng, Xu-Zhen; Wang, Li-Xia; Wang, Su-Hua; Ren, Guixing

    2012-01-01

    Interest in edible beans as nutraceuticals is increasing. In the present study, the individual phenolic acids, the total phenolic content (TPC), the total flavonoid content (TFC), and the antioxidant and antidiabetic potential of 13 varieties of rice beans from China were investigated. Eight phenolic compounds (catechin, epicatechin, p-coumaric acid, ferulic acid, vitexin, isovitexin, sinapic acid, quercetin) were analyzed on an ultra-performance liquid chromatography (UPLC) mass spectrometry (MS) system. The rice bean varieties had significant differences in total phenolic compounds (ranging from 123.09 ± 10.35 to 843.75 ± 30.15 μg/g), in TPC (ranging from 3.27 ± 0.04 to 6.43 ± 0.25 mg gallic acid equivalents (GAE)/g), in TFC (ranging from 55.95 ± 11.16 to 320.39 ± 31.77 mg catechin (CE)/g), in antioxidant activity (ranging from 39.87 ± 1.37 to 46.40 ± 2.18 μM·TE/g), in α-glucosidase inhibition activity (ranging from 44.32 ± 2.12 to 68.71 ± 2.19) and in advanced glycation end products formation inhibition activity (ranging from 34.11 ± 0.59 to 75.75 ± 0.33). This study is the first report on phytochemistry and biological activities in rice beans. PMID:22489119

  15. The molecular structural features controlling stickiness in cooked rice, a major palatability determinant

    NASA Astrophysics Data System (ADS)

    Li, Hongyan; Fitzgerald, Melissa A.; Prakash, Sangeeta; Nicholson, Timothy M.; Gilbert, Robert G.

    2017-03-01

    The stickiness of cooked rice is important for eating quality and consumer acceptance. The first molecular understanding of stickiness is obtained from leaching and molecular structural characteristics during cooking. Starch is a highly branched glucose polymer. We find (i) the molecular size of leached amylopectin is 30 times smaller than that of native amylopectin while (ii) that of leached amylose is 5 times smaller than that of native amylose, (iii) the chain-length distribution (CLD: the number of monomer units in a chain on the branched polymer) of leached amylopectin is similar to native amylopectin while (iv) the CLD of leached amylose is much narrower than that of the native amylose, and (v) mainly amylopectin, not amylose, leaches out of the granule and rice kernel during cooking. Stickiness is found to increase with decreasing amylose content in the whole grain, and, in the leachate, with increasing total amount of amylopectin, the proportion of short amylopectin chains, and amylopectin molecular size. Molecular adhesion mechanisms are put forward to explain this result. This molecular structural mechanism provides a new tool for rice breeders to select cultivars with desirable palatability by quantifying the components and molecular structure of leached starch.

  16. Differential analyses of major allergen proteins in wild-type rice and rice producing a fragment of anti-rotavirus antibody.

    PubMed

    Yuki, Yoshikazu; Kurokawa, Shiho; Kozuka-Hata, Hiroko; Tokuhara, Daisuke; Mejima, Mio; Kuroda, Masaharu; Oyama, Masaaki; Nishimaki-Mogami, Tomoko; Teshima, Reiko; Kiyono, Hiroshi

    2016-04-01

    To develop oral antibody therapy against rotavirus infection, we previously produced a recombinant fragment of llama heavy-chain antibody to rotavirus (ARP1) in rice seeds (MucoRice-ARP1). We intend to use a purification-free rice powder for clinical application but needed to check whether MucoRice-ARP1 had increased levels of known allergen proteins. For this purpose, we used two-dimensional fluorescence difference gel electrophoresis to compare the allergen protein levels in MucoRice-ARP1 and wild-type rice. We detected no notable differences, except in the levels of α-amylase/trypsin inhibitor-like family proteins. Because by this approach we could not completely separate ARP1 from the proteins of this family, we confirmed the absence of changes in the levels of these allergens by using shotgun mass spectrometry as well as immunoblot. By using immunoelectron microscopy, we also showed that RAG2, a member of the α-amylase/trypsin inhibitor-like protein family, was relocated from protein bodies II to the plasma membrane or cell wall in MucoRice-ARP1 seed. The relocation did not affect the level of RAG2. We demonstrated that most of the known rice allergens were not considerably upregulated by the genetic modification in MucoRice-ARP1. Our data suggest that MucoRice-ARP1 is a potentially safe oral antibody for clinical application.

  17. MucoRice-cholera toxin B-subunit, a rice-based oral cholera vaccine, down-regulates the expression of α-amylase/trypsin inhibitor-like protein family as major rice allergens.

    PubMed

    Kurokawa, Shiho; Nakamura, Rika; Mejima, Mio; Kozuka-Hata, Hiroko; Kuroda, Masaharu; Takeyama, Natsumi; Oyama, Masaaki; Satoh, Shigeru; Kiyono, Hiroshi; Masumura, Takehiro; Teshima, Reiko; Yuki, Yoshikazu

    2013-07-05

    To develop a cold chain- and needle/syringe-free rice-based cholera vaccine (MucoRice-CTB) for human use, we previously advanced the MucoRice system by introducing antisense genes specific for endogenous rice storage proteins and produced a molecularly uniform, human-applicable, high-yield MucoRice-CTB devoid of plant-associated sugar. To maintain the cold chain-free property of this vaccine for clinical application, we wanted to use a polished rice powder preparation of MucoRice-CTB without further purification but wondered whether this might cause an unexpected increase in rice allergen protein expression levels in MucoRice-CTB and prompt safety concerns. Therefore, we used two-dimensional fluorescence difference gel electrophoresis and shotgun MS/MS proteomics to compare rice allergen protein expression levels in MucoRice-CTB and wild-type (WT) rice. Both proteomics analyses showed that the only notable change in the expression levels of rice allergen protein in MucoRice-CTB, compared with those in WT rice, was a decrease in the expression levels of α-amylase/trypsin inhibitor-like protein family such as the seed allergen protein RAG2. Real-time PCR analysis showed mRNA of RAG2 reduced in MucoRice-CTB seed. These results demonstrate that no known rice allergens appear to be up-reregulated by genetic modification of MucoRice-CTB, suggesting that MucoRice-CTB has potential as a safe oral cholera vaccine for clinical application.

  18. Malaria vector control practices in an irrigated rice agro-ecosystem in central Kenya and implications for malaria control

    PubMed Central

    Ng'ang'a, Peter N; Shililu, Josephat; Jayasinghe, Gayathri; Kimani, Violet; Kabutha, Charity; Kabuage, Lucy; Kabiru, Ephantus; Githure, John; Mutero, Clifford

    2008-01-01

    Background Malaria transmission in most agricultural ecosystems is complex and hence the need for developing a holistic malaria control strategy with adequate consideration of socio-economic factors driving transmission at community level. A cross-sectional household survey was conducted in an irrigated ecosystem with the aim of investigating vector control practices applied and factors affecting their application both at household and community level. Methods Four villages representing the socio-economic, demographic and geographical diversity within the study area were purposefully selected. A total of 400 households were randomly sampled from the four study villages. Both semi-structured questionnaires and focus group discussions were used to gather both qualitative and quantitative data. Results The results showed that malaria was perceived to be a major public health problem in the area and the role of the vector Anopheles mosquitoes in malaria transmission was generally recognized. More than 80% of respondents were aware of the major breeding sites of the vector. Reported personal protection methods applied to prevent mosquito bites included; use of treated bed nets (57%), untreated bed nets (35%), insecticide coils (21%), traditional methods such as burning of cow dung (8%), insecticide sprays (6%), and use of skin repellents (2%). However, 39% of respondents could not apply some of the known vector control methods due to unaffordability (50.5%), side effects (19.9%), perceived lack of effectiveness (16%), and lack of time to apply (2.6%). Lack of time was the main reason (56.3%) reported for non-application of environmental management practices, such as draining of stagnant water (77%) and clearing of vegetations along water canals (67%). Conclusion The study provides relevant information necessary for the management, prevention and control of malaria in irrigated agro-ecosystems, where vectors of malaria are abundant and disease transmission is stable

  19. Spatial abundance and human biting rate of Anopheles arabiensis and Anopheles funestus in savannah and rice agro-ecosystems of Central Tanzania.

    PubMed

    Mboera, Leonard E G; Bwana, Veneranda M; Rumisha, Susan F; Stanley, Grades; Tungu, Patrick K; Malima, Robert C

    2015-05-18

    This study was carried out to determine the spatial variations in malaria mosquito abundance and human biting rate in five villages representing rice-irrigation and savannah ecosystems in Kilosa District, central Tanzania. The study involved five villages namely Tindiga and Malui (wetland/rice irrigation), Twatwatwa and Mbwade (dry savannah) and Kimamba (wet savannah). Indoor mosquitoes were sampled using Centers for Disease Control and Prevention light traps in three houses in each village. Anopheles gambiae s.l. molecular identification was carried out using polymerase chain reaction (PCR). A total of 936 female mosquitoes were collected. About half (46.9%) were malaria mosquitoes (Anopheles gambiae s.l.=28.6%; An. funestus= 18.3%). A total of 161 (60.1%) of the morphologically identified An. gambiae s.l. (268) and subjected to PCR analysis for speciation were genotyped as An. arabiensis. The An. funestus complex mosquitoes were composed of An. funestus funestus and An. rivulorum at the 5:1 ratio. On average, 17.9 Anopheles mosquitoes were collected per village per day. Two-thirds (62.8%) of the malaria mosquitoes were collected in Malui (rice agro-ecosystem) and the lowest number (2.3%) in Twatwatwa (dry savannah ecosystem). The biting rate per person per night for An. arabiensis+An. funestus s.s. was highest in Malui (46.0) and lowest in Twatwatwa (1.67). The parity rate of the An. funestus mosquitoes was lower compared to that of An. arabiensis and none of the mosquitoes was infected with malaria sporozoites. In conclusion, An. arabiensis is the most abundant malaria vector in Kilosa district and its variation is related to the ecological system. The heterogeneity in malaria mosquito abundance and human biting rate could be used to guide selection of locally appropriated control interventions.

  20. Nucleotide diversity analysis of three major bacterial blight resistance genes in rice.

    PubMed

    Bimolata, Waikhom; Kumar, Anirudh; M, Sai Kiran Reddy; Sundaram, Raman Meenakshi; Laha, Gouri Sankar; Qureshi, Insaf Ahmed; Ghazi, Irfan Ahmad

    2015-01-01

    Nucleotide sequence polymorphisms among R gene alleles influence the process of co-evolutionary interaction between host and pathogen by shaping the response of host plants towards invading pathogens. Here, we present the DNA sequence polymorphisms and diversities present among natural alleles of three rice bacterial blight resistance genes, Xa21, Xa26 and xa5. The diversity was examined across different wild relatives and cultivars of Oryza species. Functional significance of selected alleles was evaluated through semi-quantitative reverse transcription polymerase chain reaction and real time PCR. The greatest nucleotide diversity and singleton variable sites (SVS) were present in Xa26 (π = 0.01958; SVS = 182) followed by xa5 and Xa21 alleles. The highest frequency of single nucleotide polymorphisms were observed in Xa21 alleles and least in xa5. Transition bias was observed in all the genes and 'G' to 'A' transitions were more favored than other form of transitions. Neutrality tests failed to show the presence of selection at these loci, though negative Tajima's D values indicate the presence of a rare form of polymorphisms. At the interspecies level, O. nivara exhibited more diversity than O. sativa. We have also identified two nearly identical resistant alleles of xa5 and two sequentially identical alleles of Xa21. The alleles of xa5 showed basal levels of expression while Xa21 alleles were functionally not expressed.

  1. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China

    NASA Astrophysics Data System (ADS)

    Zhang, Z. S.; Guo, L. J.; Liu, T. Q.; Li, C. F.; Cao, C. G.

    2015-12-01

    Significant efforts have been devoted to assess the effects of conservation tillage (no-tillage [NT] and straw returning) on greenhouse gas (GHG) emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), and net economic budget in crop growing seasons. However, only a few studies have evaluated the effects conservation tillage on the net ecosystem economic budget (NEEB) in a rice-wheat cropping system. Therefore, a split-plot field experiment was performed to comprehensively evaluate the effects of tillage practices (i.e., conventional intensive tillage [CT] and NT) and straw returning methods (i.e., straw returning or removal of preceding crop) on the soil total organic carbon (TOC), GHG emissions, GWP, GHGI, and NEEB of sandy loam soil in a rice-wheat cropping system in central China. Conservation tillage did not affect rice and wheat grain yields. Compared with CT and straw removal, NT and straw returning significantly increased the TOC of 0-5 cm soil layer by 2.9% and 7.8%, respectively. However, the TOC of 0-20 cm soil layer was not affected by tillage practices and straw returning methods. NT did not also affect the N2O emissions during the rice and wheat seasons; NT significantly decreased the annual CH4 emissions by 7.5% and the annual GWP by 7.8% compared with CT. Consequently, GHGI under NT was reduced by 8.1%. Similar to NT, straw returning did not affect N2O emissions during the rice and wheat seasons. Compared with straw removal, straw returning significantly increased annual CH4 emissions by 35.0%, annual GWP by 32.0%, and annual GHGI by 31.1%. Straw returning did not also affect NEEB; by contrast, NT significantly increased NEEB by 15.6%. NT without straw returning resulted in the lowest GWP, the lowest GHGI, and the highest NEEB among all treatments. This finding suggested that NT without straw returning may be applied as a sustainable technology to increase economic and environmental benefits. Nevertheless, environmentally straw

  2. Development of sustainable groundwater extraction practices for a major superficial aquifer supporting a groundwater dependent ecosystem

    NASA Astrophysics Data System (ADS)

    Smettem, K. R.; Froend, R.; Davies, M.; Stock, B.; Martin, M.; Robertson, C.; Eamus, D.

    2010-12-01

    Throughout Australia many groundwater dependent ecosystems have been adversely affected by unsympathetic water abstraction practices. In Western Australia, the largest single supply of drinking water for the city of Perth is a superficial aquifer known as the Gnangara Groundwater Mound, located over an area of approximately 2200 km2 within and to the north of the city on the coastal plain. The groundwater resource supplies 60% of Perth’s pubic drinking water supply and 85% of total water demand for all users. Much of the mound is overlain by phreatophytic Banksia woodland that is susceptible to drought stress and death if the root system is separated from the unconfined aquifer for prolonged periods over the hot, dry Mediterranean summer. Drought stress has been exacerbated by diminished rainfall due to a changing climate regime. The aim of this research is to develop guidelines for sustainable groundwater abstraction (timing and volume) that will maintain the long term integrity of the ecosystem and recover up to 5GL/yr from existing borefields. We seek to investigate whether a change in abstraction regime, from ‘peak demand’ summer pumping to winter pumping allows groundwater levels to recover sufficiently prior to summer, thereby maintaining a healthy vegetation system. Hydrological and plant water status parameters were monitored over two winters at research sites with an initial depth to groundwater of less than 5m. During winter and spring, groundwater abstraction at a reduced capacity resulted in a 0.75m drawdown. Operation of the bores did not adversely impact the water status of phreatophytic Banksia at the study sites relative to control sites. Analysis of plant water source partitioning indicated that plants exposed to the winter drawdown were sustained by unsaturated zone soil moisture storage replenished by winter rainfall. When pumping ceased, the water table rose rapidly and plants utilised more groundwater during late spring and summer as the

  3. Wet meadow ecosystems contribute the majority of overwinter soil respiration from snow-scoured alpine tundra

    NASA Astrophysics Data System (ADS)

    Knowles, John F.; Blanken, Peter D.; Williams, Mark W.

    2016-04-01

    We measured soil respiration across a soil moisture gradient ranging from dry to wet snow-scoured alpine tundra soils throughout three winters and two summers. In the absence of snow accumulation, soil moisture variability was principally determined by the combination of mesotopographical hydrological focusing and shallow subsurface permeability, which resulted in a patchwork of comingled ecosystem types along a single alpine ridge. To constrain the subsequent carbon cycling variability, we compared three measures of effective diffusivity and three methods to calculate gradient method soil respiration from four typical vegetation communities. Overwinter soil respiration was primarily restricted to wet meadow locations, and a conservative estimate of the rate of overwinter soil respiration from snow-scoured wet meadow tundra was 69-90% of the maximum carbon dioxide (CO2) respired by seasonally snow-covered soils within this same catchment. This was attributed to higher overwinter soil temperatures at wet meadow locations relative to fellfield, dry meadow, and moist meadow communities, which supported liquid water and heterotrophic respiration throughout the winter. These results were corroborated by eddy covariance-based measurements that demonstrated an average of 272 g C m-2 overwinter carbon loss during the study period. As a result, we updated a conceptual model of soil respiration versus snow cover to express the potential for soil respiration variability from snow-scoured alpine tundra.

  4. Fine mapping and identification of candidate rice genes associated with qSTV11(SG), a major QTL for rice stripe disease resistance.

    PubMed

    Kwon, Tackmin; Lee, Jong-Hee; Park, Soo-Kwon; Hwang, Un-Ha; Cho, Jun-Hyun; Kwak, Do-Yeon; Youn, Yeong-Nam; Yeo, Un-Sang; Song, You-Chun; Nam, Jaesung; Kang, Hang-Won; Nam, Min-Hee; Park, Dong-Soo

    2012-09-01

    Rice stripe disease, caused by rice stripe virus (RSV) is a serious constraint to rice production in subtropical regions of East Asia. We performed fine mapping of a RSV resistance QTL on chromosome 11, qSTV11 ( SG ), using near-isogenic lines (NILs, BC(6)F(4)) derived from a cross between the highly resistant variety, Shingwang, and the highly susceptible variety, Ilpum, using 11 insertion and deletion (InDel) markers. qSTV11 ( SG ) was localized to a 150-kb region between InDel 11 (17.86 Mbp) and InDel 5 (18.01 Mbp). Among the two markers in this region, InDel 7 is diagnostic of RSV resistance in 55 Korean japonica and indica rice varieties. InDel 7 could also distinguish the allele type of Nagdong, Shingwang, Mudgo, and Pe-bi-hun from Zenith harboring the Stv-b ( i ) allele. As a result, qSTV11 ( SG ) is likely to be the Stv-b ( i ) allele. There were 21 genes in the 150-kb region harboring the qSTV11 ( SG ) locus. Three of these genes, LOC_Os11g31430, LOC_Os11g31450, and LOC_Os11g31470, were exclusively expressed in the susceptible variety. These expression profiles were consistent with the quantitative nature along with incomplete dominance of RSV resistance. Sequencing of these genes showed that there were several amino acid substitutions between susceptible and resistant varieties. Putative functions of these candidate genes for qSTV11 (SG) are discussed.

  5. Water quality of four major lakes in Mississippi, USA: Impacts on human and aquatic ecosystem health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmful algal blooms (HABs), harmful microorganisms (pathogens) and toxic metals represent three major agents of water quality deterioration. Better water quality is of utmost importance to water bodies that provide recreational opportunities, even better quality is expected in the water bodies that...

  6. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes.

    PubMed

    Cheng, Ai-Xia; Xiang, Cai-Yu; Li, Jian-Xu; Yang, Chang-Qing; Hu, Wen-Li; Wang, Ling-Jian; Lou, Yong-Gen; Chen, Xiao-Ya

    2007-06-01

    Terpenoids serve as both constitutive and inducible defense chemicals in many plant species, and volatile terpenes participate in plant a indirect defense by attracting natural enemies of the herbivores. The rice (Oryza sativa L.) genome contains about 50 genes encoding putative terpene synthases (TPSs). Here we report that two of the rice sesquiterpene synthase genes, OsTPS3 and OsTPS13, encode (E)-beta-caryophyllene synthase and (E,E)-farnesol synthase, respectively. In vitro, the recombinant protein of OsTPS3 catalyzed formation of (E)-beta-caryophyllene and several other sesquiterpenes, including beta-elemene and alpha-humulene, all being components of inducible volatiles of rice plants. The transcript levels of OsTPS3 exhibit a circadian rhythm of fluctuation, and its expression was also greatly induced by methyl jasmonate (MeJA). In addition, expression of OsTPS3 in transgenic plants of Arabidopsis thaliana resulted in emitting high quantities of OsTPS3 products. We also overexpressed OsTPS3 in rice plants which then produced more (E)-beta-caryophyllene after MeJA treatment. Finally, we found that the MeJA-treated transgenic rice plants attracted more parasitoid wasps of Anagrus nilaparvatae than the wild-type. These results demonstrate that OsTPS3, an enzyme catalyzing the formation of volatile sesquiterpenes, plays a role in indirect defense of rice plants.

  7. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida's Gulf Coast: Implications for Adaptation Planning.

    PubMed

    Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.

  8. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    PubMed

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  9. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  10. Rice ( Oryza) hemoglobins.

    PubMed

    Arredondo-Peter, Raúl; Moran, Jose F; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs.

  11. Bio-protective microbial agents from rhizosphere eco-systems trigger plant defense responses provide protection against sheath blight disease in rice (Oryza sativa L.).

    PubMed

    Singh, Udai B; Malviya, Deepti; Wasiullah; Singh, Shailendra; Pradhan, Jatindra K; Singh, Bhanu P; Roy, Manish; Imram, Mohd; Pathak, Neelam; Baisyal, B M; Rai, Jai P; Sarma, B K; Singh, Rajiv K; Sharma, P K; Kaur, Saman Deep; Manna, M C; Sharma, Sushil K; Sharma, Arun K

    2016-11-01

    Sheath blight of rice (Oryza sativa L.) caused by Rhizoctonia solani is a major disease and attempts are being made to develop microbe based technologies for biocontrol of this pathogen. However, the mechanisms of biocontrol are not fully understood and still require indepth study in the backdrop of emerging concepts in biological systems. The present investigation was aimed at deciphering the mechanisms of biocontrol of sheath blight of rice employing Pseudomonas fluorescens and Trichoderma harzianum as model agents for biocontrol. Initially 25, 5 and 5 strains of P. fluorescens, T. viride and T. harzianum, respectively, were screened for their biocontrol potential. Out of which, six strains with higher value of percent inhibition of fungal mycelium in dual plate assay were selected. The role of P. fluorescens, T. viride and T. harzianum were investigated in induction and bioaccumulation of natural antioxidants, defence-related biomolecules and other changes in plant which lead not only to growth promotion but also protection from pathogenic stress conditions in rice. The two most promising strains, P. fluorescens PF-08 and T. harzianum UBSTH-501 selected on the basis of in planta evaluation, when applied individually or in combination, significantly enhanced the accumulation of defence-related biomolecules, enzymes and exhibited biocontrol potential against R. solani. A modified/newly developed delivery system was applied for the first time in the experiments involving inoculation of plants with both bioagents, viz. P. fluorescens PF-08 and T. harzianum UBSTH-501. Results suggested that application of P. fluorescens PF-08 and T. harzianum UBSTH-501 alone or in combination, not only helps in control of the disease but also increases plant growth along with reduction in application of toxic chemical pesticides.

  12. Remote sensing based change analysis of rice environments in Odisha, India.

    PubMed

    Gumma, Murali Krishna; Mohanty, Samarendu; Nelson, Andrew; Arnel, Rala; Mohammed, Irshad A; Das, Satya Ranjan

    2015-01-15

    The rainfed rice-growing environment is perhaps one of the most vulnerable to water stress such as drought and floods. It is important to determine the spatial extent of the stress-prone areas to effectively and efficiently promote proper technologies (e.g., stress-tolerant varieties) to tackle the problem of sustainable food production. This study was conducted in Odisha state located in eastern India. Odisha is predominantly a rainfed rice ecosystem (71% rainfed and 29% canal irrigated during kharif-monsoon season), where rice is the major crop and staple food of the people. However, rice productivity in Odisha is one of the lowest in India and a significant decline (9%) in rice cultivated area was observed in 2002 (a drought year). The present study analyzed the temporal rice cropping pattern in various ecosystems and identified the stress-prone areas due to submergence (flooding) and water shortage. The spatial distribution of rice areas was mapped using MODIS (MOD09Q1) 250-m 8-day time-series data (2000-2010) and spectral matching techniques. The mapped rice areas were strongly correlated (R(2) = 90%) with district-level statistics. Also the class accuracy based on field-plot data was 84.8%. The area under the rainfed rice ecosystem continues to dominate, recording the largest share among rice classes across all the years. The use of remote-sensing techniques is rapid, cost-effective, and reliable to monitor changes in rice cultivated area over long periods of time and estimate the reduction in area cultivated due to abiotic stress such as water stress and submergence. Agricultural research institutes and line departments in the government can use these techniques for better planning, regular monitoring of land-use changes, and dissemination of appropriate technologies.

  13. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India.

    PubMed

    Gogoi, Nirmali; Baruah, K K; Gogoi, Boby; Gupta, Prabhat K

    2005-06-01

    Methane flux from rice varieties grown under two identical soils of Assam were monitored. In the first experiment, variety Jaya and GRT was grown in sandy loam soil of Lower Brahmaputra Valley Zone of Assam and the second experiment was conducted with variety Jyotiprasad and Bishnuprasad in sandy to sandy loam soils of Upper Brahmaputra Valley Zones of Assam. Methane flux recorded from variety Jyotiprasad and GRT was higher compared to variety Bishnuprasad and Jaya. The seasonal integrated flux recorded was 10.76 gm(-2), 9.98 gm(-2), 9.74 gm(-2) and 11.31 gm(-2) for variety GRT, Jaya, Bishnuprasad and Jyotiprasad, respectively. All the varieties exhibited two methane peaks one at maximum tillering stage and other at panicle initiation stage of the crop. Crop growth parameters such as leaf number, number of tillers and leaf area index (LAI) showed strong positive relationship with total methane flux. In both the experiments it was calculated that CH4 emission was substantially influenced by crop phenology and growth. This study emphasise the relationship of different growth parameters with methane emission.

  14. Organic Rice Production: Challenges and Opportunities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The market demand for organically produced rice has grown steadily with the majority of the acreage now being located in Texas and California. A wide range of organic products are marketed including conventional long and medium grain rice, aromatic or scented rice, rice with colored bran, and rice f...

  15. Identification of qRL7, a major quantitative trait locus associated with rice root length in hydroponic conditions.

    PubMed

    Wang, Huimin; Xu, Xiaoming; Zhan, Xiaodeng; Zhai, Rongrong; Wu, Weiming; Shen, Xihong; Dai, Gaoxing; Cao, Liyong; Cheng, Shihua

    2013-09-01

    Root system development is an important target for improving yield in rice. Active roots that can take up nutrients more efficiently are essential for improving grain yield. In this study, we performed quantitative trait locus (QTL) analyses using 215 recombinant inbred lines derived from a cross between Xieqingzao B (XB), a maintainer line with short roots and R9308, a restorer line with long roots. Only a QTLs associated with root length were mapped on chromosomes 7. The QTL, named qRL7, was located between markers RM3859 and RM214 on chromosome 7 and explained 18.14-18.36% of the total phenotypic variance evaluated across two years. Fine mapping of qRL7 using eight BC3F3 recombinant lines mapped the QTL to between markers InDel11 and InDel17, which delimit a 657.35 kb interval in the reference cultivar Nipponbare. To determine the genotype classes for the target QTL in these BC3F3 recombinants, the root lengths of their BC3F4 progeny were investigated, and the result showed that qRL7 plays a crucial role in root length. The results of this study will increase our understanding of the genetic factors controlling root architecture, which will help rice breeders to breed varieties with deep, strong and vigorous root systems.

  16. Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings.

    PubMed

    Chen, Yun-An; Chi, Wen-Chang; Trinh, Ngoc Nam; Huang, Li-Yao; Chen, Ying-Chih; Cheng, Kai-Teng; Huang, Tsai-Lien; Lin, Chung-Yi; Huang, Hao-Jen

    2014-01-01

    Mercury (Hg) is a serious environmental pollution threat to the planet. The accumulation of Hg in plants disrupts many cellular-level functions and inhibits growth and development, but the mechanism is not fully understood. To gain more insight into the cellular response to Hg, we performed a large-scale analysis of the rice transcriptome during Hg stress. Genes induced with short-term exposure represented functional categories of cell-wall formation, chemical detoxification, secondary metabolism, signal transduction and abiotic stress response. Moreover, Hg stress upregulated several genes involved in aromatic amino acids (Phe and Trp) and increased the level of free Phe and Trp content. Exogenous application of Phe and Trp to rice roots enhanced tolerance to Hg and effectively reduced Hg-induced production of reactive oxygen species. Hg induced calcium accumulation and activated mitogen-activated protein kinase. Further characterization of the Hg-responsive genes we identified may be helpful for better understanding the mechanisms of Hg in plants.

  17. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds

    PubMed Central

    2011-01-01

    Background Drought is one of the most important abiotic stresses causing drastic reductions in yield in rainfed rice environments. The suitability of grain yield (GY) under drought as a selection criterion has been reported in the past few years. Most of the quantitative trait loci (QTLs) for GY under drought in rice reported so far has been in the background of low-yielding susceptible varieties. Such QTLs have not shown a similar effect in multiple high- yielding drought-susceptible varieties, thus limiting their use in marker-assisted selection. Genetic control of GY under reproductive-stage drought stress (RS) in elite genetic backgrounds was studied in three F3:4 mapping populations derived from crosses of N22, a drought-tolerant aus cultivar, with Swarna, IR64, and MTU1010, three high-yielding popular mega-varieties, with the aim to identify QTLs for GY under RS that show a consistent effect in multiple elite genetic backgrounds. Three populations were phenotyped under RS in the dry seasons (DS) of 2009 and 2010 at IRRI. For genotyping, whole-genome scans for N22/MTU1010 and bulked segregant analysis for N22/Swarna and N22/IR64 were employed using SSR markers. Results A major QTL for GY under RS, qDTY1.1, was identified on rice chromosome 1 flanked by RM11943 and RM431 in all three populations. In combined analysis over two years, qDTY1.1 showed an additive effect of 29.3%, 24.3%, and 16.1% of mean yield in N22/Swarna, N22/IR64, and N22/MTU1010, respectively, under RS. qDTY1.1 also showed a positive effect on GY in non-stress (NS) situations in N22/Swarna, N22/IR64 over both years, and N22/MTU1010 in DS2009. Conclusions This is the first reported QTL in rice with a major and consistent effect in multiple elite genetic backgrounds under both RS and NS situations. Consistency of the QTL effect across different genetic backgrounds makes it a suitable candidate for use in marker-assisted breeding. PMID:22008150

  18. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  19. Research in rice fields

    USGS Publications Warehouse

    ,

    2000-01-01

    Between 1987 and 1999, 2.4-3 million acres of rice were planted annually nationwide. Rice fields are a major component of the contemporary landscapes in the Gulf Coastal Plain, the Mississippi Alluvial Valley, and Central Valley of California. In 1998, approximately 600,000 acres of rice were planted in Louisiana. In the Louisiana plant commodities report for 1998, total value for rice was over $350 million; sugarcane was the only plant commodity that exceeded this value. Louisiana has over 2,000 rice farmers supporting over 12,000 jobs in the state. Rice fields in the United States receive high use by wildlife, especially shorebirds, wading birds, and waterfowl. Waterbirds use rice fields for food, shelter, and breeding habitat.

  20. Outcrossing Potential between U.S. Blackhull Red Rice and Indica Rice Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a major weed pest of rice in the southern U.S. Outcrossing between red rice and commercial tropical japonica rice cultivars has resulted in new weed biotypes that further hinder the effectiveness of weed management. In recent years, indica rice has been used increasingly as a ger...

  1. Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying

    PubMed Central

    Abdul Hamid, Azizah; Pak Dek, Mohd Sabri; Tan, Chin Ping; Mohd Zainudin, Mohd Asraf; Wee Fang, Evelyn Koh

    2014-01-01

    Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying. PMID:26785067

  2. Development and field performance of nitrogen use efficient rice lines for Africa.

    PubMed

    Selvaraj, Michael Gomez; Valencia, Milton Orlando; Ogawa, Satoshi; Lu, Yingzhi; Wu, Liying; Downs, Christopher; Skinner, Wayne; Lu, Zhongjin; Kridl, Jean C; Ishitani, Manabu; van Boxtel, Jos

    2016-11-27

    Nitrogen (N) fertilizers are a major input cost in rice production, and its excess application leads to major environmental pollution. Development of rice varieties with improved nitrogen use efficiency (NUE) is essential for sustainable agriculture. Here, we report the results of field evaluations of marker-free transgenic NERICA4 (New Rice for Africa 4) rice lines overexpressing barley alanine amino transferase (HvAlaAT) under the control of a rice stress-inducible promoter (pOsAnt1). Field evaluations over three growing seasons and two rice growing ecologies (lowland and upland) revealed that grain yield of pOsAnt1:HvAlaAT transgenic events was significantly higher than sibling nulls and wild-type controls under different N application rates. Our field results clearly demonstrated that this genetic modification can significantly increase the dry biomass and grain yield compared to controls under limited N supply. Increased yield in transgenic events was correlated with increased tiller and panicle number in the field, and evidence of early establishment of a vigorous root system in hydroponic growth. Our results suggest that expression of the HvAlaAT gene can improve NUE in rice without causing undesirable growth phenotypes. The NUE technology described in this article has the potential to significantly reduce the need for N fertilizer and simultaneously improve food security, augment farm economics and mitigate greenhouse gas emissions from the rice ecosystem.

  3. Rice (Oryza) hemoglobins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  4. Fine mapping and introgressing qFIS1-2, a major QTL for kernel fissure resistance in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) kernel fissuring increases breakage during milling and decreases the value of processed rice. This study employed molecular gene tagging methods to fine-map a fissure resistance (FR) locus in ‘Cybonnet’, a semidwarf tropical japonica cultivar, as well as transfer this trait to...

  5. Identification and comparative expression profiles of chemoreception genes revealed from major chemoreception organs of the rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the olfactory mechanism in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), one of the most serious insect pests of rice in Asia, we have established six partial transcriptomes from antennae, tarsus, and reproductive organs of male and female adults. A total of 102 genes...

  6. Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1.

    PubMed

    Chen, Mingliang; Luo, Ju; Shao, Gaoneng; Wei, Xiangjin; Tang, Shaoqing; Sheng, Zhonghua; Song, Jian; Hu, Peisong

    2012-05-01

    Leaf width is an important agricultural trait in rice. QTL mapping in a recombinant inbred line population derived from the cross between the javanica cultivar D50 (narrow-leaved) and the indica cultivar HB277 (wide-leaved) identified five QTLs controlling flag leaf width. Fine mapping of the major QTL qFLW4 narrowed its location to a 74.8 kb interval between the SSR loci RM17483 and RM17486, a region which also contains the gene NAL1 (Narrow leaf 1). There was no difference in the level of NAL1 expression between cvs. D50 and HB277, but an analysis of the NAL1 transcripts showed that while most (if not all) of those produced in cv. D50 were full-length, two-thirds of those in HB277 were non-functional due to either loss or gain of sequence. The inference was that NAL1 is probably synonymous with qFLW4, and that the functional difference between the two alleles was due to alternative splicing. The analysis of expression of other known genes involved in the determination of leaf width provided no evidence of their having any clear functional association with qFLW4/NAL1.

  7. Insights into molecular mechanism of blast resistance in weedy rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a serious pest in direct-seeded rice fields in the U.S. and worldwide. Under suitable conditions, weedy rice can reduce crop yields up to 70%. However, weedy rice may carry novel disease resistance genes. Rice blast disease caused by the fungus Magnaporthe oryzae is a major disease wo...

  8. Genetic diversity for rice grain mineral concentrations observed among genetically and geographically giverse rice accessions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With about half of the world’s people dependent on rice as their main food source, improving the nutritional value of rice could have major impact on human health. While rice in the USA is often artificially fortified, natural enhancement of the rice grain’s nutritional value, i.e. from genetic impr...

  9. Rice protein-induced enterocolitis syndrome with transient specific IgE to boiled rice but not to retort-processed rice.

    PubMed

    Yasutomi, Motoko; Kosaka, Takuya; Kawakita, Akiko; Hayashi, Hisako; Okazaki, Shintaro; Murai, Hiroki; Miyagawa, Kazuhiko; Mayumi, Mitsufumi; Ohshima, Yusei

    2014-02-01

    Described herein is the case of an 8-month-old girl with atypical food protein-induced enterocolitis syndrome due to rice. She presented with vomiting and poor general activity 2 h after ingestion of boiled rice. Oral food challenge test using high-pressure retort-processed rice was negative, but re-exposure to boiled rice elicited gastrointestinal symptoms. On western blot analysis the patient's serum was found to contain IgE bound to crude protein extracts from rice seed or boiled rice, but not from retort-processed rice. The major protein bands were not detected in the electrophoresed gel of retort-processed rice extracts, suggesting decomposition by high-temperature and high-pressure processing. Oral food challenge for diagnosing rice allergy should be performed with boiled rice to avoid a false negative. Additionally, some patients with rice allergy might be able to ingest retort-processed rice as a substitute for boiled rice.

  10. Effects of physical and biogeochemical processes on aquatic ecosystems at the groundwater-surface water interface: An evaluation of a sulfate-impacted wild rice stream in Minnesota (USA)

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Yourd, A. R.; Myrbo, A.; Johnson, N.

    2015-12-01

    Significant uncertainty and variability in physical and biogeochemical processes at the groundwater-surface water interface complicate how surface water chemistry affects aquatic ecosystems. Questions surrounding a unique 10 mg/L sulfate standard for wild rice (Zizania sp.) waters in Minnesota are driving research to clarify conditions controlling the geochemistry of shallow sediment porewater in stream- and lake-beds. This issue raises the need and opportunity to carry out in-depth, process-based analysis into how water fluxes and coupled C, S, and Fe redox cycles interact to impact aquatic plants. Our study builds on a recent state-wide field campaign that showed that accumulation of porewater sulfide from sulfate reduction impairs wild rice, an annual grass that grows in shallow lakes and streams in the Great Lakes region of North America. Negative porewater sulfide correlations with organic C and Fe quantities also indicated that lower redox rates and greater mineral precipitation attenuate sulfide. Here, we focus on a stream in northern Minnesota that receives high sulfate loading from iron mining activity yet maintains wild rice stands. In addition to organic C and Fe effects, we evaluate the degree to which streambed hydrology, and in particular groundwater contributions, accounts for the active biogeochemistry. We collect field measurements, spanning the surrounding groundwater system to the stream, to constrain a reactive-transport model. Observations from seepage meters, temperature probes, and monitoring wells delineate upward flow that may lessen surface water impacts below the stream. Geochemical analyses of groundwater, porewater, and surface water samples and of sediment extractions reveal distinctions among the different domains and stream banks, which appear to jointly control conditions in the streambed. A model based on field conditions can be used to evaluate the relative the importance and the spatiotemporal scales of diverse flux and

  11. Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning

    PubMed Central

    Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.

    2015-01-01

    The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914

  12. Evolutionary insights into the origins of weediness in U.S. red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy red rice is a widespread, economically challenging problem in Southern U.S. rice fields. The two major U.S. red rice types, strawhull and blackhull, are thought to have arisen independently from Asian rice populations in the distant past. Red rice is a weedy relative of rice, a genomic model...

  13. Optimizing tillage schedule for maintaining activity of the arbuscular mycorrhizal fungal population in a rainfed upland rice (Oryza sativa L.) agro-ecosystem.

    PubMed

    Maiti, D; Variar, M; Singh, R K

    2011-04-01

    Rainfed uplands in India are predominantly mono-cropped with rice (Oryza sativa L.) in the wet season (June/July to September/October) and grown under aerobic soil conditions. The remaining fallow period (winter followed by summer) of about 8-9 months leads to natural crash in the population of native arbuscular mycorrhizal fungi (AMF) in the soil. Attempts have been made to minimize this population crash by reducing soil disturbance-induced deleterious effects on native AMF activity of improperly scheduled off-season tillage, an agronomic recommendation for weed and disease (soil-borne) management, practiced by the upland farmers. On-farm (farmers' field) evaluation of effects of all suitable off-season tillage schedule combinations on rice during wet seasons of 2004, 2005, and 2006 revealed that a maximum of two off-season tillage schedules with a minimum gap of 13 weeks between them minimized the population crash of native AMF with a concomitant increase in phosphorus (P) uptake and grain yield of upland rice (variety "Vandana").

  14. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China - VI. Changes in microbial community structure and respiratory activity

    NASA Astrophysics Data System (ADS)

    Liu, D.; Liu, X.; Liu, Y.; Li, L.; Pan, G.; Crowley, D.; Tippkötter, R.

    2011-02-01

    Biological stabilization within accumulated soil organic carbon (SOC) has not been well understood, while its role in physical and chemical protection as well as of chemical recalcitrance had been addressed in Chinese rice paddies. In this study, topsoil samples were collected and respiratory activity measured in situ following rice harvest under different fertilization treatments of three long-term experimental sites across southern China in 2009. The SOC contents, microbial biomass carbon (SMBC) and nitrogen (SMBN) were analysed using chemical digestion and microbial community structure assessment via clony dilute plate counting methods. While SOC contents were consistently higher under compound chemical fertilization (Comp-Fert) or combined organic and inorganic fertilization (Comb-Fert) compared to N fertilization only (N-Fert), there was significantly higher fungal-bacterial ratio under Comb-Fert than under N-Fert and Comp-Fert. When subtracting the background effect under no fertilization treatment (Non-Fert), the increase both in SMBC and SMBN under fertilization treatment was found very significantly correlated to the increase in SOC over controls across the sites. Also, the ratio of culturable fungal to bacterial population numbers (F/B ratio) was well correlated with soil organic carbon contents in all samples across the sites studied. SOC accumulation favoured a build-up the microbial community with increasing fungal dominance in the rice paddies under fertilization treatments. While soil respiration rates were high under Comb-Fert as a result of enhanced microbial community build-up, the specific soil respiratory activity based on microbial biomass carbon was found in a significantly negatively correlation with the SOC contents for overall samples. Thus, a fungal-dominated microbial community seemed to slow SOC turnover, thereby favouring SOC accumulation under Comp-Fert or under Comb-Fert in the rice paddies. Therefore, the biological stabilization

  15. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water

    PubMed Central

    Takahashi, Hirokazu; Greenway, Hank; Matsumura, Hideo; Tsutsumi, Nobuhiro; Nakazono, Mikio

    2014-01-01

    Background and Aims Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings. Methods Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared. Key results In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations. Conclusions These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo. PMID:24431339

  16. [An evaluation of net carbon sink effect and cost/benefits of a rice-rape rotation ecosystem under long-term fertilization from Tai Lake region of China].

    PubMed

    Li, Jie-Jing; Pan, Gen-Xing; Zhang, Xu-Hui; Fei, Qing-Hua; Li, Zhi-Peng; Zhou, Ping; Zheng, Ju-Feng; Qiu, Duo-Sheng

    2009-07-01

    Taking a long-term fertilized rice-rape rotation system in Taihu Lake as test objective, its annual C balance and economic benefit were estimated, based on the measurement of past years grain yield, litter C content, and field CO2 emission as well as the investigation of material and management inputs. The calculated annual C sink under different fertilizations ranged from 0.9 t C x hm(-2) x a(-1) to 7.5 t C x hm(-2) x a(-1), and the net C sink effect under combined inorganic/organic fertilization was three folds as that under chemical fertilization. The C cost of material input ranged from 0.37 t C x hm(-2) x a(-1) to 1.13 t C x hm(-2) x a(-1), and that of management input ranged from 1.69 t C x hm(-2) x a(-1) to 1.83 t C x hm(-2) x a(-1). The annual economic benefit ranged from 5.8 x 10(3) CNY x hm(-2) x a(-1) to 16.5 x 10(3) CNY x hm(-2) x a(-1), and was 2.1 times higher under combined fertilization than under chemical fertilization. Comparing with that under chemical fertilization, the marginal cost for per ton C sink under combined inorganic/organic fertilization was estimated as 217.1 CNY x t(-1) C, very close to the C price of 20 Euro x t(-1) C in the EU. In sum, under combined inorganic/organic fertilization, this rice paddy ecosystem could not only have higher productivity, but also present greater net C sink effect and higher economic benefit, compared with under chemical fertilizer fertilization.

  17. Rice aroma and flavor: a literature review.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aroma and flavor of cooked rice are major criteria for preference among consumers. Small variations in these sensory properties can make rice highly desired or unacceptable to consumers. Human sensory analyses have identified over a dozen different aromas and flavors in rice. Instrumental ana...

  18. Analysis of nucleotide diversity among alleles of the major bacterial blight resistance gene Xa27 in cultivars of rice (Oryza sativa) and its wild relatives.

    PubMed

    Bimolata, Waikhom; Kumar, Anirudh; Sundaram, Raman Meenakshi; Laha, Gouri Shankar; Qureshi, Insaf Ahmed; Reddy, Gajjala Ashok; Ghazi, Irfan Ahmad

    2013-08-01

    Xa27 is one of the important R-genes, effective against bacterial blight disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo). Using natural population of Oryza, we analyzed the sequence variation in the functionally important domains of Xa27 across the Oryza species. DNA sequences of Xa27 alleles from 27 rice accessions revealed higher nucleotide diversity among the reported R-genes of rice. Sequence polymorphism analysis revealed synonymous and non-synonymous mutations in addition to a number of InDels in non-coding regions of the gene. High sequence variation was observed in the promoter region including the 5'UTR with 'π' value 0.00916 and 'θ w ' = 0.01785. Comparative analysis of the identified Xa27 alleles with that of IRBB27 and IR24 indicated the operation of both positive selection (Ka/Ks > 1) and neutral selection (Ka/Ks ≈ 0). The genetic distances of alleles of the gene from Oryza nivara were nearer to IRBB27 as compared to IR24. We also found the presence of conserved and null UPT (upregulated by transcriptional activator) box in the isolated alleles. Considerable amino acid polymorphism was localized in the trans-membrane domain for which the functional significance is yet to be elucidated. However, the absence of functional UPT box in all the alleles except IRBB27 suggests the maintenance of single resistant allele throughout the natural population.

  19. Identification of Some Degradation Products of Golden Rice Beta- carotene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Golden Rice (GR2) is genetically modified rice, which can contain as high as 37 ug of beta-carotene per g of dry rice. It was developed to combat vitamin A deficiency (VAD), a major malnutrition problem in many parts of the developing world, especially in South and South Eastern Asia, where rice is ...

  20. Signatures of adaptation in the weedy rice genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weedy rice is a common problem of by product of domestication that has evolved multiple times from cultivated and wild rice relatives. Here we use whole genome sequences to examine the origin and adaptation of the two major US weedy red rice strains, with a comparison to Chinese weedy red rice. We f...

  1. Biodegradation of clomazone in a California rice field soil: carbon allocation and community effects.

    PubMed

    Tomco, Patrick L; Holmes, William E; Tjeerdema, Ronald S

    2013-03-20

    Degradation pathways for the herbicide clomazone in a California rice field soil were characterized via pulse-labeling of anaerobic (flooded) and aerobic (moist) soil microcosms. Clomazone-derived (13)C in the major C pools of a rice ecosystem and soil phospholipid fatty acid (PLFA) profiles were analyzed over time to determine if (1) the compound accumulates in the microbial biomass, (2) it affects temporal microbial population dynamics, and (3) it is either preferentially metabolized or cometabolized. In anaerobic microcosms, the compound was rapidly biotransformed to ring-open clomazone, upon which it persisted in the aqueous phase, whereas aerobic microcosms degraded it slower but a greater percentage was mineralized. Anaerobic biomass decreased after clomazone was added, and aerobic actinomycete abundance differed between treatments and controls. Additionally, PLFA and (13)C PLFA were statistically similar between treatment and controls. Thus, microbial cometabolism is likely to be the dominant degrading mechanism governing clomazone fate in California rice fields.

  2. The Glycemic Index of Rice and Rice Products: A Review, and Table of GI Values.

    PubMed

    Kaur, Bhupinder; Ranawana, Viren; Henry, Jeyakumar

    2016-01-01

    Rice is the principle staple and energy source for nearly half the world's population and therefore has significant nutrition and health implications. Rice is generally considered a high glycemic index (GI) food, however, this depends on varietal, compositional, processing, and accompaniment factors. Being a major contributor to the glycemic load in rice eating populations, there is increasing concern that the rising prevalence of insulin resistance is as a result of the consumption of large amounts of rice. Devising ways and means of reducing the glycemic impact of rice is therefore imperative. This review gathers studies examining the GI of rice and rice products and provides a critical overview of the current state of the art. A table collating published GI values for rice and rice products is also included.

  3. Identification and Comparative Expression Profiles of Chemoreception Genes Revealed from Major Chemoreception Organs of the Rice Leaf Folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae)

    PubMed Central

    Zeng, Fang-Fang; Zhao, Zhen-Fei; Yan, Miao-Jun; Zhou, Wen; Zhang, Zan; Zhang, Aijun; Lu, Zhong-Xian; Wang, Man-Qun

    2015-01-01

    To better understand the olfactory mechanisms in the rice leaf folder, Cnaphalocrocis medinalis (Guenée), a serious pest of rice in Asia, we established six partial transcriptomes from antennae, protarsus, and reproductive organs of male and female adults. A total of 102 transcripts were identified, including 29 odorant receptors (ORs), 15 ionotropic receptors (IRs), 30 odorant-binding proteins (OBPs), 26 chemosensory proteins (CSPs), and 2 sensory neuron membrane proteins (SNMPs). The expression patterns of these genes were calculated by fragments per kilobase of exon per million fragments mapped (FPKM) and validated by real-time quantitative PCR (RT-qPCR). Some transcripts were exclusively expressed in specific organs, such as female protarsus, whereas others were universally expressed, this varied expression profile may provide insights into the specific functions mediated by chemoreception proteins in insects. To the best of our knowledge, among the 102 identified transcripts, 81 are novel and have never been reported before. In addition, it also is the first time that ORs and IRs are identified in C. medinalis. Our findings significantly enhance the currently limited understanding olfactory mechanisms of the olfactory mechanisms underlying the chemoreception system in C. medinalis. PMID:26657286

  4. Relative competitive ability of rice with strawhull and blackhull red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed interference depends largely upon the species composition of the weed community and an ability to compete with the cultured crop. Weedy red rice is a major weed pest of rice in the southern U.S. The focus of this study was to evaluate the competitive ability of rice against common, genetically ...

  5. Monitoring bacterial panicle blight disease of rice and germplasm evaluation for resistance in Arkansas in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a major cereal crop that contributes significantly to the global food security. Rice production is challenged by both abiotic and biotic stresses. Rice bacterial panicle blight (BPB) has been recognized as one of the major biotic factors that can cause severe yield loss in Southern rice stat...

  6. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network.

    PubMed

    Singh, Renu; Singh, Yashi; Xalaxo, Suchit; Verulkar, S; Yadav, Neera; Singh, Shweta; Singh, Nisha; Prasad, K S N; Kondayya, K; Rao, P V Ramana; Rani, M Girija; Anuradha, T; Suraynarayana, Y; Sharma, P C; Krishnamurthy, S L; Sharma, S K; Dwivedi, J L; Singh, A K; Singh, P K; Nilanjay; Singh, N K; Kumar, Rajesh; Chetia, S K; Ahmad, T; Rai, M; Perraju, P; Pande, Anita; Singh, D N; Mandal, N P; Reddy, J N; Singh, O N; Katara, J L; Marandi, B; Swain, P; Sarkar, R K; Singh, D P; Mohapatra, T; Padmawathi, G; Ram, T; Kathiresan, R M; Paramsivam, K; Nadarajan, S; Thirumeni, S; Nagarajan, M; Singh, A K; Vikram, Prashant; Kumar, Arvind; Septiningshih, E; Singh, U S; Ismail, A M; Mackill, D; Singh, Nagendra K

    2016-01-01

    Rice is a staple cereal of India cultivated in about 43.5Mha area but with relatively low average productivity. Abiotic factors like drought, flood and salinity affect rice production adversely in more than 50% of this area. Breeding rice varieties with inbuilt tolerance to these stresses offers an economically viable and sustainable option to improve rice productivity. Availability of high quality reference genome sequence of rice, knowledge of exact position of genes/QTLs governing tolerance to abiotic stresses and availability of DNA markers linked to these traits has opened up opportunities for breeders to transfer the favorable alleles into widely grown rice varieties through marker-assisted backcross breeding (MABB). A large multi-institutional project, "From QTL to variety: marker-assisted breeding of abiotic stress tolerant rice varieties with major QTLs for drought, submergence and salt tolerance" was initiated in 2010 with funding support from Department of Biotechnology, Government of India, in collaboration with International Rice Research Institute, Philippines. The main focus of this project is to improve rice productivity in the fragile ecosystems of eastern, northeastern and southern part of the country, which bear the brunt of one or the other abiotic stresses frequently. Seven consistent QTLs for grain yield under drought, namely, qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2, qDTY9.1 and qDTY12.1 are being transferred into submergence tolerant versions of three high yielding mega rice varieties, Swarna-Sub1, Samba Mahsuri-Sub1 and IR 64-Sub1. To address the problem of complete submergence due to flash floods in the major river basins, the Sub1 gene is being transferred into ten highly popular locally adapted rice varieties namely, ADT 39, ADT 46, Bahadur, HUR 105, MTU 1075, Pooja, Pratikshya, Rajendra Mahsuri, Ranjit, and Sarjoo 52. Further, to address the problem of soil salinity, Saltol, a major QTL for salt tolerance is being transferred into

  7. Ecosystem Services

    EPA Pesticide Factsheets

    Ecosystem goods and services are the many life-sustaining benefits we receive from nature and contribute to environmental and human health and well-being. Ecosystem-focused research will develop methods to measure ecosystem goods and services.

  8. Thermomechanical property of rice kernels studied by DMA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermomechanical property of the rice kernels was investigated using a dynamic mechanical analyzer (DMA). The length change of rice kernel with a loaded constant force along the major axis direction was detected during temperature scanning. The thermomechanical transition occurred in rice kernel...

  9. Optimizing water management practices for enhancing rice production and mitigating greenhouse gas emissions in Asia: The food-water-climate nexus approach

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tian, H.; Lu, C.; Yang, J.; Ren, W.

    2015-12-01

    Rice fields, supporting over half of the global population, consumed around 30% of the freshwater used for global crop growth and identified as one of the major methane (CH4) sources. Asia, in where 90% of rice is consumed, took over 90% of the total CH4 emission from the global rice field. With the increasing water scarcity and rapidly growth population, it is urgent to address how to simultaneously maintain or even increase food production, reduce water consumption, and benefit climate. In this study, we used a process-based model (Dynamic Land Ecosystem Model), which has the capability to simultaneously simulate the carbon, water, and nitrogen fluxes and storages within the terrestrial ecosystem, and also the exchanges of greenhouse gases between terrestrial ecosystems and the atmosphere, to quantify the magnitude, spatial and temporal variation of rice production and CH4 emissions under different water management practices. Simulated results have been evaluated against field observations, inventory-based and atmospheric inversion estimates. By implementing a set of experimental simulations, the results could provide insights for reasonable implementation of optimum water management practices, which is also crucial for policy maker to make trade-off decisions to increase yield and reduce GHG emissions through effective mitigation strategies.

  10. The role of momilactones in rice allelopathy.

    PubMed

    Kato-Noguchi, Hisashi; Peters, Reuben J

    2013-02-01

    Large field screening programs and laboratory experiments in many countries have indicated that rice is allelopathic and releases allelochemical(s) into its environment. A number of compounds, such as phenolic acids, fatty acids, phenylalkanoic acids, hydroxamic acids, terpenes, and indoles, have been identified as potential rice allelochemicals. However, the studies reviewed here demonstrate that the labdane-related diterpenoid momilactones are the most important, with momilactone B playing a particularly critical role. Rice plants secrete momilactone B from their roots into the neighboring environments over their entire life cycle at phytotoxic levels, and momilactone B seems to account for the majority of the observed rice allelopathy. In addition, genetic studies have shown that selective removal of the momilactones only from the complex mixture found in rice root exudates significantly reduces allelopathy, demonstrating that these serve as allelochemicals, the importance of which is reflected in the presence of a dedicated momilactone biosynthetic gene cluster in the rice genome.

  11. Oscillating Transcriptome during Rice-Magnaporthe Interaction.

    PubMed

    Sharma, T R; Das, Alok; Thakur, Shallu; Devanna, B N; Singh, Pankaj Kumar; Jain, Priyanka; Vijayan, Joshitha; Kumar, Shrawan

    2016-01-01

    Rice blast disease caused by the fungus, Magnaporthe oryzae, is one of the most devastating diseases of rice. Deciphering molecular mechanism of host-pathogen interactions is of great importance in devising disease management strategies. Transcription being the first step for gene regulation in eukaryotes, basic understanding of the transcriptome is sine qua non for devising effective management strategy. The availability of genome sequences of rice and M. oryzae has facilitated the process to a large extent. The current review summarizes recent understanding of rice-blast pathosystem, application of transcriptomics approaches to understand the interactions employing different platforms, major determinants in the interaction and possibility of using certain candidate for conditioning enhanced disease resistance (Effector Triggered Immunity and PAMP Triggered Immunity) and downstream signalling in rice. A better understanding of the interaction elements and effective strategies hold potential to reduce yield losses in rice caused by M. oryzae.

  12. Preserving rice quality: fine mapping and introgressing a fissure resistance locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) kernel fissuring is a major concern of both rice producers and millers. Fissures are small cracks in the rice kernels that increase the percentage of breakage among the kernels when they are transported and milled, which decreases the value of processed rice. This study employ...

  13. Confirming QTLs and finding additional Loci responsible for resistance to Sheath Blight in Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight (ShB) caused by the soil borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice around the globe, causing severe losses in rice yield and quality annually. Major genes governing resistance to ShB have not been found in cultivated rice worldwide; however...

  14. Origin, dispersal, cultivation and variation of rice.

    PubMed

    Khush, G S

    1997-09-01

    There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55 degrees N and 36 degrees S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120,000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70

  15. Avian foods, foraging and habitat conservation in world rice fields

    USGS Publications Warehouse

    Stafford, J.D.; Kaminski, R.M.; Reinecke, K.J.

    2010-01-01

    Worldwide, rice (Oryza sativa) agriculture typically involves seasonal flooding and soil tillage, which provides a variety of microhabitats and potential food for birds. Water management in rice fields creates conditions ranging from saturated mud flats to shallow (<30 cm) water, thereby attracting different guilds of birds. Grain not collected during harvest (i.e. waste rice) is typically the most abundant potential food of birds in rice fields, with estimates of seed mass from North America ranging from 66672 kg/ha. Although initially abundant after harvest, waste rice availability can be temporally limited. Few abundance estimates for other foods, such as vertebrate prey or forage vegetation, exist for rice fields. Outside North America, Europe and Japan, little is known about abundance and importance of any avian food in rice fields. Currently, flooding rice fields after harvest is the best known management practice to attract and benefit birds. Studies from North America indicate specific agricultural practices (e.g. burning stubble) may increase use and improve access to food resources. Evaluating and implementing management practices that are ecologically sustainable, increase food for birds and are agronomically beneficial should be global priorities to integrate rice production and avian conservation. Finally, land area devoted to rice agriculture appears to be stable in the USA, declining in China, and largely unquantified in many regions. Monitoring trends in riceland area may provide information to guide avian conservation planning in rice-agriculture ecosystems.

  16. Ecosystem Journalism

    ERIC Educational Resources Information Center

    Robertson, Amy; Mahlin, Kathryn

    2005-01-01

    If the organisms in a prairie ecosystem created a newspaper, what would it look like? What important news topics of the ecosystem would the organisms want to discuss? Imaginative and enthusiastic third-grade students were busy pondering these questions as they tried their hands at "ecosystem journalism." The class had recently completed…

  17. Natural ecosystems

    USGS Publications Warehouse

    Fleishman, Erica; Belnap, Jayne; Cobb, Neil; Enquist, Carolyn A.F.; Ford, Karl; MacDonald, Glen; Pellant, Mike; Schoennagel, Tania; Schmit, Lara M.; Schwartz, Mark; van Drunick, Suzanne; Westerling, Anthony LeRoy; Keyser, Alisa; Lucas, Ryan

    2013-01-01

    Natural Ecosystems analyzes the association of observed changes in climate with changes in the geographic distributions and phenology (the timing of blossoms or migrations of birds) for Southwestern ecosystems and their species, portraying ecosystem disturbances—such as wildfires and outbreaks of forest pathogens—and carbon storage and release, in relation to climate change.

  18. Ecosystem Jenga!

    ERIC Educational Resources Information Center

    Umphlett, Natalie; Brosius, Tierney; Laungani, Ramesh; Rousseau, Joe; Leslie-Pelecky, Diandra L.

    2009-01-01

    To give students a tangible model of an ecosystem and have them experience what could happen if a component of that ecosystem were removed; the authors developed a hands-on, inquiry-based activity that visually demonstrates the concept of a delicately balanced ecosystem through a modification of the popular game Jenga. This activity can be…

  19. Abandoned Rice Fields Make Streams Go Dry in Upland Landscapes

    NASA Astrophysics Data System (ADS)

    Jayawickreme, D.

    2015-12-01

    In South Asia, new economic realities are driving many rural rice farmers out of agriculture. With increasing neglect, abandonment, and rising conversions of centuries old rice fields into other uses, ecological and environmental consequences of these transitions are becoming progressively clear. Field observations in Sri Lanka's central highlands suggest that small shifts in rice to non-rice land uses in headwater watersheds can have a domino effect on the productivity and viability of rice fields and other ecological systems downstream by inflicting groundwater recharge reductions, lowering groundwater yields, and causing other hydrological changes. Preliminary analysis shows that although rice itself is a very water intensive crop, the presence of rain-fed upland rice-fields is hugely beneficial to the watersheds they reside. In particular, water benefits of rice appear to be derived from ponded conditions (3-5 inches of standing water) in which rice is grown, and the contribution rice fields makes to enhance water retention and storage capacity of their watersheds during the monsoon season that coincide with the cropping season. In the absence of well managed rice-fields, hilly upland landscapes produce more runoff and retain little rainwater during the wet season. Furthermore, after centuries of intensive use, much of South Asia's rice fields are nutrient poor and minimally productive without fertilizer applications and other interventions. Consequently, when abandoned, soil erosion and other impacts that affect aquatic ecosystems and watershed health also emerge. Despite these multiple concerns however, little research is currently done to better understand the environmental significance of rice cultivations that are a dominant land-use in many South Asian landscapes. The aim of this presentation is to stir interest among the scientific community to engage more broadly in rice, water, and environmental change research in the face of new economic realities in

  20. RPAN: rice pan-genome browser for ∼3000 rice genomes

    PubMed Central

    Sun, Chen; Hu, Zhiqiang; Zheng, Tianqing; Lu, Kuangchen; Zhao, Yue; Wang, Wensheng; Shi, Jianxin; Wang, Chunchao; Lu, Jinyuan; Zhang, Dabing; Li, Zhikang; Wei, Chaochun

    2017-01-01

    A pan-genome is the union of the gene sets of all the individuals of a clade or a species and it provides a new dimension of genome complexity with the presence/absence variations (PAVs) of genes among these genomes. With the progress of sequencing technologies, pan-genome study is becoming affordable for eukaryotes with large-sized genomes. The Asian cultivated rice, Oryza sativa L., is one of the major food sources for the world and a model organism in plant biology. Recently, the 3000 Rice Genome Project (3K RGP) sequenced more than 3000 rice genomes with a mean sequencing depth of 14.3×, which provided a tremendous resource for rice research. In this paper, we present a genome browser, Rice Pan-genome Browser (RPAN), as a tool to search and visualize the rice pan-genome derived from 3K RGP. RPAN contains a database of the basic information of 3010 rice accessions, including genomic sequences, gene annotations, PAV information and gene expression data of the rice pan-genome. At least 12 000 novel genes absent in the reference genome were included. RPAN also provides multiple search and visualization functions. RPAN can be a rich resource for rice biology and rice breeding. It is available at http://cgm.sjtu.edu.cn/3kricedb/ or http://www.rmbreeding.cn/pan3k. PMID:27940610

  1. Characterization of rice blast resistance gene Pi61(t) in rice germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of resistance (R) genes to races of Magnaporthe oryzae in rice germplasm is essential for the development of rice cultivars with long lasting blast resistance. In the present study, one major quantitative trait locus, qPi93-3, was fine mapped using a recombinant inbred line (RIL), F8 ...

  2. Phylogeography of Asian wild rice, Oryza rufipogon, reveals multiple independent domestications of cultivated rice, Oryza sativa.

    PubMed

    Londo, Jason P; Chiang, Yu-Chung; Hung, Kuo-Hsiang; Chiang, Tzen-Yuh; Schaal, Barbara A

    2006-06-20

    Cultivated rice, Oryza sativa L., represents the world's most important staple food crop, feeding more than half of the human population. Despite this essential role in world agriculture, the history of cultivated rice's domestication from its wild ancestor, Oryza rufipogon, remains unclear. In this study, DNA sequence variation in three gene regions is examined in a phylogeographic approach to investigate the domestication of cultivated rice. Results indicate that India and Indochina may represent the ancestral center of diversity for O. rufipogon. Additionally, the data suggest that cultivated rice was domesticated at least twice from different O. rufipogon populations and that the products of these two independent domestication events are the two major rice varieties, Oryza sativa indica and Oryza sativa japonica. Based on this geographical analysis, O. sativa indica was domesticated within a region south of the Himalaya mountain range, likely eastern India, Myanmar, and Thailand, whereas O. sativa japonica was domesticated from wild rice in southern China.

  3. Biology of rice bug Leptocorisa oratorius (Fabricius) (Hemiptera: Alydidae), population change and alternative host plants.

    PubMed

    Rattanapun, W

    2013-01-01

    Leptocorisa oratorius (Fabricius) (Hemiptera: Alydidae) is a major rice pest which feeds on the sap of stems and rice seeds. Some graminaceous weed species serve as an alternative host of L. oratorius causing outbreaks throughout the rice growing season. Population changes of L. oratorius during both rice growing seasons - wet-season rice and dry-season rice - including the influence of alternative host, barnyard grass Echinochloa crus-galli (Graminaceae) on the development of L. oratorius was studied. Results presented that L. oratorius was the dominant pest species during the late phase of rice growth. Adults of L. oratorius started their migrations to wet-season rice at the vegetative stage of rice growth, while they migrated to dry-season rice at the repropuctive stage of rice growth. Leptocorisa oratorius breds rapidly in rice fields. Meanwhile, other adults migrated to the rice field. The population of adults and nymphs significantly increased from the reproductive stage to grain formation and ripening stage in both rice growing seasons. The population of nymphs was greater than adults but not significantly different in their number of individuals. Leptocorisa oratorius had one generation in each rice growing season. The results of the host plant study indicated that L oratorius developed completely in barnyard grass E. crus-galli as well as rice Oriza sativa (Graminaceae). However, L. oratorius preferred rice to barnyard grass for feeding and oviposition.

  4. Budgeting of major nutrients and the mitigation options for nutrient mining in semi-arid tropical agro-ecosystem of Tamil Nadu, India using NUTMON model.

    PubMed

    Surendran, U; Rama Subramoniam, S; Raja, P; Kumar, V; Murugappan, V

    2016-04-01

    Mining of nutrients from soil is a major problem in developing countries causing soil degradation and threaten long-term food production. The present study attempts to apply NUTrient MONitoring (NUTMON) model for carrying out nutrient budgeting to assess the stocks and flows of nitrogen (N), phosphorus (P), and potassium (K) in defined geographical unit based on the inputs, viz., mineral fertilizers, manures, atmospheric deposition, and sedimentation, and outputs, viz., harvested crop produces, residues, leaching, denitrification, and erosion losses. The study area covers Coimbatore and Erode Districts, which are potential agricultural areas in western agro-ecological zone of Tamil Nadu, India. The calculated nutrient balances for both the districts at district scale, using NUTMON methodology, were negative for nitrogen (N -3.3 and -10.1 kg ha(-1)) and potassium (K -58.6 and -9.8 kg ha(-1)) and positive for phosphorus (P +14.5 and 20.5 kg ha(-1)). Soil nutrient pool has to adjust the negative balance of N and K; there will be an expected mining of nutrient from the soil reserve. A strategy was attempted for deriving the fertilizer recommendation using Decision Support System for Integrated Fertilizer Recommendation (DSSIFER) to offset the mining in selected farms. The results showed that when DSSIFER recommended fertilizers are applied to crops, the nutrient balance was positive. NUTMON-Toolbox with DSSIFER would serve the purpose on enhancing soil fertility, productivity, and sustainability. The management options to mitigate nutrient mining with an integrated system approach are also discussed.

  5. The impact of herbicide-resistant rice technology on phenotypic diversity and population structure of United States weedy rice.

    PubMed

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D; Huang, Zhongyun; Hyma, Katie E; Gealy, David R; Caicedo, Ana L

    2014-11-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.

  6. Evolutionary and social consequences of introgression of nontransgenic herbicide resistance from rice to weedy rice in Brazil.

    PubMed

    Merotto, Aldo; Goulart, Ives C G R; Nunes, Anderson L; Kalsing, Augusto; Markus, Catarine; Menezes, Valmir G; Wander, Alcido E

    2016-08-01

    Several studies have expressed concerns about the effects of gene flow from transgenic herbicide-resistant crops to their wild relatives, but no major problems have been observed. This review describes a case study in which what has been feared in transgenics regarding gene flow has actually changed biodiversity and people's lives. Nontransgenic imidazolinone-resistant rice (IMI-rice) cultivars increased the rice grain yield by 50% in southern Brazil. This increase was beneficial for life quality of the farmers and also improved the regional economy. However, weedy rice resistant to imidazolinone herbicides started to evolve three years after the first use of IMI-rice cultivars. Population genetic studies indicate that the herbicide-resistant weedy rice was mainly originated from gene flow from resistant cultivars and distributed by seed migration. The problems related with herbicide-resistant weedy rice increased the production costs of rice that forced farmers to sell or rent their land. Gene flow from cultivated rice to weedy rice has proven to be a large agricultural, economic, and social constraint in the use of herbicide-resistant technologies in rice. This problem must be taken into account for the development of new transgenic or nontransgenic rice technologies.

  7. Simultaneous determination of Se, trace elements and major elements in Se-rich rice by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) after microwave digestion.

    PubMed

    Wei, Yi Hua; Zhang, Jin Yan; Zhang, Da Wen; Luo, Lin Guang; Tu, Tian Hua

    2014-09-15

    A quick and accurate method was devised to determine Se, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sr and Zn in Se-rich rice samples by microwave digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Spectral interferences on Se were eliminated using methane as a reaction gas in the dynamic reaction cell (DRC). Rhodium was used as an internal standard to compensate for sample matrix effects. A rice-certified reference material (CRM) (GBW 10010) was used to verify the accuracy of the method. The method detection limits were 0.001-0.03 mg/kg, analyte recoveries were 85-108% and precisions (RSDs) ranged from 2.1% to 5.8%. Correlation analysis showed that the Se concentrations in the Se-rich rice samples correlated well with the Cu concentrations (r=0.53, p<0.05).

  8. Identification of Sheath Blight Resistance QTLs in Rice Using Recombinant Inbred Line Population of Lemont X Jasmine 85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight (RSB) caused by the soil borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice around the globe, causing severe losses in rice yield and quality annually. Major gene(s) governing the resistance to RSB have not been found in cultivated rice worldwide...

  9. Rice Genotype Variation in Leaf-Grain Element Concentration Associations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a major food crop of the world, rice can also be a major source of mineral nutrients for much of the world's population. The control of accumulation of particular elements in the grain varies by element. There is considerable variation among rice genotypes for concentrations of specific elements ...

  10. Association of Rice and Rice-Product Consumption With Arsenic Exposure Early in Life

    PubMed Central

    Karagas, Margaret R.; Punshon, Tracy; Sayarath, Vicki; Jackson, Brian P.; Folt, Carol L.; Cottingham, Kathryn L.

    2016-01-01

    IMPORTANCE Rice—a typical first food and major ingredient in various infant foods—contains inorganic arsenic (As), but the extent of As exposure from these foods has not been well characterized in early childhood. OBJECTIVE To determine the types and frequency of rice and rice-containing products consumed by infants in the first year of life and the association with As biomarker concentrations. DESIGN, SETTING, AND PARTICIPANTS Included were infants from singleton births of pregnant women enrolled in the New Hampshire Birth Cohort Study from 2011 to 2014 whose parents were interviewed during their first year of life. Enrolled women from selected clinics were aged 18 to 45 years, living in the same residence since their last menstrual period, in households served by a private water system, and had no plans to move during pregnancy. Data on infants’ intake of rice and rice products were collected from interviews with their parents at 4, 8, and 12 months’ follow-up and from a 3-day food diary at 12 months from March 2013 to August 2014. EXPOSURES Infants’ intake of rice and rice products. MAIN OUTCOMES AND MEASURES Total urinary As and the sum of As species measured using inductively coupled mass spectrometry and high-performance liquid chromatography with inductively coupled mass spectrometry. Commonly reported infant rice snacks were tested for As. RESULTS We obtained dietary data on 759 of 951 infants (79.8% participation rate). Of these, 391 infants (51.7%) were male, and the mean (SD) gestational age was 39.4 (1.7) weeks. An estimated 80% were introduced to rice cereal during their first year. At 12 months, 32.6% of infants (42 of 129) were fed rice snacks. Among infants aged 12 months who did not eat fish or seafood, the geometric mean total urinary As concentrations were higher among those who ate infant rice cereal (9.53 μg/L) or rice snacks (4.97 μg/L) compared with those who did not eat rice or rice products (2.85 μg/L; all P < .01). Infant rice

  11. Creation of transgenic rice plants producing small interfering RNA of Rice tungro spherical virus.

    PubMed

    Le, Dung Tien; Chu, Ha Duc; Sasaya, Takahide

    2015-01-01

    Rice tungro spherical virus (RTSV), also known as Rice waika virus, does not cause visible symptoms in infected rice plants. However, the virus plays a critical role in spreading Rice tungro bacilliform virus (RTBV), which is the major cause of severe symptoms of rice tungro disease. Recent studies showed that RNA interference (RNAi) can be used to develop virus-resistance transgenic rice plants. In this report, we presented simple procedures and protocols needed for the creation of transgenic rice plants capable of producing small interfering RNA specific against RTSV sequences. Notably, our study showed that 60 out of 64 individual hygromycin-resistant lines (putative transgenic lines) obtained through transformation carried transgenes designed for producing hairpin double-stranded RNA. Northern blot analyses revealed the presence of small interfering RNA of 21- to 24-mer in 46 out of 56 confirmed transgenic lines. Taken together, our study indicated that transgenic rice plants carrying an inverted repeat of 500-bp fragments encoding various proteins of RTSV can produce small interfering RNA from the hairpin RNA transcribed from that transgene. In light of recent studies with other viruses, it is possible that some of these transgenic rice lines might be resistant to RTSV.

  12. AQUATIC ECOSYSTEMS,

    EPA Science Inventory

    Aquatic ecosystems are a vital part of the urban water cycle (and of urban areas more broadly), and, if healthy, provide a range of goods and services valued by humans (Meyer 1997). For example, aquatic ecosystems (e.g., rivers, lakes, wetlands) provide potable water, food resou...

  13. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.

    PubMed

    Li, Hui; Luo, Na; Li, Yan Wen; Cai, Quan Ying; Li, Hui Yuan; Mo, Ce Hui; Wong, Ming Hung

    2017-05-01

    Cadmium (Cd) accumulation in rice and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding of Cd transport processes and its management aiming to reduce Cd uptake and accumulation in rice may help to improve rice growth and grain quality. Moreover, a thorough understanding of the factors influencing Cd accumulation will be helpful to derive efficient strategies to minimize Cd in rice. In this article, we reviewed Cd transport mechanisms in rice, the factors affecting Cd uptake (including physicochemical characters of soil and ecophysiological features of rice) and discussed efficient measures to immobilize Cd in soil and reduce Cd uptake by rice (including agronomic practices, bioremediation and molecular biology techniques). These findings will contribute to ensuring food safety, and reducing Cd risk on human beings.

  14. In vitro digestibility and physicochemical properties of milled rice.

    PubMed

    Dhital, Sushil; Dabit, Laura; Zhang, Bin; Flanagan, Bernadine; Shrestha, Ashok K

    2015-04-01

    Rice is a staple diet as well as a major ingredient in many processed foods. The physicochemical and supra-molecular structure of eight rice varieties with amylose content from 9% to 19% were studied to elucidate the factors responsible for variation in enzymatic digestibility of raw and cooked rice. Parboiled rice had a digestion rate coefficient almost 4.5 times higher than the least digestible Low GI rice. The rate coefficient was found to be independent of helical structure and long range molecular order, possibly attributed to the effect of rice flour architecture. Strong swelling and pasting behaviour and lower gelatinisation temperature were linked with apparently higher in vitro digestibility but the relationship was statistically insignificant. It is concluded that the enzymatic susceptibility of rice flours are independent of supra-molecular structure and are most likely controlled by external factors not limited to particle size, presence of intact cell wall and other non-starch polymers.

  15. Cultivated and weedy rice interactions and the domestication process.

    PubMed

    Lawton-Rauh, Amy; Burgos, Nilda

    2010-08-01

    Examining the targets of selection in crop species and their wild and weedy relatives sheds light on the evolutionary processes underlying differentiation of cultivars from progenitor lineages. On one hand, human-mediated directional selection in crops favours traits associated with the streamlining of controllable and predictable monoculture practices alongside selection for desired trait values. On the other hand, natural selection in wild and especially weedy relatives presumably favours trait values that increase the probability of escaping eradication. Gene flow between crops and wild species may also counter human-mediated selection, promoting the evolution and persistence of weedy forms. In this issue, two studies from a group of collaborators examine diversity and divergence patterns of genes underlying two traits associated with red rice (Oryza sp.), the conspecific relative of cultivated rice (Oryza sativa) that is a non-native weed (see Fig. 1). In the first study by Gross et al. (2010), genetic variation in the major gene underlying the hallmark red pigmentation characterizing most weedy rice (Rc) is found to have a pattern consistent with non-reversion from U.S. cultivated rice (i.e. the cultivar did not 'go feral'). This suggests that U.S. weedy rice is not an escaped lineage derived from U.S. cultivated rice populations; weedy rice likely differentiated prior to the selective sweep occurred in this gene within cultivated rice populations. Using the major seed shattering locus sh4 gene and the neighbouring genomic region, Thurber et al. (2010) track the molecular evolutionary history of the high shattering phenotype, a trait contributing dramatically to the success of crop selection in cultivated rice as well as the persistence and expansion of weedy red rice. In this study, the shared fixation of a sh4 mutation in both cultivated rice and weedy rice indicates that weedy rice arose subsequent to the strong selective sweep leading to significant

  16. Bioengineered 'golden' indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems.

    PubMed

    Datta, Karabi; Baisakh, Niranjan; Oliva, Norman; Torrizo, Lina; Abrigo, Editha; Tan, Jing; Rai, Mayank; Rehana, Sayda; Al-Babili, Salim; Beyer, Peter; Potrykus, Ingo; Datta, Swapan K

    2003-03-01

    Vitamin-A deficiency (VAD) is a major malnutrition problem in South Asia, where indica rice is the staple food. Indica-type rice varieties feed more than 2 billion people. Hence, we introduced a combination of transgenes using the biolistic system of transformation enabling biosynthesis of provitamin A in the endosperm of several indica rice cultivars adapted to diverse ecosystems of different countries. The rice seed-specific glutelin promoter (Gt-1 P) was used to drive the expression of phytoene synthase (psy), while lycopene beta-cyclase (lcy) and phytoene desaturase (crtI), fused to the transit peptide sequence of the pea-Rubisco small subunit, were driven by the constitutive cauliflower mosaic virus promoter (CaMV35S P). Transgenic plants were recovered through selection with either CaMV35S P driven hph (hygromycin phosphotransferase) gene or cestrum yellow leaf curling virus promoter (CMP) driven pmi (phophomannose isomerase) gene. Molecular and biochemical analyses demonstrated stable integration and expression of the transgenes. The yellow colour of the polished rice grain evidenced the carotenoid accumulation in the endosperm. The colour intensity correlated with the estimated carotenoid content by spectrophotometric and HPLC analysis. Carotenoid level in cooked polished seeds was comparable (with minor loss of xanthophylls) to that in non-cooked seeds of the same transgenic line. The variable segregation pattern in T1 selfing generation indicated single to multiple loci insertion of the transgenes in the genome. This is the first report of using nonantibiotic pmi driven by a novel promoter in generating transgenic indica rice for possible future use in human nutrition.

  17. Genetic resources offer efficient tools for rice functional genomics research.

    PubMed

    Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May

    2016-05-01

    Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.

  18. Shelf-sea ecosystems

    SciTech Connect

    Walsh, J J

    1980-01-01

    An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

  19. Nutritionally enhanced rice to combat malnutrition disorders of the poor.

    PubMed

    Potrykus, Ingo

    2003-06-01

    Major deficiency disorders, including vitamin A deficiency, are especially common in countries in which rice is the staple food. In response to the devastating effects of vitamin A deficiency, which may include blindness and, even death, "Golden Rice" has been developed to deliver this nutrient to those populations who need it most. The case of Golden Rice is used to demonstrate the challenges of radical GMO opposition, consumer acceptance, and regulation of biotechnology-derived foods.

  20. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  1. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.)

    PubMed Central

    Miro, Berta; Ismail, Abdelbagi M.

    2013-01-01

    Rice is semi-aquatic, adapted to a wide range of hydrologies, from aerobic soils in uplands to anaerobic and flooded fields in waterlogged lowlands, to even deeply submerged soils in flood-prone areas. Considerable diversity is present in native rice landraces selected by farmers over centuries. Our understanding of the adaptive features of these landraces to native ecosystems has improved considerably over the recent past. In some cases, major genes associated with tolerance have been cloned, such as SUB1A that confers tolerance of complete submergence and SNORKEL genes that control plant elongation to escape deepwater. Modern rice varieties are sensitive to flooding during germination and early growth, a problem commonly encountered in rainfed areas, but few landraces capable of germination under these conditions have recently been identified, enabling research into tolerance mechanisms. Major QTLs were also identified, and are being targeted for molecular breeding and for cloning. Nevertheless, limited progress has been made in identifying regulatory processes for traits that are unique to tolerant genotypes, including faster germination and coleoptile elongation, formation of roots and leaves under hypoxia, ability to catabolize starch into simple sugars for subsequent use in glycolysis and fermentative pathways to generate energy. Here we discuss the state of knowledge on the role of the PDC-ALDH-ACS bypass and the ALDH enzyme as the likely candidates effective in tolerant rice genotypes. Potential involvement of factors such as cytoplasmic pH regulation, phytohormones, reactive oxygen species scavenging and other metabolites is also discussed. Further characterization of contrasting genotypes would help in elucidating the genetic and biochemical regulatory and signaling mechanisms associated with tolerance. This could facilitate breeding rice varieties suitable for direct seeding systems and guide efforts for improving waterlogging tolerance in other crops

  2. Molecular evolution of the rice blast resistance gene Pi-ta in invasive weedy rice in the USA.

    PubMed

    Lee, Seonghee; Jia, Yulin; Jia, Melissa; Gealy, David R; Olsen, Kenneth M; Caicedo, Ana L

    2011-01-01

    The Pi-ta gene in rice has been effectively used to control rice blast disease caused by Magnaporthe oryzae worldwide. Despite a number of studies that reported the Pi-ta gene in domesticated rice and wild species, little is known about how the Pi-ta gene has evolved in US weedy rice, a major weed of rice. To investigate the genome organization of the Pi-ta gene in weedy rice and its relationship to gene flow between cultivated and weedy rice in the US, we analyzed nucleotide sequence variation at the Pi-ta gene and its surrounding 2 Mb region in 156 weedy, domesticated and wild rice relatives. We found that the region at and around the Pi-ta gene shows very low genetic diversity in US weedy rice. The patterns of molecular diversity in weeds are more similar to cultivated rice (indica and aus), which have never been cultivated in the US, rather than the wild rice species, Oryza rufipogon. In addition, the resistant Pi-ta allele (Pi-ta) found in the majority of US weedy rice belongs to the weedy group strawhull awnless (SH), suggesting a single source of origin for Pi-ta. Weeds with Pi-ta were resistant to two M. oryzae races, IC17 and IB49, except for three accessions, suggesting that component(s) required for the Pi-ta mediated resistance may be missing in these accessions. Signatures of flanking sequences of the Pi-ta gene and SSR markers on chromosome 12 suggest that the susceptible pi-ta allele (pi-ta), not Pi-ta, has been introgressed from cultivated to weedy rice by out-crossing.

  3. Suppression of rice methane production and emission by low dose sulfate application

    NASA Astrophysics Data System (ADS)

    Gauci, V.; Dise, N. B.; Howell, G.

    2006-12-01

    Large individual applications of SO42- (102-103 kg SO42--S/ha) are known to suppress methane emissions from rice paddies by up to ~70%. The application of large quantities of SO42- amendments to rice paddies has therefore been proposed as a greenhouse gas mitigation strategy. In a similar system, natural peatlands, research has established that very low rates of SO4^{2- } deposition (~25 kg SO42--S/ha/yr as small weekly pulses), similar to those of regions experiencing acid rain pollution, suppress methane emissions by as much as 30-40%. It is thought that this is due to stimulation of sulfate-reducing microbial populations that out-compete methane producers for substrates. Given that acid rain S pollution is forecast to increase in Asia, the major rice growing region, we sought to establish the potential for acid rain to suppress CH4 emission from rice agro-ecosystems by experimentally simulating acid rain inputs of S deposition to rice mesocosms in the laboratory. We used soils from Portuguese rice growing regions as they experience low ambient S deposition, and investigated the effect of simulated sulfate deposition (small regular pulses) on CH4 emissions, pore- water concentrations of CH4 and alternate electron acceptors. We also applied an annual dose of S deposition as a single pulse of sulfate to one set of replicate rice mesocosms. After a lag time of 7 weeks, CH4 emission from the mesocosms subjected to the small weekly applications of `acid rain' sulfate as Na2SO4 at a rate of 100 kg SO42- -S/ha/yr (amounting to a total deposition of ~20 kg SO42- -S/ha throughout the 10 week experiment) were reduced below the control by an average of 22%, and as much as 35% on a single date. CH4 emissions from the `single pulse' experiment were significantly suppressed by the applied sulfate as were pore-water CH4 concentrations.

  4. Early screening of recombinant inbred lines for fissure resistance in non-semidwarf rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice (Oryza sativa L.) kernel fissuring poses a major problem for both rice farmers and millers. It results in the decreased value of milled rice because of the increase in the percentage of broken kernels associated with fissuring. This study employs the use of fine mapping to increase the genetic ...

  5. Speciation And Distribution Of Arsenic And Localization Of Nutrients In Rice Grains

    EPA Science Inventory

    Arsenic (As) contamination of rice grains and the generally low concentration of micronutrients in rice have been recognized as a major concern for human health. Here, we investigated the speciation and localization of As and the distribution of (micro)nutrients in rice grains b...

  6. Economics of weed suppressive rice cultivars in flood- and furrow-irrigated systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weeds are a major constraint to rice production. In the U.S, weeds in rice are controlled primarily with synthetic herbicides. Intensive herbicide application in rice also has many potential drawbacks, resulting in environmental pollution, human health concerns, and development of weed resistance. B...

  7. Molecular biology of rice tungro viruses.

    PubMed

    Hull, R

    1996-01-01

    Rice tungro, the most important virus disease of rice in South and Southeast Asia, is caused by a complex of two viruses, rice tungro bacilliform virus (RTBV) and rice tungro spherical virus (RTSV). RTBV is a plant pararetrovirus with bacilliform particles, the structure of which is based on T = 3 icosahedral symmetry cut across the threefold axis.The particles encapsidate a circular double-stranded DNA of 8 kbp that encodes four proteins. The current information on the properties, functions, and expression of these proteins is discussed, as is the evidence for replication by reverse transcription. Two major strains of RTBV have been recognized, one from the Indian subcontinent and the other from Southeast Asia. RTSV particles contain a single-stranded RNA genome of 12 kb that encodes a large polyprotein and possibly one or two smaller proteins. The properties and processing of the polyprotein are described and the resemblance to picornaviruses noted.

  8. Rice plant development: from zygote to spikelet.

    PubMed

    Itoh, Jun-Ichi; Nonomura, Ken-Ichi; Ikeda, Kyoko; Yamaki, Shinichiro; Inukai, Yoshiaki; Yamagishi, Hiroshi; Kitano, Hidemi; Nagato, Yasuo

    2005-01-01

    Rice is becoming a model plant in monocotyledons and a model cereal crop. For better understanding of the rice plant, it is essential to elucidate the developmental programs of the life cycle. To date, several attempts have been made in rice to categorize the developmental processes of some organs into substages. These studies are based exclusively on the morphological and anatomical viewpoints. Recent advancement in genetics and molecular biology has given us new aspects of developmental processes. In this review, we first describe the phasic development of the rice plant, and then describe in detail the developmental courses of major organs, leaf, root and spikelet, and specific organs/tissues. Also, for the facility of future studies, we propose a staging system for each organ.

  9. Genome duplication improves rice root resistance to salt stress

    PubMed Central

    2014-01-01

    Background Salinity is a stressful environmental factor that limits the productivity of crop plants, and roots form the major interface between plants and various abiotic stresses. Rice is a salt-sensitive crop and its polyploid shows advantages in terms of stress resistance. The objective of this study was to investigate the effects of genome duplication on rice root resistance to salt stress. Results Both diploid rice (HN2026-2x and Nipponbare-2x) and their corresponding tetraploid rice (HN2026-4x and Nipponbare-4x) were cultured in half-strength Murashige and Skoog medium with 150 mM NaCl for 3 and 5 days. Accumulations of proline, soluble sugar, malondialdehyde (MDA), Na+ content, H+ (proton) flux at root tips, and the microstructure and ultrastructure in rice roots were examined. We found that tetraploid rice showed less root growth inhibition, accumulated higher proline content and lower MDA content, and exhibited a higher frequency of normal epidermal cells than diploid rice. In addition, a protective gap appeared between the cortex and pericycle cells in tetraploid rice. Next, ultrastructural analysis showed that genome duplication improved membrane, organelle, and nuclei stability. Furthermore, Na+ in tetraploid rice roots significantly decreased while root tip H+ efflux in tetraploid rice significantly increased. Conclusions Our results suggest that genome duplication improves root resistance to salt stress, and that enhanced proton transport to the root surface may play a role in reducing Na+ entrance into the roots. PMID:25184027

  10. Microsatellite markers reveal multiple origins for Italian weedy rice

    PubMed Central

    Grimm, Annabelle; Fogliatto, Silvia; Nick, Peter; Ferrero, Aldo; Vidotto, Francesco

    2013-01-01

    Weedy rice (Oryza sativa L.) is one of the major issues of rice cultivation worldwide. In Italy, it infests about 70% of the total rice area. Different Weedy Rice populations can be distinguished based on variable morphological and physiological traits; however, little is known about genetic differentiation and origin of Italian weedy rice populations. The objective of this study was to genetically and morphologically characterize and compare different Italian weedy rice populations selected on the basis of different phenotypes. The main Italian rice territory was divided into 10 geographical areas in which 40 weedy rice populations were collected and grouped according to the awn traits. All the individuals of the populations were morphologically characterized according to plant and seed traits. Genetic characterization was performed using 19 SSR markers on all the collected accessions, and several rice cultivars, including some very old (late 19th century), nowadays are no longer cultivated. ANOVA showed that morphological plant and seed traits were significantly affected by the collection area and awnedness group. The importance of the awn morphology was also reflected in the Bayesian clustering where, despite a relatively low genetic diversity, the clusters displayed different awn types. An UPGMA dendrogram confirmed the clusters detected in STRUCTURE analysis and also revealed a grouping of certain old cultivars with the weedy rice, suggesting a common origin. PMID:24363904

  11. Enhancing the health-beneficial qualities of whole grain rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Various pre- and post-harvest approaches (i.e. pre-germination of whole grains and reduced milling degree) to enhancing the health beneficial compounds of whole grain and milled rice have been reported. A discussion of the results from our pre-harvest efforts is as follows. The majority of rice cons...

  12. Inoculation and scoring methods for rice sheath blight disease.

    PubMed

    Jia, Yulin; Liu, Guangjie; Park, Dong-Soo; Yang, Yinong

    2013-01-01

    Sheath blight disease of rice caused by the soilborne fungal pathogen Rhizoctonia solani has been a major disease of rice with a serious threat to stable rice production worldwide. Although various cultural practices have been used to manage the disease, it is advantageous and important to screen rice germplasm and identify resistant rice cultivars for more effective disease control. Recent advances in methods for the fungal inoculation and disease evaluation have enabled a better measurement of host resistance by minimizing confounding factors from plant architectures and environmental conditions. This chapter introduces five such methods: (1) detached leaf method; (2) micro-chamber method; (3) mist-chamber method; (4) parafilm sachet method; and (5) aluminum foil method. These methods are useful for screening and evaluating disease reactions of rice germplasm and facilitating the genetic mapping of disease resistance genes.

  13. Trophic cascades across ecosystems.

    PubMed

    Knight, Tiffany M; McCoy, Michael W; Chase, Jonathan M; McCoy, Krista A; Holt, Robert D

    2005-10-06

    Predation can be intense, creating strong direct and indirect effects throughout food webs. In addition, ecologists increasingly recognize that fluxes of organisms across ecosystem boundaries can have major consequences for community dynamics. Species with complex life histories often shift habitats during their life cycles and provide potent conduits coupling ecosystems. Thus, local interactions that affect predator abundance in one ecosystem (for example a larval habitat) may have reverberating effects in another (for example an adult habitat). Here we show that fish indirectly facilitate terrestrial plant reproduction through cascading trophic interactions across ecosystem boundaries. Fish reduce larval dragonfly abundances in ponds, leading to fewer adult dragonflies nearby. Adult dragonflies consume insect pollinators and alter their foraging behaviour. As a result, plants near ponds with fish receive more pollinator visits and are less pollen limited than plants near fish-free ponds. Our results confirm that strong species interactions can reverberate across ecosystems, and emphasize the importance of landscape-level processes in driving local species interactions.

  14. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments

    PubMed Central

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography–mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0–15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6–9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7–9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon

  15. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

    PubMed

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration

  16. Rice domestication: histories and mysteries.

    PubMed

    Gross, Briana L

    2012-09-01

    Domesticated rice (Oryza sativa) is one of the world's most important food crops, culturally, nutritionally and economically (Khush 1997). Thus, it is no surprise that there is intense curiosity about its genetic and geographical origins, its response to selection under domestication, and the genetic structure of its wild relative, Oryza rufipogon. Studies of Oryza attempting to answer these questions have accompanied each stage of the development of molecular markers, starting with allozymes and continuing to genome sequencing. While many of these studies have been restricted to small sample sizes, in terms of either the number of markers used or the number and distribution of the accessions, costs are now low enough that researchers are including large numbers of molecular markers and accessions. How will these studies relate to previous findings and long-held assumptions about rice domestication and evolution? If the paper in this issue of Molecular Ecology (Huang et al. 2012) is any indication, there will be some considerable surprises in store. In this study, a geographically and genomically thorough sampling of O. rufipogon and O. sativa revealed two genetically distinct groups of wild rice and also indicated that only one of these groups appears to be related to domesticated rice. While this fits well with previous studies indicating that there are genetic subdivisions within O. rufipogon, it stands in contrast to previous findings that the two major varieties of O. sativa (indica and japonica) were domesticated from two (or more) subpopulations of wild rice.

  17. Identification of quantitative trait loci (QTLs) responsible for sheath blight resistance in rice using recombinant inbred line population of Lemont X Jasmine 85

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight (RSB) caused by the soil borne pathogen Rhizoctonia solani, is one of the most destructive diseases of rice, causing severe losses in rice yield and quality annually. The major gene (s) governing the resistance to RSB have not been found in cultivated rice worldwide. However, ri...

  18. Fine mapping of a gene causing hybrid pollen sterility between Yunnan weedy rice and cultivated rice (Oryza sativa L.) and phylogenetic analysis of Yunnan weedy rice.

    PubMed

    Wang, Yong; Zhong, Zheng Zheng; Zhao, Zhi Gang; Jiang, Ling; Bian, Xiao Feng; Zhang, Wen Wei; Liu, Ling Long; Ikehashi, H; Wan, Jian Min

    2010-02-01

    Weedy rice represents an important resource for rice improvement. The F(1) hybrid between the japonica wide compatibility rice cultivar 02428 and a weedy rice accession from Yunnan province (SW China) suffered from pollen sterility. Pollen abortion in the hybrid occurred at the early bicellular pollen stage, as a result of mitotic failure in the microspore, although the tapetum developed normally. Genetic mapping in a BC(1)F(1) population (02428//Yunnan weedy rice (YWR)/02428) showed that a major QTL for hybrid pollen sterility (qPS-1) was present on chromosome 1. qPS-1 was fine-mapped to a 110 kb region known to contain the hybrid pollen sterility gene Sa, making it likely that qPS-1 is either identical to, or allelic with Sa. Interestingly, F(1) hybrid indicated that Dular and IR36 were assumed to carry the sterility-neutral allele, Sa ( n ). Re-sequencing SaM and SaF, the two component genes present at Sa, suggested that variation for IR36 and Dular may be responsible for the loss of male sterility, and the qPS-1 sequence might be derived from wild rice or indica cultivars. A phylogenetic analysis based on microsatellite genotyping suggested that the YWR accession is more closely related to wild rice and indica type cultivars than to japonica types. Thus it is probable that the YWR accession evolved from a spontaneous hybrid between wild rice and an ancient cultivated strain of domesticated rice.

  19. Genetic shift in local rice populations during rice breeding programs in the northern limit of rice cultivation in the world.

    PubMed

    Fujino, Kenji; Obara, Mari; Ikegaya, Tomohito; Tamura, Kenichi

    2015-09-01

    The rapid accumulation of pre-existing mutations may play major roles in the establishment and shaping of adaptability for local regions in current rice breeding programs. The cultivated rice, Oryza sativa L., which originated from tropical regions, is now grown worldwide due to the concerted efforts of breeding programs. However, the process of establishing local populations and their origins remain unclear. In the present study, we characterized DNA polymorphisms in the rice variety KITAAKE from Hokkaido, one of the northern limits of rice cultivation in the world. Indel polymorphisms were attributed to transposable element-like insertions, tandem duplications, and non-TE deletions as the original mutation events in the NIPPONBARE and KITAAKE genomes. The allele frequencies of the KITAAKE alleles markedly shifted to the current variety types among the local population from Hokkaido in the last two decades. The KITAAKE alleles widely distributed throughout wild rice and cultivated rice over the world. These have accumulated in the local population from Hokkaido via Japanese landraces as the ancestral population of Hokkaido. These results strongly suggested that combinations of pre-existing mutations played a role in the establishment of adaptability. This approach using the re-sequencing of local varieties in unique environmental conditions will be useful as a genetic resource in plant breeding programs in local regions.

  20. Cooked rice texture and rice flour pasting properties; impacted by rice temperature during milling.

    PubMed

    Saleh, Mohammed; Meullenet, Jean-Francois

    2015-03-01

    Rice milling plays a key factor in determining rice quality and value. Therefore accurate quality assessments are critical to the rice industry. This study was undertaken to assess the effect of exposing rice to elevated temperatures during milling, on cooked rice texture and rice flour pasting properties. Two long (Cybonnett and Francis) and one medium (Jupiter) rice (oryzae sativa L.) cultivars were milled using McGill laboratory mill for 30 and 40 s after warmed up the mill before milling. Four different milling temperatures per milling duration were achieved. Cooked rice texture properties were assessed using a uniaxial compression test and rice flour pasting properties measured using a TA-2000 rheometer. Results of this study showed that exposure of rice to high temperatures during milling significantly decreased cooked rice firmness. An increase in milled rice temperature after milling from 10.0 to 13.3 °C resulted in a 5.4 and 8.1 N decrease in cooked rice firmness. Although not always significant, the increase in milled rice temperature during milling resulted in an increase in cooked rice stickiness. The increase in milling temperature also showed significant increase in rice flour pasting properties. Changes in rice functional characteristics were attributed to the changes occurring to rice chemical constituents due to temperature exposure as indicated by the increase in rice protein hydrophobicity. Proteins are known to affect rice starch water holding capacity and other starch gelatinization properties.

  1. Effects of UV-B and global climate change on rice production: The EPA/IRRI Cooperative Research Plan

    SciTech Connect

    Olszyk, D.M.; Ingram, K.T.

    1990-01-01

    The US Environmental Protection Agency and International Rice Research Institute are initiating a cooperative program on the effects of UV-B and global climate change (increased CO{sub 2} and temperature) on rice. Rice is the world's most important food crop and responds both to UV-B and climate change. The project will determine: (1) the effects of these stresses on the rice ecosystem, (2) the extent and intensity of those effects for Asia, (3) the importance of the rice ecosystem as a source of biogenic emissions such as methane and the impacts of environmental stress on those emissions, and (4) mitigation/adaptation options available to reduce any effects on rice yields and biogenic emissions.

  2. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    PubMed Central

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic) and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80%) can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand. PMID:22067578

  3. Genetic, Physiological, and Gene Expression Analyses Reveal That Multiple QTL Enhance Yield of Rice Mega-Variety IR64 under Drought

    PubMed Central

    Swamy B. P., Mallikarjuna; Ahmed, Helal Uddin; Henry, Amelia; Mauleon, Ramil; Dixit, Shalabh; Vikram, Prashant; Tilatto, Ram; Verulkar, Satish B.; Perraju, Puvvada; Mandal, Nimai P.; Variar, Mukund; S., Robin; Chandrababu, Ranganath; Singh, Onkar N.; Dwivedi, Jawaharlal L.; Das, Sankar Prasad; Mishra, Krishna K.; Yadaw, Ram B.; Aditya, Tamal Lata; Karmakar, Biswajit; Satoh, Kouji; Moumeni, Ali; Kikuchi, Shoshi; Leung, Hei; Kumar, Arvind

    2013-01-01

    Background Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. Methodology/Principal Findings Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the −QTL BILs and IR64, four major-effect QTL - one each on chromosomes 2, 4, 9, and 10 - were identified. Meta-analysis of transcriptome data from the +QTL/−QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha−1 over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. Conclusions/Significance Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL

  4. [N2O and CH4 emission from Japan rice fields under different long-term fertilization patterns and its environmental impact].

    PubMed

    Luo, Liang-guo; Kondo, Motohiko; Itoh, Sumio

    2010-12-01

    This study intended to investigate the greenhouse gases emission from Japan single cropping paddy fields after 75-year continuous application of ammonium sulfate, composted rice straw with soybean cake, and fresh clover, as well as the environmental impact of the emission. During this long period, field management remained constant in terms of rice cultivation density, irrigation, and equivalent net N fertilization. No significant differences were observed in N2O emission among the fertilization treatments, but the CH4 emission differed significantly between organic amendment and ammonium sulfate application, indicating that long-term organic fertilization didn' t increase N2O emission but promoted CH4 emission. The cumulative global warming potential (GWP) of the CH4 and NO2O from the paddy ecosystem was the greatest (310.7 g CO2e x m(-2)) under fresh clover application, followed by composted rice straw plus soybean cake addition (151 g CO2e x m(-2)), and the least (60.6 g CO2e x m(-2)) under ammonium sulfate application. This study showed that for paddy system, it was CH4 instead of N2O the major factor affecting global warming, and thereby, to control and reduce the CH4 emission from paddy system would be the core in mitigating greenhouse gases emission from paddy field. Long-term consecutive application of composted rice straw plus soybean cake could increase soil organic matter, improve soil fertility, promote rice high-yielding, and as well, mitigate CH4 emission, being the recommendable paddy rice production mode in practice.

  5. Integrated management strategies for Arsenic and Cadmium in rice paddy environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is both a major staple food for human populations, and the major source of soil arsenic (As) and cadmium (Cd) transfer to the human food chain. Thus soil and crop accumulation of As and Cd have become major environmental issues globally. Arsenic and Cd contamination of soils and rice threatens ...

  6. A mathematical model of transmission of rice tungro disease by Nephotettix Virescens

    NASA Astrophysics Data System (ADS)

    Blas, Nikki T.; Addawe, Joel M.; David, Guido

    2016-11-01

    One of the major threats in rice agriculture is the Tungro virus, which is transmitted semi-persistently to rice plants via green rice leafhoppers called Nephotettix Virescens. Tungro is polycyclic and complex disease of rice associated by dual infection with Rice Tungro Bacilliform Virus (RTBV) and Rice Tungro Spherical Virus (RTSV). Interaction of the two viruses results in the degeneration of the host. In this paper, we used a plant-vector system of ordinary differential equations to model the spread of the disease in a model rice field. Parameter values were obtained from studies on the entomology of Nephotettix Virescens and infection rates of RTSV and RTBV. The system was analyzed for equilibrium solutions, and solved numerically for susceptible rice varieties (Taichung Native 1).

  7. Inorganic arsenic in rice-based products for infants and young children.

    PubMed

    Signes-Pastor, Antonio J; Carey, Manus; Meharg, Andrew A

    2016-01-15

    Inorganic arsenic (Asi) is a chronic, non-threshold carcinogen. Rice and rice-based products can be the major source of Asi for many subpopulations. Baby rice, rice cereals and rice crackers are widely used to feed infants and young children. The Asi concentration in rice-based products may pose a health risk for infants and young children. Asi concentration was determined in rice-based products produced in the European Union and risk assessment associated with the consumption of these products by infants and young children, and compared to an identical US FDA survey. There are currently no European Union or United States of America regulations applicable to Asi in food. However, this study suggests that the samples evaluated may introduce significant concentration of Asi into infants' and young children's diets. Thus, there is an urgent need for regulatory limits on Asi in food, especially for baby rice-based products.

  8. The Impact of Herbicide-Resistant Rice Technology on Phenotypic Diversity and Population Structure of United States Weedy Rice1[W][OPEN

    PubMed Central

    Burgos, Nilda Roma; Singh, Vijay; Tseng, Te Ming; Black, Howard; Young, Nelson D.; Huang, Zhongyun; Hyma, Katie E.; Gealy, David R.; Caicedo, Ana L.

    2014-01-01

    The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management. PMID:25122473

  9. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid.

    PubMed

    Goufo, Piebiep; Trindade, Henrique

    2014-03-01

    Epidemiological studies suggested that the low incidence of certain chronic diseases in rice-consuming regions of the world might be associated with the antioxidant compound contents of rice. The molecules with antioxidant activity contained in rice include phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. This review provides information on the contents of these compounds in rice using a food composition database built from compiling data from 316 papers. The database provides access to information that would have otherwise remained hidden in the literature. For example, among the four types of rice ranked by color, black rice varieties emerged as those exhibiting the highest antioxidant activities, followed by purple, red, and brown rice varieties. Furthermore, insoluble compounds appear to constitute the major fraction of phenolic acids and proanthocyanidins in rice, but not of flavonoids and anthocyanins. It is clear that to maximize the intake of antioxidant compounds, rice should be preferentially consumed in the form of bran or as whole grain. With respect to breeding, japonica rice varieties were found to be richer in antioxidant compounds compared with indica rice varieties. Overall, rice grain fractions appear to be rich sources of antioxidant compounds. However, on a whole grain basis and with the exception of γ-oryzanol and anthocyanins, the contents of antioxidants in other cereals appear to be higher than those in rice.

  10. Mitigation of arsenic accumulation in rice with water management and silicon fertilization.

    PubMed

    Li, R Y; Stroud, J L; Ma, J F; McGrath, S P; Zhao, F J

    2009-05-15

    Rice represents a major route of As exposure in populations that depend on a rice diet. Practical measures are needed to mitigate the problem of excessive As accumulation in paddy rice. Two potential mitigation methods, management of the water regime and Si fertilization, were investigated under greenhouse conditions. Growing rice aerobically during the entire rice growth duration resulted in the leastAs accumulation. Maintaining aerobic conditions during either vegetative or reproductive stage of rice growth also decreased As accumulation in rice straw and grain significantly compared with rice grown under flooded conditions. The effect of water management regimes was consistent with the observed effect of flooding-induced arsenite mobilization in the soil solution. Aerobic treatments increased the percentage of inorganic As in grain, but the concentrations of inorganic As remained lower than in the flooded rice. Silicon fertilization decreased the total As concentration in straw and grain by 78 and 16%, respectively, even though Si addition increased As concentration in the soil solution. Silicon also significantly influenced As speciation in rice grain and husk by enhancing methylation. Silicon decreased the inorganic As concentration in grain by 59% while increasing the concentration of dimethylarsinic acid (DMA) by 33%. There were also significant differences between two rice genotypes in grain As speciation. This study demonstrated that water management Si fertilization, and selection of rice cultivars are effective measures that can be used to reduce As accumulation in rice.

  11. Arsenic speciation in Japanese rice drinks and condiments.

    PubMed

    Signes-Pastor, Antonio J; Deacon, Claire; Jenkins, Richard O; Haris, Parvez I; Carbonell-Barrachina, Angel A; Meharg, Andrew A

    2009-11-01

    Rice has been demonstrated to be one of the major contributors to inorganic arsenic (i-As) intake in humans. However, little is known about rice products as additional source of i-As exposure. In this study, misos, syrups and amazake (a fermented sweet rice drink) produced from rice, barley and millet were analysed for total arsenic (t-As) and a subset of samples were also analyzed for As speciation. Rice based products displayed a higher i-As content than those derived from barley and millet. Most of the t-As in the rice products studied was inorganic (63-83%), the remainder being dimethylarsinic acid. Those who regularly consume rice drinks and condiments, such as the Japanese population and those who follow health conscious diets based on the Japanese cuisine, could reach up to 23% of the World Health Organization's Provisional Tolerable Daily Intake of i-As, by only consuming these kinds of products. This study provides a wide appreciation of how i-As derived from rice based products enters the human diet and how this may be of concern to populations who are already exposed to high levels of i-As through consumption of foods such as rice and seaweed.

  12. QTL Analysis for Resistance to Blast Disease in U.S. Weedy Rice.

    PubMed

    Liu, Yan; Qi, Xinshuai; Gealy, Dave R; Olsen, Kenneth M; Caicedo, Ana L; Jia, Yulin

    2015-07-01

    Understanding the genetic architecture of adaptation is of great importance in evolutionary biology. U.S. weedy rice is well adapted to the local conditions in U.S. rice fields. Rice blast disease is one of the most destructive diseases of cultivated rice worldwide. However, information about resistance to blast in weedy rice is limited. Here, we evaluated the disease reactions of 60 U.S. weedy rice accessions with 14 blast races, and investigated the quantitative trait loci (QTL) associated with blast resistance in two major ecotypes of U.S. weedy rice. Our results revealed that U.S. weedy rice exhibited a broad resistance spectrum. Using genotyping by sequencing, we identified 28 resistance QTL in two U.S. weedy rice ecotypes. The resistance QTL with relatively large and small effects suggest that U.S. weedy rice groups have adapted to blast disease using two methods, both major resistance (R) genes and QTL. Three genomic loci shared by some of the resistance QTL indicated that these loci may contribute to no-race-specific resistance in weedy rice. Comparing with known blast disease R genes, we found that the R genes at these resistance QTL are novel, suggesting that U.S. weedy rice is a potential source of novel blast R genes for resistant breeding.

  13. Transgenic rice plants expressing synthetic cry2AX1 gene exhibits resistance to rice leaffolder (Cnaphalocrosis medinalis).

    PubMed

    Manikandan, R; Balakrishnan, N; Sudhakar, D; Udayasuriyan, V

    2016-06-01

    Bacillus thuringiensis is a major source of insecticidal genes imparting insect resistance in transgenic plants. Level of expression of transgenes in transgenic plants is important to achieve desirable level of resistance against target insects. In order to achieve desirable level of expression, rice chloroplast transit peptide sequence was fused with synthetic cry2AX1 gene to target its protein in chloroplasts. Sixteen PCR positive lines of rice were generated by Agrobacterium mediated transformation using immature embryos. Southern blot hybridization analysis of T0 transgenic plants confirmed the integration of cry2AX1 gene in two to five locations of rice genome and ELISA demonstrated its expression. Concentration of Cry2AX1 in transgenic rice events ranged 5.0-120 ng/g of fresh leaf tissue. Insect bioassay of T0 transgenic rice plants against neonate larvae of rice leaffolder showed larval mortality ranging between 20 and 80 % in comparison to control plant. Stable inheritance and expression of cry2AX1 gene was demonstrated in T1 progenies through Southern and ELISA. In T1 progenies, the highest concentration of Cry2AX1 and mortality of rice leaffolder larvae were recorded as 150 ng/g of fresh leaf tissue and 80 %, respectively. The Cry2AX1 expression even at a very low concentration (120-150 ng/g) in transgenic rice plants was found effective against rice leaffolder larvae.

  14. Heavy metals in Australian grown and imported rice and vegetables on sale in Australia: health hazard.

    PubMed

    Rahman, M Azizur; Rahman, Mohammad Mahmudur; Reichman, Suzie M; Lim, Richard P; Naidu, Ravi

    2014-02-01

    Dietary exposure to heavy metals is a matter of concern for human health risk through the consumption of rice, vegetables and other major foodstuffs. In the present study, we investigated concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) in Australian grown and imported rice and vegetables on sale in Australia. The mean concentrations of Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn in Australian grown rice were 7.5 µg kg(-1), 21 µg kg(-1), 144 µg kg(-1), 2.9 mg kg(-1), 24.4 mg kg(-1), 166 µg kg(-1), 375 µg kg(-1), and 17.1 mg kg(-1) dry weight (d. wt.), respectively. Except Cd, heavy metal concentrations in Australian grown rice were higher than Bangladeshi rice on sale in Australia. However, the concentrations of Cd, Cr, Cu, and Ni in Indian rice on sale in Australia were higher than Australian grown rice. The concentrations of Cu and Ni in Vietnamese rice, and that of Cd, Cr, Cu, Ni, and Pb in Thai rice on sale in Australia were also higher than Australian grown rice. Heavy metal concentrations in Pakistani rice on sale in Australia were substantially lower than that in Australian grown rice. In Australian grown rice varieties, the concentrations of heavy metals were considerably higher in brown rice varieties than white rice varieties, indicating Australian brown rice as a potential source of dietary heavy metals for Australian consumers. The mean concentrations of heavy metals in Australian grown and Bangladeshi vegetables on sale in Australia were also determined. Some of the Australian grown and Bangladeshi vegetables contained heavy metals higher than Australian standard maximum limits indicating them as potential sources of dietary heavy metals for Australian consumers. Further investigation is required to estimate health risks of heavy metals from rice and vegetables consumption for Australian consumers.

  15. Toward a Cytological Characterization of the Rice Genome

    PubMed Central

    Cheng, Zhukuan; Buell, C. Robin; Wing, Rod A.; Gu, Minghong; Jiang, Jiming

    2001-01-01

    Rice (Oryza sativa L.) will be the first major crop, as well as the first monocot plant species, to be completely sequenced. Integration of DNA sequence-based maps with cytological maps will be essential to fully characterize the rice genome. We have isolated a set of 24 chromosomal arm-specific bacterial artificial chromosomes to facilitate rice chromosome identification. A standardized rice karyotype was constructed using meiotic pachytene chromosomes of O. sativa spp. japonica rice var. Nipponbare. This karyotype is anchored by centromere-specific and chromosomal arm-specific cytological landmarks and is fully integrated with the most saturated rice genetic linkage maps in which Nipponbare was used as one of the mapping parents. An ideogram depicting the distribution of heterochromatin in the rice genome was developed based on the patterns of 4',6-diamidino-2-phenylindole staining of the Nipponbare pachytene chromosomes. The majority of the heterochromatin is distributed in the pericentric regions with some rice chromosomes containing a significantly higher proportion of heterochromatin than other chromosomes. We showed that pachytene chromosome-based fluorescence in situ hybridization analysis is the most effective approach to integrate DNA sequences with euchromatic and heterochromatic features. PMID:11731505

  16. Determinants for grading Malaysian rice

    NASA Astrophysics Data System (ADS)

    ChePa, Noraziah; Yusoff, Nooraini; Ahmad, Norhayati

    2016-08-01

    Due to un-uniformity of rice grading practices in Malaysia, zones which actively producing rice in Malaysia are using their own way of grading rice. Rice grading is important in determining rice quality and its subsequent price in the market. It is an important process applied in the rice production industry with the purpose of ensuring that the rice produced for the market meets the quality requirements of consumer. Two important aspects that need to be considered in determining rice grades are grading technique and determinants to be used for grading (usually referred as rice attributes). This article proposes the list of determinants to be used in grading Malaysian rice. Determinants were explored through combination of extensive literature review and series of interview with the domain experts and practitioners. The proposed determinants are believed to be beneficial to BERNAS in improving the current Malaysian rice grading process.

  17. Phospholipids in rice: significance in grain quality and health benefits: a review.

    PubMed

    Liu, Lei; Waters, Daniel L E; Rose, Terry J; Bao, Jinsong; King, Graham J

    2013-08-15

    Phospholipids (PLs) are a major class of lipid in rice grain. Although PLs are only a minor nutrient compared to starch and protein, they may have both nutritional and functional significance. We have systemically reviewed the literature on the class, distribution and variation of PLs in rice, their relation to rice end-use quality and human health, as well as available methods for analytical profiling. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and their lyso forms are the major PLs in rice. The deterioration of PC in rice bran during storage was considered as a trigger for the degradation of rice lipids with associated rancid flavour in paddy and brown rice. The lyso forms in rice endosperm represent the major starch lipid, and may form inclusion complexes with amylose, affecting the physicochemical properties and digestibility of starch, and hence its cooking and eating quality. Dietary PLs have a positive impact on several human diseases and reduce the side-effects of some drugs. As rice has long been consumed as a staple food in many Asian countries, rice PLs may have significant health benefits for those populations. Rice PLs may be influenced both by genetic (G) and environmental (E) factors, and resolving G×E interactions may allow future exploitation of PL composition and content, thus boosting rice eating quality and health benefits for consumers. We have identified and summarised the different methods used for rice PL analysis, and discussed the consequences of variation in reported PL values due to inconsistencies between methods. This review enhances the understanding of the nature and importance of PLs in rice and outlines potential approaches for manipulating PLs to improve the quality of rice grain and other cereals.

  18. Diversity of Global Rice Markets and the Science Required for Consumer-Targeted Rice Breeding

    PubMed Central

    Calingacion, Mariafe; Laborte, Alice; Nelson, Andrew; Resurreccion, Adoracion; Concepcion, Jeanaflor Crystal; Daygon, Venea Dara; Mumm, Roland; Reinke, Russell; Dipti, Sharifa; Bassinello, Priscila Zaczuk; Manful, John; Sophany, Sakhan; Lara, Karla Cordero; Bao, Jinsong; Xie, Lihong; Loaiza, Katerine; El-hissewy, Ahmad; Gayin, Joseph; Sharma, Neerja; Rajeswari, Sivakami; Manonmani, Swaminathan; Rani, N. Shobha; Kota, Suneetha; Indrasari, Siti Dewi; Habibi, Fatemeh; Hosseini, Maryam; Tavasoli, Fatemeh; Suzuki, Keitaro; Umemoto, Takayuki; Boualaphanh, Chanthkone; Lee, Huei Hong; Hung, Yiu Pang; Ramli, Asfaliza; Aung, Pa Pa; Ahmad, Rauf; Wattoo, Javed Iqbal; Bandonill, Evelyn; Romero, Marissa; Brites, Carla Moita; Hafeel, Roshni; Lur, Huu-Sheng; Cheaupun, Kunya; Jongdee, Supanee; Blanco, Pedro; Bryant, Rolfe; Thi Lang, Nguyen; Hall, Robert D.; Fitzgerald, Melissa

    2014-01-01

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a ‘one size fits all’ crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market. PMID:24454799

  19. Diversity of global rice markets and the science required for consumer-targeted rice breeding.

    PubMed

    Calingacion, Mariafe; Laborte, Alice; Nelson, Andrew; Resurreccion, Adoracion; Concepcion, Jeanaflor Crystal; Daygon, Venea Dara; Mumm, Roland; Reinke, Russell; Dipti, Sharifa; Bassinello, Priscila Zaczuk; Manful, John; Sophany, Sakhan; Lara, Karla Cordero; Bao, Jinsong; Xie, Lihong; Loaiza, Katerine; El-hissewy, Ahmad; Gayin, Joseph; Sharma, Neerja; Rajeswari, Sivakami; Manonmani, Swaminathan; Rani, N Shobha; Kota, Suneetha; Indrasari, Siti Dewi; Habibi, Fatemeh; Hosseini, Maryam; Tavasoli, Fatemeh; Suzuki, Keitaro; Umemoto, Takayuki; Boualaphanh, Chanthkone; Lee, Huei Hong; Hung, Yiu Pang; Ramli, Asfaliza; Aung, Pa Pa; Ahmad, Rauf; Wattoo, Javed Iqbal; Bandonill, Evelyn; Romero, Marissa; Brites, Carla Moita; Hafeel, Roshni; Lur, Huu-Sheng; Cheaupun, Kunya; Jongdee, Supanee; Blanco, Pedro; Bryant, Rolfe; Thi Lang, Nguyen; Hall, Robert D; Fitzgerald, Melissa

    2014-01-01

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of the different traits that make up the quality of the rice grain and obtain a full picture of rice quality demographics. Rice is by no means a 'one size fits all' crop. Regional preferences are not only striking, they drive the market and hence are of major economic importance in any rice breeding / improvement strategy. In this analysis, we have engaged local experts across the world to perform a full assessment of all the major rice quality trait characteristics and importantly, to determine how these are combined in the most preferred varieties for each of their regions. Physical as well as biochemical characteristics have been monitored and this has resulted in the identification of no less than 18 quality trait combinations. This complexity immediately reveals the extent of the specificity of consumer preference. Nevertheless, further assessment of these combinations at the variety level reveals that several groups still comprise varieties which consumers can readily identify as being different. This emphasises the shortcomings in the current tools we have available to assess rice quality and raises the issue of how we might correct for this in the future. Only with additional tools and research will we be able to define directed strategies for rice breeding which are able to combine important agronomic features with the demands of local consumers for specific quality attributes and hence, design new, improved crop varieties which will be awarded success in the global market.

  20. Relating raw rice color and composition to cooked rice color.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditionally, the color of milled rice is economically important. The whiter the rice the more it is preferred by consumers and the more value it has in the market place. Little attention has been given to relating raw rice color to cooked milled rice color and, specifically, to determining the i...

  1. Global efforts in managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast disease caused by the fungus Magnaporthe oryzae is a major destructive disease threatening global food security. Resistance (R) genes to M. oryzae are effective in preventing infections by strains of M. oryzae carry the corresponding avirulence (AVR) genes. Effectiveness of genetic resist...

  2. Evaluation of Environmental Quality Productive Ecosystem Guayas (Ecuador).

    NASA Astrophysics Data System (ADS)

    Pozo, Wilson; Pardo, Francisco; Sanfeliu, Teófilo; Carrera, Gloria; Jordan, Manuel; Bech, Jaume; Roca, Núria

    2015-04-01

    Natural resources are deteriorating very rapidly in the Gulf of Guayaquil and the area of influence in the Guayas Basin due to human activity. Specific problems are generated by the mismanagement of the aquaculture industry affecting the traditional agricultural sectors: rice, banana, sugarcane, cocoa, coffee, and soya also studied, and by human and industrial settlements. The development of industrial activities such as aquaculture (shrimp building for shrimp farming in ponds) and agriculture, have increasingly contributed to the generation of waste, degrading and potentially toxic elements in high concentrations, which can have adverse effects on organisms in the ecosystems, in the health of the population and damage the ecological and environmental balance. The productive Guayas ecosystem, consists of three interrelated ecosystems, the Gulf of Guayaquil, the Guayas River estuary and the Guayas Basin buffer. The objective of this study was to evaluate the environmental quality of the productive Guayas ecosystem (Ecuador), through operational and specific objectives: 1) Draw up the transition coastal zone in the Gulf of Guayaquil, 2) Set temporal spatial variability of soil salinity in wetlands rice, Lower Guayas Basin, 3) evaluate the heavy metals in wetland rice in the Lower Basin of Guayas. The physical and chemical parameters of the soils have been studied. These are indicators of environmental quality. The multivariate statistical method showed the relations of similarities and dissimilarities between variables and parameter studies as stable. Moreover, the boundaries of coastal transition areas, temporal spatial variability of soil salinity and heavy metals in rice cultivation in the Lower Basin of Guayas were researched. The sequential studies included and discussed represent a broad framework of fundamental issues that has been valued as a basic component of the productive Guayas ecosystem. They are determinants of the environmental quality of the Guayas

  3. Making rice even healthier!

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice is a naturally healthy food, but what if it could be made even healthier? Would Americans eat more rice if it could be advertised to be a 'New and Improved' source of calcium to promote bone growth, or iron to prevent anemia? Grocery stores are full of foods that are vitamin enhanced to attract...

  4. Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria

    PubMed Central

    Masuda, Sachiko; Bao, Zhihua; Okubo, Takashi; Sasaki, Kazuhiro; Ikeda, Seishi; Shinoda, Ryo; Anda, Mizue; Kondo, Ryuji; Mori, Yumi; Minamisawa, Kiwamu

    2016-01-01

    Under paddy field conditions, biological sulfur oxidation occurs in the oxidized surface soil layer and rhizosphere, in which oxygen leaks from the aerenchyma system of rice plants. In the present study, we examined community shifts in sulfur-oxidizing bacteria associated with the oxidized surface soil layer and rice roots under different sulfur fertilization conditions based on the 16S ribosomal RNA (rRNA) gene in order to explore the existence of oligotrophic sulfur-oxidizing bacteria in the paddy rice ecosystem. Rice plants were grown in pots with no fertilization (control) or CaCO3 or CaSO4 fertilization. A principal-coordinates analysis (PCoA) showed that CaSO4 fertilization markedly affected bacterial communities associated with rice roots and soil, whereas no significant differences were observed in plant growth among the fertilizer treatments examined. In rice roots, the relative abundance of Acidobacteria, Alphaproteobacteria, Gammaproteobacteria, and TM7 was significantly higher in CaSO4-fertilized pots than in control pots. Alphaproteobacteria, Bradyrhizobiaceae, and Methylocystaceae members were significantly more abundant in CaSO4-fertilized roots than in control roots. On the other hand, the abundance of Actinobacteria and Proteobacteria was lower in CaSO4-fertilized soil than in control soil. These results indicate that the bacteria associated with rice roots and soil responded to the sulfur amendment, suggesting that more diverse bacteria are involved in sulfur oxidation in the rice paddy ecosystem than previously considered. PMID:26947443

  5. Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil- Associated Bacteria.

    PubMed

    Masuda, Sachiko; Bao, Zhihua; Okubo, Takashi; Sasaki, Kazuhiro; Ikeda, Seishi; Shinoda, Ryo; Anda, Mizue; Kondo, Ryuji; Mori, Yumi; Minamisawa, Kiwamu

    2016-01-01

    Under paddy field conditions, biological sulfur oxidation occurs in the oxidized surface soil layer and rhizosphere, in which oxygen leaks from the aerenchyma system of rice plants. In the present study, we examined community shifts in sulfur-oxidizing bacteria associated with the oxidized surface soil layer and rice roots under different sulfur fertilization conditions based on the 16S ribosomal RNA (rRNA) gene in order to explore the existence of oligotrophic sulfur-oxidizing bacteria in the paddy rice ecosystem. Rice plants were grown in pots with no fertilization (control) or CaCO3 or CaSO4 fertilization. A principal-coordinates analysis (PCoA) showed that CaSO4 fertilization markedly affected bacterial communities associated with rice roots and soil, whereas no significant differences were observed in plant growth among the fertilizer treatments examined. In rice roots, the relative abundance of Acidobacteria, Alphaproteobacteria, Gammaproteobacteria, and TM7 was significantly higher in CaSO4-fertilized pots than in control pots. Alphaproteobacteria, Bradyrhizobiaceae, and Methylocystaceae members were significantly more abundant in CaSO4-fertilized roots than in control roots. On the other hand, the abundance of Actinobacteria and Proteobacteria was lower in CaSO4-fertilized soil than in control soil. These results indicate that the bacteria associated with rice roots and soil responded to the sulfur amendment, suggesting that more diverse bacteria are involved in sulfur oxidation in the rice paddy ecosystem than previously considered.

  6. Crop management strategies and disease resistance control the severity of false smut and kernel smut of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    False smut and kernel smut are common diseases of rice capable of severe epidemics with dramatic yield losses. The importance of rice smuts is often overlooked in the US, and highly susceptible varieties are now being grown on the majority of production acres in the southern rice producing states. O...

  7. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants

    PubMed Central

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-01-01

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection. PMID:27185548

  8. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-05-17

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection.

  9. Climate change: implications for the yield of edible rice.

    PubMed

    Zhao, Xiangqian; Fitzgerald, Melissa

    2013-01-01

    Global warming affects not only rice yield but also grain quality. A better understanding of the effects of climate factors on rice quality provides information for new breeding strategies to develop varieties of rice adapted to a changing world. Chalkiness is a key trait of physical quality, and along with head rice yield, is used to determine the price of rice in all markets. In the present study, we show that for every ∼1% decrease in chalkiness, an increase of ∼1% in head rice yield follows, illustrating the dual impact of chalk on amount of marketable rice and its value. Previous studies in controlled growing conditions report that chalkiness is associated with high temperature. From 1980-2009 at IRRI, Los Baños, the Philippines, annual minimum and mean temperatures, and diurnal variation changed significantly. The objective of this study was to determine how climate impacts chalkiness in field conditions over four wet and dry seasons. We show that low relative humidity and a high vapour pressure deficit in the dry season associate with low chalk and high head rice yield in spite of higher maximum temperature, but in the opposite conditions of the wet season, chalk is high and head rice yield is low. The data therefore suggest that transpirational cooling is a key factor affecting chalkiness and head rice yield, and global warming per se might not be the major factor that decreases the amount and quality of rice, but other climate factors in combination, that enable the crop to maintain a cool canopy.

  10. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet...

  11. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet...

  12. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE > 500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet...

  13. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... stationary RICE >500 HP located at a major source of HAP emissions: For each . . . You must meet...

  14. Physical and thermochemical properties of rice husk

    SciTech Connect

    Mansaray, K.G.; Ghaly, A.E.

    1997-11-01

    Rice husk a major by-product of the rice milling industry, is one of the most commonly available lignocellulosic materials that can be converted to different types of fuels and chemical feedstocks through a variety of thermochemical conversion processes. Proper understanding of the physical and thermochemical properties of rice husk is necessary for the design of thermochemical conversion systems. This study provides information on moisture content, bulk density, particle size, heating values, proximate analysis, ultimate analysis, ash composition, and ash fusibility characteristics for six rice husk varieties. The moisture content ranged from 8.68 to 10.44%, and the bulk density ranged from 86 to 114 kg/m{sup 3}. The results showed excessive volatile release of over 60%, high ash content ranging from 15.30 to 24.60% (dry weight basis), and high silica content of the ash ranging from 90 to 97%. The lower heating values ranged from 13.24 to 16.20 MJ/kg (dry weight basis). The ash fusion temperatures of all the varieties were found to be over 1,600 C. The differences in varietal characteristics have significant effects on the chemical properties of rice husk.

  15. RNAi suppression of rice endogenous storage proteins enhances the production of rice-based Botulinum neutrotoxin type A vaccine.

    PubMed

    Yuki, Yoshikazu; Mejima, Mio; Kurokawa, Shiho; Hiroiwa, Tomoko; Kong, Il Gyu; Kuroda, Masaharu; Takahashi, Yoko; Nochi, Tomonori; Tokuhara, Daisuke; Kohda, Tomoko; Kozaki, Shunji; Kiyono, Hiroshi

    2012-06-13

    Mucosal vaccines based on rice (MucoRice) offer a highly practical and cost-effective strategy for vaccinating large populations against mucosal infections. However, the limitation of low expression and yield of vaccine antigens with high molecular weight remains to be overcome. Here, we introduced RNAi technology to advance the MucoRice system by co-introducing antisense sequences specific for genes encoding endogenous rice storage proteins to minimize storage protein production and allow more space for the accumulation of vaccine antigen in rice seed. When we used RNAi suppression of a combination of major rice endogenous storage proteins, 13 kDa prolamin and glutelin A in a T-DNA vector, we could highly express a vaccine comprising the 45 kDa C-terminal half of the heavy chain of botulinum type A neurotoxin (BoHc), at an average of 100 μg per seed (MucoRice-BoHc). The MucoRice-Hc was water soluble, and was expressed in the cytoplasm but not in protein body I or II of rice seeds. Thus, our adaptation of the RNAi system improved the yield of a vaccine antigen with a high molecular weight. When the mucosal immunogenicity of the purified MucoRice-BoHc was examined, the vaccine induced protective immunity against a challenge with botulinum type A neurotoxin in mice. These findings demonstrate the efficiency and utility of the advanced MucoRice system as an innovative vaccine production system for generating highly immunogenic mucosal vaccines of high-molecular-weight antigens.

  16. Feasibility of Using Rice Hulls as Bedding for Laboratory Mice

    PubMed Central

    Carbone, Elizabeth T; Kass, Philip H; Evans, Kristin D

    2016-01-01

    Factors that are considered when selecting laboratory mouse bedding include animal health and comfort, cost, effects on personnel, and bioactive properties. Corncob is economical and facilitates low intracage ammonia but has undesirable influences on some endocrine studies. Rice hulls are an economical material that has not been well characterized as a bedding substrate. In this pilot study, we compared various aspects of bedding performance of rice hulls and other materials. On a per-volume basis, rice hulls were less absorbent than was corncob bedding. Rice hulls had higher odds than did corncob or reclaimed wood pulp of having moisture present at the bedding surface. The results of the absorbency tests coupled with the results of preliminary monitoring of intracage ammonia raised concern about the ability of rice hulls to control ammonia levels sufficiently in cages with high occupancy. However, ammonia was negligible when cages contained 5 young adult female mice. The relative expression of 3 cytochrome p450 genes was compared among mice housed on rice hulls, corncob, reclaimed wood pulp, or pine shavings. The expression of Cyp1a2 was 1.7 times higher in the livers of mice housed on rice hulls than on pine shavings, but other differences were not statistically significant. This study provides information on the merits of rice hulls as laboratory mouse bedding. Their relatively poor moisture control is a major disadvantage that might preclude their widespread use. PMID:27177559

  17. The process of methylmercury accumulation in rice (Oryza sativa L.).

    PubMed

    Meng, Bo; Feng, Xinbin; Qiu, Guangle; Liang, Peng; Li, Ping; Chen, Chunxiao; Shang, Lihai

    2011-04-01

    Recent studies have shown that rice consumption can be an important pathway of methylmercury (MeHg) exposure to humans in Hg mining areas and also in certain inland areas of Southwestern China. The seed of rice has the highest ability to accumulate MeHg compared to other tissues. The main objective of this study was to investigate the process of (MeHg) accumulation in rice seed (Oryza sativa L.) by monitoring MeHg levels in specific tissues of rice plants experiencing various levels of Hg multisource pollution during a full rice growing season. Four groups of experimental plantations were utilized, distributed among a rural artisanal Hg production site and a regional background control site. Our results suggest that the newly deposited Hg is more readily transformed to MeHg and accumulated in rice plants than Hg forms with an extended residence time in soil, and soil is the potential source of MeHg in the tissues of rice plants. MeHg in soil was first absorbed by roots and then translocated to the above-ground parts (leaf and stalk). During the full rice growing season only a very small amount of MeHg was retained in the root section. In the premature plant, the majority of MeHg is located in the leaf and stalk; however, most of this MeHg was transferred to seed during the ripening period.

  18. Biofortification of rice with lysine using endogenous histones.

    PubMed

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  19. Feasibility of Using Rice Hulls as Bedding for Laboratory Mice.

    PubMed

    Carbone, Elizabeth T; Kass, Philip H; Evans, Kristin D

    2016-01-01

    Factors that are considered when selecting laboratory mouse bedding include animal health and comfort, cost, effects on personnel, and bioactive properties. Corncob is economical and facilitates low intracage ammonia but has undesirable influences on some endocrine studies. Rice hulls are an economical material that has not been well characterized as a bedding substrate. In this pilot study, we compared various aspects of bedding performance of rice hulls and other materials. On a per-volume basis, rice hulls were less absorbent than was corncob bedding. Rice hulls had higher odds than did corncob or reclaimed wood pulp of having moisture present at the bedding surface. The results of the absorbency tests coupled with the results of preliminary monitoring of intracage ammonia raised concern about the ability of rice hulls to control ammonia levels sufficiently in cages with high occupancy. However, ammonia was negligible when cages contained 5 young adult female mice. The relative expression of 3 cytochrome p450 genes was compared among mice housed on rice hulls, corncob, reclaimed wood pulp, or pine shavings. The expression of Cyp1a2 was 1.7 times higher in the livers of mice housed on rice hulls than on pine shavings, but other differences were not statistically significant. This study provides information on the merits of rice hulls as laboratory mouse bedding. Their relatively poor moisture control is a major disadvantage that might preclude their widespread use.

  20. Rapid Recovery of Damaged Ecosystems

    PubMed Central

    Jones, Holly P.; Schmitz, Oswald J.

    2009-01-01

    Background Recent reports on the state of the global environment provide evidence that humankind is inflicting great damage to the very ecosystems that support human livelihoods. The reports further predict that ecosystems will take centuries to recover from damages if they recover at all. Accordingly, there is despair that we are passing on a legacy of irreparable damage to future generations which is entirely inconsistent with principles of sustainability. Methodology/Principal Findings We tested the prediction of irreparable harm using a synthesis of recovery times compiled from 240 independent studies reported in the scientific literature. We provide startling evidence that most ecosystems globally can, given human will, recover from very major perturbations on timescales of decades to half-centuries. Significance/Conclusions Accordingly, we find much hope that humankind can transition to more sustainable use of ecosystems. PMID:19471645

  1. Development of controlled high throughput and user friendly assays for host responses to rice pathogen isolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice sheath blight (SH) disease caused by the soil borne fungus Rhizocotonia solani AG1-IA is a major detrimental disease of rice in the USA and worldwide. The major genes for resistance to R. solani have not been identified, while genes providing minor phenotypic effects have been identified in sev...

  2. Developing rice mapping populations as a genetic resource for validation of GWAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Asian rice (Oryza sativa L.) is divided into two major subspecies, Indica and Japonica with the temperate and tropical japonica subpopulations being part of Japonica. These two subpopulations encompass the majority of the rice grown in the USA. Recently, a genome-wide association study (GWAS) iden...

  3. Soil respiration, labile carbon pools, and enzyme activities as affected by tillage practices in a tropical rice-maize-cowpea cropping system.

    PubMed

    Neogi, S; Bhattacharyya, P; Roy, K S; Panda, B B; Nayak, A K; Rao, K S; Manna, M C

    2014-07-01

    In order to identify the viable option of tillage practices in rice-maize-cowpea cropping system that could cut down soil carbon dioxide (CO2) emission, sustain grain yield, and maintain better soil quality in tropical low land rice ecology soil respiration in terms of CO2 emission, labile carbon (C) pools, water-stable aggregate C fractions, and enzymatic activities were investigated in a sandy clay loam soil. Soil respiration is the major pathway of gaseous C efflux from terrestrial systems and acts as an important index of ecosystem functioning. The CO2-C emissions were quantified in between plants and rows throughout the year in rice-maize-cowpea cropping sequence both under conventional tillage (CT) and minimum tillage (MT) practices along with soil moisture and temperature. The CO2-C emissions, as a whole, were 24 % higher in between plants than in rows, and were in the range of 23.4-78.1, 37.1-128.1, and 28.6-101.2 mg m(-2) h(-1) under CT and 10.7-60.3, 17.3-99.1, and 17.2-79.1 mg m(-2) h(-1) under MT in rice, maize, and cowpea, respectively. The CO2-C emission was found highest under maize (44 %) followed by rice (33 %) and cowpea (23 %) irrespective of CT and MT practices. In CT system, the CO2-C emission increased significantly by 37.1 % with respect to MT on cumulative annual basis including fallow. The CO2-C emission per unit yield was at par in rice and cowpea signifying the beneficial effect of MT in maintaining soil quality and reduction of CO2 emission. The microbial biomass C (MBC), readily mineralizable C (RMC), water-soluble C (WSC), and permanganate-oxidizable C (PMOC) were 19.4, 20.4, 39.5, and 15.1 % higher under MT than CT. The C contents in soil aggregate fraction were significantly higher in MT than CT. Soil enzymatic activities like, dehydrogenase, fluorescein diacetate, and β-glucosidase were significantly higher by 13.8, 15.4, and 27.4 % under MT compared to CT. The soil labile C pools, enzymatic activities, and

  4. Activation of eosinophils by rice-husk dust exposure: a possible mechanism for the aggravation of asthma during rice harvest.

    PubMed

    Kayaba, Hiroyuki; Meguro, Hitomi; Muto, Hajime; Kamada, Yumiko; Adachi, Tetsuya; Yamada, Yoshiyuki; Kanda, Akira; Yamaguchi, Kazutoshi; Hamada, Kazuyuki; Ueki, Shigeharu; Chihara, Junichi

    2004-09-01

    Grain dust and other irritants affect the airway of allergic patients in rice-growing area during the harvest. The aim of this study was to elucidate the mechanism of airway hypersensitivity in rice-growing areas during the harvest. Firstly, the effect of rice-husk dust on eosinophil activation was studied. Secondary, the concentration of lipopolysaccharides (LPS), a potent activator of inflammatory cells, in rice-husk dust was measured. Since it is possible for LPS, a component of gram-negative bacterial cell wall, to adhere to the particle of smoke generated from rice-husk dust, LPS contained in the smoke was also measured. Furthermore, chemical irritants contained in the smoke generated from the rice-husk dust were analyzed. Microscopically, the dust contained fine thorns dropped off from the outer sheath of the rice, and irritated the skin, throat and eyes. The grain dust extract increased the expressions of eosinophil activation markers. These up-regulatory effects were largely dependent on LPS. The smoke contained LPS and several chemical irritants such as formaldehyde and acetaldehyde. Rice-husk dust and its smoke, hazardous air pollutants, probably play a major role in the aggravation of airway diseases in agricultural areas.

  5. Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment.

    PubMed

    Nakandalage, Niluka; Nicolas, Marc; Norton, Robert M; Hirotsu, Naoki; Milham, Paul J; Seneweera, Saman

    2016-01-01

    Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice.

  6. Herbivory by resident geese: The loss and recovery of wild rice along the tidal Patuxent River

    USGS Publications Warehouse

    Haramis, G.M.; Kearns, G.D.

    2007-01-01

    Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 1,700 geese during a 4-year period and reestablishment of rice through a large-scale fencing and planting program.

  7. Improving Rice Zinc Biofortification Success Rates Through Genetic and Crop Management Approaches in a Changing Environment

    PubMed Central

    Nakandalage, Niluka; Nicolas, Marc; Norton, Robert M.; Hirotsu, Naoki; Milham, Paul J.; Seneweera, Saman

    2016-01-01

    Though rice is the predominant source of energy and micronutrients for more than half of the world population, it does not provide enough zinc (Zn) to match human nutritional requirements. Moreover, climate change, particularly rising atmospheric carbon dioxide concentration, reduces the grain Zn concentration. Therefore, rice biofortification has been recognized as a key target to increase the grain Zn concentration to address global Zn malnutrition. Major bottlenecks for Zn biofortification in rice are identified as low Zn uptake, transport and loading into the grain; however, environmental and genetic contributions to grain Zn accumulation in rice have not been fully explored. In this review, we critically analyze the key genetic, physiological and environmental factors that determine Zn uptake, transport and utilization in rice. We also explore the genetic diversity of rice germplasm to develop new genetic tools for Zn biofortification. Lastly, we discuss the strategic use of Zn fertilizer for developing biofortified rice. PMID:27375636

  8. The Potential of Polarimetric and Compact SAR Data in Rice Identification

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Li, K.; Brisco, B.; Liu, L.; Yang, Z.

    2014-03-01

    Rice is a major food staple in the world, and provides food for more than one-third of the global population. The monitoring and mapping of paddy rice in a timely and efficient manner is very important for governments and decision makers. Synthetic Aperture Radar (SAR) has been proved to be a significant data source in rice monitoring. In this study, RADARSAT-2 polarimetric data were used to simulate compact polarimetry data. The simulated compact data and polarimetric data were then used to evaluate the information content for rice identification. The results indicate that polarimetric SAR can be used for rice identification based on the scattering mechanisms. The compact polarization RH and the RH/RL ratio are very promising for the discrimination of transplanted rice and direct-sown rice. These results require verification in further research.

  9. Microplastic in Aquatic Ecosystems.

    PubMed

    Ivleva, Natalia P; Wiesheu, Alexandra C; Niessner, Reinhard

    2017-02-06

    The contamination of marine and freshwater ecosystems with plastic, and especially with microplastic (MP), is a global ecological problem of increasing scientific concern. This has stimulated a great deal of research on the occurrence of MP, interaction of MP with chemical pollutants, the uptake of MP by aquatic organisms, and the resulting (negative) impact of MP. Herein, we review the major issues of MP in aquatic environments, with the principal aims 1) to characterize the methods applied for MP analysis (including sampling, processing, identification and quantification), indicate the most reliable techniques, and discuss the required further improvements; 2) to estimate the abundance of MP in marine/freshwater ecosystems and clarify the problems that hamper the comparability of such results; and 3) to summarize the existing literature on the uptake of MP by living organisms. Finally, we identify knowledge gaps, suggest possible strategies to assess environmental risks arising from MP, and discuss prospects to minimize MP abundance in aquatic ecosystems.

  10. Louisiana coastal ecosystem

    USGS Publications Warehouse

    ,

    2000-01-01

    Louisiana's coast and its degradation and restoration are major environmental issues being studied at the National Wetlands Research Center. Coastal ecosystems are vulnerable because of the tremendous amount of human activity that takes place along the coast. Information on ecological processes is essential to guide the development along the coast as well as to protect and restore wildlife habitat.Louisiana has about 40% of coastal wetlands in the lower 48 states; they support fish, waterfowl, and fur-bearing animals as well as unique cultures like that of the Acadians. The fish and wildlife resources of Louisiana's coast produce over $1 billion each year in revenues.But Louisiana has the highest coastal loss rate because of natural and human causes. Over the past three decades, Louisiana has lost as much as 35-40 mi2 (90-104 km2) of coastal wetlands a year.The National Wetlands Research Center is qualified to assess and monitor this ecosystem because of its proximity to the study area, a staff chosen for their expertise in the system, and a number of established partnerships with others who study the areas. The Center is often the lead group in partnerships with universities, other federal agencies, and private entities who study this ecosystem.Most of the Center's research and technology development performed for coastal wetlands are done at the Lafayette headquarters; some work is performed at the National Wetlands Research Center's project office in Baton Rouge, LA.

  11. Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development.

    PubMed

    Park, Myoung-Ryoul; Yun, Kil-Young; Mohanty, Bijayalaxmi; Herath, Venura; Xu, Fuyu; Wijaya, Edward; Bajic, Vladimir B; Yun, Song-Joong; De Los Reyes, Benildo G

    2010-12-01

    The R2R3-type OsMyb4 transcription factor of rice has been shown to play a role in the regulation of osmotic adjustment in heterologous overexpression studies. However, the exact composition and organization of its underlying transcriptional network has not been established to be a robust tool for stress tolerance enhancement by regulon engineering. OsMyb4 network was dissected based on commonalities between the global chilling stress transcriptome and the transcriptome configured by OsMyb4 overexpression. OsMyb4 controls a hierarchical network comprised of several regulatory sub-clusters associated with cellular defense and rescue, metabolism and development. It regulates target genes either directly or indirectly through intermediary MYB, ERF, bZIP, NAC, ARF and CCAAT-HAP transcription factors. Regulatory sub-clusters have different combinations of MYB-like, GCC-box-like, ERD1-box-like, ABRE-like, G-box-like, as1/ocs/TGA-like, AuxRE-like, gibberellic acid response element (GARE)-like and JAre-like cis-elements. Cold-dependent network activity enhanced cellular antioxidant capacity through radical scavenging mechanisms and increased activities of phenylpropanoid and isoprenoid metabolic processes involving various abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), ethylene and reactive oxygen species (ROS) responsive genes. OsMyb4 network is independent of drought response element binding protein/C-repeat binding factor (DREB/CBF) and its sub-regulons operate with possible co-regulators including nuclear factor-Y. Because of its upstream position in the network hierarchy, OsMyb4 functions quantitatively and pleiotrophically. Supra-optimal expression causes misexpression of alternative targets with costly trade-offs to panicle development.

  12. Northward expansion of paddy rice in northeastern Asia during 2000-2014

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Zhang, G.; Menarguez, M. A.; Choi, C. Y.; Qin, Y.; Luo, P.; Zhang, Y.; Moore, B.

    2016-04-01

    Paddy rice in monsoon Asia plays an important role in global food security and climate change. Here we documented annual dynamics of paddy rice areas in the northern frontier of Asia, including northeastern (NE) China, North Korea, South Korea, and Japan, from 2000 to 2014 through analysis of satellite images. The paddy rice area has increased by 120% (2.5 to 5.5 million ha) in NE China, in comparison to a decrease in South Korea and Japan, and the paddy rice centroid shifted northward from 41.16°N to 43.70°N (~310 km) in this period. Market, technology, policy, and climate together drove the rice expansion in NE China. The increased use of greenhouse nurseries, improved rice cultivars, agricultural subsidy policy, and a rising rice price generally promoted northward paddy rice expansion. The potential effects of large rice expansion on climate change and ecosystem services should be paid more attention to in the future.

  13. Effect of rice cultivation systems on indigenous arbuscular mycorrhizal fungal community structure.

    PubMed

    Watanarojanaporn, Nantida; Boonkerd, Nantakorn; Tittabutr, Panlada; Longtonglang, Aphakorn; Young, J Peter W; Teaumroong, Neung

    2013-01-01

    Arbuscular mycorrhizal fungi (AMF) in an agricultural ecosystem are necessary for proper management of beneficial symbiosis. Here we explored how the patterns of the AMF community in rice roots were affected by rice cultivation systems (the system of rice intensification [SRI] and the conventional rice cultivation system [CS]), and by compost application during growth stages. Rice plants harvested from SRI-managed plots exhibited considerably higher total biomass, root dry weight, and seed fill than those obtained from conventionally managed plots. Our findings revealed that all AMF sequences observed from CS plots belonged (only) to the genus Glomus, colonizing in rice roots grown under this type of cultivation, while rice roots sown in SRI showed sequences belonging to both Glomus and Acaulospora. The AMF community was compared between the different cultivation types (CS and SRI) and compost applications by principle component analysis. In all rice growth stages, AMF assemblages of CS management were not separated from those of SRI management. The distribution of AMF community composition based on T-RFLP data showed that the AMF community structure was different among four cultivation systems, and there was a gradual increase of Shannon-Weaver indices of diversity (H') of the AMF community under SRI during growth stages. The results of this research indicated that rice grown in SRI-managed plots had more diverse AMF communities than those grown in CS plots.

  14. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    NASA Astrophysics Data System (ADS)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  15. Large Aquatic Ecosystem Restoration Monitoring for Decision Makers: Monitoring to Target and Evaluate Success of Ecosystem Restoration

    EPA Science Inventory

    Monitoring ecosystem restoration at various scales in LAEs can be challenging, frustrating and rewarding. Some of the major ecosystem restoration monitoring occurring in LAEs include: seagrass expansion/contraction; dead zone sizes; oyster reefs; sea turtle nesting; toxic and nu...

  16. Evolution of regional to global paddy rice mapping methods: A review

    NASA Astrophysics Data System (ADS)

    Dong, Jinwei; Xiao, Xiangming

    2016-09-01

    Paddy rice agriculture plays an important role in various environmental issues including food security, water use, climate change, and disease transmission. However, regional and global paddy rice maps are surprisingly scarce and sporadic despite numerous efforts in paddy rice mapping algorithms and applications. With the increasing need for regional to global paddy rice maps, this paper reviewed the existing paddy rice mapping methods from the literatures ranging from the 1980s to 2015. In particular, we illustrated the evolution of these paddy rice mapping efforts, looking specifically at the future trajectory of paddy rice mapping methodologies. The biophysical features and growth phases of paddy rice were analyzed first, and feature selections for paddy rice mapping were analyzed from spectral, polarimetric, temporal, spatial, and textural aspects. We sorted out paddy rice mapping algorithms into four categories: (1) Reflectance data and image statistic-based approaches, (2) vegetation index (VI) data and enhanced image statistic-based approaches, (3) VI or RADAR backscatter-based temporal analysis approaches, and (4) phenology-based approaches through remote sensing recognition of key growth phases. The phenology-based approaches using unique features of paddy rice (e.g., transplanting) for mapping have been increasingly used in paddy rice mapping. Current applications of these phenology-based approaches generally use coarse resolution MODIS data, which involves mixed pixel issues in Asia where smallholders comprise the majority of paddy rice agriculture. The free release of Landsat archive data and the launch of Landsat 8 and Sentinel-2 are providing unprecedented opportunities to map paddy rice in fragmented landscapes with higher spatial resolution. Based on the literature review, we discussed a series of issues for large scale operational paddy rice mapping.

  17. Chesapeake Bay: Introduction to an Ecosystem.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    The Chesapeake Bay is the largest estuary in the contiguous United States. The Bay and its tidal tributaries make up the Chesapeake Bay ecosystem. This document, which focuses of various aspects of this ecosystem, is divided into four major parts. The first part traces the geologic history of the Bay, describes the overall physical structure of…

  18. ESRP approach to using final ecosystem services

    EPA Science Inventory

    The U.S. Environmental Protection Agency has developed the ecosystem Services Research Program (ESRP) as one of its major research efforts. The goal of this program is to create “A comprehensive theory and practice for quantifying ecosystem services so that their value and their...

  19. Bt rice in China - focusing the non-target risk assessment.

    PubMed

    Li, Yunhe; Zhang, Qingling; Liu, Qingsong; Meissle, Michael; Yang, Yan; Wang, Yanan; Hua, Hongxia; Chen, Xiuping; Peng, Yufa; Romeis, Jörg

    2017-03-09

    Bt rice can control yield losses caused by lepidopteran pests but may also harm non-target species and reduce important ecosystem services. A comprehensive data set on herbivores, natural enemies, and their interactions in Chinese rice fields was compiled. This together with an analysis of the Cry protein content in arthropods collected from Bt rice in China indicated which non-target species are most exposed to the insecticidal protein and should be the focus of regulatory risk assessment. This article is protected by copyright. All rights reserved.

  20. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    PubMed Central

    XIAO, Xiangming; DONG, Jinwei; QIN, Yuanwei; WANG, Zongming

    2016-01-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security. PMID:27695637

  1. Phenolic acids and antioxidant activities in husk of different Thai rice varieties.

    PubMed

    Butsat, S; Siriamornpun, S

    2010-08-01

    This study was designed to investigate the free and bound phenolic acids as well as their antioxidant activities in husk of 12 Thai rice varieties consisting of pigmented rice and normal rice. The pigmented rice husk gave higher free total phenolic contents than normal rice husk. However, there was no significant difference in bound total phenolic contents between pigmented rice and normal rice husks. Ferulic and p-coumaric acids were the major phenolic acids in the free fraction of pigmented rice husks, whereas vanillic acid was the dominant phenolic acid in the free fraction of normal rice husks. On the other hand, p-coumaric acid was highly found in bound form of both pigmented and normal rice husks. The antioxidant activity of husk extracts was positively correlated with the total free phenolics content and individual of phenolic acids especially ferulic acid. On the basis of this study, it is suggested that the rice husk could be a potential phenolic acid source and may therefore offer an effective source of natural antioxidant. Our findings provide valuable information on phenolic acids composition and antioxidant activity of husk for further food application.

  2. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China

    NASA Astrophysics Data System (ADS)

    Jin, Cui; Xiao, Xiangming; Dong, Jinwei; Qin, Yuanwei; Wang, Zongming

    2016-03-01

    Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010-2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.

  3. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance (R) genes have been effectively deployed in preventing rice crop losses due to the fungus Magnaporthe oryzae. In the present study, we studied the interaction between 24 monogenic lines carrying at least one major R gene, Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pi...

  4. Genome-wide association of rice blast disease resistance and yield-related components of rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust disease resistance may require an expenditure of energy that may limit crop yield potential. In the present study, a subset of a USDA rice core collection consisting of 151 accessions was selected using a major blast resistance (R) gene Pi-ta marker, and was genotyped with 156 simple sequence...

  5. Retrieving canopy height and density of paddy rice from Radarsat-2 images with a canopy scattering model

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Liu, Xiaohui; Su, Shiliang; Wang, Cuizhen

    2014-05-01

    Quantification of rice biophysical properties is important not only for rice growth monitoring and cropping management, but for understanding carbon cycle in agricultural ecosystems. In this study, a rice canopy scattering model (RCSM) was firstly utilized to simulate rice backscatter with a root mean square error (RMSE) <1 dB in comparison with the C-band, HH-polarization Radarsat-2 images. And then, by integrating the model with a generic algorithm optimization tools (GOAT), canopy height and density were separately retrieved from Radarsat-2 images acquired in three rice growth stages (elongation stage, heading stage and yellow ripening stage). Accuracy analysis showed that the two parameters could be retrieved with the RMSE of 5.4 cm in height, and 26 (#/m2) in density. The study demonstrated the potential of Radarsat-2 SAR data for quantitative mapping of biophysical parameters of paddy rice.

  6. Rice (Oryza sativa) allergy in rhinitis and asthma patients: a clinico-immunological study.

    PubMed

    Kumar, Raj; Srivastava, Prakriti; Kumari, Dolly; Fakhr, Hena; Sridhara, S; Arora, Naveen; Gaur, S N; Singh, B P

    2007-01-01

    Sensitization to foods varies in different countries reflecting a possible interaction of genetic factors, cultural and dietary habits. Rice is a major food consumed world wide and needs evaluation for IgE mediated reactions. The present study was carried out to identify rice allergy in patients of rhinitis and asthma and identify the allergenic proteins in raw and cooked rice. Of 1200 patients screened using standard questionnaire, 165 presented with history of rice allergy. Of these, 20 (12.1%) patients demonstrated marked positive skin prick test (SPT) and 13 showed significantly raised specific IgE to rice compared to normal controls. Double blind placebo controlled food challenge (DBPCFC) confirmed rice allergy in 6/10 patients. Immunoblot with hypersensitive individual patients' sera showed 14-16, 33, 56 and 60 kDa proteins as major IgE-binding components in rice. Boiled rice retained four IgE reactive proteins of 16, 23, 33 and 53 kDa. In summary, IgE-mediated rice allergy affects 0.8% [(0.42-1.58) at 95% CI] of asthma and rhinitis cases. The subjects with severe SPT reactions (4 mm or above) and specific IgE, 6.9 ng/ml to rice demonstrated positive blinded food challenge with clinical symptoms.

  7. Major depression

    MedlinePlus

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  8. Genetic variation of rice (Oryza sativa L.) germplasm in Myanmar based on genomic compositions of DNA markers

    PubMed Central

    Wunna; Watanabe, Kazuo N.; Ohsawa, Ryo; Obara, Mitsuhiro; Yanagihara, Seiji; Aung, Pa Pa; Fukuta, Yoshimichi

    2016-01-01

    The genetic diversity of 175 rice accessions from Myanmar, including landraces and improved types from upland and lowland ecosystems in five different areas—Western (hilly), Northern (mountainous), North and South-eastern (plateau), and Southern (plain)—was evaluated on the basis of polymorphism data for 65 DNA markers and phenol reactions. On the basis of the DNA polymorphism data, high genetic diversity was confirmed to conserve in the accessions from each ecosystem and area. And the accessions were classified into two cluster groups I and II, which corresponded to Indica Group and Japonica Group, respectively. Cluster group I accessions were distributed mainly in upland ecosystems; group II were distributed in lowland in the Southern area, and the distributions of dominant groups differed among areas. Rice germplasm in Myanmar has maintained high genetic diversity among ecosystems and areas. This information will be used for advanced studies in germplasm and rice breeding in Myanmar. PMID:28163592

  9. Shaping a better rice plant.

    PubMed

    Springer, Nathan

    2010-06-01

    Two studies describe how regulatory variation at the rice gene OsSPL14 can lead to altered plant morphology and improve grain yield. These studies support the possibility of improving rice yield through changing plant architecture.

  10. Selenium Characterization in the Global Rice Supply Chain

    SciTech Connect

    Williams, Paul N.; Lombi, Enzo; Sun, Guo-Xin; Scheckel, Kirk; Zhu, Yong-Guan; Feng, Xinbin; Zhu, Jianming; Carey, Anne-Marie; Adomako, Eureka; Lawgali, Youseff; Deacon, Claire; Meharg, Andrew A.

    2009-08-13

    For up to 1 billion people worldwide, insufficient dietary intake of selenium (Se) is a serious health constraint. Cereals are the dominant Se source for those on low protein diets, as typified by the global malnourished population. With crop Se content constrained largely by underlying geology, regional soil Se variations are often mirrored by their locally grown staples. Despite this, the Se concentrations of much of the world's rice, the mainstay of so many, is poorly characterized, for both total Se content and Se speciation. In this study, 1092 samples of market sourced polished rice were obtained. The sampled rice encompassed dominant rice producing and exporting countries. Rice from the U.S. and India were found to be the most enriched, while mean average levels were lowest in Egyptian rice: {approx}32-fold less than their North American equivalents. By weighting country averages by contribution to either global production or export, modeled baseline values for both were produced. Based on a daily rice consumption of 300 g day{sup -1}, around 75% of the grains from the production and export pools would fail to provide 70% of daily recommended Se intakes. Furthermore, Se localization and speciation characterization using X-ray fluorescence ({mu}-XRF) and X-ray absorption near edge structure ({mu}-XANES) techniques were investigated in a Se-rich sample. The results revealed that the large majority of Se in the endosperm was present in organic forms.

  11. Climate Feedback on Methane Emissions From Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Butenhoff, C. L.; Sithole, A.; Khalil, A. K.; Rice, A. L.; Shearer, M. J.

    2012-12-01

    Terrestrial ecosystems are one of the important components of the climate system that are bound to change and cause feedbacks with global warming. One major mechanism of this feedback is the response of biological processes, mostly bacteria, that produce or consume greenhouse gases such as carbon dioxide (CO2) and methane (CH4). Here we are concerned with the emissions of CH4 which is considered the most important non-CO2 greenhouse gas because it has more than doubled during the last century and is about 20 times more potent per kilogram once emitted to the atmosphere. Methane is produced by anaerobic methanogens in wetland soils and rice paddies, and is consumed by methanotrophic bacteria in aerobic and upland soils. Together these sources account for about 40-60% of global methane emissions. Properly accounting for the feedback of CH4 emissions with temperature in Earth Systems Models (ESMs) remains an open challenge in part due to the lack of experimental data. Reported Q10 values (factor by which reaction rate increases for a 10°C rise in temperature) of CH4 flux from wetlands and rice agriculture vary over an order of magnitude for reasons that are not well known contributing to this uncertainty. We report here a suite of experimental measurements to determine the Q10 of CH4 flux from rice agriculture and to understand how it depends on the temperature responses of its underlying processes. Since processes may have different Q10 values it is essential that these are properly represented in ESMs. We grew rice plants in temperature-controlled mesocosms at 20, 24, 28 and 32°C over two seasons (years 2009 - 2010) and measured flux, production and oxidation rates, at regular intervals using static chambers, soil core incubations, and carbon isotopes (δ13C-CH4), respectively. In addition we used qPCR techniques to measure methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) genes from mesocosm soil cores to establish the temperature

  12. Rice fortification: an emerging opportunity to contribute to the elimination of vitamin and mineral deficiency worldwide.

    PubMed

    Muthayya, Sumithra; Hall, Jessica; Bagriansky, Jack; Sugimoto, Jonathan; Gundry, Daniel; Matthias, Dipika; Prigge, Shane; Hindle, Peter; Moench-Pfanner, Regina; Maberly, Glen

    2012-12-01

    Vitamin and mineral deficiencies are ranked among the top causes of poor health and disability in the world. These deficiencies damage developing brains, impair learning ability, increase susceptibility to infections, and reduce the work productivity of nations. Food fortification is a sustainable, cost-effective approach to reducing vitamin and mineral deficiency. As the staple food for an estimated 3 billion people, rice has the potential to fill an obvious gap in current fortification programs. In recent years, new technologies have produced fortified rice kernels that are efficacious in reducing vitamin and mineral deficiency. There are opportunities to fortify a significant share of rice that comes from large mills supplying centralized markets and national welfare programs in major rice-growing countries. The rice export markets, which handle 30 million MT of rice annually, also present a key fortification opportunity. The cost of fortifying rice is only 1.5% to 3% of the current retail price of rice. Countries that mandate rice fortification have the strongest evidence for achieving wide coverage and impact. The Rice Fortification Resource Group (RiFoRG), a global network of public and private partners that offers technical and advocacy support for rice fortification, has a vision of promoting rice fortification worldwide. It has a targeted approach, engaging multisector partners in key countries where the opportunities are greatest and there is receptivity to early adoption of large-scale rice fortification. The challenges are real, the imperative to address them is powerful, and the opportunities to deliver the promise of rice fortification are clear.

  13. Preliminary results on yield and CO2 fluxes when using alternate wetting and drying on different varieties of European rice

    NASA Astrophysics Data System (ADS)

    Oliver, Viktoria; Monaco, Stefano; Volante, Andrea; Cochrane, Nicole; Gennaro, Massimo; Orasen, Gabriele; Valè, Giampiero; Price, Adam; Arn Teh, Yit

    2016-04-01

    In Europe, rice is grown (467 000 ha) under permanently flooded conditions (PF) using irrigation waters of major rivers. Climate change, which has led to a greater fluctuation in river flows, is a major challenge to rice production systems, which depend on large and consistent water supplies. This challenge will become more acute in the future, with more frequent extreme weather (e.g. drought) predicted under climate change and increased demands for rice. Alternate wetting and drying (AWD) is a system in where irrigation is applied to obtain 2-5 cm of field water depth, after which the soil is allowed to drain naturally to typically 15 cm below the surface before re-wetting once more. Preliminary studies suggest that AWD can reduce water use by up 30 %, with no net loss in yield but significantly reducing CH4 emissions. However, uncertainties still remain as to the impacts of AWD on CO2 exchange, N2O fluxes, and plant acclimation responses to a fluctuating water regime. For example, CO2 emissions could potentially increase in AWD due to higher rates of soil organic matter decomposition when the fields are drained. The work presented here evaluated the impacts of AWD on the productivity and yield of twelve varieties of European rice, whilst simultaneously measuring CO2 exchange, N2O fluxes, and plant biomass allocation patterns under different treatment regimes. Field experiments were conducted in the Piedmont region (northern Italy Po river plain) in a loamy soil during the growing season of 2015 in a 2-factor paired plot design, with water treatment (AWD, PF) and variety (12 European varieties) as factors (n=4 per variety per treatment). The varieties chosen were commercially important cultivars from across the rice growing regions of Europe (6 Italian, 3 French, 3 Spanish). Light and dark CO2 fluxes were measured six times over the growing season, using an infra-red gas analyzer. Environmental variables (soil moisture, temperature, water table depth, water

  14. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice.

    PubMed

    Chen, Si; Li, Xingxing; Lavoie, Michel; Jin, Yujian; Xu, Jiahui; Fu, Zhengwei; Qian, Haifeng

    2017-01-01

    Diclofop-methyl (DM), a widely used herbicide in food crops, may partly contaminate the soil surface of natural ecosystems in agricultural area and exert toxic effects at low dose to nontarget plants. Even though rhizosphere microorganisms strongly interact with root cells, little is known regarding their potential modulating effect on herbicide toxicity in plants. Here we exposed rice seedlings (Xiushui 63) to 100μg/L DM for 2 to 8days and studied the effects of DM on rice rhizosphere microorganisms, rice systemic acquired resistance (SAR) and rice-microorganisms interactions. The results of metagenomic 16S rDNA Illumina tags show that DM increases bacterial biomass and affects their community structure in the rice rhizosphere. After DM treatment, the relative abundance of the bacterium genera Massilia and Anderseniella increased the most relative to the control. In parallel, malate and oxalate exudation by rice roots increased, potentially acting as a carbon source for several rhizosphere bacteria. Transcriptomic analyses suggest that DM induced SAR in rice seedlings through the salicylic acid (but not the jasmonic acid) signal pathway. This response to DM stress conferred resistance to infection by a pathogenic bacterium, but was not influenced by the presence of bacteria in the rhizosphere since SAR transcripts did not change significantly in xenic and axenic plant roots exposed to DM. The present study provides new insights on the response of rice and its associated microorganisms to DM stress.

  15. Degradation of chlorpyrifos in tropical rice soils.

    PubMed

    Das, Subhasis; Adhya, Tapan K

    2015-04-01

    Chlorpyrifos [O,O-diethyl O-(3,5,6-trichloro-2-pyridinol) phosphorothioate] is used worldwide as an agricultural insecticide against a broad spectrum of insect pests of economically important crops including rice, and soil application to control termites. The insecticide mostly undergoes hydrolysis to diethyl thiophosphoric acid (DETP) and 3,5,6-trichloro-2-pyridinol (TCP), and negligible amounts of other intermediate products. In a laboratory-cum-greenhouse study, chlorpyrifos, applied at a rate of 10 mg kg(-1) soil to five tropical rice soils of wide physico-chemical variability, degraded with a half-life ranging from 27.07 to 3.82 days. TCP was the major metabolite under both non-flooded and flooded conditions. Chlorpyrifos degradation had significant negative relationship with electrical conductivity (EC), cation exchange capacity (CEC), clay and sand contents of the soils under non-flooded conditions. Results indicate that degradation of chlorpyrifos was accelerated with increase in its application frequency, across the representative rice soils. Management regimes including moisture content and presence or absence of rice plants also influenced the process. Biotic factors also play an important role in the degradation of chlorpyrifos as demonstrated by its convincing degradation in mineral salts medium inoculated with non-sterile soil suspension.

  16. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  17. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  18. Long-term effect of rice-based farming systems on soil health.

    PubMed

    Bihari, Priyanka; Nayak, A K; Gautam, Priyanka; Lal, B; Shahid, M; Raja, R; Tripathi, R; Bhattacharyya, P; Panda, B B; Mohanty, S; Rao, K S

    2015-05-01

    Integrated rice-fish culture, an age-old farming system, is a technology which could produce rice and fish sustainably at a time by optimizing scarce resource use through complementary use of land and water. An understanding of microbial processes is important for the management of farming systems as soil microbes are the living part of soil organic matter and play critical roles in soil C and N cycling and ecosystem functioning of farming system. Rice-based integrated farming system model for small and marginal farmers was established in 2001 at Central Rice Research Institute, Cuttack, Odisha. The different enterprises of farming system were rice-fish, fish-fingerlings, fruits, vegetables, rice-fish refuge, and agroforestry. This study was conducted with the objective to assess the soil physicochemical properties, microbial population, carbon and nitrogen fractions, soil enzymatic activity, and productivity of different enterprises. The effect of enterprises induced significant changes in the chemical composition and organic matter which in turn influenced the activities of enzymes (urease, acid, and alkaline phosphatase) involved in the C, N, and P cycles. The different enterprises of long-term rice-based farming system caused significant variations in nutrient content of soil, which was higher in rice-fish refuge followed by rice-fish enterprise. Highest microbial populations and enzymatic properties were recorded in rice-fish refuge system because of waterlogging and reduced condition prolonged in this system leading to less decomposition of organic matter. The maximum alkaline phosphatase, urease, and FDA were observed in rice-fish enterprise. However, highest acid phosphatase and dehydrogenase activity were obtained in vegetable enterprise and fish-fingerlings enterprise, respectively.

  19. Development of a microarray for two rice subspecies: characterization and validation of gene expression in rice tissues

    PubMed Central

    2014-01-01

    Background Rice is one of the major crop species in the world helping to sustain approximately half of the global population’s diet especially in Asia. However, due to the impact of extreme climate change and global warming, rice crop production and yields may be adversely affected resulting in a world food crisis. Researchers have been keen to understand the effects of drought, temperature and other environmental stress factors on rice plant growth and development. Gene expression microarray technology represents a key strategy for the identification of genes and their associated expression patterns in response to stress. Here, we report on the development of the rice OneArray® microarray platform which is suitable for two major rice subspecies, japonica and indica. Results The rice OneArray® 60-mer, oligonucleotide microarray consists of a total of 21,179 probes covering 20,806 genes of japonica and 13,683 genes of indica. Through a validation study, total RNA isolated from rice shoots and roots were used for comparison of gene expression profiles via microarray examination. The results were submitted to NCBI’s Gene Expression Omnibus (GEO). Data can be found under the GEO accession number GSE50844 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50844). A list of significantly differentially expressed genes was generated; 438 shoot-specific genes were identified among 3,138 up-regulated genes, and 463 root-specific genes were found among 3,845 down-regulated genes. GO enrichment analysis demonstrates these results are in agreement with the known physiological processes of the different organs/tissues. Furthermore, qRT-PCR validation was performed on 66 genes, and found to significantly correlate with the microarray results (R = 0.95, p < 0.001***). Conclusion The rice OneArray® 22 K microarray, the first rice microarray, covering both japonica and indica subspecies was designed and validated in a comprehensive study of gene expression in

  20. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at...

  1. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary...

  2. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at a Major Source of HAP Emissions and Existing Spark Ignition 4SRB Stationary RICE >500 HP Located at an Area Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition 4SRB Stationary RICE >500 HP Located at...

  3. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary...

  4. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary...

  5. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus...

  6. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary...

  7. 40 CFR Table 2a to Subpart Zzzz of... - Emission Limitations for New and Reconstructed 2SLB and Compression Ignition Stationary RICE >500...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reconstructed 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary RICE â¥250 HP Located at a Major Source of HAP Emissions 2a Table 2a to Subpart ZZZZ of Part 63... 2SLB and Compression Ignition Stationary RICE >500 HP and New and Reconstructed 4SLB Stationary...

  8. Barnyard grasses were processed with rice around 10000 years ago

    PubMed Central

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-01-01

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process. PMID:26536839

  9. Barnyard grasses were processed with rice around 10000 years ago.

    PubMed

    Yang, Xiaoyan; Fuller, Dorian Q; Huan, Xiujia; Perry, Linda; Li, Quan; Li, Zhao; Zhang, Jianping; Ma, Zhikun; Zhuang, Yijie; Jiang, Leping; Ge, Yong; Lu, Houyuan

    2015-11-05

    Rice (Oryza sativa) is regarded as the only grass that was selected for cultivation and eventual domestication in the Yangtze basin of China. Although both macro-fossils and micro-fossils of rice have been recovered from the Early Neolithic site of Shangshan, dating to more than 10,000 years before present (BP), we report evidence of phytolith and starch microfossils taken from stone tools, both for grinding and cutting, and cultural layers, that indicating barnyard grass (Echinochloa spp.) was a major subsistence resource, alongside smaller quantities of acorn starches (Lithocarpus/Quercus sensu lato) and water chestnuts (Trapa). This evidence suggests that early managed wetland environments were initially harvested for multiple grain species including barnyard grasses as well as rice, and indicate that the emergence of rice as the favoured cultivated grass and ultimately the key domesticate of the Yangtze basin was a protracted process.

  10. Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process.

    PubMed

    Contreras, L M; Schelle, H; Sebrango, C R; Pereda, I

    2012-01-01

    Agricultural solid residues are a potential renewable energy source. Rice harvesting and production in Sancti Spíritus province, Cuba, currently generates residues without an environmentally sustainable disposal route. Rice residues (rice straw, rice husk and rice residues from the drying process) are potentially an important carbon source for anaerobic digestion. For this paper, rice residues were placed for 36 days retention time in anaerobic batch reactor environments at both mesophilic (37 °C) and thermophilic (55 °C) conditions. Biogas and methane yield were determined as well as biogas composition. The results showed that rice straw as well as rice residues from the drying process had the highest biogas and methane yield. Temperature played an important role in determining both biogas yield and kinetics. In all cases, rice straw produced the highest yields; under mesophilic conditions the biogas yield was 0.43 m(3) kg(VS)(-1), under thermophilic conditions biogas yield reached 0.52 m(3) kg(VS)(-1). In the case of the rice husk, the biodegradability was very low. Methane content in all batches was kept above 55% vol. All digested material had a high carbon:nitrogen (C:N) ratio, even though significant biodegradation was recorded with the exception of rice husk. A first-order model can be used to describe the rice crop residues fermentation effectively.

  11. Effect of rice variety and nutrient management on rice productivity in organic rice system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Demand for organic rice has been increasing for decades. However, the information on sustainable organic rice production systems is still lacking. The objective of this study was to investigate the effects of soil amendment products, nitrogen rate, and variety on rice grain yield, yield components, ...

  12. Association mapping of starch physicochemical properties with starch biosynthesizing genes in waxy rice (Oryza sativa L.).

    PubMed

    Xu, Feifei; Zhang, Gan; Tong, Chuan; Sun, Xiao; Corke, Harold; Sun, Mei; Bao, Jinsong

    2013-10-23

    Waxy (glutinous) rice is widely used in traditional foods, and understanding the genetic bases of its diverse physicochemical properties will contribute to breeding of new waxy rice with unique qualities. The objective of this study was to investigate the genetic relationship between the starch biosynthesis related genes and the physicochemical properties of waxy rice using association mapping. A total of 36 molecular markers representing 18 genes were used to genotype 50 waxy rice accessions for which starch properties were previously available. Most of the starch properties differed between high and low gelatinization temperature (GT) groups, whereas most traits were similar between the low-GT indica rice and low-GT japonica rice, suggesting GT was the main determinant of the starch quality of waxy rice. Association mapping indicated that the starch properties of waxy rice were mainly controlled by starch synthase IIa (SSIIa or SSII-3, a major gene responsible for the gelatinization temperature) and SSI. It was found that gene-gene interactions were also important for the genetic control of starch properties of waxy rice. This study suggests that application of the functional SNPs of SSIIa in molecular breeding may facilitate quality improvement of waxy rice.

  13. Mapping rice in the USA with Earth Observations in real time

    NASA Astrophysics Data System (ADS)

    Torbick, N.; Salas, W.; Mueller, R.; Hanson, M.; Corbiere, M.; McKenzie, A.

    2014-12-01

    The USA is a major rice growing nation and one of the top rice exporters. Weather variability, water resources, and price volatility are current risks to rice production. To support risk management the USDA National Agricultural Statistics Service and Economic Research Service are tasked with providing area statistics and production estimates. A Decision Support Tool (DST) is being developed to provide real-time estimates of rice extent and indicators of condition. The DST is largely driven by multi-scale Earth Observations including Landsat and MODIS that provide daily and 8-day indices that are sensitive to rice growth status and management practices. A multitemporal Classification And Regression Tree approach ingests multiscale imagery in real time to provide rice crop metrics. We hindcast the archives of Landsat (1984-2014) and MODIS (2002-2014) for California and achieve >80% accuracy by June and >95% accuracy by end of July as compared to the Crop Data Layer and county statistics. Outcomes are similar for the Midsouth rice region. The DST was utilized to assess the impact of current drought in California on rice. We predicted a 20% reduction in rice area based on our near time rice extent projections and assuming yields similar to 2013 and recent USDA average farm price estimates, 2014 production losses associated with the drought will amount to approximately $175 million. Additional results using Radarsat-2 in the Midsouth in preparation of ALOS-2 and Sentintel will be shared.

  14. A Double Built-In Containment Strategy for Production of Recombinant Proteins in Transgenic Rice

    PubMed Central

    Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice. PMID:25531447

  15. A double built-in containment strategy for production of recombinant proteins in transgenic rice.

    PubMed

    Zhang, Xianwen; Wang, Dongfang; Zhao, Sinan; Shen, Zhicheng

    2014-01-01

    Using transgenic rice as a bioreactor for mass production of pharmaceutical proteins could potentially reduce the cost of production significantly. However, a major concern over the bioreactor transgenic rice is the risk of its unintended spreading into environment and into food or feed supplies. Here we report a mitigating method to prevent unwanted transgenic rice spreading by a double built-in containment strategy, which sets a selectively termination method and a visual tag technology in the T-DNA for transformation. We created transgenic rice with an inserted T-DNA that harbors a human proinsulin gene fused with the far-red fluorescent protein gene mKate_S158A, an RNAi cassette suppressing the expression of the rice bentazon detoxification enzyme CYP81A6, and an EPSPS gene as the selection marker for transformation. Herbicide spray tests indicated that such transgenic rice plants can be killed selectively by a spray of bentazon at regular field application dosage for rice weed control. Moreover, the transgenic rice seeds were bright red in color due to the fused far-red fluorescent protein, and could be easily visualized under daylight by naked eyes. Thus, the transgenic rice plants reported in this study could be selectively killed by a commonly used herbicide during their growth stage, and their seeds may be detected visually during processing and consumption after harvest. This double built-in containment strategy may greatly enhance the confinement of the transgenic rice.

  16. Molecular evolution of shattering loci in U.S. weedy rice

    PubMed Central

    Thurber, Carrie S.; Reagon, Michael; Gross, Briana L.; Olsen, Kenneth M.; Jia, Yulin; Caicedo, Ana L.

    2010-01-01

    Cultivated rice fields worldwide are plagued with weedy rice, a conspecific weed of cultivated rice (Oryza sativa L.). The persistence of weedy rice has been attributed, in part, to its ability to shatter (disperse) seed prior to crop harvesting. In the United States, separately evolved weedy rice groups have been shown to share genomic identity with exotic domesticated cultivars. Here, we investigate the shattering phenotype in a collection of U.S. weedy rice accessions, as well as wild and cultivated relatives. We find that all U.S. weedy rice groups shatter seeds easily, despite multiple origins, and in contrast to a decrease in shattering ability seen in cultivated groups. We assessed allelic identity and diversity at the major shattering locus, sh4, in weedy rice; we find that all cultivated and weedy rice, regardless of population, share similar haplotypes at sh4, and all contain a single derived mutation associated with decreased seed shattering. Our data constitute the strongest evidence to date of an evolution of weeds from domesticated backgrounds. The combination of a shared cultivar sh4 allele and a highly shattering phenotype, suggests that U.S. weedy rice have re-acquired the shattering trait after divergence from their progenitors through alternative genetic mechanisms. PMID:20584132

  17. [Effects of phosphorus-containing substances on arsenic uptake by rice].

    PubMed

    Lei, Ming; Zeng, Min; Liao, Bo-Han; Hu, Li-Qiong; Zhou, Hang; Long, Shui-Bo

    2014-08-01

    The disodium hydrogen phosphate (DSP) and hydroxyapatite (HAP) were added into arsenic contaminated soil, then rice pot experiment was conducted to study the effects of phosphorus (P)-containing substances on arsenic (As) uptake by rice. The results showed that: DSP and HAP significantly increased soil pH and the contents of available P in soil (P < 0.05), activating soil arsenic. And DSP was stronger than HAP in improving the migration ability of As in soil. DSP and HAP treatments both significantly reduced the contents of total As in root, as well as total As and inorganic As in brown rice. But HAP significantly increased total As contents in stem. DSP and HAP treatments had better reducing effects on inorganic As than on total As in brown rice. And DSP had the same reducing effects as HAP on total As and inorganic As in brown rice. Analysis results showed that the contents of As in rice were affected by the antagonism between P and As and the increase of As bio-availability in soil. The antagonism played the major role in this study and it was clearly exhibited in both root and rice. Lower dosage (< or = 0.12 g x kg(-1)) of DSP and HAP increased total biomass of rice and brown rice yield, but with the increase of P addition, the two kinds of P-containing substances obviously inhibited the growth of rice, and inhibition by HAP was relatively light.

  18. [An ecologic study of adult and larval Culicidae in a rice field of Kou Valley, Burkino Faso].

    PubMed

    Robert, V; Ouari, B; Ouedraogo, V; Carnevale, P

    1988-12-01

    An entomological survey based on collections of human bait mosquitoes and of mosquito larvae was carried out through one year in a rice-field, the Kou Valley of southwest Burkina Faso. Each year, in this irrigated rice field there are two crops of rice, one during the dry season and another during the wet one. Between the two rice cycles irrigation is interrupted and the rice field becomes dry. The rice crop cycle moves through several stages, all of which have positive or negative effects on the development of the larvae of most abundant mosquitoes species. Rice cultivation does not explain however entirely the ecology of mosquito populations. Two main limiting factors for mosquito development are highlighted: the season with two periods (1. dry, 2. wet) and the rice cultivation with three periods (1. start of the flooding, growing rice transplantation and tillering, 2. rice heading and flowering, 3. rice maturation and harvest). The development of a majority of mosquito species depends strictly on rice growth: (i) Anopheles gambiae s.1. uses the whole rice field during the first period of rice cultivation until growing rice protects the larval breeding places from solar radiation. It is the most frequent mosquito (53% of the man-biting mosquitoes caught). 5% of its larvae are parasitized with a fungus Coelomomyces sp., (ii) A. pharoensis has its maximum density during the second period of rice cultivation, as Culex gr. decens; both seem to succeed better in the dry season, contrary to all other anophelines, (iii) A. coustani profits by the third period when the pH of the breeding places becomes basic.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. Southern rice black-streaked dwarf virus: a white-backed planthopper-transmitted fijivirus threatening rice production in Asia.

    PubMed

    Zhou, Guohui; Xu, Donglin; Xu, Dagao; Zhang, Maoxin

    2013-09-09

    Southern rice black-streaked dwarf virus (SRBSDV), a non-enveloped icosahedral virus with a genome of 10 double-stranded RNA segments, is a novel species in the genus Fijivirus (family Reoviridae) first recognized in 2008. Rice plants infected with this virus exhibit symptoms similar to those caused by Rice black-streaked dwarf virus. Since 2009, the virus has rapidly spread and caused serious rice losses in East and Southeast Asia. Significant progress has been made in recent years in understanding this disease, especially about the functions of the viral genes, rice-virus-insect interactions, and epidemiology and control measures. The virus can be efficiently transmitted by the white-backed planthopper (WBPH, Sogatella furcifera) in a persistent circulative propagative manner but cannot be transmitted by the brown planthopper (Nilaparvata lugens) and small brown planthopper (Laodelphax striatellus). Rice, maize, Chinese sorghum (Coix lacryma-jobi) and other grass weeds can be infected via WBPH. However, only rice plays a major role in the virus infection cycle because of the vector's preference. In Southeast Asia, WBPH is a long-distance migratory rice pest. The disease cycle can be described as follows: SRBSDV and its WBPH vector overwinter in warm tropical or sub-tropical areas; viruliferous WBPH adults carry the virus from south to north via long-distance migration in early spring, transmit the virus to rice seedlings in the newly colonized areas, and lay eggs on the infected seedlings; the next generation of WBPHs propagate on infected seedlings, become viruliferous, disperse, and cause new disease outbreaks. Several molecular and serological methods have been developed to detect SRBSDV in plant tissues and individual insects. Control measures based on protection from WBPH, including seedbed coverage, chemical seed treatments, and chemical spraying of seedlings, have proven effective in China.

  20. Seasonal assessment of greenhouse gas emission from irrigated lowland rice field under infrared warming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice fields are considered as one of the major sources of methane (CH4), and they also emit nitrous oxide (N2O). A field experiment was conducted at the International Rice Research Institute, Philippines, in 2010 – 2011 using a temperature free-air controlled enhancement (T-FACE) system. Our object...

  1. Genetic diversity and classification of Oryza sativa with emphasis on Chinese rice germplasm

    PubMed Central

    Wang, C-H; Zheng, X-M; Xu, Q; Yuan, X-P; Huang, L; Zhou, H-F; Wei, X-H; Ge, S

    2014-01-01

    Despite extensive studies on cultivated rice, the genetic structure and subdivision of this crop remain unclear at both global and local scales. Using 84 nuclear simple sequence repeat markers, we genotyped a panel of 153 global rice cultivars covering all previously recognized groups and 826 cultivars representing the diversity of Chinese rice germplasm. On the basis of model-based grouping, neighbour-joining tree and principal coordinate analysis, we confirmed the widely accepted five major groups of rice cultivars (indica, aus, aromatic, temperate japonica and tropical japonica), and demonstrated that rayada rice was unique in genealogy and should be treated as a new (the sixth) major group of rice germplasm. With reference to the global classification of rice cultivars, we identified three major groups (indica, temperate japonica and tropical japonica) in Chinese rice germplasm and showed that Chinese temperate japonica contained higher diversity than that of global samples, whereas Chinese indica and tropical japonica maintained slightly lower diversity than that present in the global samples. Particularly, we observed that all seasonal, drought-tolerant and endosperm types occurred within each of three major groups of Chinese cultivars, which does not support previous claims that seasonal differentiation exists in Indica and drought-tolerant differentiation is present in Japonica. It is most likely that differentiation of cultivar types arose multiple times stemming from artificial selection for adaptation to local environments. PMID:24326293

  2. Cytoplasmic effects on DNA methylation between male sterile line and its maintainer in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid rice is advantageous over the traditional one on food production, which is important to support the increasing world’s population, especially in the developing countries. Three-line system that has played a major role since the 1970s in rice includes male sterile (A line), its maintainer (B l...

  3. Analysis of the effectiveness of the rice blast resistance gene Pi-ta

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The casual agent of rice blast, Magnaporthe oryzae, continues to remain a serious threat for rice production and in general for the world food supply. The most economically and environmentally viable strategy to control this pathogen is the development of cultivars which possess major resistance gen...

  4. Genetic Architecture of Grain Chalk in Rice and Interactions with a Low Phytic Acid Locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain quality characteristics have a major impact on the value of the harvested rice crop. In addition to grain dimensions which determine rice grain market classes, translucent milled kernels are also important for assuring the highest grain quality and crop value. Over the last several years, ther...

  5. Genetic architecture of grain chalk in rice and interactions with a low phytic acid locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain quality characteristics have a major impact on the value of the harvested rice crop. In addition to grain dimensions which determine market classes, translucency is also required for the highest grain quality. Over the last several years, the USA rice industry has been concerned about the incr...

  6. Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol.

    PubMed

    Oraby, Hesham; Venkatesh, Balan; Dale, Bruce; Ahmad, Rashid; Ransom, Callista; Oehmke, James; Sticklen, Mariam

    2007-12-01

    The catalytic domain of Acidothermus cellulolyticus thermostable endoglucanase gene (encoding for endo-1,4-beta-glucanase enzyme or E1) was constitutively expressed in rice. Molecular analyses of T1 plants confirmed presence and expression of the transgene. The amount of E1 enzyme accounted for up to 4.9% of the plant total soluble proteins, and its accumulation had no apparent deleterious effects on plant growth and development. Approximately 22 and 30% of the cellulose of the Ammonia Fiber Explosion (AFEX)-pretreated rice and maize biomass respectively was converted into glucose using rice E1 heterologous enzyme. As rice is the major food crop of the world with minimal use for its straw, our results suggest a successful strategy for producing biologically active hydrolysis enzymes in rice to help generate alcohol fuel, by substituting the wasteful and polluting practice of rice straw burning with an environmentally friendly technology.

  7. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    NASA Astrophysics Data System (ADS)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  8. Quantitative trait loci analysis for rice seed vigor during the germination stage.

    PubMed

    Wang, Zhou-fei; Wang, Jian-fei; Bao, Yong-mei; Wang, Fu-hua; Zhang, Hong-sheng

    2010-12-01

    Seed vigor is an important characteristic of seed quality, and rice cultivars with strong seed vigor are desirable in direct-sowing rice production for optimum stand establishment. In the present study, the quantitative trait loci (QTLs) of three traits for rice seed vigor during the germination stage, including germination rate, final germination percentage, and germination index, were investigated using one recombinant inbred line (RIL) population derived from a cross between japonica Daguandao and indica IR28, and using the multiple interval mapping (MIM) approach. The results show that indica rice presented stronger seed vigor during the germination stage than japonica rice. A total of ten QTLs, and at least five novel alleles, were detected to control rice seed vigor, and the amount of variation (R(2)) explained by an individual QTL ranged from 7.5% to 68.5%, with three major QTLs with R(2)>20%. Most of the QTLs detected here are likely to coincide with QTLs for seed weight, seed size, or seed dormancy, suggesting that the rice seed vigor might be correlated with seed weight, seed size, and seed dormancy. At least five QTLs are novel alleles with no previous reports of seed vigor genes in rice, and those major or minor QTLs could be used to significantly improve the seed vigor by marker-assisted selection (MAS) in rice.

  9. Quantitative trait loci analysis for rice seed vigor during the germination stage*

    PubMed Central

    Wang, Zhou-fei; Wang, Jian-fei; Bao, Yong-mei; Wang, Fu-hua; Zhang, Hong-sheng

    2010-01-01

    Seed vigor is an important characteristic of seed quality, and rice cultivars with strong seed vigor are desirable in direct-sowing rice production for optimum stand establishment. In the present study, the quantitative trait loci (QTLs) of three traits for rice seed vigor during the germination stage, including germination rate, final germination percentage, and germination index, were investigated using one recombinant inbred line (RIL) population derived from a cross between japonica Daguandao and indica IR28, and using the multiple interval mapping (MIM) approach. The results show that indica rice presented stronger seed vigor during the germination stage than japonica rice. A total of ten QTLs, and at least five novel alleles, were detected to control rice seed vigor, and the amount of variation (R 2) explained by an individual QTL ranged from 7.5% to 68.5%, with three major QTLs with R 2>20%. Most of the QTLs detected here are likely to coincide with QTLs for seed weight, seed size, or seed dormancy, suggesting that the rice seed vigor might be correlated with seed weight, seed size, and seed dormancy. At least five QTLs are novel alleles with no previous reports of seed vigor genes in rice, and those major or minor QTLs could be used to significantly improve the seed vigor by marker-assisted selection (MAS) in rice. PMID:21121075

  10. Fire as an ecosystem process: Chapter 3

    USGS Publications Warehouse

    Keeley, Jon E.; Safford, Hugh D.; Mooney, Harold A.; Zavaleta, Erika S.

    2016-01-01

    This long-anticipated reference and sourcebook for California’s remarkable ecological abundance provides an integrated assessment of each major ecosystem type—its distribution, structure, function, and management. A comprehensive synthesis of our knowledge about this biologically diverse state, Ecosystems of California covers the state from oceans to mountaintops using multiple lenses: past and present, flora and fauna, aquatic and terrestrial, natural and managed. Each chapter evaluates natural processes for a specific ecosystem, describes drivers of change, and discusses how that ecosystem may be altered in the future. This book also explores the drivers of California’s ecological patterns and the history of the state’s various ecosystems, outlining how the challenges of climate change and invasive species and opportunities for regulation and stewardship could potentially affect the state’s ecosystems. The text explicitly incorporates both human impacts and conservation and restoration efforts and shows how ecosystems support human well-being. Edited by two esteemed ecosystem ecologists and with overviews by leading experts on each ecosystem, this definitive work will be indispensable for natural resource management and conservation professionals as well as for undergraduate or graduate students of California’s environment and curious naturalists.

  11. [Adsorption-desorption Characteristics of Fermented Rice Husk for Ferrous and Sulfur Ions].

    PubMed

    Xie, Xiao-mei; Liao, Min; Hua, Jia-yuan; Chen, Na; Zhang, Nan; Xu, Pei-zhi; Xie Kai-zhi; XU, Chang-xu; Liu, Guang-rong

    2015-10-01

    To understand the potential of rice husk to fix Fe2+ and S2- ions, the sorption of Fe2+ and S2- by fermented rice husk was studied by using batch incubation experiments in the present study. The effects of adsorption time, Fe2+ and S2- concentration, pH, the temperature and ionic strength in adsorption reaction solution on the sorption were investigated. Therefore, the stability of Fe2+ and S2- adsorbed by fermented rice husk was further validated by desorption experiments performed under similar conditions as adsorption. The results showed that, the adsorption kinetics of Fe2+ (r = 0.912 1) and S2- (r = 0.901 1) by fermented rice husk fits the Elovich kinetics equation, and Freundlich isotherm model could simulate the isotherm adsorption processes of Fe2+ (R2 = 0.965 1) and S2- (R2 = 0.936 6) on fermented rice husk was better than other models. The adsorption processes on fermented rice husk were non- preferential adsorption for Fe2+ and S2, while the adsorption process of Fe2+ on fermented rice husk was spontaneous reaction and the adsorption process of S2- was non-spontaneous reaction. The adsorption processes of Fe2+ and S2- on fermented rice husk were endothermic process since high temperature could benefit to the adsorption. The adsorption mechanism of Fe2+ on fermented rice husk was mainly controlled by coordination adsorption, the adsorption mechanism of S2- on fermented rice husk was mainly controlled by ligand exchange adsorption. The adsorption processes of Fe2+ and S2- on fermented rice husk showed greater pH adaptability which ranged from 1.50 to 11.50. With the increasing of ionic strength, the amount of adsorbed Fe2+ on fermented rice husk wasincreased in some extent, the amount of adsorbed S2- on fermented rice husk was slightly decreased, which further proved the adsorption of Fe2+ was major in inner sphere complexation and the adsorption of S2- was major in outer complexation. The desorption rates of Fe2+ and S2- which was adsorbed by fermented

  12. ECOSYSTEM GROWTH AND DEVELOPMENT

    EPA Science Inventory

    Thermodynamically, ecosystem growth and development is the process by which energy throughflow and stored biomass increase. Several proposed hypotheses describe the natural tendencies that occur as an ecosystem matures, and here, we consider five: minimum entropy production, maxi...

  13. Climate Action Benefits: Ecosystems

    EPA Pesticide Factsheets

    This page provides background on the relationship between ecosystems and climate change and describes what the CIRA Ecosystems analyses cover. It provides links to the subsectors Coral Reefs, Shellfish, Freshwater Fish, Wildfire, and Carbon Storage.

  14. Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA.

    PubMed

    Wu, Jianguo; Yang, Zhirui; Wang, Yu; Zheng, Lijia; Ye, Ruiqiang; Ji, Yinghua; Zhao, Shanshan; Ji, Shaoyi; Liu, Ruofei; Xu, Le; Zheng, Hong; Zhou, Yijun; Zhang, Xin; Cao, Xiaofeng; Xie, Lianhui; Wu, Zujian; Qi, Yijun; Li, Yi

    2015-02-17

    Viral pathogens are a major threat to rice production worldwide. Although RNA interference (RNAi) is known to mediate antiviral immunity in plant and animal models, the mechanism of antiviral RNAi in rice and other economically important crops is poorly understood. Here, we report that rice resistance to evolutionarily diverse viruses requires Argonaute18 (AGO18). Genetic studies reveal that the antiviral function of AGO18 depends on its activity to sequester microRNA168 (miR168) to alleviate repression of rice AGO1 essential for antiviral RNAi. Expression of miR168-resistant AGO1a in ago18 background rescues or increases rice antiviral activity. Notably, stable transgenic expression of AGO18 confers broad-spectrum virus resistance in rice. Our findings uncover a novel cooperative antiviral activity of two distinct AGO proteins and suggest a new strategy for the control of viral diseases in rice.

  15. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite.

    PubMed

    Wang, Yu-Dong; Wang, Xu; Wong, Yum-Shing

    2013-12-01

    To fulfill the natural human needs of selenium, selenium biofortification has been carried out in rice (Oryza sativa) in recent years. Despite some improvements have been made, the increase of selenium content in rice was still limited and a large amount of fertilisers are often required, which may cause environmental pullution. In this study, we further improved the selenium biofortification of rice by using less selenium fertilisers (10.5 g selenium/hectare) whereas, largely increasing selenium content in rice grains (up to 51 times vs. control). Furthermore, selenium speciation analysis, in vitro gastrointestinal digestion and antioxidant assays were performed to evaluate the selenium bioaccessibility and bioavailability in selenium-enriched rice grains. The major selenium species found were readily absorbable selenomethionine. Meanwhile, the selenium-enriched rice grains have significantly higher antioxidant bioactivities. In conclusion, this selenium-enriched rice has enormous potential for selenium supplementation in humans.

  16. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    PubMed

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature.

  17. Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China.

    PubMed

    Lu, Ying; Dong, Fei; Deacon, Claire; Chen, Huo-Jun; Raab, Andrea; Meharg, Andrew A

    2010-05-01

    The consumption of paddy rice (Oryza sativa L.) is a major inorganic arsenic exposure pathway in S.E. Asia. A multi-location survey was undertaken in Guangdong Province, South China to assess arsenic accumulation and speciation in 2 rice cultivars, one an Indica and the other a hybrid Indica. The results showed that arsenic concentrations in rice tissue increased in the order grain < husk < straw < root. Rice grain arsenic content of 2 rice cultivars was significant different and correlated with phosphorus concentration and molar ratio of P/As in shoot, being higher for the Indica cultivar than for the hybrid Indica, which suggests altering shoot phosphorus status as a promising route for breeding rice cultivars with reduced grain arsenic. Speciation of grain arsenic, performed using HPLC-ICP-MS, identified inorganic arsenic as the dominant arsenic species present in the rice grain.

  18. Rice: chemistry and technology.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has taken center stage this last decade, not only as an important provider of nourishment for the world’s population, but as a grain now recognized as having many unique nutritional and functional attributes with potential to be captured in a multitude of value-added food and non-food applicati...

  19. Rice bran phytonutrients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The bran layer of the whole grain rice contains potential health-beneficial compounds. These include vitamin E homologs (tocopherols, tocotrienols), oryzanol fractions, simple phenolics and poly-phenolics. These are antioxidants that are believed to provide protection against diseases such as cancer...

  20. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  1. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  2. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  3. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled...

  5. The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    PubMed Central

    Chatterjee, Jolly; Dionora, Jacqueline; Elmido-Mabilangan, Abigail; Wanchana, Samart; Thakur, Vivek; Bandyopadhyay, Anindya; Brar, Darshan S.; Quick, William Paul

    2016-01-01

    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species. PMID:27792743

  6. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India.

    PubMed

    Mandal, S; Choudhury, B U; Satpati, L N

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant (p < 0.05) increasing trend (at 0.22 days year(-1)) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning

  7. Monsoon variability, crop water requirement, and crop planning for kharif rice in Sagar Island, India

    NASA Astrophysics Data System (ADS)

    Mandal, S.; Choudhury, B. U.; Satpati, L. N.

    2015-12-01

    In the Sagar Island of Bay of Bengal, rainfed lowland rice is the major crop, grown solely depending on erratic distribution of southwest monsoon (SM) rainfall. Lack of information on SM rainfall variability and absence of crop scheduling accordingly results in frequent occurrence of intermittent water stress and occasional crop failure. In the present study, we analyzed long period (1982-2010) SM rainfall behavior (onset, withdrawal, rainfall and wetness indices, dry and wet spells), crop water requirement (CWR, by Food and Agriculture Organization (FAO) 56), and probability of weekly rainfall occurrence (by two-parameter gamma distribution) to assess the variability and impact on water availability, CWR, and rice productivity. Finally, crop planning was suggested to overcome monsoon uncertainties on water availability and rice productivity. Study revealed that the normal onset and withdrawal weeks for SM rainfall were 22nd ± 1 and 43rd ± 2 meteorological weeks (MW), respectively. However, effective monsoon rainfall started at 24th MW (rainfall 92.7 mm, p > 56.7 % for 50 mm rainfall) and was terminated by the end of 40th MW (rainfall 90.7 mm, p < 59.6 % for 50 mm rainfall). During crop growth periods (seed to seed, 21st to 45th MW), the island received an average weekly rainfall of 65.1 ± 25.9 mm, while the corresponding weekly CWR was 47.8 ± 5.4 mm. Despite net water surplus of 353.9 mm during crop growth periods, there was a deficit of 159.5 mm water during MW of 18-23 (seedling raising) and MW of 41-45 (flowering to maturity stages). Water stress was observed in early lag vegetative stage of crop growth (32nd MW). The total dry spell frequency during panicle initiation and heading stage was computed as 40 of which 6 dry spells were >7 days in duration and reflected a significant ( p < 0.05) increasing trend (at 0.22 days year-1) over the years (1982-2010). The present study highlights the adaptive capacity of crop planning including abiotic stress

  8. Estuarine Total Ecosystem Metabolism

    EPA Science Inventory

    Total ecosystem metabolism (TEM), both as discrete measurements and as a theoretical concept, has an important history in ecosystem ecology, particularly in estuaries. Some of the earliest ecological studies were developed to determine how energy flowed through an ecosystem and w...

  9. Ecosystem Health: Energy Indicators.

    EPA Science Inventory

    Just as for human beings health is a concept that applies to the condition of the whole organism, the health of an ecosystem refers to the condition of the ecosystem as a whole. For this reason, the study and characterization of ecosystems is fundamental to establishing accurate ...

  10. Consideration of Ecosystem for ICME

    SciTech Connect

    Ren, Weiju

    2013-01-01

    As the Integrated Computational Materials Engineering (ICME) emerges as a hot topic, computation, experimentation, and digital database are identified as its three major components. Efforts are being actively made from various aspects to bring ICME to reality. However, many factors that would affect ICEM development still remain vague. This paper is an attempt to discuss the needs for establishing a database centered ecosystem to facilitate ICEM development.

  11. Biogeochemical Processes in Microbial Ecosystems

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2001-01-01

    The hierarchical organization of microbial ecosystems determines process rates that shape Earth's environment, create the biomarker sedimentary and atmospheric signatures of life, and define the stage upon which major evolutionary events occurred. In order to understand how microorganisms have shaped the global environment of Earth and, potentially, other worlds, we must develop an experimental paradigm that links biogeochemical processes with ever-changing temporal and spatial distributions of microbial populations and their metabolic properties. Additional information is contained in the original extended abstract.

  12. Rice Glycosyltransferase (GT) Phylogenomic Database

    DOE Data Explorer

    Ronald, Pamela

    The Ronald Laboratory staff at the University of California-Davis has a primary research focus on the genes of the rice plant. They study the role that genetics plays in the way rice plants respond to their environment. They created the Rice GT Database in order to integrate functional genomic information for putative rice Glycosyltransferases (GTs). This database contains information on nearly 800 putative rice GTs (gene models) identified by sequence similarity searches based on the Carbohydrate Active enZymes (CAZy) database. The Rice GT Database provides a platform to display user-selected functional genomic data on a phylogenetic tree. This includes sequence information, mutant line information, expression data, etc. An interactive chromosomal map shows the position of all rice GTs, and links to rice annotation databases are included. The format is intended to "facilitate the comparison of closely related GTs within different families, as well as perform global comparisons between sets of related families." [From http://ricephylogenomics.ucdavis.edu/cellwalls/gt/genInfo.shtml] See also the primary paper discussing this work: Peijian Cao, Laura E. Bartley, Ki-Hong Jung and Pamela C. Ronalda. Construction of a Rice Glycosyltransferase Phylogenomic Database and Identification of Rice-Diverged Glycosyltransferases. Molecular Plant, 2008, 1(5): 858-877.

  13. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and β-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  14. Grain-filling problem in 'super' rice.

    PubMed

    Yang, Jianchang; Zhang, Jianhua

    2010-01-01

    Modern rice (Oryza sativa L.) cultivars, especially the newly bred 'super' rice, have numerous spikelets on a panicle with a large yield capacity. However, these cultivars often fail to achieve their high yield potential due to poor grain-filling of later-flowering inferior spikelets (in contrast to the earlier-flowering superior spikelets). Conventional thinking to explain the poor grain-filling is the consequence of carbon limitation. Recent studies, however, have shown that carbohydrate supply should not be the major problem because they have adequate sucrose at their initial grain-filling stage. The low activities of key enzymes in carbon metabolism may contribute to the poor grain-filling. Proper field practices, such as moderate soil drying during mid- and late grain-filling stages, could solve some problems in poor grain-filling. Further studies are needed by molecular approaches to investigate the signal transport, the hormonal action, the gene expressions, and the biochemical processes in inferior spikelets.

  15. Overview on current status of biotechnological interventions on yellow stem borer Scirpophaga incertulas (Lepidoptera: Crambidae) resistance in rice.

    PubMed

    Deka, Sikha; Barthakur, Sharmistha

    2010-01-01

    Yellow stem borer (YSB), Scirpophaga incertulas (Lepidoptera: Crambidae), a monophagous pest of paddy is considered as most important pest of rain fed low land and flood prone rice eco-systems. Breeding of yellow stem borer resistance in rice is difficult owing to the complex genetics of the trait, inherent difficulties in screening and poor understanding of the genetics of resistance. On the other hand, a good level of resistance against the widespread yellow stem borer has been rare in the rice germplasm. Resistance to insects has been demonstrated in transgenic plants expressing genes for delta-endotoxins from Bacillus thuringiensis (Bt), protease inhibitors, enzymes and plant lectins. The performance of insect resistant GM rice in trials in China has been quite impressive. The present review is an attempt to assess the current state of development in biotechnological intervention for yellow stem borer resistance in rice.

  16. SNP in starch biosynthesis genes associated with nutritional and functional properties of rice

    PubMed Central

    Kharabian-Masouleh, Ardashir; Waters, Daniel L. E.; Reinke, Russell F.; Ward, Rachelle; Henry, Robert J.

    2012-01-01

    Starch is a major component of human diets. The relative contribution of variation in the genes of starch biosynthesis to the nutritional and functional properties of the rice was evaluated in a rice breeding population. Sequencing 18 genes involved in starch synthesis in a population of 233 rice breeding lines discovered 66 functional SNPs in exonic regions. Five genes, AGPS2b, Isoamylase1, SPHOL, SSIIb and SSIVb showed no polymorphism. Association analysis found 31 of the SNP were associated with differences in pasting and cooking quality properties of the rice lines. Two genes appear to be the major loci controlling traits under human selection in rice, GBSSI (waxy gene) and SSIIa. GBSSI influenced amylose content and retrogradation. Other genes contributing to retrogradation were GPT1, SSI, BEI and SSIIIa. SSIIa explained much of the variation in cooking characteristics. Other genes had relatively small effects. PMID:22870386

  17. Accelerated Solvent Extraction of Insecticides from Rice Hulls, Rice Bran, and Polished Rice Grains.

    PubMed

    Teló, Gustavo Mack; Senseman, Scott Allen; Marchesan, Enio; Camargo, Edinalvo Rabaioli; Carson, Katherine

    2017-03-01

    Analysis of pesticide residues in irrigated rice grains is important for food security. In this study, we analyzed accelerated solvent extraction (ASE) conditions for the extraction of thiamethoxam and chlorantraniliprole insecticides from rice hulls, rice bran, and polished rice grains. Several variables, including extraction solvent, extraction temperature, extraction pressure, cell size, static extraction time, and sample concentration, were investigated. The average recoveries of the three matrixes were between 89.7 and 109.7% at the fortification level of 0.75 mg/kg. The optimum ASE operating conditions were acetonitrile (100%) as extraction solvent, extraction temperature of 75°C for rice hulls and 100°C for rice bran and polished rice grains, extraction cell pressure of 10.3 MPa, 22 mL cell size, and two extraction cycles. The total extraction time was approximately 25 min. The extracted volume was evaporated to dryness and the residues were redissolved in 2 mL acetonitrile after 1 min of vortex-shaking. Thiamethoxam and chlorantraniliprole were analyzed by ultra-HPLC with tandem MS. In conclusion, ASE in rice hulls, rice bran, and polished rice grains offers the possibility of a fast and simple method for obtaining a quantitative extraction of the studied pesticides.

  18. Effects of Bt-transgenic rice cultivation on planktonic communities in paddy fields and adjacent ditches.

    PubMed

    Liu, Yongbo; Liu, Fang; Wang, Chao; Quan, Zhanjun; Li, Junsheng

    2016-09-15

    The non-target effects of transgenic plants are issues of concern; however, their impacts in cultivated agricultural fields and adjacent natural aquatic ecosystems are poorly understood. We conducted field experiments during two growing seasons to determine the effects of cultivating Bacillus thuringiensis (Bt)-transgenic rice on the phytoplankton and zooplankton communities in a paddy field and an adjacent ditch. Bt toxin was detected in soil but not in water. Water quality was not significantly different between non-Bt and Bt rice fields, but varied among up-, mid- and downstream locations in the ditch. Cultivation of Bt-transgenic rice had no effects on zooplankton communities. Phytoplankton abundance and biodiversity were not significantly different between transgenic and non-transgenic rice fields in 2013; however, phytoplankton were more abundant in the transgenic rice field than in the non-transgenic rice field in 2014. Water quality and rice type explained 65.9% and 12.8% of this difference in 2014, respectively. Phytoplankton and zooplankton were more abundant in mid- and downstream, than upstream, locations in the ditch, an effect that we attribute to water quality differences. Thus, the release of Bt toxins into field water during the cultivation of transgenic crops had no direct negative effects on plankton community composition, but indirect effects that alter environmental conditions should be taken into account during the processes of management planning and policymaking.

  19. Seed-mediated gene flow promotes genetic diversity of weedy rice within populations: implications for weed management.

    PubMed

    He, Zhuoxian; Jiang, Xiaoqi; Ratnasekera, Disna; Grassi, Fabrizio; Perera, Udugahapattuwage; Lu, Bao-Rong

    2014-01-01

    Increased infestation of weedy rice-a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.

  20. Using NOAA/AVHRR based remote sensing data and PCR method for estimation of Aus rice yield in Bangladesh

    NASA Astrophysics Data System (ADS)

    Nizamuddin, Mohammad; Akhand, Kawsar; Roytman, Leonid; Kogan, Felix; Goldberg, Mitch

    2015-06-01

    Rice is a dominant food crop of Bangladesh accounting about 75 percent of agricultural land use for rice cultivation and currently Bangladesh is the world's fourth largest rice producing country. Rice provides about two-third of total calorie supply and about one-half of the agricultural GDP and one-sixth of the national income in Bangladesh. Aus is one of the main rice varieties in Bangladesh. Crop production, especially rice, the main food staple, is the most susceptible to climate change and variability. Any change in climate will, thus, increase uncertainty regarding rice production as climate is major cause year-to-year variability in rice productivity. This paper shows the application of remote sensing data for estimating Aus rice yield in Bangladesh using official statistics of rice yield with real time acquired satellite data from Advanced Very High Resolution Radiometer (AVHRR) sensor and Principal Component Regression (PCR) method was used to construct a model. The simulated result was compared with official agricultural statistics showing that the error of estimation of Aus rice yield was less than 10%. Remote sensing, therefore, is a valuable tool for estimating crop yields well in advance of harvest, and at a low cost.

  1. Contributions of climate, varieties, and agronomic management to rice yield change in the past three decades in China

    NASA Astrophysics Data System (ADS)

    Zhang, He; Tao, Fulu; Xiao, Dengpan; Shi, Wenjiao; Liu, Fengshan; Zhang, Shuai; Liu, Yujie; Wang, Meng; Bai, Huizi

    2016-06-01

    The long-term field experiment data at four representative agro-meteorological stations, together with a crop simulation model, were used to disentangle the contributions of climate change, variety renewal, and fertilization management to rice yield change in the past three decades. We found that during 1981-2009 varieties renewal increased rice yield by 16%-52%, management improvement increased yield by 0-16%, and the contributions of climate change to rice yield varied from — 16% to 10%. Varieties renewal and management improvement offset the negative impacts of climate change on rice production. Among the major climate variables, decreases in solar radiation reduced rice yield on average by 0.1%per year. The impact of temperature change had an explicit spatial pattern. It increased yield by 0.04%-0.4% per year for single rice at Xinbin and Ganyu station and for late rice at Tongcheng station, by contrast reduced yield by 0.2%-0.4% per year for single rice at Mianyang station and early rice at Tongcheng station. During 1981-2009, rice varieties renewal was characterized by increases in thermal requirements, grain number per spike and harvest index. The new varieties were less sensitive to climate change than old ones. The development of high thermal requirements, high yield potential and heat tolerant rice varieties, together with improvement of agronomic management, should be encouraged to meet the challenges of climate change and increasing food demand in future.

  2. Fishing for ecosystem services

    USGS Publications Warehouse

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  3. [Effects of different nitrogen, phosphorous, and potassium fertilization modes on carbon- and nitrogen accumulation and allocation in rice plant].

    PubMed

    Feng, Lei; Tong, Cheng-li; Shi, Hui; Wu, Jin-shui; Chen, An-lei; Zhou, Ping

    2011-10-01

    Based on a 20-year field site-specific fertilization experiment in Taoyuan Experimental Station of Agriculture Ecosystems under Chinese Ecosystem Research Network (CERN), this paper studied the effects of different fertilization modes of N, P, and K on the accumulation and allocation of C and N in rice plant. The fertilization mode N-only showed the highest C and N contents (433 g kg(-1) and 18.9 g kg(-1), respectively) in rice grain, whereas the modes balanced fertilization of chemical N, P and K (NPK) and its combination with organic mature recycling (NPKC) showed the highest storage of C and N in rice plant. In treatments NPK and NPKC, the C storage in rice grain and in stem and leaf was 1960 kg hm(-2) and 2015 kg hm(-2), and 2002 kg hm(-2) and 2048 kg hm(-2), and the N storage in rice grain was 80.5 kg hm(-2) and 80.6 kg hm(-2), respectively. Treatment NPK had the highest N storage (59.3 kg hm(-2)) in stem and leaf. Balanced fertilization of chemical N, P, and K combined with organic manure recycling increased the accumulation of C and N in rice plant significantly. Comparing with applying N only, balanced fertilization of chemical N, P, and K was more favorable to the accumulation and allocation of C and N in rice plant during its growth period.

  4. Arctic terrestrial ecosystem contamination.

    PubMed

    Thomas, D J; Tracey, B; Marshall, H; Norstrom, R J

    1992-07-15

    Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen----reindeer----human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 micrograms.g-1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO2 and H2SO4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.

  5. Major Links.

    ERIC Educational Resources Information Center

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  6. Evolutionary diversification in stickleback affects ecosystem functioning.

    PubMed

    Harmon, Luke J; Matthews, Blake; Des Roches, Simone; Chase, Jonathan M; Shurin, Jonathan B; Schluter, Dolph

    2009-04-30

    Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.

  7. Study of chemical pretreatment and enzymatic saccharification for producing fermentable sugars from rice straw.

    PubMed

    Chen, Wen-Hsing; Chen, Yi-Chun; Lin, Jih-Gaw

    2014-07-01

    This study evaluated a cost-effective approach for the conversion of rice straw into fermentable sugars. The composition of rice straw pretreated with 1 % sulfuric acid or 1 % sodium hydroxide solution was compared to rice straw with no chemical pretreatment. Enzymatic saccharification experiments on non-pretreated rice straw (NPRS), pretreated rice straw (PRS), and pretreated rice straw with acid hydrolysate (PRSAH) were conducted in a series of batch reactors. The results indicated that pretreating the rice straw with dilute acid and base increased the cellulose content from 38 % to over 50 %. During enzymatic saccharification, straight aliphatic cellulose was hydrolyzed before branched hemicellulose, and glucose was the major hydrolysis product. The glucose yield was 0.52 g glucose/g for NPRS and was comparable to the yields of 0.50 g glucose/g for PRS and 0.58 g glucose/g for PRSAH. The hydrolysis of rice straw to produce glucose can be described by a first-order reaction with a rate constant of 0.0550 d(-1) for NPRS, 0.0653 d(-1) for PRSAH, and 0.0654 d(-1) for PRS. Overall, the production of fermentable sugars from ground rice straw will be more cost effective if the straw is not pretreated with chemicals.

  8. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  9. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  10. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management*

    PubMed Central

    Wang, Yu-yan; Wei, Yan-yan; Dong, Lan-xue; Lu, Ling-li; Feng, Ying; Zhang, Jie; Pan, Feng-shan; Yang, Xiao-e

    2014-01-01

    Zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains. PMID:24711357

  11. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management.

    PubMed

    Wang, Yu-yan; Wei, Yan-yan; Dong, Lan-xue; Lu, Ling-li; Feng, Ying; Zhang, Jie; Pan, Feng-shan; Yang, Xiao-e

    2014-04-01

    Zinc (Zn) deficiency and water scarcity are major challenges in rice (Oryza sativa L.) under an intensive rice production system. This study aims to investigate the impact of water-saving management and different Zn fertilization source (ZnSO4 and Zn-EDTA) regimes on grain yield and Zn accumulation in rice grain. Different water managements, continuous flooding (CF), and alternate wetting and drying (AWD) were applied during the rice growing season. Compared with CF, the AWD regime significantly increased grain yield and Zn concentrations in both brown rice and polished rice. Grain yield of genotypes (Nipponbare and Jiaxing27), on the average, was increased by 11.4%, and grain Zn concentration by 3.9% when compared with those under a CF regime. Zn fertilization significantly increased Zn density in polished rice, with a more pronounced effect of ZnSO4 being observed as compared with Zn-EDTA, especially under an AWD regime. Decreased phytic acid content and molar ratio of phytic acid to Zn were also noted in rice grains with Zn fertilization. The above results demonstrated that water management of AWD combined with ZnSO4 fertilization was an effective agricultural practice to elevate grain yield and increase Zn accumulation and bioavailability in rice grains.

  12. Rice proteomics: a model system for crop improvement and food security.

    PubMed

    Kim, Sun Tae; Kim, Sang Gon; Agrawal, Ganesh Kumar; Kikuchi, Shoshi; Rakwal, Randeep

    2014-03-01

    Rice proteomics has progressed at a tremendous pace since the year 2000, and that has resulted in establishing and understanding the proteomes of tissues, organs, and organelles under both normal and abnormal (adverse) environmental conditions. Established proteomes have also helped in re-annotating the rice genome and revealing the new role of previously known proteins. The progress of rice proteomics had recognized it as the corner/stepping stone for at least cereal crops. Rice proteomics remains a model system for crops as per its exemplary proteomics research. Proteomics-based discoveries in rice are likely to be translated in improving crop plants and vice versa against ever-changing environmental factors. This review comprehensively covers rice proteomics studies from August 2010 to July 2013, with major focus on rice responses to diverse abiotic (drought, salt, oxidative, temperature, nutrient, hormone, metal ions, UV radiation, and ozone) as well as various biotic stresses, especially rice-pathogen interactions. The differentially regulated proteins in response to various abiotic stresses in different tissues have also been summarized, indicating key metabolic and regulatory pathways. We envision a significant role of rice proteomics in addressing the global ground level problem of food security, to meet the demands of the human population which is expected to reach six to nine billion by 2040.

  13. Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress.

    PubMed

    Lyman, Nathaniel B; Jagadish, Krishna S V; Nalley, L Lanier; Dixon, Bruce L; Siebenmorgen, Terry

    2013-01-01

    Future increases in global surface temperature threaten those worldwide who depend on rice production for their livelihoods and food security. Past analyses of high-temperature stress on rice production have focused on paddy yield and have failed to account for the detrimental impact of high temperatures on milling quality outcomes, which ultimately determine edible (marketable) rice yield and market value. Using genotype specific rice yield and milling quality data on six common rice varieties from Arkansas, USA, combined with on-site, half-hourly and daily temperature observations, we show a nonlinear effect of high-temperature stress exposure on yield and milling quality. A 1 °C increase in average growing season temperature reduces paddy yield by 6.2%, total milled rice yield by 7.1% to 8.0%, head rice yield by 9.0% to 13.8%, and total milling revenue by 8.1% to 11.0%, across genotypes. Our results indicate that failure to account for changes in milling quality leads to understatement of the impacts of high temperatures on rice production outcomes. These dramatic losses result from reduced paddy yield and increased percentages of chalky and broken kernels, which together decrease the quantity and market value of milled rice. Recently published estimates show paddy yield reductions of up to 10% across the major rice-producing regions of South and Southeast Asia due to rising temperatures. The results of our study suggest that the often-cited 10% figure underestimates the economic implications of climate change for rice producers, thus potentially threatening future food security for global rice producers and consumers.

  14. Life cycle GHG evaluation of organic rice production in northern Thailand.

    PubMed

    Yodkhum, Sanwasan; Gheewala, Shabbir H; Sampattagul, Sate

    2017-03-09

    Greenhouse gas (GHG) emission is one of the serious international environmental issues that can lead to severe damages such as climate change, sea level rise, emerging disease and many other impacts. Rice cultivation is associated with emissions of potent GHGs such as methane and nitrous oxide. Thai rice has been massively exported worldwide however the markets are becoming more competitive than ever since the green market has been hugely promoted. In order to maintain the same level or enhance of competitiveness, Thai rice needs to be considered for environmentally conscious products to meet the international environmental standards. Therefore, it is necessary to evaluate the greenhouse gas emissions throughout the life cycle of rice production in order to identify the major emission sources and possible reduction strategies. In this research, the rice variety considered is Khao Dawk Mali 105 (KDML 105) cultivated by organic practices. The data sources were Don-Chiang Organic Agricultural Cooperative (DCOAC), Mae-teang district, Chiang Mai province, Thailand and the Office of Agricultural Economics (OAE) of Thailand with onsite records and interviews of farmers in 2013. The GHG emissions were calculated from cradle-to-farm by using the Life Cycle Assessment (LCA) approach and the 2006 IPCC Guideline for National Greenhouse Gas Inventories. The functional unit is defined as 1 kg of paddy rice at farm gate. Results showed that the total GHG emissions of organic rice production were 0.58 kg CO2-eq per kg of paddy rice. The major source of GHG emission was from the field emissions accounting for 0.48 kg CO2-eq per kg of paddy rice, about 83% of total, followed by land preparation, harvesting and other stages (planting, cultivation and transport of raw materials) were 9, 5 and 3% of total, respectively. The comparative results clearly showed that the GHG emissions of organic paddy rice were considerably lower than conventional rice production due to the advantages

  15. Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication

    PubMed Central

    Zhu, Yongqing; Ellstrand, Norman C; Lu, Bao-Rong

    2012-01-01

    The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed-shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ∼26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering. PMID:23139871

  16. Studies on nutrient uptake of rice and characteristics of soil microorganisms in a long-term fertilization experiments for irrigated rice.

    PubMed

    Zhang, Qi-chun; Wang, Guang-huo

    2005-02-01

    The ecosystem characteristics of soil microorganism and the nutrient uptake of irrigated rice were investigated in a split-block experiment with different fertilization treatments, including control (no fertilizer application), PK, NK, NP, NPK fertilization, in the main block, and conventional rice and hybrid rice comparison, in the sub block. Average data of five treatments in five years indicated that the indigenous N supply (INS) capacity ranged from 32.72 to 93.21 kg/ha; that indigenous P supply (IPS) capacity ranged from 7.42 to 32.25 kg/ha; and that indigenous K supply (IKS) capacity ranged from 16.24 to 140.51 kg/ha, which showed that soil available nutrient pool depletion might occur very fast and that P, K deficiency has become a constraint to increasing yields of consecutive crops grown without fertilizer application. It was found that soil nutrient deficiency and unbalanced fertilization to rice crop had negative effect on the diversity of the microbial community and total microbial biomass in the soil. The long-term fertilizer experiment (LTFE) also showed that balanced application of N, P and K promoted microbial biomass growth and improvement of community composition. Unbalanced fertilization reduced microbial N and increased C/N ratio of the microbial biomass. Compared with inbred rice, hybrid rice behavior is characterized by physiological advantage in nutrient uptake and lower internal K use efficiency.

  17. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  18. Major depression.

    PubMed

    Bentley, Susan M; Pagalilauan, Genevieve L; Simpson, Scott A

    2014-09-01

    Major depression is a common, disabling condition seen frequently in primary care practices. Non-psychiatrist ambulatory providers are increasingly responsible for diagnosing, and primarily managing patients suffering from major depressive disorder (MDD). The goal of this review is to help primary care providers to understand the natural history of MDD, identify practical tools for screening, and a thoughtful approach to management. Clinically challenging topics like co-morbid conditions, treatment resistant depression and pharmacotherapy selection with consideration to side effects and medication interactions, are also covered.

  19. Major Andre

    ERIC Educational Resources Information Center

    Henisch, B. A.; Henisch, H. K.

    1976-01-01

    If most Revolutionary era people seem two-dimensional their lives simpler to understand than ours, it may be only that history, with the benefit of hindsight, clarifies. Examines a profile of Major John Andre, the British liaison officer in Benedict Arnold's plan to surrender West Point, as both hero and villain to show the complexity of early…

  20. Identification of blast resistance genes for managing rice blast disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice blast, caused by the fungal pathogen Magnaporthe oryzae, is one of the most devastating diseases worldwide. In the present study, an international set of monogenic differentials carrying 24 major blast resistance (R) genes (Pia, Pib, Pii, Pik, Pik-h, Pik-m, Pik-p, Pik-s, Pish, Pit, Pita, Pita2,...

  1. Unlocking the variation hidden in rice germplasm collections with genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated Asian rice (Oryza sativa) was domesticated from O. rufipogon (O. nivara). The O. sativa subspecies indica and japonica diverged in ancient times, and based on DNA markers, further subdivided into the five major subpopulations, aus, indica, aromatic, tropical japonica and temperate japoni...

  2. Ship canals and aquatic ecosystems

    USGS Publications Warehouse

    Aron, William I.; Smith, Stanford H.

    1971-01-01

    Through a combination of ecosystem homeostasis and the perversity of man and nature, oftentimes the significant biological changes effected by environmental modifications are not detected until long after the initial change has taken place. The immediate impact, which may range from the spectacular to the undetectable, is a deceptive measure of the long-term and often more important changes in the ecosystem. Two major engineering achievements illustrate this premise: (i) construction of the Erie Canal, which provided access from the Atlantic Ocean to the Great Lakes, and the Welland Canal, which bypasses the block between Lakes Ontario and Erie created by Niagara Falls (Fig. 1), and (ii) construction of the Suez Canal between the Red Sea and the Mediterranean Sea.

  3. How Will Climate Change Impact Water Consumption for Rice Irrigation in Southern Brazil?

    NASA Astrophysics Data System (ADS)

    dos Santos, T. V.; Twine, T. E.

    2015-12-01

    Globally, agricultural water use accounts for most of the water that is withdrawn from surface water and groundwater. Rice, one of the world's leading food crops, requires that fields be continuously flooded to obtain optimal yields. High air temperature and consecutive rainless days in rice-growing areas can significantly reduce rice yields, leading to food scarcity. Climate change is expected to affect water demand for rice via changes in rainfall regime, soil water balance, and evapotranspiration. Higher temperatures and increased variability of precipitation are predicted to increase water demand and could potentially require more irrigation in lowland rice-growing areas. In this study we present the first results from model simulations in which we integrated a rice model into the Agro-IBIS dynamic ecosystem model. We predict the impact of climate change on the water use requirement of rice production in southern Brazil and evaluate changes in irrigation needed to meet minimum water demand to sustain current yields. Brazil is the 9th top rice producer in the world, and southern Brazil accounts for about 80% of the national production. The Agro-IBIS model was driven with historic weather data provided by CRU (1961-90) and with two future climate scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) for 2015-2100 - Representative Concentration Pathways 4.5 (RCP45) and 8.5 (RCP85). On an hourly time step, Agro-IBIS accounts for gains (precipitation) and losses (evaporation, transpiration, infiltration and runoff) of water in each grid cell, and uses rules to irrigate in order to maintain a specific height of standing water on the field. Simulated historic and future amounts of irrigated water needed to maintain this water height will be evaluated to predict future water demand for rice production in southern Brazil.

  4. Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication

    PubMed Central

    Gettler, Kyle A.; Burgos, Nilda R.; Fischer, Albert J.

    2016-01-01

    Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds

  5. Escape to Ferality: The Endoferal Origin of Weedy Rice from Crop Rice through De-Domestication.

    PubMed

    Kanapeckas, Kimberly L; Vigueira, Cynthia C; Ortiz, Aida; Gettler, Kyle A; Burgos, Nilda R; Fischer, Albert J; Lawton-Rauh, Amy L

    Domestication is the hallmark of evolution and civilization and harnesses biodiversity through selection for specific traits. In regions where domesticated lines are grown near wild relatives, congeneric sources of aggressive weedy genotypes cause major economic losses. Thus, the origins of weedy genotypes where no congeneric species occur raise questions regarding management effectiveness and evolutionary mechanisms responsible for weedy population success. Since eradication in the 1970s, California growers avoided weedy rice through continuous flood culture and zero-tolerance guidelines, preventing the import, presence, and movement of weedy seeds. In 2003, after decades of no reported presence in California, a weedy rice population was confirmed in dry-seeded fields. Our objectives were to identify the origins and establishment of this population and pinpoint possible phenotypes involved. We show that California weedy rice is derived from a different genetic source among a broad range of AA genome Oryzas and is most recently diverged from O. sativa temperate japonica cultivated in California. In contrast, other weedy rice ecotypes in North America (Southern US) originate from weedy genotypes from China near wild Oryza, and are derived through existing crop-wild relative crosses. Analyses of morphological data show that California weedy rice subgroups have phenotypes like medium-grain or gourmet cultivars, but have colored pericarp, seed shattering, and awns like wild relatives, suggesting that reversion to non-domestic or wild-like traits can occur following domestication, despite apparent fixation of domestication alleles. Additionally, these results indicate that preventive methods focused on incoming weed sources through contamination may miss burgeoning weedy genotypes that rapidly adapt, establish, and proliferate. Investigating the common and unique evolutionary mechanisms underlying global weed origins and subsequent interactions with crop relatives sheds

  6. Terrestrial Ecosystems of the Conterminous United States

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Cress, Jill; Warner, Harumi

    2010-01-01

    The U.S. Geological Survey (USGS), with support from NatureServe, has modeled the potential distribution of 419 terrestrial ecosystems for the conterminous United States using a comprehensive biophysical stratification approach that identifies distinct biophysical environments and associates them with known vegetation distributions (Sayre and others, 2009). This standardized ecosystem mapping effort used an ecosystems classification developed by NatureServe (Comer and others, 2003). The ecosystem mapping methodology was developed for South America (Sayre and others, 2008) and is now being implemented globally (Sayre and others, 2007). The biophysical stratification approach is based on mapping the major structural components of ecosystems (land surface forms, topographic moisture potential, surficial lithology, isobioclimates and biogeographic regions) and then spatially combining them to produce a set of unique biophysical environments. These physically distinct areas are considered as the fundamental structural units ('building blocks') of ecosystems, and are subsequently aggregated and labeled using the NatureServe classification. The structural footprints were developed from the geospatial union of several base layers including biogeographic regions, isobioclimates (Cress and others, 2009a), land surface forms (Cress and others, 2009b), topographic moisture potential (Cress and others, 2009c), and surficial lithology (Cress and others, in press). Among the 49,168 unique structural footprint classes that resulted from the union, 13,482 classes met a minimum pixel count threshold (20,000 pixels) and were aggregated into 419 NatureServe ecosystems using a semiautomated labeling process based on rule-set formulations for attribution of each ecosystem. The resulting ecosystems are those that are expected to occur based on the combination of the bioclimate, biogeography, and geomorphology. Where land use by humans has not altered land cover, natural vegetation

  7. Mercury methylation in rice paddies and its possible controlling factors in the Hg mining area, Guizhou province, Southwest China.

    PubMed

    Zhao, Lei; Qiu, Guangle; Anderson, Christopher W N; Meng, Bo; Wang, Dingyong; Shang, Lihai; Yan, Haiyu; Feng, Xinbin

    2016-08-01

    Understanding mercury (Hg) methylation/demethylation processes and the factors controlling methylmercury (MeHg) production within the rice paddy ecosystem of Hg mining areas is critical to assess the risk of MeHg contamination in rice grain. Two typical Hg-contaminated mining sites, a current-day artisanal site (Gouxi) and an abandoned site (Wukeng), were chosen in this study. We qualified the in situ specific methylation/demethylation rate constants in rice paddy soil during a complete rice-growing season. Our results demonstrate that MeHg levels in rice paddy soil were a function of both methylation and demethylation processes and the net methylation potential in the rice paddy soil reflected the measured MeHg production at any time point. Sulfate stimulating the activity of sulfate-reducing bacteria was a potentially important metabolic pathway for Hg methylation in rice paddies. We suggest that bioavailable Hg derived from new atmospheric deposition appears to be the primary factor regulating net MeHg production in rice paddies.

  8. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  9. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  10. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  11. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  12. 21 CFR 137.350 - Enriched rice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Enriched rice. 137.350 Section 137.350 Food and... Related Products § 137.350 Enriched rice. (a) The foods for which definitions and standards of identity are prescribed by this section are forms of milled rice (except rice coated with talc and glucose...

  13. Coral Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Yap, Helen T.

    Coral reefs are geological structures of significant dimensions, constructed over millions of years by calcifying organisms. The present day reef-builders are hard corals belonging to the order Scleractinia, phylum Cnidaria. The greatest concentrations of coral reefs are in the tropics, with highest levels of biodiversity situated in reefs of the Indo-West Pacific region. These ecosystems have provided coastal protection and livelihood to human populations over the millennia. Human activities have caused destruction of these habitats, the intensity of which has increased alarmingly since the latter decades of the twentieth century. The severity of this impact is directly related to exponential growth rates of human populations especially in the coastal areas of the developing world. However, a more recently recognized phenomenon concerns disturbances brought about by the changing climate, manifested mainly as rising sea surface temperatures, and increasing acidification of ocean waters due to greater drawdown of higher concentrations of atmospheric carbon dioxide. Management efforts have so far not kept pace with the rates of degradation, so that the spatial extent of damaged reefs and the incidences of localized extinction of reef species are increasing year after year. The major management efforts to date consist of establishing marine protected areas and promoting the active restoration of coral habitats.

  14. Impact of agronomic practices on arsenic accumulation and speciation in rice grain.

    PubMed

    Ma, Rui; Shen, Jianlin; Wu, Jinshui; Tang, Zhong; Shen, Qirong; Zhao, Fang-Jie

    2014-11-01

    Rice is a major source of dietary arsenic (As). The effects of paddy water management, straw incorporation, the applications of nitrogen fertilizer or organic manure, and the additions of biochar on arsenic accumulation and speciation in rice grain were investigated under field conditions over four cropping seasons in Hunan, China. Treatments that promoted anaerobic conditions in the soil, including continuous flooding and straw incorporation, significantly increased the concentration of As, especially methylated As species, in rice grain, whereas N application rate and biochar additions had little or inconsistent effect. Continuous flooding and straw incorporation also increased the abundance of the arsenite methyltransferase gene arsM in the soil, potentially enhancing As methylation in the soil and the uptake of methylated As by rice plants. Intermittent flooding was an effective method to decrease As accumulation in rice grain.

  15. Pathogen effectors and plant immunity determine specialization of the blast fungus to rice subspecies

    PubMed Central

    Liao, Jingjing; Huang, Huichuan; Meusnier, Isabelle; Adreit, Henri; Ducasse, Aurélie; Bonnot, François; Pan, Lei; He, Xiahong; Kroj, Thomas; Fournier, Elisabeth; Tharreau, Didier; Gladieux, Pierre; Morel, Jean-Benoit

    2016-01-01

    Understanding how fungi specialize on their plant host is crucial for developing sustainable disease control. A traditional, centuries-old rice agro-system of the Yuanyang terraces was used as a model to show that virulence effectors of the rice blast fungus Magnaporthe oryzaeh play a key role in its specialization on locally grown indica or japonica local rice subspecies. Our results have indicated that major differences in several components of basal immunity and effector-triggered immunity of the japonica and indica rice varieties are associated with specialization of M. oryzae. These differences thus play a key role in determining M. oryzae host specificity and may limit the spread of the pathogen within the Yuanyang agro-system. Specifically, the AVR-Pia effector has been identified as a possible determinant of the specialization of M. oryzae to local japonica rice. DOI: http://dx.doi.org/10.7554/eLife.19377.001 PMID:28008850

  16. NMR-based metabolic profiling of rice wines by F(2)-selective total correlation spectra.

    PubMed

    Koda, Masanori; Furihata, Kazuo; Wei, Feifei; Miyakawa, Takuya; Tanokura, Masaru

    2012-05-16

    In this study, we performed NMR-based metabolic profiling of major rice wines (Japanese sake, Chinese Shaoxing wine, and Korean makgeolli). In the (1)H NMR spectra, the rice wines showed broad resonances in the region of about 7.9-9.0 ppm. These resonances showed many and complex correlations with approximately 0.5-4.5 ppm in the F(2)-selective TOCSY (total correlation spectroscopy) spectra, and these correlations were attributed mainly to peptides. These spectral patterns were characteristic of individual rice wines, and the combination of F(2)-selective TOCSY spectra and principal component analysis enabled us to classify the rice wine species. Furthermore, it also provided information about raw materials, namely, what type of koji (rice koji or wheat koji) was used. These spectra may be useful as a new "fingerprint" for quality control or food authentication.

  17. Discrimination of red and white rice bran from Indonesia using HPLC fingerprint analysis combined with chemometrics.

    PubMed

    Sabir, Aryani; Rafi, Mohamad; Darusman, Latifah K

    2017-04-15

    HPLC fingerprint analysis combined with chemometrics was developed to discriminate between the red and the white rice bran grown in Indonesia. The major component in rice bran is γ-oryzanol which consisted of 4 main compounds, namely cycloartenol ferulate, cyclobranol ferulate, campesterol ferulate and β-sitosterol ferulate. Separation of these four compounds along with other compounds was performed using C18 and methanol-acetonitrile with gradient elution system. By using these intensity variations, principal component and discriminant analysis were performed to discriminate the two samples. Discriminant analysis was successfully discriminated the red from the white rice bran with predictive ability of the model showed a satisfactory classification for the test samples. The results of this study indicated that the developed method was suitable as quality control method for rice bran in terms of identification and discrimination of the red and the white rice bran.

  18. Formation and emission of methane in rice soils: Experimental determination and modeling analysis. Final report

    SciTech Connect

    Law, V.J.; Bhattacharya, S.K.

    1993-08-31

    Rice paddy soils have been identified as a major source of methane emissions contributing to the observed atmospheric increase in methane. This points to the need for a method of quantifying and predicting methane emissions for the widely varying conditions used in rice agriculture throughout the world. In the present work, a mathematical model for estimating the emission of methane from rice paddy soils is developed and refined. Kinetic parameters for methanogenesis in a Louisiana rice soil are determined from laboratory data on methane production from acetic acid substrate. Use of a stirred reactor allows simultaneous measurement of acetate consumption and methane production while minimizing mass transfer limitations. An existing model for rice plant growth is utilized to provide data on the availability of root exudates as a carbon source for the methanogens. The final methane model includes the kinetic parameters, plant data, and estimated transport parameters. With adjustments in these parameters, it provides an acceptable match to field data.

  19. Multiple states in river and lake ecosystems.

    PubMed Central

    Dent, C Lisa; Cumming, Graeme S; Carpenter, Stephen R

    2002-01-01

    Nonlinear models of ecosystem dynamics that incorporate positive feedbacks and multiple, internally reinforced states have considerable explanatory power. However, linear models may be adequate, particularly if ecosystem behaviour is primarily controlled by external processes. In lake ecosystems, internal (mainly biotic) processes are thought to have major impacts on system behaviour, whereas in rivers, external (mainly physical) factors have traditionally been emphasized. We consider the hypothesis that models that exhibit multiple states are useful for understanding the behaviour of lake ecosystems, but not as useful for understanding stream ecosystems. Some of the best-known examples of multiple states come from lake ecosystems. We review some of these examples, and we also describe examples of multiple states in rivers. We conclude that the hypothesis is an oversimplification; the importance of physical forcing in rivers does not eliminate the possibility of internal feedbacks that create multiple states, although in rivers these feedbacks are likely to include physical as well as biotic processes. Nonlinear behaviour in aquatic ecosystems may be more common than current theory indicates. PMID:12079525

  20. Interference of allelopathic rice with paddy weeds at the root level.

    PubMed

    Yang, X-F; Kong, C-H

    2017-02-20

    Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy. Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus-galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice). Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus-galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application. The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop-weed allelopathic interaction.

  1. Comparative cytological and transcriptomic analysis of pollen development in autotetraploid and diploid rice.

    PubMed

    Wu, Jinwen; Shahid, Muhammad Qasim; Guo, Haibin; Yin, Wei; Chen, Zhixiong; Wang, Lan; Liu, Xiangdong; Lu, Yonggen

    2014-12-01

    Autotetraploid rice has greater genetic variation and higher vigor than diploid rice, but low pollen fertility is one of the major reasons for low yield of autotetraploid rice. Very little is known about the molecular mechanisms of low pollen fertility of autotetraploid rice. In this study, cytological observations and microarray analysis were used to assess the genetic variation during pollen development in autotetraploid and diploid rice. Many abnormal chromosome behaviors, such as mutivalents, lagged chromosomes, asynchronous cell division, and so on, were found during meiosis in autotetraploid. Microsporogenesis and microgametogenesis in autotetraploid rice was similar to diploid rice, but many different kinds of abnormalities, including microspores degeneration, multi-aperture, and abnormal cell walls, were found in autotetraploid rice. Compared with diploid rice, a total of 1,251 genes were differentially expressed in autotetraploid rice in pollen transcriptome, among them 1,011 and 240 genes were up-regulated and down-regulated, respectively. 124 and 6 genes were co-up-regulated and co-down-regulated during three pollen development stages, respectively. These results suggest that polyploidy induced up-regulation for most of the genes during pollen development. Quantitative RT-PCR was done to validate 12 differentially expressed genes selected from functional categories based on the gene ontology analysis. These stably expressed genes not only related to the pollen development genes, but also involved in cell metabolism, cell physiology, binding, catalytic activity, molecular transducer activity, and transcription regulator activity. The present study suggests that differential expression of some key genes may lead to complex gene regulation and abnormal pollen development in autotetraploid rice.

  2. Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA's-AVHRR.

    PubMed

    Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun

    2013-01-01

    Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha(-1). Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly.

  3. Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA's-AVHRR

    PubMed Central

    Huang, Jingfeng; Wang, Xiuzhen; Li, Xinxing; Tian, Hanqin; Pan, Zhuokun

    2013-01-01

    Grain-yield prediction using remotely sensed data have been intensively studied in wheat and maize, but such information is limited in rice, barley, oats and soybeans. The present study proposes a new framework for rice-yield prediction, which eliminates the influence of the technology development, fertilizer application, and management improvement and can be used for the development and implementation of provincial rice-yield predictions. The technique requires the collection of remotely sensed data over an adequate time frame and a corresponding record of the region's crop yields. Longer normalized-difference-vegetation-index (NDVI) time series are preferable to shorter ones for the purposes of rice-yield prediction because the well-contrasted seasons in a longer time series provide the opportunity to build regression models with a wide application range. A regression analysis of the yield versus the year indicated an annual gain in the rice yield of 50 to 128 kg ha−1. Stepwise regression models for the remotely sensed rice-yield predictions have been developed for five typical rice-growing provinces in China. The prediction models for the remotely sensed rice yield indicated that the influences of the NDVIs on the rice yield were always positive. The association between the predicted and observed rice yields was highly significant without obvious outliers from 1982 to 2004. Independent validation found that the overall relative error is approximately 5.82%, and a majority of the relative errors were less than 5% in 2005 and 2006, depending on the study area. The proposed models can be used in an operational context to predict rice yields at the provincial level in China. The methodologies described in the present paper can be applied to any crop for which a sufficient time series of NDVI data and the corresponding historical yield information are available, as long as the historical yield increases significantly. PMID:23967112

  4. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines.

    PubMed

    Wang, Weiwei; Meng, Bo; Ge, Xiaomeng; Song, Shuhui; Yang, Yue; Yu, Xiaomin; Wang, Liguo; Hu, Songnian; Liu, Siqi; Yu, Jun

    2008-11-01

    Elite rice hybrids, when compared to their parental lines, exhibit increased yield and other favorable agronomical traits, such as pathogen- and water-stress resistances, which are described as heterosis, and the molecular mechanism of heterosis remains to be elucidated. Since genomic sequences of the paternal (9311) and maternal lines (P64S) of a major rice hybrid variety LYP9 (Liang-You-Pei-Jiu) were acquired recently, we performed a proteomic study on mature embryos of this hybrid triad based on 2-DE and MALDI-TOF MS analyses, and identified 54 differentially expressed proteins involved in major biological processes including nutrient reservoir, response to stress, and metabolism. We observed that most of the storage proteins exhibit overdominance and stress-induced proteins display additivity. We compared proteomic results with transcriptomic data generated from the same embryo samples and found 28 candidate heterosis-associated genes shared by the two datasets. We further traced back to their genomic structures including protein-coding and regulatory regions and found that most of these genes have multiple copies in rice genomes as paralogous genes. Based on alignment of coding and regulation regions, we found that most of the differentially expressed genes at both protein and RNA levels are recent gene duplicates (paralogous genes) with relative little difference in protein-coding regions between orthologous genes (between genes of the two parental genomes) as compared to regulatory regions that harbor numerous indels and base substitutions.

  5. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.

    PubMed

    Xue, Weiya; Xing, Yongzhong; Weng, Xiaoyu; Zhao, Yu; Tang, Weijiang; Wang, Lei; Zhou, Hongju; Yu, Sibin; Xu, Caiguo; Li, Xianghua; Zhang, Qifa

    2008-06-01

    Yield potential, plant height and heading date are three classes of traits that determine the productivity of many crop plants. Here we show that the quantitative trait locus (QTL) Ghd7, isolated from an elite rice hybrid and encoding a CCT domain protein, has major effects on an array of traits in rice, including number of grains per panicle, plant height and heading date. Enhanced expression of Ghd7 under long-day conditions delays heading and increases plant height and panicle size. Natural mutants with reduced function enable rice to be cultivated in temperate and cooler regions. Thus, Ghd7 has played crucial roles for increasing productivity and adaptability of rice globally.

  6. Efficacy of bacillus biocontrol agents for management of sheath blight and narrow brown leaf spot in organic rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic rice production has significantly increased in the U. S. over the last decade. Growers lack effective tools to manage sheath blight, caused by Rhizoctonia solani, and narrow brown leaf spot (NBLS), caused by Cercospora janseana, two major diseases affecting organic rice production. An experi...

  7. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As one of the most important staple crops, rice not only provides more than one fifth of daily calories for half of the world’s human population but is also a major source of mineral nutrients. However, little is known about the genetic basis of mineral nutrient accumulation in rice grain such as co...

  8. Ecosystems, Teacher's Guide.

    ERIC Educational Resources Information Center

    California Univ., Berkeley. Science Curriculum Improvement Study.

    The Science Curriculum Improvement Study has developed this teacher's guide to "Ecosystems," the sixth part of a six unit life science curriculum sequence. The six basic units, emphasizing organism-environment interactions, are organisms, life cycles, populations, environments, communities, and ecosystems. They make use of scientific and…

  9. [Complexity of land ecosystem].

    PubMed

    Wu, Cifang; Chen, Meiqiu

    2002-06-01

    In recent years, complexity studies has become a new research region and been widely applied in engineering, biology, economy, management, military, police and sociology. In this paper, from the view of complex science, the main complexity characteristics of land ecosystem were described, furthermore, the application of fractal, chaos, and artificial neural network on the complexity of land ecosystem were also discussed.

  10. Where Will Ecosystems Go?

    SciTech Connect

    Janetos, Anthony C.

    2008-09-29

    Climate-induced changes in ecosystems have been both modeled and documented extensively over the past 15-20 years. Those changes occur in the context of many other stresses and interacting factors, but it is clear that many, if not most, ecosystems are sensitive to changing climate.

  11. The Library as Ecosystem

    ERIC Educational Resources Information Center

    Walter, Scott

    2008-01-01

    Ecology is the study of interactions between organisms and their environment, and the academic library could be considered to be an ecosystem, i.e., a "biological organization" in which multiple species must interact, both with one another and with their environment. The metaphor of the library as ecosystem is flexible enough to be applied not…

  12. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran.

    PubMed

    Liu, Lei; Wen, Wei; Zhang, Ruifen; Wei, Zhencheng; Deng, Yuanyuan; Xiao, Juan; Zhang, Mingwei

    2017-01-01

    In this study, phenolic profiles and antioxidant activity of rice bran were analyzed following successive treatment by gelatinization, liquefaction and complex enzyme hydrolysis. Compared with gelatinization alone, liquefaction slightly increased the total amount of phenolics and antioxidant activity as measured by ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Complex enzyme hydrolysis significantly increased the total phenolics, flavonoids, FRAP and ORAC by 46.24%, 79.13%, 159.14% and 41.98%, respectively, compared to gelatinization alone. Furthermore, ten individual phenolics present in free or soluble conjugate forms were also analyzed following enzymatic processing. Ferulic acid experienced the largest release, followed by protocatechuic acid and then quercetin. Interestingly, a major proportion of phenolics existed as soluble conjugates, rather than free form. Overall, complex enzyme hydrolysis releases phenolics, thus increasing the antioxidant activity of rice bran extract. This study provides useful information for processing rice bran into functional beverage rich in phenolics.

  13. Regime shifts and resilience in China's coastal ecosystems.

    PubMed

    Zhang, Ke

    2016-02-01

    Regime shift often results in large, abrupt, and persistent changes in the provision of ecosystem services and can therefore have significant impacts on human wellbeing. Understanding regime shifts has profound implications for ecosystem recovery and management. China's coastal ecosystems have experienced substantial deterioration within the past decades, at a scale and speed the world has never seen before. Yet, information about this coastal ecosystem change from a dynamics perspective is quite limited. In this review, I synthesize existing information on coastal ecosystem regime shifts in China and discuss their interactions and cascading effects. The accumulation of regime shifts in China's coastal ecosystems suggests that the desired system resilience has been profoundly eroded, increasing the potential of abrupt shifts to undesirable states at a larger scale, especially given multiple escalating pressures. Policy and management strategies need to incorporate resilience approaches in order to cope with future challenges and avoid major losses in China's coastal ecosystem services.

  14. Potassium hydroxide pulping of rice straw in biorefinery initiatives.

    PubMed

    Jahan, M Sarwar; Haris, Fahmida; Rahman, M Mostafizur; Samaddar, Purabi Rani; Sutradhar, Shrikanta

    2016-11-01

    Rice straw is supposed to be one of the most important lignocellulosic raw materials for pulp mill in Asian countries. The major problem in rice straw pulping is silica. The present research is focused on the separation of silica from the black liquor of rice straw pulping by potassium hydroxide (KOH) and pulp evaluation. Optimum KOH pulping conditions of rice straw were alkali charge 12% as NaOH, cooking temperature 150°C for 2h and material to liquor ratio, 1:6. At this condition pulp yield was 42.4% with kappa number 10.3. KOH pulp bleached to 85% brightness by D0EpD1 bleaching sequences with ClO2 consumption of 25kg/ton of pulp. Silica and lignin were separated from the black liquor of KOH pulping. The amount of recovered silica, lignin and hemicelluloses were 10.4%, 8.4% and 13.0%. The papermaking properties of KOH pulp from rice straw were slightly better than those of corresponding NaOH pulp.

  15. Marker-assisted backcrossing: a useful method for rice improvement.

    PubMed

    Hasan, Muhammad Mahmudul; Rafii, Mohd Y; Ismail, Mohd R; Mahmood, Maziah; Rahim, Harun A; Alam, Md Amirul; Ashkani, Sadegh; Malek, Md Abdul; Latif, Mohammad Abdul

    2015-03-04

    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.

  16. Global Identification of Genes Specific for Rice Meiosis.

    PubMed

    Zhang, Bingwei; Xu, Meng; Bian, Shiquan; Hou, Lili; Tang, Ding; Li, Yafei; Gu, Minghong; Cheng, Zhukuan; Yu, Hengxiu

    2015-01-01

    The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.

  17. Dark septate endophyte decreases stress on rice plants.

    PubMed

    Santos, Silvana Gomes Dos; Silva, Paula Renata Alves da; Garcia, Andres Calderin; Zilli, Jerri Édson; Berbara, Ricardo Luis Louro

    Abiotic stress is one of the major limiting factors for plant development and productivity, which makes it important to identify microorganisms capable of increasing plant tolerance to stress. Dark septate endophytes can be symbionts of plants. In the present study, we evaluated the ability of dark septate endophytes isolates to reduce the effects of water stress in the rice varieties Nipponbare and Piauí. The experiments were performed under gnotobiotic conditions, and the water stress was induced with PEG. Four dark septate endophytes were isolated from the roots of wild rice (Oryza glumaepatula) collected from the Brazilian Amazon. Plant height as well as shoot and root fresh and dry matter were measured. Leaf protein concentrations and antioxidant enzyme activity were also estimated. The dark septate endophytes were grown in vitro in Petri dishes containing culture medium; they exhibited different levels of tolerance to salinity and water stress. The two rice varieties tested responded differently to inoculation with dark septate endophytes. Endophytes promoted rice plant growth both in the presence and in the absence of a water deficit. Decreased oxidative stress in plants in response to inoculation was observed in nearly all inoculated treatments, as indicated by the decrease in antioxidant enzyme activity. Dark septate endophytes fungi were shown to increase the tolerance of rice plants to stress caused by water deficiency.

  18. Canned rice products as Philippine military food ration.

    PubMed

    Azanza, Maria Patricia V

    2003-05-01

    Canned prototypes of rice (CR) and rice meal with pork sausage (CRM) were developed as military food ration models for evaluation by personnel in the Bonifacio Naval Station, Fort Bonifacio, Makati, Philippines. The prototypes were produced based on the assumption that a serving size equivalent to 400 g cooked rice and a meat-based viand using a 1:4 (wt/wt) viand to rice ratio was adequate as a single-serve meal for a typical Philippine military personnel. The CR and CRM prototypes were low acid products with pH values of 4.9 and 5.5, respectively. The processed rice portions of the prototypes showed about 200% volume and weight increases, moderate clumpiness and low percentage breakage. More than 90% of the respondents agreed that CR and CRM were suitable military food rations. Majority of the panelists indicated preference for meat-based and poultry-based viands. Bulk and weight portativity problems, however, were raised with the 400 g serving size of cooked products in cans.

  19. International Consortium of Rice Mutagenesis: resources and beyond

    PubMed Central

    2013-01-01

    Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses. As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds. PMID:24341871

  20. Rice Crop Mapping Using SENTINEL-1A Phenological Metrics

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Son, N. T.; Chen, C. R.; Chang, L. Y.; Chiang, S. H.

    2016-06-01

    Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter-spring, summer-autumn) in the Mekong River Delta (MRD), Vietnam through three main steps: (1) data pre-processing, (3) rice classification based on crop phenological metrics, and (4) accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government's rice area statistics for such crops (R2 > 0.95). The values of relative error in area obtained for the winter-spring and summer-autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  1. Identification of climate-resilient integrated nutrient management practices for rice-rice cropping system—an empirical approach to uphold food security

    NASA Astrophysics Data System (ADS)

    Subash, N.; Gangwar, B.; Singh, Rajbir; Sikka, A. K.

    2015-01-01

    8.8 % in system productivity. This study highlights the adaptive capacity of different integrated nutrient management practices to rainfall and temperature variability under a rice-rice cropping system in humid, subhumid, and semiarid ecosystems.

  2. LABA1, a Domestication Gene Associated with Long, Barbed Awns in Wild Rice.

    PubMed

    Hua, Lei; Wang, Diane R; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Xiao, Langtao; Zhu, Zuofeng; Fu, Qiang; Sun, Xianyou; Gu, Ping; Cai, Hongwei; McCouch, Susan R; Sun, Chuanqing

    2015-07-01

    Common wild rice (Oryza rufipogon), the wild relative of Asian cultivated rice (Oryza sativa), flaunts long, barbed awns, which are necessary for efficient propagation and dissemination of seeds. By contrast, O. sativa cultivars have been selected to be awnless or to harbor short, barbless awns, which facilitate seed processing and storage. The transition from long, barbed awns to short, barbless awns was a crucial event in rice domestication. Here, we show that the presence of long, barbed awns in wild rice is controlled by a major gene on chromosome 4, LONG AND BARBED AWN1 (LABA1), which encodes a cytokinin-activating enzyme. A frame-shift deletion in LABA1 of cultivated rice reduces the cytokinin concentration in awn primordia, disrupting barb formation and awn elongation. Sequencing analysis demonstrated low nucleotide diversity and a selective sweep encompassing an ∼800-kb region around the derived laba1 allele in cultivated rice. Haplotype analysis revealed that the laba1 allele originated in the japonica subspecies and moved into the indica gene pool via introgression, suggesting that humans selected for this locus in early rice domestication. Identification of LABA1 provides new insights into rice domestication and also sheds light on the molecular mechanism underlying awn development.

  3. Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress.

    PubMed

    Pires, Inês S; Negrão, Sónia; Oliveira, M Margarida; Purugganan, Michael D

    2015-09-01

    Increase in soil salinity levels is becoming a major cause of crop yield losses worldwide. Rice (Oryza sativa) is the most salt-sensitive cereal crop, and many studies have focused on rice salinity tolerance, but a global understanding of this crop's response to salinity is still lacking. We systematically analyzed phenotypic data previously collected for 56 rice genotypes to assess the extent to which rice uses three known salinity tolerance mechanisms: shoot-ion independent tolerance (or osmotic tolerance), ion exclusion, and tissue tolerance. In general, our analyses of different phenotypic traits agree with results of previous rice salinity tolerance studies. However, we also established that the three salinity tolerance mechanisms mentioned earlier appear among rice genotypes and that none of them is predominant. Against the pervasive view in the literature that the K(+) /Na(+) ratio is the most important trait in salinity tolerance, we found that the K(+) concentration was not significantly affected by salt stress in rice, which puts in question the importance of K(+) /Na(+) when analyzing rice salt stress response. Not only do our results contribute to improve our global understanding of salt stress response in an important crop, but we also use our results together with an extensive literature research to highlight some issues commonly observed in salinity stress tolerance studies and to propose solutions for future experiments.

  4. Characterization of functional trait diversity among Indian cultivated and weedy rice populations

    PubMed Central

    Rathore, M.; Singh, Raghwendra; Kumar, B.; Chauhan, B. S.

    2016-01-01

    Weedy rice, a menace in rice growing areas globally, is biosimilar having attributes similar to cultivated and wild rice, and therefore is difficult to manage. A study was initiated to characterize the functional traits of 76 weedy rice populations and commonly grown rice cultivars from different agro-climatic zones for nine morphological, five physiological, and three phenological parameters in a field experiment under an augmented block design. Comparison between weedy and cultivated rice revealed a difference in duration (days) from panicle emergence to heading as the most variable trait and awn length as the least variable one, as evidenced from their coefficients of variation. The results of principal component analysis revealed the first three principal components to represent 47.3% of the total variation, which indicates an important role of transpiration, conductance, leaf-air temperature difference, days to panicle emergence, days to heading, flag leaf length, SPAD (soil-plant analysis development), grain weight, plant height, and panicle length to the diversity in weedy rice populations. The variations existing in weedy rice population are a major reason for its wider adaptability to varied environmental conditions and also a problem while trying to manage it. PMID:27072282

  5. Weed communities of rain-fed lowland rice vary with infestation by Rhamphicarpa fistulosa

    NASA Astrophysics Data System (ADS)

    Houngbédji, Tossimidé; Dessaint, Fabrice; Nicolardot, Bernard; Shykoff, Jacqui A.; Gibot-Leclerc, Stéphanie

    2016-11-01

    The facultative hemiparasitic plant Rhamphicarpa fistulosa (Orobanchaceae) thrives in seasonally wet soils in sub-Saharan Africa, mainly in marginal lowland rice growing environments where weeds are already a major constraint for rice production. Because lowland rice production is increasing in tropical Africa, it is important to ascertain the influence of R. fistulosa on weed plant communities in these rice-growing habitats. We investigated weed plant community richness and composition at four different levels of R. fistulosa infestation across two years of surveys from lowland rice fields in northern Togo (West Africa). Despite a lack of significant differences in community richness among sites with different R. fistulosa infestation levels, there were significant differences in community composition, both when estimated from presence-absence data and from relative abundance data, after controlling statistically for geographic proximity among sites. Rhamphicarpa fistulosa infestation, therefore, may influence the competitive balance between rice and its weeds and shape weed community structure. However, experimental studies are required to elucidate the weed host range of R. fistulosa and the direct and indirect effects of this hemiparasite in rice fields in order to predict its net impact on rice and its weed species.

  6. Chinese rice production area adaptations to climate changes, 1949-2010.

    PubMed

    Li, Zhengguo; Liu, Zhenhuan; Anderson, Weston; Yang, Peng; Wu, Wenbin; Tang, Huajun; You, Liangzhi

    2015-02-17

    Climate change has great impact on cropping system. Understanding how the rice production system has historically responded to external forces, both natural and anthropogenic, will provide critical insights into how the system is likely to respond in the future. The observed historic rice movement provides insights into the capability of the rice production system to adapt to climate changes. Using province-level rice production data and historic climate records, here we show that the centroid of Chinese rice production shifted northeastward over 370 km (2.98°N in latitude and 1.88°E in longitude) from 1949 to 2010. Using a linear regression model, we examined the driving factors, in particular climate, behind such rice production movement. While the major driving forces of the rice relocation are such social economic factors as urbanization, irrigation investment, and agricultural or land use policy changes, climate plays a significant role as well. We found that temperature has been a significant and coherent influence on moving the rice center in China and precipitation has had a significant but less spatially coherent influence.

  7. Genomics-based precision breeding approaches to improve drought tolerance in rice.

    PubMed

    Swamy, B P Mallikarjuna; Kumar, Arvind

    2013-12-01

    Rice (Oryza sativa L.), the major staple food crop of the world, faces a severe threat from widespread drought. The development of drought-tolerant rice varieties is considered a feasible option to counteract drought stress. The screening of rice germplasm under drought and its characterization at the morphological, genetic, and molecular levels revealed the existence of genetic variation for drought tolerance within the rice gene pool. The improvements made in managed drought screening and selection for grain yield under drought have significantly contributed to progress in drought breeding programs. The availability of rice genome sequence information, genome-wide molecular markers, and low-cost genotyping platforms now makes it possible to routinely apply marker-assisted breeding approaches to improve grain yield under drought. Grain yield QTLs with a large and consistent effect under drought have been indentified and successfully pyramided in popular rice mega-varieties. Various rice functional genomics resources, databases, tools, and recent advances in "-omics" are facilitating the characterization of genes and pathways involved in drought tolerance, providing the basis for candidate gene identification and allele mining. The transgenic approach is successful in generating drought tolerance in rice under controlled conditions, but field-level testing is necessary. Genomics-assisted drought breeding approaches hold great promise, but a well-planned integration with standardized phenotyping is highly essential to exploit their full potential.

  8. Methane emission from fields with three various rice straw treatments in Taiwan paddy soils.

    PubMed

    Liou, Rey-May; Huang, Shan-Ney; Lin, Chin-Wei; Chen, Shin-Hsiung

    2003-07-01

    Flooded rice fields are one of the major biogenic methane sources. In this study, the effects of straw residual treatments on methane emission from paddy fields were discussed. The experimental field was located at Tainan District Agricultural Improvement Station in Chia-Yi county (23 degrees 25'08''N, 120degrees16'26''E) of southern Taiwan throughout the first and the second crop seasons in 2000. The seasonal methane fluxes in the first crop season with rice stubble removed, rice straw burned and rice straw incorporated were 4.41, 3.78 and 5.27 g CH4 m(-2), and the values were 32.8, 38.9 and 75.1 g CH4 m(-2) in the second crop season, respectively. In comparison of three management methods of rice straw residue, the incorporation of rice straw residue should show a significant tendency for enhancing methane emission in the second crop season. Moreover, stubble removed and straw burned treatments significantly reduced CH4 emissions by 28 approximately 56% emissions compared to straw incorporated plot. Concerning for air quality had led to legislation restricting rice straw burning, removing of rice stubble might be an appropriate methane mitigation strategy in Taiwan paddy soils.

  9. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    PubMed

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  10. SAR Agriculture Rice Production Estimation (SARPE)

    NASA Astrophysics Data System (ADS)

    Raimadoya, M.

    2013-12-01

    The study of SAR Agriculture Rice Production Estimation (SARPE) was held in Indonesia on 2012, as part of Asia-Rice Crop Estimation & Monitoring (Asia-RiCE), which is a component for the GEO Global Agricultural Monitoring (GEOGLAM) initiative. The study was expected to give a breakthrough result, by using radar technology and paradigm shift of the standard production estimation system from list frame to area frame approach. This initial product estimation system is expected to be refined (fine tuning) in 2013, by participating as part of Technical Demonstration Site (Phase -1A) of Asia-RICE. The implementation period of this initial study was from the date of March 12 to December 10, 2012. The implementation of the study was done by following the approach of the BIMAS-21 framework, which has been developed since 2008. The results of this study can be briefly divided into two major components, namely: Rice-field Baseline Mapping (PESBAK - Peta Sawah Baku) and Crop Growth Monitoring. Rice-fields were derived from the mapping results of the Ministry of Agriculture (Kemtan), and validated through Student Extension Campaign of the Faculty of Agriculture, Bogor Agricultural University (IPB). While for the crop growth, it was derived from the results of image analysis process. The analysis was done, either on radar/Radarsat-2 (medium resolution) or optical/ MODIS (low resolution), based on the Planting Calendar (KATAM) of Kemtan. In this case, the planting season II/2012-2013 of rice production centers in West Java Province (Karawang, Subang and Indramayu counties). The selection of crop season and county were entirely dependent on the quality of the available PESBAK and procurement process of radar imagery. The PESBAK is still in the form of block instead of fields, so it can not be directly utilized in this study. Efforts to improve the PESBAK can not be optimal because the provided satellite image (ECW format) is not the original one. While the procurement process of

  11. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.

    PubMed

    Tian, Zhixi; Qian, Qian; Liu, Qiaoquan; Yan, Meixian; Liu, Xinfang; Yan, Changjie; Liu, Guifu; Gao, Zhenyu; Tang, Shuzhu; Zeng, Dali; Wang, Yonghong; Yu, Jianming; Gu, Minghong; Li, Jiayang

    2009-12-22

    More than half of the world's population uses rice as a source of carbon intake every day. Improving grain quality is thus essential to rice consumers. The three main properties that determine rice eating and cooking quality--amylose content, gel consistency, and gelatinization temperature--correlate with one another, but the underlying mechanism of these properties remains unclear. Through an association analysis approach, we found that genes related to starch synthesis cooperate with each other to form a fine regulating network that controls the eating and cooking quality and defines the correlation among these three properties. Genetic transformation results verified the association findings and also suggested the possibility of developing elite cultivars through modification with selected major and/or minor starch synthesis-related genes.

  12. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent.

    PubMed

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-02-18

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10-50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass.

  13. Evolution of Compatibility Range in the Rice-Magnaporthe oryzae System: An Uneven Distribution of R Genes Between Rice Subspecies.

    PubMed

    Gallet, Romain; Fontaine, Colin; Bonnot, François; Milazzo, Joëlle; Tertois, Christophe; Adreit, Henri; Ravigné, Virginie; Fournier, Elisabeth; Tharreau, Didier

    2016-04-01

    Efficient strategies for limiting the impact of pathogens on crops require a good understanding of the factors underlying the evolution of compatibility range for the pathogens and host plants, i.e., the set of host genotypes that a particular pathogen genotype can infect and the set of pathogen genotypes that can infect a particular host genotype. Until now, little is known about the evolutionary and ecological factors driving compatibility ranges in systems implicating crop plants. We studied the evolution of host and pathogen compatibility ranges for rice blast disease, which is caused by the ascomycete Magnaporthe oryzae. We challenged 61 rice varieties from three rice subspecies with 31 strains of M. oryzae collected worldwide from all major known genetic groups. We determined the compatibility range of each plant variety and pathogen genotype and the severity of each plant-pathogen interaction. Compatibility ranges differed between rice subspecies, with the most resistant subspecies selecting for pathogens with broader compatibility ranges and the least resistant subspecies selecting for pathogens with narrower compatibility ranges. These results are consistent with a nested distribution of R genes between rice subspecies.

  14. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent

    PubMed Central

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-01-01

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10–50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152

  15. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 1 May 2002) The Science This image is from the region of Syrtis Major, which is dominated by a low-relief shield volcano. This area is believed to be an area of vigorous aeolian activity with strong winds in the east-west direction. The effects of these winds are observed as relatively bright streaks across the image, extending from topographic features such as craters. The brighter surface material probably indicates a smaller relative particle size in these areas, as finer particles have a higher albedo. The bright streaks seen off of craters are believed to have formed during dust storms. A raised crater rim can cause a reduction in the wind velocity directly behind it, which results in finer particles being preferentially deposited in this location. In the top half of the image, there is a large bright streak that crosses the entire image. There is no obvious topographic obstacle, therefore it is unclear whether it was formed in the same manner as described above. This image is located northwest of Nili Patera, a large caldera in Syrtis Major. Different flows from the caldera eruptions can be recognized as raised ridges, representing the edge of a flow lobe. The Story In the 17th century, Holland was in its Golden Age, a time of cultural greatness and immense political and economic influence in the world. In that time, lived a inquisitive person named Christian Huygens. As a boy, he loved to draw and to figure out problems in mathematics. As a man, he used these talents to make the first detailed drawings of the Martian surface - - only 50 years or so after Galileo first turned his telescope on Mars. Mars suddenly became something other than a small red dot in the sky. One of the drawings Huygens made was of a dark marking on the red planet's surface named Syrtis Major. Almost 350 years later, here we are with an orbiter that can show us this place in detail. Exploration lives! It's great we can study this area up close. In earlier periods of history

  16. SEVEN PILLARS OF ECOSYSTEM MANAGEMENT

    EPA Science Inventory

    Ecosystem management is widely proposed in the popular and professional literature as the modern and preferred way of managing natural resources and ecosystems. Advocates glowingly describe ecosystem management as an approach that will protect the environment, maintain healthy ec...

  17. Effect of rice cultivation on malaria transmission in central Kenya.

    PubMed

    Muturi, Ephantus J; Muriu, Simon; Shililu, Josephat; Mwangangi, Joseph; Jacob, Benjamin G; Mbogo, Charles; Githure, John; Novak, Robert J

    2008-02-01

    A 12-month field study was conducted between April 2004 and March 2005 to determine the association between irrigated rice cultivation and malaria transmission in Mwea, Kenya. Adult mosquitoes were collected indoors twice per month in three villages representing non-irrigated, planned, and unplanned rice agro-ecosystems and screened for blood meal sources and Plasmodium falciparum circumsporozoite proteins. Anopheles arabiensis Patton and An. funestus Giles comprised 98.0% and 1.9%, respectively, of the 39,609 female anophelines collected. Other species including An. pharoensis Theobald, An. maculipalpis Giles, An. pretoriensis Theobald, An. coustani Laveran, and An. rufipes Gough comprised the remaining 0.1%. The density of An. arabiensis was highest in the planned rice village and lowest in the non-irrigated village and that of An. funestus was significantly higher in the non-irrigated village than in irrigated ones. The human blood index (HBI) for An. arabiensis was significantly higher in the non-irrigated village compared with irrigated villages. For An. funestus, the HBI for each village differed significantly from the others, being highest in the non-irrigated village and lowest in the planned rice village. The sporozoite rate and annual entomologic inoculation rate (EIR) for An. arabiensis was 1.1% and 3.0 infective bites per person, respectively with no significant difference among villages. Sporozoite positive An. funestus were detected only in planned rice and non-irrigated villages. Overall, 3.0% of An. funestus samples tested positive for Plasmodium falciparum sporozoites. The annual EIR of 2.21 for this species in the non-irrigated village was significantly higher than 0.08 for the planned rice village. We conclude that at least in Mwea Kenya, irrigated rice cultivation may reduce the risk of malaria transmission by An. funestus but has no effect on malaria transmission by An. arabiensis. The zoophilic tendency of malaria vectors in irrigated areas

  18. Recovery of marine animal populations and ecosystems.

    PubMed

    Lotze, Heike K; Coll, Marta; Magera, Anna M; Ward-Paige, Christine; Airoldi, Laura

    2011-11-01

    Many marine populations and ecosystems have experienced strong historical depletions, yet reports of recoveries are increasing. Here, we review the growing research on marine recoveries to reveal how common recovery is, its magnitude, timescale and major drivers. Overall, 10-50% of depleted populations and ecosystems show some recovery, but rarely to former levels of abundance. In addition, recovery can take many decades for long-lived species and complex ecosystems. Major drivers of recovery include the reduction of human impacts, especially exploitation, habitat loss and pollution, combined with favorable life-history and environmental conditions. Awareness, legal protection and enforcement of management plans are also crucial. Learning from historical recovery successes and failures is essential for implementing realistic conservation goals and promising management strategies.

  19. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  20. Syrtis Major

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 6 June 2002) The Science This image, located near the equator and 288W (72E), is near the southern edge of a low, broad volcanic feature called Syrtis Major. A close look at this image reveals a wrinkly texture that indicates a very rough surface that is associated with the lava flows that cover this region. On a larger scale, there are numerous bright streaks that trail topographic features such as craters. These bright streaks are in the wind shadows of the craters where dust that settles onto the surface is not as easily scoured away. It is important to note that these streaks are only bright in a relative sense to the surrounding image. Syrtis Major is one of the darkest regions on Mars and it is as dark as fresh basalt flows or dunes are on Earth. The Story Cool! It almost looks as if nature has 'painted' comets on the surface of Mars, using craters as comet cores and dust as streaky tails. Of course, that's just an illusion. As in many areas of Mars, the wind is behind the creation of such fantastic landforms. The natural phenomenon seen here gives this particular surface of Mars a very dynamic, fast-moving, almost luminous 'cosmic personality.' The bright, powdery-looking streaks of dust are in the 'wind shadows' of craters, where dust that settles onto the surface is not as easily scoured away. That's because the wind moves across the land in a particular direction, and a raised surface like the rim of a crater 'protects' dust from being completely blown away on the other side. The raised landforms basically act as a buffer. From the streaks seen above, you can tell the wind was blowing in a northeast to southwest direction. Why are the streaks so bright? Because they contrast with the really dark underlying terrain in this volcanic area of Mars. Syrtis Major is one of the darkest regions on Mars because it is made of basalt. Basalt is typically dark gray or black, and forms when a certain type of molten lava cools. The meaning of the word basalt

  1. Rice crop monitoring with multitemporal MODIS-Landsat data fusion

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh

    2014-05-01

    Rice is one of the most important cereal crops in the world and is the major crop in Taiwan. However, it is a challenge because rice fields are generally small and fragmental, while crop mapping requires information of crop phenology associating with the high spatiotemporal resolution of remote-sensing data. This problem can be partially overcome by a spatiotemporal fusion to create a new dataset that has a better spatiotemporal resolution. In this study, the Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat imageries were used because MODIS data, which a spatial resolution of land bands of 500 m and temporal resolution of 1-2 days, were able to achieve the phenological information of rice crops at a large region; while Landsat data demonstrate the effectiveness to collectively map small patches of crop fields at the subnational level due to its spatial resolution of 30 m. However, the temporal resolution of Landsat data is lower (16 days), making it difficult to investigate temporal responses of crop phenology from rice fields. The main objective of this study was to take into account of advantages of MODIS and Landsat imageries to generate a synthetic dataset at Landsat spatial resolution and MODIS temporal resolution for rice crop mapping in Taiwan. The methodology comprised five steps: (1) satellite data for 2011 were pre-processed to account for geometric and radiometric correction of MODIS and Landsat data, (2) MODIS-Landsat data fusion using the Spatial Temporal Adaptive Fusion Model (STARFM), (3) construct the smooth time-series Normalized Difference Vegetation Index (NDVI) data using wavelet transform, (4) rice crop classification using phenological information of crop phenology, and (5) accuracy assessment. The data fusion results for day of year (DOY) 153 were compared with the reference Landsat data (DOY 153) indicated a close correlation (R2 = 0.81). The phenology-based classification results compared with the ground reference data

  2. Nitrous oxide emissions from wetland rice-duck cultivation systems in Southern China.

    PubMed

    Li, Chengfang; Cao, Cougui; Wang, Jingping; Zhan, Ming; Yuan, Weiling; Ahmad, Shahrear

    2009-01-01

    Nitrous oxide (N2O) emissions from a rice-duck cultivation system in the subtropical region of China and its regulating factors were investigated by using a static chambers technique during rice growth seasons in 2006 and 2007. The experimental field was equally divided into six plots for two different treatments: One was a conventional rice field (CK) and the other was a rice-duck ecosystem (RD). With the same amount of urea applied as basal fertilization, N2O emission fluxes from RD and CK followed a similar seasonal variation trend. During the flooding seasons, the N2O emission flux was not correlated with temperature, but it was significantly related to soil inorganic nitrogen (SIN) (p < 0.01) and soil pH (p < 0.01). After drainage, the N2O emission flux was not correlated with temperature, SIN, and soil pH. Our experimental data showed that peaks of N2O emission flux occurred both in 2 weeks after urea application and after drainage. Compared to CK, RD could significantly increase N2O emission. We evaluated the integrated global warming potentials (GWPs) of a rice-duck cultivation system based on methane (CH4) and N2O emission, which showed that RD could suppress the total amount of CH4 and N2O emissions from rice paddies. Moreover, because the decrease of CH4 emissions from RD compared to CK was far more than the increase of N2O emissions from RD compared to CK, RD greatly reduced integrated GWPs (CH4 + N2O) compared to CK. So, the rice-duck cultivation system is an effective strategy for reducing integrated GWPs of the rice-duck cultivation systems based on CH4 and N2O in southern China and will contribute to alleviating global warming.

  3. Sea level rise impacts on rice production: The Ebro Delta as an example.

    PubMed

    Genua-Olmedo, Ana; Alcaraz, Carles; Caiola, Nuno; Ibáñez, Carles

    2016-11-15

    Climate change and sea level rise (SLR) are global impacts threatening the sustainability of coastal territories and valuable ecosystems such as deltas. The Ebro Delta is representative of the vulnerability of coastal areas to SLR. Rice cultivation is the main economic activity in the region. Rice fields occupy most of the delta (ca. 65%) and are vulnerable to accelerated SLR and consequent increase in soil salinity, the most important physical factor affecting rice production. We developed a model to predict the impacts of SLR on soil salinity and rice production under different scenarios predicted by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change by coupling data from Geographic Information Systems with Generalized Linear Models. Soil salinity data were measured in agricultural parcels and rice production from surveys among farmers. The correlation between observed and soil salinity predicted values was high and significant (Pearson's r=0.72, P<0.0001), thus supporting the predictive ability of the model. Soil salinity was directly related to distances to the river, to the delta inner border, and to the river old mouth, while clay presence, winter river flow and surface elevation were inversely related to it. Surface elevation was the most important variable in explaining soil salinity. Rice production was negatively influenced by soil salinity, thus the models predict a decrease from higher elevation zones close to the river to the shoreline. The model predicts a maximum reduction in normalized rice production index from 61.2% in 2010 to 33.8% by 2100 in the worst considered scenario (SLR=1.8m), with a decrease of profit up to 300 € per hectare. The model can be applied to other deltaic areas worldwide, and help rice farmers and stakeholders to identify the most vulnerable areas to SLR impacts.

  4. Jasmonic acid and salicylic acid activate a common defense system in rice

    PubMed Central

    Tamaoki, Daisuke; Seo, Shigemi; Yamada, Shoko; Kano, Akihito; Miyamoto, Ayumi; Shishido, Hodaka; Miyoshi, Seika; Taniguchi, Shiduku; Akimitsu, Kazuya; Gomi, Kenji

    2013-01-01

    Jasmonic acid (JA) and salicylic acid (SA) play important roles in plant defense systems. JA and SA signaling pathways interact antagonistically in dicotyledonous plants, but, the status of crosstalk between JA and SA signaling is unknown in monocots. Our rice microarray analysis showed that more than half of the genes upregulated by the SA analog BTH are also upregulated by JA, suggesting that a major portion of the SA-upregulated genes are regulated by JA-dependent signaling in rice. A common defense system that is activated by both JA and SA is thus proposed which plays an important role in pathogen defense responses in rice. PMID:23518581

  5. Development of casparian strip in rice cultivars

    PubMed Central

    Cai, Xia; Chen, Tong; Zhou, QingYuan; Xu, Lei; Qu, LeQing; Hua, XueJun

    2011-01-01

    The development of Casparian strips (CSs) on the endo- and exodermis and their chemical components in roots of three cultivars of rice (Oryza sativa) with different salt tolerance were compared using histochemistry and Fourier transform infrared (FTIR) spectroscopy. The development and deposition of suberin lamellae of CSs on the endo- and exodermis in the salt-tolerant cultivar Liaohan 109 was earlier than in the moderately tolerant cultivar Tianfeng 202 and the sensitive cultivar Nipponbare. The detection of chemical components indicated major contributions to the structure of the outer part from aliphatic suberin, lignin and cell wall proteins and carbohydrates to the rhizodermis, exodermis, sclerenchyma and one layer of cortical cells in series (OPR) and the endodermal Casparian strip. Moreover, the amounts of these major chemical components in the outer part of the Liaohan 109 root were higher than in Tianfeng 202 and Nipponbare, but there was no distinct difference in endodermal CSs among the three rice cultivars. The results suggest that the exodermis of the salt-tolerant cultivar Liaohan 109 functions as a barrier for resisting salt stress. PMID:21248477

  6. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.

    PubMed

    Seyfferth, Angelia L; Morris, Andrew H; Gill, Rattandeep; Kearns, Kelli A; Mann, Jessica N; Paukett, Michelle; Leskanic, Corey

    2016-05-18

    Arsenic decreases rice yield, and inorganic grain As threatens human health; thus, strategies to decrease rice As are critically needed. Increased plant-available silica (Si) can decrease rice As, yet the source of Si matters. Rice husk, an underutilized and Si-rich byproduct of rice production that contains less labile C and an order of magnitude less As than rice straw, may be an economically viable Si resource to decrease rice As, yet the impact of rice husk incorporation on As in the rice-soil nexus has not been reported. This proof-of-concept study shows that rice husk incorporation to soil (1% w/w) decreases inorganic grain As by 25-50% without negatively affecting grain Cd, yield, or dissolved CH4 levels. Rice husk is a critical yet perhaps overlooked resource to improve soil quality through enhanced nutrient availability and attenuate human health risks through consumption of As-laden grain.

  7. Ecosystem nitrogen retention and flushing across a soil texture gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most ecosystems retain a majority of reactive N inputs, transforming reactive mineral N into relatively nonreactive stable organic N. Mechanistic explanations for these observations focus on C-dependent processes, and in particular wide C:N ratios. However, in some ecosystems C-dependent mechanism...

  8. Habitat scale mapping of fisheries ecosystem services values in estuaries

    EPA Science Inventory

    Little is known about the variability of ecosystem service values at spatial scales most relevant to local decision makers. Competing definitions of ecosystem services, the paucity of ecological and economic information and the lack of standardization in methodology are major ob...

  9. Relevance of antarctic microbial ecosystems to exobiology

    NASA Technical Reports Server (NTRS)

    Mckay, Christopher P.

    1993-01-01

    Antarctic microbial ecosystems which provide biological and physical analogs that can be used in exobiology are studied. Since the access to extraterrestrial habitats is extremely difficult, terrestrial analogs represent the best opportunity for both formulation and preliminary testing of hypothesis about life. Antarctica, as one of few suitable environments on earth is considered to be a major locus of progress in exobiology.

  10. Rice scene radiation research plan

    NASA Technical Reports Server (NTRS)

    Heilman, J.

    1982-01-01

    Data requirements, tasks to be accomplished, and the technical approaches to be used in identifying the characteristics of rice for crop inventories are listed as well as methods for estimating crop development and assessing its conditions.

  11. Rice in an interdependent world.

    PubMed

    Falck, V T

    1991-01-01

    The purpose of this paper is to examine the outcome of the increasing need and dependence on rice as an essential food, and the potential hazards of this trajectory in an interdependent world, and to propose the need for a supranational system to guide decisions made in areas of mutual dependency among nations. All rice producing countries of the world should be responsible for assuring sufficient quantities and qualities of rice for the world's population. However, there are hazards related to emphasis on rice yields associated with the neglect of overall nutritional needs and also the potential for environmental impact given the need for sustainable development. Scientific measurement and data analyses of interdependent supranational variables are needed to guide policies and practices to insure conditions for life will be favorable for people everywhere.

  12. Lakes Ecosystem Services Online

    EPA Science Inventory

    Northeastern lakes provide valuable ecosystem services that benefit residents and visitors and are increasingly important for provisioning of recreational opportunities and amenities. Concurrently, however, population growth threatens lakes by, for instance, increasing nutrient ...

  13. Ecosystem restoration: Chapter 4

    USGS Publications Warehouse

    Cullinane Thomas, Catherine M.; Skrabis, K. E.; Gascoigne, William

    2012-01-01

    The Department of the Interior extensively supports―through its mission, policy, programs, and funding― the study, planning, implementation, and monitoring of ecosystem restoration. This commitment is reflected in the Department's FY2011-2016 Strategic Plan.

  14. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  15. List identifies threatened ecosystems

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    The International Union for Conservation of Nature (IUCN) announced on 9 September that it will develop a new Red List of Ecosystems that will identify which ecosystems are vulnerable or endangered. The list, which is modeled on the group's Red List of Threatened Species™, could help to guide conservation activities and influence policy processes such as the Convention on Biological Diversity, according to the group. “We will assess the status of marine, terrestrial, freshwater, and subterranean ecosystems at local, regional, and global levels,” stated Jon Paul Rodriguez, leader of IUCN's Ecosystems Red List Thematic Group. “The assessment can then form the basis for concerted implementation action so that we can manage them sustainably if their risk of collapse is low or restore them if they are threatened and then monitor their recovery.”

  16. Molecular and Biochemical Analysis of Two Rice Flavonoid 3’-Hydroxylase to Evaluate Their Roles in Flavonoid Biosynthesis in Rice Grain

    PubMed Central

    Park, Sangkyu; Choi, Min Ji; Lee, Jong Yeol; Kim, Jae Kwang; Ha, Sun-Hwa; Lim, Sun-Hyung

    2016-01-01

    Anthocyanins and proanthocyanidins, the major flavonoids in black and red rice grains, respectively, are mainly derived from 3′,4′-dihydroxylated leucocyanidin. 3′-Hydroxylation of flavonoids in rice is catalyzed by flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21). We isolated cDNA clones of the two rice F3′H genes (CYP75B3 and CYP75B4) from Korean varieties of white, black, and red rice. Sequence analysis revealed allelic variants of each gene containing one or two amino acid substitutions. Heterologous expression in yeast demonstrated that CYP75B3 preferred kaempferol to other substrates, and had a low preference for dihydrokaempferol. CYP75B4 exhibited a higher preference for apigenin than for other substrates. CYP75B3 from black rice showed an approximately two-fold increase in catalytic efficiencies for naringenin and dihydrokaempferol compared to CYP75B3s from white and red rice. The F3′H activity of CYP75B3 was much higher than that of CYP75B4. Gene expression analysis showed that CYP75B3, CYP75B4, and most other flavonoid pathway genes were predominantly expressed in the developing seeds of black rice, but not in those of white and red rice, which is consistent with the pigmentation patterns of the seeds. The expression levels of CYP75B4 were relatively higher than those of CYP75B3 in the developing seeds, leaves, and roots of white rice. PMID:27649148

  17. Differentiation of weedy traits in ALS-resistant red rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a weedy form of cultivated rice (Oryza sativa) that competes aggressively with rice in the southern U.S., reduces yields and contaminates rice grains. The introduction of ClearfieldTM rice, a nontransgenic, herbicide-resistant rice cultivar a decade ago has led to increased use of imazet...

  18. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  19. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  20. Detection of Inorganic Arsenic in Rice Using a Field Test Kit: A Screening Method.

    PubMed

    Bralatei, Edi; Lacan, Severine; Krupp, Eva M; Feldmann, Jörg

    2015-11-17

    Rice is a staple food eaten by more than 50% of the world's population and is a daily dietary constituent in most South East Asian countries where 70% of the rice export comes from and where there is a high level of arsenic contamination in groundwater used for irrigation. Research shows that rice can take up and store inorganic arsenic during cultivation, and rice is considered to be one of the major routes of exposure to inorganic arsenic, a class I carcinogen for humans. Here, we report the use of a screening method based on the Gutzeit methodology to detect inorganic arsenic (iAs) in rice within 1 h. After optimization, 30 rice commodities from the United Kingdom market were tested with the field method and were compared to the reference method (high-performance liquid chromatography-inductively coupled plasma-mass spectrometry, HPLC-ICP-MS). In all but three rice samples, iAs compound can be determined. The results show no bias for iAs using the field method. Results obtained show quantification limits of about 50 μg kg(-1), a good reproducibility for a field method of ±12%, and only a few false positives and negatives (<10%) could only be recorded at the 2015 European Commission (EC) guideline for baby rice of 100 μg kg(-1), while none were recorded at the maximum level suggested by the World Health Organization (WHO) and implemented by the EC for polished and white rice of 200 μg kg(-1). The method is reliable, fast, and inexpensive; hence, it is suggested to be used as a screening method in the field for preselection of rice which violates legislative guidelines.

  1. Impact of phytic acid on nutrient bioaccessibility and antioxidant properties of dehusked rice.

    PubMed

    Lee, H H; Loh, S P; Bong, C F J; Sarbini, S R; Yiu, P H

    2015-12-01

    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars.

  2. Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.).

    PubMed

    Preetha, G; Stanley, J; Suresh, S; Samiyappan, R

    2010-07-01

    The green miridbug, Cyrtorhinus lividipennis, an important natural enemy of the rice brown planthopper (BPH), Nilaparvata lugens plays a major role as a predator in suppressing the pest population. The study assessed the impact of certain potential insecticides used in the rice ecosystem on the miridbug predator and brown planthopper through contact toxicity. Eleven insecticides, including neonicotinoids, diamides, azomethine pyridines, carbamates, pyrethroids, organophosphates and cyclodienes were selected to test their toxicities against the nymphs of C. lividipennis and N. lugens. Median lethal concentration (LC(50)) was determined for each insecticide using an insecticide-coated vial (scintillation) residue bioassay, which revealed BPMC as the highly toxic chemical with an LC(50) of 0.003mga.iL(-1) followed by ethofenprox and clothianidin with LC(50) of 0.006mga.iL(-1) at 48 HAT against C. lividipennis and ethofenprox as the highly toxic chemical with an LC(50) of 0.009mga.iL(-1) followed by clothianidin with an LC(50) of 0.211mga.iL(-1) at 48h after treatment (HAT) against N. lugens. Among the insecticides tested, the cyclodiene compound, endosulfan had the lowest acute contact toxicity (LC(50)=66.65mga.iL(-1) at 48 HAT) to C. lividipennis. Among the insecticides tested, endosulfan, chlorpyriphos, acephate and methyl parathion are regarded as safer to C. lividipennis based on selectivity ratio, hazard quotient and probit substitution method of risk assessments.

  3. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa).

    PubMed

    Prieto, Ana; Campos, Alexandre; Cameán, Ana; Vasconcelos, Vitor

    2011-10-01

    Toxic cyanobacteria are considered emerging world threats, being responsible for the degradation of the aquatic ecosystems. Aphanizomenon ovalisporum produces the toxin Cylindrospermopsin (CYN) being a concern in fresh water habitats. This work aims to increase our knowledge on the effects of this toxic cyanobacterium in plants by studying the alterations in growth parameters and oxidative stress status of rice (Oriza sativa) exposed to the cyanobacteria cell extracts containing CYN. Significant increases in glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities were detected in the different experiments performed. The roots showed to be more sensitive than leaves regarding the enzyme activities. A reduction in the leaf tissue fresh weight was observed after 9 days of plant treatment suggesting a major physiological stress. The exposure of rice plants to a mixture of A. ovalisporum and Microcystis aeruginosa cell extracts containing CYN and microcystins including microcystin-LR, resulted in a significant increase in the GST and GPx activities, suggesting a synergistic effect of both extracts. Together these results point out the negative effects of cyanotoxins on plant growth and oxidative status, induced by A. ovalisporum cell extracts, raising also concerns in the accumulation of CYN.

  4. Detection algorithm for multiple rice seeds images

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Ying, Y. B.

    2006-10-01

    The objective of this research is to develop a digital image analysis algorithm for detection of multiple rice seeds images. The rice seeds used for this study involved a hybrid rice seed variety. Images of multiple rice seeds were acquired with a machine vision system for quality inspection of bulk rice seeds, which is designed to inspect rice seeds on a rotating disk with a CCD camera. Combining morphological operations and parallel processing gave improvements in accuracy, and a reduction in computation time. Using image features selected based on classification ability; a highly acceptable defects classification was achieved when the algorithm was implemented for all the samples to test the adaptability.

  5. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  6. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations.

    PubMed

    Ashkani, S; Rafii, M Y; Shabanimofrad, M; Ghasemzadeh, A; Ravanfar, S A; Latif, M A

    2016-01-01

    Rice blast disease, which is caused by the fungal pathogen Magnaporthe oryzae, is a recurring problem in all rice-growing regions of the world. The use of resistance (R) genes in rice improvement breeding programmes has been considered to be one of the best options for crop protection and blast management. Alternatively, quantitative resistance conferred by quantitative trait loci (QTLs) is also a valuable resource for the improvement of rice disease resistance. In the past, intensive efforts have been made to identify major R-genes as well as QTLs for blast disease using molecular techniques. A review of bibliographic references shows over 100 blast resistance genes and a larger number of QTLs (∼500) that were mapped to the rice genome. Of the blast resistance genes, identified in different genotypes of rice, ∼22 have been cloned and characterized at the molecular level. In this review, we have summarized the reported rice blast resistance genes and QTLs for utilization in future molecular breeding programmes to introgress high-degree resistance or to pyramid R-genes in commercial cultivars that are susceptible to M. oryzae. The goal of this review is to provide an overview of the significant studies in order to update our understanding of the molecular progress on rice and M. oryzae. This information will assist rice breeders to improve the resistance to rice blast using marker-assisted selection which continues to be a priority for rice-breeding programmes.

  7. Immunosensor development for rice tungro bacilliform virus (RTBV) detection using antibody nano-gold conjugate

    NASA Astrophysics Data System (ADS)

    Uda, M. N. A.; Hasfalina, C. M.; Samsuzana, A. A.; Hashim, U.; Ariffin, Shahrul A. B.; Zamri, I.; Nur Sabrina, W.; B. Siti Noraini, B.; Faridah, S.; Mazidah, M.; Gopinath, Subash C. B.

    2017-03-01

    Rice tungro disease (RTD) causes major losses to rice crop plantation. Hence, a highly sensitive tools need to be developed for the detection of RTD which can be employed in both laboratory and field. An electrochemical immunosensor system for the detection of RTD, based on immobilized specific antibodies conjugated with gold nanoparticle was developed for this purpose. However, this paper focus for RTBV interaction using the conjugated antibodies which is added with polymer and deposited on carbon screen printed working electrodes.

  8. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to be gained, and new rights to be won, and they must be won and used for the progress of all people. ...Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his writ around this globe of ours. ...There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountian? Why - 35 years ago - why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the Moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we intend to win, and the others too.'

  9. Kennedy at Rice University

    NASA Technical Reports Server (NTRS)

    1962-01-01

    President Kennedy speaks before a crowd of 35,000 people at Rice University in the football field. The following are excerpts from his speech. ' ...We set sail on his new sea because there is a new knowledge to begained, and new rights to be won, and they must be won and used for the progress of all people. Whether it will become a force for good or ill depends on man, and only if the United States occupies a position of pre-eminence can we help decide whether this new ocean will be a sea of peace or a new terrifying theater of war. But I do say space can be explored and mastered without feeding the fires of war, without repeating the mistakes that man has made with extending his wirt around this globe of ours. There is no strife, no prejudice, no national conflict in outer space as yet. Its conquest deserves the best of all mankind, and its opportunity for peaceful cooperation may never come again. But why, some say the Moon? Why choose this as our goal? And they may well ask, why climb the highest mountain? Why 35 years ago why fly the Atlantic? Why does Rice play Texas? We choose to go to the Moon, we choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one in which we attend to win, and the others , too.'

  10. Pullulanase from rice endosperm.

    PubMed

    Yamasaki, Yoshiki; Nakashima, Susumu; Konno, Haruyoshi

    2008-01-01

    Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.

  11. A Historical Analysis of the Relationship Between Rice Production and PDSI Values in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Jacobi, J. H.; Hornberger, G. M.

    2011-12-01

    As world population grows, there are ever increasing demands being placed on the food production systems throughout the world. Climate change is complicating these stressors even further through more frequent severe weather events. In the developing world, where there are fewer resources to mitigate the effects of climate change, the combination of these two factors can have drastic consequences. In Sri Lanka, farmers in major rice production areas of the country are already struggling to produce enough rice, a staple food of the local diet, and a severe wet or dry spell could be ruinous. Faced with a changing climate and a growing demand for rice, it is important to be able to anticipate how climatic changes will affect rice production. By examining how extreme wet and dry spells have historically affected rice production, decision makers may be better able to predict and prepare for potential food shortages. We conducted an analysis of historic temperature, precipitation, and rice production statistics in order to determine the effects of extreme wet and dry spells on rice production. We also created a timeline of major developments in Sri Lankan agriculture in order to compare effects on rice production due to changes in agricultural practices with meteorological changes. Historical temperature and precipitation data were used to calculate the Palmer Drought Severity Index (PDSI) for a number of stations distributed throughout the Mahaweli river basin. The basin, the largest in the country, contains three different climatic regions - dry, intermediate, and wet - that all receive different amounts of annual precipitation. The PDSI values were used to quantify drought and wetness during the Yala (April-September) and Maha (October-March) growing seasons. Analysis of historical PDSI values, agricultural advances, and rice production statistics shows great promise for anticipating and mitigating future food shortages.

  12. Genetic analysis of atypical U.S. red rice phenotypes: indications of prior gene flow in rice fields?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice is a troublesome weed problem in rice fields of the southern U.S. Outcrossing between rice and red rice occurs at low rates, resulting in a broad array of plant types. SSR markers were used to evaluate the genetic backgrounds of atypical red rice types obtained from rice farms in comparis...

  13. Outcrossing potential between U.S. red rice (Oryza sativa) and Chinese indica rice (Oryza sativa) lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice in southern U.S. rice fields remains a widespread, economically challenging problem despite nearly a decade of rice production systems that include true-breeding rice cultivars and indica-derived hybrid rice with resistance to imazethapyr. Both of these herbicide-resistant rice systems hav...

  14. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  15. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption.

    PubMed

    Chen, Wei; Yao, Xiaoqin; Cai, Kunzheng; Chen, Jining

    2011-07-01

    Drought is a major constraint for rice production in the rainfed lowlands in China. Silicon (Si) has been verified to play an important role in enhancing plant resistance to environmental stress. Two near-isogenic lines of rice (Oryza sativa L.), w-14 (drought susceptible) and w-20 (drought resistant), were selected to study the effects of exogenous Si application on the physiological traits and nutritional status of rice under drought stress. In wet conditions, Si supply had no effects on growth and physiological parameters of rice plants. Drought stress was found to reduce dry weight, root traits, water potential, photosynthetic parameters, basal quantum yield (F(v)/F(0)), and maximum quantum efficiency of PSII photochemistry (F(v)/F(m)) in rice plants, while Si application significantly increased photosynthetic rate (Pr), transpiration rate (Tr), F(v)/F(0), and F(v)/F(m) of rice plants under drought stress. In addition, water stress increased K, Na, Ca, Mg, Fe content of rice plants, but Si treatment significantly reduced these nutrient level. These results suggested that silicon application was useful to increase drought resistance of rice through the enhancement of photochemical efficiency and adjustment of the mineral nutrient absorption in rice plants.

  16. GAD1 Encodes a Secreted Peptide That Regulates Grain Number, Grain Length, and Awn Development in Rice Domestication[OPEN

    PubMed Central

    Hua, Lei; Zhao, Xinhui; Zhang, Weifeng; Liu, Fengxia; Fu, Yongcai; Cai, Hongwei; Sun, Xianyou; Gu, Ping; Xie, Daoxin

    2016-01-01

    Cultivated rice (Oryza sativa) was domesticated from wild rice (Oryza rufipogon), which typically displays fewer grains per panicle and longer grains than cultivated rice. In addition, wild rice has long awns, whereas cultivated rice has short awns or lacks them altogether. These changes represent critical events in rice domestication. Here, we identified a major gene, GRAIN NUMBER, GRAIN LENGTH AND AWN DEVELOPMENT1 (GAD1), that regulates those critical changes during rice domestication. GAD1 is located on chromosome 8 and is predicted to encode a small secretary signal peptide belonging to the EPIDERMAL PATTERNING FACTOR-LIKE family. A frame-shift insertion in gad1 destroyed the conserved cysteine residues of the peptide, resulting in a loss of function, and causing the increased number of grains per panicle, shorter grains, and awnless phenotype characteristic of cultivated rice. Our findings provide a useful paradigm for revealing functions of peptide signal molecules in plant development and helps elucidate the molecular basis of rice domestication. PMID:27634315

  17. Processing Conditions, Rice Properties, Health and Environment

    PubMed Central

    Roy, Poritosh; Orikasa, Takahiro; Okadome, Hiroshi; Nakamura, Nobutaka; Shiina, Takeo

    2011-01-01

    Rice is the staple food for nearly two-thirds of the world’s population. Food components and environmental load of rice depends on the rice form that is resulted by different processing conditions. Brown rice (BR), germinated brown rice (GBR) and partially-milled rice (PMR) contains more health beneficial food components compared to the well milled rice (WMR). Although the arsenic concentration in cooked rice depends on the cooking methods, parboiled rice (PBR) seems to be relatively prone to arsenic contamination compared to that of untreated rice, if contaminated water is used for parboiling and cooking. A change in consumption patterns from PBR to untreated rice (non-parboiled), and WMR to PMR or BR may conserve about 43–54 million tons of rice and reduce the risk from arsenic contamination in the arsenic prone area. This study also reveals that a change in rice consumption patterns not only supply more food components but also reduces environmental loads. A switch in production and consumption patterns would improve food security where food grains are scarce, and provide more health beneficial food components, may prevent some diseases and ease the burden on the Earth. However, motivation and awareness of the environment and health, and even a nominal incentive may require for a method switching which may help in building a sustainable society. PMID:21776212

  18. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches

    PubMed Central

    Kumar, Arvind; Dixit, Shalabh; Ram, T.; Yadaw, R. B.; Mishra, K. K.; Mandal, N. P.

    2014-01-01

    The increased occurrence and severity of drought stress have led to a high yield decline in rice in recent years in drought-affected areas. Drought research at the International Rice Research Institute (IRRI) over the past decade has concentrated on direct selection for grain yield under drought. This approach has led to the successful development and release of 17 high-yielding drought-tolerant rice varieties in South Asia, Southeast Asia, and Africa. In addition to this, 14 quantitative trait loci (QTLs) showing a large effect against high-yielding drought-susceptible popular varieties were identified using grain yield as a selection criterion. Six of these (qDTY 1.1, qDTY 2.2, qDTY 3.1, qDTY 3.2, qDTY 6.1, and qDTY 12.1) showed an effect against two or more high-yielding genetic backgrounds in both the lowland and upland ecosystem, indicating their usefulness in increasing the grain yield of rice under drought. The yield of popular rice varieties IR64 and Vandana has been successfully improved through a well-planned marker-assisted backcross breeding approach, and QTL introgression in several other popular varieties is in progress. The identification of large-effect QTLs for grain yield under drought and the higher yield increase under drought obtained through the use of these QTLs (which has not been reported in other cereals) indicate that rice, because of its continuous cultivation in two diverse ecosystems (upland, drought tolerant, and lowland, drought susceptible), has benefited from the existence of larger genetic variability than in other cereals. This can be successfully exploited using marker-assisted breeding. PMID:25205576

  19. Broader perspective on ecosystem sustainability: consequences for decision making.

    PubMed

    Sidle, Roy C; Benson, William H; Carriger, John F; Kamai, Toshitaka

    2013-06-04

    Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making.

  20. Broader perspective on ecosystem sustainability: Consequences for decision making

    PubMed Central

    Sidle, Roy C.; Benson, William H.; Carriger, John F.; Kamai, Toshitaka

    2013-01-01

    Although the concept of ecosystem sustainability has a long-term focus, it is often viewed from a static system perspective. Because most ecosystems are dynamic, we explore sustainability assessments from three additional perspectives: resilient systems; systems where tipping points occur; and systems subject to episodic resetting. Whereas foundations of ecosystem resilience originated in ecology, recent discussions have focused on geophysical attributes, and it is recognized that dynamic system components may not return to their former state following perturbations. Tipping points emerge when chronic changes (typically anthropogenic, but sometimes natural) push ecosystems to thresholds that cause collapse of process and function and may become permanent. Ecosystem resetting occurs when episodic natural disasters breach thresholds with little or no warning, resulting in long-term changes to environmental attributes or ecosystem function. An example of sustainability assessment of ecosystem goods and services along the Gulf Coast (USA) demonstrates the need to include both the resilient and dynamic nature of biogeomorphic components. Mountain road development in northwest Yunnan, China, makes rivers and related habitat vulnerable to tipping points. Ecosystems reset by natural disasters are also presented, emphasizing the need to understand the magnitude frequency and interrelationships among major disturbances, as shown by (i) the 2011 Great East Japan Earthquake and resulting tsunami, including how unsustainable urban development exacerbates geodisaster propagation, and (ii) repeated major earthquakes and associated geomorphic and vegetation disturbances in Papua New Guinea. Although all of these ecosystem perturbations and shifts are individually recognized, they are not embraced in contemporary sustainable decision making. PMID:23686583

  1. Sustainable rice production and its impact on the rice value chain: A case study of rural paddy farm in Kedah

    NASA Astrophysics Data System (ADS)

    Othman, Siti Norezam; Othman, Zakirah; Yaacob, Noorulsadiqin Azbiya; Hamid, Kamal Ab

    2016-08-01

    System of Rice Intensification (SRI) method had contributed towards environmental sustainability through improving paddy ecosystem, better sustainable economic due to improving paddy production and sales and social sustainability through local community development through community activity and health. This study aimed to find out whether the innovative practices of SRI affect the rice value chain and to determine the roles, activities of the actors in the value chain as well as challenges that impacted the value chain. Using interview as data collection method, case samples were selected from various SRI paddy site in Kedah. The findings indicated that implementing SRI practices in organic paddy cultivation had caused the value chain to be different from conventional paddy value chain in terms of actor and effect of middle man subject to the small scale paddy production. For organic rice value chain to become competitive, roles, activities and challenges were identified so that supports could be provided to the farmers and other related parties in the value chain.

  2. Ecosystem services and the protection, restoration, and management of ecosystems exposed to chemical stressors.

    PubMed

    Maltby, Lorraine

    2013-04-01

    Ecosystem services-the benefits people obtain from ecosystem structures and processes-are essential for human survival and well-being. Chemicals are also an essential component of modern life; however, they may cause adverse ecological effects and reduce ecosystem service provision. Environmental policy makers are increasingly adopting the ecosystem services concept, but applying this approach to the protection, restoration, and management of ecosystems requires the development of new understanding, tools, and frameworks. There is an urgent need to understand and predict the effect of single and multiple stressors on ecosystem service delivery across different spatial scales (local to global), to develop indicators that can be used to quantify and map services and identify synergies and trade-offs between them, to establish protection goals and restoration targets defined in terms of the types and levels of service delivery required, and to develop approaches for the assessment and management of chemical risk to ecosystem services that consider the whole life cycle of products and processes. These are major research challenges for the environmental science community in general and for ecotoxicologists and risk assessors in particular.

  3. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan.

    PubMed

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.

  4. Diversity of global rice markets and the science required for consumer-targeted rice breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the ever-increasing global demand for high quality rice in both local production regions and with Western consumers, we have a strong desire to understand better the importance of different quality traits that make up the rice grain and obtain a full picture of rice quality demographics. Rice ...

  5. Volatiles induction in rice stink bug host grasses and rice plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  6. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L.).

    PubMed

    Tang, Liang; Ma, Dian Rong; Xu, Zheng Jin; Deng, Hua Feng; Chen, Wen Fu; Yuan, Long Ping

    2011-05-01

    Two representative weedy rice lines, three typical japonica varieties and three typical indica varieties were used for 6 pairs of reciprocal crosses. The morphological traits of twelve F(1) hybrid lines, their parents and four elite cultivars were investigated for heterosis over mid-parent (HM), over parent (HP) and competitive heterosis (CH) analysis. Traits detected in weedy rice lines seemed larger than those in cultivars and excellent heterosis was produced in weedy rice crossing with japonica rice. Although weedy rice kept closer relationships with japonica rice compared to indica rice. But the heterosis of reciprocal crosses between weedy rice and japonica was closed to those of crosses between indica rice and japonica rice. In six of one hundred and eighteen weedy rice lines, the fertility restore gene for BT type cytoplasmic male sterility (BT-CMS) were detected. Weedy rice was very valuable germplasm resources with the abundant polymorphism. Meanwhile, the disadvantage, lodging, shattering and incompact plant type, should be modified by hybridization, backcross and multiple cross with japonica rice. Although it is difficult to use weedy rice directly, weedy rice may be available to breed both male sterile line and restorer line through improvement, developing japonica hybrid rice.

  7. The impact of planting date on management of the rice water weevil in Louisiana rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  8. Elemental composition of Malawian rice.

    PubMed

    Joy, Edward J M; Louise Ander, E; Broadley, Martin R; Young, Scott D; Chilimba, Allan D C; Hamilton, Elliott M; Watts, Michael J

    2016-07-20

    Widespread potential dietary deficiencies of calcium (Ca), iron (Fe), iodine (I), selenium (Se) and zinc (Zn) have been identified in Malawi. Several deficiencies are likely to be compounded by high phytic acid (PA) consumption. Rice (Oryza sativa) is commonly consumed in some Malawian populations, and its mineral micronutrient content is important for food security. The considerable irrigation requirements and flooded conditions of paddy soils can also introduce or mobilise potentially toxic elements including arsenic (As), cadmium (Cd) and lead (Pb). The aim of this study was to determine the mineral composition of rice sampled from farmers' fields and markets in Malawi. Rice was sampled from 18 extension planning areas across Malawi with 21 white (i.e. polished) and 33 brown samples collected. Elemental composition was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Arsenic speciation was performed using high-performance liquid chromatography (HPLC)-ICP-MS. Concentration of PA was determined using a PA-total phosphorus assay. Median total concentrations (mg kg(-1), dry weight) of elements important for human nutrition in brown and white rice, respectively, were: Ca = 66.5 and 37.8; Cu = 3.65 and 2.49; Fe = 22.1 and 7.2; I = 0.006 and <0.005; Mg = 1130 and 265; Mn = 18.2 and 9.6; Se = 0.025 and 0.028; and Zn = 17.0 and 14.4. In brown and white rice samples, respectively, median PA concentrations were 5438 and 1906 mg kg(-1), and median PA:Zn molar ratios were 29 and 13. Concentrations of potentially toxic elements (mg kg(-1), dry weight) in brown and white rice samples, respectively, were: As = 0.030 and 0.006; Cd  ≤ 0.002 and 0.006; Pb = 0.008 and 0.008. Approximately 95 % of As was found to be inorganic As, where this could be quantified. Malawian rice, like the more widely consumed staple grain maize, contains inadequate Ca, I, Se or Zn to meet dietary requirements. Biofortification strategies could

  9. Ecosystem growth and development.

    PubMed

    Fath, Brian D; Jørgensen, Sven E; Patten, Bernard C; Straskraba, Milan

    2004-11-01

    One of the most important features of biosystems is how they are able to maintain local order (low entropy) within their system boundaries. At the ecosystem scale, this organization can be observed in the thermodynamic parameters that describe it, such that these parameters can be used to track ecosystem growth and development during succession. Thermodynamically, ecosystem growth is the increase of energy throughflow and stored biomass, and ecosystem development is the internal reorganization of these energy mass stores, which affect transfers, transformations, and time lags within the system. Several proposed hypotheses describe thermodynamically the orientation or natural tendency that ecosystems follow during succession, and here, we consider five: minimize specific entropy production, maximize dissipation, maximize exergy storage (includes biomass and information), maximize energy throughflow, and maximize retention time. These thermodynamic orientors were previously all shown to occur to some degree during succession, and here we present a refinement by observing them during different stages of succession. We view ecosystem succession as a series of four growth and development stages: boundary, structural, network, and informational. We demonstrate how each of these ecological thermodynamic orientors behaves during the different growth and development stages, and show that while all apply during some stages only maximizing energy throughflow and maximizing exergy storage are applicable during all four stages. Therefore, we conclude that the movement away from thermodynamic equilibrium, and the subsequent increase in organization during ecosystem growth and development, is a result of system components and configurations that maximize the flux of useful energy and the amount of stored exergy. Empirical data and theoretical models support these conclusions.

  10. Different responses of low grain-Cd-accumulating and high grain-Cd-accumulating rice cultivars to Cd stress.

    PubMed

    Wang, Feijuan; Wang, Min; Liu, Zhouping; Shi, Yan; Han, Tiqian; Ye, Yaoyao; Gong, Ning; Sun, Junwei; Zhu, Cheng

    2015-11-01

    Cadmium (Cd) is a major heavy metal pollutant which is highly toxic to plants and animals. The accumulation of Cd in rice grains is a major agricultural problem in regions with Cd pollution. A hydroponics experiment using low grain-Cd-accumulating rice (xiushui 11) and high grain-Cd-accumulating rice (xiushui 110) was carried out to characterize the different responses of rice cultivars to Cd stress. We found that xiushui 11 was more tolerant to Cd than xiushui 110, and xiushui 11 suffered less oxidative damage. Cell walls played an important role in limiting the amount of Cd that entered the protoplast, especially in xiushui 11. Cd stored in organelles as soluble fractions, leading to greater physiological stress of Cd detoxification. We found that Cd can disturb the ion homeostasis in rice roots because Cd(2+) and Ca(2+) may have a similar uptake route. Xiushui 11 had a faster root-to-shoot transport of Cd, and the expression level of OsPCR1 gene which was predicted related with Cd accumulation in rice was consist with the Cd transport of root-to-shoot in rice and maintain the greater Cd tolerance of xiushui 11. These results suggest there are different Cd detoxification and accumulation mechanisms in rice cultivars.

  11. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance

    PubMed Central

    Yang, Qing-qing; Zhang, Chang-quan; Chan, Man-ling; Zhao, Dong-sheng; Chen, Jin-zhu; Wang, Qing; Li, Qian-feng; Yu, Heng-xiu; Gu, Ming-hong; Sun, Samuel Sai-ming; Liu, Qiao-quan

    2016-01-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice. PMID:27252467

  12. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria.

    PubMed

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

  13. Cultural perspectives and current consumption changes of cooked rice in Korean diet

    PubMed Central

    2007-01-01

    Cooked rice is a staple food for Koreans which provides more than 60% of daily required energy. In 1960's, Koreans ate 600 g-800 g of cooked rice per meal and the energy obtained from cooked rice was almost more than 80% of the daily intake of energy. However, as the economy of Korea improved, the major industry has been shifted from agriculture to various manufacturing industries and the export of those products has been increased thus increasing the national income but decreasing the farming population and thus rice consumption have been decreased. It has been said that the decreased rice consumption is caused solely by decreased farming population but it can also be said that the decreased farming population is caused by decreased rice consumption. As the national income increases, the type of foods people consume have become diversified. Various processed foods such as convenience food or ready-to-eat food have been widespread, which are mostly made of wheat flour rather than rice. PMID:20535379

  14. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation.

    PubMed

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na(+)) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na(+) level, respectively. All the varieties and transgenic lines of rice accumulate differential Na(+) ions in root and shoot. However, roots accumulate high Na(+) as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na(+) transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na(+) transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene.

  15. Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance.

    PubMed

    Yang, Qing-Qing; Zhang, Chang-Quan; Chan, Man-Ling; Zhao, Dong-Sheng; Chen, Jin-Zhu; Wang, Qing; Li, Qian-Feng; Yu, Heng-Xiu; Gu, Ming-Hong; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2016-07-01

    Rice (Oryza sativa L.), a major staple crop worldwide, has limited levels of the essential amino acid lysine. We previously produced engineered rice with increased lysine content by expressing bacterial aspartate kinase and dihydrodipicolinate synthase and inhibiting rice lysine ketoglutarate reductase/saccharopine dehydrogenase activity. However, the grain quality, field performance, and integration patterns of the transgenes in these lysine-enriched lines remain unclear. In the present study, we selected several elite transgenic lines with endosperm-specific or constitutive regulation of the above key enzymes but lacking the selectable marker gene. All target transgenes were integrated into the intragenic region in the rice genome. Two pyramid transgenic lines (High Free Lysine; HFL1 and HFL2) with free lysine levels in seeds up to 25-fold that of wild type were obtained via a combination of the above two transgenic events. We observed a dramatic increase in total free amino acids and a slight increase in total protein content in both pyramid lines. Moreover, the general physicochemical properties were improved in pyramid transgenic rice, but the starch composition was not affected. Field trials indicated that the growth of HFL transgenic rice was normal, except for a slight difference in plant height and grain colour. Taken together, these findings will be useful for the potential commercialization of high-lysine transgenic rice.

  16. Current advance methods for the identification of blast resistance genes in rice.

    PubMed

    Tanweer, Fatah A; Rafii, Mohd Y; Sijam, Kamaruzaman; Rahim, Harun A; Ahmed, Fahim; Latif, Mohammad A

    2015-05-01

    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.

  17. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection

    PubMed Central

    Tokuhara, Daisuke; ρlvarez, Beatriz; Mejima, Mio; Hiroiwa, Tomoko; Takahashi, Yuko; Kurokawa, Shiho; Kuroda, Masaharu; Oyama, Masaaki; Kozuka-Hata, Hiroko; Nochi, Tomonori; Sagara, Hiroshi; Aladin, Farah; Marcotte, Harold; Frenken, Leon G.J.; Iturriza-Gómara, Miren; Kiyono, Hiroshi; Hammarström, Lennart; Yuki, Yoshikazu

    2013-01-01

    Rotavirus-induced diarrhea is a life-threatening disease in immunocompromised individuals and in children in developing countries. We have developed a system for prophylaxis and therapy against rotavirus disease using transgenic rice expressing the neutralizing variable domain of a rotavirus-specific llama heavy-chain antibody fragment (MucoRice-ARP1). MucoRice-ARP1 was produced at high levels in rice seeds using an overexpression system and RNAi technology to suppress the production of major rice endogenous storage proteins. Orally administered MucoRice-ARP1 markedly decreased the viral load in immunocompetent and immunodeficient mice. The antibody retained in vitro neutralizing activity after long-term storage (>1 yr) and boiling and conferred protection in mice even after heat treatment at 94°C for 30 minutes. High-yield, water-soluble, and purification-free MucoRice-ARP1 thus forms the basis for orally administered prophylaxis and therapy against rotavirus infections. PMID:23925294

  18. Cadmium content of commercial and contaminated rice, Oryza sativa, in Thailand and potential health implications.

    PubMed

    Zwicker, R; Promsawad, A; Zwicker, B M; Laoharojanaphand, S

    2010-03-01

    Thailand is the number one global exporter and among the top five producers of rice in the world. A significant increase in anthropogenic contamination in agricultural soils over the past few decades has lead to concerns with cadmium and its uptake in rice. The cadmium levels in Thai rice from different sources/areas were determined and used to estimate the potential health risks to consumers. The cadmium concentration in the commercial rice samples ranged from below the detection limit to 0.016 mg/kg. The cadmium concentrations in the contaminated rice samples ranged from a low of 0.007 mg/kg to a high of 0.579 mg/kg. Five of the calculated values exceed the proposed PTWI, with one value almost three times higher and two values almost double. The three highly elevated values are certainly a concern from a health standpoint. Ultimately, action is required to address the health implications resulting from the cadmium contamination in agricultural soils used for rice production in a few select areas of Thailand. Overall, this study indicates that the vast majority of rice produced, consumed and exported by Thailand is safe pertaining to cadmium content.

  19. Thermal characteristics of ohmically heated rice starch and rice flours.

    PubMed

    An, H J; King, J M

    2007-01-01

    Thermal properties of conventionally and ohmically heated rice starch and rice flours at various frequencies and voltages were studied. There was an increase in gelatinization temperature for conventionally heated rice starches since they were pregelatinized and became more rigid due to starch-chain interactions. In addition, there was a decrease in enthalpy (energy needed) for conventionally and ohmically heated starches during gelatinization; thus, the samples required less energy for gelatinization during DSC analysis. Ohmically heated commercial starch showed the greatest decrease in enthalpy probably because of the greatest extent of pregelatinization through ohmic heating. Brown rice flour showed the greatest gelatinization temperature resulting from the delay of starch granule swelling by lipid and protein. Enthalpy of ohmically heated starches at 20 V/cm was the lowest, which was most likely due to the lower voltage resulting in a more complete pregelatinization from a longer heating time required to reach 100 degrees C. Ohmic treatment at 70 V/cm decreased onset gelatinization temperature of white flour; therefore, it produced rice flour that swelled faster, whereas the conventionally heated sample showed a better thermal resistance.

  20. Competition of three species of Sitophilus on rice and maize

    PubMed Central

    Athanassiou, Christos G.; Kavallieratos, Nickolas G.; Campbell, James F.

    2017-01-01

    Laboratory tests were carried out in order to examine competition among three congeneric species on rice and maize: the granary weevil, Sitophilus granarius, the rice weevil, Sitophilus oryzae and the maize weevil, Sitophilus zeamais. For this purpose, a total of 30 adults were placed in vials that contained 50 g or either rice or maize: 30 adults of S. granarius, 30 adults of S. oryzae, 30 adults of S. zeamais, 15 adults of S. granarius+15 adults of S. oryzae, 15 adults of S. granarius+15 adults of S. zeamais, 15 adults of S. oryzae +15 adults of S. zeamais, and 10 adults of S. granarius+10 adults of S. oryzae+10 adults of S. zeamais. After 62 days at 30°C and 65% relative humidity the number of individuals of each species were counted. Insect damaged kernels (IDK), weight of frass and grain weight were measured. When each species was alone, S. granarius had the lowest numbers of adults in both grains, which did not exceed 34 adults/vial, and S. oryzae numbers were always higher than other species. For S. oryzae and S. zeamais, the numbers of adults were considerably higher on rice than on maize. On rice, S. oryzae numbers ranged between 281 and 563 adults per vial, while for S. zeamais between 137 and 372 adults per vial. At the same time, for both species on maize, adult numbers did not exceed 54 adults per vial. The number of S. oryzae adults were constantly higher than the other species in all combinations tested. Moreover, for rice, IDK in the vials that contained S. oryzae, either alone or in combination with other species, was higher than all the other combinations. Similarly, grain weight was lower in the vials that contained S. oryzae compared to the other species combinations. In general, for S. oryzae and S. zeamais progeny production was increased with the increase of the number of the initial adults that had been placed inside the vials. At the same time, progeny production of all three species was not affected by the presence of another species

  1. Columbia River Estuary Ecosystem Classification Ecosystem Complex

    USGS Publications Warehouse

    Cannon, Charles M.; Ramirez, Mary F.; Heatwole, Danelle W.; Burke, Jennifer L.; Simenstad, Charles A.; O'Connor, Jim E.; Marcoe, Keith Marcoe

    2012-01-01

    Estuarine ecosystems are controlled by a variety of processes that operate at multiple spatial and temporal scales. Understanding the hierarchical nature of these processes will aid in prioritization of restoration efforts. This hierarchical Columbia River Estuary Ecosystem Classification (henceforth "Classification") of the Columbia River estuary is a spatial database of the tidally-influenced reaches of the lower Columbia River, the tidally affected parts of its tributaries, and the landforms that make up their floodplains for the 230 kilometers between the Pacific Ocean and Bonneville Dam. This work is a collaborative effort between University of Washington School of Aquatic and Fishery Sciences (henceforth "UW"), U.S. Geological Survey (henceforth "USGS"), and the Lower Columbia Estuary Partnership (henceforth "EP"). Consideration of geomorphologic processes will improve the understanding of controlling physical factors that drive ecosystem evolution along the tidal Columbia River. The Classification is organized around six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. For Levels 4 and 5, we mapped landforms within the Holocene floodplain primarily by visual interpretation of Light Detection and Ranging (LiDAR) topography supplemented with aerial photographs, Natural Resources Conservation Service (NRCS) soils data, and historical maps. Mapped landforms are classified as to their current geomorphic function, the inferred process regime that formed them, and anthropogenic modification. Channels were classified primarily by a set of depth-based rules and geometric relationships. Classification Level 5 floodplain landforms ("geomorphic catenae") were further classified based on multivariate analysis of land-cover within the mapped landform area and attributed as "sub

  2. EnviroAtlas - Major Grains and Cotton by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the number of major grains grown, yield in tons, and area in hectares for several major grains and for cotton by 12-digit Hydrologic Unit (HUC). It is based on the United States Department of Agriculture's 2010 Cropland Data Layer (CDL) and data on yields and sales from the National Agricultural Statistics Service (NASS). The grains included in this dataset are corn, barley, cotton, durum wheat, oats, rye, rice, sorghum, spring wheat, soybeans, and winter wheat; it does not include data on every grain. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. Using Ecosystem Experiments to Improve Vegetation Models

    SciTech Connect

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; Walker, Anthony P.; Dietze, Michael; Hanson, Paul J.; Hickler, Thomas; Jain, Atul; Luo, Yiqi; Parton, William; Prentice, I. Collin; Thornton, Peter E.; Wang, Shusen; Wang, Yingping; Weng, Ensheng; Iversen, Colleen M.; McCarthy, Heather R.; Warren, Jeffrey; Oren, Ram; Norby, Richard J

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced a clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.

  4. Using Ecosystem Experiments to Improve Vegetation Models

    DOE PAGES

    Medlyn, Belinda; Zaehle, S; DeKauwe, Martin G.; ...

    2015-05-21

    Ecosystem responses to rising CO2 concentrations are a major source of uncertainty in climate change projections. Data from ecosystem-scale Free-Air CO2 Enrichment (FACE) experiments provide a unique opportunity to reduce this uncertainty. The recent FACE Model–Data Synthesis project aimed to use the information gathered in two forest FACE experiments to assess and improve land ecosystem models. A new 'assumption-centred' model intercomparison approach was used, in which participating models were evaluated against experimental data based on the ways in which they represent key ecological processes. Identifying and evaluating the main assumptions caused differences among models, and the assumption-centered approach produced amore » clear roadmap for reducing model uncertainty. We explain this approach and summarize the resulting research agenda. We encourage the application of this approach in other model intercomparison projects to fundamentally improve predictive understanding of the Earth system.« less

  5. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1993-01-01

    This project has been using natural isotope abundances to trace major pathways of energy flow to consumers in Imnavait Creek and the tundra ecosystem of the R4D watershed with comparative work in the coastal tundra. We are processing samples collected at the R4D intensive site over the past three years and are comparing these data with similar samples collected from the coastal plain. Our approach is to determine if carbon is accumulating in upland and coastal tundra; to determine the role of eroded peat carbon in the aquatic ecosystem; and to determine the distribution of carbon and nitrogen isotopes in the tundra-pond ecosystem to establish the feasibility of using natural differences as tracers.

  6. Energy flow in an arctic aquatic ecosystem

    SciTech Connect

    Schell, D.M.

    1993-05-01

    This project has been using natural isotope abundances to trace major pathways of energy flow to consumers in Imnavait Creek and the tundra ecosystem of the R4D watershed with comparative work in the coastal tundra. We are processing samples collected at the R4D intensive site over the past three years and are comparing these data with similar samples collected from the coastal plain. Our approach is to determine if carbon is accumulating in upland and coastal tundra; to determine the role of eroded peat carbon in the aquatic ecosystem; and to determine the distribution of carbon and nitrogen isotopes in the tundra-pond ecosystem to establish the feasibility of using natural differences as tracers.

  7. Rice consumption and risk of cardiovascular disease: results from a pooled analysis of 3 U.S. cohorts1234

    PubMed Central

    Muraki, Isao; Wu, Hongyu; Imamura, Fumiaki; Laden, Francine; Rimm, Eric B; Hu, Frank B; Willett, Walter C; Sun, Qi

    2015-01-01

    Background: Health concerns have been raised about rice consumption, which may significantly contribute to arsenic exposure. However, little is known regarding whether habitual rice consumption is associated with cardiovascular disease (CVD) risk. Objective: We examined prospectively the association of white rice and brown rice consumption with CVD risk. Design: We followed a total of 207,556 women and men [73,228 women from the Nurses’ Health Study (1984–2010), 92,158 women from the Nurses’ Health Study II (1991–2011), and 42,170 men from the Health Professionals Follow-Up Study (1986–2010)] who were free of CVD and cancer at baseline. Validated semiquantitative food-frequency questionnaires were used to assess consumption of white rice, brown rice, and other food items. Fatal and nonfatal CVD (coronary artery disease and stroke) was confirmed by medical records or self-reports. Results: During 4,393,130 person-years of follow-up, 12,391 cases of CVD were identified. After adjustment for major CVD risk factors, including demographics, lifestyle, and other dietary intakes, rice consumption was not associated with CVD risk. The multivariable-adjuted HR of developing CVD comparing ≥5 servings/wk with <1 serving/wk was 0.98 (95% CI: 0.84, 1.14) for white rice, 1.01 (0.79, 1.28) for brown rice, and 0.99 (0.90, 1.08) for total rice. To minimize the potential impact of racial difference in rice consumption, we restricted the analyses to whites only and obtained similar results: the HRs of CVD for ≥5 servings/wk compared with <1 serving/wk were 1.04 (95% CI: 0.88, 1.22) for white rice and 1.01 (0.78, 1.31) for brown rice. Conclusions: Greater habitual consumption of white rice or brown rice is not associated with CVD risk. These findings suggest that rice consumption may not pose a significant CVD risk among the U.S. population when consumed at current amounts. More prospective studies are needed to explore these associations in other populations. PMID

  8. Genetic structure and diversity of indigenous rice (Oryza sativa) varieties in the Eastern Himalayan region of Northeast India.

    PubMed

    Choudhury, Baharul; Khan, Mohamed Latif; Dayanandan, Selvadurai

    2013-12-01

    The Eastern Himalayan region of Northeast (NE) India is home to a large number of indigenous rice varieties, which may serve as a valuable genetic resource for future crop improvement to meet the ever-increasing demand for food production. However, these varieties are rapidly being lost due to changes in land-use and agricultural practices, which favor agronomically improved varieties. A detailed understanding of the genetic structure and diversity of indigenous rice varieties is crucial for efficient utilization of rice genetic resources and for developing suitable conservation strategies. To explore the genetic structure and diversity of rice varieties in NE India, we genotyped 300 individuals of 24 indigenous rice varieties representing sali, boro, jum and glutinous types, 5 agronomically improved varieties, and one wild rice species (O. rufipogon) using seven SSR markers. A total of 85 alleles and a very high level of gene diversity (0.776) were detected among the indigenous rice varieties of the region. Considerable level of genetic variation was found within indigenous varieties whereas improved varieties were monoporphic across all loci. The comparison of genetic diversity among different types of rice revealed that sali type possessed the highest gene diversity (0.747) followed by jum (0.627), glutinous (0.602) and boro (0.596) types of indigenous rice varieties, while the lowest diversity was detected in agronomically improved varieties (0.459). The AMOVA results showed that 66% of the variation was distributed among varieties indicating a very high level of genetic differentiation in rice varieties in the region. Two major genetically defined clusters corresponding to indica and japonica groups were detected in rice varieties of the region. Overall, traditionally cultivated indigenous rice varieties in NE India showed high levels of genetic diversity comparable to levels of genetic diversity reported from wild rice populations in various parts of the

  9. Biochemical Characterization of Rice Glutelin 1

    PubMed Central

    Wen, Tuan-Nan; Luthe, Dawn S.

    1985-01-01

    The two major subunits of rice glutelin, the acidic (α) and basic (β) polypeptides were purified by chromatofocusing and cation exchange chromatography, respectively. The molecular weight range of the α polypeptides was 28.5 to 30.8 kilodaltons and the molecular weight range of the β polypeptides was 20.6 to 21.6 kilodaltons. Electrofocusing in polyacrylamide gels showed that the isoelectric points of the α and β polypeptides were 6.5 to 7.5 and 9.4 to 10.3, respectively. At least 12 polypeptides of the α-group and nine polypeptides of the β-group could be separated by electrofocusing. The amino acid compositions of whole glutelin, and the purified α and β subunits were analyzed. The α subunit contained more glutamic acid/glutamine, serine, and glycine, and less alanine, lysine, aspartic acid/asparagine, and isoleucine than the β subunit. A comparison of the amino acid composition of rice glutelin subunits with those of the 11S proteins from eight other plant species indicated that there is more similarity between the β subunits than the α subunits of several diverse plant species. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:16664193

  10. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  11. Sea Ice Ecosystems

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  12. New market opportunities for rice grains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Breeding efforts for rice have been focusing on increasing yield and improving quality (milling yield and grain quality), while maintaining cooked rice sensory properties to meet consumer preferences. These breeding targets will no doubt continue as the main foci for the rice industry. However, the ...

  13. Understanding rice heterosis using deep sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heterosis is a complex biological phenomenon where the offspring show better performance compared to the inbred parents. Although rice breeders have used heterosis in hybrid rice production for nearly 40 years, the genetic and molecular mechanism underlying the heterosis in rice is still poorly und...

  14. Is ALL Rice Bran Created Equal?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consumption of whole grain rice is increasing in the U.S. This increase is likely due to increased consumer awareness of the importance of whole grains in the diet. Whole grain rice is superior nutritionally compared to milled rice because, except for carbohyrates, it contains more phytochemicals an...

  15. Wetland management and rice farming strategies to decrease methylmercury bioaccumulation and loads from the Cosumnes River Preserve, California

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Fleck, Jacob; Windham-Myers, Lisamarie; McQuillen, Harry; Heim, Wes

    2014-01-01

    We evaluated mercury (Hg) concentrations in caged fish (deployed for 30 days) and water from agricultural wetland (rice fields), managed wetland, slough, and river habitats in the Cosumnes River Preserve, California. We also implemented experimental hydrological regimes on managed wetlands and post-harvest rice straw management techniques on rice fields in order to evaluate potential Best Management Practices to decrease methylmercury bioaccumulation within wetlands and loads to the Sacramento-San Joaquin River Delta. Total Hg concentrations in caged fish were twice as high in rice fields as in managed wetland, slough, or riverine habitats, including seasonal managed wetlands subjected to identical hydrological regimes. Caged fish Hg concentrations also differed among managed wetland treatments and post-harvest rice straw treatments. Specifically, Hg concentrations in caged fish decreased from inlets to outlets in seasonal managed wetlands with either a single (fall-only) or dual (fall and spring) drawdown and flood-up events, whereas Hg concentrations increased slightly from inlets to outlets in permanent managed wetlands. In rice fields, experimental post-harvest straw management did not decrease Hg concentrations in caged fish. In fact, in fields in which rice straw was chopped and either disked into the soil or baled and removed from the fields, fish Hg concentrations increased from inlets to outlets and were higher than Hg concentrations in fish from rice fields subjected to the more standard post-harvest practice of simply chopping rice straw prior to fall flood-up. Finally, aqueous methylmercury (MeHg) concentrations and export were highly variable, and seasonal trends in particular were often opposite to those of caged fish. Aqueous MeHg concentrations and loads were substantially higher in winter than in summer, whereas caged fish Hg concentrations were relatively low in winter and substantially higher in summer. Together, our results highlight the

  16. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment

    PubMed Central

    Ismail, Abdelbagi M.; Johnson, David E.; Ella, Evangelina S.; Vergara, Georgina V.; Baltazar, Aurora M.

    2012-01-01

    Background and aims Direct seeding of rice is being adopted in rainfed and irrigated lowland ecosystems because it reduces labour costs in addition to other benefits. However, early flooding due to uneven fields or rainfall slows down seed germination and hinders crop establishment. Conversely, early flooding helps suppress weeds and reduces the costs of manual weeding and/or dependence on herbicides; however, numerous weed species are adapted to lowlands and present challenges for the use of flooding to control weeds. Advancing knowledge on the mechanisms of tolerance of flooding during germination and early growth in rice and weeds could facilitate the development of improved rice varieties and effective weed management practices for direct-seeded rice. Principal results Rice genotypes with a greater ability to germinate and establish in flooded soils were identified, providing opportunities to develop varieties suitable for direct seeding in flooded soils. Tolerance of flooding in these genotypes was mostly attributed to traits associated with better ability to mobilize stored carbohydrates and anaerobic metabolism. Limited studies were undertaken in weeds associated with lowland rice systems. Remaining studies compared rice and weeds and related weed species such as Echinochloa crus-galli and E. colona or compared ecotypes of the same species of Cyperus rotundus adapted to either aerobic or flooded soils. Conclusions Tolerant weeds and rice genotypes mostly developed similar adaptive traits that allow them to establish in flooded fields, including the ability to germinate and elongate faster under hypoxia, mobilize stored starch reserves and generate energy through fermentation pathways. Remarkably, some weeds developed additional traits such as larger storage tubers that enlarge further in deeper flooded soils (C. rotundus). Unravelling the mechanisms involved in adaptation to flooding will help design management options that will allow tolerant rice genotypes

  17. A comparison of methane emissions following rice paddies conversion to crab-fish farming wetlands in southeast China.

    PubMed

    Hu, Zhiqiang; Wu, Shuang; Ji, Cheng; Zou, Jianwen; Zhou, Quansuo; Liu, Shuwei

    2016-01-01

    Rice paddies and aquaculture wetlands are typical agricultural wetlands that constitute one of the important sources of atmospheric methane (CH4). Traditional transplanted rice paddies have been experiencing conversion to pond aquaculture wetlands for pursuing higher economic benefits over the past decades in southeast China. A parallel field experiment was carried out to compare CH4 emissions from a transplanted rice paddy and its converted crab-fish farming wetland in southeast China. Over the rice-growing season, CH4 fluxes averaged 1.86 mg m(-2) h(-1) from rice paddies, and 1.14 and 0.50 mg m(-2) h(-1) for the treatments with or without aquatic vegetation present in the crab-fish farming wetlands, respectively. When averaged across the treatments, seasonal CH4 emissions from crab-fish framing wetlands were 52% lower than those from rice paddies. The CH4 fluxes were negatively related to water dissolved oxygen (DO) concentration but positively related to soil/sediment dissolved organic carbon (DOC) content in crab-fish farming wetlands. Dependence of CH4 fluxes on DO or DOC was intensified by the aquatic vegetation presence. By extrapolating the present CH4 emission rate with the current rice paddy-converted aquaculture cultivation area, the seasonal CH4 emissions from inland aquaculture wetlands during the critical farming stage (20 June to 18 October) were estimated to be 33.6 Gg ha(-1) in southeast China in 2012. Rice paddies conversion to crab-fish farming wetlands might have reduced CH4 emissions by 22-54% in mainland China. Results of this study suggest that the conversion of transplanted rice paddies to crab-fish aquaculture wetlands for higher economic benefits would also lead to a lower ecosystem CH4 release rate.

  18. A collection of glycosyltransferases from rice (Oryza sativa) exposed to atrazine.

    PubMed

    Lu, Yi Chen; Yang, Sheng Ning; Zhang, Jing Jing; Zhang, Jia Jun; Tan, Li Rong; Yang, Hong

    2013-12-01

    The rice (Oryza sativa) GTs belong to a super family possibly with hundreds of members. However, which GTs are involved in plant response to toxic chemicals is unknown. Here, we demonstrated 59 novel GT genes screened from our recent genome-wide sequencing datasets of rice crops exposed to atrazine (a herbicide persistent in ecosystems). Analysis of GT genes showed that most of the GTs contain functional domains typically found in proteins transferring glycosyl moieties to their target compounds. A phylogenetic analysis revealed that many GT genes from different families have diverse cis-elements necessary for response to biotic and environmental stresses. Experimental validation for the GTs was undertaken through a microarray, and 36 GT genes were significantly detected with an expression pattern similar to that from deep-sequencing datasets. Furthermore, 12 GT genes were randomly selected and confirmed by quantitative real-time RT-PCR. Finally, the special activity of total GTs was determined in rice roots and shoots, with an increased activity under the atrazine exposure. This response was closely associated with atrazine absorption in the rice tissues. These results indicate that exposure to atrazine can trigger specific GT genes and enzyme activities in rice.

  19. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China.

    PubMed

    Zong, Y; Chen, Z; Innes, J B; Chen, C; Wang, Z; Wang, H

    2007-09-27

    The adoption of cereal cultivation was one of the most important cultural processes in history, marking the transition from hunting and gathering by Mesolithic foragers to the food-producing economy of Neolithic farmers. In the Lower Yangtze region of China, a centre of rice domestication, the timing and system of initial rice cultivation remain unclear. Here we report detailed evidence from Kuahuqiao that reveals the precise cultural and environmental context of rice cultivation at this earliest known Neolithic site in eastern China, 7,700 calibrated years before present (cal. yr bp). Pollen, algal, fungal spore and micro-charcoal data from sediments demonstrate that these Neolithic communities selected lowland swamps for their rice cultivation and settlement, using fire to clear alder-dominated wetland scrub and prepare the site for occupation, then to maintain wet grassland vegetation of paddy type. Regular flooding by slightly brackish water was probably controlled by 'bunding' to maintain crop yields. The site's exploitation ceased when it was overwhelmed by marine inundation 7,550 cal. yr bp. Our results establish that rice cultivation began in coastal wetlands of eastern China, an ecosystem vulnerable to coastal change but of high fertility and productivity, attractions maximized for about two centuries by sustained high levels of cultural management of the environment.

  20. Benefits of investing in ecosystem restoration.

    PubMed

    DE Groot, Rudolf S; Blignaut, James; VAN DER Ploeg, Sander; Aronson, James; Elmqvist, Thomas; Farley, Joshua

    2013-12-01

    Measures aimed at conservation or restoration of ecosystems are often seen as net-cost projects by governments and businesses because they are based on incomplete and often faulty cost-benefit analyses. After screening over 200 studies, we examined the costs (94 studies) and benefits (225 studies) of ecosystem restoration projects that had sufficient reliable data in 9 different biomes ranging from coral reefs to tropical forests. Costs included capital investment and maintenance of the restoration project, and benefits were based on the monetary value of the total bundle of ecosystem services provided by the restored ecosystem. Assuming restoration is always imperfect and benefits attain only 75% of the maximum value of the reference systems over 20 years, we calculated the net present value at the social discount rates of 2% and 8%. We also conducted 2 threshold cum sensitivity analyses. Benefit-cost ratios ranged from about 0.05:1 (coral reefs and coastal systems, worst-case scenario) to as much as 35:1 (grasslands, best-case scenario). Our results provide only partial estimates of benefits at one point in time and reflect the lower limit of the welfare benefits of ecosystem restoration because both scarcity of and demand for ecosystem services is increasing and new benefits of natural ecosystems and biological diversity are being discovered. Nonetheless, when accounting for even the incomplete range of known benefits through the use of static estimates that fail to capture rising values, the majority of the restoration projects we analyzed provided net benefits and should be considered not only as profitable but also as high-yielding investments. Beneficios de Invertir en la Restauración de Ecosistemas.

  1. Experimental Determination of Silicon Isotope Fractionation in Rice

    PubMed Central

    Sun, Yan; Wu, Liang-huan; Li, Xiao-yan

    2016-01-01

    Analyzing variations in silicon (Si) isotopes can help elucidate the biogeochemical Si cycle and Si accumulation processes of higher plants. Importantly, the composition of Si isotopes in higher plants has yet to be studied comprehensively and our knowledge of the distribution of Si isotopes in higher plants lags behind that of Si isotopes in marine organisms, such as diatoms. In the present study, we investigated the isotope fractionation that occurs during the uptake and transport of Si in rice, using a series of hydroponic experiments with different external concentrations of Si. We found that an active mechanism was responsible for the majority of Si uptake and transport at lower Si levels and that the uptake of Si by rice roots was significantly suppressed by both low temperature and metabolic inhibitors. In addition, light Si isotopes (28Si) entered roots more readily than heavy Si isotopes (30Si) when the active mechanism was inhibited. Therefore, we conclude that biologically mediated isotope fractionation occurs during the uptake of Si by rice roots. In addition, both active and passive Si uptake components co-exist in rice, and the fractionation effect is enhanced when more Si is absorbed by plants. PMID:28036355

  2. Quantitative trait loci for phyllochron and tillering in rice.

    PubMed

    Miyamoto, N; Goto, Y; Matsui, M; Ukai, Y; Morita, M; Nemoto, K

    2004-08-01

    Morphogenetic processes in sequentially growing leaves and tiller buds are highly synchronized in rice ( Oryza sativa L.). Consequently, the appearance of successive leaves in the main tiller acts as the "pacemaker" for the whole shoot system development. The time interval between the appearance of successive leaves (days/leaf) in the main tiller is called the 'phyllochron'. The objectives of the investigation reported here were: (1) to identify quantitative trait loci (QTLs) that control rice phyllochron and (2) to understand the roles of phyllochron QTLs as an underlying developmental factor for rice tillering. For this purpose we developed a set of recombinant inbred lines derived from a cross between IR36 ( indica) and Genjah Wangkal (tropical japonica). Composite interval mapping detected three phyllochron QTLs located on chromosomes 4, 10 and 11, where the presence of a Genjah Wangkal allele increased phyllochron. The largest QTL (on chromosome 4) was located on the genomic region syntenic to the vicinity of the maize Teopod 2 mutation, while the QTL on chromosome 10 was close to the rice plastochron 1 mutation. These three phyllochron QTLs failed to coincide with major tiller number QTLs. However, one tiller number QTL was associated with small LOD peaks for phyllochron and tiller-bud dormancy that were linked in coupling phase, suggesting that linked small effects of phyllochron and tiller-bud dormancy might result in a multiplicative effect on tiller number.

  3. Respiration hastens maturation and lowers yield in rice.

    PubMed

    Sitaramam, V; Bhate, R; Kamalraj, P; Pachapurkar, S

    2008-07-01

    Role of respiration in plant growth remains an enigma. Growth of meristematic cells, which are not photosynthetic, is entirely driven by endogenous respiration. Does respiration determine growth and size or does it merely burn off the carbon depleting the biomass? We show here that respiration of the germinating rice seed, which is contributed largely by the meristematic cells of the embryo, quantitatively correlates with the dynamics of much of plant growth, starting with the time for germination to the time for flowering and yield. Seed respiration appears to define the quantitative phenotype that contributes to yield via growth dynamics that could be discerned even in commercial varieties, which are biased towards higher yield, despite considerable susceptibility of the dynamics to environmental perturbations. Intrinsic variation, irreducible despite stringent growth conditions, required independent validation of relevant physiological variables both by critical sampling design and by constructing dendrograms for the interrelationships between variables that yield high consensus. More importantly, seed respiration, by mediating the generation clock time via variable time for maturation as seen in rice, directly offers the plausible basis for the phenotypic variation, a major ecological stratagem in a variable environment with uncertain water availability. Faster respiring rice plants appear to complete growth dynamics sooner, mature faster, resulting in a smaller plant with lower yield. Counter to the common allometric views, respiration appears to determine size in the rice plant, and offers a valid physiological means, within the limits of intrinsic variation, to help parental selection in breeding.

  4. Detection and diagnosis of rice-infecting viruses

    PubMed Central

    Uehara-Ichiki, Tamaki; Shiba, Takuya; Matsukura, Keiichiro; Ueno, Takanori; Hirae, Masahiro; Sasaya, Takahide

    2013-01-01

    Rice-infecting viruses have caused serious damage to rice production in Asian, American, and African countries, where about 30 rice viruses and diseases have been reported. To control these diseases, developing accurate, quick methods to detect and diagnose the viruses in the host plants and any insect vectors of the viruses is very important. Based on an antigen–antibody reaction, serological methods such as latex agglutination reaction and enzyme-linked immunosorbent assay have advanced to detect viral particles or major proteins derived from viruses. They aid in forecasting disease and surveying disease spread and are widely used for virus detection at plant protection stations and research laboratories. From the early 2000s, based on sequence information for the target virus, several other methods such as reverse transcription-polymerase chain reaction (RT-PCR) and reverse transcription-loop-mediated isothermal amplification have been developed that are sensitive, rapid, and able to differentiate closely related viruses. Recent techniques such as real-time RT-PCR can be used to quantify the pathogen in target samples and monitor population dynamics of a virus, and metagenomic analyses using next-generation sequencing and microarrays show potential for use in the diagnosis of rice diseases. PMID:24130554

  5. Genetic diversity for mycorrhizal symbiosis and phosphate transporters in rice.

    PubMed

    Jeong, Kwanho; Mattes, Nicolas; Catausan, Sheryl; Chin, Joong Hyoun; Paszkowski, Uta; Heuer, Sigrid

    2015-11-01

    Phosphorus (P) is a major plant nutrient and developing crops with higher P-use efficiency is an important breeding goal. In this context we have conducted a comparative study of irrigated and rainfed rice varieties to assess genotypic differences in colonization with arbuscular mycorrhizal (AM) fungi and expression of different P transporter genes. Plants were grown in three different soil samples from a rice farm in the Philippines. The data show that AM symbiosis in all varieties was established after 4 weeks of growth under aerobic conditions and that, in soil derived from a rice paddy, natural AM populations recovered within 6 weeks. The analysis of AM marker genes (AM1, AM3, AM14) and P transporter genes for the direct Pi uptake (PT2, PT6) and AM-mediated pathway (PT11, PT13) were largely in agreement with the observed root AM colonization providing a useful tool for diversity studies. Interestingly, delayed AM colonization was observed in the aus-type rice varieties which might be due to their different root structure and might confer an advantage for weed competition in the field. The data further showed that P-starvation induced root growth and expression of the high-affinity P transporter PT6 was highest in the irrigated variety IR66 which also maintained grain yield under P-deficient field conditions.

  6. TOND1 confers tolerance to nitrogen deficiency in rice.

    PubMed

    Zhang, Yangjun; Tan, Lubin; Zhu, Zuofeng; Yuan, Lixing; Xie, Daoxin; Sun, Chuanqing

    2015-02-01

    Nitrogen (N), the most important mineral nutrient for plants, is critical to agricultural production systems. N deficiency severely affects rice growth and decreases rice yields. However, excessive use of N fertilizer has caused severe pollution to agricultural and ecological environments. The necessity of breeding of crops that require lower input of N fertilizer has been recognized. Here we identified a major quantitative trait locus on chromosome 12, Tolerance Of Nitrogen Deficiency 1 (TOND1), that confers tolerance to N deficiency in the indica cultivar Teqing. Sequence verification of 75 indica and 75 japonica cultivars from 18 countries and regions demonstrated that only 27.3% of cultivars (41 indica cultivars) contain TOND1, whereas 72.7% of cultivars, including the remaining 34 indica cultivars and all 75 japonica cultivars, do not harbor the TOND1 allele. Over-expression of TOND1 increased the tolerance to N deficiency in the TOND1-deficient rice cultivars. The identification of TOND1 provides a molecular basis for breeding rice varieties with improved grain yield despite decreased input of N fertilizers.

  7. Bioenergetics in ecosystems

    USGS Publications Warehouse