Tectonic Evolution of Bell Regio, Venus: Regional Stress, Lithospheric Flexure, and Edifice Stresses
NASA Astrophysics Data System (ADS)
Rogers, P. G.; Zuber, M. T.
1996-03-01
Analyses of the tectonic features associated with large volcanoes provide important insight into the relationship between volcanic and tectonic processes and the stress state of a planet's crust over time, and provide constraints on the local and regional geologic evolution. This investigation focuses on the tectonism and volcanism of Bell Regio, a major highland uplift n Venus. The stress environments and resulting tectonic features associated with the major volcanic edifices in this region are examined using Magellan ynthetic aperture radar (SAR) images and altimeter measurements of topography. The major volcanoes of Bell Regio, Tepev Mons and the "Eastern Volcanic Center" (EVC), exhibit tectonic characteristics that are unique relative to other volcanic edifices on Venus. The most prominent distinctions are the lack of large rift zones within the overall highland uplift and the presence of radial tectonic and concentric fractures associated with the major edifices. This study examines the regional stress field in Bell Regio through analysis of structural features believed to be a consequence of lithospheric flexure due to volcanic loading and tectonic features that likely resulted from edifice stresses associated with magma chamber inflation.
High-Resolution Regional Phase Attenuation Models of the Iranian Plateau and Surrounding Regions
2014-03-03
1 2.2. Tectonic and Geophysical Setting ..........................................................................2 2.3...superimposed with the major tectonic features across the Middle East. The major faults are depicted with black solid lines. The main continental boundary fault...zones and tectonic settings are abbreviated on the map and described here. The red triangles present the location of quaternary volcanoes. The dashed
Mimas: Tectonic structure and geologic history
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1991-01-01
Mimas, the innermost of the major saturnian satellites, occupies an important place in comparative studies of icy satellites. It is the smallest icy satellite known to have a mostly spherical shape. Smaller icy objects like Hyperion and Puck are generally irregular in shape, while larger ones like Miranda and Enceladus are spherical. Thus Mimas is near the diameter where the combination of increasing surface gravity and internal heating begin to have a significant effect on global structure. The nature and extent of endogenic surface features provide important constraints on the interior structure and history of this transitional body. The major landforms on Mimas are impact craters. Mimas has one of the most heavily cratered surfaces in the solar system. The most prominent single feature on Mimas is Herschel, an unrelaxed complex crater 130 km in diameter. The only other recognized landforms on Mimas are tectonic grooves and lineaments. Groove locations were mapped by Schenk, but without analysis of groove structures or superposition relationships. Mimas' tectonic structures are remapped here in more detail than previously has been done, as part of a general study of tectonic features on icy satellites.
Pargo Chasma and its relationship to global tectonics
NASA Technical Reports Server (NTRS)
Ghail, R. C.
1993-01-01
Pargo Chasma was first identified on Pioneer Venus data as a 10,000 km long lineation extending from Atla Regio in the north terminating in the plains south of Phoebe Regio. More recent Magellan data have revealed this feature to be one of the longest chains of coronae so far identified on the planet. Stofan et al have identified 60 coronae and 2 related features associated with this chain; other estimates differ according to the classification scheme adopted, for example Head et al. identify only 29 coronae but 43 arachnoids in the same region. This highlights one of the major problems associated with the preliminary mapping of the Magellan data: there has been an emphasis on identifying particular features on Venus without a universally accepted scheme to classify those features. Nevertheless, Pargo Chasma is clearly identified as a major tectonic belt of global significance. Together with the Artemis-Atla-Beta tectonic zone and the Beta-Phoebe rift belt, Pargo Chasma defines a region on Venus with an unusually high concentration of tectonic and volcanic features. Thus, an understanding of the processes involved in the formation of Pargo Chasma may lend significant insight into the evolution of the region and the planet as a whole. I have produced a detailed 1 to 10 million scale map of Pargo Chasma and the surrounding area from preliminary USGS controlled mosaiced image maps of Venus constructed from Magellan data. In view of the problems highlighted above in relation the efforts already made at identifying a particular set of features I have mapped the region purely on the basis of the geomorphology visible in the magellan data without any attempt at identifying a particular set or class of features. Thus, the map produced distinguishes between areas of different brightness and texture. This has the advantage of highlighting the tectonic fabric of Pargo Chasma and clearly illustrates the close inter-relationship between individual coronae and the surrounding tectonic belts.
NASA Astrophysics Data System (ADS)
Datt, Devi
2017-04-01
This paper describes the results of a continuing investigation of tectonic influence on channel pattern and morphology of Alaknanda River in Lesser Garhwal Himalaya, Uttarakhand, India. Extensive field investigations using conventional methods supported by topographical sheets and remote sensing data (LISS IV), were undertaken.The results are classified into three sections :- tectonics, channel pattern and impact of tectonics on channel pattern. The channel length is divided into 8 meanders sets of 3 segments from Supana to Kirtinagar. Thereafter, a litho-tectonic map of the Srinagar valley was prepared. The style of active tectonics on deformation and characterization of fluvial landscape was investigated on typical strike-slip transverse faults near the zone of North Almora Thrust (NAT). NAT is a major tectonic unit of the Lesser Himalaya which passes through the northern margin from NW to SE direction.. The structural and lithological controls on the Alaknanda River system in Srinagar valley are reflected on distinct drainage patterns, abrupt change in flow direction, incised meandering, offset river channels, straight river lines, palaeo-channels, multi levels of terraces, knick points and pools in longitudinal profile. The results of the study show that the sinuosity index of the river is 1.35. Transverse faulting is very common along the NAT. An earlier generation of linear tectonic features were displaced by the latter phase of deformation. Significant deviations were observed in river channel at deformation junctions. Moreover, all 8 sets of meanders are strongly influenced by tectonic features. The meandering course is, thereby, correlated with tectonic features. It is shown that the river channel is strongly influenced by the tectonic features in the study area. Key Words: Tectonic, Meander, Channel pattern, deformation, Knick point.
Geology of the Venus equatorial region from Pioneer Venus radar imaging
NASA Technical Reports Server (NTRS)
Senske, D. A.; Head, James W.
1989-01-01
The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae.
Venus Chasmata: A Lithospheric Stretching Model
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Head, J. W.
1985-01-01
An outstanding problem for Venus is the characterization of its style of global tectonics, an issue intimately related to the dominant mechanism of lithospheric heat loss. Among the most spectacular and extensive of the major tectonic features on Venus are the chasmata, deep linear valleys generally interpreted to be the products of lithospheric extension and rifting. Systems of chasmata and related features can be traced along several tectonic zones up to 20,000 km in linear extent. A lithospheric stretching model was developed to explain the topographic characteristics of Venus chasmata and to constrain the physical properties of the Venus crust and lithosphere.
Tectonic models for Yucca Mountain, Nevada
O'Leary, Dennis W.
2006-01-01
Performance of a high-level nuclear waste repository at Yucca Mountain hinges partly on long-term structural stability of the mountain, its susceptibility to tectonic disruption that includes fault displacement, seismic ground motion, and igneous intrusion. Because of the uncertainty involved with long-term (10,000 yr minimum) prediction of tectonic events (e.g., earthquakes) and the incomplete understanding of the history of strain and its mechanisms in the Yucca Mountain region, a tectonic model is needed. A tectonic model should represent the structural assemblage of the mountain in its tectonic setting and account for that assemblage through a history of deformation in which all of the observed deformation features are linked in time and space. Four major types of tectonic models have been proposed for Yucca Mountain: a caldera model; simple shear (detachment fault) models; pure shear (planar fault) models; and lateral shear models. Most of the models seek to explain local features in the context of well-accepted regional deformation mechanisms. Evaluation of the models in light of site characterization shows that none of them completely accounts for all the known tectonic features of Yucca Mountain or is fully compatible with the deformation history. The Yucca Mountain project does not endorse a preferred tectonic model. However, most experts involved in the probabilistic volcanic hazards analysis and the probabilistic seismic hazards analysis preferred a planar fault type model. ?? 2007 Geological Society of America. All rights reserved.
The Role of Geophysics in the New Global Tectonics
ERIC Educational Resources Information Center
Rudman, Albert J.
1969-01-01
Summarizes the developments in geophysics that have led to the concept of the new global tectonics, which attempts to explain such worldwide features as oceanic ridges and trenches, island arcs and young mountain chains, while it develops processes that cause earthquakes, volcanoes and major faulting. Evidence for the hypotheses of continental…
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.
1975-01-01
The author has identified the following significant results. The ERTS-1 imagery was utilized to study major fault and tectonic lines and their intersections in southwestern North America. A system of transverse shear faults was recognized in the California Coast Ranges, the Sierra Nevada, the Great Basin, and Mexico. They are interpreted as expressions of a major left-lateral shear which predated the San Andreas system, the opening of the Gulf of California and Basin and Range rift development. Tectonic models for Basin and Range, Coast Ranges, and Texas-Parras shears were developed. Geological structures and Precambrian metamorphic trend lines of schistosity were studied across the Red Sea rift.
NASA Astrophysics Data System (ADS)
Lavenu, Arthur P. C.; Lamarche, Juliette
2018-03-01
Fractures are widespread in rocks and regional opening-mode arrays are commonly ascribed to major tectonic events. However, fractures occur in otherwise undeformed rocks. Some of these are early-developed features independent of tectonics and forming a background network at regional scale. To overcome this lack of understanding, two hydrocarbon reservoir analogues from platform carbonates have been targeted: the Provence (SE France), and the Apulian platform (SE Italy). In both areas, an early fracturing stage has been observed, made of high-angle-to-bedding opening-mode fractures, and bed-parallel stylolites. These features developed synchronously during the first burial stages and prior to major tectonic events. The fracture sets are not genetically related to the present-day layering. Contrarily, fractures developed in a brittle media where facies transitions were not sharp and did not act as mechanical discontinuities. Carbonate facies distribution and early diagenetic imprint constrained the mechanical stratigraphy when fractures occurred. In addition, we observed that fractures related to late tectonic inversion were partly inhibited. Indeed, rock mechanical properties change through time. Characterizing the temporal evolution of carbonate rocks has revealed that diagenesis and sedimentary facies are the prime actors for brittleness and mechanical layering in carbonates.
Preliminary correlations of MAGSAT anomalies with tectonic features of Africa
Hastings, David A.
1982-01-01
An overview of the MAGSAT scalar anomaly map for Africa has suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Although a magnetic anomaly caused by a rectangular crustal block would be offset from the block's center by the effects of magnetic inclination, an anomaly caused by real crustal blocks of varying uplift, depression, and degree of regional metamorphism would be located nearer to the locus of greatest vertical movement and highest grade of metamorphism. Thus, the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.
A global tectonic activity map with orbital photographic supplement
NASA Technical Reports Server (NTRS)
Lowman, P. D., Jr.
1981-01-01
A three part map showing equatorial and polar regions was compiled showing tectonic and volcanic activity of the past one million years, including the present. Features shown include actively spreading ridges, spreading rates, major active faults, subduction zones, well defined plates, and volcanic areas active within the past one million years. Activity within this period was inferred from seismicity (instrumental and historic), physiography, and published literature. The tectonic activity map was used for planning global geodetic programs of satellite laser ranging and very long base line interferometry and for geologic education.
Geomorphology of the Iberian Continental Margin
NASA Astrophysics Data System (ADS)
Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria
2013-08-01
The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.
Analysis of tectonic features in US southwest from Skylab photographs
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.
1975-01-01
The author has identified the following significant results. Skylab photographs were utilized to study faults and tectonic lines in selected areas of the U.S. Southwest. Emphasis was on elements of the Texas Zone in the Mojave Desert and the tectonic intersection in southern Nevada. Transverse faults believed to represent the continuation of the Texas Zone were found to be anomalous in strike. This suggests that the Mojave Desert block was rotated counterclockwise as a unit with the Sierra Nevada. Left-lateral strike-slip faults in Lake Mead area are interpreted as elements of the Wasatch tectonic zone; their anomalous trend indicates that the Lake Mead area has rotated clockwise with the Colorado Plateau. A tectonic model relating major fault zones to fragmentation and rotation of crustal blocks was developed. Detailed correlation of the high resolution S190B metric camera photographs with U-2 photographs and geologic maps demonstrates the feasibility of utilizing S190B photographs for the identification of geomorphic features associated with recent and active faults and for the assessment of seismic hazards.
Atla Regio, Venus: Geology and origin of a major equatorial volcanic rise
NASA Technical Reports Server (NTRS)
Senske, D. A.; Head, James W., III
1992-01-01
Regional volcanic rises form a major part of the highlands in the equatorial region of Venus. These broad domical uplands, 1000 to 3000 km across, contain centers of volcanism forming large edifices and are associated with extension and rifting. Two classes of rises are observed: (1) those that are dominated by tectonism, acting as major centers for converging rifts such as Beta Regio and Alta Regio, and are termed tectonic junctions; and (2) those forming uplands characterized primarily by large-scale volcanism forming edifices. Western Eistla Regio and Bell Regio, where zones of extension and rifting are less developed. Within this second class of features the edifices are typically found at the end of a single rift, or are associated with a linear belt of deformation. We examine the geologic characteristics of the tectonic junction at Alta Regio, concentrating on documenting the styles of volcanism and assessing mechanisms for the formation of regional topography.
Episodic Cenozoic volcanism and tectonism in the Andes of Peru
Noble, D.C.; McKee, E.H.; Farrar, E.; Petersen, U.
1974-01-01
Radiometric and geologic information indicate a complex history of Cenozoic volcanism and tectonism in the central Andes. K-Ar ages on silicic pyroclastic rocks demonstrate major volcanic activity in central and southern Peru, northern Chile, and adjacent areas during the Early and Middle Miocene, and provide additional evidence for volcanism during the Late Eocene. A provisional outline of tectonic and volcanic events in the Peruvian Andes during the Cenozoic includes: one or more pulses of igneous activity and intense deformation during the Paleocene and Eocene; a period of quiescence, lasting most of Oligocene time; reinception of tectonism and volcanism at the beginning of the Miocene; and a major pulse of deformation in the Middle Miocene accompanied and followed through the Pliocene by intense volcanism and plutonism. Reinception of igneous activity and tectonism at about the Oligocene-Miocene boundary, a feature recognized in other circum-Pacific regions, may reflect an increase in the rate of rotation of the Pacific plate relative to fixed or quasifixed mantle coordinates. Middle Miocene tectonism and latest Tertiary volcanism correlates with and probably is genetically related to the beginning of very rapid spreading at the East Pacific Rise. ?? 1974.
NASA Technical Reports Server (NTRS)
Wilson, J. C. (Principal Investigator)
1975-01-01
The author has identified the following significant results. Many new linear and circular features were found. These features prompted novel tectonic classification and analysis especially in the Ray and Ely areas. Tectonic analyses of the Ok Tedi, Tanacross, and Silvertone areas follow conventional interpretations. Circular features are mapped in many cases and are interpreted as exposed or covered intrusive centers. The small circular features reported in the Ok Tedi test area are valid and useful correlations with tertiary intrusion and volcanism in this remote part of New Guinea. Several major faults of regional dimensions, such as the Denali fault in Alaska and the Colorado mineral belt structures in Colorado are detected in the imagery. Many more faults and regional structures are found in the imagery than exist on present maps.
Geological setting of the southern termination of Western Alps
NASA Astrophysics Data System (ADS)
d'Atri, Anna; Piana, Fabrizio; Barale, Luca; Bertok, Carlo; Martire, Luca
2016-09-01
A revision of the stratigraphic and tectonic setting of the southern termination of the Western Alps, at the junction of the Maritime Alps with the westernmost Ligurian Alps, is proposed. In response to the Alpine kinematic evolution, a number of tectonic units formed on the deformed palaeo-European continental margin and were arranged in a NW-SE striking anastomosed pattern along the north-eastern boundary of the Argentera Massif. Because these tectonic units often cut across the palaeogeographic subdivision of the Alpine literature and show only partial affinity with their distinctive stratigraphic features, new attributions are proposed. The Subbriançonnais domain is here intended as a "deformation zone", and its tectonic units have been attributed to Dauphinois and Provençal domains; furthermore, the Eocene Alpine Foreland Basin succession has been interpreted, based on the affinity of its lithologic characters and age, as a single feature resting above all the successions of the different Mesozoic domains. The Cretaceous tectono-sedimentary evolution of the studied domains was characterized by intense tectonic controls on sedimentation inducing lateral variations of stratigraphic features and major hydrothermal phenomena. Since the early Oligocene, transpressional tectonics induced a NE-SW shortening, together with significant left-lateral movements followed by (late Oligocene-middle Miocene) right-lateral movements along E-W to SE-NW striking shear zones. This induced the juxtaposition and/or stacking of Briançonnais, Dauphinois and Ligurian tectonic units characterized by different metamorphic histories, from anchizonal to lower greenschist facies. This evolution resulted in the arrangement of the tectonostratigraphic units in a wide "transfer zone" accommodating the Oligocene WNW-ward movement of portions of the palaeo-European margin placed at the south-western termination of Western Alps and the Miocene dextral shearing along SE striking faults that bound the Argentera Massif on its NE side.
Satellite Elevation Magnetic and Gravity Models of Major South American Plate Tectonic Features
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W.; Lidiak, E. G.; Keller, G. R. (Principal Investigator); Longacre, M. B.
1984-01-01
Some MAGSAT scalar and vector magnetic anomaly data together with regional gravity anomaly data are being used to investigate the regional tectonic features of the South American Plate. An initial step in this analysis is three dimensional modeling of magnetic and gravity anomalies of major structures such as the Andean subduction zone and the Amazon River Aulacogen at satellite elevations over an appropriate range of physical properties using Gaus-Legendre quadrature integration method. In addition, one degree average free-air gravity anomalies of South America and adjacent marine areas are projected to satellite elevations assuming a spherical Earth and available MAGSAT data are processed to obtain compatible data sets for correlation. Correlation of these data sets is enhanced by reduction of the MAGSAT data to radial polarization because of the profound effect of the variation of the magnetic inclination over South America.
Formation and evolution of radial fracture systems on Venus
NASA Technical Reports Server (NTRS)
Parfitt, E. A.; Head, James W.
1993-01-01
A survey of approximately 90 percent of the surface of Venus using Magellan data has been carried out to locate all radial fracture systems and to assess their association with other features such as volcanic edifices and coronae. Squyres et al. and Stofan et al. have discussed the association of radial fracture features in relation to coronae features, our approach was to assess the associations of all of the fracture systems. These fracture systems have two broad types of form - some fracture systems are associated with updomed topography, radiate from a point and have relatively uniform fracture lengths while others have a wider range of fracture lengths and radiate from the outer edge of a central caldera. Squyres et al. and Stofan et al. have interpreted both types of feature as reflecting tectonic fracturing resulting from uplift of the surface as a mantle plume impinges upon the crust. While it is true that a number of features are related to uplift and that such uplift will induce stresses consistent with radial fracturing, we explore the possibility that these fractures are not exclusively of tectonic origin. Purely tectonic fracturing will tend to generate a few main fractures/faults along which most of the stresses due to uplift will be accommodated leading to the triple-junction form common for terrestrial updoming. Though this type of feature is observed on Venus (e.g., feature located at 34S86), the majority of radial fracture systems display much more intensive fracturing than this through a full 360 degrees; this is difficult to explain by purely tectonic processes. The association of many of the fractures with radial lava flows leads us to interpret these fractures as reflecting dike emplacement: the form of the fractures being consistent with primarily vertical propagation from the head of a mantle plume. In the case of the second type of fracture system (those radiating from a central caldera), an even stronger case can be made that the fractures are not of tectonic origin. These features are not as commonly associated with updoming of the surface and where they are, the fractures extend out well beyond the edge of the topographic rise - an observation which is not consistent with the fractures being of tectonic uplift origin. Furthermore the fractures have a distribution of lengths (many short, fewer long) which is characteristic of dike swarms, and show direct associations with calderas and lava flows consistent with a volcanic origin. In addition, the longest fractures have a radial pattern only close to the center of the system but bend with distance to align themselves with the regional stress field - this behavior is very difficult to explain on purely tectonic grounds but is a pattern commonly seen for terrestrial dikes. For these reasons, we argue that many, if not the majority, of radial fracture systems found on Venus are the surface reflection of dike swarms, those associated with positive topography reflecting vertical emplacement and those radiating from calderas reflecting lateral propagation.
Tectonic histories between Alba Patera and Syria Planum, Mars
Anderson, R.C.; Dohm, J.M.; Haldemann, A.F.C.; Hare, T.M.; Baker, V.R.
2004-01-01
Syria Planum and Alba Patera are two of the most prominent features of magmatic-driven activity identified for the Tharsis region and perhaps for all of Mars. In this study, we have performed a Geographic Information System-based comparative investigation of their tectonic histories using published geologic map information and Mars Orbiter Laser Altimetry (MOLA) data. Our primary objective is to assess their evolutional histories by focusing on their extent of deformation in space and time through stratigraphic, paleotectonic, topographic, and geomorphologic analyses. Though there are similarities among the two prominent features, there are several distinct differences, including timing deformational extent, and tectonic intensity of formation. Whereas Alba Patera displays a major pulse of activity during the Late Hesperian/Early Amazonian, Syria Planum is a long-lived center that displays a more uniform distribution of simple graben densities ranging from the Noachian to the Amazonian, many of which occur at greater distances away from the primary center of activity. The histories of the two features presented here are representative of the complex, long-lived evolutional history of Tharsis. ?? 2004 Elsevier Inc. All rights reserved.
Guseva, Y.B.; Leitchenkov, G.L.; Gandyukhin, V.V.; Ivanov, S.V.
2007-01-01
This study is based on about 8400 km of MCS, magnetic and gravity data as well as 20 sonobuoys collected by the Russian Antarctic Expedition during 2003 and 2004 in the Davis Sea and adjacent areas between 80°E and 102°E. Major tectonic provinces and features are identified and mapped in the study region including: 1) A marginal rift with a the extended continental crust ranging 130 to more than 200 km in width; 2) The marginal volcanic plateau of the Bruce Bank consisting of the Early Cretaceous igneous rocks; 3) The Early Cretaceous and Late Cretaceous−Paleogene oceanic basins; and 4) The Early Cretaceous igneous province of the Kerguelen Plateau. Four major horizons identified in the sedimentary cover of the Davis Sea region are attributed to main tectonic events and/or paleoenvironmental changes.
Unraveling Appalachian tectonics: domain analysis of topographic lineaments in Pennsylvania
NASA Astrophysics Data System (ADS)
Karimi, B.; Schon, K.; Nussbaum, G. W.; Storer, N. D.; McGuire, J. L.; Hardcastle, K.
2016-12-01
Litho-tectonic provinces provide different components of a regions' tectonic history, and are identified as spatial entities with common structural elements, or a number of contiguous related elements. The province boundaries are easily identified when geomorphic expressions are distinct, or significant rock exposure allows for little uncertainty. When exposures are limited, locations of boundaries between provinces are uncertain. In such instances, satellite imagery can be quite advantageous, as tectonically sourced features (faults, folds, fractures, and joints) may exert a strong control on topographic patterns by creating pathways for weathering and erosion. Lineament analyses of topography often focus on well-pronounced tectonic features to interpret regional tectonics. We suggest that lineament analyses including all topographic features may include more subtle tectonic features, resulting in the identification of minor heterogeneities within litho-tectonic provinces. Our study focuses on Appalachian tectonics, specifically in Pennsylvania (PA), home to the Appalachian Orocline and 5 distinct tectonic provinces. Using hillshades from a digital elevation model (DEM) of PA, we manually pick all topographic lineaments 1 km or greater, discriminating only against man-made structures. The final lineament coverage of the state is subdivided into smaller areas for which rose diagrams were prepared. The dominant lineament trends were compared and associated with known structural features. Peaks with no known source are marked as possible tectonic features requiring further research. A domain analysis is performed on the lineament data to identify the extent and interplay of swarms, followed by an investigation of their azimuthal compatibility. We present the results of our domain analysis of all topographic lineaments in the context of identifying litho-tectonic provinces associated with Appalachian tectonics in Pennsylvania, and possible heterogeneities within them.
Convection pattern and stress system under the African plate
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1977-01-01
Studies on tectonic forces from satellite-derived gravity data have revealed a subcrustal stress system which provides a unifying mechanism for uplift, depression, rifting, plate motion and ore formation in Africa. The subcrustal stresses are due to mantle convection. Seismicity, volcanicity and kimberlite magmatism in Africa and the development of the African tectonic and magnetic features are explained in terms of this single stress system. The tensional stress fields in the crust exerted by the upwelling mantle flows are shown to be regions of structural kinship characterized by major concentration of mineral deposits. It is probable that the space techniques are capable of detecting and determining the tectonic forces in the crust of Africa.
NASA Technical Reports Server (NTRS)
Hastings, D. A. (Principal Investigator)
1982-01-01
The problems associated with the use of an interactive magnetic modeling program are reported and a publication summarizing the MAGSAT anomaly results for Africa and the possible tectonic associations of these anomalies is provided. An overview of the MAGSAT scalar anomaly map for Africa suggested a correlation of MAGSAT anomalies with major crustal blocks of uplift or depression and different degrees of regional metamorphism. The strongest MAGSAT anomalies in Africa are closely correlated spatially with major tectonic features. Results indicate that the Bangui anomaly may be caused by a central old Precambrian shield, flanked to the north and south by two relatively young sedimentary basins.
NASA Astrophysics Data System (ADS)
Chakraborty, Sumit; Mukhopadhyay, Dilip K.; Chowdhury, Priyadarshi; Rubatto, Daniela; Anczkiewicz, Robert; Trepmann, Claudia; Gaidies, Fred; Sorcar, Nilanjana; Dasgupta, Somnath
2017-06-01
One of the enduring debates in the study of the Himalayan orogen (and continental collision zones in general) is whether the salient observed features are explained (a) by localized deformation along discrete, narrow fault zones/ductile shear zones separating individual blocks or slices (e.g. critical taper or wedge tectonic models), or (b) by distributed deformation dominated by wide zones of visco-plastic flow in the solid or a partially molten state (e.g. channel flow models). A balanced cross-section from Sikkim in the eastern Himalaya that is based on structural data and is drawn to satisfy petrological and geophysical constraints as well, is used in combination with information from petrology, geochronology, geospeedometry and microstructural data to address this question. We discuss that any tectonic model needs to be thermally, rheologically, geometrically and temporally viable in order to qualify as a suitable description of a system; models such as channel flow and critical taper are considered in this context. It is shown that channel flow models may operate with or without an erosional porthole (channel with tunnel and funnel mode vs. channels with only the tunnel mode) and that the predicted features differ significantly between the two. Subsequently, we consider a large body of data from Sikkim to show that a channel flow type model (in the tunneling without funneling mode), such as the ones of Faccenda et al. (2008), describes features formed at high temperatures very well, while features formed at lower temperatures are more consistent with the operation of localized, fault-bounded, slice tectonics, (LFBST, be it in the form of critical taper, wedge tectonics, or something else). Thus, the two modes are not competing, but collaborating, processes and both affect a given rock unit at different points of time during burial, metamorphism and exhumation. A transitional stage separates the two end-member styles of tectonic evolution. The proposed models bear similarities to those suggested by Mallet (1875) and Auden (1935) and mechanisms proposed by Beaumont and Jamieson (2010). We conclude by discussing some of the implications of such a model for motion on the major Himalayan faults, and by considering which features of any given rock are likely to record signatures of a particular style of tectonic evolution. Some directions for future research are suggested in the end.
Tectonic significance of Kibaran structures in Central and Eastern Africa
NASA Astrophysics Data System (ADS)
Rumvegeri, B. T.
Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.
Geomorphology, tectonics, and exploration
NASA Technical Reports Server (NTRS)
Sabins, F. F., Jr.
1985-01-01
Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?
Active tectonics and earthquake potential of the Myanmar region
NASA Astrophysics Data System (ADS)
Wang, Yu; Sieh, Kerry; Tun, Soe Thura; Lai, Kuang-Yin; Myint, Than
2014-04-01
This paper describes geomorphologic evidence for the principal neotectonic features of Myanmar and its immediate surroundings. We combine this evidence with published structural, geodetic, and seismic data to present an overview of the active tectonic architecture of the region and its seismic potential. Three tectonic systems accommodate oblique collision of the Indian plate with Southeast Asia and extrusion of Asian territory around the eastern syntaxis of the Himalayan mountain range. Subduction and collision associated with the Sunda megathrust beneath and within the Indoburman range and Naga Hills accommodate most of the shortening across the transpressional plate boundary. The Sagaing fault system is the predominant locus of dextral motion associated with the northward translation of India. Left-lateral faults of the northern Shan Plateau, northern Laos, Thailand, and southern China facilitate extrusion of rocks around the eastern syntaxis of the Himalaya. All of these systems have produced major earthquakes within recorded history and continue to present major seismic hazards in the region.
NASA Technical Reports Server (NTRS)
Yuan, D. W.
1984-01-01
Magnetic anomalies of the South American continent are generally more positive and variable than the oceanic anomalies. There is better correlation between the magnetic anomalies and the major tectonic elements of the continents than between the anomalies and the main tectonic elements of the adjacent oceanic areas. Oceanic areas generally show no direct correlation to the magnetic anomalies. Precambrian continental shields are mainly more magnetic than continental basins and orogenic belts. Shields differ markedly from major aulacogens which are generally characterized by negative magnetic anomalies and positive gravity anomalies. The Andean orogenic belt shows rather poor correlation with the magnetic anomalies. The magnetic data exhibit instead prominent east-west trends, which although consistent with some tectonic features, may be related to processing noise derived from data reduction procedures to correct for external magnetic field effects. The pattern over the Andes is sufficiently distinct from the generally north trending magnetic anomalies occurring in the adjacent Pacific Ocean to separate effectively the leading edge of the South American Plate from the Nazea Plate. Eastern South America is characterized by magnetic anomalies which commonly extend across the continental margin into the Atlantic Ocean.
NASA Astrophysics Data System (ADS)
Corti, Giacomo; Sani, Federico; Agostini, Samuele; Philippon, Melody; Sokoutis, Dimitrios; Willingshofer, Ernst
2018-03-01
The Main Ethiopian Rift, East Africa, is characterized by the presence of major, enigmatic structures which strike approximately orthogonal to the trend of the rift valley. These structures are marked by important deformation and magmatic activity in an off-axis position in the plateaus surrounding the rift. In this study, we present new structural data based on a remote and field analysis, complemented with analogue modelling experiments, and new geochemical analysis of volcanic rocks sampled in different portions of one of these transversal structures: the Goba-Bonga volcano-tectonic lineament (GBVL). This integrated analysis shows that the GBVL is associated with roughly E-W-trending prominent volcano-tectonic activity affecting the western plateau. Within the rift floor, the approximately E-W alignment of Awasa and Corbetti calderas likely represent expressions of the GBVL. Conversely, no tectonic or volcanic features of similar (E-W) orientation have been recognized on the eastern plateau. Analogue modelling suggests that the volcano-tectonic features of the GBVL have probably been controlled by the presence of a roughly E-W striking pre-existing discontinuity beneath the western plateau, which did not extend beneath the eastern plateau. Geochemical analysis supports this interpretation and indicates that, although magmas have the same sub-lithospheric mantle source, limited differences in magma evolution displayed by products found along the GBVL may be ascribed to the different tectonic framework to the west, to the east, and in the axial zone of the rift. These results support the importance of the heterogeneous nature of the lithosphere and the spatial variations of its structure in controlling the architecture of continental rifts and the distribution of the related volcano-tectonic activity.
Recurrent intraplate tectonism in the New Madrid seismic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zoback, M.D.; Hamilton, R.M.; Crone, A.J.
1980-08-29
For the first time, New Madrid seismicity can be linked to specific structural features that have been reactivated through geologic time. Extensive seismic reflection profiling reveals major faults coincident with the main earthquake trends in the area and with structural deformation apparently caused by repeated episodes of igneous activity.
The Tectonics of Mercury: The View from Orbit
NASA Astrophysics Data System (ADS)
Watters, T. R.; Byrne, P. K.; Klimczak, C.; Enns, A. C.; Banks, M. E.; Walsh, L. S.; Ernst, C. M.; Robinson, M. S.; Gillis-Davis, J. J.; Solomon, S. C.; Strom, R. G.; Gwinner, K.
2011-12-01
Flybys of Mercury by the Mariner 10 and MESSENGER spacecraft revealed a broad distribution of contractional tectonic landforms, including lobate scarps, high-relief ridges, and wrinkle ridges. Among these, lobate scarps were seen as the dominant features and have been interpreted as having formed as a result of global contraction in response to interior cooling. Extensional troughs and graben, where identified, were generally confined to intermediate- to large-scale impact basins. However, the true global spatial distribution of tectonic landforms remained poorly defined because the flyby observations were limited in coverage and spatial resolution, and many flyby images were obtained under lighting geometries far from ideal for the detection and identification of morphologic features. With the successful insertion of MESSENGER into orbit in March 2011, we are exploiting the opportunity to characterize the tectonics of Mercury in unprecedented detail using images at high resolution and optimum lighting, together with topographic data obtained from Mercury Laser Altimeter (MLA) profiles and stereo imaging. We are digitizing all of Mercury's major tectonic landforms in a standard geographic information system format from controlled global monochrome mosaics (mean resolution 250 m/px), complemented by high-resolution targeted images (up to ~10 m/px), obtained by the Mercury Dual Imaging System (MDIS) cameras. On the basis of an explicit set of diagnostic criteria, we are mapping wrinkle ridges, high-relief ridges, lobate scarps, and extensional troughs and graben in separate shapefiles and cataloguing the segment endpoint positions, length, and orientation for each landform. The versatility of digital mapping facilitates the merging of this tectonic information with other MESSENGER-derived map products, e.g., volcanic units, surface color, geochemical variations, topography, and gravity. Results of this mapping work to date include the identification of extensional features in the northern plains and elsewhere on Mercury in the form of troughs, which commonly form polygonal patterns, in some two dozen volcanically flooded impact craters and basins.
Introduction to Regional Geology, Tectonics, and Metallogenesis of Northeast Asia
Parfenov, Leonid M.; Badarch, Gombosuren; Berzin, Nikolai A.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Kuzmin, Mikhail I.; Nokleberg, Warren J.; Obolenskiy, Alexander O.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Rodionov, Sergey M.; Smelov, Alexander P.; Yan, Hongquan
2007-01-01
This introduction presents an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia. The major purposes are to provide a relatively short summary of these features for readers who are unfamiliar with Northeast Asia; a general scientific introduction for the succeeding chapters of this volume; and an overview of the methodology of metallogenic and tectonic analysis employed for Northeast Asia. The introduction also describes how a high-quality metallogenic and tectonic analysis, including synthesis of an associated metallogenic-tectonic model will greatly benefit refinement of mineral deposit models and deposit genesis; improvement of assessments of undiscovered mineral resources as part of quantitative mineral resource assessment studies; land-use and mineral exploration planning; improvement of interpretations of the origins of host rocks, mineral deposits, and metallogenic belts; and suggestions for new research. The compilation, synthesis, description, and interpretation of metallogenesis and tectonics of major regions, such as Northeast Asia (Eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (Russian Far East, Alaska, and Canadian Cordillera) requires a complex methodology. The methodology includes: (1) definitions of key terms; (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions; (3) compilation of a mineral deposit database that enables the determination of mineral deposit models, and relations of deposits to host rocks and tectonic origins; (4) synthesis of a series of mineral deposit models that characterize the known mineral deposits and inferred undiscovered deposits of the region; (5) compilation of a series of maps of metallogenic belts constructed on the regional geologic base map; and (6) formulation of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis in this introduction is based on publications of the major international collaborative studies of the metallogenesis and tectonics of Northeast Asia that were led by the U.S. Geological Survey. These studies have produced two broad types of publications. One type is a series of regional geologic, mineral deposit, and metallogenic belt maps and companion descriptions for the regions. Examples of major publications of this type are Obolenskiy and others (2003a, b, 2004), Parfenov and others (2003, 2004a, b), Nokleberg and others (2004), Rodionov and others (2004), and Naumova and others (2006). The other type is a suite of metallogenic and tectonic analyses of these same regions. Examples of major publications of this type are Rodionov and others (2004), Nokleberg and others (2000, 2004, 2005), and Naumova and others (2006). The Northeast Asia project area consists of eastern Russia (most of Siberia and most of the Russian Far East), Mongolia, Northern China, South Korea, Japan, and adjacent offshore areas. This area is approximately bounded by 30 to 82? N. latitude and 75 to 144? E. longitude. The major participating agencies are the Russian Academy of Sciences, Academy of Sciences of the Sakha Republic (Yakutia), VNIIOkeangeologia and Ministry of Natural Resources of the Russian Federation, Mongolian Academy of Sciences, Mongolian University of Science and Technology, Mongolian National University, Jilin University, Changchun, China, the China Geological Survey, the Korea Institute of Geosciences and Mineral Resources, the Geological Survey of Japan/AIST, University of Texas Arlington, and the U.S. Geological Survey. The Northeast Asia project extends and build on data and interpretations from a previous project on the Major Mineral Deposits, Metallogenesis, and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that was conducted by the USGS, the Russian Academy of Sciences, the Alaska Division of Geological and Geophysical Surveys,
NASA Astrophysics Data System (ADS)
Kale, Vishwas S.; Sengupta, Somasis; Achyuthan, Hema; Jaiswal, Manoj K.
2014-12-01
The Indian Peninsula is generally considered as a tectonically stable region, where ancient rocks, rivers and land surfaces predominate. In some parts of this ancient landscape, however, the role of tectonic landsculpting is strongly indicated by the presence of youthful topography and historical seismic activity. The present study is primarily focused on the middle domain of the Kaveri River, which displays such youthful features. The tectonic controls on this cratonic river were evaluated on the basis of the investigations of the longitudinal profiles, morphotectonic indices of active tectonics, and fluvial records. The presence of steep channel gradients, prominent knickpoints, hanging valleys, narrow bedrock gorges, and channel-in-channel morphology imply rapid erosion rates in the middle domain of the basin in response to active deformation, particularly in the reach defined by two major active faults - the Kollegal-Sivasamudram Fault and the Mekedatu Fault. Further, considering the remarkably low modern and long-term denudation rates and OSL ages of the alluvial deposits (30-40 ka), the tectonically-driven rejuvenation does not appear to be geologically recent as postulated by earlier workers.
NASA Astrophysics Data System (ADS)
Bernardino, M. J.; Hayes, G. P.; Dannemann, F.; Benz, H.
2012-12-01
One of the main missions of the United States Geological Survey (USGS) National Earthquake Information Center (NEIC) is the dissemination of information to national and international agencies, scientists, and the general public through various products such as ShakeMap and earthquake summary posters. During the summer of 2012, undergraduate and graduate student interns helped to update and improve our series of regional seismicity posters and regional tectonic summaries. The "Seismicity of the Earth (1900-2007)" poster placed over a century's worth of global seismicity data in the context of plate tectonics, highlighting regions that have experienced great (M+8.0) earthquakes, and the tectonic settings of those events. This endeavor became the basis for a series of more regionalized seismotectonic posters that focus on major subduction zones and their associated seismicity, including the Aleutian and Caribbean arcs. The first round of these posters were inclusive of events through 2007, and were made with the intent of being continually updated. Each poster includes a regional tectonic summary, a seismic hazard map, focal depth cross-sections, and a main map that illustrates the following: the main subduction zone and other physiographic features, seismicity, and rupture zones of historic great earthquakes. Many of the existing regional seismotectonic posters have been updated and new posters highlighting regions of current seismological interest have been created, including the Sumatra and Java arcs, the Middle East region and the Himalayas (all of which are currently in review). These new editions include updated lists of earthquakes, expanded tectonic summaries, updated relative plate motion vectors, and major crustal faults. These posters thus improve upon previous editions that included only brief tectonic discussions of the most prominent features and historic earthquakes, and which did not systematically represent non-plate boundary faults. Regional tectonic summaries provide the public with immediate background information useful for teaching and media related purposes and are an essential component to many NEIC products. As part of the NEIC's earthquake response, rapid earthquake summary posters are created in the hours following a significant global earthquake. These regional tectonic summaries are included in each earthquake summary poster along with a discussion of the event, written by research scientists at the NEIC, often with help from regional experts. Now, through the efforts of this and related studies, event webpages will automatically contain a regional tectonic summary immediately after an event has been posted. These new summaries include information about plate boundary interactions and other associated tectonic elements, trends in seismicity and brief descriptions of significant earthquakes that have occurred in a region. The tectonic summaries for the following regions have been updated as part of this work: South America, the Caribbean, Alaska and the Aleutians, Kuril-Kamchatka, Japan and vicinity, and Central America, with newly created summaries for Sumatra and Java, the Mediterranean, Middle East, and the Himalayas. The NEIC is currently planning to integrate concise stylized maps with each tectonic summary for display on the USGS website.
NASA Astrophysics Data System (ADS)
Özaksoy, Volkan
2017-12-01
This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.
NASA Astrophysics Data System (ADS)
Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad
2016-07-01
Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.
NASA Technical Reports Server (NTRS)
Wilson, J. C. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Three major tectonic provinces have been mapped by geologic photointerpretation of ERTS-1 imagery over the Ok Tedi test site. These areas can be characterized as follows: (1) A broad area of low relief and mature topography suggesting a history of relative tectonic stability. (2) A narrow belt of moderate to high relief, broad open folds and prominent linear features. The Mount Fubilan-type porphyry copper deposits and recent volcanic effusive centers occur in this province. (3) A heterogeneous zone of high relief and high drainage density suggestive of relative structural complexity.
Tectonic wedging in the forearc basin - Accretionary prism transition, Lesser Antilles forearc
NASA Technical Reports Server (NTRS)
Torrini, Rudolph, Jr.; Speed, Robert C.
1989-01-01
This paper describes regional structure of the inner forearc of the southern Lesser Antilles, which contains an extensive 50-70 km wide inner forearc deformation belt (IFDB) developed above crystalline basement of the undeformed forearc basin (FAB), close to and perhaps above its probable subduction trace with Atlantic lithosphere. The IFDB is analyzed, with emphasis placed on five transects across the belt, using mainly migrated seismic sections and balanced model cross sections. The IFDB features and its evolution are discussed, with special attention given to the major structures divided by early and late stages of development, paleobathymetric history, event timing, displacement and strain, and alternative tectonic explanations.
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hashimoto, M.; Hu, J. C.; Fukahata, Y.
2017-12-01
Taiwan Island is composed of many geological structures. The main tectonic feature is the collision of the Luzon volcanic arc with the Eurasian continent, which propagates westward and generates complicated crustal deformation. One way to model crustal deformation is to divide Taiwan island into man rigid blocks that moves relatively each other along the boundaries (deformation zones) of the blocks. Since earthquakes tend to occur in the deformation zones, identification of such tectonic boundaries is important. So far, many tectonic boundaries have been proposed on the basis of geology, geomorphology, seismology and geodesy. However, which is the most significant boundary depends on disciplines and there is no way to objectively classify them. Here, we introduce an objective method to identify significant tectonic boundaries with a hierarchical representation proposed by Simpson et al. [2012].We apply a hierarchical agglomerative clustering algorithm to dense GNSS horizontal velocity data in Taiwan. One of the significant merits of the hierarchical representation of the clustering results is that we can consistently explore crustal structures from larger to smaller scales. This is because a higher hierarchy corresponds to a larger crustal structure, and a lower hierarchy corresponds to a smaller crustal structure. Relative motion between clusters can be obtained from this analysis.The first major boundary is identified along the eastern margin of the Longitudinal Valley, which corresponds to the separation of the Philippine Sea plate and the Eurasian continental margin. The second major boundary appears along the Chaochou fault and the Chishan fault in southwestern Taiwan. The third major boundary appears along the eastern margin of the coastal plane. The identified major clusters can be divided into several smaller blocks without losing consistency with geological boundaries. For example, the Fengshun fault, concealed beneath thick sediment layers, is identified. Furthermore, obtained relative motion between clusters demands a reverse fault or a left lateral fault in the off shore of the coastal range.Our clustering based block modeling is consistent with tectonics of Taiwan, implying that observed crustal deformation in Taiwan can be attributed to motion or deformation of shallow structures.
Incorporation of New and Old Tectonics Concepts Into a Modern Course in Tectonics.
ERIC Educational Resources Information Center
Hatcher, Robert D., Jr.
1983-01-01
Describes a graduate-level tectonics course which includes the historical basis for modern tectonics concepts and an in-depth review of pros/cons of plate tectonics. Tectonic features discussed include: ocean basins; volcanic arcs; continental margins; continents; orogenic belts; foreland fold and thrust belts; volcanic/plutonic belts of orogens;…
NASA Astrophysics Data System (ADS)
Ruppert, N. A.; Zabelina, I.; Freymueller, J. T.
2013-12-01
Saint Elias Mountains in southern Alaska are manifestation of ongoing tectonic processes that include collision of the Yakutat block with and subduction of the Yakutat block and Pacific plate under the North American plate. Interaction of these tectonic blocks and plates is complex and not well understood. In 2005 and 2006 a network of 22 broadband seismic sites was installed in the region as part of the SainT Elias TEctonics and Erosion Project (STEEP), a five-year multi-disciplinary study that addressed evolution of the highest coastal mountain range on Earth. High quality seismic data provides unique insights into earthquake occurrence and velocity structure of the region. Local earthquake data recorded between 2005 and 2010 became a foundation for detailed study of seismotectonic features and crustal velocities. The highest concentration of seismicity follows the Chugach-St.Elias fault, a major on land tectonic structure in the region. This fault is also delineated in tomographic images as a distinct contrast between lower velocities to the south and higher velocities to the north. The low-velocity region corresponds to the rapidly-uplifted and exhumed sediments on the south side of the range. Earthquake source parameters indicate high degree of compression and undertrusting processes along the coastal area, consistent with multiple thrust structures mapped from geological studies in the region. Tomographic inversion reveals velocity anomalies that correlate with sedimentary basins, volcanic features and subducting Yakutat block. We will present precise earthquake locations and source parameters recorded with the STEEP and regional seismic network along with the results of P- and S-wave tomographic inversion.
NASA Astrophysics Data System (ADS)
Drahor, Mahmut G.; Berge, Meriç A.
2017-01-01
Integrated geophysical investigations consisting of joint application of various geophysical techniques have become a major tool of active tectonic investigations. The choice of integrated techniques depends on geological features, tectonic and fault characteristics of the study area, required resolution and penetration depth of used techniques and also financial supports. Therefore, fault geometry and offsets, sediment thickness and properties, features of folded strata and tectonic characteristics of near-surface sections of the subsurface could be thoroughly determined using integrated geophysical approaches. Although Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Seismic Refraction Tomography (SRT) methods are commonly used in active tectonic investigations, other geophysical techniques will also contribute in obtaining of different properties in the complex geological environments of tectonically active sites. In this study, six different geophysical methods used to define faulting locations and characterizations around the study area. These are GPR, ERT, SRT, Very Low Frequency electromagnetic (VLF), magnetics and self-potential (SP). Overall integrated geophysical approaches used in this study gave us commonly important results about the near surface geological properties and faulting characteristics in the investigation area. After integrated interpretations of geophysical surveys, we determined an optimal trench location for paleoseismological studies. The main geological properties associated with faulting process obtained after trenching studies. In addition, geophysical results pointed out some indications concerning the active faulting mechanism in the area investigated. Consequently, the trenching studies indicate that the integrated approach of geophysical techniques applied on the fault problem reveals very useful and interpretative results in description of various properties of faulting zone in the investigation site.
Aptian-Albian boundary in Central Southern Atlas of Tunisia: New tectono-sedimentary facts
NASA Astrophysics Data System (ADS)
Ghanmi, Mohamed Abdelhamid; Barhoumi, Amine; Ghanmi, Mohamed; Zargouni, Fouad
2017-08-01
The Aptian-Albian boundary preserves one of the most important events in Central-Southern Atlas of Tunisia, which belongs to the Southern Tethyan margin. A major sedimentary break was recorded between Early Aptian and Albian series in Bouhedma-Boudouaou Mountains. This major hiatus probably linked to the ''Austrian phase'' and to the Aptian and Albian ''Crisis'' testify a period of major tectonic events. In this paper, field observations on the Mid-Cretaceous stratigraphy combined with seismic profile interpretation were used for the first time to characterize the Aptian-Albian boundary in Central-Southern Atlas of Tunisia. Our new results reveal that Aptian-Albian boundary marks a critical interval not only in Maknassy-Mezzouna orogenic system but also in the Tunisian Atlas. Furthermore, Aptian-Albian series outcrop is marked by the important sedimentary gaps as well as a dramatic thickness change from West to East and predominately from North to South. This is linked to the extensional tectonic features which characterize all the Central-Southern Atlas of Tunisia.
NASA Astrophysics Data System (ADS)
Ahern, A.; Radebaugh, J.; Christiansen, E. H.; Harris, R. A.
2015-12-01
Paterae and mountains are some of the most distinguishing and well-distributed surface features on Io, and they reveal the role of tectonism in Io's crust. Paterae, similar to calderas, are volcano-tectonic collapse features that often have straight margins. Io's mountains are some of the highest in the solar system and contain linear features that reveal crustal stresses. Paterae and mountains are often found adjacent to one another, suggesting possible genetic relationships. We have produced twelve detailed regional structural maps from high-resolution images of relevant features, where available, as well as a global structural map from the Io Global Color Mosaic. The regional structural maps identify features such as fractures, lineations, folds, faults, and mass wasting scarps, which are then interpreted in the context of global and regional stress regimes. A total of 1048 structural lineations have been identified globally. Preliminary analyses of major thrust and normal fault orientations are dominantly 90° offset from each other, suggesting the maximum contractional stresses leading to large mountain formation are not a direct result of tidal extension. Rather, these results corroborate the model of volcanic loading of the crust and global shortening, leading to thrust faulting and uplift of coherent crustal blocks. Several paterae, such as Hi'iaka and Tohil, are found adjacent to mountains inside extensional basins where lava has migrated up normal faults to erupt onto patera floors. Over time, mass wasting and volcanic resurfacing can change mountains from young, steep, and angular peaks to older, gentler, and more rounded hills. Mass wasting scarps make up 53% of all features identified. The structural maps highlight the significant effect of mass wasting on Io's surface, the evolution of mountains through time, the role of tectonics in the formation of paterae, and the formation of mountains through global contraction due to volcanism.
2011-10-24
This image from NASA 2001 Mars Odyssey spacecraft shows evidence of tectonic stresses that deform and fracture rocks and planetary surfaces. Right angles seen here are a good indication that the feature was formed by tectonic stresses.
Coldspots and hotspots - Global tectonics and mantle dynamics of Venus
NASA Technical Reports Server (NTRS)
Bindschadler, Duane L.; Schubert, Gerald; Kaula, William M.
1992-01-01
Based on geologic observations provided by Magellan's first cycle of data collection and recent models of mantle convection in spherical shells and crustal deformation, the major topographic and geologic features of Venus are incorporated into a model of global mantle dynamics. Consideration is given to volcanic rises, such as Beta Regio and Atla Regio, plateau-shaped highlands dominated by complex ridged terrain (e.g., Ovda Regio and Alpha Regio), and circular lowland regions, such as Atalanta Planitia. Each of these features is related to either mantle plumes (hotspots) or mantle downwellings (coldspots).
Fridrich, Christopher J.; Thompson, Ren A.
2011-01-01
The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.
Dynamic computer model for the metallogenesis and tectonics of the Circum-North Pacific
Scotese, Christopher R.; Nokleberg, Warren J.; Monger, James W.H.; Norton, Ian O.; Parfenov, Leonid M.; Khanchuk, Alexander I.; Bundtzen, Thomas K.; Dawson, Kenneth M.; Eremin, Roman A.; Frolov, Yuri F.; Fujita, Kazuya; Goryachev, Nikolai A.; Pozdeev, Anany I.; Ratkin, Vladimir V.; Rodinov, Sergey M.; Rozenblum, Ilya S.; Scholl, David W.; Shpikerman, Vladimir I.; Sidorov, Anatoly A.; Stone, David B.
2001-01-01
The digital files on this report consist of a dynamic computer model of the metallogenesis and tectonics of the Circum-North Pacific, and background articles, figures, and maps. The tectonic part of the dynamic computer model is derived from a major analysis of the tectonic evolution of the Circum-North Pacific which is also contained in directory tectevol. The dynamic computer model and associated materials on this CD-ROM are part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project provides critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and Eastern Asia.
Triassic structural and stratigraphic evolution of the Central German North Sea sector
NASA Astrophysics Data System (ADS)
Wolf, Marco; Jähne-Klingberg, Fabian
2017-04-01
The subsurface of the Central German North Sea sector is characterized by a complex sequence of tectonic events that span from the Permo-Carboniferous initiation of the Southern Permian Basin to the present day. The Triassic period is one of the most prominent stratigraphic intervals in this area due to alternating phases of relatively tectonic quiescence and intense tectonic activity with the development of grabens, salt-tectonics movements, various regional and local erosional events and strong local and regional changes in subsidence over time. The heterogeneous geological history led to complex structural and lithological patterns. The presented results are part of a comprehensive investigation of the Central German North Sea sector. It was carried out within the scope of the project TUNB (www.bgr.bund.de). The main goal was to enhance the understanding of the Triassic geological development in the area of interest due to detailed seismic interpretation of several hundred 2D seismic lines and as well 3D seismic data sets. A seismostratigraphic concept was used to interpret most formations of the Triassic resulting in a detailed subdivision of the Triassic unit. Depth and thickness maps for every stratigraphic unit and geological cross sections provided new insights regarding an overall basin evolution as well as the timing and mechanisms of rifting and salt-tectonics. New results concerning the evolution of the Keuper in the German North Sea and especially the Triassic evolution of the Horn Graben, as one of the major Triassic rift-structures in the North Sea, will be highlighted. We will show aspects of strong tectonic subsidence in the Horn Graben in the Lower Triassic. In parts of the study area, halotectonic movements started in the Upper Triassic, earlier than previously proposed. Besides mapping of regional seismic reflectors, distinct sedimentary features like fluvial channel systems of the Stuttgart formation (Middle Keuper) or subrosion-like structures along the major Upper Jurassic to Lower Cretaceous unconformity, which are related to erosion of Triassic evaporitic formations, will be shown.
Subduction controls the distribution and fragmentation of Earth’s tectonic plates.
Mallard, Claire; Coltice, Nicolas; Seton, Maria; Müller, R Dietmar; Tackley, Paul J
2016-07-07
The theory of plate tectonics describes how the surface of Earth is split into an organized jigsaw of seven large plates of similar sizes and a population of smaller plates whose areas follow a fractal distribution. The reconstruction of global tectonics during the past 200 million years suggests that this layout is probably a long-term feature of Earth, but the forces governing it are unknown. Previous studies, primarily based on the statistical properties of plate distributions, were unable to resolve how the size of the plates is determined by the properties of the lithosphere and the underlying mantle convection. Here we demonstrate that the plate layout of Earth is produced by a dynamic feedback between mantle convection and the strength of the lithosphere. Using three-dimensional spherical models of mantle convection that self-consistently produce the plate size–frequency distribution observed for Earth, we show that subduction geometry drives the tectonic fragmentation that generates plates. The spacing between the slabs controls the layout of large plates, and the stresses caused by the bending of trenches break plates into smaller fragments. Our results explain why the fast evolution in small back-arc plates reflects the marked changes in plate motions during times of major reorganizations. Our study opens the way to using convection simulations with plate-like behaviour to unravel how global tectonics and mantle convection are dynamically connected.
The contraction/expansion history of Charon with implications for its planetary-scale tectonic belt
NASA Astrophysics Data System (ADS)
Malamud, Uri; Perets, Hagai B.; Schubert, Gerald
2017-06-01
The New Horizons mission to the Kuiper belt has recently revealed intriguing features on the surface of Charon, including a network of chasmata, cutting across or around a series of high topography features, conjoining to form a belt. It is proposed that this tectonic belt is a consequence of contraction/expansion episodes in the moon's evolution associated particularly with compaction, differentiation and geochemical reactions of the interior. The proposed scenario involves no need for solidification of a vast subsurface ocean and/or a warm initial state. This scenario is based on a new, detailed thermo-physical evolution model of Charon that includes multiple processes. According to the model, Charon experiences two contraction/expansion episodes in its history that may provide the proper environment for the formation of the tectonic belt. This outcome remains qualitatively the same, for several different initial conditions and parameter variations. The precise orientation of Charon's tectonic belt, and the cryovolcanic features observed south of the tectonic belt may have involved a planetary-scale impact, that occurred only after the belt had already formed.
NASA Technical Reports Server (NTRS)
Anderson, R.C.; Haldemann, A. F. C.; Golombek, M. P.; Franklin, B. J.; Dohm, J. M.; Lias, J.
2000-01-01
The western hemisphere region of Mars has been the site of numerous scientific investigations regarding its tectonic evolution. For this region of Mars, the dominant tectonic region is the Tharsis province. Tharsis is characterized by an enormous system of radiating grabens and a circumferential system of wrinkle ridges. Past investigations of grabens associated with Tharsis have identified specific centers of tectonic activity. A recent structural analysis of the western hemisphere region of Mars which includes the Tharsis region, utilized 25,000 structures to determine the history of local and regional centers of tectonic activity based primarily on the spatial and temporal relationships of extensional features. This investigation revealed that Tharsis is more structurally complex (heterogeneous) than has been previously identified: it consists of numerous regional and local centers of tectonic activity (some are more dominant and/or more long lived than others). Here we use the same approach as Anderson et al. to determine whether the centers of tectonic activity that formed the extensional features also contributed to wrinkle ridge (compressional) formation.
Mare Orientale: Widely Accepted Large Impact or a Regular Tectonic Depression?
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2018-04-01
Mare Orientale is one of the critical features on Moon surface explaining its tectonics. The impact origin of it is widely accepted, but an attentive examination shows that this large Mare is a part of endogenous tectonic structure, not a random impact.
Spaceborne radar observations: A guide for Magellan radar-image analysis
NASA Technical Reports Server (NTRS)
Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.
1989-01-01
Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high Venusian latitudes. Examples of anomalies and system artifacts that can affect image interpretation are described.
Pennsylvanian history of the Chautauqua Arch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennison, A.P.
1993-03-01
Westward extension of the Ozark Uplift known as the Chautauqua Arch is concealed by a Pennsylvanian cover. This cover provides an insight into its later tectonic history subsequent to its major Late Devonian uplift and truncation. Part of this arch was episodically uplifted during Pennsylvanian time in an area extending west from southwestern Missouri along the Kansas-Oklahoma border to western Montgomery County. Recent stratigraphic mapping in that county indicates moderate Late Desmoinesian to Missourian tectonism. Some strata present on both flanks of the arch are either comparatively thin or missing owing to unconformity truncation or non-deposition. Stratal loss involves themore » Lenapah Limestone, the Hepler and Lost Branch formations, the Cherryvale Shale and the Hertha, Drum, Dewey, Stanton and Wyandotte Limestones. Earlier movements also account for the truncation of Morrowan, Atokan and possibly some Early Desmoinesian beds over the arch. Between tectonic episodes along the arch there were periods of relative tectonic quiescence accompanied by shelf-edge carbonate banks, condensed sequences and siliciclastic sedimentation. West of Montgomery County in Chautauqua County, the widespread Late Pennsylvanian Virgilian outcrops show practically no tectonism. Therefore, the name Chautauqua Arch seems inappropriate for this Pennsylvanian arch, and the name Tri-State Arch is proposed. This arch is bounded on the north by the Cherokee Basin and on the south by the northern rise of the Arkoma Basin. Although this arch is commonly omitted on many tectonic maps, it is a stronger gravity feature than the Bourbon Arch about 50 miles northward. Both tectonic and sedimentary structures have produced much oil and gas entrapment along this arch. For example, an east-west fault south of Independence, aligned with buried Proterozoic hills, has been specially productive.« less
Tectonic and metallogenic model for northeast Asia
Parfenov, Leonid M.; Nokleberg, Warren J.; Berzin, Nikolai A.; Badarch, Gombosuren; Dril, Sergy I.; Gerel, Ochir; Goryachev, Nikolai A.; Khanchuk, Alexander I.; Kuz'min, Mikhail I.; Prokopiev, Andrei V.; Ratkin, Vladimir V.; Rodionov, Sergey M.; Scotese, Christopher R.; Shpikerman, Vladimir I.; Timofeev, Vladimir F.; Tomurtogoo, Onongin; Yan, Hongquan; Nokleberg, Warren J.
2011-01-01
This document describes the digital files in this report that contains a tectonic and metallogenic model for Northeast Asia. The report also contains background materials. This tectonic and metallogenic model and other materials on this report are derived from (1) an extensive USGS Professional Paper, 1765, on the metallogenesis and tectonics of Northeast Asia that is available on the Internet at http://pubs.usgs.gov/pp/1765/; and (2) the Russian Far East parts of an extensive USGS Professional Paper, 1697, on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that is available on the Internet at http://pubs.usgs.gov/pp/pp1697/. The major purpose of the tectonic and metallogenic model is to provide, in movie format, a colorful summary of the complex geology, tectonics, and metallogenesis of the region. To accomplish this goal four steps were taken: (1) 13 time-stage diagrams, from the late Neoproterozoic (850 Ma) through the present (0 Ma), were adapted, generalized, and transformed into color static time-stage diagrams; (2) the 13 time-stage diagrams were placed in a computer morphing program to produce the model; (3) the model was examined and each diagram was successively adapted to preceding and subsequent diagrams to match the size and surface expression of major geologic units; and (4) the final version of the model was produced in successive iterations of steps 2 and 3. The tectonic and metallogenic model and associated materials in this report are derived from a project on the major mineral deposits, metallogenesis, and tectonics of the Northeast Asia and from a preceding project on the metallogenesis and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. Both projects provide critical information on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for this region. The major scientific goals and benefits of the projects are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between North America and eastern Asia.
Beyer, Ross A.; Nimmo, Francis; McKinnon, William B.; Moore, Jeffrey M.; Binzel, Richard P.; Conrad, Jack W.; Cheng, Andy; Ennico, K.; Lauer, Tod R.; Olkin, C.B.; Robbins, Stuart; Schenk, Paul; Singer, Kelsi; Spencer, John R.; Stern, S. Alan; Weaver, H.A.; Young, L.A.; Zangari, Amanda M.
2017-01-01
New Horizons images of Pluto’s companion Charon show a variety of terrains that display extensional tectonic features, with relief surprising for this relatively small world. These features suggest a global extensional areal strain of order 1% early in Charon’s history. Such extension is consistent with the presence of an ancient global ocean, now frozen. PMID:28919640
Proterozoic orogens in southern Peninsular India: Contiguities and complexities
NASA Astrophysics Data System (ADS)
Chetty, T. R. K.; Santosh, M.
2013-12-01
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents - Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ˜400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P-T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale "flower structures", transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.
O'Neill, J. Michael; Lopez, David A.
1985-01-01
The Great Falls tectonic zone, here named, is a belt of diverse northeast-trending geologic features that can be traced from the Idaho batholith in the Cordilleran miogeocline, across thrust-belt structures and basement rocks of west-central and southwestern Montana, through cratonic rocks of central Montana, and into southwestern-most Saskatchewan, Canada. Geologic mapping in east-central Idaho and west-central Montana has outlined a continuous zone of high-angle faults and shear zones. Recurrent fault movement in this zone and strong structural control over igneous intrusion suggest a fundamental tectonic feature that has influenced the tectonic development of the Idaho-Montana area from a least middle Proterozoic time to the present. Refs.
Plate Tectonics: A Framework for Understanding Our Living Planet.
ERIC Educational Resources Information Center
Achache, Jose
1987-01-01
Discusses some of the events leading to the development of the theory of plate tectonics. Describes how seismic, volcanic, and tectonic features observed at the surface of the planet are now seen as a consequence of intense internal activity, and makes suggestions about their further investigation. (TW)
Blanco-Montenegro, Isabel; Montesinos, Fuensanta G; Arnoso, José
2018-01-08
The 3-D inverse modelling of a magnetic anomaly measured over the NW submarine edifice of the volcanic island of Gran Canaria revealed a large, reversely-magnetized, elongated structure following an ENE-WSW direction, which we interpreted as a sill-like magmatic intrusion emplaced during the submarine growth of this volcanic island, with a volume that could represent up to about 20% of the whole island. The elongated shape of this body suggests the existence of a major crustal fracture in the central part of the Canary Archipelago which would have favoured the rapid ascent and emplacement of magmas during a time span from 0.5 to 1.9 My during a reverse polarity chron of the Earth's magnetic field prior to 16 Ma. The agreement of our results with those of previous gravimetric, seismological and geodynamical studies strongly supports the idea that the genesis of the Canary Islands was conditioned by a strike-slip tectonic framework probably related to Atlas tectonic features in Africa. These results do not contradict the hotspot theory for the origin of the Canary magmatism, but they do introduce the essential role of regional crustal tectonics to explain where and how those magmas both reached the surface and built the volcanic edifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bocharova, N.Yu.; Scotese, C.R.; Pristavakina, E.I.
A digital geographic database for the former USSR was compiled using published geologic and geodynamic maps and the unpublished suture map of Lev Zonenshain (1991). The database includes more than 900 tectonic features: strike-slip faults, sutures, thrusts, fossil and active rifts, fossil and active subduction zones, boundaries of the major and minor Precambrian blocks, ophiolites, and various volcanic complexes. The attributes of each structural unit include type of structure, name, age, tectonic setting and geographical coordinates. Paleozoic and Early Mesozoic reconstructions of the former USSR and adjacent regions were constructed using this tectonic database together with paleomagnetic data and themore » motions of continent over fixed hot spots. Global apparent polar wander paths in European and Siberian coordinates were calculated back to Cambrian time, using the paleomagnetic pole summaries of Van der Voo (1992) and Khramov (1992) and the global plate tectonic model of the Paleomap Project (Scotese and Becker, 1992). Trajectories of intraplate volcanics in South Siberia, Mongolia, Scandinavia and data on the White Mountain plutons and Karoo flood basalts were also taken into account. Using new data, the authors recalculated the stage and finite poles for the rotation of the Siberia and Europe with respect to the hot spot reference frame for the time interval 160 to 450 Ma.« less
Prototypical Concepts and Misconceptions of Plate Tectonic Boundaries
NASA Astrophysics Data System (ADS)
Sibley, D. F.; Patino, L. C.
2003-12-01
Students of geology encounter many prototypical/exemplar concepts* that include representative, but not necessarily defining, features and characteristics. This study of students' prototypical representations of plate tectonic boundaries indicates that their representations are rich sources of information about their misconceptions about plate tectonics. After lectures in plate tectonics and mountain building, 353 students in a general education geology class were asked to draw a continent-continent convergent boundary. For this study, a correct answer is defined as having the major features in correct proportions as depicted in the plate boundary diagrams on the USGS web. Fifty-two percent of the drawings were either incorrect or incomplete such that they could not be interpreted. Only 48% were readily interpretable, and of these 22% drew the boundary correctly, showing a thickening of crust where two continents collide. Thirty-three percent drew the boundary showing concave slabs of continental crust as one might imagine two pieces of firm rubber pushed together on a rigid surface and 45% depicted mountains as one might imagine inverted ice cream cones on a rigid plank. Twenty-one senior class geology majors and graduate students were given the same assignment. Forty-eight percent rendered a correct drawing, whereas 38% drew the same ice cream cone on a plank type picture that 45% of the general education students drew. In a second class of 12 geology majors, only 1 student drew a cross section of a continent-ocean boundary similar to standard representation. Four of 12 drew mountains on the top of continental crust over a subduction zone but did not draw a compensating mass within the crust or lithosphere. Prototypical drawings provide more information about students' concepts than do most multiple-choice questions. For example, sixty-two percent of theses students who drew mountains similar to foam rubber pads pushed together on a desk or ice cream cones on a plank correctly answered a multiple-choice question that would appear to indicate a better understanding than the drawings reveal. Furthermore, 12 interviewed students made statements that could be interpreted to indicate that they understood the concept of mountain building at plate tectonic boundaries better than their drawings suggest. Incoherence of multiple-choice responses, verbal statements and drawings may be common in novice learners. If cognitive scientists are correct in their model of multiple types of mental representations for the same term, then the fact that novices may hold inconsistent representations is not surprising. The fact that students at various academic levels draw very similar prototypes that are incorrect is evidence that students have distinct and persistent prototype misconceptions. * Cognitive scientists define a prototypical/exemplar concept as a mental representation of the best examples or central tendencies of a term.
Quaternary tectonic faulting in the Eastern United States
Wheeler, R.L.
2006-01-01
Paleoseismological study of geologic features thought to result from Quaternary tectonic faulting can characterize the frequencies and sizes of large prehistoric and historical earthquakes, thereby improving the accuracy and precision of seismic-hazard assessments. Greater accuracy and precision can reduce the likelihood of both underprotection and unnecessary design and construction costs. Published studies proposed Quaternary tectonic faulting at 31 faults, folds, seismic zones, and fields of earthquake-induced liquefaction phenomena in the Appalachian Mountains and Coastal Plain. Of the 31 features, seven are of known origin. Four of the seven have nontectonic origins and the other three features are liquefaction fields caused by moderate to large historical and Holocene earthquakes in coastal South Carolina, including Charleston; the Central Virginia Seismic Zone; and the Newbury, Massachusetts, area. However, the causal faults of the three liquefaction fields remain unclear. Charleston has the highest hazard because of large Holocene earthquakes in that area, but the hazard is highly uncertain because the earthquakes are uncertainly located. Of the 31 features, the remaining 24 are of uncertain origin. They require additional work before they can be clearly attributed either to Quaternary tectonic faulting or to nontectonic causes. Of these 24, 14 features, most of them faults, have little or no published geologic evidence of Quaternary tectonic faulting that could indicate the likely occurrence of earthquakes larger than those observed historically. Three more features of the 24 were suggested to have had Quaternary tectonic faulting, but paleoseismological and other studies of them found no evidence of large prehistoric earthquakes. The final seven features of uncertain origin require further examination because all seven are in or near urban areas. They are the Moodus Seismic Zone (Hartford, Connecticut), Dobbs Ferry fault zone and Mosholu fault (New York City), Lancaster Seismic Zone and the epicenter of the shallow Cacoosing Valley earthquake (Lancaster and Reading, Pennsylvania), Kingston fault (central New Jersey between New York and Philadelphia), and Everona fault-Mountain Run fault zone (Washington, D.C., and Arlington and Alexandria, Virginia). ?? 2005 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, D.W.; Schmitt, L.; Woussen, G.
Airborne SAR images provided essential clues to the tectonic setting of (1) the MbLg 6.5 Saguenay earthquake of 25 November 1988, (2) the Charlevoix-Kamouraska seismic source zone, and (3) some of the low *eve* seismic activity in the Eastern seismic background zone of Canada. The event occurred in the southeastern part of the Canadian Shield in an area where the boundary between the Saguenay graben and the Jacques Cartier horst is not well defined. These two tectonic blocks are both associated with the Iapetan St-Lawrence rift. These blocks exhibit several important structural breaks and distinct domains defined by the lineamentmore » orientations, densities, and habits. Outcrop observations confirm that several lineament sets correspond to Precambrian ductile shear zones reactivated as brittle faults during the Phanerozoic. In addition, the northeast and southwest limits of recent seismic activity in the Charlevoix-Kamouraska zone correspond to major elements of the fracture pattern identified on the SAR images. These fractures appear to be related to the interaction of the Charlevoix astrobleme with the tectonic features of the area. 20 refs.« less
Venusian tectonics: Convective coupling to the lithosphere?
NASA Technical Reports Server (NTRS)
Phillips, R. J.
1987-01-01
The relationship between the dominant global heat loss mechanism and planetary size has motivated the search for tectonic style on Venus. Prior to the American and Soviet mapping missions of the past eight years, it was thought that terrestrial style plate tectonics was operative on Venus because this planet is approximately the size of the Earth and is conjectured to have about the same heat source content per unit mass. However, surface topography mapped by the altimeter of the Pioneer Venus spacecraft did not show any physiographic expression of terrestrial style spreading ridges, trenches, volcanic arcs or transform faults, although the horizontal resolution was questionable for detection of at least some of these features. The Venera 15 and 16 radar missions mapped the northern latitudes of Venus at 1 to 2 km resolution and showed that there are significant geographic areas of deformation seemingly created by large horizontal stresses. These same high resolution images show no evidence for plate tectonic features. Thus a fundamental problem for venusian tectonics is the origin of large horizontal stresses near the surface in the apparent absence of plate tectonics.
Regional geology and tectonics
Nokleberg, Warren J.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.
2017-01-01
This chapter describes the regional geology and tectonic origins of the major geologic units for the Northern Cordillera. The goals of the chapter are to: (1) provide a summary and regional overview of this vast region that contains a complicated geologic history; and (2) describe the major geologic units and tectonic events that cover a broad geologic time span from the Proterozoic to the Holocene (Recent).
Problems of the active tectonics of the Eastern Black Sea
NASA Astrophysics Data System (ADS)
Javakhishvili, Z.; Godoladze, T.; Dreger, D. S.; Mikava, D.; Tvaliashvili, A.
2016-12-01
The Black Sea Basin is the part of the Arabian Eurasian Collision zone and important unit for understanding the tectonic process of the region. This complex basin comprises two deep basins, separated by the mid-Black Sea Ridge. The basement of the Black Sea includes areas with oceanic and continental crust. It was formed as a "back-arc" basin over the subduction zone during the closing of the Tethys Ocean. In the past decades the Black Sea has been the subject of intense geological and geophysical studies. Several papers were published about the geological history, tectonics, basement relief and crustal and upper mantle structure of the basin. New tectonic schemes were suggested (e. g. Nikishin et al 2014, Shillington et al. 2008, Starostenko et al. 2004 etc.). Nevertheless, seismicity of the Black Sea is poorly studied due to the lack of seismic network in the coastal area. It is considered, that the eastern basin currently lies in a compressional setting associated with the uplift of the Caucasus and structural development of the Caucasus was closely related to the evolution of the Eastern Black Sea Basin. Analyses of recent sequence of earthquakes in 2012 can provide useful information to understand complex tectonic structure of the Eastern Black Sea region. Right after the earthquake of 2012/12/23, National Seismic monitoring center of Georgia deployed additional 4 stations in the coastal area of the country, close to the epicenter area, to monitor aftershock sequence. Seismic activity in the epicentral area is continuing until now. We have relocated approximately 1200 aftershocks to delineate fault scarf using data from Georgian, Turkish and Russian datacenters. Waveforms of the major events and the aftershocks were inverted for the fault plane solutions of the events. For the inversion were used green's functions, computed using new 1D velocity model of the region. Strike-slip mechanism of the major events of the earthquake sequence indicates extensional features in the Eastern Black Sea Region as well.
The tectonics of Venus: An overview
NASA Technical Reports Server (NTRS)
Solomon, Sean C.
1992-01-01
While the Pioneer Venus altimeter, Earth-based radar observatories, and the Venera 15-16 orbital imaging radars provided views of large-scale tectonic features on Venus at ever-increasing resolution, the radar images from Magellan constitute an improvement in resolution of at least an order of magnitude over the best previously available. A summary of early Magellan observations of tectonic features on Venus was published, but data available at that time were restricted to the first month of mapping and represented only about 15 percent of the surface of the planet. Magellan images and altimetry are now available for more than 95 percent of the Venus surface. Thus a more global perspective may be taken on the styles and distribution of lithospheric deformation on Venus and their implications for the tectonic history of the planet.
Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.
1983-01-01
Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.
NASA Astrophysics Data System (ADS)
Masoud, Alaa; Koike, Katsuaki
2006-08-01
Fracture zones on the Earth's surface are important elements in the understanding of plate motion forces, the dynamics of the subsurface fluid flow, and earthquake distributions. However, good exposures of these features are always lacking in arid regions, characterized by flat topography and where sand dunes extensively cover the terrain. During field surveys these conditions, in many cases, hinder the proper characterization of such features. Therefore, an approach that identifies the regional fractures as lineaments on remotely-sensed images or shaded digital terrain models, with its large scale synoptic coverage, could be promising. In the present work, a segment tracing algorithm (STA), for lineament detection from Landsat-7 Enhanced Thematic Mapper Plus (ETM+) imagery, and the data from the Shuttle Radar Topographic Mission (SRTM) 30 m digital elevation model (DEM), has been applied in the Siwa region, located in the northwest of the Western Desert of Egypt. The objectives are to analyze the spatial variation in orientation of the detected linear features and its relation to the hydrogeologic setting in the area and the underlying geology, and to evaluate the performance of the algorithm applied to the ETM+ and the DEM data. Detailed structural analysis and better understanding of the tectonic evolution of the area could provide useful tools for hydrologists for reliable groundwater management and development planning. The results obtained have been evaluated by the structural analysis of the area and field observations. Four major vertical fracture zones were detected corresponding to two conjugate sets of strike-slip faults that governed the surface, and subsurface environments of the lakes in the region, and these correlate well with the regional tectonics.
NASA Astrophysics Data System (ADS)
Burov, Evgueni; Gerya, Taras
2013-04-01
It has been long assumed that the dynamic topography associated with mantle-lithosphere interactions should be characterized by long-wavelength features (> 1000 km) correlating with morphology of mantle flow and expanding beyond the scale of tectonic processes. For example, debates on the existence of mantle plumes largely originate from interpretations of expected signatures of plume-induced topography that are compared to the predictions of analytical and numerical models of plume- or mantle-lithosphere interactions (MLI). Yet, most of the large-scale models treat the lithosphere as a homogeneous stagnant layer. We show that in continents, the dynamic topography is strongly affected by rheological properties and layered structure of the lithosphere. For that we reconcile mantle- and tectonic-scale models by introducing a tectonically realistic continental plate model in 3D large-scale plume-mantle-lithosphere interaction context. This model accounts for stratified structure of continental lithosphere, ductile and frictional (Mohr-Coulomb) plastic properties and thermodynamically consistent density variations. The experiments reveal a number of important differences from the predictions of the conventional models. In particular, plate bending, mechanical decoupling of crustal and mantle layers and intra-plate tension-compression instabilities result in transient topographic signatures such as alternating small-scale surface features that could be misinterpreted in terms of regional tectonics. Actually thick ductile lower crustal layer absorbs most of the "direct" dynamic topography and the features produced at surface are mostly controlled by the mechanical instabilities in the upper and intermediate crustal layers produced by MLI-induced shear and bending at Moho and LAB. Moreover, the 3D models predict anisotropic response of the lithosphere even in case of isotropic solicitations by axisymmetric mantle upwellings such as plumes. In particular, in presence of small (i.e. insufficient to produce solely any significant deformation) uniaxial extensional tectonic stress field, the plume-produced surface and LAB features have anisotropic linear shapes perpendicular to the far-field tectonic forces, typical for continental rifts. Compressional field results in singular sub-linear folds above the plume head, perpendicular to the direction of compression. Small bi-axial tectonic stress fields (compression in one direction and extension in the orthogonal direction) result in oblique, almost linear segmented normal or inverse faults with strike-slip components (or visa verse , strike-slip faults with normal or inverse components)
Evoluton of the Tharsis Region of Mars
NASA Astrophysics Data System (ADS)
Anderson, R. C.; Dohm, J. M.; Maruyama, S.
2015-12-01
The evolution of the Tharsis region includes at least five major stages of Tharsis-related activity, which includes the formation of igneous plateaus, canyon and fault systems, volcanoes, and centers of magmatic-driven tectonism. This activity drove major environmental changes that were recorded in the walls of Valles Marineris, the circum-Chryse outflow channel system, the northern plains, and impact basins such as Argyre, among many other Martian features and landscapes. Environmental change included flooding and associated formation of lakes and oceans in basins such as the prominent northern plains and impact basins such as Argyre. This Tharsis-driven activity also included the formation of glaciers in the southern hemisphere and other landscape features (e.g., alluvial fans, periglacial landforms, gelifluction features including mass wasting, fluvial channels) indicative of an active landscape. At this conference, we will present the details of the evolution of Tharsis, as well as discuss contributing factors to its origin, estimated beginning development, and explanations for its longevity.
NASA Astrophysics Data System (ADS)
Limmer, David R.; Henstock, Timothy J.; Giosan, Liviu; Ponton, Camilo; Tabrez, Ali R.; Macdonald, David I. M.; Clift, Peter D.
2012-09-01
We present results from the first high-resolution seismic reflection survey of the inner Western Indus Shelf, and Indus Delta, Arabian Sea. The results show major regional differences in sedimentation across the shelf from east to west, as well as north to south, both since the Last Glacial Maximum (~20 ka) and over longer time scales. We identify 10 major regional reflectors, interpreted as representing sea level lowstands. Strong compressive folding is observed underlying a reflector we have called Horizon 6 in the north-western shelf, probably compression associated with the transpressional deformation of the Murray Ridge plate boundary. Downslope profiles show a series of well developed clinoforms, principally at the shelf edge, indicating significant preservation of large packages of sediment during lowstands. These clinoforms have developed close to zones of deformation, suggesting that subsidence is a factor in controlling sedimentation and consequently erosion of the Indus Shelf. These clinoforms fan out from dome features (tectonic anticlines) mostly located close to the modern shoreline.
Mineral resources, geologic structure, and landform surveys
NASA Technical Reports Server (NTRS)
Lattman, L. H.
1973-01-01
The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.
NASA Astrophysics Data System (ADS)
Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz
2017-07-01
Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.
Research on Distribution Characteristics of Lunar Faults
NASA Astrophysics Data System (ADS)
Lu, T.; Chen, S.; Lu, P.
2017-12-01
Circular and linear tectonics are two major types of tectonics on lunar surface. Tectonic characteristics are of significance for researching about lunar geological evolution. Linear tectonics refers to those structures extending linearly on a lunar surface. Their distribution are closely related to the internal geological actions of the moon. Linear tectonics can integrally or locally express the structural feature and the stress status as well as showing the geological information of the interior of the moon. Faults are of the largest number and are of a certain distribution regularity among the linear tectonics, and are always the focus of domestic and overseas lunar tectonic research. Based on remote sensing geology and theory of traditional tectonic geology, We use a variety of remote sensing data processing to establish lunar linear tectonic interpretation keys with lunar spectral, terrain and gravity data. On this basis, interpretation of faults of the whole moon was primarily conducted from Chang'e-2 CCD image data and reference to wide-angle camera data of LROC, laser altimeter data of LOLA and gravity data of GRAIL. Statistical analysis of the number and distribution characteristics of whole lunar faults are counted from three latitude ranges of low, middle and high latitudes, then analyze the azimuth characteristics of the faults at different latitudes. We concluded that S-N direction is a relatively developed orientation at low latitudes. Middle latitudes reveal six preferred orientations of N-E, N-W, NN-E, NN-W, N-EE and N-WW directions. There are sparse faults of E-W direction distribution at low and middle latitudes. Meanwhile, the largest number of faults of E-W direction on lunar surface are mainly distributed along high latitudes with continuity and regularity. Analyzing faults of Mare Imbrium by the method of Euler deconvolution. The result show that there are two different properties of faults in Mare Imbrium. In conclusion, we suggest that the dynamics mechanism of the formation of the lunar faults is mainly affected by despinning, followed by tidal force and global contraction.
Paleogeographic atlas project-Mesozoic-Cenozoic tectonic map of the world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, D.B.; Ziegler, A.M.; Hulver, M.
1985-01-01
A Mesozoic-Cenozoic tectonic map of the world has been compiled in order to provide the basis for detailed paleogeographic, first-order palin-spastic and paleo-tectonic reconstructions. The map is plotted from a digital database on two polar stereographic projections that depict both time and type of tectonic activity. Time of activity is shown using six colors, with each color representing approximately 40 m.y. intervals. The time divisions correspond with, and are defined on the basis of times of major changes in plate motions. Tectonic activity is divided into 7 major types: (1) Platformal regions unaffected by major tectonism; (2) Region as underlainmore » by oceanic lithosphere; (3) Regions affected by extensional tectonism-characterized by thinning and stretching of the crust, including Atlantic-type margins, Basin and Range, back-arc and pull-apart basin development; (4) Regions of crustal shortening and thickening, as in collisional orogens and Andean-type foreland-fold systems; (5) Strike-slip systems associated with little or no change in crustal thickness; (6) Subduction accretion prisms, associated with tectonic outbuilding of continental crust, and marking sutures within continents; and (7) Large scale oceanic volcanic/magmatic arcs and plateaus characterized by increased crustal thickness and buoyancy of the lithosphere. The map provides a basis for understanding the assembly of Asia, the Circum-Pacific, and the disaggregation of Pangea.« less
Venus tectonics - An overview of Magellan observations
NASA Technical Reports Server (NTRS)
Solomon, Sean C.; Smrekar, Suzanne E.; Bindschadler, Duane L.; Grimm, Robert E.; Kaula, William M.; Mcgill, George E.; Phillips, Roger J.; Saunders, R. S.; Schubert, Gerald; Squyres, Steven W.
1992-01-01
Magellan observations of the tectonic characteristics of highland regions on Venus are discussed with reference to competing theories for highland formation and evolution. Complex rigid terrain, or tessera, and the extent to which these elevated blocks of intensely deformed crust may be genetically related to highlands are then considered. Further, the tectonics of plains and lowland regions are examined, including deformation belts and coronae, and possible relations between such features and mantle dynamics. Implications of these observations for the global tectonics of Venus are discussed.
Iapetus: Tectonic structure and geologic history
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1991-01-01
Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.
2010-09-15
The depressions in this image from NASA Mars Odyssey likely formed due to both volcanic and tectonic forces. Tectonic forces likely account for some of the depressions, while collapse into lava tubes and lava flow erosion account for the remainder.
This Dynamic Planet: World map of volcanoes, earthquakes, impact craters and plate tectonics
Simkin, Tom; Tilling, Robert I.; Vogt, Peter R.; Kirby, Stephen H.; Kimberly, Paul; Stewart, David B.
2006-01-01
Our Earth is a dynamic planet, as clearly illustrated on the main map by its topography, over 1500 volcanoes, 44,000 earthquakes, and 170 impact craters. These features largely reflect the movements of Earth's major tectonic plates and many smaller plates or fragments of plates (including microplates). Volcanic eruptions and earthquakes are awe-inspiring displays of the powerful forces of nature and can be extraordinarily destructive. On average, about 60 of Earth's 550 historically active volcanoes are in eruption each year. In 2004 alone, over 160 earthquakes were magnitude 6.0 or above, some of which caused casualties and substantial damage. This map shows many of the features that have shaped--and continue to change--our dynamic planet. Most new crust forms at ocean ridge crests, is carried slowly away by plate movement, and is ultimately recycled deep into the earth--causing earthquakes and volcanism along the boundaries between moving tectonic plates. Oceans are continually opening (e.g., Red Sea, Atlantic) or closing (e.g., Mediterranean). Because continental crust is thicker and less dense than thinner, younger oceanic crust, most does not sink deep enough to be recycled, and remains largely preserved on land. Consequently, most continental bedrock is far older than the oldest oceanic bedrock. (see back of map) The earthquakes and volcanoes that mark plate boundaries are clearly shown on this map, as are craters made by impacts of extraterrestrial objects that punctuate Earth's history, some causing catastrophic ecological changes. Over geologic time, continuing plate movements, together with relentless erosion and redeposition of material, mask or obliterate traces of earlier plate-tectonic or impact processes, making the older chapters of Earth's 4,500-million-year history increasingly difficult to read. The recent activity shown on this map provides only a present-day snapshot of Earth's long history, helping to illustrate how its present surface came to be. The map is designed to show the most prominent features when viewed from a distance, and more detailed features upon closer inspection. The back of the map zooms in further, highlighting examples of fundamental features, while providing text, timelines, references, and other resources to enhance understanding of this dynamic planet. Both the front and back of this map illustrate the enormous recent growth in our knowledge of planet Earth. Yet, much remains unknown, particularly about the processes operating below the ever-shifting plates and the detailed geological history during all but the most recent stage of Earth's development.
NASA Astrophysics Data System (ADS)
Liao, Jie; Gerya, Taras; Thielmann, Marcel; Webb, A. Alexander G.; Kufner, Sofia-Katerina; Yin, An
2017-12-01
The development of opposing continental subduction zones remains scantly explored in three dimensions. The Hindu Kush-Pamir orogenic system at the western end of the Himalayan orogen provides a rare example of continental collision linked to two opposing intra-continental subduction zones. The subducted plates feature a peculiar 3D geometry consisting of two distinct lithospheric fragments with different polarities, subduction angles and slab-curvatures beneath the Hindu Kush and Pamir, respectively. Using 3D geodynamic modeling, we simulate possible development of two opposing continental subduction zones to understand the dynamic evolution of the Hindu Kush-Pamir orogenic system. Our geodynamic model reproduces the major tectonic elements observed: (1) the deeper subduction depth, the steeper dip angle and the southward offset of the Hindu Kush subduction zone relative to the Pamir naturally occur if convergence direction of the subducting Indian plate and dip-direction of the Hindu Kush subduction zone match. (2) The formation of the highly asymmetrically curved Pamir region and the south-dipping subduction is promoted by the initial geometry of the indenting Indian lithosphere together with the existence of a major strike-slip fault on the eastern margin of the Pamir region. (3) Subduction of only the lower continental crust during continental collision can occur if the coupling between upper and lower crusts is weak enough to allow a separation of these two components, and that (4) the subduction of mainly lower crust then facilitates that conditions for intermediate-depth seismicity can be reached. (5) The secondary tectonic features modeled here such as strike-slip-fault growth, north-northwest striking extension zone, and lateral flow of the thickened ductile upper crust are comparable to the current tectonics of the region. (6) Model results are further compared to the potentially similar orogenic system, i.e., the Alpine orogen, in terms of the curved Western Alpine arc and the two opposing subducted slabs beneath the Alps and the Dinarides.
NASA Astrophysics Data System (ADS)
Dkhaili, Noomen; Bey, Saloua; El Abed, Mahmoud; Gasmi, Mohamed; Inoubli, Mohamed Hedi
2015-09-01
An integrated study of available seismic and calibrated wells has been conducted in order to ascertain the structural development and petroleum potential of the Cretaceous Formations of the Western Gulf of Gabes. This study has resulted in an understanding of the controls of deep seated Tethyan tectonic lineaments by analysis of the Cretaceous deposits distribution. Three main unconformities have been identified in this area, unconformity U1 between the Jurassic and Cretaceous series, unconformity U2 separating Early from Late Cretaceous and known as the Austrian unconformity and the major unconformity U3 separating Cretaceous from Tertiary series. The seismic analysis and interpretation have confirmed the existence of several features dominated by an NE-SW extensive tectonic regime evidenced by deep listric faults, asymmetric horst and graben and tilted blocks structures. Indeed, the structural mapping of these unconformities, displays the presence of dominant NW-SE fault system (N140 to N160) bounding a large number of moderate sized basins. A strong inversion event related to the unconformity U3 can be demonstrated by the mapping of the unconformities consequence of the succession of several tectonic manifestations during the Cretaceous and post-Cretaceous periods. These tectonic events have resulted in the development of structural and stratigraphic traps further to the porosity and permeability enhancement of Cretaceous reservoirs.
On the breakup of tectonic plates by polar wandering
NASA Technical Reports Server (NTRS)
Liu, H. S.
1973-01-01
The observed boundary system of the major tectonic plates on the surface of the earth lends fresh support to the hypothesis of polar wandering. A dynamic model of the outer shell of the earth under the influence of polar shift is developed. The analysis falls into two parts: (1) deriving equations for stresses caused by polar shifting; and (2) deducing the pattern according to which the fracture of the shell can be expected. For stress analysis, the theory of plates and shells is the dominant feature of this model. In order to determine the fracture pattern, the existence of a mathematical theorem of plasticity is recalled: it says that the plastic flow begins to occur when a function in terms of the differences of the three principal stresses surpasses a certain critical value. By introducing the figures for the geophysical constants, this model generates stresses which could produce an initial break in the lithosphere.
Karst development and speleogenesis, Isla de Mona, Puerto Rico
Frank, E.F.; Mylroie, J.; Troester, J.; Alexander, E.C.; Carew, J.L.
1998-01-01
Isla de Mona consists of a raised table-top Miocene-Pliocene reef platform bounded on three sides by vertical cliffs, up to 80 m high. Hundreds of caves ring the periphery of the island and are preferentially developed in, but not limited to, the Lirio Limestone/Isla de Mona Dolomite contact. These flank margin caves originally formed at sea level and are now exposed at various levels by tectonic uplift of the island (Franbk 1983; Mylroie et al. 1995b). Wall cusps, a characteristic feature of flank margin caves, are ubiquitois features. Comparisons among similar caves formed in the Bahamas and Isla de Mona reveal the same overall morphology throughout the entire range of sizes and complexities. The coincidence of the primary cave development zone with the Lirio Limestone/Isla de Mona Dolomite contact may result from syngenetic speleogenesis and dolomitization rather than preferential dissolution along a lithologic boundary. Tectonic uplift and glacioeustatic sea level fluctuations produced caves at a variety of elevations. Speleothem dissolution took place in many caves under phreatic conditions, evidence these caves were flooded after an initial period of subaerial exposure and speleothem growth. Several features around the perimeter of the island are interpreted to be caves whose roofs were removed by surficial denudation processes. Several large closed depressions and dense pit cave fields are further evidence of surficial karst features. The cliff retreat around the island perimeter since the speleogenesis of the major cave systems is small based upon the distribution of the remnant cave sections.
Complex Plate Tectonic Features on Planetary Bodies: Analogs from Earth
NASA Astrophysics Data System (ADS)
Stock, J. M.; Smrekar, S. E.
2016-12-01
We review the types and scales of observations needed on other rocky planetary bodies (e.g., Mars, Venus, exoplanets) to evaluate evidence of present or past plate motions. Earth's plate boundaries were initially simplified into three basic types (ridges, trenches, and transform faults). Previous studies examined the Moon, Mars, Venus, Mercury and icy moons such as Europa, for evidence of features, including linear rifts, arcuate convergent zones, strike-slip faults, and distributed deformation (rifting or folding). Yet, several aspects merit further consideration. 1) Is the feature active or fossil? Earth's active mid ocean ridges are bathymetric highs, and seafloor depth increases on either side; whereas, fossil mid ocean ridges may be as deep as the surrounding abyssal plain with no major rift valley, although with a minor gravity low (e.g., Osbourn Trough, W. Pacific Ocean). Fossil trenches have less topographic relief than active trenches (e.g., the fossil trench along the Patton Escarpment, west of California). 2) On Earth, fault patterns of spreading centers depend on volcanism. Excess volcanism reduced faulting. Fault visibility increases as spreading rates slow, or as magmatism decreases, producing high-angle normal faults parallel to the spreading center. At magma-poor spreading centers, high resolution bathymetry shows low angle detachment faults with large scale mullions and striations parallel to plate motion (e.g., Mid Atlantic Ridge, Southwest Indian Ridge). 3) Sedimentation on Earth masks features that might be visible on a non-erosional planet. Subduction zones on Earth in areas of low sedimentation have clear trench -parallel faults causing flexural deformation of the downgoing plate; in highly sedimented subduction zones, no such faults can be seen, and there may be no bathymetric trench at all. 4) Areas of Earth with broad upwelling, such as the North Fiji Basin, have complex plate tectonic patterns with many individual but poorly linked ridge segments and transform faults. These details and scales of features should be considered in planning future surveys of altimetry, reflectance, magnetics, compositional, and gravity data from other planetary bodies aimed at understanding the link between a planet's surface and interior, whether via plate tectonics or other processes.
O'Neill, J. Michael; Day, Warren C.; Alienikoff, John N.; Saltus, Richard W.; Gough, Larry P.; Day, Warren C.
2007-01-01
The Black Mountain tectonic zone in the YukonTanana terrane of east-central Alaska is a belt of diverse northeast-trending geologic features that can been traced across Black Mountain in the southeast corner of the Big Delta 1°×3° degree quadrangle. Geologic mapping in the larger scale B1 quadrangle of the Big Delta quadrangle, in which Black Mountain is the principal physiographic feature, has revealed a continuous zone of normal and left-lateral strikeslip high-angle faults and shear zones, some of which have late Tertiary to Quaternary displacement histories. The tectonic zone includes complexly intruded wall rocks and intermingled apophyses of the contiguous mid-Cretaceous Goodpaster and Mount Harper granodioritic plutons, mafic to intermediate composite dike swarms, precious metal mineralization, early Tertiary volcanic activity and Quaternary fault scarps. These structures define a zone as much as 6 to 13 kilometers (km) wide and more than 40 km long that can be traced diagonally across the B1 quadrangle into the adjacent Eagle 1°×3° quadrangle to the east. Recurrent activity along the tectonic zone, from at least mid-Cretaceous to Quaternary, suggests the presence of a buried, fundamental tectonic feature beneath the zone that has influenced the tectonic development of this part of the Yukon-Tanana terrane. The tectonic zone, centered on Black Mountain, lies directly above a profound northeast-trending aeromagnetic anomaly between the Denali and Tintina fault systems. The anomaly separates moderate to strongly magnetic terrane on the northwest from a huge, weakly magnetic terrane on the southeast. The tectonic zone is parallel to the similarly oriented left-lateral, strike-slip Shaw Creek fault zone 85 km to the west.
Tectonics and volcanism on Mars: a compared remote sensing analysis with earthly geostructures
NASA Astrophysics Data System (ADS)
Baggio, Paolo; Ancona, M. A.; Callegari, I.; Pinori, S.; Vercellone, S.
1999-12-01
The recent knowledge on Mars' lithosphere evolution does not find yet sufficient analogies with the Earth's tectonic models. The Viking image analysis seems to be even now frequently, rather fragmentary, and do not permits to express any coherent relationships among the different detected phenomena. Therefore, today it is impossible to support any reliable kinematic hypothesis. The Remote-Sensing interpretation is addressed to a Viking image mosaic of the known Tharsis Montes region and particularly focused on the Arsia Mons volcano. Several previously unknown lineaments, not directly linked to volcano-tectonics, were detected. Their mutual relationships recall transcurrent kinematics that could be related to similar geostructural models known in the Earth plate tectonic dynamics. Several concordant relationships between the Arsia Mons volcano and the brittle extensive tectonic features of earthly Etnean district (Sicily, South Italy), interpreted on Landsat TM images, were pointed out. These analogies coupled with the recently confirmed strato- volcano topology of Tharsis Montes (Head and Wilson), the layout distribution of the effusive centers (Arsia, Pavonis and Ascraeus Montes), the new tectonic lineaments and the morphological features, suggest the hypothesis of a plate tectonic volcanic region. The frame could be an example in agreement with the most recent interpretation of Mars (Sleep). A buried circular body, previously incorrectly interpreted as a great landslide event from the western slope of Arsia Mons volcano, seems really to be a more ancient volcanic structure (Arsia Mons Senilis), which location is in evident relation with the interpreted new transcurrent tectonic system.
Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching
Gratz, A.J.; Fisler, D.K.; Bohor, B.F.
1996-01-01
Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.
NASA Astrophysics Data System (ADS)
Kattenhorn, S. A.; Hurford, T. A.
2007-12-01
This review of Europan tectonics previews a chapter of the forthcoming text "Europa". After the Voyager flyby of the icy moon Europa in 1979, models were developed that attributed pervasive surface fracturing to the effects of tidal forcing due to the gravitational pull of Jupiter. The late 1990s Galileo mission returned high resolution coverage of the surface, allowing a diverse range of tectonic features to be identified. Subsequent description, interpretation, and modeling of these features has resulted in significant developments in five key themes: (1) What drives the tectonics? (2) What are the formation mechanisms of the various types of tectonic features? (3) What are the implications for a subsurface ocean? (4) What is the nature and thickness of the ice shell? (5) Is Europa currently tectonically active? We highlight key developments pertaining to these fundamental issues, focusing on the following elements: (1) Many fracture patterns can be correlated with theoretical stress fields induced by diurnal tidal forcing and long-term effects of nonsynchronous rotation of the ice shell; however, these driving mechanisms alone cannot explain all fracturing. The tectonic fabric has likely been affected by additional contributing effects: tidal despinning, orbital evolution, interior differentiation, polar wander, finite obliquity, stresses due to shell thickening, endogenic forcing by convection and diapirism, and secondary effects driven by strike-slip faulting and plate flexure. (2) Due to the prevalence of global tension, a low lithostatic gradient, and the inherent weakness of ice, tectonic features likely have predominantly extensional primary formation mechanisms (e.g. surface fractures, ridges, and normal faults). There has been no categorical documentation of fracture development by compressive shearing. Even so, the constantly changing nature of the tidal stress field results in shearing reactivation of cracks being important for the morphologic and mechanical development of tectonic features. Hence, strike-slip faults are relatively common. Also, frictional shearing and heating has likely contributed to the construction of edifices along crack margins (i.e., ridges). If Europa has not recently expanded, crustal convergence (although elusive in Galileo images) is required to balance out new surface material created at spreading bands and may be accommodated locally along ridges or convergence bands. (3) Chains of concatenated curved cracks called cycloids provide convincing evidence of a subsurface ocean in that they must be the result of diurnal forcing of sufficient tidal amplitude to break the ice during a large portion of the Europan orbit, suggesting a tidally responding ocean beneath the ice shell. (4) Fracture mechanics reveals that the brittle portion of the ice shell is likely no more than a few km thick, but convection driven diapirism and crater morphologies necessitate a thicker shell overall (up to about 30 km). It is not known if fractures are able to penetrate this entire shell thickness. The brittle layer acts as a stagnant lid to plastic deformation in the ductile portion of the ice shell, resulting in localized brittle deformation. (5) Tectonic resurfacing has dominated the <70 my of visible geologic history. No evidence exists that Europa is currently tectonically active; however, this may be more a failing of the current state of the science rather than a lack of probability. A tectonically based answer to this question lies in a thorough analysis of geologically young surface fractures but would benefit from far more extensive coverage of the surface via a return mission to Europa.
NASA Astrophysics Data System (ADS)
Cai, Keda
2016-04-01
Kazakhstan accretionary system was a principle component of the Central Asian Orogenic Belt (CAOB) that is one of the largest accretionary orogens on earth. The Kazakhstan composite continent could have been established in the Early Paleozoic by the Kazakhstan accretionary system in the form of progressively amalgamations of diverse tectonic units, such as continental ribbon, accretionary prim, oceanic remnant and arc material. Subsequently, the composite continent was bended to form a spectacular U-shaped architecture that probably occurred in the Late Paleozoic. The western Chinese Tianshan is situated on the south wing of the Kazakhstan Orocline, featured by extensive magmatim, intense deformation and voluminous mineralization. Our new geochronological and geochemical data suggest a noticeable magmatic gap between Late Devonian and Early carboniferous and contrasting magma sources of these magmatic rocks. The significant shifts correspond to the tectonic transition from terrane amalgamation to mountain bending in the Early Paleozoic. This study was financially supported by the Major Basic Research Project of the Ministry of Science and Technology of China (2014CB448000), Xinjiang outstanding youth scientific grant (2013711003) and the Talent Awards to KDC from the China Government under the 1000 Talent Plan.
Mesozoic Deformation and Its Geological Significance in the Southern Margin of the South China Sea
NASA Astrophysics Data System (ADS)
Zhu, Rongwei; Liu, Hailing; Yao, Yongjian; Wang, Yin
2018-05-01
The pre-Eocene history of the region around the present South China Sea is not well known. New multi-channel seismic profiles provide valuable insights into the probable Mesozoic history of this region. Detailed structural and stratigraphic interpretations of the multi-channel seismic profiles, calibrated with relevant drilling and dredging data, show major Mesozoic structural features. A structural restoration was done to remove the Cenozoic tectonic influence and calculate the Mesozoic tectonic compression ratios. The results indicate that two groups of compressive stress with diametrically opposite orientations, S(S)E-N(N)W and N(N)W-S(S)E, were active during the Mesozoic. The compression ratio values gradually decrease from north to south and from west to east in each stress orientation. The phenomena may be related to the opening of the proto-South China Sea (then located in south of the Nansha block) and the rate at which the Nansha block drifted northward in the late Jurassic to late Cretaceous. The Nansha block drifted northward until it collided and sutured with the southern China margin. The opening of the present South China Sea may be related to this suture zone, which was a tectonic zone of weakness.
Crone, Anthony J.; Wheeler, Russell L.
2000-01-01
The USGS is currently leading an effort to compile published geological information on Quaternary faults, folds, and earthquake-induced liquefaction in order to develop an internally consistent database on the locations, ages, and activity rates of major earthquake-related features throughout the United States. This report is the compilation for such features in the Central and Eastern United States (CEUS), which for the purposes of the compilation, is defined as the region extending from the Rocky Mountain Front eastward to the Atlantic seaboard. A key objective of this national compilation is to provide a comprehensive database of Quaternary features that might generate strong ground motion and therefore, should be considered in assessing the seismic hazard throughout the country. In addition to printed versions of regional and individual state compilations, the database will be available on the World-Wide Web, where it will be readily available to everyone. The primary purpose of these compilations and the derivative database is to provide a comprehensive, uniform source of geological information that can by used to complement the other types of data that are used in seismic-hazard assessments. Within our CEUS study area, which encompasses more than 60 percent of the continuous U.S., we summarize the geological information on 69 features that are categorized into four classes (Class A, B, C, and D) based on what is known about the feature's Quaternary activity. The CEUS contains only 13 features of tectonic origin for which there is convincing evidence of Quaternary activity (Class A features). Of the remaining 56 features, 11 require further study in order to confidently define their potential as possible sources of earthquake-induced ground motion (Class B), whereas the remaining features either lack convincing geologic evidence of Quaternary tectonic faulting or have been studied carefully enough to determine that they do not pose a significant seismic hazard (Classes C and D). The correlation between historical seismicity and Quaternary faults and liquefaction features in the CEUS is generally poor, which probably reflects the long return times between successive movements on individual structures. Some Quaternary faults and liquefaction features are located in aseismic areas or where historical seismicity is sparse. These relations indicate that the record of historical seismicity does not identify all potential seismic sources in the CEUS. Furthermore, geological studies of some currently aseismic faults have shown that the faults have generated strong earthquakes in the geologically recent past. Thus, the combination of geological information and seismological data can provide better insight into potential earthquake sources and thereby, contribute to better, more comprehensive seismic-hazard assessments.
Late Tharsis tectonic activity and implications for Early Mars
NASA Astrophysics Data System (ADS)
Bouley, S.; Baratoux, D.; Paulien, N.; Missenard, Y.; Saint-Bezar, B.
2017-12-01
Constraining the timing of Tharsis volcanism is critical to understanding the planet's evolution including its climate, surface environment and mantle dynamics. The tectonic history of the Tharsis bulge was previously documented from the distribution and ages of related tectonic features [1]. Here we revisit the ages of 7493 Tharsis-related tectonic features based on their relationship with stratigraphic units defined in the new geological map [2]. Conversely to previous tectonic mapping [1], which suggested that Tharsis growth was nearly achieved during the Noachian, we find a protracted growth of Tharsis during the Hesperian. Faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. Accumulated tectonic deformation was maximum in the Early Hesperian for compressional strain (Solis, Lunae and Ascuris Planum) and extended over time from Noachian to Amazonian for extensional strain (Noctis Labyrinthus and Fossae, Sinai Planum and Tractus, Ulysses and Fortuna fossae, Alba Patera). This new scenario is consistent with a protracted growth of Tharsis dome during the Hesperian and with the timing a large Tharsis-driven true polar wander post-dating the incision of Late Noachian/Hesperian valley networks[3]. References:[1] Anderson et al. JGR-Planets 106, E9, 20,563-20,585 (2001).[2] Tanaka, K.L. et al. Geologic map of Mars (2014). [3] Bouley et al. Nature doi:10.1038 (2016)
Layers and Fractures in Ophir Chasma
2015-11-05
Ophir Chasma forms the northern portion of Valles Marineris, and this image from NASA Mars Reconnaissance Orbiter spacecraft features a small part of its wall and floor. The wall rock shows many sedimentary layers and the floor is covered with wind-blown ridges, which are intermediate in size between sand ripples and sand dunes. Rocks protruding on the floor could be volcanic intrusions of once-molten magma that have pushed aside the surrounding sedimentary layers and "froze" in place. Images like this can help geologists study the formation mechanisms of large tectonic systems like Valles Marineris. (The word "tectonics" does not mean the same thing as "plate tectonics." Tectonics simply refers to large stresses and strains in a planet's crust. Plate tectonics is the main type of tectonics that Earth has; Mars does not have plate tectonics.) http://photojournal.jpl.nasa.gov/catalog/PIA20044
Understanding the Tectonic Features in the South China Sea By Analyzing Magnetic Anomalies
NASA Astrophysics Data System (ADS)
Guo, L.; Meng, X.; Shi, L.; Yao, C.
2011-12-01
The South China Sea (SCS) is surrounded by the Eurasia, Pacific and India-Australia plates. It formed during Late Oligocene-Early Miocene, and is one of the largest marginal seas in the Western Pacific. The collision of Indian subcontinent and Eurasian plate in the northwest, back-arc spreading in the centre and subduction beneath the Philippine plate along Manila trench in the east and along Palawan trough in the south had produced the complex tectonic features in the SCS that we can see today. In the past few decades, a variety of geophysical methods were conducted to study geological tectonics and evolution of the SCS. Here, we analyzed the magnetic data of this area using new data enhancement techniques to understand the regional tectonic features. We assembled the magnetic anomalies data with a resolution of two arc-minute from the World Digital Magnetic Anomaly Map, and then gridded the data on a regular grid. Then we used the method of reduction to the pole at low latitude with varying magnetic inclinations to stably reduce the magnetic anomalies. Then we used the preferential continuation method based on Wiener filtering and Green's equivalence principle to separate the reduced-to-pole (RTP) magnetic anomalies, and subsequently analyze the regional and residual anomalies. We also calculated the directional horizontal derivatives and the tilt-angle derivative of the data to derive clearer geological structures with more details. Then we calculated the depth of the magnetic basement surface in the area by 3D interface inversion. From the results of the preliminary processing, we analyzed the main faults, geological structures, magma distribution and tectonic features in the SCS. In the future, the integrated interpretation of the RTP magnetic anomalies, Bouguer gravity anomalies and other geophysical methods will be performed for better understanding the deep structure , the tectonic features and evolution of the South China Sea. Acknowledgment: We acknowledge the financial support of the SinoProbe project (201011039), the Fundamental Research Funds for the Central Universities (2010ZY26, 2011PY0184), and the National Natural Science Foundation of China (40904033, 41074095).
A review of the tectonic evolution of the Northern Pacific and adjacent Cordilleran Orogen
NASA Astrophysics Data System (ADS)
Jakob, Johannes; Gaina, Carmen; Johnston, Stephen T.
2014-05-01
Numerous plate kinematic models for the North Pacific realm have been developed since the advent of plate tectonics in the early seventies (e.g Atwater (1970), Mammerickx and Sharman (1988)). Although published kinematic models are consistent with the broad scale features of the North Pacific, the link between plate motions and the evolution of the North American Cordillera remains poorly understood. Part of the problem lies in conflicting interpretations of geological versus paleomagnetic data sets, with the result being a lack of consensus regarding: the paleolocation of key geological units; the paleogeography of terrane formation and amalgamation; the motion, boundaries and even existence of oceanic plates; and the character (e.g. trend of subduction) and position of plate boundaries within the northern Pacific basin. Remnants of the Farallon and Kula plates, and some short-lived microplates, demonstrate the complicated tectonic evolution of the oceanic realm west of the North American margin (e.g. Rea and Dixon (1983); McCrory and Wilson (2013); Shephard et al. (2013)). The creation and destruction of major tectonic plates and microplates has presumably left a record in the Cordilleran orogen of western North America. However, working backward from the geological relationships to plate reconstructions remains difficult. Here we investigate the relationship between the plate motions of the Pacific Ocean and the terrane movements in the North American Cordillera by revising the marine magnetic and gravity anomalies of the northern Pacific. In particular, we reevaluate plate boundaries at times of major changes in plate geometry of the Pacific, Kula, Chinook and Farallon plates from C34n onward. Our focus is also on the plate geometries of the Resurrection, Eshamy and Siletz-Crescent plates during the time between anomaly C26 and C12, and the links between plate interactions and on-shore tectonic events recorded in the geological record of Vancouver Island, including the accretion of the Pacific Rim and Crescent terranes to Wrangellia between C25 and C18. References: Atwater, T. (1970). Implications of plate tectonics for the Cenozoic tectonic evolution of western North America. Geological Society of America Bulletin, 81, 3513-3536. McCrory, P. a., & Wilson, D. S. (2013). A kinematic model for the formation of the Siletz-Crescent forearc terrane by capture of coherent fragments of the Farallon and Resurrection plates. Tectonics, 32, 1-19. doi:10.1002/tect.20045 Rea, D. K., & Dixon, J. M. (1983). Late Cretaceous and Paleogene tectonic evolution of the North Pacific Ocean. Earth and Planetary Science Letters, 65, 145-166. Shephard, G. E., Müller, R. D., & Seton, M. (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 124, 148-183. doi:10.1016/j.earscirev.2013.05.012 Mammerickx, J., & Sharman, G. F. (1988). Tectonic evolution of the North Pacific during the Cretaceous quiet period. Journal of Geophysical Research, 93(B4), 3009-3024. doi:10.1029/JB093iB04p03009
Morgan, Lisa A.; Pierce, Kenneth L.; Shanks, Pat; Raynolds, Robert G.H.
2008-01-01
This field trip highlights various stages in the evolution of the Snake River Plain–Yellowstone Plateau bimodal volcanic province, and associated faulting and uplift, also known as the track of the Yellowstone hotspot. The 16 Ma Yellowstone hotspot track is one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Recent interest in young and possible renewed volcanism at Yellowstone along with new discoveries and synthesis of previous studies, i.e., tomographic, deformation, bathymetric, and seismic surveys, provide a framework of evidence of plate motion over a mantle plume. This 3-day trip is organized to present an overview into volcanism and tectonism in this dynamically active region. Field trip stops will include the young basaltic Craters of the Moon, exposures of 12–4 Ma rhyolites and edges of their associated collapsed calderas on the Snake River Plain, and exposures of faults which show an age progression similar to the volcanic fields. An essential stop is Yellowstone National Park, where the last major caldera-forming event occurred 640,000 years ago and now is host to the world's largest concentration of hydrothermal features (>10,000 hot springs and geysers). This trip presents a quick, intensive overview into volcanism and tectonism in this dynamically active region. Field stops are directly linked to conceptual models related to hotspot passage through this volcano-tectonic province. Features that may reflect a tilted thermal mantle plume suggested in recent tomographic studies will be examined. The drive home will pass through Grand Teton National Park, where the Teton Range is currently rising in response to the passage of the North American plate over the Yellowstone hotspot.
Lunar Tectonic Triad Joining Both Hemispheres and Its Terrestrial Analogue
NASA Astrophysics Data System (ADS)
Kochemasov, G. G.
2018-06-01
"Orbits make structures" — This three word notion explains similarities of fundamental tectonic features of the small satellite and much larger massive Earth. Very impressive are geoids of two bodies — similarity of SPA Basin and Indian depressions.
Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey
NASA Astrophysics Data System (ADS)
Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal
2016-04-01
Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.
Puzzling features of western Mediterranean tectonics explained by slab dragging
NASA Astrophysics Data System (ADS)
Spakman, Wim; Chertova, Maria V.; van den Berg, Arie.; van Hinsbergen, Douwe J. J.
2018-03-01
The recent tectonic evolution of the western Mediterranean region is enigmatic. The causes for the closure of the Moroccan marine gateway prior to the Messinian salinity crisis, for the ongoing shortening of the Moroccan Rif and for the origin of the seismogenic Trans-Alboran shear zone and eastern Betics extension are unclear. These puzzling tectonic features cannot be fully explained by subduction of the east-dipping Gibraltar slab in the context of the regional relative plate motion frame. Here we use a combination of geological and geodetic data, as well as three-dimensional numerical modelling of subduction, to show that these unusual tectonic features could be the consequence of slab dragging—the north to north-eastward dragging of the Gibraltar slab by the absolute motion of the African Plate. Comparison of our model results to patterns of deformation in the western Mediterranean constrained by geological and geodetic data confirm that slab dragging provides a plausible mechanism for the observed deformation. Our results imply that the impact of absolute plate motion on subduction is identifiable from crustal observations. Identifying such signatures elsewhere may improve the mantle reference frame and provide insights on subduction evolution and associated crustal deformation.
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Parmentier, E. M.
1990-01-01
Venus lithospheric structure models are presently formulated in which regional isostatic elevation, d, and the spacing wavelength, lambda, of tectonic features formed due to horizontal extension and compression are functions of both surface thermal gradient and crustal thickness c. It is shown that, in areas of Venus where the upper mantle is stronger than the upper crust, the spacings of short-wavelength features should increase with increasing d, if that change in turn is due to increasing c, but should decrease with increasing d, if this change is in turn due to increasing surface thermal gradient.
Tectonic contrasts between Venus and the earth
NASA Technical Reports Server (NTRS)
Kaula, W. M.
1984-01-01
The long-wave features of the gravity field of Venus differ from those of the earth's field not only in their strong positive correlation with topography, but also in their gentler spectral slope. These properties are inconsistent with generation of the gravity field by plate tectonics or by processes at great depths; they are consistent with generation by a mantle convective system supporting the broad features in topography with an effective compensation depth of about 450 km.
The Jupiter system through the eyes of Voyager 1
Smith, B.A.; Soderblom, L.A.; Johnson, T.V.; Ingersoll, A.P.; Collins, S.A.; Shoemaker, E.M.; Hunt, G.E.; Masursky, H.; Carr, M.H.; Davies, M.E.; Cook, A.F.; Boyce, J.; Danielson, G.E.; Owen, Timothy W.; Sagan, C.; Beebe, R.F.; Veverka, J.; Strom, R.G.; McCauley, J.F.; Morrison, D.; Briggs, G.A.; Suomi, V.E.
1979-01-01
The cameras aboard Voyager I have provided a closeup view of the Jupiter system, revealing heretofore unknown characteristics and phenomena associated with the planet's atmosphere and the surfaces of its five major satellites. On Jupiter itself, atmospheric motions-the interaction of cloud systems-display complex vorticity. On its dark side, lightning and auroras are observed. A ring was discovered surrounding Jupiter. The satellite surfaces display dramatic differences including extensive active volcanismn on Io, complex tectonism on Ganymnede and possibly Europa, and flattened remnants of enormous impact features on Callisto. Copyright ?? 1979 AAAS.
NASA Astrophysics Data System (ADS)
Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.
2017-12-01
The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp Basin at the edge of this magnetic domain suggests the presence of an old and thick Precambrian continental block. This magnetic and tectonic buffer controlled the Late Palaeozoic-Mesozoic rifting and the salt tectonic development of the southeastern Barents Sea.
NASA Technical Reports Server (NTRS)
Bechtold, I. C. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Analysis of ERTS-1 MSS imagery over the sourthern Basin-Range Province of California, Nevada, and Arizona has led to recognition of regional tectonic control of volcanism, plutonism, mineralization, and fault patterns. This conclusion is the result of geologic reconnaissance of anomalies observed in ERTS-1 and Apollo-9 data, guided by intermediate scale U-2 photography, SLAR, and relevant geologic literature. In addition to regional tectonic studies, the ERTS-1 imagery provides a basis for detailed research of relatively small geologic features. Interpretation of ERTS-1 and Apollo-9 space imagery and intermediate scale X-15 and U-2 photography indicates the presence of a major fault zone along the California-Nevada state line, here named the Pahrump fault zone. Field mapping confirms previously unreported evidence of fault breaks in bedrock, along range fronts and in Quaternary alluvium and lake sediments. Regional gravity lows and fault traces within the Pahrump fault zone from a general left stepping en echelon pattern. The trend and postulated diplacement for this fault are similar to other major strike slip fault zones in the southern Basin-Range Province.
Deep Probe: Investigating the lithosphere of western North America with refraction seismology
NASA Astrophysics Data System (ADS)
Gorman, Andrew Robert
The Laurentian Craton, composed of the exposed Canadian Shield ringed by sediment-covered platforms, is the Precambrian heart of North America. The craton can be divided into several provinces representing ancient Archean blocks and the suture regions which stitched them together. In western Canada, Montana and Wyoming, the general distribution of Precambrian cratonic elements has been established by previous potential field studies combined with the analysis of basement rocks extracted from a small number of exploration drill holes that penetrated the overlying sedimentary basin, and from limited outcrops in southern Montana and Wyoming. The major blocks identified in this region include the Archean Hearne (mostly beneath Alberta) and Wyoming (beneath Montana and Wyoming) Provinces. A third block, the Medicine Hat Block, often interpreted to be the southernmost part of the Hearne Province, is considered independent in this study. The objectives of this thesis are to determine the velocity structure and characteristics of the crust and sub-crustal lithospheric mantle beneath the three Archean domains and the relationships among them to further understanding of the tectonic development of cratonic western North America. These objectives are met through interpretation of data from the Deep Probe/SAREX seismic refraction experiment of 1995, the largest of its type ever undertaken on the continent. Twenty large chemical explosions were detonated along a 3000-km-long profile running from Great Slave Lake to southern New Mexico and recorded at ˜2000 closely spaced seismograph stations between central Alberta and northern New Mexico. Interpretations, of increasing complexity, are based on: (1) the tau-p downward continuation of individual shot records, (2) a ray-theoretical travel-time inversion with Earth curvature considerations, and (3) detailed modelling of specific features with a finite difference wave propagation method. Interpretations of velocities and structures are made to depths as great as 150 km. From features of the crustal structure and their correspondence with two north-dipping relict subduction zones in the upper mantle, the boundaries between the three major Archean blocks are delineated and associated with the Vulcan Structure and Great Falls Tectonic Zone, two poorly understood tectonic features in the region. A prominent 10-to-30 km thick high velocity layer at the base of the Wyoming Province and Medicine Hat Block is interpreted to represent Proterozoic crustal underplating and alteration. The composition and physical properties of the crust-mantle boundary, the relict subduction zones and a heterogeneous upper mantle layer lying between depths of 100 km and 140 km are investigated to further understand lithospheric development in this region. The seismic interpretation is combined with previous work to develop a revised scenario for the tectonic assembly of western Laurentia.
NASA Technical Reports Server (NTRS)
Perry, S. K.; Schamel, S.
1985-01-01
Tectonic extension within continental crust creates a variety of major features best classed as extensional orogens. These features have come under increasing attention in recent years, with the welding of field observation and theoretical concepts. Most recent advances have come from the Basin and Range Province of the southwestern United States and from the North Sea. Application of these geometric and isostatic concepts, in combination with seismic interpretation, to the southern Gulf of Suez, an active extensional orogen, allows generation of detailed structural maps and geometrically balanced sections which suggest a regional structural model. Geometric models which should prove to be a valuable adjunct to numerical and thermal models for the rifting process are discussed.
Lasting mantle scars lead to perennial plate tectonics.
Heron, Philip J; Pysklywec, Russell N; Stephenson, Randell
2016-06-10
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a 'perennial' phenomenon.
Lasting mantle scars lead to perennial plate tectonics
Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell
2016-01-01
Mid-ocean ridges, transform faults, subduction and continental collisions form the conventional theory of plate tectonics to explain non-rigid behaviour at plate boundaries. However, the theory does not explain directly the processes involved in intraplate deformation and seismicity. Recently, damage structures in the lithosphere have been linked to the origin of plate tectonics. Despite seismological imaging suggesting that inherited mantle lithosphere heterogeneities are ubiquitous, their plate tectonic role is rarely considered. Here we show that deep lithospheric anomalies can dominate shallow geological features in activating tectonics in plate interiors. In numerical experiments, we found that structures frozen into the mantle lithosphere through plate tectonic processes can behave as quasi-plate boundaries reactivated under far-field compressional forcing. Intraplate locations where proto-lithospheric plates have been scarred by earlier suturing could be regions where latent plate boundaries remain, and where plate tectonics processes are expressed as a ‘perennial' phenomenon. PMID:27282541
Code of Federal Regulations, 2013 CFR
2013-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
Code of Federal Regulations, 2014 CFR
2014-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
Code of Federal Regulations, 2012 CFR
2012-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
Code of Federal Regulations, 2011 CFR
2011-01-01
... activity within the geologic setting during the Quaternary Period. (2) Historical earthquakes within the... isolation. (3) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or the magnitude of earthquakes within the geologic setting may...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
10 CFR 960.5-2-11 - Tectonics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of active faulting within the geologic setting. (2) Historical earthquakes or past man-induced... design limits. (3) Evidence, based on correlations of earthquakes with tectonic processes and features, (e.g., faults) within the geologic setting, that the magnitude of earthquakes at the site during...
NASA Astrophysics Data System (ADS)
Stanton, N.; Schmitt, R.; Galdeano, A.; Maia, M.; Mane, M.
2010-07-01
The continental and adjacent marginal features along southeast Brazil were investigated, focusing on the basement structural relationships between onshore and offshore provinces. Lateral and vertical variations in the magnetic anomalies provided a good correlation with the regional tectonic features. The sin-rift dykes and faults are associated with the magnetic lineaments and lie sub parallel to the Precambrian N45E-S45W basement structure of the Ribeira Belt, but orthogonally to the Cabo Frio Tectonic Domain (CFTD) basement, implying that: (1) the upper portion of the continental crust was widely affected by Mesozoic extensional deformation; and (2) tectonic features related to the process of break up of the Gondwana at the CFTD were form regardless of the preexisting structural basement orientation being controlled by the stress orientation during the rift phase. The deep crustal structure (5 km depth) is characterized by NE-SW magnetic "provinces" related to the Ribeira Belt tectonic units, while deep suture zones are defined by magnetic lows. The offshore Campos structural framework is N30E-S30W oriented and resulted from a main WNW-ESE direction of extension in Early Cretaceous. Transfer zones are represented by NW-SE and E-W oriented discontinuities. A slight difference in orientation between onshore (N45E) and offshore (N30E) structural systems seems to reflect a re-orientation of stress during rifting. We proposed a kinematical model to explain the structural evolution of this portion of the margin, characterized by polyphase rifting, associated with the rotation of the South American plate. The Campos Magnetic High (CMH), an important tectonic feature of the Campos Basin corresponds to a wide area of high crustal magnetization. The CMH wass interpreted as a magmatic feature, mafic to ultramafic in composition that extends down to 14 km depth and constitutes an evidence of intense crustal extension at 60 km from the coast.
The revised tectonic history of Tharsis
NASA Astrophysics Data System (ADS)
Bouley, Sylvain; Baratoux, David; Paulien, Nicolas; Missenard, Yves; Saint-Bézar, Bertrand
2018-04-01
Constraining the timing of the emplacement of the volcano-tectonic province of Tharsis is critical to understanding the evolution of mantle, surface environment and climate of Mars. The growth of Tharsis had exerted stresses on the lithosphere, which were responsible for tectonic deformation, previously mapped as radial or concentric faults. Insights into the emplacement history of Tharsis may be gained from an analysis of the characteristics and ages of these tectonic features. The number, total length, linear density of extensional or compressional faults in the Tharsis region and deformation rates are reported for each of the following 6 stages: Early and Middle Noachian (stage 1); Late Noachian (stage 2); Early Hesperian (stage 3); Late Hesperian (stage 4), Early Amazonian (stage 5) and Middle Amazonian to Late Amazonian (stage 6). 8571 Tharsis-related tectonic features (radial or concentric to the center of Tharsis) were assigned to one of these periods of time based on their relationship with stratigraphic units defined in the most recent geological map. Intense faulting at Tempe Terra, Claritas and Coracis Fossae and Thaumasia Planum confirms that tectonic deformation started during the Noachian. However, we report a peak in both compressive and extensive rates of deformation during the Early Hesperian whereas the quantitative indicators for compressional and extensional tectonics vary within less than one order of magnitude from the Late Noachian to the Late Hesperian. These observations indicate a protracted growth of Tharsis during the first quarter of Mars evolution and declining from 3 Gyrs ago.
Tectonic map of the Arabian Peninsula
Brown, Glen F.
1972-01-01
This tectonic map of the Arabian peninsula, prepared for the Audi Arabian Ministry of Petroleum and Mineral Resource, is the first of a series of peninsular maps that attempt to show regional features. Much recent information resulting from detailed geologic mapping notably within the Arabian craton, from geophysical surveys, both airborne and oceanographic in adjacent seas, from deep exploratory drilling, and from photography from the Gemini and Apollo space programs, has been used in the tectonic evaluation.
Tectonic patterns and regional stresses near Venusian coronae
NASA Astrophysics Data System (ADS)
Cyr, K. E.; Melosh, H. J.
1993-04-01
A stress analysis of tectonic patterns near Venusian coronae is reported. Combined local corona stresses and uniform regional stresses are used to predict patterns of surface tectonic features. The patterns are compared to those of coronae on Magellan images to determine the regional stress and elastic lithospheric thickness about the coronae. Regional stresses of 0.1-0.6 kbar and elastic lithospheric thicknesses of 10 +/- 5 km are estimated for three specific coronae.
NASA Astrophysics Data System (ADS)
Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi
2018-01-01
The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.
NASA Astrophysics Data System (ADS)
Ji, Wenbin; Faure, Michel; Lin, Wei; Chen, Yan; Chu, Yang; Xue, Zhenhua
2018-01-01
The South China Block (SCB) experienced a polyphase reworking by the Phanerozoic tectonothermal events. To better understand its Late Mesozoic tectonics, an integrated multidisciplinary investigation has been conducted on the Dayunshan-Mufushan composite batholith in the north-central SCB. This batholith consists of two major intrusions that recorded distinct emplacement features. According to our structural analysis, two deformation events in relation to batholith emplacement and subsequent exhumation are identified. The early one (D1) was observed mostly at the southern border of the batholith, characterized by a top-to-the-SW ductile shearing in the early-stage intrusion and along its contact zone. This deformation, chiefly associated with the pluton emplacement at ca. 150 Ma, was probably assisted by farfield compression from the northern Yangtze foreland belt. The second but main event (D2) involved two phases: (1) ductile shearing (D2a) prominently expressed along the Dayunshan detachment fault at the western border of the batholith where the syntectonic late-stage intrusion and minor metasedimentary basement in the footwall suffered mylonitization with top-to-the-NW kinematics; and (2) subsequent brittle faulting (D2b) further exhumed the entire batholith that behaved as rift shoulder with half-graben basins developed on its both sides. Geochronological constraints show that the crustal ductile extension occurred during 132-95 Ma. Such a Cretaceous NW-SE extensional tectonic regime, as indicated by the D2 event, has been recognized in a vast area of East Asia. This tectonism was responsible not only for the destruction of the North China craton but also for the formation of the so-called "southeast China basin and range tectonics."
NASA Astrophysics Data System (ADS)
Anglés, A.; Li, Y. L.
2017-10-01
The polar regions of Mars feature layered deposits, some of which exist as enclosed zoning structures. These deposits raised strong interest since their discovery and still remain one of the most controversial features on Mars. Zoning structures that are enclosed only appear in the Northern polar region, where the disappearance of water bodies may have left behind huge deposits of evaporate salts. The origin of the layered deposits has been widely debated. Here we propose that the enclosed nature of the zoning structures indicates the result of recent tectonism. We compared similar structures at an analogue site located in the western Qaidam Basin of Tibetan Plateau, a unique tectonic setting with abundant saline deposits. The enclosed structures, which we term Ring Structures, in both the analogue site and in the Northern polar region of Mars, were formed by uplift induced pressurization and buoyancy of salts as the result of recent tectonic activity.
Diversity dynamics of Miocene mammals in relation to the history of tectonism and climate
Finarelli, John A.; Badgley, Catherine
2010-01-01
Continental biodiversity gradients result not only from ecological processes, but also from evolutionary and geohistorical processes involving biotic turnover in landscape and climatic history over millions of years. Here, we investigate the evolutionary and historical contributions to the gradient of increasing species richness with topographic complexity. We analysed a dataset of 418 fossil rodent species from western North America spanning 25 to 5 Ma. We compared diversification histories between tectonically active (Intermontane West) and quiescent (Great Plains) regions. Although diversification histories differed between the two regions, species richness, origination rate and extinction rate per million years were not systematically different over the 20 Myr interval. In the tectonically active region, the greatest increase in originations coincided with a Middle Miocene episode of intensified tectonic activity and global warming. During subsequent global cooling, species richness declined in the montane region and increased on the Great Plains. These results suggest that interactions between tectonic activity and climate change stimulate diversification in mammals. The elevational diversity gradient characteristic of modern mammalian faunas was not a persistent feature over geologic time. Rather, the Miocene rodent record suggests that the elevational diversity gradient is a transient feature arising during particular episodes of Earth's history. PMID:20427339
Plate Tectonic Cycle. K-6 Science Curriculum.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
Plate Tectonics Cycle is one of the units of a K-6 unified science curriculum program. The unit consists of four organizing sub-themes: (1) volcanoes (covering formation, distribution, and major volcanic groups); (2) earthquakes (with investigations on wave movements, seismograms and sub-suface earth currents); (3) plate tectonics (providing maps…
Tectonic evolution of the Archaean high-grade terrain of South India
NASA Technical Reports Server (NTRS)
Ramakrishnan, M.
1988-01-01
The southern Indian shield consists of three major tectonic provinces viz., (1) Dharwar Craton, (2) Eastern Ghat Mobile Belt, and (3) Pandyan Mobile Belt. An understanding of their mutual relations is crucial for formulating crustal evolution models. The tectonic evolution of these provinces is summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauthier, F.J.; Boudjema, A.; Lounis, R.
1995-08-01
The Ghadames and Illizi basins cover the majority of the eastern Sahara of Algeria. Geologicaly, this part of the Central Saharan platform has been influenced by a series of structural arches and {open_quotes}moles{close_quotes} (continental highs) which controlled sedimentation and structure through geologic time. These features, resulting from and having been affected by nine major tectonic phases ranging from pre-Cambrian to Tertiary, completely bound the Ghadames and Illizi Basins. During the Paleozoic both basins formed one continuous depositional entity with the Ghadames basin being the distal portion of the continental sag basin where facies and thickness variations are observed over largemore » distances. It is during the Mesozoic-Cenozoic that the Ghadames basin starts to evolve differently from the Illizi Basin. Eustatic low-stand periods resulted in continental deposition yielding the major petroleum-bearing reservoir horizons (Cambrian, Ordovician, Siluro-Devonian and Carboniferous). High-stand periods corresponds to the major marine transgressions covering the majority of the Saharan platform. These transgressions deposited the principal source rock intervals of the Silurian and Middle to Upper Devonian. The main reservoirs of the Mesozoic and Cenozoic are Triassic sandstone sequences which are covered by a thick evaporite succession forming a super-seal. Structurally, the principal phases affecting this sequence are the extensional events related to the breakup of Pangea and the Alpine compressional events. The Ghadames and Illizi basins, therefore, have been controlled by a polphase tectonic history influenced by Pan African brittle basement fracturing which resulted in complex structures localized along the major basin bounding trends as well as several subsidiary trends within the basin. These trends, as demonstrated with key seismic data, have been found to contain the majority of hydrocarbons trapped.« less
NASA Astrophysics Data System (ADS)
Dong, D.; Zhang, G.; Bai, Y.; Fan, J.; Zhang, Z.
2017-12-01
The Yap subduction zone, western Pacific, is a typical structure related to the ridge subduction, but comparative shortage of the geophysical data makes the structural details unknown in this area. In this study, we present the latest and high-quality multi-beam swath bathymetry and multi-channel seismic data acquired synchronously in the year 2015 across the Yap subduction zone. Multichannel seismic and multi-beam data are mainly applied to investigate the topography of major tectonic units and stratigraphic structure in the Yap subduction zone and discuss the tectonic characteristics controlled by ridge subduction. It suggests that, Parece Vela Basin, as the regional sedimentary center, developed sedimentary layers nearly 800 meters thick. On the contrast, the horizontal sedimentary layers were not obviously identified in the Yap trench, where subduction erosion occurred. Caroline ridge changed the tectonic characteristics of subduction zone, and influenced magmatism of the Yap arc because of the special topography. The seismic profile clearly reveals landslide deposits at the upper slope break of the forearc, north of the Yap Island, which was identified as the fault notch denoting a lithological boundary in previous work. Detailed topography and geological structure of horst and graben in the north of Yap are depicted, and topographic high of Caroline ridge is supposed to bring greater bending and tension and the subsequent horst and graben belt. Multichannel seismic evidence has been provided for interpreting the expansion of Sorol Trough and its inferred age. A modified model for the Yap subduction zone evolution is proposed, incorporating three major tectonic events: proto-Yap Arc rupture in the Oligocene, collision of the Caroline Ridge and the Yap Trench in the Late Oligocene or Middle Miocene, and onset of the Sorol Trough rifting in the Late Miocene. Acknowledge: This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030102), the National Natural Science Foundation of China (No. 41476042, 41506055 )
NASA Astrophysics Data System (ADS)
Llana-Fúnez, Sergio; Rodríguez-Rodríguez, Laura; Ballesteros, Daniel; María Díaz-Díaz, Luis; Valenzuela, Pablo; López-Fernández, Carlos; José Domínguez-Cuesta, María; Meléndez, Mónica; Jiménez-Sánchez, Montserrat; Fernández-Viejo, Gabriela
2017-04-01
The Cantabrian Mountains show a linear E-W trend parallel to the northern coast of Iberia peninsula, from the Pyrenees to Galicia, where it looses its trend and linearity. The western end of the linear segment of the orogen coincides with a change in the style of structures, accommodating the N-S shortening during the convergence between Europe and Iberia plates. We study the relief of the 230 km-long segment of the linear range between the Cantabria and Galicia re- gions, up to 2,650 m altitude. The bulk trend of the orogeny is controlled by the orientation of alpine thrusts that accommodate the shortening in relation to plate convergence. The Alpine Orogeny produced crustal thickening and the present day topography. Crustal thickness varies from 30 km in Eastern Cantabrian Mountains to 45-55 km at the Middle part of these mountains. The collision between European and African plates localized in northern Iberia from the Eocene to Oligocene and later migrated to southern Iberia during the Miocene. No major tectonic convergence was accommodated in the Cantabrians Mountains since the Oligocene, entering the orogen an erosional phase since then. The GIS-analysis present here, using 5 and 25 m-resolution DEMs by the Spanish National Geographical Institute, aims to identify the major features and to characterize the overall relief of the Cantabrians Mountains. In our preliminary approach, we present swath profiles, major river basins, watershed, longitudinal profiles of major rivers and hypsometric curves from selected areas that cover the studied orogen segment. Major tectonic structures control the location and orientation of the main watershed of the mountain range, but also the orientation of some local watersheds, e.g. associated to the Llanera thrust or the Ventaniella (strike-slip) fault. An unexpected result is that the average altitude along the water divide is 1,500 m, regardless of the large differences in crustal thickness along the study area. Most longitudinal river profiles running south to north lack knick points in relation to relief forming tectonic structures, indicative of the predominance of fluvial erosional system postdating tectonics. An emerged coastal wave-cut platform dipping gently towards the West, a slight increase in maximum mountain altitude to the east and slight increase in river incision also towards the East may indicate that a gradient in erosion and in up-lifting exists increasing from West to East. This is consistent with an overall increase of crustal thickness along this direction.
Grabens on Io: Evidence for Extensional Tectonics
NASA Astrophysics Data System (ADS)
Hoogenboom, T.; Schenk, P.
2012-12-01
Io may well be the most geologically active body in the solar system. A variety of volcanic features have been identified, including a few fissure eruptions, but tectonism is generally assumed to be limited to compression driven mountain formation (Schenk et al., 2001). A wide range of structural features can also be identified including scarps, lineaments, faults, and circular depressions (pits and patera rims). Narrow curvilinear graben (elongated, relatively depressed crustal unit or block that is bounded by faults on its sides) are also scattered across Io's volcanic plains. These features are dwarfed by the more prominent neighboring volcanoes and mountains, and have been largely ignored in the literature. Although they are likely to be extensional in origin, their relationship to local or global stress fields is unknown. We have mapped the locations, length and width of graben on Io using all available Voyager and Galileo images with a resolution better than 5 km. We compare the locations of graben with existing volcanic centers, paterae and mountain data to determine the degree of correlation between these geologic features and major topographic variations (basins/swells) in our global topographic map of Io (White et al., 2011). Graben are best observed in > 1-2 km low-sun angle images. Approximately 300 images were converted from ISIS to ArcMap format to allow easy comparison with the geological map of Io (Williams et al., 2012) along with previous higher resolution structural mapping of local areas (e.g. Crown et al., 1992). We have located >45 graben to date. Typically 1-3 kilometers across, some of these features can stretch for over 500 kilometers in length. Their formation may be related to global tidal stresses or local deformation. Io's orbit is eccentric and its solid surface experiences daily tides of up to ˜0.1 km, leading to repetitive surface strains of 10-4 or greater. These tides flex and stress the lithosphere and can cause it to fracture (as also occurs extensively on neighboring Europa). The record can be confused if the features formed at different times or if the stress pattern shifts due to nonsynchronous rotation of the lithosphere (Milazzo et al., 2001). Alternatively, curvilinear or concentric extensional fractures (graben) could be related to local loading of planetary lithospheres. On Io, this could be the result of construction of volcanic edifices or global convection patterns forming localized sites of upwelling and downwelling (e.g., Tackley et al., 2001). However, constructional volcanic edifices are quite rare on Io (Schenk et al., 2004a) and convective stresses on Io are likely to be quite small (Kirchoff and McKinnon, 2009). An obvious caveat to stress analyses is the possibility of resurfacing locally erasing tectonic signatures of graben, in part or entirely. Despite resurfacing, erosional and tectonic scarps, lineaments and grabens are relatively abundant at all latitudes and longitudes on Io, given the limited global mapping. Grabens are typically not found on the younger units, suggesting that tectonic forces on Io were of greater magnitude in the past, that much of the surface is very young and has not yet undergone deformation, or that only with age do the surface materials become strong enough to deform by brittle failure rather than ductile flow (Whitford-Stark et al., 1990).
NASA Astrophysics Data System (ADS)
Searle, R. C.; Francheteau, J.; Cornaglia, B.
1995-04-01
We describe the geology and tectonics of a continuous swathe of seafloor between Tahiti and the western edge of the Easter microplate imaged by GLORIA and Sea Beam on two separate cruise transits in 1987 and 1988. The data reveal that mid-plate volcanism is common in this region, even on deep seafloor hundreds of kilometres from major lines of seamounts and islands. This supports the idea of a thin weak lithosphere over the Pacific Superswell, and the idea that the tops of major mantle plumes may spread out over diameters of the order of 1000 km. The mid-plate volcanism occurs in two distinct forms. Over most of our traverse it appears as fields of relatively young and acoustically strongly backscattering lava flows, often accompanied by groups of numerous small, circular volcanoes. East of 122° W (about chron 5A), however, we observed a distinct form: major, sharp-crested, constructional volcanic ridges, many tens of kilometres long, individually trending ENE, but lying en-echelon along an E-W regional trend. These ridges appear morphologically identical to the 'cross-grain ridges' seen elsewhere in the Pacific. We attribute their formation to magma supplied from the regionally hot mantle leaking along tectonic lines of weakness. However, although these ridges are parallel to fracture zone trends seen farther west, they are morphologically very different from any known fracture zone. Moreover, individual ridges are somewhat oblique to the tectonic spreading fabric around them, and so do not seem to follow actual fracture zone traces. The whole line of en-echelon ridges lies along part of the predicted trace of Fracture Zone 2 of Okal and Cazenave [15], and is probably its morphological expression. However, nowhere did we see a convincing 'conventional' fracture zone trace in or following the predicted position or orientation. We suggest instead that magma from an independent source has used lines of weakness along minor fracture zones to produce these en-echelon features. The Austral Fracture Zone is the only major fracture zone crossed in our transit, and here is characterised by four fossil transform strands. Its marked position on the AAPG and GEBCO maps is found to be in error. Finally, we found that the expected change from NNW- to NNE-trending spreading fabric at chron 6C did not occur in a clear-cut way, as predicted by earlier tectonic histories of the Pacific. Instead, the post-chron 6C fabric oscillates in a confused way between NNE and NNW, suggesting to us that this area has been characterised by an unstable plate boundary, probably associated with a succession of propagating rifts or microplates from chron 6C to the present.
NASA Astrophysics Data System (ADS)
Bhattacharya, G. C.; Subrahmanyam, V.
1986-12-01
Magnetic total intensity values and bathymetric data collected on the continental margin off Saurashtra were, used to prepare magnetic anomalies and bathymetric contour maps. The magnetic anomalies are considered to have been caused by the Deccan Trap flood basalts which underlie the Tertiary sediments. Interpretation of the magnetic data using two-dimensional modelling method suggests that the magnetic basement is block faulted and deepens in steps from less than 1.0 km in the north to about 8.0 km towards the southern portion of the study area. The WNW-ESE trending faults identified in the present study extend across the Saurashtra continental margin between Porbandar and Veraval and appear to represent a major linear tectonic feature. The relationship of these fault lineaments with the regional tectonic framework have been discussed to indicate that they conform better as the northern boundary faults of the Narmada rift graben on the continental margin off Saurashtra.
NASA Astrophysics Data System (ADS)
Picha, Frank; Gibson, Richard I.
1985-07-01
The structural pattern set by late Precambrian rifting and fragmentation of the North American continent is apparent in both sedimentary and tectonic trends in western Utah and eastern Nevada. The late Precambrian cratonic margin (Cordilleran hingeline) displays several prominent structural features, such as the Wasatch and Ancient Ephraim faults, Fillmore arch and northeast-trending lineaments, which were repeatedly reactivated as structural uplifts, ramps, strike-slip faults, and extensional detachments. The renewed activity affected, among others, the geometry of the late Paleozoic Ancestral Rocky Mountain uplifts and basins, the extent of the Jurassic Arapien basin, the sedimentary pattern of the Cretaceous foreland basin, the geometry of the Sevier orogenic belt, and the extent and type of Basin-and-Range extensional tectonics. The rifted cratonic margin has thus remained a major influence on regional structures long after rifting has ceased. *Present address: Everest Geotech, 10101 Southwest Freeway, Houston, Texas 77074
Plate tectonics of the Mediterranean region.
McKenzie, D P
1970-04-18
The seismicity and fault plane solutions in the Mediterranean area show that two small rapidly moving plates exist in the Eastern Mediterranean, and such plates may be a common feature of contracting ocean basins. The results show that the concepts of plate tectonics apply to instantaneous motions across continental plate boundaries.
Seafloor morphology related to recent tectonics in the Alboran Sea Basin
NASA Astrophysics Data System (ADS)
Vázquez, Juan-Tomás; Estrada, Ferran; Vegas, Ramon; Ercilla, Gemma; Medialdea, Teresa; d'Acremont, Elia; Alonso, Belen; Fernández-Salas, Luis-Miguel; Gómez-Ballesteros, María; Somoza, Luis; Bárcenas, Patricia; Palomino, Desirée; Gorini, Christian
2014-05-01
A detailed geomorphological study of the northern part of the Alboran Sea Basin has been realized based on the combined analysis of multibeam swath bathymetric data and medium to very high resolution seismic profiles (singled Sparker, Airgun, TOPAS and Atlas PARASOUND P35). This has enabled us to define several tectonic-related seafloor features and their role in the recent tectonics. The observed morpho-tectonic features correspond to: i) lineal scarps with a wide range of dimensions and following several trends ,WNW-ESE, NE-SW, NNE-SSW and N-S; ii) NE-SW to NNE-SSW-oriented compressive ridges; iii) ENE-WSW to NE-SW-striking antiforms; iv) NNE-SSW-oriented lineal depressions; v) rhomb-shaped depressions; vi) lineal valleys, canyons and gullies with WNW-ESE, and N-S orientations; and vii) N-S directed dissected valleys, canyons and gullies. Three families of faults and related folds, with NE-SW, WNW-ESE and NNE-SSW to N-S have been interpreted within this geomorphological scheme. The NE-SW family corresponds to: a) major scarps in both flanks of the Alboran Ridge and b) the offshore prolongation of La Serrata Fault, and both have been considered as a set of sinistral strike-slip faults. To this family, some compressive ridges, antiforms and occasionally reverse faults have been correlated. The WNW-ESE family corresponds to a set of faulted valleys (occasionally with rhomb-shaped depressions), fault scarps and linear inflection points occurring in the northern Alboran margin and the Yusuf-Habibas corridor. This family has been interpreted as transtensive dextral strike-slip faults. The NNE-SSW to N-S family corresponds to a penetrative system of linear fault scarps and tectonic depressions that cross-cut the Alboran Ridge and the Djibouti-Motril marginal plateau. This family can be considered as more recent since it offsets the other two families and shows a minor importance with regard to the main reliefs. This communication is a contribution to the Spanish R + D + I projects MONTERA (CTM2009-14157-C02) and MOWER (CTM2012-39599-C03), the Project MOSAIC of scientific excellence of Andalusia(P06-RNM-01594) and the European ESF projects EUROFLEET SARAS and TOPOMED_SPAIN (CGL2008-03474-E).
Tectonics and Volcanism of East Africa as Seen Using Remote Sensing Imagery
NASA Technical Reports Server (NTRS)
Hutt, Duncan John
1996-01-01
The East African Rift is the largest area of active continental geology. The tectonics of this area has been studied with remote sensing data, including AVHRR, Landsat MSS and TM, SPOT, and electronic still camera from Shuttle. Lineation trends have been compared to centers of volcanic and earthquake activity as well as the trends shown on existing geologic maps. Remote sensing data can be used effectively to reveal and analyze significant tectonic features in this area.
Some aspects of active tectonism in Alaska as seen on ERTS-1
NASA Technical Reports Server (NTRS)
Gedney, L. D.; Vanwormer, J. D.
1973-01-01
ERTS-1 imagery is proving to be exceptionally useful in delineating structural features in Alaska which have never been recognized on the ground. Previously unmapped features such as seismically active faults and major structural lineaments are especially evident. Among the more significant results of this investigation is the discovery of an active strand of the Denali fault. The new fault has a history of scattered seismicity and was the scene of a magnitude 4.8 earthquake on October 1, 1972. Perhaps of greater significance is the disclosure of a large scale conjugate fracture system north of the Alaska Range. This fracture system appears to result from compressive stress radiating outward from around the outside of the great bend of the Alaska Range at Mt. McKinley.
Magnetic anomalies in East Antarctica: a window on major tectonic provinces and their boundaries
Golynsky, A.V.
2007-01-01
An analysis of aeromagnetic data compiled within the Antarctic Digital Magnetic Anomaly Project (ADMAP) yields significant new insight into major tectonic provinces of East Antarctica. Several previously unknown crustal blocks are imaged in the deep interior of the continent, which are interpreted as cratonic nuclei. These cratons are fringed by a large and continuous orogenic belt between Coats Land and Princess Elizabeth Land, with possible branches in the deeper interior of East Antarctica. Most of the crustal provinces and boundaries identified in this study are only in part exposed. More detailed analyses of these crustal provinces and their tectonic boundaries would require systematic acquisition of additional high-resolution magnetic data, because at present the ADMAP database is largely inadequate to address many remaining questions regarding Antarctica’s tectonic evolution.
Lithosphere deformation methods and models constrained by surface fault data on Mars
NASA Astrophysics Data System (ADS)
Dimitrova, Lada L.
Models of lithospheric deformation tie observed field measurements of gravity and topography with surface observations of tectonic features. An understanding of the sources of stress, and the expected style, orientation, and magnitudes of stress and associated elastic strain is important for understanding the evolution of faulting on Mars and its relationship to loading. At the same time, theoretical models of deformation mechanisms and forces, when tied to tectonic observations, can be interpreted in terms of major tectonic events and allow insights into the planet's history and evolution as well as its internal structure and processes. This is particularly important for understanding solid planetary bodies other than Earth where the seismic data is either sparse, e.g. the Moon, or non-existent, e.g. Mars. This kind of research has implications for, and benefits from, an understanding of the petrology and surface processes. In this work, I use MGS MOLA and Radio Science data products (topography and gravity) to systematically test new geodynamic models and evaluate lithosphere dynamics on Mars as a function of time, while satisfying geologic surface observations (surface features) that have been and are being catalogued and studied from Viking, MOLA, MOC, and THEMIS IR images. I investigate (1) the role of internal loads (internal body force effects), (2) loading from the surface and base of lithosphere, and the effects of this loading on membrane and flexural strains and stresses, and (3) the role of global contraction, all viewed in the context of how the surface elastic layer has changed as the planet has evolved. I show that deviatoric stresses associated with gravitational potential differences do a good job at matching the normal faults; however, fitting all the surface-breaking faults is more difficult. I argue that global planetary contraction is an unlikely source of significant deformation. Instead, the simplest inverse models show that small lateral variations (1¡6%) in crust and mantle density in conjunction with small vertical displacement, O(100m), provide sufficient additional GPE and membrane stress to fit the majority of the data. These inverse models are consistent with lithosphere modification by erosion from running water.
Obolenskiy, Alexander A.; Rodionov, Sergei M.; Ariunbileg, Sodov; Dejidmaa, Gunchin; Distanov, Elimir G.; Dorjgotov, Dangindorjiin; Gerel, Ochir; Hwang, Duk-Hwan; Sun, Fengyue; Gotovsuren, Ayurzana; Letunov, Sergei N.; Li, Xujun; Nokleberg, Warren J.; Ogasawara, Masatsugu; Seminsky, Zhan V.; Smelov, Akexander P.; Sotnikov, Vitaly I.; Spiridonov, Alexander A.; Zorina, Lydia V.; Yan, Hongquan
2010-01-01
The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and tectonics of Northeast Asia that have been led by the U.S. Geological Survey (USGS). These studies have produced two broad types of publications (1) a series of regional geologic, mineral-deposit, and metallogenic-belt maps, with companion descriptions of the region, and (2) a suite of metallogenic and tectonic analyses of the same region. The study area consists of eastern Russia (most of eastern Siberia and the Russian Far East), Mongolia, northern China, South Korea, Japan, and adjacent offshore areas. The major cooperative agencies are the Russian Academy of Sciences; the Academy of Sciences of the Sakha Republic (Yakutia); VNIIOkeangeologia and Ministry of Natural Resources of the Russian Federation; the Mongolian Academy of Sciences; the Mongolian University of Science and Technology; the Mongolian National University; Jilin University, Changchun, People?s Republic of China, the China Geological Survey; the Korea Institute of Geosciences and Mineral Resources; the Geological Survey of Japan/AIST; the University of Texas, Arlington, and the U.S. Geological Survey (USGS). This study builds on and extends the data and interpretations from a previous project on the Major Mineral Deposits, Metallogenesis, and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera conducted by the USGS, the Russian Academy of Sciences, the Alaska Division of Geological and Geophysical Surveys, and the Geological Survey of Canada. The major products of this project were summarized by Naumova and others (2006) and are described in appendix A.
Hopping hotspots: global shifts in marine biodiversity.
Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M
2008-08-01
Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.
Exhumation and topographic evolution of the Namche Barwa Syntaxis, eastern Himalaya
NASA Astrophysics Data System (ADS)
Yang, Rong; Herman, Frédéric; Fellin, Maria Giuditta; Maden, Colin
2018-01-01
The Namche Barwa Syntaxis, as one of the most tectonically active regions, remains an appropriate place to explore the relationship between tectonics, surface processes, and landscape evolution. Two leading models have been proposed for the formation and evolution of this syntaxis, including the tectonic aneurysm model and the syntaxis expansion model. Here we use a multi-disciplinary approach based on low-temperature thermochronometry, numerical modeling, river profile and topographic analyses to investigate the interactions between tectonics, erosion, and landscape evolution and to test these models. Our results emphasize the presence of young cooling ages (i.e., < 1 Ma) along the Parlung River, to the north of the syntaxis. Using numerical modeling we argue that a recent increase in exhumation rate is required to expose these young ages. Our river analysis reveals spatial variations in channel steepness, which we interpret to reflect the rock uplift pattern. By establishing the relationship between erosion rates and topographic features, we find that erosion rates are poorly to weakly correlated with topographic features, suggesting that the landscape is still evolving. Altogether, these results seem better explained by a mechanism that involves a northward expansion of the syntaxis, which causes high rock uplift rates to the north of the syntaxis and a transient state of topography adjusting to an evolving tectonic setting.
The Crustal and Mantle Velocity Structure in Central Asia from 3D Travel Time Tomography
2010-09-01
the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the...Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically
NASA Astrophysics Data System (ADS)
Patro, Prasanta K.; Sarma, S. V. S.; Naganjaneyulu, K.
2014-01-01
crustal as well as the upper mantle lithospheric electrical structure of the Southern Granulite Terrain (SGT) is evaluated, using the magnetotelluric (MT) data from two parallel traverses: one is an 500 km long N-S trending traverse across SGT and another a 200 km long traverse. Data space Occam 3-D inversion was used to invert the MT data. The electrical characterization of lithospheric structure in SGT shows basically a highly resistive (several thousands of Ohm meters) upper crustal layer overlying a moderately resistive (a few hundred Ohm meters) lower crustal layer which in turn is underlain by the upper mantle lithosphere whose resistivity shows significant changes along the traverse. The highly resistive upper crustal layer is interspersed with four major conductive features with three of them cutting across the crustal column, bringing out a well-defined crustal block structure in SGT with individual highly resistive blocks showing correspondence to the geologically demarcated Salem, Madurai, and Trivandrum blocks. The 3-D model also brought out a well-defined major crustal conductor located in the northern half of the Madurai block. The electrical characteristics of this south dipping conductor and its close spatial correlation with two of the major structural elements, viz., Karur-Oddanchatram-Kodaikanal Shear Zone and Karur-Kamban-Painavu-Trichur Shear Zone, suggest that this conductive feature is closely linked to the subduction-collision tectonic processes in the SGT, and it is inferred that the Archean Dharwar craton/neoproterozoic SGT terrain boundary lies south of the Palghat-Cauvery shear zone. The results also showed that the Achankovil shear zone is characterized by a well-defined north dipping conductive feature. The resistive block adjoining this conductor on the southern side, representing the Trivandrum block, is shown to be downthrown along this north dipping crustal conductor relative to the Madurai block, suggesting a northward movement of Trivandrum block colliding against the Madurai block. The lithospheric upper mantle electrical structure of the SGT up to a depth of 100 km may be broadly divided into two distinctly different segments, viz., northern and southern segments. The northern lithospheric segment, over a major part, is characterized by a thick resistive upper mantle, while the southern one is characterized by a dominantly conductive medium suggesting a relatively thinned lithosphere in the southern segment.
Dewey, John F
2015-04-13
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.
Dewey, John F.
2015-01-01
In the 1960s, geology was transformed by the paradigm of plate tectonics. The 1965 paper of Bullard, Everett and Smith was a linking transition between the theories of continental drift and plate tectonics. They showed, conclusively, that the continents around the Atlantic were once contiguous and that the Atlantic Ocean had grown at rates of a few centimetres per year since the Early Jurassic, about 160 Ma. They achieved fits of the continental margins at the 500 fathom line (approx. 900 m), not the shorelines, by minimizing misfits between conjugate margins and finding axes, poles and angles of rotation, using Euler's theorem, that defined the unique single finite difference rotation that carried congruent continents from contiguity to their present positions, recognizing that the real motion may have been more complex around a number of finite motion poles. Critically, they were concerned only with kinematic reality and were not restricted by considerations of the mechanism by which continents split and oceans grow. Many of the defining features of plate tectonics were explicit or implicit in their reconstructions, such as the torsional rigidity of continents, Euler's theorem, closure of the Tethyan ocean(s), major continental margin shear zones, the rapid rotation of small continental blocks (Iberia) around nearby poles, the consequent opening of small wedge-shaped oceans (Bay of Biscay), and misfit overlaps (deltas and volcanic piles) and underlaps (stretched continental edges). This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750142
NASA Astrophysics Data System (ADS)
Echtler, H. P.; Bookhagen, B.; Melnick, D.; Strecker, M.
2004-12-01
The Chilean coast represents one of the most active convergent margins in the Pacific rim, where major earthquakes (M>8) have repeatedly ruptured the surface, involving vertical offsets of several meters. Deformation along this coast takes place in large-scale, semi-independent seismotectonic segments with partially overlapping transient boundaries. They are possibly related to reactivated inherited crustal anisotropies; internal seismogenic deformation may be accommodated by structures that have developed during accretionary wedge evolution. Seismotectonic segmentation and the identification of large-scale rupture zones, however, are based on limited seismologic und geodetic observations over short timespans. In order to better define the long-term behavior and deformation rates of these segments and to survey the tectonic impact on the landscape on various temporal and spatial scales, we investigated the south-central coast of Chile (37-38S). There, two highly active, competing seismotectonic compartments influence the coastal and fluvial morphology. A rigorous analysis of the geomorphic features is a key for an assessment of the tectonic evolution during the Quaternary and beyond. We studied the N-S oriented Santa María Island (SMI), 20 km off the coast and only ~70km off the trench, in the transition between the two major Valdivia (46-37S) and Concepción (38-35S) rupture segments. The SMI has been tectonically deformed throughout the Quaternary and comprises two tilt domains with two topographic highs in the north and south that are being tilted eastward. The low-lying and flat eastern part of the island is characterized by a set of emergent Holocene strandlines related to coseismic uplift. We measured detailed surface morphology of these strandlines and E-W traversing ephemeral stream channels with a laser-total station and used these data to calibrate and validate high-resolution, digital imagery. In addition, crucial geomorphic markers were dated by the radiocarbon and optical stimulation methods to better constrain deformation rates. In response to the ongoing deformation, formerly W flowing streams constituting small drainages (< 0.25km2) were inverted and formed closed basins. In contrast, larger streams were reversed or were able to maintain their channels, but formed distinct knickpoints along their longitudinal profiles. In order to reconstruct the Holocene tectonic tilting axis, we connected drainage boundaries of reversed channels and deformation-related knickpoints along more mature rivers. Interestingly, topography clearly indicates that the direction of Pleistocene tectonic tilting was different than that of recent conditions. The Holocene inversion of stream flow associated with continuous uplift may be related to the progressive migration of the tectonic tilting axis in the course of active folding (Melnick et al., this session). The classification of knickpoints and the overall tectonic development also the mainland coast on the Arauco peninsula, during the Quaternary clearly document the surface signature of tectonic segmentation and its spatial evolution through time. The migration of the tilting axes is discussed in relation with active basal accretion and active shortening in the South-Central Chilean forearc.
Geological evaluation and applications of ERTS-1 imagery over Georgia
NASA Technical Reports Server (NTRS)
Pickering, S. M.; Jones, R. C.
1974-01-01
ERTS-1 70mm and 9 x 9 film negatives are being used by conventional and color enhancement methods as a tool for geologic investigation. Geologic mapping and mineral exploration by conventional methods is very difficult in Georgia. Thick soil cover and heavy vegetation cause outcrops of bed rock to be small, rare and obscure. ERTS imagery, and remote sensing in general have helped delineate: (1) major tectonic boundaries; (2) lithologic contacts; (3) foliation trends; (4) topographic lineaments; and (5) faults. The ERTS-1 MSS imagery yields the greatest amount of geologic information on the Piedomont, Blue Ridge, and Valley and Ridge Provinces of Georgia where topography is strongly controlled by the bedrock geology. ERTS imagery, and general remote sensing techniques, have provided us with a powerful tool to assist geologic research; have significantly increased the mapping efficiency of our field geologists; have shown new lineaments associated with known shear and fault zones; have delineated new structural features; have provided a tool to re-evaluate our tectonic history; have helped to locate potential ground water sources and areas of aquifer recharge; have defined areas of geologic hazards; have shown areas of heavy siltation in major reservoirs; and by its close interval repetition, have aided in monitoring surface mine reclamation activities and the environmental protection of our intricate marshland system.
NASA Astrophysics Data System (ADS)
Martinez-Diaz, J. J.; Canora, C.; Villamor, P.; Capote, R.; Alvarez-Gomez, J. A.; Berryman, K.; Bejar, M.; Tsige, M.
2009-04-01
In February 2001 a major strike slip earthquake stroke the central part of El Salvador causing hundreds of people killed, thousands injured and extensive damage. After this event the scientific effort was mainly focused on the study of the enormous and catastrophic landslides triggered by this event and no evidences of surface faulting were detected. This earthquake was produced by the reactivation of the Ilopango-San Vicente segment of the El Salvador Fault Zone. Recently, a surface rupture displacement on the ground was identified. The analysis of aerial and field photographs taken few hours after the event and the mapping of the conserved ground structures shows a pure strike-slip displacement ranging from 20 to 50 cm, with secondary features indicating dextral shearing. The paleoseismic analysis made through the excavation of six trenches and Radiocarbon dating indicate a minimum slip rate of 2.0 mm/yr and a recurrence of major ruptures (Mw > 6.5) lower than 500 yr. These evidences give interesting local data to increase our understanding about the tectonic behavior and the way how active deformation develops along the northern limit of the forearc sliver related to the Centroamerican subduction area.
Nokleberg, Warren J.; Price, Raymond A.; Bundtzen, Thomas K.; Nokleberg, Warren J.; Price, Raymond A.; Scholl, David W.; Stone, David B.
2017-01-01
The Geologic Road Guides for the Southern Canadian Cordillera provide a layperson’s understanding of the major geologic units and their tectonic origins along portions of two sets of major highways corridors, herein termed the Southern Road Guide and the Northern Road Guide. The two routes are shown on the Southern Canadian Cordillera Geologic Map. The first page of each Road Guide is this map that has Hot Spots for each site.
2016-04-18
A sinuous feature snakes northward from Enceladus south pole like a giant tentacle in this image from NASA Cassini spacecraft. This feature, is actually tectonic in nature, created by stresses in Enceladus icy shell.
NASA Astrophysics Data System (ADS)
Wenau, S.; Spiess, V.
2016-12-01
Methane seepage sites have been investigated in the Lower Congo Basin using seismo-acoustic methods in combination with geological and geochemical sampling. Pockmarks were observed in different areas of the Lower Congo Basin that are affected by different styles of salt-tectonic deformation and sedimentary input. At the salt front in the southern part of the basin, methane seepage shifts continuously westwards as previously undeformed sediments are affected by westward moving salt. Older seepage sites to the East are cut off from methane supply in the process of continuing salt-tectonic deformation. The initiation of gas accumulation and seepage directly at the deformation front is expected in the late Miocene due to salt-induced uplift. In the northern part of the basin on the lower slope, methane seepage is focused along salt-tectonic faults connecting Pliocene fan deposits to the seafloor, breaching the hemipelagic seal. These sites show indications for continuing seepage for the last 640 kyrs. Such long term seepage activity may be due to the lack of polygonal faults in the hemipelagic seal, focusing gas migration on fewer, salt-tectonic faults. Westward of the salt front, seepage features include the Regab pockmark where a potential reservoir in an Early Pleistocene channel flank is connected to the seafloor feature via a seismic chimney. Seepage activity in this area is also documented to be continuous over geologic time scales by seafloor and sub-seafloor seepage indications such as chimneys, pockmarks and buried seepage features. The Lower Congo Basin thus documents the longevity of seepage processes in the context of various tectonic and sedimentary regimes on a passive continental margin. Indications of the duration of seepage activity at individual sites may be used for methane budgeting in combination with emission rates estimated for typical seepage sites.
Impacts and tectonism in Earth and moon history of the past 3800 million years
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
1992-01-01
The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.
Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges
NASA Astrophysics Data System (ADS)
Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.
2014-12-01
Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the ultraslow spreading ridges is also presumable.
Dynamics and the Wilson Cycle: An EarthScope vision
NASA Astrophysics Data System (ADS)
Ebinger, Cynthia; Humphreys, Eugene; Williams, Michael; van der Lee, Suzan; Levin, Vadim; Webb, Laura; Becker, Thorsten
2017-04-01
Wilson's model has two major components, each with distinctive observables. Initial subduction of ocean lithosphere collides continents across a closing ocean basin, creating a mountain range; rifting then initiates within the collisional orogeny and progresses to create oceanic spreading and creation of a new ocean basin. Subduction eventually initiates near the old, cold, and heavily sedimented continental margin, leading to subduction, and repeating the cycle. This model is largely kinematic in nature, and predictive in application. We re-evaluate the Wilson Cycle in light of process-oriented perspectives afforded by the surface to mantle Earthscope results. Repeating episodes of mountain building by means of continental collisions remains clear, but new observations augment or diverge from Wilson's concepts. A 'new' component stems from observations from both the East and West coasts: translational fault systems played critical roles in continental accretion, collision, and rifting. Earthscope data sets also have enabled imaging of the structure of western U.S. lithosphere with unprecedented detail. From new and existing data sets, we conclude that collision occurs in 'ribbons' in large part linked to the shapes of the landmasses colliding landmasses, and deformation includes a major component of transform tectonics. Post-orogenic gravitational collapse may occur far inboard of the site of collision. A third 'new' feature is that plate coupling with the mantle leads to deformation outside the classic Wilson Cycle. For example, the passive margin of eastern N. America shows tectonic activity, uplift, and magmatism long after the onset of seafloor spreading, demonstrating the dynamic nature of lithosphere-asthenosphere coupling. A 'fourth' observation is that lateral density contrasts and volatile migration during subduction and collision effectively refertilize mantle lithosphere, and pre-condition later tectonic cycles.
Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.
1993-01-01
Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.
NASA Astrophysics Data System (ADS)
Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier
2017-04-01
The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.
NASA Astrophysics Data System (ADS)
Chelidze, Tamaz; Eppelbaum, Lev
2013-04-01
The Alpine-Himalayan convergence zone (AHCZ) underwent recent transverse shortening under the effect of collisional compression. The process was accompanied by rotation of separate microplates. The Caucasian and Eastern Mediterranean regions are segments of the of the AHCZ and are characterized by intensive endogenous and exogenous geodynamic processes, which manifest themselves in occurrence of powerful (with magnitude of 8-9) earthquakes accompanied by development of secondary catastrophic processes. Large landslides, rock falls, avalanches, mud flows, etc. cause human deaths and great material losses. The development of the aforesaid endogenous processes is set forth by peculiarities of the deep structure of the region and an impact of deep geological processes. The Caucasus is divided into several main tectonic terranes: platform (sub-platform, quasi-platform) and fold-thrust units. Existing data enable to perform a division of the Caucasian region into two large-scale geological provinces: southern Tethyan and northern Tethyan located to the south of and to the north of the Lesser Caucasian ophiolite suture, respectively. The recent investigations show that the assessments of the seismic hazard in these regions are not quite correct - for example in the West Caucasus the seismic hazard can be significantly underestimated, which affects the corresponding risk assessments. Integrated analysis of gravity, magnetic, seismic and thermal data enables to refine the assessment of the seismic hazard of the region, taking into account real rates of the geodynamic movements. Important role play the last rheological constructions. According to Reilinger et al. (2006) tectonic scheme, the West flanking of the Arabian Plate manifests strike-slip motion, when the East Caucasian block is converging and shortening. The Eastern Mediterranean is a tectonically complex region located in the midst of the progressive Afro-Eurasian collision. The recent increasing geotectonic activity in this region highlights the need for combined analysis of seismo-neotectonic signatures. For this purpose, this article presents the key features of the tectonic zonation of the Eastern Mediterranean. Map of derivatives of the gravity field retracked from the Geosat satellite and novel map of the Moho discontinuity illustrate the most important tectonic features of the region. The Post-Jurassic map of the deformation of surface leveling reflects the modern tectonic stage of Eastern Mediterranean evolution. The developed tectono-geophysical zonation map integrates the potential geophysical field analysis and seismic section utilization, as well as tectonic-structural, paleogeographical and facial analyses. Tectonically the map agrees with the earlier model of continental accretion (Ben-Avraham and Ginzburg, 1990). Overlaying the seismicity map of the Eastern Mediterranean tectonic region (for the period between 1900 and 2012) on the tectonic zonation chart reveals the key features of the seismo-neotectonic pattern of the Eastern Mediterranean. The results have important implications for tectonic-seismological analysis in this region (Eppelbaum and Katz, 2012). A difference in the geotectonic patterns makes interesting comparison of geodynamic activity and seismic hazard of the Caucasian and Eastern Mediterranean segments of the AHCZ.
Earth Observations taken by Expedition 30 crewmember
2011-12-31
ISS030-E-030265 (31 Dec. 2011) --- The Payun Matru Volcanic Field in Argentina is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Payun Matru (3,680 meters above sea level) and Payun Liso (3,715 meters above sea level) stratovolcanoes are the highest points of the Payun Matru Volcanic Field located in west-central Argentina, approximately 140 kilometers to the east of the Andes mountain chain. This photograph illustrates some of the striking geological features of the field visible from space. The summit of Payun Matru is dominated by a roughly 15 kilometer-in-diameter caldera (center), formed by an explosive eruption sometime after approximately 168,000 years ago. Several dark lava flows, erupted from smaller vents and fissures, are visible in the northwestern part of the volcanic field. One distinct flow, erupted from Volcan Santa Maria located to the northwest of Payun Matru, is approximately 15 kilometers long. A number of small cinder cones, appearing as brown dots due to the short lens used, are built on older lava flows (grey) to the northeast of Payun Matru. While there is no recorded historical observation of the most recent volcanic activity in the field, oral histories suggest that activity was witnessed by indigenous peoples. Most Andean volcanoes—and earthquakes—follow the trend of the greater Andes chain of mountains, and are aligned roughly N-S above the tectonic boundary between the subducting (descending) Nazca Plate and the overriding South American Plate as is predicted from plate tectonic theory. Other major volcanic centers located some distance away from the major trend typically result from more complex geological processes associated with the subduction zone, and can provide additional insight into the subduction process.
NASA Astrophysics Data System (ADS)
Revil, A.; Cuttler, S.; Karaoulis, M.; Zhou, J.; Raynolds, B.; Batzle, M.
2015-06-01
Fault and fracture networks usually provide the plumbing for movement of hydrothermal fluids in geothermal fields. The Big Springs of Pagosa Springs in Colorado is known as the deepest geothermal hot springs in the world. However, little is known about the plumbing system of this hot spring, especially regarding the position of the reservoir (if any) or the position of the major tectonic faults controlling the flow of the thermal water in this area. The Mancos shale, a Cretaceous shale, dominates many of the surface expressions around the springs and impede an easy recognition of the fault network. We use three geophysical methods (DC resistivity, self-potential, and seismic) to image the faults in this area, most of which are not recognized in the geologic fault map of the region. Results from these surveys indicate that the hot Springs (the Big Spring and a warm spring located 1.8 km further south) are located at the intersection of the Victoire Fault, a major normal crustal fault, and two north-northeast trending faults (Fault A and B). Self-potential and DC resistivity tomographies can be combined and a set of joint attributes defined to determine the localization of the flow of hot water associated with the Eight Miles Mesa Fault, a second major tectonic feature responsible for the occurrence of warm springs further West and South from the Big Springs of Pagosa Springs.
NASA Technical Reports Server (NTRS)
Zuber, Maria T.
1987-01-01
The evidence for the extensional or compressional origins of some prominent Venusian surface features disclosed by radar images is discussed. Using simple models, the hypothesis that the observed length scales (10-20 km and 100-300 km) of deformations are controlled by dominant wavelengths arising from unstable compression or extension of the Venus lithosphere is tested. The results show that the existence of tectonic features that exhibit both length scales can be explained if, at the time of deformation, the lithosphere consisted of a crust that was relatively strong near the surface and weak at its base, and an upper mantle that was stronger than or nearly comparable in strength to the upper crust.
Tectonics of the central Andes
NASA Technical Reports Server (NTRS)
Bloom, Arthur L.; Isacks, Bryan L.; Fielding, Eric J.; Fox, Andrew N.; Gubbels, Timothy L.
1989-01-01
Acquisition of nearly complete coverage of Thematic Mapper data for the central Andes between about 15 to 34 degrees S has stimulated a comprehensive and unprecedented study of the interaction of tectonics and climate in a young and actively developing major continental mountain belt. The current state of the synoptic mapping of key physiographic, tectonic, and climatic indicators of the dynamics of the mountain/climate system are briefly reviewed.
NASA Technical Reports Server (NTRS)
Norman, Marc D.; Leeman, William P.
1989-01-01
The relationships between Cretaceous to Neogene magmatism and the tectonic setting of southwestern and central Idaho are evaluated. An overview of the tectonics and geology of the northwestern U.S. is presented. Major element, trace element, and Sr, Pb, and Nd isotopic data for the region are used to place constraints on magma source characteristics, the manner in which the magmatic sources evolved through time, and the nature of interactions among mantle and crustal domains in response to changing tectonic environment.
Α Deformation study in Central Greece using 20 years of GPS data
NASA Astrophysics Data System (ADS)
Marinou, Aggeliki; Papazissi, Kaliopi; Mitsakaki, Christiana; Paradissis, Demitris; Papanikolaou, Xanthos; Anastasiou, Demitris
2015-04-01
Central Greece is a region recognized for its intense tectonic activity with the main characterics being the extension in the North-South direction. This extension is revealed mainly in the form of large parallel grabens. Among these rifts is the Corinth Gulf, which is the most active tectonically, the basin between Parnassos and Kallidromo Mt, the Locris basin and the graben of North Evoikos Gulf, while in the south lays the Thebes basin and the South Evoikos Gulf. Since the late eighties the Laboratory of Higher Geodesy and the Dionysos Satellite Observatory of the National Technical University of Athens, in cooperation with several National and International Universities and Institutions have established, in various Greek areas, of high seismic activity, geodetic networks in order to monitor tectonic displacements. These geodetic networks were observed periodically using Satellite Geodesy techniques and in recent years almost entirely GPS. In this study all the available GPS data, referring to the broader area of Evia, Attiki and Viotia, for the years 1989 to 2008, are analyzed. The displacement field and its temporal changes for the area between the two major geological features, the Corinth Gulf and the Evoikos Gulf, are investigated. Αll the kinematic models that were used do not confirm that the area of study is deforming homogeneously, while an indication of a discontinuity has been detected.
NASA Astrophysics Data System (ADS)
Yellappa, T.; Rao, J. Mallikharjuna
2018-03-01
Granitoid intrusions occur widely in the Southern Granulite Terrain (SGT) of India, particularly within the Cauvery Suture Zone (CSZ), which is considered as the trace of the Neoproterozoic Mozambique ocean closure. Here we present the petrological and geochemical features of 19 granite plutons across the three major tectonic blocks of the terrain. Our data show a wide variation in the compositions of these intrusions from alkali feldspathic syenite to granite. The whole rock geochemistry of these intrusions displays higher concentrations of SiO2, FeO*, K2O, Ba, Zr, Th, LREE and low MgO, Na2O, Ti, P, Nb, Y and HREE's. The granitoids are metaluminous to slightly peraluminous in nature revealing both I-type and A-type origin. In tectonic discrimination plots, the plutons dominantly show volcanic arc and syn-collisional as well as post-collisional affinity. Based on the available age data together with geochemical constrains, we demonstrate that the granitic magmatism in the centre and south of the terrain is mostly associated with the Neoproterozoic subduction-collision-accretion-orogeny, followed by extensional mechanism of Gondwana tectonics events. Similar widespread granitic activity has also been documented in the Arabian Nubian shield, Madagascar, Sri Lanka and Antarctica, providing similarities for the reconstruction of the crustal fragments of Gondwana supercontinent followed by Pan-African orogeny.
NASA Astrophysics Data System (ADS)
El-Fakharani, Abdelhamid; Hamimi, Zakaria
2013-04-01
Ain Shams area, Western Arabian Shield, Saudi Arabia, is occupied by four main rock units; gneisses, metavolcanics, metasediments and syn- to post-tectonic granitoids. Field and structural studies reveal that the area was subjected to at least three phases of deformation (D1, D2 and D3). The structural features of the D1 are represented by tight to isoclinal and intrafolial folds (F1), axial plane foliation (S1) and stretching lineations (L1). This phase is believed to be resulted from an early NW-SE contractional phase due to the amalgamation between Asir and Jeddah tectonic terranes. D2 deformation phase progressively overprinted D1 structures and was dominated by thrusts, minor and major F2 thrust-related overturned folds. These structures indicate a top-to-the-NW movement direction and compressional regime during the D2 phase. Emplacement of the syn-tectonic granitoids is likely to have occurred during this phase. D3 structures are manifested F3 folds, which are open with steep to subvertical axial planes and axes moderately to steeply plunging towards the E, ENE and ESE directions, L3 is represented by crenulation lineations and kink bands. These structures attest NE-SW contractional phase, concurrent with the accretion of the Arabian-Nubian Shield (ANS) to the Saharan Metacraton (SM) and the final assembly between the continental blocks of East and West Gondwana.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrory, P.A.; Arends, R.G.; Ingle, J.C. Jr.
1991-02-01
The Santa Maria basin of central California is a geologically complex area located along the tectonically active California continental margin. The record of Cenozoic tectonism preserved in Santa Maria strata provides an opportunity to compare the evolution of the region with plate tectonic models for Cenozoic interactions along the margin. Geohistory analysis of Neogene Santa Maria basin strata provides important constraints for hypotheses of the tectonic evolution of the central California margin during its transition from a convergent to a transform plate boundary. Preliminary analyses suggest that the tectonic evolution of the Santa Maria area was dominated by coupling betweenmore » adjacent oceanic plates and the continental margin. This coupling is reflected in the timing of major hiatuses within the basin sedimentary sequence and margin subsidence and uplift which occurred during periods of tectonic plate adjustment. Stratigraphic evidence indicates that the Santa Maria basin originated on the continental shelf in early Miocene time. A component of margin subsidence is postulated to have been caused by cessation of spreading on adjacent offshore microplates approximately 19-18 ma. A sharp reduction in rate of tectonic subsidence in middle Miocene time, observed in the Santa Maria basin both onshore and offshore, was coeval with rotation of crustal blocks as major shearing shifts shoreward. Tectonic uplift of two eastern sites, offshore Point Arguello and near Point Sal, in the late Miocene may have been related to a change to transpressional motion between the Pacific and North American plates, as well as to rotation of the western Transverse Ranges in a restraining geometry.« less
Creep of phyllosilicates at the onset of plate tectonics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amiguet, Elodie; Reynard, Bruno; Caracas, Razvan
Plate tectonics is the unifying paradigm of geodynamics yet the mechanisms and causes of its initiation remain controversial. Some models suggest that plate tectonics initiates when the strength of lithosphere is lower than 20-200 MPa, below the frictional strength of lithospheric rocks (>700 MPa). At present-day, major plate boundaries such as the subduction interface, transform faults, and extensional faults at mid-oceanic ridge core complexes indicate a transition from brittle behaviour to stable sliding at depths between 10 and 40 km, in association with water-rock interactions forming phyllosilicates. We explored the rheological behaviour of lizardite, an archetypal phyllosilicate of the serpentinemore » group formed in oceanic and subduction contexts, and its potential influence on weakening of the lithospheric faults and shear zones. High-pressure deformation experiments were carried out on polycrystalline lizardite - the low temperature serpentine variety - using a D-DIA apparatus at a variety of pressure and temperature conditions from 1 to 8 GPa and 150 to 400 C and for strain rates between 10{sup -4} and 10{sup -6} s{sup -1}. Recovered samples show plastic deformation features and no evidence of brittle failure. Lizardite has a large rheological anisotropy, comparable to that observed in the micas. Mechanical results and first-principles calculations confirmed easy gliding on lizardite basal plane and show that the flow stress of phyllosilicate is in the range of the critical value of 20-200 MPa down to depths of about 200 km. Thus, foliated serpentine or chlorite-bearing rocks are sufficiently weak to account for plate tectonics initiation, aseismic sliding on the subduction interface below the seismogenic zone, and weakening of the oceanic lithosphere along hydrothermally altered fault zones. Serpentinisation easing the deformation of the early crust and shallow mantle reinforces the idea of a close link between the occurrence of plate tectonics and water at the surface of the Earth.« less
NASA Astrophysics Data System (ADS)
Cataldo, K.; Douglas, B. J.; Yanites, B.
2017-12-01
Landscape response to active tectonics, such as fault motion or regional uplift, can be recorded in river profiles as changes in slope (i.e. knickpoints) or topography. North Boulder basin region (SW Montana), experienced two separate phases of extension, from 45 - 35 Ma and again beginning 14 Ma to the present, producing basin-and-range style fault-blocks. Focusing on the Bull Mountain region, located on the western margin of the North Boulder basin, data is collected to test the hypothesis that Bull Mountain is located on the hanging wall of a half-graben. Our objective is to elucidate the active tectonics of the study area within a regional context by utilizing river profile analysis and thermochronometric data. High-resolution (< 5cm) river profile data is obtained from five of the main tributaries of Bull Mountain. Comprehensive geologic mapping along the main tributaries and topographic highs of the region allowed for the identification and measurement of knickpoints, composition of detailed lithologic descriptions, and analysis of key structural features. The absence of knickpoints within the four tributaries mapped on east Bull Mountain are consistent with a lack of tectonic activity. In contrast, Dearborn Creek, on western Bull Mountain, is located along an active normal fault and presents several knickpoints. Geologic mapping confirms that the primary lithologies of the region belong to the Elkhorn Mountain Volcanics. At lower elevations, there are massive plutonic intrusions of Quartz Monzonite and Diorite, both constituents of the Boulder batholith. These lithologies contain minerals suited for low-temperature thermochronology (U-Th/He) to constrain the timing of tectonic activity (i.e. uplift and exhumation) and erosion rates in the region. High-resolution stream profiles and a 10m DEM are used to delineate watersheds and produce steepness and concavity maps of major tributaries to investigate changes in slope or topography. The effects of extensional tectonic events can reshape drainage patterns of streams and their distribution of water, which is an important commodity in SW Montana for ranchers and farmers. Thus, the ability to discern the probability of recurring tectonic events and the effects on the regional watersheds, could help facilitate solutions before these events take place.
Superposed ridges of the Hesperia Planum area on Mars
NASA Technical Reports Server (NTRS)
Raitala, Jouko
1988-01-01
Mare ridges of the Hesperia Planum area form linear, reticular and circular structures. The main factors effective in mare ridge formation have been: (1) a large areal, or maybe even global, shortening and compression, (2) major crustal tectonics, and (3) the moderation of tectonic movements by the megaregolith discontinuity layer(s) between surface lavas and the bedrock leaving the compressional thrust to dominate over other fault movements in surface tectonics.
Winograd, I.J.; Szabo, B. J.
1986-01-01
The distribution of vein calcite, tufa, and other features indicative of paleo-groundwater discharge, indicates that during the early to middle Pleistocene, the water table at Ash Meadows, in the Amargosa Desert, Nevada, and at Furnace Creek Wash, in east-central Death Valley, California, was tens to hundreds of meters above the modern water table, and that groundwater discharge occurred up to 18 km up-the-hydraulic gradient from modern discharge areas. Uranium series dating of the calcitic veins permits calculation of rates of apparent water table decline; rates of 0.02 to 0.08 m/1000 yr are indicated for Ash meadows and 0.2 to 0.6 m/1000 yr for Furnace Creek Wash. The rates for Furnace Creek Wash closely match a published estimate of vertical crustal offset for this area, suggesting that tectonism is a major cause for the displacement observed. In general, displacements of the paleo-water table probably reflect a combination of: (a) tectonic uplift of vein calcite and tufa, unaccompanied by a change in water table altitude; (b) decline in water table altitude in response to tectonic depression of areas adjacent to dated veins and associated tufa; (c) decline in water table altitude in response to increasing aridity caused by major uplift of the Sierra Nevada and Transverse Ranges during the Quaternary; and (d) decline in water altitude in response to erosion triggered by increasing aridity and/or tectonism. A synthesis of geohydrologic, neotectonic, and paleoclimatologic information with the vein-calcite data permits the inference that the water table in the south-central Great Basin progressively lowered throughout the Quaternary. This inference is pertinent to an evaluation of the utility of thick (200-600 m) unsaturated zones of the region for isolating solidified radioactive wastes from the hydrosphere for hundreds of millenia. Wastes buried a few tens to perhaps 100 m above the modern water table--that is above possible water level rises due to future pluvial climates--are unlikely to be inundated by a rising water table in the foreseeable geologic future. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Beekman, F.; Hardebol, N.; Cloetingh, S.; Tesauro, M.
2006-12-01
Better understanding of 3D rheological heterogeneity of the European Lithosphere provide the key to tie the recorded intraplate deformation pattern to stress fields transmitted into plate interior from plate boundary forces. The first order strain patterns result from stresses transmitted through the European lithosphere that is marked by a patchwork of high strength variability from inherited structural and compositional heterogeneities and upper mantle thermal perturbations. As the lithospheric rheology depends primarily on its spatial structure, composition and thermal estate, the 3D strength model for the European lithosphere relies on a 3D compositional model that yields the compositional heterogeneities and an iteratively calculated thermal cube using Fouriers law for heat conduction. The accurate appraisal of spatial strength variability results from proper mapping and integration of the geophysical compositional and thermal input parameters. Therefore, much attention has been paid to a proper description of first order structural and tectonic features that facilitate compilation of the compositional and thermal input models. As such, the 3D strength model reflects the thermo-mechanical structure inherited from the Europeans polyphase deformation history. Major 3D spatial mechanical strength variability has been revealed. The East-European and Fennoscandian Craton to the NE exhibit high strength (30-50 1012 N/m) from low mantle temperatures and surface heatflow of 35-60 mW/m2 while central and western Europe reflect a polyphase Phanerozoic thermo- tectonic history. Here, regions with high rigidity are formed primarily by patches of thermally stabilized Variscan Massifs (e.g. Rhenish, Armorican, Bohemian, and Iberian Massif) with low heatflow and lithospheric thickness values (50-65 mW/m2; 110-150 km) yielding strengths of ~15-25 1012 N/m. In contrast, major axis of weakened lithosphere coincides with Cenozoic Rift System (e.g. Upper and Lower Rhine Grabens, Pannonian Basin and Massif Central) attributed to the presence of tomographically imaged plumes. This study has elucidated the memory of the present-days Europeans lithosphere induced by compositional and thermal heterogeneities. The resulting lateral strength variations has a clear signature of the pst lithospheres polyphase deformation and also entails active tectonics, tectonically induced topography and surface processes.
NASA Astrophysics Data System (ADS)
Lukram, I. M.
2007-12-01
Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.
NASA Astrophysics Data System (ADS)
Xia, Kan-yuan; Huang, Ci-liu; Jiang, Shao-ren; Zhang, Yi-xiang; Su, Da-quan; Xia, Si-gao; Chen, Zhong-rong
1994-07-01
A comparison of the tectonics and geophysics of the major structural belts of the northern and the southern continental margins of South China Sea has been made, on the basis of measured geophysical data obtained by ourselves over a period of 8 years (1984-1991). This confirmed that the northern margin is a divergent one and the southern margin is characterized by clearly convergent features. The main extensional structures of the northern margin are, from north to south: (1) The Littoral Fault Belt, a tectonic boundary between the continental crust and a transitional zone, along the coast of the provinces of Guangdong and Fujian in South China. It is characterised by earthquake activities, high magnetic anomalies and a rapid change in crustal thickness. (2) The Northern and Southern Depression zones (i.e., the Pearl River Mouth Basin), this strikes NE-ENE and is a very large Cenozoic depression which extends from offshore Shantou westwards to Hainan Island. (3) The Central Uplift Zone. This includes the Dongsha Uplift, Shenhu Uplift and may be linked with the Penghu uplift and Taiwan shoals to the east, forming a large NE-striking uplift zone along the northern continental slope. It is characterized by high magnetic anomalies. (4) Southern Boundary Fault Belt of the transitional crust. This has positive gravity anomalies on the land side and negative ones on the sea side. (5) The Magnetic Quiet Zone. This is located south of the southern Boundary Fault Belt and between the continental margin and the Central Basin of the South China Sea. Magnetic anomalies in this belt are of small amplitude and low gradient. We consider the Magnetic Quiet Zone to be a very important tectonic zone. The major structures of southern continental margin southwards are: (1) The Northern Fault Belt of the Nansha Block. This extends along the continental slope north of the Liyue shoal (Reed Bank) and Zhongye reef, and is a tectonic boundary between oceanic crust and the Nansha Block continental crust. (2) The Nansha Block Uplift Zone. Due to the development of reefs and shoals, there are many channels and valleys. Our long-distance multichannel seismic profiles indicated that there are thick Paleogene sediments and thin Neogene sediments all over the central part of the block. (3) The Nansha Trough, a nappe structure formed by the southeastward drifting of Nansha Block and northwestward overthrusting of Palawan-northwest Borneo. (4) Zengmu Shoal Basin, southwest of the Nansha Block; the maximum thickness of Cenozoic strata is over 9 km in this important petroliferous basin.
2002-12-04
The Tharsis Montes region on Mars is a major center of volcanic and tectonic activity. The channel in this image from NASA Mars Odyssey is west of the relatively small volcano called Biblis Patera although it shows no obvious relationship to that volcano. Instead, it may be related to the more distant, but more massive volcano Olympus Mons to the north. The channel may have hosted flowing lava at one time but now contains a material that has eroded into an impressive ridge-and-groove pattern. These features may be yardangs, landforms produced from the erosion by wind of sedimentary material. http://photojournal.jpl.nasa.gov/catalog/PIA04020
NASA Technical Reports Server (NTRS)
Ruder, M. E.; Alexander, S. S.
1985-01-01
The MAGSAT equivalent-source anomaly field evaluated at 325 km altitude depicts a prominent anomaly centered over southeast Georgia, which is adjacent to the high-amplitude positive Kentucky anomaly. To overcome the satellite resolution constraint in studying this anomaly, conventional geophysical data were included in analysis: Bouguer gravity, seismic reflection and refraction, aeromagnetic, and in-situ stress-strain measurements. This integrated geophysical approach, infers more specifically the nature and extent of the crustal and/or lithospheric source of the Georgia MAGSAT anomaly. Physical properties and tectonic evolution of the area are all important in the interpretation.
Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources
NASA Technical Reports Server (NTRS)
Houston, R. S. (Principal Investigator); Marrs, R. W.
1973-01-01
The author has identified the following significant results. Significant results of the Wyoming ERTS-1 investigation during the first six months (July-December 1972) included: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks, (2) discovery of iron formation within the metasedimentary sequence, (3) mapping of previously unreported tectonic elements of major significance, (4) successful mapping of large scale fracture systems of the Wind River Mountains, (5) successful distinction of some metamorphic, igneous, and sedimentary lithologies by color additive viewing, (6) mapping of large scale glacial features, and (7) development of techniques for mapping small urban areas.
NASA Technical Reports Server (NTRS)
Marrs, R. W.
1973-01-01
The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.
2012-08-07
Not all images are round as shown by NASA 2001 Mars Odyssey spacecraft. Here, the surface likely had fractures or preexisting tectonic features that diverted some of the impact stresses along those features and resulted in the straighter east and north
Map and database of Quaternary faults in Venezuela and its offshore regions
Audemard, F.A.; Machette, M.N.; Cox, J.W.; Dart, R.L.; Haller, K.M.
2000-01-01
As part of the International Lithosphere Program’s “World Map of Major Active Faults,” the U.S. Geological Survey is assisting in the compilation of a series of digital maps of Quaternary faults and folds in Western Hemisphere countries. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. They are accompanied by databases that describe these features and document current information on their activity in the Quaternary. The project is a key part of the Global Seismic Hazards Assessment Program (ILP Project II-0) for the International Decade for Natural Hazard Disaster Reduction.The project is sponsored by the International Lithosphere Program and funded by the USGS’s National Earthquake Hazards Reduction Program. The primary elements of the project are general supervision and interpretation of geologic/tectonic information, data compilation and entry for fault catalog, database design and management, and digitization and manipulation of data in †ARCINFO. For the compilation of data, we engaged experts in Quaternary faulting, neotectonics, paleoseismology, and seismology.
Preliminary Geological Map of the Fortuna Tessera (V-2) Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Ivanov, M. A.; Head, J. W.
2009-01-01
The Fortuna Tessera quadrangle (50-75 N, 0-60 E) is a large region of tessera [1] that includes the major portion of Fortuna and Laima Tesserae [2]. Near the western edge of the map area, Fortuna Tessera is in contact with the highest moun-tain belt on Venus, Maxwell Montes. Deformational belts of Sigrun-Manto Fossae (extensional structures) and Au ra Dorsa (contractional structures) separate the tessera regions. Highly deformed terrains correspond to elevated regions and mildly deformed units are with low-lying areas. The sets of features within the V-2 quadrangle permit us to address the following important questions: (1) the timing and processes of crustal thickening/thinning, (2) the nature and origin of tesserae and deformation belts and their relation to crustal thickening processes, (3) the existence or absence of major evolutionary trends of volcanism and tectonics. The key feature in all of these problems is the regional sequence of events. Here we present description of units that occur in the V-2 quadrangle, their regional correlation chart (Fig. 1), and preliminary geological map of the region (Fig. 2).
Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P
2011-03-01
This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aurelio, Mario; Taguibao, Kristine Joy; Vargas, Edmundo
In the selection of sites for disposal facilities involving low- and intermediate-level radioactive waste (LILW), International Atomic Energy Agency (IAEA) recommendations require that 'the region in which the site is located shall be such that significant tectonic and surface processes are not expected to occur with an intensity that would compromise the required isolation capability of the repository'. Evaluating the appropriateness of a site therefore requires a deep understanding of the geological and tectonic setting of the area. The Philippines sits in a tectonically active region frequented by earthquakes and volcanic activity. Its highly variable morphology coupled with its locationmore » along the typhoon corridor in the west Pacific region subjects the country to surface processes often manifested in the form of landslides. The Philippine LILW near surface repository project site is located on the north eastern sector of the Island of Luzon in northern Philippines. This island is surrounded by active subduction trenches; to the east by the East Luzon Trough and to the west by the Manila Trench. The island is also traversed by several branches of the Philippine Fault System. The Philippine LILW repository project is located more than 100 km away from any of these major active fault systems. In the near field, the project site is located less than 10 km from a minor fault (Dummon River Fault) and more than 40 km away from a volcanic edifice (Mt. Caguas). This paper presents an analysis of the potential hazards that these active tectonic features may pose to the project site. The assessment of such geologic hazards is imperative in the characterization of the site and a crucial input in the design and safety assessment of the repository. (authors)« less
Basement Structure and Styles of Active Tectonic Deformation in Central Interior Alaska
NASA Astrophysics Data System (ADS)
Dixit, N.; Hanks, C.
2017-12-01
Central Interior Alaska is one of the most seismically active regions in North America, exhibiting a high concentration of intraplate earthquakes approximately 700 km away from the southern Alaska subduction zone. Based on increasing seismological evidence, intraplate seismicity in the region does not appear to be uniformly distributed, but concentrated in several discrete seismic zones, including the Nenana basin and the adjacent Tanana basin. Recent seismological and neotectonics data further suggests that these seismic zones operate within a field of predominantly pure shear driven primarily by north-south crustal shortening. Although the location and magnitude of the seismic activity in both basins are well defined by a network of seismic stations in the region, the tectonic controls on intraplate earthquakes and the heterogeneous nature of Alaska's continental interior remain poorly understood. We investigated the current crustal architecture and styles of tectonic deformation of the Nenana and Tanana basins using existing geological, geophysical and geochronological datasets. The results of our study demonstrate that the basements of the basins show strong crustal heterogeneity. The Tanana basin is a relatively shallow (up to 2 km) asymmetrical foreland basin with its southern, deeper side controlled by the northern foothills of the central Alaska Range. Northeast-trending strike-slip faults within the Tanana basin are interpreted as a zone of clockwise crustal block rotation. The Nenana basin has a fundamentally different geometry; it is a deep (up to 8 km), narrow transtensional pull-apart basin that is deforming along the left-lateral Minto Fault. This study identifies two distinct modes of tectonic deformation in central Interior Alaska at present, and provides a basis for modeling the interplay between intraplate stress fields and major structural features that potentially influence the generation of intraplate earthquakes in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simkin, T.; Tilling, R.I.; Taggart, J.N.
The Earth's physiographic features overlain by its volcanoes, earthquake epicenters, and the movement of its major tectonic plates are shown in this map. This computer-generated map of the world provides a base that shows the topography of the land surface and the sea floor; the additions of color and shaded relief help to distinguish significant features. From the Volcano Reference file of the Smithsonian Institution, nearly 1,450 volcanoes active during the past 10,000 yr are plotted on the map in four categories. From the files of the National Earthquake Information Center (US Geological Survey), epicenters selected from 1,300 large eventsmore » (magnitude {>=} 7.0) from 1987 onward and from 140,000 instrumentally recorded earthquakes (magnitude {>=} 4.0) from 1960 to the present are plotted on this map according to two magnitude categories and two depth categories. This special map is intended as a teaching aid for classroom use and as a general reference for research. It is designed to show prominent global features when viewed from a distance; more detailed features are visible on closer inspection.« less
The current tectonic motion of the Northern Andes along the Algeciras Fault System in SW Colombia
NASA Astrophysics Data System (ADS)
Velandia, Francisco; Acosta, Jorge; Terraza, Roberto; Villegas, Henry
2005-04-01
Riedel, synthetic and antithetic type faults, principal displacement zones (PDZ), pull-apart basins (such as lazy-S shaped releasing bend, extensive and rhomboidal shaped and releasing sidestep basins) and minor folds located oblique to the main trace of the Algeciras Fault System (AFS) are interpreted from Landsat TM 5 images and geological mapping. These tectonic features are affecting Quaternary deposits and are related to major historical earthquakes and recent registered seismic events, indicating neotectonic activity of the structure. The AFS is classified as a right lateral wrench complex structure, with an important vertical component in which sedimentary cover and basement rocks are involved. In addition, the system represents a simple shear caused by the oblique convergence between the Nazca Plate and the northern Andes. The transpressive boundary in SW Colombia was previously located along the Eastern Frontal Fault System. However, this paper shows that the AFS constitutes the actual boundary of the current transpressive regime along the Northern Andes, which begins at the Gulf of Guayaquil in Ecuador and continues into Colombia and Venezuela.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinze, W.J.; Braile, L.W.; Keller, G.R.
1983-05-01
An integrated geophysical/geologic program is being conducted to evaluate the rift complex hypothesis as an explanation for the earthquake activity in the New Madrid Seismic Zone and its extensions, to refine our knowledge of the rift complex, and to investigate the possible northern extensions of the New Madrid Fault Zone, especially its possible connection to the Anna, Ohio seismogenic region. Drillhole basement lithologies are being investigated to aid in tectonic analysis and geophysical interpretation, particularly in the Anna, Ohio area. Gravity and magnetic modeling combined with limited seismic reflection studies in southwest Indiana are interpreted as confirming speculation that anmore » arm of the New Madrid Rift Complex extends northeasterly into Indiana. The geologic and geophysical evidence confirm that the basement lithology in the Anna, Ohio area is highly variable reflecting a complex geologic history. The data indicate that as many as three major Late Precambrian tectonic features intersect within the basement of the Anna area suggesting that the seismicity may be related to basement zones of weakness.« less
Geologic map of the Ganiki Planitia quadrangle (V-14), Venus
Grosfils, Eric B.; Long, Sylvan M.; Venechuk, Elizabeth M.; Hurwitz, Debra M.; Richards, Joseph W.; Drury, Dorothy E.; Hardin, Johanna
2011-01-01
The Ganiki Planitia (V-14) quadrangle on Venus, which extends from 25° N. to 50° N. and from 180° E. to 210° E., derives its name from the extensive suite of plains that dominates the geology of the northern part of the region. With a surface area of nearly 6.5 x 106 km2 (roughly two-thirds that of the United States), the quadrangle is located northwest of the Beta-Atla-Themis volcanic zone and southeast of the Atalanta Planitia lowlands, areas proposed to be the result of large scale mantle upwelling and downwelling, respectively. The region immediately south of Ganiki Planitia is dominated by Atla Regio, a major volcanic rise beneath which localized upwelling appears to be ongoing, whereas the area just to the north is dominated by the orderly system of north-trending deformation belts that characterize Vinmara Planitia. The Ganiki Planitia quadrangle thus lies at the intersection between several physiographic regions where extensive mantle flow-induced tectonic and volcanic processes are thought to have occurred. The geology of the V-14 quadrangle is characterized by a complex array of volcanic, tectonic, and impact-derived features. There are eleven impact craters with diameters from 4 to 64 km, as well as four diffuse 'splotch' features interpreted to be the product of near-surface bolide explosions. Tectonic activity has produced heavily deformed tesserae, belts of complex deformation and rifts as well as a distributed system of fractures and wrinkle ridges. Volcanic activity has produced extensive regional plains deposits, and in the northwest corner of the quadrangle these plains host the initial (or terminal) 700 km of the Baltis Vallis canali, an enigmatic volcanic feature with a net length of ~7,000 km that is the longest channel on Venus. Major volcanic centers in V-14 include eight large volcanoes and eight coronae; all but one of these sixteen features was noted during a previous global survey. The V-14 quadrangle contains an abundance of minor volcanic features including individual shield volcanoes and localized fissure eruptions as well as many small annular structures and domes, which often serve as the source for local lava flows. The topographic and geophysical characteristics of the Ganiki Planitia quadrangle are less complex than the surface geology, but they yield equally valuable information about the region’s formation and evolution. Referenced to the mean planetary radius of 6051.84 km, the average elevation in the quadrangle is -0.26±0.86 km (2σ) with a full range of -2.58 km to 1.85 km. The highest 2.5 percent of elevations in the quadrangle (above 0.60 km) are associated primarily with the major tessera blocks and the peaks of a few volcanic edifices, whereas the lowest 2.5 percent (below -1.12 km) mostly occur within corona interiors and in the northwest corner of the quadrangle where the plains begin to merge into the Atalanta Planitia lowlands. At the ~4.6 km/pixel scale of the topography data, the mean point-to-point topographic slope is 0.63° and topographic slopes greater than 2° cover less than 5 percent of the region. Overall, the topography of the Ganiki Planitia quadrangle can be characterized as flat, low lying, and nearly devoid of abrupt topographic variation. Complementing this gentle topography, the geoid anomaly has a generally linear gradient that decreases north-northwest from a high of ~20 m at the southern edge of the quadrangle (the northern border of the Atla Regio anomaly) to a low of -30 to -40 m along the northern edge (Konopliv and others, 1999). The vertical component of the gravity anomaly varies from ~50 mGal to -40 mGal, and integrated analysis of the gravity and topography data indicates that dynamically supported regions and areas of thickened crust are both present within the quadrangle. Because the Ganiki Planitia quadrangle is a plains-dominated lowland area that lies between several major physiographic provinces (namely, Atla Regio, Atalanta Planitia, and Vinmara Planitia), a geologic map of the region may yield insight into a wide array of important problems in Venusian geology. The current mapping effort and analysis complements previous efforts to characterize aspects of the region’s geology, for example stratigraphy near parabolic halo crater sites, volcanic plains emplacement, wrinkle ridges, volcanic feature distribution, volcano deformation, coronae characteristics, lithospheric flexure, and various features along a 30±7.58° N. geotraverse. Our current research focuses on addressing four specific questions. Has the dominant style of volcanic expression within the quadrangle varied in a systematic fashion over time? Does the tectonic deformation within the quadrangle record significant regional patterns that vary spatially or temporally, and if so what are the scales, orientations and sources of the stress fields driving this deformation? If mantle upwelling and downwelling have played a significant role in the formation of Atla Regio and Atalanta Planitia as has been proposed, does the geology of Ganiki Planitia record evidence of northwest-directed lateral mantle flow connecting the two sites? Finally, can integration of the tectonic and volcanic histories preserved within the quadrangle help constrain competing resurfacing models for Venus?
The Myszkow porphyry copper-molybdenum deposit, Poland
Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.
1994-01-01
The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors
The curious history of Tethys as evidenced by irregular craters and variable tectonism
NASA Astrophysics Data System (ADS)
Ferguson, S. N.; Rhoden, A.; Nayak, M.; Asphaug, E. I.
2017-12-01
At first glance, the surface of Saturn's moon Tethys appears dominated by craters and its large canyon system, Ithaca Chasma. However, high-resolution Cassini imagery reveals a surface rife with curious geologic features, perhaps indicative of non-heliocentric impact populations and, potentially, a history of tectonic activity. We mapped three regions on Tethys to survey the diversity of features present on the surface, determine crater counts for each region, map and analyze fracture patterns, and identify constraints on the impactor populations. One study region is just south and west of the Odysseus impact basin (R1), and the other two regions sit slightly west of Ithaca Chasma (R2 and R3). The regions were imaged at average resolutions of 200m/pix, which is adequate to identify craters down to D=1km. Of 1200 total craters counted, we have identified 195 elliptical craters and 28 polygonal craters. Elliptical craters likely form from slow, oblique impacts, whereas polygonal craters are indicative of underlying tectonic structure. We identified 605 small craters, D=1-2km, across the three regions; we find that R1 has many more 1-10 km craters than R2 and R3. We also mapped 367 linear features. The median and range of orientations of the linear features vary across the regions. Despite their proximity, the orientations of lineations in R2 and R3 are not consistent with the orientation of Ithaca Chasma. This could be suggestive of different epochs of tectonic activity on Tethys. When compared with R2 and R3, R1 has more small craters, more lineations, and a preferred orientation of lineations that is distinct from the other two regions. Possible causes for a larger population of small craters in R1 include secondary craters from Odysseus and oblique impacts from debris ejected from Tethys' co-orbital moons, which should create many more 1km craters in R1 than the other regions. Due to the oblique impact angles predicted for incoming co-orbital debris, these impacts may have also produced some of the lineations observed in R1. Oblique impacts can also form elliptical craters, but that would imply much larger debris than expected from the craters presently observed on the co-orbitals. We discuss additional analysis and implications of Tethys' curious geologic features on its bombardment and tectonic history.
2014-03-19
This image from NASA 2001 Mars Odyssey spacecraft shows a small portion of the lava flows from Alba Mons. The depression and collapse features within it are part of the large system of tectonic features created by the apparent collapse of the volcano.
NASA Astrophysics Data System (ADS)
Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.
2015-12-01
In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength and increase the hillslope erosion during heavy rainfall. By studying the erosion rate of Hoping River watershed we can understand more about surface processes in dynamic landscape, and more over, to establish a comprehensive understanding about the evolution of the ongoing Taiwan arc-continental collision process.
Upwarp of anomalous asthenosphere beneath the Rio Grande rift
Parker, E.C.; Davis, P.M.; Evans, J.R.; Iyer, H.M.; Olsen, K.H.
1984-01-01
Continental rifts are possible analogues of mid-ocean ridges, although major plate tectonic features are less clearly observed1. Current thermal models of mid-ocean ridges2-4 consist of solid lithospheric plates overlying the hotter, less viscous asthenosphere, with plate thickness increasing away from the ridge axis. The lithospheric lower boundary lies at or near the melting point isotherm, so that at greater depths higher temperatures account for lower viscosity, lower seismic velocities and possibly partial melting. Upwarp of this boundary at the ridge axis concentrates heat there, thus lowering densities by expansion and raising the sea floor to the level of thermal isostatic equilibrium. At slow spreading ridges, a major central graben forms owing to the mechanics of magma injection into the crust5. Topography, heat flow, gravity and seismic studies support these models. On the continents, a low-velocity channel has been observed, although it is poorly developed beneath ancient cratons6-9. Plate tectonic models have been applied to continental basins and margins10-12, but further similarities to the oceanic models remain elusive. Topographic uplift is often ascribed to Airy type isostatic compensation caused by crustal thickening, rather than thermal compensation in the asthenosphere. Here we discuss the Rio Grande rift, in southwestern United States. Teleseismic P-wave residuals show that regional uplift is explained by asthenosphere uplift rather than crustal thickening. ?? 1984 Nature Publishing Group.
Bedrock morphology reveals drainage network in northeast Baffin Bay
NASA Astrophysics Data System (ADS)
Slabon, Patricia; Dorschel, Boris; Jokat, Wilfried; Freire, Francis
2018-02-01
A subglacial drainage network underneath the paleo-ice sheet off West Greenland is revealed by a new compilation of high-resolution bathymetry data from Melville Bay, northeast Baffin Bay. This drainage network is an indicator for ice streaming and subglacial meltwater flow toward the outer shelf. Repeated ice sheet advances and retreats across the crystalline basement together with subglacial meltwater drainage had their impact in eroding overdeepened troughs along ice stream pathways. These overdeepenings indicate the location of a former ice sheet margin. The troughs inherit characteristics of glacial and subglacial meltwater erosion. Most of the troughs follow tectonic weakness zones such as faults and fractures in the crystalline bedrock. Many of these tectonic features correspond with the orientations of major fault axes in the Baffin Bay region. The troughs extend from the present (sub) glacial fjord systems at the Greenland coast and parallel modern outlet-glacier pathways. The fast flowing paleo-ice streams were likely accelerated from the meltwater flow as indicated by glacial landforms within and along the troughs. The ice streams flowed along narrow tributary troughs and merged to form large paleo-ice streams bedded in the major cross-shelf troughs of Melville Bay. Apart from the troughs, a rough seabed topography characterises the bedrock, and we see a sharp geomorphic transition where ice flowed onto sedimentary rock and deposits.
Structural features of northern Tarim basin: Implications for regional tectonics and petroleum traps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Jia; Juafu Lu; Dongsheng Cai
1998-01-01
The rhombus-shaped Tarim basin in northwestern China is controlled mainly by two left-lateral strike-slip systems: the northeast-trending Altun fault zone along its southeastern side and the northeast-trending Aheqi fault zone along its northwestern side. In this paper, we discuss the northern Tarim basin`s structural features, which include three main tectonic units: the Kalpin uplift, the Kuqa depression, and the North Tarim uplift along the northern margin of the Tarim basin. Structural mapping in the Kalpin uplift shows that a series of imbricated thrust sheets have been overprinted by strike-slip faulting. The amount of strike-slip displacement is estimated to be 148more » km by restoration of strike-slip structures in the uplift. The Kuqa depression is a Mesozoic-Cenozoic foredeep depression with well-developed flat-ramp structures and fault-related folds. The Baicheng basin, a Quaternary pull-apart basin, developed at the center of the Kuqa depression. Subsurface structures in the North Tarim uplift can be divided into the Mesozoic-Cenozoic and the Paleozoic lithotectonic sequences in seismic profiles. The Paleozoic litho-tectonic sequence exhibits the interference of earlier left-lateral and later right-lateral strike-slip structures. Many normal faults in the Mesozoic-Cenozoic litho-tectonic sequence form the negative flower structures in the North Tarim uplift; these structures commonly directly overlie the positive flower structures in the Paleozoic litho-tectonic sequence. The interference regions of the northwest-trending and northeast-trending folds in the Paleozoic tectonic sequence have been identified to have the best trap structures. Our structural analysis indicates that the Tarim basin is a transpressional foreland basin rejuvenated during the Cenozoic.« less
Multi-scale characterization of topographic anisotropy
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.
2016-05-01
We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.
A geographic comparison of selected large-scale planetary surface features
NASA Technical Reports Server (NTRS)
Meszaros, S. P.
1984-01-01
Photographic and cartographic comparisons of geographic features on Mercury, the Moon, Earth, Mars, Ganymede, Callisto, Mimas, and Tethys are presented. Planetary structures caused by impacts, volcanism, tectonics, and other natural forces are included. Each feature is discussed individually and then those of similar origin are compared at the same scale.
NASA Astrophysics Data System (ADS)
Brogi, Andrea; Alçiçek, M. Cihat; Yalçıner, Cahit Çağlar; Capezzuoli, Enrico; Liotta, Domenico; Meccheri, Marco; Rimondi, Valentina; Ruggieri, Giovanni; Gandin, Anna; Boschi, Chiara; Büyüksaraç, Aydin; Alçiçek, Hülya; Bülbül, Ali; Baykara, Mehmet Oruç; Shen, Chuan-Chou
2016-06-01
Coexistence of thermal springs, travertine deposits and tectonic activity is a recurring feature for most geothermal areas. Although such a certainty, their relationships are debated mainly addressing on the role of the tectonic activity in triggering and controlling fluids flow and travertine deposition. In this paper, we present the results of an integrated study carried out in a geothermal area located in western Anatolia (Turkey), nearby the well-known Pamukkale area (Denizli Basin). Our study focused on the relationships among hydrothermal fluids circulation, travertine deposition and tectonic activity, with particular emphasis on the role of faults in controlling fluids upwelling, thermal springs location and deposition of travertine masses. New field mapping and structural/kinematics analyses allowed us to recognize two main faults systems (NW- and NE-trending), framed in the Neogene-Quaternary extensional tectonic evolution of western Anatolia. A geo-radar (GPR) prospection was also provided in a key-area, permitting us to reconstruct a buried fault zone and its relationships with the development of a fissure-ridge travertine deposit (Kamara fissure-ridge). The integration among structural and geophysical studies, fluids inclusion, geochemical, isotopic data and 230 Th/238 U radiometric age determination on travertine deposits, depict the characteristics of the geothermal fluids and their pathway, up to the surface. Hydrological and seismological data have been also taken in account to investigate the relation between local seismicity and fluid upwelling. As a main conclusion we found strict relationships among tectonic activity, earthquakes occurrence, and variation of the physical/chemical features of the hydrothermal fluids, presently exploited at depth, or flowing out in thermal springs. In the same way, we underline the tectonic role in controlling the travertine deposition, making travertine (mainly banded travertine) a useful proxy to reconstruct the seismological history of an area, as well as the characteristics of the parent geothermal fluids, adding an effective tool for geothermal exploration tasks.
Surveying the Newly Digitized Apollo Metric Images for Highland Fault Scarps on the Moon
NASA Astrophysics Data System (ADS)
Williams, N. R.; Pritchard, M. E.; Bell, J. F.; Watters, T. R.; Robinson, M. S.; Lawrence, S.
2009-12-01
The presence and distribution of thrust faults on the Moon have major implications for lunar formation and thermal evolution. For example, thermal history models for the Moon imply that most of the lunar interior was initially hot. As the Moon cooled over time, some models predict global-scale thrust faults should form as stress builds from global thermal contraction. Large-scale thrust fault scarps with lengths of hundreds of kilometers and maximum relief of up to a kilometer or more, like those on Mercury, are not found on the Moon; however, relatively small-scale linear and curvilinear lobate scarps with maximum lengths typically around 10 km have been observed in the highlands [Binder and Gunga, Icarus, v63, 1985]. These small-scale scarps are interpreted to be thrust faults formed by contractional stresses with relatively small maximum (tens of meters) displacements on the faults. These narrow, low relief landforms could only be identified in the highest resolution Lunar Orbiter and Apollo Panoramic Camera images and under the most favorable lighting conditions. To date, the global distribution and other properties of lunar lobate faults are not well understood. The recent micron-resolution scanning and digitization of the Apollo Mapping Camera (Metric) photographic negatives [Lawrence et al., NLSI Conf. #1415, 2008; http://wms.lroc.asu.edu/apollo] provides a new dataset to search for potential scarps. We examined more than 100 digitized Metric Camera image scans, and from these identified 81 images with favorable lighting (incidence angles between about 55 and 80 deg.) to manually search for features that could be potential tectonic scarps. Previous surveys based on Panoramic Camera and Lunar Orbiter images found fewer than 100 lobate scarps in the highlands; in our Apollo Metric Camera image survey, we have found additional regions with one or more previously unidentified linear and curvilinear features on the lunar surface that may represent lobate thrust fault scarps. In this presentation we review the geologic characteristics and context of these newly-identified, potentially tectonic landforms. The lengths and relief of some of these linear and curvilinear features are consistent with previously identified lobate scarps. Most of these features are in the highlands, though a few occur along the edges of mare and/or crater ejecta deposits. In many cases the resolution of the Metric Camera frames (~10 m/pix) is not adequate to unequivocally determine the origin of these features. Thus, to assess if the newly identified features have tectonic or other origins, we are examining them in higher-resolution Panoramic Camera (currently being scanned) and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera images [Watters et al., this meeting, 2009].
NASA Technical Reports Server (NTRS)
Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.
1974-01-01
Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.
Nokleberg, Warren J.; West, Timothy D.; Dawson, Kenneth M.; Shpikerman, Vladimir I.; Bundtzen, Thomas K.; Parfenov, Leonid M.; Monger, James W.; Ratkin, Vladimir V.; Baranov, Boris V.; Byalobzhesky, Stanislauv G.; Diggles, Michael F.; Eremin, Roman A.; Fujita, Kazuya; Gordey, Steven P.; Gorodinskiy, Mary E.; Goryachev, Nikolai A.; Feeney, Tracey D.; Frolov, Yuri F.; Grantz, Arthur; Khanchuk, Alexander I.; Koch, Richard D.; Natal'in, Boris A.; Natapov, Lev M.; Norton, Ian O.; Patton, William W.; Plafker, George; Pozdeev, Anany I.; Rozenblum, Ilya S.; Scholl, David W.; Sokolov, Sergei D.; Sosunov, Gleb M.; Stone, David B.; Tabor, Rowland W.; Tsukanov, Nickolai V.; Vallier, Tracy L.
1998-01-01
This report is part of a project on the major mineral deposits, metallogenesis, and tectonics of the Russian Far East, Alaska, and the Canadian Cordillera. The project is to provide critical information for collaborators and customers on bedrock geology and geophysics, tectonics, major metalliferous mineral resources, metallogenic patterns, and crustal origin and evolution of mineralizing systems for the Russian Far East, Alaska, and the Canadian Cordillera.
Plate tectonics and planetary habitability: current status and future challenges.
Korenaga, Jun
2012-07-01
Plate tectonics is one of the major factors affecting the potential habitability of a terrestrial planet. The physics of plate tectonics is, however, still far from being complete, leading to considerable uncertainty when discussing planetary habitability. Here, I summarize recent developments on the evolution of plate tectonics on Earth, which suggest a radically new view on Earth dynamics: convection in the mantle has been speeding up despite its secular cooling, and the operation of plate tectonics has been facilitated throughout Earth's history by the gradual subduction of water into an initially dry mantle. The role of plate tectonics in planetary habitability through its influence on atmospheric evolution is still difficult to quantify, and, to this end, it will be vital to better understand a coupled core-mantle-atmosphere system in the context of solar system evolution. © 2012 New York Academy of Sciences.
A Cenozoic tectonic model for Southeast Asia - microplates and basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maher, K.A.
1995-04-01
A computer-assisted Cenozoic tectonic model was built for Southeast Asia and used to construct 23 base maps, 2 to 6 million years apart. This close temporal spacing was necessary to constrain all the local geometric shifts in a consistent and geologically feasible fashion. More than a hundred individual blocks were required to adequately treat Cenozoic microplate processes at a basic level. The reconstructions show tectonic evolution to be characterized by long periods of gradual evolution, interrupted by brief, widespread episodes of reorganization in fundamental plate geometries and kinematics. These episodes are triggered by major collisions, or by accumulation of smallermore » changes. The model takes into account difficulties inherent in the region. The Pacific and Indo-Australian plates and their predecessors have driven westward and northward since the late Paleozoic, towards each other and the relatively stationary backstop of Asia. Southeast Asia is therefore the result of a long-lived, complex process of convergent tectonics, making it difficult to reconstruct tectonic evolution as much of the continental margin and sea floor spreading record was erased. In addition, the region has been dominated by small-scale microplate processes with short time scales and internal deformation, taking place in rapidly evolving and more ductile buffer zones between the major rigid plate systems. These plate interaction zones have taken up much of the relative motion between the major plates. Relatively ephemeral crustal blocks appear and die within the buffer zones, or accrete to and disperse from the margins of the major plate systems. However, such microplate evolution is the dominant factor in Cenozoic basin evolution. This detailed testonic model aids in comprehension and prediction of basin development, regional hydrocarbon habitat, and petroleum systems.« less
Southern California landslides-an overview
,
2005-01-01
Southern California lies astride a major tectonic plate boundary defined by the San Andreas Fault and numerous related faults that are spread across a broad region. This dynamic tectonic environment has created a spectacular landscape of rugged mountains and steep-walled valleys that compose much of the region’s scenic beauty. Unfortunately, this extraordinary landscape also presents serious geologic hazards. Just as tectonic forces are steadily pushing the landscape upward, gravity is relentlessly tugging it downward. When gravity prevails, landslides can occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yongqing, E-mail: ydonglai@mail.cgs.gov.cn; Zhao Pengda; Chen Jianguo
2001-03-15
A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. Amore » geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.« less
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
Tectonic tests of proposed polar wander paths for Mars and the moon
NASA Technical Reports Server (NTRS)
Grimm, R. E.; Solomon, S. C.
1986-01-01
A comparison of the lithospheric stress field predicted for rapid global reorientations against observed tectonic features is used to test the polar wander paths proposed for Mars by Schultz and Lutz-Garihan (1981). A calculation of the reorientation stresses leads to the suggestion that the formation of normal faults or graben in broad regions around the former rotation poles should be the minimum tectonic signature of a reorientation that generates lithospheric stresses in excess of the extensional strength of near-surface material. It is concluded that polar wander of the magnitude and timing envisioned by Schultz and Lutz-Garihan did not occur.
NASA Technical Reports Server (NTRS)
Hurwitz, D. M.; Head, J. W.
2009-01-01
Geologic mapping of Snegurochka Planitia (V-1) reveals a complex stratigraphy of tectonic and volcanic features that can provide insight into the geologic history of Venus and Archean Earth [1,2], including 1) episodes of both localized crustal uplift and mantle downwelling, 2) shifts from local to regional volcanic activity, and 3) a shift back to local volcanic activity. We present our progress in mapping the spatial and stratigraphic relationships of material units and our initial interpretations of the tectonic and volcanic history of the region surrounding the north pole of Venus
The tectonics of Titan: Global structural mapping from Cassini RADAR
Liu, Zac Yung-Chun; Radebaugh, Jani; Harris, Ron A.; Christiansen, Eric H.; Neish, Catherine D.; Kirk, Randolph L.; Lorenz, Ralph D.; ,
2016-01-01
The Cassini RADAR mapper has imaged elevated mountain ridge belts on Titan with a linear-to-arcuate morphology indicative of a tectonic origin. Systematic geomorphologic mapping of the ridges in Synthetic Aperture RADAR (SAR) images reveals that the orientation of ridges is globally E–W and the ridges are more common near the equator than the poles. Comparison with a global topographic map reveals the equatorial ridges are found to lie preferentially at higher-than-average elevations. We conclude the most reasonable formation scenario for Titan’s ridges is that contractional tectonism built the ridges and thickened the icy lithosphere near the equator, causing regional uplift. The combination of global and regional tectonic events, likely contractional in nature, followed by erosion, aeolian activity, and enhanced sedimentation at mid-to-high latitudes, would have led to regional infilling and perhaps covering of some mountain features, thus shaping Titan’s tectonic landforms and surface morphology into what we see today.
Tectonic evolution of the terrestrial planets.
Head, J W; Solomon, S C
1981-07-03
The style and evolution of tectonics on the terrestrial planets differ substantially. The style is related to the thickness of the lithosphere and to whether the lithosphere is divided into distinct, mobile plates that can be recycled into the mantle, as on Earth, or is a single spherical shell, as on the moon, Mars, and Mercury. The evolution of a planetary lithosphere and the development of plate tectonics appear to be influenced by several factors, including planetary size, chemistry, and external and internal heat sources. Vertical tectonic movement due to lithospheric loading or uplift is similar on all of the terrestrial planets and is controlled by the local thickness and rheology of the lithosphere. The surface of Venus, although known only at low resolution, displays features both similar to those on Earth (mountain belts, high plateaus) and similar to those on the smaller planets (possible impact basins). Improved understanding of the tectonic evolution of Venus will permit an evaluation of the relative roles of planetary size and chemistry in determining evolutionary style.
On volcanism and thermal tectonics on one-plate planets
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1978-01-01
For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.
NASA Technical Reports Server (NTRS)
Bowen, R. L.; Sundeen, D. A.
1985-01-01
Major, dominantly compressional, orogenic episodes (Taconic, Acadian, Alleghenian) affected eastern North America during the Paleozoic. During the Mesozoic, in contrast, this same region was principally affected by epeirogenic and extensional tectonism; one episode of comparatively more intense tectonic activity involving extensive faulting, uplift, sedimentation, intrusion and effusion produced the Newark Series of eposits and fault block phenomena. This event, termed the Palisades Disturbance, took place during the Late Triassic - Earliest Jurassic. The authors document a comparable extensional tectonic-igneous event occurring during the Late Cretaceous (Early Gulfian; Cenomanian-Santonian) along the southern margin of the cratonic platform from Arkansas to Georgia.
NASA Astrophysics Data System (ADS)
Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy
2012-09-01
To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.
Upper-mantle origin of the Yellowstone hotspot
Christiansen, R.L.; Foulger, G.R.; Evans, J.R.
2002-01-01
Fundamental features of the geology and tectonic setting of the northeast-propagating Yellowstone hotspot are not explained by a simple deep-mantle plume hypothesis and, within that framework, must be attributed to coincidence or be explained by auxiliary hypotheses. These features include the persistence of basaltic magmatism along the hotspot track, the origin of the hotspot during a regional middle Miocene tectonic reorganization, a similar and coeval zone of northwestward magmatic propagation, the occurrence of both zones of magmatic propagation along a first-order tectonic boundary, and control of the hotspot track by preexisting structures. Seismic imaging provides no evidence for, and several contraindications of, a vertically extensive plume-like structure beneath Yellowstone or a broad trailing plume head beneath the eastern Snake River Plain. The high helium isotope ratios observed at Yellowstone and other hotspots are commonly assumed to arise from the lower mantle, but upper-mantle processes can explain the observations. The available evidence thus renders an upper-mantle origin for the Yellowstone system the preferred model; there is no evidence that the system extends deeper than ???200 km, and some evidence that it does not. A model whereby the Yellowstone system reflects feedback between upper-mantle convection and regional lithospheric tectonics is able to explain the observations better than a deep-mantle plume hypothesis.
Glacier Ice Mass Fluctuations and Fault Instability in Tectonically Active Southern Alaska
NASA Technical Reports Server (NTRS)
SauberRosenberg, Jeanne M.; Molnia, Bruce F.
2003-01-01
Across southern Alaska the northwest directed subduction of the Pacific plate is accompanied by accretion of the Yakutat terrane to continental Alaska. This has led to high tectonic strain rates and dramatic topographic relief of more than 5000 meters within 15 km of the Gulf of Alaska coast. The glaciers of this area are extensive and include large glaciers undergoing wastage (glacier retreat and thinning) and surges. The large glacier ice mass changes perturb the tectonic rate of deformation at a variety of temporal and spatial scales. We estimated surface displacements and stresses associated with ice mass fluctuations and tectonic loading by examining GPS geodetic observations and numerical model predictions. Although the glacial fluctuations perturb the tectonic stress field, especially at shallow depths, the largest contribution to ongoing crustal deformation is horizontal tectonic strain due to plate convergence. Tectonic forces are thus the primary force responsible for major earthquakes. However, for geodetic sites located < 10-20 km from major ice mass fluctuations, the changes of the solid Earth due to ice loading and unloading are an important aspect of interpreting geodetic results. The ice changes associated with Bering Glacier s most recent surge cycle are large enough to cause discernible surface displacements. Additionally, ice mass fluctuations associated with the surge cycle can modify the short-term seismicity rates in a local region. For the thrust faulting environment of the study region a large decrease in ice load may cause an increase in seismic rate in a region close to failure whereas ice loading may inhibit thrust faulting.
Mud volcanoes of the Orinoco Delta, Eastern Venezuela
Aslan, A.; Warne, A.G.; White, W.A.; Guevara, E.H.; Smyth, R.C.; Raney, J.A.; Gibeaut, J.C.
2001-01-01
Mud volcanoes along the northwest margin of the Orinoco Delta are part of a regional belt of soft sediment deformation and diapirism that formed in response to rapid foredeep sedimentation and subsequent tectonic compression along the Caribbean-South American plate boundary. Field studies of five mud volcanoes show that such structures consist of a central mound covered by active and inactive vents. Inactive vents and mud flows are densely vegetated, whereas active vents are sparsely vegetated. Four out of the five mud volcanoes studied are currently active. Orinoco mud flows consist of mud and clayey silt matrix surrounding lithic clasts of varying composition. Preliminary analysis suggests that the mud volcano sediment is derived from underlying Miocene and Pliocene strata. Hydrocarbon seeps are associated with several of the active mud volcanoes. Orinoco mud volcanoes overlie the crest of a mud-diapir-cored anticline located along the axis of the Eastern Venezuelan Basin. Faulting along the flank of the Pedernales mud volcano suggests that fluidized sediment and hydrocarbons migrate to the surface along faults produced by tensional stresses along the crest of the anticline. Orinoco mud volcanoes highlight the proximity of this major delta to an active plate margin and the importance of tectonic influences on its development. Evaluation of the Orinoco Delta mud volcanoes and those elsewhere indicates that these features are important indicators of compressional tectonism along deformation fronts of plate margins. ?? 2001 Elsevier Science B.V. All rights reserved.
Supai salt karst features: Holbrook Basin, Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, J.T.
1994-12-31
More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 mmore » depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.« less
Earth Observations taken during Expedition 16/STS-120 Joint Operations
2007-10-26
ISS016-E-008436 (26 Oct. 2007) --- Beirut Metropolitan Area, Lebanon is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. The capital of Lebanon, Beirut is located along the southeastern shoreline of the Mediterranean Sea. According to geologists, the metropolitan area is built on a small peninsula composed mainly of sedimentary rock deposited over the past 100 million years or so. The growth of the city eastwards is bounded by foothills of the more mountainous interior of Lebanon (sparsely settled greenish brown region visible at upper right). While this sedimentary platform is stable, the country of Lebanon is located along a major transform fault zone, or region where the African and Arabian tectonic plates are moving laterally in relation to (and against) each other. This active tectonism creates an earthquake hazard for the country. The Roum Fault, one of the fault strands that is part of the transform boundary, is located directly to the south of the Beirut metropolitan area. Other distinctive features visible in this image include the Rafic Hariri Airport at lower right, the city sports arena at center, and several areas of green and open space (such a large golf course at center). Also visible in the image are several plumes of sediment along the coastline -- the most striking of which are located near the airport. The general lack of vegetation in the airport may promote higher degrees of soil transport by surface water runoff or wind.
New insights into the tectonic evolution of the Boconó Fault, Mérida Andes, Venezuela
NASA Astrophysics Data System (ADS)
Backé, G.
2006-12-01
The Boconó fault is a major right-lateral strike-slip fault that cuts along strike the Mérida Andes in Venezuela. The uplift of this mountain range started in the Miocene as a consequence of the relative oblique convergence between two lithospheric units named the Maracaibo block to the northwest and the Guyana shield to the southeast. Deformation in the Mérida Andes is partitioned between a strike-slip component along the Boconó fault and shortening perpendicular to the belt. Distinctive features define the Boconó fault: it is shifted southward relative to the chain axis and it does not have a continuous and linear trace but is composed of several fault segments of different orientations striking N35°E to N65°E. Quaternary fault strike-slip motion has been evidenced by various independent studies. However, onset of the strike-slip motion, fault offset and geometry at depth remains a matter of debate. Our work, based on morphostructural analyses of satellite and digital elevation model imagery, provides new data on both the geometry and the tectonic evolution of this major structure. We argue that the Boconó fault affects only the upper crust and connects at depth to a décollement. Consequently, it can not be considered as a plate boundary. The Boconó fault does however form the boundary between two different tectonic areas in the central part of the Mérida Andes as revealed by the earthquake focal mechanisms. South of the Boconó fault, the focal mechanisms are mainly compressional and reverse oblique-slip in agreement with NW SE shortening in the foothills. North of the Boconó fault, extensional and strike-slip deformation dominates. Microtectonic measurements collected in the central part of the Boconó fault are characterized by polyphased tectonics. The dextral shearing along the fault is superimposed to reverse oblique-slip to reverse motion, showing that initiation of transcurrent movement is more likely to have occurred after a certain amount of shortening. The present day strain partitioning along the Mérida Andes seems to be younger than the rise of the chain and coeval with the initiation of right-lateral shearing along the Boconó fault, which would have then initiated in the Pliocene. The Mérida Andes can be therefore considered as a case study of the kinematic evolution of a major strike-slip fault.
Brown, Philip Monroe; Miller, James A.; Swain, Frederick Morrill
1972-01-01
This report describes and interprets the results of a detailed subsurface mapping program undertaken in that part of the Atlantic Coastal Plain which extends from the South Carolina and North Carolina border through Long Island, N.Y. Data obtained from more than 2,200 wells are analyzed. Seventeen chronostratigraphic units are mapped in the subsurface. They range in age from Jurassic(?) to post-Miocene. The purpose of the mapping program was to determine the external and internal geometry of mappable chronostratigraphic units and to derive and construct a permeability-distribution network for each unit based upon contrasts in the textures and compositions of its contained sediments. The report contains a structure map and a combined isopach, lithofacies, and permeability-distribution map for each of the chronostratigraphic units delineated in the subsurface. In addition, it contains a map of the top of the basement surface. These maps, together with 36 stratigraphic cross sections, present a three-dimensional view of the regional subsurface hydrogeology. They provide focal points of reference for a discussion of regional tectonics, structure, stratigraphy, and permeability distribution. Taken together and in chronologic sequence, the maps constitute a detailed sedimentary model, the first such model to be constructed for the middle Atlantic Coastal Plain. The chronostratigraphic units mapped record a structural history dominated by lateral and vertical movement along a system of intersecting hinge zones. Taphrogeny, related to transcurrent faulting, is the dominant type of deformation that controlled the geometry of the sedimentary model. Twelve of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are independent of the present-day configuration of the underlying basement surface. These 12 units, classified as genetically unrooted units, are assigned to a first-order tectonic stage. A structural model is proposed whose alinements of positive and negative structural features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant features of the structural model are northeast-plunging half grabens arranged en echelon and bordered by northeast-plunging fault-block anticlines. Tension-type hinge zones that strike north lie athwart the half grabens. Five of the seventeen chronostratigraphic units mapped have depositional alinements and thickening trends that are accordant with the present-day configuration of the underlying basement surface. These five units, classified as genetically rooted units, are assigned to a second-order tectonic stage. A structural model is proposed whose alinements of positive and negative features are accordant with the depositional geometry of the chronostratigraphic units assigned to this tectonic stage. The dominant feature of this model is a graben that stands tangential to southeast-plunging asymmetrical anticlines. Tension-type hinge zones that strike northeast lie athwart the graben. To account for the semiperiodic realinement of structural features that has characterized the history of the region and as a working hypothesis, we propose that the dominant tectonic element, which is present in the area between north Florida and Long Island, N.Y., is a unit-structural block, a ?basement? block, bounded by wrench-fault zones. We propose that forces derived principally from the rotation and precession of the earth act on the unit-structural block and deform it. Two tectonic models are proposed. One model is compatible with the structural and sedimentary geometries that are associated with chronostratigraphic units assigned to a first-order tectonic stage. It features tension-type hinge zones that strike north and shear-type hinge zones that strike northeast. The other model is compatible with the structural and sedimentary geometries associated with chronostratigraphi
NASA Astrophysics Data System (ADS)
Dias, N. A.; Matias, L.; Tellez, J.; Senos, L.; Gaspar, J. L.
2003-04-01
The Azores Islands, located at a tectonic triple Junction, geodynamically are a highly active place. The seismicity in this region occurs mainly in the form of two types of seismic swarms with tectonic and/or volcanic origins, lasting from hours to years. In some cases the swarm follows a main stronger shock, while in others the more energetic event occurs sometime after the beginning of the swarm. In order to understand the complex phenomena of this region, a multidisciplinary approach is needed, involving geophysical, geological and geochemical studies such as the one being carried under the MASHA project (POCTI/CTA/39158/2001), On July 9th 1998 an Mw=6.2 earthquake stroked the island of Faial, in the central group of the Azores archipelago, followed by a seismic swarm still active today. We will present some preliminary results of the shear-wave polarization analysis of a selected dataset of events of this swarm. These correspond to the 112 best- constrained events, record during the first 2 weeks by the seismic network deployed on the 3 islands surrounding the area of the main shock. The objective was to analyse the behaviour of the S wave polarization and the eventual relationship with the presence of seismic anisotropy under the seismic stations, and to correlate this with the regional structure and origin of the Azores plateau. Two main tectonic features are observable on the islands, one primarily orientated SE-NW and the other crossing it roughly with the WNW-ESE direction. The polarization direction observed in the majority of the seismic stations is not stable, varying from SE-NW to WSW-ENE, and showing also the presence in same cases of shear-wave splitting, indicating the presence of anisotropy. Part of the polarization seems to be coherent with the direction of the local tectonic features, but its instability suggest a more complex seismic anisotropy than that proposed by the model EDA of Crampin. Furthermore, the dataset revealed some limitations to be corrected, such us: the poor azimuthal coverage, the focal mechanism of some events unknown, and the presence of a precursor to the shear-wave marked as an S-wave and affecting the polarization interpretation
NASA Astrophysics Data System (ADS)
Norini, G.; Groppelli, G.; Sulpizio, R.; Carrasco-Núñez, G.; Dávila-Harris, P.; Pellicioli, C.; Zucca, F.; De Franco, R.
2015-08-01
The Los Humeros Volcanic Complex (LHVC) is an important geothermal target in the Trans-Mexican Volcanic Belt. Understanding the structure of the LHVC and its influence on the occurrence of thermal anomalies and hydrothermal fluids is important to get insights into the interplay between the volcano-tectonic setting and the characteristics of the geothermal resources in the area. In this study, we present a structural analysis of the LHVC, focused on Quaternary tectonic and volcano-tectonic features, including the areal distribution of monogenetic volcanic centers. Morphostructural analysis and structural field mapping revealed the geometry, kinematics and dynamics of the structural features in the study area. Also, thermal infrared remote sensing analysis has been applied to the LHVC for the first time, to map the main endogenous thermal anomalies. These data are integrated with newly proposed Unconformity Bounded Stratigraphic Units, to evaluate the implications for the structural behavior of the caldera complex and geothermal field. The LHVC is characterized by a multistage formation, with at least two major episodes of caldera collapse: Los Humeros Caldera (460 ka) and Los Potreros Caldera (100 ka). The study suggests that the geometry of the first collapse recalls a trap-door structure and impinges on a thick volcanic succession (10.5-1.55 Ma), now hosting the geothermal reservoir. The main ring-faults of the two calderas are buried and sealed by the widespread post-calderas volcanic products, and for this reason they probably do not have enough permeability to be the main conveyers of the hydrothermal fluid circulation. An active, previously unrecognized fault system of volcano-tectonic origin has been identified inside the Los Potreros Caldera. This fault system is the main geothermal target, probably originated by active resurgence of the caldera floor. The active fault system defines three distinct structural sectors in the caldera floor, where the occurrence of hydrothermal fluids is controlled by fault-induced secondary permeability. The resurgence of the caldera floor could be induced by an inferred magmatic intrusion, representing the heat source of the geothermal system and feeding the simultaneous monogenetic volcanic activity around the deforming area. The operation of the geothermal field and the plans for further exploration should focus on, both, the active resurgence fault system and the new endogenous thermal anomalies mapped outside the known boundaries of the geothermal field.
New evidence for global tectonic zones on Venus
NASA Technical Reports Server (NTRS)
Kozak, Richard C.; Schaber, Gerald G.
1989-01-01
Venera 15 and 16 spacecraft images show clear evidence of major crustal disruptions on Venus which have been interpreted to indicate crustal divergence. Complementary to the divergent zones are mountain belts that border the continent-like high terrains. The requisite transcurrent motions appear to be manifested as diffuse shear zones. The rift zones form an interconnected transpolar system which ties in with previously recognized equatorial disruption zones, suggesting a global tectonic network. Several independent lines of evidence suggest that the tectonism may be geologically young.
Crustal deformation: Earth vs Venus
NASA Technical Reports Server (NTRS)
Turcotte, D. L.
1989-01-01
It is timely to consider the possible tectonic regimes on Venus both in terms of what is known about Venus and in terms of deformation mechanisms operative on the earth. Plate tectonic phenomena dominate tectonics on the earth. Horizontal displacements are associated with the creation of new crust at ridges and destruction of crust at trenches. The presence of plate tectonics on Venus is debated, but there is certainly no evidence for the trenches associated with subduction on the earth. An essential question is what kind of tectonics can be expected if there is no plate tectonics on Venus. Mars and the Moon are reference examples. Volcanic constructs appear to play a dominant role on Mars but their role on Venus is not clear. On single plate planets and satellites, tectonic structures are often associated with thermal stresses. Cooling of a planet leads to thermal contraction and surface compressive features. Delamination has been propsed for Venus by several authors. Delamination is associated with the subduction of the mantle lithosphere and possibly the lower crust but not the upper crust. The surface manifestations of delamination are unclear. There is some evidence that delamination is occurring beneath the Transverse Ranges in California. Delamination will certainly lead to lithospheric thinning and is likely to lead to uplift and crustal thinning.
NASA Astrophysics Data System (ADS)
Bhakuni, S. S.; Luirei, Khayingshing; Kothyari, Girish Ch.; Imsong, Watinaro
2017-04-01
Structural and morphotectonic signatures in conjunction with the geomorphic indices are synthesised to trace the role of transverse tectonic features in shaping the landforms developed along the frontal part of the eastern Arunachal sub-Himalaya. Mountain front sinuosity (Smf) index values close to one are indicative of the active nature of the mountain front all along the eastern Arunachal Himalaya, which can be directly attributed to the regional uplift along the Himalayan Frontal Thrust (HFT). However, the mountain front is significantly sinusoidal around junctions between HFT/MBT (Main Boundary Thrust) and active transverse faults. The high values of stream length gradient (SL) and stream steepness (Ks) indices together with field evidence of fault scarps, offset of terraces, and deflection of streams are markers of neotectonic uplift along the thrusts and transverse faults. This reactivation of transverse faults has given rise to extensional basins leading to widening of the river courses, providing favourable sites for deposition of recent sediments. Tectonic interactions of these transverse faults with the Himalayan longitudinal thrusts (MBT/HFT) have segmented the mountain front marked with varying sinuosity. The net result is that a variety of tectonic landforms recognized along the mountain front can be tracked to the complex interactions among the transverse and longitudinal tectonic elements. Some distinctive examples are: in the eastern extremity of NE Himalaya across the Dibang River valley, the NW-SE trending mountain front is attenuated by the active Mishmi Thrust that has thrust the Mishmi crystalline complex directly over the alluvium of the Brahmaputra plains. The junction of the folded HFT and Mishmi Thrust shows a zone of brecciated and pulverized rocks along which transverse axial planar fracture cleavages exhibit neotectonic activities in a transverse fault zone coinciding with the Dibang River course. Similarly, the transverse faults cut the mountain front along the Sesseri, Siluk, Siku, Siang, Mingo, Sileng, Dikari, and Simen rivers. At some such junctions, landforms associated with the active right-lateral strike-slip faults are superposed over the earlier landforms formed by transverse normal faults. In addition to linear transverse features, we see evidence that the fold-thrust belt of the frontal part of the Arunachal Himalaya has also been affected by the neotectonically active NW-SE trending major fold known as the Siang antiform that again is aligned transverse to the mountain front. The folding of the HFT and MBT along this antiform has reshaped the landscape developed between its two western and eastern limbs running N-S and NW-SE, respectively. The transverse faults are parallel to the already reported deep-seated transverse seismogenic strike-slip fault. Therefore, a single take home message is that any true manifestation of the neotectonics and seismic hazard assessment in the Himalayan region must take into account the role of transverse tectonics.
NASA Astrophysics Data System (ADS)
Zhang, Letian
2017-09-01
The Asian continent was formed through the amalgamation of several major continental blocks that were formerly separated by the Paleo-Asian and Tethyan Oceans. During this process, the Asian continent underwent a long period of continental crustal growth and tectonic deformation, making it the largest and youngest continent on Earth. This paper presents a review of the application of geophysical electromagnetic methods, mainly the magnetotelluric (MT) method, in recent investigations of the diverse tectonic features across the Asian continent. The case studies cover the major continental blocks of Asia, the Central Asian orogenic system, the Tethyan orogenic system, as well as the western Pacific subduction system. In summary, most of the major continental blocks of Asia exhibit a three-layer structure with a resistive upper crust and upper mantle and a relatively conductive mid-lower crust. Large-scale conductors in the upper mantle were interpreted as an indication of lithospheric modification at the craton margins. The electrical structure of the Central Asian orogenic system is generally more resistive than the bordering continental blocks, whereas the Tethyan orogenic system displays more conductive, with pervasive conductors in the lower crust and upper mantle. The western Pacific subduction system shows increasing complexity in its electrical structure from its northern extent to its southern extent. In general, the following areas of the Asian continent have increasingly conductive lithospheric electrical structures, which correspond to a transition from the most stable areas to the most active tectonic areas of Asia: the major continental blocks, the accretionary Central Asian orogenic system, the collisional Tethyan orogenic system, and the western Pacific subduction system. As a key part of this review, a three-dimensional (3-D) model of the lithospheric electrical structure of a large portion of the Tibetan Plateau is presented and discussed in detail; the model indicates tearing of the underthrusting Indian slab as well as complex crustal conductor geometries, which are not obviously consistent with the hypothesis of a continuous, eastward channel flow. These studies have greatly enhanced our knowledge of the formation and deformation processes of the Asian continent. Lastly, future research to expand field data coverage, improve related techniques, and integrate data from other disciplines is suggested.
Tectonic control on the genesis of magmas in the New Hebrides arc (Vanuatu)
NASA Astrophysics Data System (ADS)
Beier, Christoph; Brandl, Philipp A.; Lima, Selma M.; Haase, Karsten M.
2018-07-01
We present here new bathymetric, petrological and geochemical whole rock, glass and mineral data from the submarine Epi volcano in the New Hebrides (Vanuatu) island arc. The structure has previously been interpreted to be part of a larger caldera structure but new bathymetric data reveal that the volcanic cones are aligned along shear zones controlled by the local tectonic stress field parallel to the recent direction of subduction. We aim to test if there is an interaction between local tectonics and magmatism and to what extent the compositions of island arc volcanoes may be influenced by their tectonic setting. Primitive submarine Epi lavas and those from the neighbouring Lopevi and Ambrym islands originate from a depleted mantle wedge modified by addition of subduction zone components. Incompatible element ratios sensitive to fluid input (e.g., Th/Nb, Ce/Yb) in the lavas are positively correlated with those more sensitive to mantle wedge depletion (e.g., Nb/Yb, Zr/Nb) amongst the arc volcanoes suggesting that fluids or melts from the subducting sediments have a stronger impact on the more depleted compositions of the mantle wedge. The whole rock, glass and mineral major and trace element compositions and the occurrence of exclusively normally zoned clinopyroxene and plagioclase crystals combined with the absence of inversely zoned crystals and water-bearing phases in both mafic and evolved lavas suggest that the erupted melt was relatively dry compared to other subduction zone melts and has experienced little disequilibrium modification by melt mixing or assimilation. Our data also imply that differentiation of amphibole is not required to explain the incompatible element patterns but may rather result from extensive clinopyroxene fractionation in agreement with petrographic observations. Thermobarometric calculations indicate that the melts fractionated continuously during ascent, contrasting with fractionation during stagnation in an established crustal magma reservoir. We interpret the occurrence of this fractional crystallisation end-member in a relatively thick island arc crust ( 30 km thickness) to result from isolated and relatively rapid ascent of melts, most likely through a complex system of dykes and sills that developed due to the tectonic positioning of Epi in a complex tectonic zone between a compressional environment in the north and an extensional setting in the south. We can show that the alignment of the cones largely depends on the local tectonic stress field at Epi that is especially influenced by a large dextral strike-slip zone, indicating that structural features have a significant impact on the location and composition of volcanic edifices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barr, G.E.; Borns, D.J.; Fridrich, C.
A comprehensive collection of scenarios is presented that connect initiating tectonic events with radionuclide releases by logical and physically possible combinations or sequences of features, events and processes. The initiating tectonic events include both discrete faulting and distributed rock deformation developed through the repository and adjacent to it, as well as earthquake-induced ground motion and changes in tectonic stress at the site. The effects of these tectonic events include impacts on the engineered-barrier system, such as container rupture and failure of repository tunnels. These effects also include a wide range of hydrologic effects such as changes in pathways and flowmore » rates in the unsaturated and saturated zones, changes in the water-table configuration, and in the development of perched-water systems. These scenarios are intended go guide performance-assessment analyses and to assist principal investigators in how essential field, laboratory, and calculational studies are used. This suite of scenarios will help ensure that all important aspects of the system disturbance related to a tectonic scenario are captured in numerical analyses. It also provides a record of all options considered by project analysts to provide documentation required for licensing agreement. The final portion of this report discusses issues remaining to be addressed with respect to tectonic activity. 105 refs.« less
Multi-scale mass movements: example of the Nile deep-sea fan (NDSF)
NASA Astrophysics Data System (ADS)
Loncke, L.; Droz, L.; Bellaiche, G.; Gaullier, V.; Mascle, J.; Migeon, S.
2003-04-01
The almost 90 000 km2 NDSF, fed by one of the major river in the world, has been nearly entirely surveyed by swath bathymetry and back-scatter imagery during the last four years. Seismic-reflection and 3-5 kHz profiles, and in some places, high resolution data were collected. Some profiles have been provided by BP-Egypt. Using this set of data, we have conducted a multi-scale regional synthesis which stresses the importance of gravity processes in the edification and evolution of this major deep turbidite system. Gravity processes range from regional gravity-driven spreading and gliding of the Plio-Pleistocene sediments above the Messinian mobile evaporites, to huge collapses of large areas of the upper continental slope as well as very localized levee destabilizations and related avulsion mechanisms. The Eastern - tectonized - area of the NDSF is characterized by lens-shaped transparent bodies, likely indicating debris-flow deposits, settled at crestal graben flanks, themselves generated by reactive diapir rise. Debris flows are probably triggered by local readjustments of salt-related tectonic features destabilizing their sedimentary cover. In contrast, within the poorly deformed Western part of the NDSF, we mainly observe recent slumping and gliding phenomenons, incising the upper slope where salt layers are absent. These slumps and glidings evolved downslope to large debris flows. Some of them exhibit volumes up to 1900 km3 and are covered by recent stacked channel-levees units. Smaller scale debris-flows are inter-fingered within these constructional units and led to numerous channel migrations and avulsions, characterized by typical HARP's seismic facies. Recent sedimentary destabilizations seem to be associated with gas seeping or under-compacted mud ascents: in the Central NDSF, the association between pock-marks (or mounds) and destabilizated masses suggest the existence of gas hydrates. Given the variety of processes (either triggered by tectonics, sedimentary overloading, sea-level fluctations, or fluids) and scales of the identified destabilizations, the NDSF appears as an excellent natural laboratory to study mass movement processes.
NASA Astrophysics Data System (ADS)
Hui, F.; Qing, Z.; Gengen, Q.; Fagen, P.; Dawei, B.; Baotun, G.; Jingqi, L.; Changwang, L.; Xiaochang, L.; Meixing, H.; Bingrui, D.
2012-12-01
Being constituted by the Seberia, Northern China fossil plate and Pacific Plate, the tectonics of Northeast China are very complicated. In order to study the electrical structure in these areas, the project SinoProbe-01-04 'Experimental study of 'standard monitoring network' of continental EM parameters in Northeast China' have established a 4°×4°regional MT array covering the whole Northeast China(Fig. 1). To make sure that MT data observed on each standard point representatively, a cross profile with the standard point being center and eight auxiliary measuring points around has been designed in practical work, and the same direction of the physical measuring point should have 20 km space, the observation time should be more than 120 hours in standard point and more than 24 hours in each auxiliary station. Both broadband MT equipment (V5-2000) and long-period MT equipment (LEMI-417M) have been used together in standard point, then the ultra-wideband electromagnetic signals at 320HZ-1/10000Hz can be acquired by combining the field data observed by each equipment. Eleven MT standard network control point with total 99 physical measuring points have been finished in 2010, then those works were repeated again in 2011 to make sure observed result reliable. Based on the observed result, this article preliminary analysis the electrical structure of each major tectonic element in Northeast China, which including the regularity of distribution of regional electrical spindle, the distribution characteristics of vertical conductivity, development status of the low resistivity layer in the crust, and the depth of the high conductivity layer in upper mantle. It has been founded that the electrical features of the major tectonic element in Northeast China are different and appear electrical-heterogeneous in cross direction. Fig.1 MT array observed site
Venus' Chasmata and Earth's Spreading Centers: A Topographic Comparison
NASA Astrophysics Data System (ADS)
Stoddard, P. R.; Jurdy, D. M.
2008-12-01
Like the Earth, Venus has a global rift system, which has been cited as evidence of tectonic activity, despite the apparent lack of Earth-style plate tectonics. Both systems are marked by large ridges, usually with central grabens. On Earth, the topography of the rifts can be modeled well by a cooling half-space and the spreading of two divergent plates. The origin of the topographic signature on Venus, however, remains enigmatic. Venus' rift zones (termed "chasmata") can be fit by four great circle arcs extending 1000s of kilometers. The Venus chasmata system measures 54,464 km, which when corrected for the smaller size of the planet, nearly matches the 59,200-km total length of the spreading ridges determined for Earth. As on Earth, the chasmata with the greatest relief (7 km in just a 30-km run for Venus) represent the most recent tectonic activity. We use topographic profiles to look for well-understood terrestrial analogs to Venusian features. Focusing on mid-ocean ridge systems on Earth, we examine the variation along individual ridges, or rises, due to the gradual change in spreading rate (and thus cooling times). We then analyze the difference between fast and slow ridges, and propose that this technique may also be used to pick plate boundaries along spreading centers (SAM/AFR vs. NAM/AFR, e.g.). These profiles are then compared to those for Venus' rifts. Topographic profiles are based on the Magellan (Venus) and ETOPO5 (Earth) data sets. Long wavelength features appear similar to spreading systems on Earth, suggesting a deep, thermal cause. Short wavelength features, such as rift troughs and constructional edifices, are quite different, however, as expected from the vastly different surface conditions. Comparison of topographic profiles from Venus and Earth may lend insight into tectonic features and activity on our sister planet.
NASA Astrophysics Data System (ADS)
Zámolyi, A.; Horváth, F.; Kovács, G.; Timár, G.; Székely, B.
2009-04-01
Rocks, even in tectonically active areas are very solid compared to the changes within the scientific theories that occured especially in Eastern Europe as the political landscape changed and the separation into socialist and capitalist countries started to fade. While in Western Europe, Wegener's mobilistic approach gained widespread acceptance in the 1960-ies, in the countries of Eastern Europe (partly due to political reasons) fixistic ideas were supported. Despite the fact that most important early concepts in Hungarian tectonics were born about a century ago as a results of exploration of the Lake Balaton and its surroundings conducted by Lajos Lóczy, initiatives to integrate various geodynamic observations were rare exceptions in the second half of the 20th century. The high priority of economic geologic prospection in order to find raw materials resulted in an enormous amount of observations. In the central Transdanubian Range (TR), hosting bauxite, coal and manganese deposits, extensive surveying was carried out according to fixistic tectonic concepts. Although the recognition of faults was of vital importance in mining, mapped faults were rarely integrated into a global geodynamic model. A pioneering approach was presented by Mészáros (1983), who compiled a 1: 100 000 scale structural and economic-geologic map of large parts of TR. The map focuses on the Bakony hills that are of key importance for the geodynamic understanding of the formation of PB. TR forms inselbergs with well preserved outcrops, which is rare in PB, thus allowing for direct measurements of fault striations and fault plane orientations. Prinz (1926) maintained the theory that the TR is a rigid block and named it Tisia block. An alternative to this approach was the monograph of Uhlig (1907) proposing mobilistic concepts. Csontos et al (1991) reviewed the evolution of neogene stress-fields in the Carpatho-Pannonian region observing microtectonic faults in TR. The authors conclude that the faults mapped by Mészáros (1983) coincide fairly well with their microtectonic measurements. TR is nowadays interpreted as the uppermost Cretaceous thrust sheet of the Alpine nappes based on the interpretation of seismic surveys (Rumpler & Horváth, 1988; Horváth, 1993) and microtectonic measurements (Kiss & Fodor, 2007). We integrated the map into a GIS environment in order to evaluate the spatial accuracy of tectonic features and deformation style in the study area. Georeferencing was based upon control points applying rubber sheeting. Geological formations were digitized as polygons with their respective attributes (colour- or numerically coded). Three different categories of bounding elements are represented on the map: established, supposed and covered by younger geologic formations. Mészáros put a major emphasis on tectonic features, using 21 different line-types for representation. Digital terrain analysis methods using a 10 m DTM reveal a good correlation of the fault pattern with geomorphologic features, especially in the category of confirmed strike-slip faults. The connection of tectonic elements with the topography is a very anticipatory way of thinking for the early 1980s that became widely accepted by the end of the century. Csontos, L., Tari, G., Bergerat, F., Fodor, L. 1991. Tectonophysics, 199, 73-91. Horváth, F. 1993. In: Cloething, S., Sassi, W. & Horváth, F. (eds.) Tectonophysics, 226, 333-358. Kiss, A., Fodor, L. I. 2007. Geologica Carpathica, 58(5), 465-475. Mészáros, J. 1983. Ann. Rep. Hung. Geol. Inst. 1981, 485-502. Prinz, Gy. 1926. Danubia könyvkiadó, Pécs, 202 p. Rumpler, J., Horváth, F. 1988. In: L.H. Royden and F. Horváth (eds.) AAPG Mem. 45, Tulsa, Okl., 153-169p. Uhlig, V. 1907. Sitz. Ber. Akad. Wiss., math.- nat., Kl. 116(1), 871-982.
Tectonically Induced Anomalies Without Large Earthquake Occurrences
NASA Astrophysics Data System (ADS)
Shi, Zheming; Wang, Guangcai; Liu, Chenglong; Che, Yongtai
2017-06-01
In this study, we documented a case involving large-scale macroscopic anomalies in the Xichang area, southwestern Sichuan Province, China, from May to June of 2002, after which no major earthquake occurred. During our field survey in 2002, we found that the timing of the high-frequency occurrence of groundwater anomalies was in good agreement with those of animal anomalies. Spatially, the groundwater and animal anomalies were distributed along the Anninghe-Zemuhe fault zone. Furthermore, the groundwater level was elevated in the northwest part of the Zemuhe fault and depressed in the southeast part of the Zemuhe fault zone, with a border somewhere between Puge and Ningnan Counties. Combined with microscopic groundwater, geodetic and seismic activity data, we infer that the anomalies in the Xichang area were the result of increasing tectonic activity in the Sichuan-Yunnan block. In addition, groundwater data may be used as a good indicator of tectonic activity. This case tells us that there is no direct relationship between an earthquake and these anomalies. In most cases, the vast majority of the anomalies, including microscopic and macroscopic anomalies, are caused by tectonic activity. That is, these anomalies could occur under the effects of tectonic activity, but they do not necessarily relate to the occurrence of earthquakes.
NASA Astrophysics Data System (ADS)
Bouaziz, Samir; Barrier, Eric; Soussi, Mohamed; Turki, Mohamed M.; Zouari, Hédi
2002-11-01
A reconstruction of the tectonic evolution of the northern African margin in Tunisia since the Late Permian combining paleostress, tectonic stratigraphic and sedimentary approaches allows the characterization of several major periods corresponding to consistent stress patterns. The extension lasting from the Late Permian to the Middle Triassic is contemporaneous of the rifting related to the break up of Pangea. During Liassic times, regional extensional tectonics originated the dislocation of the initial continental platform. In northern Tunisia, the evolution of the Liassic NE-SW rifting led during Dogger times to the North African passive continental margin, whereas in southern Tunisia, a N-S extension, associated with E-W trending subsiding basins, lasted from the Jurassic until the Early Cretaceous. After an Upper Aptian-Early Albian transpressional event, NE-SW to ENE-WSW trending extensions prevailed during Late Cretaceous in relationship with the general tectonic evolution of the northeastern African plate. The inversions started in the Late Maastrichtian-Paleocene in northern Tunisia, probably as a consequence of the Africa-Eurasia convergence. Two major NW-SE trending compressions occurred in the Late Eocene and in the Middle-Late Miocene alternating with extensional periods in the Eocene, Oligocene, Early-Middle Miocene and Pliocene. The latter compressional event led to the complete inversion of the basins of the northwestern African plate, originating the Maghrebide chain. Such a study, supported by a high density of paleostress data and including complementary structural and stratigraphic approaches, provides a reliable way of determining the regional tectonic evolution.
On the breakup of tectonic plates by polar wandering
NASA Technical Reports Server (NTRS)
Liu, H.-S.
1974-01-01
The equations for the stresses in a homogeneous shell of uniform thickness caused by a shift of the axis of rotation are derived. The magnitude of these stresses reaches a maximum value of the order of 10 to the 9th power dyn/sq cm, which is sufficient for explaining a tectonic breakup. In order to deduce the fracture pattern according to which the breakup of tectonic plates can be expected the theory of plastic deformation of shells is applied. The analysis of this pattern gives an explanation of the existing boundary systems of the major tectonic plates as described by Morgan (1968), LePichon (1968) and Isacks et al. (1968).
NASA Astrophysics Data System (ADS)
Miccadei, E.; Piacentini, T.; Berti, C.
2010-12-01
The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.
Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation
NASA Astrophysics Data System (ADS)
Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel
2016-05-01
In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.
Concept for a research project in early crustal genesis
NASA Technical Reports Server (NTRS)
Phillips, R. J. (Compiler); Ashwal, L. (Compiler)
1983-01-01
Planetary volatiles, physical and chemical planetary evolution, surface processes, planetary formation, metallogenesis, crustal features and their development, tectonics, and paleobiology are discussed.
NASA Astrophysics Data System (ADS)
Heron, Philip J.; Pysklywec, Russell N.
2016-05-01
Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).
The tectonic puzzle of the Messina area (Southern Italy): Insights from new seismic reflection data
Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica
2012-01-01
The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side. PMID:23240075
Recent tectonic activity on Pluto driven by phase changes in the ice shell
NASA Astrophysics Data System (ADS)
Hammond, Noah P.; Barr, Amy C.; Parmentier, Edgar M.
2016-07-01
The New Horizons spacecraft has found evidence for geologic activity on the surface of Pluto, including extensional tectonic deformation of its water ice bedrock see Moore et al. (2016). One mechanism that could drive extensional tectonic activity is global surface expansion due to the partial freezing of an ocean. We use updated physical properties for Pluto and simulate its thermal evolution to understand the survival of a possible subsurface ocean. For thermal conductivities of rock less than 3 W m-1 K-1, an ocean forms and at least partially freezes, leading to recent extensional stresses in the ice shell. In scenarios where the ocean freezes and the ice shell is thicker than 260 km, ice II forms and causes global volume contraction. Since there is no evidence for recent compressional tectonic features, we argue that ice II has not formed and that Pluto's ocean has likely survived to present day.
NASA Technical Reports Server (NTRS)
Engeln, J. F.; Stein, S.
1984-01-01
A new model for the Easter plate is presented in which rift propagation has resulted in the formation of a rigid plate between the propagating and dying ridges. The distribution of earthquakes, eleven new focal mechanisms, and existing bathymetric and magnetic data are used to describe the tectonics of this area. Both the Easter-Nazca and Easter-Pacific Euler poles are sufficiently close to the Easter plate to cause rapid changes in rates and directions of motion along the boundaries. The east and west boundaries are propagating and dying ridges; the southwest boundary is a slow-spreading ridge and the northern boundary is a complex zone of convergent and transform motion. The Easter plate may reflect the tectonics of rift propagation on a large scale, where rigid plate tectonics requires boundary reorientation. Simple schematic models to illustrate the general features and processes which occur at plates resulting from large-scale rift propagation are used.
The tectonic puzzle of the Messina area (Southern Italy): insights from new seismic reflection data.
Doglioni, Carlo; Ligi, Marco; Scrocca, Davide; Bigi, Sabina; Bortoluzzi, Giovanni; Carminati, Eugenio; Cuffaro, Marco; D'Oriano, Filippo; Forleo, Vittoria; Muccini, Filippo; Riguzzi, Federica
2012-01-01
The Messina Strait, that separates peninsular Italy from Sicily, is one of the most seismically active areas of the Mediterranean. The structure and seismotectonic setting of the region are poorly understood, although the area is highly populated and important infrastructures are planned there. New seismic reflection data have identified a number of faults, as well as a crustal scale NE-trending anticline few km north of the strait. These features are interpreted as due to active right-lateral transpression along the north-eastern Sicilian offshore, coexisting with extensional and right-lateral transtensional tectonics in the southern Messina Strait. This complex tectonic network appears to be controlled by independent and overlapping tectonic settings, due to the presence of a diffuse transfer zone between the SE-ward retreating Calabria subduction zone relative to slab advance in the western Sicilian side.
Seismic evolution of the 1989-1990 eruption sequence of Redoubt Volcano, Alaska
Power, J.A.; Lahr, J.C.; Page, R.A.; Chouet, B.A.; Stephens, C.D.; Harlow, D.H.; Murray, T.L.; Davies, J.N.
1994-01-01
Redoubt Volcano in south-central Alaska erupted between December 1989 and June 1990 in a sequence of events characterized by large tephra eruptions, pyroclastic flows, lahars and debris flows, and episodes of dome growth. The eruption was monitored by a network of five to nine seismic stations located 1 to 22 km from the summit crater. Notable features of the eruption seismicity include : (1) small long-period events beginning in September 1989 which increased slowly in number during November and early December; (2) an intense swarm of long-period events which preceded the initial eruptions on December 14 by 23 hours; (3) shallow swarms (0 to 3 km) of volcano-tectonic events following each eruption on December 15; (4) a persistent cluster of deep (6 to 10 km) volcano-tectonic earthquakes initiated by the eruptions on December 15, which continued throughout and beyond the eruption; (5) an intense swarm of long-period events which preceded the eruptions on January 2; and (6) nine additional intervals of increased long-period seismicity each of which preceded a tephra eruption. Hypocenters of volcano-tectonic earthquakes suggest the presence of a magma source region at 6-10 km depth. Earthquakes at these depths were initiated by the tephra eruptions on December 15 and likely represent the readjustment of stresses in the country rock associated with the removal of magma from these depths. The locations and time-history of these earthquakes coupled with the eruptive behavior of the volcano suggest this region was the source of most of the erupted material during the 1989-1990 eruption. This source region appears to be connected to the surface by a narrow pipe-like conduit as inferred from the hypocenters of volcano-tectonic earthquakes. Concentrations of shallow volcano-tectonic earthquakes followed each of the tephra eruptions on December 15; these shocks may represent stress readjustment in the wall rock related to the removal of magma and volatiles at these depths. This shallow zone was the source area of the majority of long-period seismicity through the remainder of the eruption. The long-period seismicity likely reflects the pressurization of the shallow portions of the magmatic system. ?? 1994.
Crestal graben associated with lobate scarps on Mercury
NASA Astrophysics Data System (ADS)
Vaughan, Rubio; Foing, Bernard; van Westrenen, Wim
2014-05-01
Mercury is host to various tectonic landforms which can be broadly divided into localized, basin-related features on the one hand, and regional or global features on the other. The globally distributed tectonic landforms are dominantly contractional in nature and consist of lobate scarps, wrinkle ridges and high-relief ridges [1]. Until now, extensional features have only been found within the Caloris basin, several smaller impact basins, such as Raditladi, Rachmaninoff & Rembrandt [2], and within volcanic deposits in the northern smooth plains [3,4]. New imagery obtained from the MESSENGER spacecraft, shows localized, along-strike troughs associated with several lobate scarps on Mercury. These troughs occur at or near the crest of the lobate scarps and are interpreted to be graben. While previously discovered graben on Mercury are thought to be related to thermal contraction of localized volcanic fill, these crestal graben are the first extensional tectonic features which have been discovered outside of such settings and have not been reported in literature previously. Of the 49 lobate scarps investigated in this study, 7 exhibit graben along their crest. The graben are usually only present along small sections of the scarp, but in some cases extend up to 180 km along the scarp crest. The persistent along-strike orientation of the graben with respect to the scarps, combined with several observed cross-cutting relations, suggests that the graben developed coeval with the formation of the lobate scarps. Numerical mechanical modeling using the Discrete Element Method (DEM) is currently being employed in order to better understand the mechanisms which control the formation of crestal graben associated with lobate scarps on Mercury. References: [1] Watters, Thomas R., and F. Nimmo. "The tectonics of Mercury." Planetary Tectonics 11 (2010): 15. [2] Blair, David M., et al. "The origin of graben and ridges in Rachmaninoff, Raditladi, and Mozart basins, Mercury." Journal of Geophysical Research: Planets (2013). [3] Klimczak, Christian, et al. "Deformation associated with ghost craters and basins in volcanic smooth plains on Mercury: Strain analysis and implications for plains evolution." Journal of Geophysical Research: Planets (1991-2012) 117.E9 (2012). [4] Watters, Thomas R., et al. "Extension and contraction within volcanically buried impact craters and basins on Mercury." Geology 40.12 (2012): 1123-1126.
NASA Technical Reports Server (NTRS)
1986-01-01
The tectonic evaluation of the Nubian Shield using the Thematic Mapper (TM) imagery is progressing well and shows great promise. The TM tapes for the six LANDSAT 5 scenes covering the northern portion of the Red Sea hills were received, and preliminary maps and interpretations were made for most of the area. It is apparent that faulting and shearing associated with the major suture zones such as the Sol Hamed are clearly visible and that considerable detail can be seen. An entire quadrant of scene 173,45 was examined in detail using all seven bands, and every band combination was evaluated to best display the geology. A comparison was done with color ratio combinations and color combinations of the eigen vector bands to verify if band combinations of 7-red, 4-green, and 2-blue were indeed superior. There is no single optimum enhancement which provides the greatest detail for every image and no single combination of spectral bands for all cases, although bands 7, 4, and 2 do provide the best overall display. The color combination of the eigen vector bands proved useful in distinguishing fine detailed features.
NASA Astrophysics Data System (ADS)
McLaren, Sandra; Wallace, Malcolm W.; Gallagher, Stephen J.; Miranda, John A.; Holdgate, Guy R.; Gow, Laura J.; Snowball, Ian; Sandgren, Per
2011-05-01
The Murray Basin is a low-lying but extensive intracratonic depocentre in southeastern Australia, preserving an extraordinary record of Late Neogene sedimentation. New stratigraphic and sedimentologic data allow the long-term evolution of the basin to be re-evaluated and suggest a significant role for: (1) tectonism in controlling basin evolution, and (2) progressive and step-wise climatic change beginning in the early Pleistocene. Tectonic change is associated with regional uplift, occurring at approximately the same rate from the early Pliocene until the present day, and possibly associated with changing mantle circulation patterns or plate boundary processes. This uplift led to the defeat and re-routing of the Murray River, Australia's major continental drainage system. Key to our interpretation is recognition of timing relationships between four prominent palaeogeographic features - the Loxton-Parilla Sands strandplain, the Gambier coastal plain, palaeo megalake Bungunnia and the Kanawinka Escarpment. Geomorphic and stratigraphic evidence suggest that during the Early Pliocene the ancestral Murray River was located in western Victoria, flowing south along the Douglas Depression. Relatively small amounts of regional uplift (<200 m) defeated this drainage system, dramatically changing the palaeogeography of southeastern Australia and forming Plio-Pleistocene megalake Bungunnia. At its maximum extent Lake Bungunnia covered more than 50,000 km 2, making it one of the largest known palaeo- or modern-lakes in an intracontinental setting. Magnetostratigraphic constraints suggest lake formation c. 2.4 Ma. The formation of Lake Bungunnia influenced the Pliocene coastal dynamics, depriving the coastline of a sediment source and changing the coastal system from a prograding strandline system to an erosional one. Erosion during this period formed the Kanawinka Escarpment, a palaeo sea-cliff and one of the most prominent and laterally extensive geomorphic features in southeastern Australia. Marine sediments c. 800 ka to c. 1.16 Ma represent the time of re-establishment of depositional coastal dynamics and of a permanent outlet for the Murray River. This age range is consistent with our best estimate of the age of the youngest Lake Bungunnia sediments and points towards an early Pleistocene age for the demise of the lake system. The youngest Lake Bungunnia sediment, present on a number of distinct terraces, suggests that progressive, step-wise climatic change played a role in the demise of the lake. However, in order for the ancestral Murray River system to have been able to breach the pre-existing tectonic dam, it is likely that tectonic change and/or temporarily enhanced discharge was also significant. This scenario indicates that the modern Murray River has only been in existence for at most 700 ka.
Arctic Ocean Gravity Field Derived From ERS-1 Satellite Altimetry.
Laxon, S; McAdoo, D
1994-07-29
The derivation of a marine gravity field from satellite altimetry over permanently ice-covered regions of the Arctic Ocean provides much new geophysical information about the structure and development of the Arctic sea floor. The Arctic Ocean, because of its remote location and perpetual ice cover, remains from a tectonic point of view the most poorly understood ocean basin on Earth. A gravity field has been derived with data from the ERS-1 radar altimeter, including permanently ice-covered regions. The gravity field described here clearly delineates sections of the Arctic Basin margin along with the tips of the Lomonosov and Arctic mid-ocean ridges. Several important tectonic features of the Amerasia Basin are clearly expressed in this gravity field. These include the Mendeleev Ridge; the Northwind Ridge; details of the Chukchi Borderland; and a north-south trending, linear feature in the middle of the Canada Basin that apparently represents an extinct spreading center that "died" in the Mesozoic. Some tectonic models of the Canada Basin have proposed such a failed spreading center, but its actual existence and location were heretofore unknown.
Astrobiology of Jupiter's icy moons
NASA Astrophysics Data System (ADS)
Lipps, Jere H.; Delory, Gregory; Pitman, Joseph T.; Rieboldt, Sarah
2004-11-01
Jupiter's Icy Moons, Europa, Ganymede and Callisto, may possess energy sources, biogenic molecules, and oceans below their icy crusts, thus indicating a strong possibility that they were abodes for present or past life. Life in Earth's icy areas lives in a wide variety of habitats associated with the ice, in the water column below the ice, and on the floor of the ocean below the ice. Similar habitats may exist on JIM, have been transported to the icy crust, and be exposed in tectonic or impact features. Europa has a young, dynamic surface with many outcrops exposing older ice, fresh ice, possible materials from the subsurface ocean, and a few impact craters. Ganymede has older, darker, tectonized terrains surrounded by light ice. Callisto has a much older, heavily impacted surface devoid of significant tectonic structures. Past and present life habitats may be exposed in these features, making Europa the most favorable target while Ganymede is of interest, and Callisto seems more unlikely to have detectable life. A proper search strategy requires detailed orbital imaging and spectrometry of the likely places, and surface data collection with microscopic, spectrometric, and biochemical instruments.
Geologic Mapping Results for Ceres from NASA's Dawn Mission
NASA Astrophysics Data System (ADS)
Williams, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.
2017-12-01
NASA's Dawn Mission included a geologic mapping campaign during its nominal mission at dwarf planet Ceres, including production of a global geologic map and a series of 15 quadrangle maps to determine the variety of process-related geologic materials and the geologic history of Ceres. Our mapping demonstrates that all major planetary geologic processes (impact cratering, volcanism, tectonism, and gradation (weathering-erosion-deposition)) have occurred on Ceres. Ceres crust, composed of altered and NH3-bearing silicates, carbonates, salts and 30-40% water ice, preserves impact craters and all sizes and degradation states, and may represent the remains of the bottom of an ancient ocean. Volcanism is manifested by cryovolcanic domes, such as Ahuna Mons and Cerealia Facula, and by explosive cryovolcanic plume deposits such as the Vinalia Faculae. Tectonism is represented by several catenae extending from Ceres impact basins Urvara and Yalode, terracing in many larger craters, and many localized fractures around smaller craters. Gradation is manifested in a variety of flow-like features caused by mass wasting (landslides), ground ice flows, as well as impact ejecta lobes and melts. We have constructed a chronostratigraphy and geologic timescale for Ceres that is centered around major impact events. Ceres geologic periods include Pre-Kerwanan, Kerwanan, Yalodean/Urvaran, and Azaccan (the time of rayed craters, similar to the lunar Copernican). The presence of geologically young cryovolcanic deposits on Ceres surface suggests that there could be warm melt pockets within Ceres shallow crust and the dwarf planet remain geologically active.
Cenozoic extension along the reactivated Aurora Fault System in the East Antarctic Craton
NASA Astrophysics Data System (ADS)
Cianfarra, Paola; Maggi, Matteo
2017-04-01
The East Antarctic Craton is characterized by major intracontinental basins and highlands buried under the 34 Ma East Antarctic Ice Sheet. Their formation remains a major open question. Paleozoic to Cenozoic intraplate extensional tectonic activity has been proposed for their development and in this work the latter hypothesis is supported. Here we focus on the Aurora Trench (AT) within the Aurora Subglacial Basin (latitude 75°-77°S, longitude 117°-118°E) whose origin is still poorly constrained. The AT is an over 150-km-long, 25-km-wide subglacial trough, elongated in the NNW-SSE direction. Geophysical campaigns allowed better definition of the AT physiography showing typical half-graben geometry. The rounded morphology of the western flank of the AT was simulated through tectonic numerical modelling. We consider the subglacial landscape to primarily reflect the locally preserved relict morphology of the tectonic processes affecting the interior of East Antarctica in the Cenozoic. The bedrock morphology was replicated through the activity of the listric Aurora Trench Fault, characterized by a basal detachment at 34 km (considered the base of the crust according to available geophysical interpretations) and vertical displacements ranging between 700 and 300 m. The predicted displacement is interpreted as the (partial) reactivation of a weaker zone along a major Precambrian crustal-scale tectonic boundary. We propose that the Aurora Trench Fault is the southern continuation of the > 1000 km long Aurora Fault independently recognized by previous studies. Together they form the Aurora Fault System, a long lived tectonic boundary with poly-phased tectonic history within the EAC that bounds the eastern side of the Aurora Subglacial Basin. The younger Cenozoic reactivation of the investigated segment of the Aurora Fault System relates to the intraplate propagation of far-field stresses associated to the plate-scale kinematics in the Southern Ocean.
Evaluation of the Interplate and Intraplate Deformations of the African Continent Using cGNSS Data
NASA Astrophysics Data System (ADS)
Apolinário, J. P.; Fernandes, R. M. S.; Bos, M. S.; Meghraoui, M.; Miranda, J. M. A.
2014-12-01
Two main plates, Nubia and Somalia, plus some few more tectonic blocks in the East African Rift System (EARS) delimit the African continent. The major part of the external plate boundaries of Africa is well defined by oceanic ridge systems with the exception of the Nubia-Eurasia complex convergence-collision tectonic zone. In addition, the number and distribution of the tectonic blocks along the EARS region is a major scientific issue that has not been completely answered so far. Nevertheless, the increased number of cGNSS (continuous Global Navigation Satellite Systems) stations in Africa with sufficient long data span is helping to better understand and constrain the complex sub-plate distribution in the EARS as well as in the other plate boundaries of Africa. This work is the geodetic contribution for the IGCP-Project 601 - "Seismotectonics and Seismic Hazards in Africa". It presents the current tectonic relative motions of the African continent based on the analysis of the estimated velocity field derived from the existing network of cGNSS stations in Africa and bordering plate tectonics. For the majority of the plate pairs, we present the most recent estimation of their relative velocity using a dedicated processing. The velocity solutions are computed using HECTOR, a software that takes into account the existing temporal correlations between the daily solutions of the stations. It allows to properly estimate the velocity uncertainties and to detect any artifacts in the time-series. For some of the plate pairs, we compare our solutions of the angular velocities with other geodetic and geophysical models. In addition, we also study the sensitivity of the derived angular velocity to changes in the data (longer data-span for some stations) for tectonic units with few stations, and in particular for the Victoria and Rovuma blocks of the EARS. Finally, we compute estimates of velocity fields for several sub-regions correlated with the seismotectonic provinces and discuss the level of interplate and intraplate deformations in Africa.
Seismicity of the Earth 1900–2010 Middle East and vicinity
Jenkins, Jennifer; Turner, Bethan; Turner, Rebecca; Hayes, Gavin P.; Davies, Sian; Dart, Richard L.; Tarr, Arthur C.; Villaseñor, Antonio; Benz, Harley M.
2013-01-01
No fewer than four major tectonic plates (Arabia, Eurasia, India, and Africa) and one smaller tectonic block (Anatolia) are responsible for seismicity and tectonics in the Middle East and surrounding region. Geologic development of the region is a consequence of a number of first-order plate tectonic processes that include subduction, large-scale transform faulting, compressional mountain building, and crustal extension. In the east, tectonics are dominated by the collision of the India plate with Eurasia, driving the uplift of the Himalaya, Karakorum, Pamir and Hindu Kush mountain ranges. Beneath the Pamir‒Hindu Kush Mountains of northern Afghanistan, earthquakes occur to depths as great as 200 km as a result of remnant lithospheric subduction. Along the western margin of the India plate, relative motions between India and Eurasia are accommodated by strike-slip, reverse, and oblique-slip faulting, resulting in the complex Sulaiman Range fold and thrust belt, and the major translational Chaman Fault in Afghanistan. Off the south coasts of Pakistan and Iran, the Makran trench is the surface expression of active subduction of the Arabia plate beneath Eurasia. Northwest of this subduction zone, collision between the two plates forms the approximately 1,500-km-long fold and thrust belts of the Zagros Mountains, which cross the whole of western Iran and extend into northeastern Iraq. Tectonics in the eastern Mediterranean region are dominated by complex interactions between the Africa, Arabia, and Eurasia plates, and the Anatolia block. Dominant structures in this region include: the Red Sea Rift, the spreading center between the Africa and Arabia plates; the Dead Sea Transform, a major strike-slip fault, also accommodating Africa-Arabia relative motions; the North Anatolia Fault, a right-lateral strike-slip structure in northern Turkey accommodating much of the translational motion of the Anatolia block westwards with respect to Eurasia and Africa; and the Cyprian Arc, a convergent boundary between the Africa plate to the south, and Anatolia Block to the north.
Popenoe, Peter; Coward, E.L.; Cashman, K.V.
1982-01-01
More than 11,000 km of high-resolution seismic-reflection data, 325 km of mid-range sidescan-sonar data, and 500 km of long-range sidescan-sonar data were examined and used to construct an environmental geology map of the Continental Shelf, Slope, and Rise for the area of the U.S. Atlantic margin between lats. 32?N. and 37?N. Hardgrounds and two faults described in previous literature also are shown on the map. On the Continental Shelf, at least two faults, the Helena Banks fault and the White Oak lineament, appear to be tectonic in origin. However, a lack of historical seismicity associated with these faults indicates that they are probably not active at the present time. Hardgrounds are widely scattered but are most abundant in Onslow Bay. Although paleostream channels are common nearshore, they do not appear to be common on the central and outer shelf except off Albemarle Sound where extensive Pleistocene, Pliocene, and late Miocene channels extend across the shelf. Mobile bottom sediments are confined mainly to the shoals off Cape Romain, Cape Fear, Cape Lookout, and Cape Hatteras. Elsewhere the sand cover is thin, and older more indurated rocks are present in subcrop. No slope-instability features were noted on the Florida-Hatteras slope off North Carolina. The lack of features indicates that this slope is relatively stable. Evidence for scour by strong currents is ubiquitous on the northern Blake Plateau although deep-water reefs are sparse. The outer edge of the plateau is dominated by a major growth fault and numerous splay and antithetic faults. These faults are the product of salt tectonism in the Carolina trough and thus are not associated with seismicity. Displacements observed near the sea floor and breached diapirs offshore indicate that the main fault is still moving. Associated with the faults are collapse features that are interpreted to be caused by karst solution and cavernous porosity in Eocene and Oligocene limestones at depth. Major slumps have taken place in two large areas of the Continental Slope. Seismic-reflection profiles of the southern area, centered on the lower slope at 1at. 33?N., long. 76?W., show a 80-m-hlgh scarp in which bedding has been truncated. Rotational slump faults are present in this area on the middle and upper slope. Sidescan images show that large blocks have slid downslope from the scarp face, furrowing the bottom. High-resolution (3.5-kHz) records show that the rotational slump faults upslope are active. The association of these slumps and the scarps with salt diapirs suggests subsidence accompanying salt tectonism as the cause. Seismic-reflection records over the northern area, at about fat. 36?20'N., long. 74?40'W., show two steep scarps, each about 225 m high on the upper and middle-slope. These slump scars and an absence of Pleistocene sediments indicate that large blocks of the slope have been removed by slumping. The slope north of fat. 35?N. is highly dissected by canyons. Mid-range sidescan-sonar records suggest that the canyons are the product of mass wasting and have probably formed largely by slumping. Sediments in a wide zone on the upper rise are highly disturbed and faulted owing to salt tectonism. Twenty-six salt diapirs are mapped, as is a zone of disturbed bottom related to salt tectonism. An area of frozen bottom (clathrate) under which shallow free gas is trapped underlies the outer Blake Plateau, the slope, and the upper rise. Although the hazards of drilling into or through clathrates have not been tested, the release of gas from beneath this frozen layer may prove to be a primary hazard to exploration.
Satellite Detection of the Convection Generated Stresses in Earth
NASA Technical Reports Server (NTRS)
Liu, Han-Shou; Kolenkiewicz, Ronald; Li, Jin-Ling; Chen, Jiz-Hong
2003-01-01
We review research developments on satellite detection of the convection generated stresses in the Earth for seismic hazard assessment and Earth resource survey. Particular emphasis is laid upon recent progress and results of stress calculations from which the origin and evolution of the tectonic features on Earth's surface can be scientifically addressed. An important aspect of the recent research development in tectonic stresses relative to earthquakes is the implications for earthquake forecasting and prediction. We have demonstrated that earthquakes occur on the ring of fire around the Pacific in response to the tectonic stresses induced by mantle convection. We propose a systematic global assessment of the seismic hazard based on variations of tectonic stresses in the Earth as observed by satellites. This space geodynamic approach for assessing the seismic hazard is unique in that it can pinpoint the triggering stresses for large earthquakes without ambiguities of geological structures, fault geometries, and other tectonic properties. Also, it is distinct from the probabilistic seismic hazard assessment models in the literature, which are based only on extrapolations of available earthquake data.
NASA Astrophysics Data System (ADS)
Basilone, Luca; Sulli, Attilio
2018-01-01
In the Mediterranean, the South-Tethys paleomargin experienced polyphased tectonic episodes and paleoenvironmental perturbations during Mesozoic time. The Cretaceous shallow-water carbonate successions of the Panormide platform, outcropping in the northern edge of the Palermo Mountains (NW Sicily), were studied by integrating facies and stratal pattern with backstripping analysis to recognize the tectonics vs. carbonate sedimentation interaction. The features of the Requienid limestone, including geometric configuration, facies sequence, lithological changes and significance of the top-unconformity, highlight that at the end of the Lower Cretaceous the carbonate platform was tectonically dismembered in various rotating fault-blocks. The variable trends of the subsidence curves testify to different responses, both uplift and downthrow, of various platform-blocks impacted by extensional tectonics. Physical stratigraphic and facies analysis of the Rudistid limestone highlight that during the Upper Cretaceous the previously carbonate platform faulted-blocks were subjected to vertical movements in the direction opposite to the displacement produced by the extensional tectonics, indicating a positive tectonic inversion. Comparisons with other sectors of the Southern Tethyan and Adria paleomargins indicate that during the Cretaceous these areas underwent the same extensional and compressional stages occurring in the Panormide carbonate platform, suggesting a regional scale significance, in time and kinematics, for these tectonic events.
A Digital Tectonic Activity Map of the Earth
NASA Technical Reports Server (NTRS)
Lowman, Paul; Masuoka, Penny; Montgomery, Brian; OLeary, Jay; Salisbury, Demetra; Yates, Jacob
1999-01-01
The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither conformal nor equal-area, the Robinson Projection provides a reasonable compromise and retains useful detail at high latitudes.
MEVTV Workshop on Early Tectonic and Volcanic Evolution of Mars
NASA Technical Reports Server (NTRS)
Frey, H. (Editor)
1988-01-01
Although not ignored, the problems of the early tectonic and volcanic evolution of Mars have generally received less attention than those later in the evolution of the planet. Specifically, much attention was devoted to the evolution of the Tharsis region of Mars and to the planet itself at the time following the establishment of this major tectonic and volcanic province. By contrast, little attention was directed at fundamental questions, such as the conditions that led to the development of Tharsis and the cause of the basic fundamental dichotomy of the Martian crust. It was to address these and related questions of the earliest evolution of Mars that a workshop was organized under the auspices of the Mars: Evolution of Volcanism, Tectonism, and Volatiles (MEVTV) Program. Four sessions were held: crustal dichotomy; crustal differentiation/volcanism; Tharsis, Elysium, and Valles Marineris; and ridges and fault tectonics.
The interior of Venus and Tectonic implications
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Malin, M. C.
1983-01-01
It is noted in the present consideration of the Venus lithosphere and its implications for plate tectonics that the major linear elevated regions of Venus, which are associated with Beta Regio and Aphrodite Terra, do not seem to have the shape required for sure interpretation as the divergent plate boundaries of seafloor spreading. Such tectonics instead appear to be confined to the median plains, and may not be resolvable in the Pioneer Venus altimetry data. The ratios of gravity anomalies to topographic heights indicate that surface load compensation occurs at depths greater than about 100 km under the western Aphrodite Terra and 400 km under Beta Regio, with at least some of this compensation probably being maintained by mantle convection. It is also found that the shape of Venus's hypsogram is very different from the ocean mode of the earth's hypsogram, and it is proposed that Venus tectonics resemble intraplate, basin-and-swell tectonics on earth.
Tectonic map of the Circum-Pacific region, Pacific basin sheet
Scheibner, E.; Moore, G.W.; Drummond, K.J.; Dalziel, Corvalan Q.J.; Moritani, T.; Teraoka, Y.; Sato, T.; Craddock, C.
2013-01-01
Circum-Pacific Map Project: The Circum-Pacific Map Project was a cooperative international effort designed to show the relationship of known energy and mineral resources to the major geologic features of the Pacific basin and surrounding continental areas. Available geologic, mineral, and energy-resource data are being complemented by new, project-developed data sets such as magnetic lineations, seafloor mineral deposits, and seafloor sediment. Earth scientists representing some 180 organizations from more than 40 Pacific-region countries are involved in this work. Six overlapping equal-area regional maps at a scale of 1:10,000,000 form the cartographic base for the project: the four Circum-Pacific Quadrants (Northwest, Southwest, Southeast, and Northeast), and the Antarctic and Arctic Sheets. There is also a Pacific Basin Sheet at a scale of 1:17,000,000. The Base Map Series and the Geographic Series (published from 1977 to 1990), the Plate-Tectonic Series (published in 1981 and 1982), the Geodynamic Series (published in 1984 and 1985), and the Geologic Series (published from 1984 to 1989) all include six map sheets. Other thematic map series in preparation include Mineral-Resources, Energy-Resources and Tectonic Maps. Altogether, more than 50 map sheets are planned. The maps were prepared cooperatively by the Circum-Pacific Council for Energy and Mineral Resources and the U.S. Geological Survey and are available from the Branch of Distribution, U. S. Geological Survey, Box 25286, Federal Center, Denver, Colorado 80225, U.S.A. The Circum-Pacific Map Project is organized under six panels of geoscientists representing national earth-science organizations, universities, and natural-resource companies. The six panels correspond to the basic map areas. Current panel chairmen are Tomoyuki Moritani (Northwest Quadrant), R. Wally Johnson (Southwest Quadrant), Ian W.D. Dalziel (Antarctic Region), vacant. (Southeast Quadrant), Kenneth J. Drummond (Northeast Quadrant), and George W. Moore (Arctic Region). Project coordination and final cartography was being carried out through the cooperation of the Office of the Chief Geologist of the U.S. Geological Survey, under the direction of General Chairman, George Gryc of Menlo Park, California. Project headquarters were located at 345 Middlefield Road, MS 952, Menlo Park, California 94025, U.S.A. The framework for the Circum-Pacific Map Project was developed in 1973 by a specially convened group of 12 North American geoscientists meeting in California. The project was officially launched at the First Circum-Pacific Conference on Energy and Mineral Resources, which met in Honolulu, Hawaii, in August 1974. Sponsors of the conference were the AAPG, Pacific Science Association (PSA), and the Coordinating Committee for Offshore Prospecting for Mineral Resources in Offshore Asian Areas (CCOP). The Circum-Pacific Map Project operates as an activity of the Circum-Pacific Council for Energy and Mineral Resources, a nonprofit organization that promotes cooperation among Circum-Pacific countries in the study of energy and mineral resources of the Pacific basin. Founded by Michel T. Halbouty in 1972, the Council also sponsors conferences, topical symposia, workshops and the Earth Science Series books. Tectonic Map Series: The tectonic maps distinguish areas of oceanic and continental crust. Symbols in red mark active plate boundaries, and colored patterns show tectonic units (volcanic or magmatic arcs, arc-trench gaps, and interarc basins) associated with active plate margins. Well-documented inactive plate boundaries are shown by symbols in black. The tectonic development of oceanic crust is shown by episodes of seafloor spreading. These correlate with the rift and drift sequences at passive continental margins and episodes of tectonic activity at active plate margins. The recognized episodes of seafloor spreading seem to reflect major changes in plate kinematics. Oceanic plateaus and other prominences of greater than normal oceanic crustal thickness such as hotspot traces are also shown. Colored areas on the continents show the ages of deformation and metamorphism of basement rocks and the emplacement of igneous rocks. Transitional tectonic (molassic) and reactivation basins are shown by a colored boundary, and if they are deformed, a colored horizontal line pattern indicates the age of deformation. Colored bands along basin boundaries indicate age of inception, and isopachs indicate thickness of platform strata on continental crust and cover on oceanic crust. Colored patterns at separated continental margins show the age of inception of rift and drift (breakup) sequences. Symbols mark folds and faults, and special symbols show volcanoes and other structural features. Affiliations are as of compilation of the data. This map was created in quadrants and then compiled together. They are the Northwest land, Northwest Marine (different compilers), Northeast, Southwest and Southeast, and parts in plate-boundary sections.
Mapping of major volcanic structures on Pavonis Mons in Tharsis, Mars
NASA Astrophysics Data System (ADS)
Orlandi, Diana; Mazzarini, Francesco; Pagli, Carolina; Pozzobon, Riccardo
2017-04-01
Pavonis Mons, with its 300 km of diameter and 14 km of height, is one of the largest volcanoes of Mars. It rests on a topographic high called Tharsis rise and it is located in the centre of a SW-NE trending row of volcanoes, including Arsia and Ascraeus Montes. In this study we mapped and analyzed the volcanic and tectonic structures of Pavonis Mons in order to understand its formation and the relationship between magmatic and tectonic activity. We use the mapping ArcGIS software and vast set of high resolution topographic and multi-spectral images including CTX (6 m/pixel) as well as HRSC (12.5 m/pixel) and HiRiSE ( 0.25 m/pixel) mosaic images. Furthemore, we used MOLA ( 463 m/pixel in the MOLA MEGDR gridded topographic data), THEMIS thermal inertia (IR-day, 100 m/pixel) and THEMIS (IR-night, 100 m/pixel) images global mosaic to map structures at the regional scale. We found a wide range of structures including ring dykes, wrinkle ridges, pit chains, lava flows, lava channels, fissures and depressions that we preliminary interpreted as coalescent lava tubes. Many sinuous rilles have eroded Pavonis' slopes and culminate with lava aprons, similar to alluvial fans. South of Pavonis Mons we also identify a series of volcanic vents mainly aligned along a SW-NE trend. Displacements across recent crater rim and volcanic deposits (strike slip faults and wrinkle ridges) have been documented suggesting that, at least during the most recent volcanic phases, the regional tectonics has contributed in shaping the morphology of Pavonis. The kinematics of the mapped structures is consistent with a ENE-SSW direction of the maximum horizontal stress suggesting a possible interaction with nearby Valles Marineris. Our study provides new morphometric analysis of volcano-tectonic features that can be used to depict an evolutionary history for the Pavonis Volcano.
NASA Astrophysics Data System (ADS)
Laurencin, Muriel; Marcaillou, Boris; Klingelhoefer, Frauke; Graindorge, David; Lebrun, Jean-Frédéric; Laigle, Mireille; Lallemand, Serge
2017-04-01
Marine geophysical cruises Antithesis (2013-2016) investigate the impact of the variations in interplate geometry onto margin tectonic deformation along the strongly oblique Lesser Antilles subduction zone. A striking features of this margin is the drastic increase in earthquake number from the quiet Barbuda-St Martin segment to the Virgin Islands platform. Wide-angle seismic data highlight a northward shallowing of the downgoing plate: in a 150 km distance from the deformation front, the slab dipping angle in the convergence direction decreases from 12° offshore of Antigua Island to 7° offshore of Virgin Islands. North-South wide-angle seismic line substantiates a drastic slab-dip change that likely causes this northward shallowing. This dip change is located beneath the southern tip of the Virgin Islands platform where the Anegada Passage entails the upper plate. Based on deep seismic lines and bathymetric data, the Anegada Passage is a 450 km long W-E trending set of pull-apart basins and strike-slip faults that extends from the Lesser Antilles accretionary prism to Puerto Rico. The newly observed sedimentary architecture within pull-apart Sombrero and Malliwana basins indicates a polyphased tectonic history. A past prominent NW-SE extensive to transtensive phase, possibly related to the Bahamas Bank collision, opened the Anegada Passage as previously published. Transpressive tectonic evidences indicate that these structures have been recently reactivated in an en-echelon sinistral strike-slip system. The interpreted strain ellipsoid is consistent with deformation partitioning. We propose that the slab northward shallowing increases the interplate coupling and the seismic activity beneath the Virgin Islands platform comparatively to the quiet Barbuda-St Martin segment. It is noteworthy that the major tectonic partitioning structure in the Lesser Antilles forearc is located above the slab dip change where the interplate seismic coupling increases.
NASA Astrophysics Data System (ADS)
Grevemeyer, Ingo; Gràcia, Eulàlia; Villaseñor, Antonio; Leuchters, Wiebke; Watts, Anthony B.
2015-12-01
Seismicity and tectonic structure of the Alboran Sea were derived from a large amphibious seismological network deployed in the offshore basins and onshore in Spain and Morocco, an area where the convergence between the African and Eurasian plates causes distributed deformation. Crustal structure derived from local earthquake data suggests that the Alboran Sea is underlain by thinned continental crust with a mean thickness of about 20 km. During the 5 months of offshore network operation, a total of 229 local earthquakes were located within the Alboran Sea and neighboring areas. Earthquakes were generally crustal events, and in the offshore domain, most of them occurred at crustal levels of 2 to 15 km depth. Earthquakes in the Alboran Sea are poorly related to large-scale tectonic features and form a 20 to 40 km wide NNE-SSW trending belt of seismicity between Adra (Spain) and Al Hoceima (Morocco), supporting the case for a major left-lateral shear zone across the Alboran Sea. Such a shear zone is in accord with high-resolution bathymetric data and seismic reflection imaging, indicating a number of small active fault zones, some of which offset the seafloor, rather than supporting a well-defined discrete plate boundary fault. Moreover, a number of large faults known to be active as evidenced from bathymetry, seismic reflection, and paleoseismic data such as the Yusuf and Carboneras faults were seismically inactive. Earthquakes below the Western Alboran Basin occurred at 70 to 110 km depth and hence reflected intermediate depth seismicity related to subducted lithosphere.
Earth Observations taken by the Expedition 16 Crew
2007-10-21
ISS016-E-005121 (21 Oct. 2007) --- Wellington, New Zealand is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. New Zealand's capital of Wellington is located at the southwestern tip of North Island near the Cook Strait. The city is the second largest in New Zealand (after Auckland), and at 41 degrees south latitude, it is the southernmost capital city of the world. The North and South Islands of New Zealand are located along the active Australian-Pacific tectonic plate boundary -- the Islands are only a small part of a larger submerged fragment of continental crust. The glancing collision of these two tectonic plates results in uplift of the land surface, expressed as low hills on North Island and the Southern Alps on South Island. Local topography visible in this view is a result of these tectonic forces and weathering processes, which have exerted a strong influence on the morphology of the city. Tightly clustered white rooftops and high building density of the central business district are visible to the south of the Westpac Stadium between vegetated (green) northeast-southwest trending ridges. Lower density development (gray gridded regions with scattered white rooftops) has spread eastwards along the Miramar Peninsula. Five major faults that run through the Wellington metropolitan area; the largest magnitude earthquake recorded in New Zealand (approximately 8.2 on the Richter Scale) occurred in 1855 on one of these (the Wairarapa Fault). Recognition of the potential seismic hazard in the metropolitan area has led to adoption of building codes to maximize structural resistance to earthquake damage.
Crustal structure of Central Sicily
NASA Astrophysics Data System (ADS)
Giustiniani, Michela; Tinivella, Umberta; Nicolich, Rinaldo
2018-01-01
We processed crustal seismic profile SIRIPRO, acquired across Central Sicily. To improve the seismic image we utilized the wave equation datuming technique, a process of upward or downward continuation of the wave-field between two arbitrarily shaped surfaces. Wave equation datuming was applied to move shots and receivers to a given datum plane, removing time shifts related to topography and to near-surface velocity variations. The datuming procedure largely contributed to attenuate ground roll, enhance higher frequencies, increase resolution and improve the signal/noise ratio. Processed data allow recognizing geometries of crust structures differentiating seismic facies and offering a direct image of ongoing tectonic setting within variable lithologies characterizing the crust of Central Sicily. Migrated sections underline distinctive features of Hyblean Plateau foreland and above all a crustal thinning towards the Caltanissetta trough, to the contact with a likely deep Permo-Triassic rifted basin or rather a zone of a continent to oceanic transition. Inhomogeneity and fragmentation of Sicily crust, with a distinct separation of Central Sicily basin from western and eastern blocks, appear to have guided the tectonic transport inside the Caltanissetta crustal scale syncline and the accumulation of allochthonous terrains with south and north-verging thrusts. Major tectonic stack operated on the construction of a wide anticline of the Maghrebian chain in northern Sicily. Sequential south-verging imbrications of deep elements forming the anticline core denote a crust wedge indenting foreland structures. Deformation processes involved multiple detachment planes down to decoupling levels located near crust/mantle transition, supporting a presence of high-density lenses beneath the chain, interrelated to a southwards push of Tyrrhenian mantle and asthenosphere.
Investigation of lunar crustal structure and isostasy
NASA Technical Reports Server (NTRS)
Thurber, Clifford H.
1987-01-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. The present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.
A new model for early Earth: heat-pipe cooling
NASA Astrophysics Data System (ADS)
Webb, A. G.; Moore, W. B.
2013-12-01
In the study of heat transport and lithospheric dynamics of early Earth, current models depend upon plate tectonic and vertical tectonic concepts. Plate tectonic models adequately account for regions with diverse lithologies juxtaposed along ancient shear zones, as seen at the famous Eoarchean Isua supracrustal belt of West Greenland. Vertical tectonic models to date have involved volcanism, sub- and intra-lithospheric diapirism, and sagduction, and can explain the geology of the best-preserved low-grade ancient terranes, such as the Paleoarchean Barberton and Pilbara greenstone belts. However, these models do not offer a globally-complete framework consistent with the geologic record. Plate tectonics models suggest that paired metamorphic belts and passive margins are among the most likely features to be preserved, but the early rock record shows no evidence of these terranes. Existing vertical tectonics models account for the >300 million years of semi-continuous volcanism and diapirism at Barberton and Pilbara, but when they explain the shearing record at Isua, they typically invoke some horizontal motion that cannot be differentiated from plate motion and is not a salient feature of the lengthy Barberton and Pilbara records. Despite the strengths of these models, substantial uncertainty remains about how early Earth evolved from magma ocean to plate tectonics. We have developed a new model, based on numerical simulations and analysis of the geologic record, that provides a coherent, global geodynamic framework for Earth's evolution from magma ocean to subduction tectonics. We hypothesize that heat-pipe cooling offers a viable mechanism for the lithospheric dynamics of early Earth. Our numerical simulations of heat-pipe cooling on early Earth indicate that a cold, thick, single-plate lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downward. The constant resurfacing and downward advection caused compression as the surface rocks were forced radially inward, resulting in uplift, exhumation, and shortening. Declining heat sources over time led to an abrupt, dynamically spontaneous transition to plate tectonics. The model predicts a geological record with rapid, semi-continuous volcanic resurfacing; contractional deformation; a low geothermal gradient across the bulk of the lithosphere; and a rapid decrease in heat-pipe volcanism after the initiation of plate tectonics. Review of data from ancient cratons and the detrital zircon record is consistent with these predictions. In this presentation, we review these findings with a focus on comparison of the model predictions with the geologic record. This comparison suggests that Earth cooled via heat pipes until a ~3.2 Ga subduction initiation episode. The Isua record reflects long-lived contractional deformation, and the Barberton and Pilbara records preserve heat-pipe lithospheric development in regions without significant contraction. In summary, the heat-pipe model provides a view of early Earth that is more globally applicable than existing plate and vertical tectonic models.
Creating global comparative analyses of tectonic rifts, monogenetic volcanism and inverted relief
NASA Astrophysics Data System (ADS)
van Wyk de Vries, Benjamin
2016-04-01
I have been all around the world, and to other planets and have travelled from the present to the Archaean and back to seek out the most significant tectonic rifts, monogenetic volcanoes and examples of inverted relief. I have done this to provide a broad foundation of the comparative analysis for the Chaîne des Puys - Limagne fault nomination to UNESCO world Heritage. This would have been an impossible task, if not for the cooperation of the scientific community and for Google Earth, Google Maps and academic search engines. In preparing global comparisons of geological features, these quite recently developed tools provide a powerful way to find and describe geological features. The ability to do scientific crowd sourcing, rapidly discussing with colleagues about features, allows large numbers of areas to be checked and the open GIS tools (such as Google Earth) allow a standardised description. Search engines also allow the literature on areas to be checked and compared. I will present a comparative study of rifts of the world, monogenetic volcanic field and inverted relief, integrated to analyse the full geological system represented by the Chaîne des Puys - Limagne fault. The analysis confirms that the site is an exceptional example of the first steps of continental drift in a mountain rift setting, and that this is necessarily seen through the combined landscape of tectonic, volcanic and geomorphic features. The analysis goes further to deepen the understanding of geological systems and stresses the need for more study on geological heritage using such a global and broad systems approach.
Tectonic analysis of folds in the Colorado plateau of Arizona
NASA Technical Reports Server (NTRS)
Davis, G. H.
1975-01-01
Structural mapping and analysis of folds in Phanerozoic rocks in northern Arizona, using LANDSAT-1 imagery, yielded information for a tectonic model useful in identifying regional fracture zones within the Colorado Plateau tectonic province. Since the monoclines within the province developed as a response to differential movements of basement blocks along high-angle faults, the monoclinal fold pattern records the position and trend of many elements of the regional fracture system. The Plateau is divided into a mosaic of complex, polyhedral crustal blocks whose steeply dipping faces correspond to major fracture zones. Zones of convergence and changes in the trend of the monoclinal traces reveal the corners of the blocks. Igneous (and salt) diapirs have been emplaced into many of the designated zones of crustal weakness. As loci of major fracturing, folding, and probably facies changes, the fractures exert control on the entrapment of oil and gas.
Candidate cave entrances on Mars
Cushing, Glen E.
2012-01-01
This paper presents newly discovered candidate cave entrances into Martian near-surface lava tubes, volcano-tectonic fracture systems, and pit craters and describes their characteristics and exploration possibilities. These candidates are all collapse features that occur either intermittently along laterally continuous trench-like depressions or in the floors of sheer-walled atypical pit craters. As viewed from orbit, locations of most candidates are visibly consistent with known terrestrial features such as tube-fed lava flows, volcano-tectonic fractures, and pit craters, each of which forms by mechanisms that can produce caves. Although we cannot determine subsurface extents of the Martian features discussed here, some may continue unimpeded for many kilometers if terrestrial examples are indeed analogous. The features presented here were identified in images acquired by the Mars Odyssey's Thermal Emission Imaging System visible-wavelength camera, and by the Mars Reconnaissance Orbiter's Context Camera. Select candidates have since been targeted by the High-Resolution Imaging Science Experiment. Martian caves are promising potential sites for future human habitation and astrobiology investigations; understanding their characteristics is critical for long-term mission planning and for developing the necessary exploration technologies.
A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.
1999-01-01
Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While magnetic anomaly data represent the main focus of this study recently derived satellite gravity data are playing a major role in Arctic studies.
Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.
2000-01-01
Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.
Map and Database of Probable and Possible Quaternary Faults in Afghanistan
Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.
2007-01-01
The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.
Anderson, R.E.; Barnhard, T.P.
1993-01-01
The Virgin River depression and surrounding mountains are Neogene features that are partly contiguous with the little-strained rocks of the structural transition to the Colorado Plateau province. This contiguity makes the area ideally suited for evaluating the sense, magnitude, and kinematics of Neogene deformation. Analysis along the strain boundary shows that, compared to the adjacent little-strained area, large-magnitude vertical deformation greatly exceeds extensional deformation and that significant amounts of lateral displacement approximately parallel the province boundary. Isostatic rebound following tectonic denudation is an unlikely direct cause of the strong vertical structural relief adjacent to the strain boundary. Instead, the observed structures are first-order features defining a three-dimensional strain field produced by approximately east-west extension, vertical structural attenuation, and extension-normal shortening. All major structural elements of the strain-boundary strain field are also found in the adjacent Basin and Range. -from Authors
NASA Astrophysics Data System (ADS)
Cukur, D.; Krastel, S.; Schmincke, H.; Sumita, M.; Tomonaga, Y.; Damci, E.
2013-12-01
Lake Van is the largest soda lake in the world with a present surface of 3,574 km2 and a maximum water depth of 450 m. Sedimentary deposits in the lake preserve one of the most complete record of continental climate in the Middle East since the Middle Pleistocene. We studied these deposits to characterize the evolution of the lake level and its possible relationships with changes in climate, volcanic, and regional tectonics since the formation of the lake ca. 600 ka ago. Changes in lake level were determined based on high-resolution seismic reflection profiles showing erosional surfaces, changes in stratal geometries such as downward shifts in coastal onlap, and recognition of distinctive stratigraphic features such as prograding delta clinoforms. Our results show that Lake Van has undergone drastic changes in surface elevation by as much as 600 meters over the past ca. 600 ka. Five major lowstands occurred at ca. ~600 ka, ca. 365-340 ka, ca 290-230 ka; ca. 150-130 ka; and ca. 30-14 ka. During a first period (A) (ca. 600-ca 230 ka) lake levels changed drastically by hundreds of m but at longer time intervals between low and high stands. Changes occurred more frequently but mostly by a few tens of m during the past ca. 230 ka years where we can distinguish a first period (B1) of stepwise transgressions between ca. 230 and 150 ka followed by a short regression between ca. 150 and 130 ka. Lake level rose stepwise again during period B2 lasting until ca 30 ka. During the past 30 ka a regression and a final transgression each lasted ca. 15 ka years. The major lowstand periods in Lake Van occurred during glacial periods, arguing for a climatic control of these lake-level fluctuations (i.e., significantly reduced precipitation leading to lake level low stands). Although climate forcing may have been the dominant cause for the drastic lake level changes of Lake Van, volcanic and tectonic forcing factors are also invoked. For example, the number of distinct tephra layers, some several meters thick, has drastically increased in the upper ca 100 m (the past ca. 230 ka). The highest density of excellent reflectors occurs in this interval. Tectonic activity evidenced by extensional and/or compressional faults across the basin margins may have also affected the lake level fluctuations in Lake Van. This series of reconstructions using seismic stratigraphy from this study enlighten the understanding of tectonically-active lacustrine basins and provide a model for similar basins elsewhere.
First ERTS-1 results in southeastern France: Geology, sedimentology, pollution at sea
NASA Technical Reports Server (NTRS)
Fontanel, A.; Guillemot, J.; Guy, M.
1973-01-01
Results obtained by four ERTS projects in southeastern France are summarized. With regard to geology, ERTS photos of Western Alps are very useful for tectonic interpretation because large features are clearly visible on these photographs even though they are often hidden by small complicated structures if studied on large scale documents. The 18-day repetition coverage was not obtained, and time-varying sedimentological surveys were impossible. Nevertheless, it was possible to delineate the variations of the shorelines in the Rhone Delta for a period covering the least 8,000 years. Some instances of industries discharging pollutant products at sea were detected, as well as very large anomalies of unknown origin. Some examples of coherent optical processing have been made in order to bring out tectonic features in the Alps mountains.
Geological Evolution of the Ganiki Planitia Quadrangle (V14) on Venus
NASA Technical Reports Server (NTRS)
Grosfils, E. B.; Drury, D. E.; Hurwitz, D. M.; Kastl, B.; Long, s. M.; Richards, J. W.; Venechuk, E. M.
2005-01-01
The Ganiki Planitia quadrangle (25-50degN, 180-210degE) is located north of Atla Regio, south of Vinmara Planitia, and southeast of Atalanta Planitia. The region contains a diverse array of volcanic-, tectonic- and impact-derived features, and the objectives for the ongoing mapping effort are fivefold: 1) explore the formation and evolution of radiating dike swarms within the region, 2) use the diverse array of volcanic deposits to further test the neutral buoyancy hypothesis proposed to explain the origin of reservoir-derived features, 3&4) unravel the volcanic and tectonic evolution in this area, and 5) explore the implications of 1-4 for resurfacing mechanisms. Here we summarize our onging analysis of the material unit stratigraphy in the quadrangle, data central to meeting the aforementioned objectives successfully.
Cyclic growth in Atlantic region continental crust
NASA Technical Reports Server (NTRS)
Goodwin, A. M.
1986-01-01
Atlantic region continental crust evolved in successive stages under the influence of regular, approximately 400 Ma-long tectonic cycles. Data point to a variety of operative tectonic processes ranging from widespread ocean floor consumption (Wilson cycle) to entirely ensialic (Ampferer-style subduction or simple crustal attenuation-compression). Different processes may have operated concurrently in some or different belts. Resolving this remains the major challenge.
Weems, R.E.; Lewis, W.C.
2002-01-01
Eleven upper Eocene through Pliocene stratigraphic units occur in the subsurface of the region surrounding Charleston, South Carolina. These units contain a wealth of information concerning the long-term tectonic and structural setting of that area. These stratigraphic units have a mosaic pattern of distribution, rather than a simple layered pattern, because deposition, erosion, and tectonic warping have interacted in a complex manner through time. By generating separate structure-contour maps for the base of each stratigraphic unit, an estimate of the original basal surface of each unit can be reconstructed over wide areas. Changes in sea level over geologic time generate patterns of deposition and erosion that are geographically unique for the time of each transgression. Such patterns fail to persist when compared sequentially over time. In some areas, however, there has been persistent, repetitive net downward of upward movement over the past 34 m.y. These repetitive patterns of persistent motion are most readily attributable to tectonism. The spatial pattern of these high and low areas is complex, but it appears to correlate well with known tectonic features of the region. This correlation suggests that the tectonic setting of the Charleston region is controlled by scissors-like compression on a crustal block located between the north-trending Adams Run fault and the northwest-trending Charleston fault. Tectonism is localized in the Charleston region because it lies within a discrete hinge zone that accommodates structural movement between the Cape Fear arch and the Southeast Georgia embayment.
Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon
Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.
2003-01-01
Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.
Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran
NASA Astrophysics Data System (ADS)
Zamani, Ahmad; Hashemi, Naser
2004-08-01
Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.
NASA Astrophysics Data System (ADS)
Kinck, J. J.; Husebye, E. S.; Lund, C.-E.
1991-04-01
Pioneering work on mapping the Scandinavian crust commenced in the early 1960s and since then numerous profiling surveys have been undertaken, particularly as part of the on-going EUGENO-S project. However, the most significant contribution to mapping crustal structural details came from the M.V. Mobil Search cruises in the Skagerrak and off the West coast of Norway (16 s TWT reflection profiling). All past and present crustal profiling results have been integrated to produce detailed maps of Moho depths and crustal thicknesses for South Scandinavia. The thinnest crust is found in the North Sea and Skagerrak (approximately 20 km), while East-central Sweden features very thick crust (approximately 50 km). Other interesting features are the apparent correlation between crustal thinning and sedimentation/subsidence, magmatic activity, earthquake occurrences and the tectonic age of the crust. Moho depths and the crustal thicknesses clearly reflect the tectonic evolution and the present structural features of the region investigated.
NASA Astrophysics Data System (ADS)
Smit, Karen V.; D'Haenens-Johansson, Ulrika F. S.; Howell, Daniel; Loudin, Lorne C.; Wang, Wuyi
2018-06-01
Zimmi diamonds (Sierra Leone) have 500 million year mantle residency times whose origin is best explained by rapid tectonic exhumation to shallower depths in the mantle, associated with continental collision but prior to kimberlite eruption. Here we present spectroscopic data for a new suite of Zimmi sulphide-bearing diamonds that allow us to evaluate the link between their spectroscopic features and their unusual geological history. Cathodoluminesence (CL) imaging of these diamonds revealed irregular patterns with abundant deformation lamellae, associated with the diamonds' tectonic exhumation. Vacancies formed during deformation were subsequently naturally annealed to form vacancy clusters, NV0/- centres and H3 (NVN0). The brownish-yellow to greenish-yellow colours observed in Zimmi Ib-IaA diamonds result from visible absorption by a combination of isolated substitutional nitrogen ( {N}S^0 ) and deformation-related vacancy clusters. Colour-forming centres and other spectroscopic features can all be attributed to the unique geological history of Zimmi Ib-IaA diamonds and their rapid exhumation after formation.
Airborne Geophysical Surveys Applied to Hydrocarbon Resource Development Environmental Studies
NASA Astrophysics Data System (ADS)
Smith, B. D.; Ball, L. B.; Finn, C.; Kass, A.; Thamke, J.
2014-12-01
Application of airborne geophysical surveys ranges in scale from detailed site scale such as locating abandoned well casing and saline water plumes to landscape scale for mapping hydrogeologic frameworks pertinent to ground water and tectonic settings relevant to studies of induced seismicity. These topics are important in understanding possible effects of hydrocarbon development on the environment. In addition airborne geophysical surveys can be used in establishing baseline "snapshots", to provide information in beneficial uses of produced waters, and in mapping ground water resources for use in well development. The U.S. Geological Survey (USGS) has conducted airborne geophysical surveys over more than 20 years for applications in energy resource environmental studies. A majority of these surveys are airborne electromagnetic (AEM) surveys to map subsurface electrical conductivity related to plumes of saline waters and more recently to map hydrogeologic frameworks for ground water and plume migration. AEM surveys have been used in the Powder River Basin of Wyoming to characterize the near surface geologic framework for siting produced water disposal ponds and for beneficial utilization in subsurface drip irrigation. A recent AEM survey at the Fort Peck Reservation, Montana, was used to map both shallow plumes from brine pits and surface infrastructure sources and a deeper concealed saline water plume from a failed injection well. Other reported applications have been to map areas geologically favorable for shallow gas that could influence drilling location and design. Airborne magnetic methods have been used to image the location of undocumented abandoned well casings which can serve as conduits to the near surface for coproduced waters. They have also been used in conjunction with geologic framework studies to understand the possible relationships between tectonic features and induced earthquakes in the Raton Basin. Airborne gravity as well as developing deeper mapping AEM surveys could also be effectively used in mapping tectonic features. Airborne radiometric methods have not been routinely used in hydrocarbon environmental studies but might be useful in understanding the surficial distribution of deposits related to naturally occurring radioactive materials.
Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico
Pawlewicz, Mark; Barker, Charles E.; McDonald, Sargent
2005-01-01
This report presents a compilation of vitrinite reflectance (Ro) data based on analyses of samples of drill cuttings collected from 74 boreholes spread throughout the Permian Basin of west Texas and southeast New Mexico (fig. 1). The resulting data consist of 3 to 24 individual Ro analyses representing progressively deeper stratigraphic units in each of the boreholes (table 1). The samples, Cambrian-Ordovician to Cretaceous in age, were collected at depths ranging from 200 ft to more than 22,100 ft.The R0 data were plotted on maps that depict three different maturation levels for organic matter in the sedimentary rocks of the Permian Basin (figs. 2-4). These maps show depths at the various borehole locations where the R0 values were calculated to be 0.6 (fig. 2), 1.3 (fig. 3), and 2.0 (fig. 4) percent, which correspond, generally, to the onset of oil generation, the onset of oil cracking, and the limit of oil preservation, respectively.The four major geologic structural features within the Permian Basin–Midland Basin, Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1) differ in overall depth, thermal history and tectonic style. In the western Delaware Basin, for example, higher maturation is observed at relatively shallow depths, resulting from uplift and eastward basin tilting that began in the Mississippian and ultimately exposed older, thermally mature rocks. Maturity was further enhanced in this basin by the emplacement of early and mid-Tertiary intrusives. Volcanic activity also appears to have been a controlling factor for maturation of organic matter in the southern part of the otherwise tectonically stable Northwest Shelf (Barker and Pawlewicz, 1987). Depths to the three different Ro values are greatest in the eastern Delaware Basin and southern Midland Basin. This appears to be a function of tectonic activity related to the Marathon-Ouachita orogeny, during the Late-Middle Pennsylvanian, whose affects were widespread across the Permian Basin. The Central Basin Platform has been a positive feature since the mid to-late Paleozoic, during which time sedimentation occurred along its flanks. This nonsubsidence, along with the lack of supplemental heating (volcanism), implies lower maturation levels.
Seismotectonic features of the African plate: the possible dislocation of a continent
NASA Astrophysics Data System (ADS)
Meghraoui, Mustapha
2014-05-01
The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system, the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).
Piazzi On Ceres and Pacific On Earth Are Tectonically Comparable Features
NASA Astrophysics Data System (ADS)
Kochemasov, G.
Earth is more than 10 times larger than Ceres but the wave planetary tectonics [1] is not perplexed with this. Theorem 1 states that "Celestial bodies are dichotomic". This theorem is valid for bodies of various sizes, compositions and physical states. What is common for all of them that they are moving, moving in non-circular orbits, and rotate. These properties are sufficient for invoking inertia forces making celestial bodies oscillate and acquire a convexo-concave shape. of the recent planetological achievements three should be mentioned particularly as they concern small celestial bodies where general rules of body shaping are expressed very sharply. A small aster- oid 433 Eros, the largest asteroid 1 Ceres and Borrelli comet were studied in different scales but all of them have essential features predicted by the wave planetology. The convexo-concave shape of asteroid Eros (stony, 33 km long) is repeated in comet Bor- relli (icy, 8 km long). Borrelli's convex hemisphere is sharply jagged because of exten- sion. The same is observed on Eros ("saddle") but in a lesser degree. Borrelli's concave strongly contracted hemisphere is a source of a large complexly built tail of expulsion. This extruded material samples interior of the comet and leaves whitish spots in the centre of the concave side. Eros also have many signes of past degassing in a form of regular net of pits (craters); in the centre of the concave side is a large complexly built crater Psych. Both oblong bodies -Eros and Borrelli - have different opposite ends: blunt and sharp, predicted by the wave planetology (the Arctic-Antarctic symp- tom). The oblong body of Ceres (major/minor axes of 898/788 km [2] and 970/ 930 km,[Parker &Stern]) according to HST (J.Parker &Stern) has a prominent dusky dark spot (Piazzi) from one side. It occupies a significant part of the asteroid (about 250 km, more than a quarter the size of Ceres) and probably might be assigned to a depression. Tectonically one may compare this depression with the Pacific basin hollow on Earth. One may state that the wave planetology is a science which can predict. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v.1, #3, 700; [2] McCarthy D.W.,Jr., Freeman J.D., Drummond J.D. (1994) High resolution images of Vesta at 1.65 micron // Icarus,v.108, #2, pt.1, 285-297.
NASA Astrophysics Data System (ADS)
Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.
2017-11-01
Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the function of active tectonism in the advancement of the basin.
NASA Technical Reports Server (NTRS)
Doggett, T. C.; Grosfils, E. B.
2002-01-01
The stress history of a feature, identified as a previously uncataloged dike swarm, at 45N 191E is mapped as clockwise rotation of maximum horizontal compressive stress. It is intermediate between areas associated with compression, mantle upwelling and convection. Additional information is contained in the original extended abstract.
NGH: A Dynamic Factor in Deep Water Sediments & the Geological Record
NASA Astrophysics Data System (ADS)
Max, M. D.; Johnson, A. H.
2012-12-01
Prior to identification of natural gas hydrate (NGH) in marine sediments, gravity and tectonic forces were the recognized dynamic forces that could cause disruption in deep marine sediments. NGH introduces a new dynamic factor into continental slope and rise sediments as well as sediments in the deeper parts of some continental shelves. Two critical elements interplay to provide for a slow acting, long-term NGH-dynamic cyclical system. First, NGH forms spontaneously from dissolved natural gas generally in a passive manner without causing any other than very subtle alterations to the megascopic sediment structure. When NGH forms in either dispersed form in muddy sediments or in concentrated form in veins or nodules or in porosity in sandy sediments, it increases overall mechanical strength. Second, when it dissociates, mechanical strength weakens to the point where shear strengths can approach zero. Because the chemical reaction of NGH is highly reversible, changes in sea level that affect pressure, and changes in seafloor temperature can alter rapidly the tendency of NGH to either crystallize or dissociate, with consequent structural and morphological effects. The cyclicity of the Earth's climate introduces a mechanism for periodically injecting overpressured gas into marine sediments as the gas hydrate stability zones (GHSZ) undergoes changes to its thickness and depth. Natural climate change has the potential to produce overpressured natural gas converted from NGH in marine sediments periodically. In-place disruption would consist of disrupted sandy beds, chaotic textures on all scales, intrusion effects, limited mass flow features, dramatic sediment mixing not related to large scale movement and sediment redeposition from fluidized beds. Mobilization would involve larger scale sediment mass flow effects that would be indistinguishable from olistostromic melanges postulated to be initiated by tectonic or gravitational forces. The earliest interpretation of this fluidization type of large scale sediment disruption in the later part of the 1900s identified them as tectonic in origin. Subsequently, in the 1970s, it was recognized that the features were more likely a product of soft sediment deformation whose initiator might be gravity or tectonic forces, of 'tectonosedimentary' origin. The action of the NGH cycle to initiate sedimentary disruption may more readily explain many of these features in the geological record. Drill core taken across seismic reflection sediment redeposition features that otherwise show no tectonic activity related movement in abandoned GHSZ could provide important evidence for the long-term geological action of the NGH cycle.
basement reservoir geometry and properties
NASA Astrophysics Data System (ADS)
Walter, bastien; Geraud, yves; Diraison, marc
2017-04-01
Basement reservoirs are nowadays frequently investigated for deep-seated fluid resources (e.g. geothermal energy, groundwater, hydrocarbons). The term 'basement' generally refers to crystalline and metamorphic formations, where matrix porosity is negligible in fresh basement rocks. Geothermal production of such unconventional reservoirs is controlled by brittle structures and altered rock matrix, resulting of a combination of different tectonic, hydrothermal or weathering phenomena. This work aims to characterize the petro-structural and petrophysical properties of two basement surface analogue case studies in geological extensive setting (the Albert Lake rift in Uganda; the Ifni proximal margin of the South West Morocco Atlantic coast). Different datasets, using field structural study, geophysical acquisition and laboratory petrophysical measurements, were integrated to describe the multi-scale geometry of the porous network of such fractured and weathered basement formations. This study points out the multi-scale distribution of all the features constituting the reservoir, over ten orders of magnitude from the pluri-kilometric scale of the major tectonics structures to the infra-millimetric scale of the secondary micro-porosity of fractured and weathered basements units. Major fault zones, with relatively thick and impermeable fault core structures, control the 'compartmentalization' of the reservoir by dividing it into several structural blocks. The analysis of these fault zones highlights the necessity for the basement reservoirs to be characterized by a highly connected fault and fracture system, where structure intersections represent the main fluid drainage areas between and within the reservoir's structural blocks. The suitable fluid storage areas in these reservoirs correspond to the damage zone of all the fault structures developed during the tectonic evolution of the basement and the weathered units of the basement roof developed during pre-rift exhumation phases. Macroscopic fracture density is highly dependent on the petrographic nature of the basement, with values up to 80 frac./m in fault damage zones of crystalline rocks. Dense micro-cracks associated to major fault structures can develop porosity and permeability up to 10% and 0.1 D. In some weathered horizons, alteration can develop matrix porosity up to 40% and the permeability reaches up to 1D. This study highlights therefore that basement reservoir properties are the result of the long geodynamic evolution of such formations, and the different fault zone compartments or weathering horizons have to be considered separately for reservoir understanding.
NASA Technical Reports Server (NTRS)
Douglas, I.
1985-01-01
Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.
Investigation of lunar crustal structure and isostasy. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurber, C.H.
1987-07-01
The lunar mascon basins have strongly free air gravity anomalies, generally exceeding 100 milligals at an elevation of 100 km. The source of the anomalies is a combination of mantle uplift beneath the impact basins and subsequent infilling by high-density mare basalts. The relative contribution of these two components is still somewhat uncertain, although it is generally accepted that the amount of mantle uplift greatly exceeds the thickness of the basalts. Extensive studies have been carried out of the crustal structure of mare basins, based on gravity data, and their tectonic evolution, based on compressive and extensional tectonic features. Themore » present study endeavored to develop a unified, self-consistent model of the lunar crust and lithosphere incorporating both gravity and tectonic constraints.« less
Delineation of tectonic provinces of New York state as a component of seismic-hazard evaluation
Fakundiny, R.H.
2004-01-01
Seismic-hazard evaluations in the eastern United States must be based on interpretations of the composition and form of Proterozoic basement-rock terranes and overlying Paleozoic strata, and on factors that can cause relative movements among their units, rather than Phanerozoic orogenic structures, which may be independent of modern tectonics. The tectonic-province concept is a major part of both probabilistic and deterministic seismic-hazard evaluations, yet those that have been proposed to date have not attempted to geographically correlate modern earthquakes with regional basement structure. Comparison of basement terrane (megablock) boundaries with the spatial pattern of modern seismicity may lead to the mechanically sound definition of tectonic provinces, and thus, better seismic-hazard evaluation capability than is currently available. Delineation of megablock boundaries will require research on the many factors that affect their structure and movement. This paper discusses and groups these factors into two broad categories-megablock tectonics in relation to seismicity and regional horizontal-compressive stresses, with megablock tectonics divided into subcategories of basement, overlying strata, regional lineaments, basement tectonic terranes, earthquake epicenter distribution, and epeirogeny, and compressive stresses divided into pop-ups and the contemporary maximum horizontal-compressive stress field. A list presenting four to nine proposed research topics for each of these categories is given at the end.
Global Patterns of Tectonism on Titan from Mountain Chains and Virgae
NASA Technical Reports Server (NTRS)
Cook, C.; Barnes, J. W.; Radebaugh, J.; Hurford, T.; Ktatenhorn, S. A.
2012-01-01
This research is based on the exploration of tectonic patterns on Titan from a global perspective. Several moons in the outer solar system display patterns of surface tectonic features that imply global stress fields driven or modified by global forces. Patterns such as these are seen in Europa's tidally induced fracture patterns, Enceladus's tiger stripes, and Ganymede's global expansion induced normal fault bands. Given its proximity to Saturn, as well as its eccentric orbit, tectonic features and global stresses may be present on Titan as well. Titan displays possible tectonic structures, such as mountain chains along its equator (Radebaugh et al. 2007), as well as the unexplored dark linear streaks termed virgae by the IAU. Imaged by Cassini with the RADAR instrument, mountain chains near the equator are observed with a predominante east-west orientation (Liu et al. 2012, Mitri et al. 2010). Orientations such as these can be explained by modifications in the global tidal stress field induced by global contraction followed by rotational spin-up. Also, due to Titan's eccentric orbit, its current rotation rate may be in an equilibrium between tidal spin-up near periapsis and spin-down near apoapsis (Barnes and Fortney 2003). Additional stress from rotational spin-up provides an asymmetry to the stress field. This, combined with an isotropic stress from radial contraction, favors the formation of equatorial mountain chains in an east-west direction. The virgae, which have been imaged by Cassini with both the Visual and Infrared Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) instruments, are located predominately near 30 degrees latitude in either hemisphere. Oriented with a pronounced elongation in the east-west direction, all observed virgae display similar characteristics: similar relative albedos as the surrounding terrain however darkened with an apparent neutral absorber, broken-linear or rounded sharp edges, and connected, angular elements with distinct, linear edges. Virgae imaged during northern latitude passes are oriented with their long dimensions toward Titan's antiSaturn point. If the virgae are of tectonic origin, for instance if the turn out to be i.e. grabens, they could serve as markers to Titan's global stress field. Using them in this way allows for a mapping of global tectonic patterns. These patterns will be tested for consistency against the various sources of global stress and orientations of mountain chains. By determining what drives Titan's tectonics globally, we will be able to place Titan within the context of the other outer planet icy satellites.
Estimation of age of Dali-Ganis rifting and associated volcanic activity, Venus
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.
1993-01-01
This paper deals with the estimation of age for the Dali and Ganis Chasma rift zones and their associated volcanism based on photogeologic analysis of stratigraphic relations of rift-associated features with impact craters which have associated features indicative of their age. The features are radar-dark and parabolic, and they are believed to be mantles of debris derived from fallout of the craters' ejecta. They are thought to be among the youngest features on the Venusian surface, so their 'parent' craters must also be very young, evidently among the youngest 10 percent of Venus' crater population. Dali Chasma and Ganis Chasma are a part of a system of rift zones contained within eastern Aphrodite and Atla Regio which is a significant component of Venus tectonics. The rifts of this system are fracture belts which dissect typical Venusian plains with rare islands of tessera terrain. The rift zone system consists of several segments following each other (Diane, Dali, Ganis) and forming the major rift zone line, about 10,000 km long, which has junctions with several other rift zones, including Parga Chasma Rift. The junctions are usually locations of rift-associated volcanism in the form of volcanic edifices (Maat and Ozza Montes) or plain-forming flows flooding some areas within the rift zones and the adjacent plains.
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
Tectonic and neotectonic framework of the Yucca Mountain Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweickert, R.A.
1992-09-30
Highlights of major research accomplishments concerned with the tectonics and neotectonics of the Yucca Mountain Region include: structural studies in Grapevine Mountains, Bullfrog Hills, and Bare Mountain; recognition of significance of pre-Middle Miocene normal and strike-slip faulting at Bare Mountain; compilation of map of quaternary faulting in Southern Amargosa Valley; and preliminary paleomagnetic analysis of Paleozoic and Cenozoic units at Bare Mountain.
MEVTV study: Early tectonic evolution of Mars: Crustal dichotomy to Valles Marineris
NASA Technical Reports Server (NTRS)
Frey, Herbert V.; Schultz, Richard A.
1990-01-01
Several fundamental problems were addressed in the early impact, tectonic, and volcanic evolution of the martian lithosphere: (1) origin and evolution of the fundamental crustal dichotomy, including development of the highland/lowland transition zone; (2) growth and evolution of the Valles Marineris; and (3) nature and role of major resurfacing events in early martian history. The results in these areas are briefly summarized.
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures).
The Central Italy Seismic Sequence (2016): Spatial Patterns and Dynamic Fingerprints
NASA Astrophysics Data System (ADS)
Suteanu, Cristian; Liucci, Luisa; Melelli, Laura
2018-01-01
The paper investigates spatio-temporal aspects of the seismic sequence that started in Central Italy (Amatrice, Lazio region) in August 2016, causing hundreds of fatalities and producing major damage to settlements. On one hand, scaling properties of the landscape topography are identified and related to geomorphological processes, supporting the identification of preferential spatial directions in tectonic activity and confirming the role of the past tectonic periods and ongoing processes with respect to the driving of the geomorphological evolution of the area. On the other hand, relations between the spatio-temporal evolution of the sequence and the seismogenic fault systems are studied. The dynamic fingerprints of seismicity are established with the help of events thread analysis (ETA), which characterizes anisotropy in spatio-temporal earthquake patterns. ETA confirms the fact that the direction of the seismogenic normal fault-oriented (N)NW-(S)SE is characterized by persistent seismic activity. More importantly, it also highlights the role of the pre-existing compressive structures, Neogenic thrust and transpressive regional fronts, with a trend-oriented (N)NE-(S)SW, in the stress transfer. Both the fractal features of the topographic surface and the dynamic fingerprint of the recent seismic sequence point to the hypothesis of an active interaction between the Quaternary fault systems and the pre-existing compressional structures.
Experimental evidence supports mantle partial melting in the asthenosphere.
Chantel, Julien; Manthilake, Geeth; Andrault, Denis; Novella, Davide; Yu, Tony; Wang, Yanbin
2016-05-01
The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (V P) and shear (V S) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high V P/V S values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.
von Huene, Roland E.; Miller, John J.; Weinrebe, Wilhelm
2012-01-01
Three destructive earthquakes along the Alaska subduction zone sourced transoceanic tsunamis during the past 70 years. Since it is reasoned that past rupture areas might again source tsunamis in the future, we studied potential asperities and barriers in the subduction zone by examining Quaternary Gulf of Alaska plate history, geophysical data, and morphology. We relate the aftershock areas to subducting lower plate relief and dissimilar materials in the seismogenic zone in the 1964 Kodiak and adjacent 1938 Semidi Islands earthquake segments. In the 1946 Unimak earthquake segment, the exposed lower plate seafloor lacks major relief that might organize great earthquake rupture. However, the upper plate contains a deep transverse-trending basin and basement ridges associated with the Eocene continental Alaska convergent margin transition to the Aleutian island arc. These upper plate features are sufficiently large to have affected rupture propagation. In addition, massive slope failure in the Unimak area may explain the local 42-m-high 1946 tsunami runup. Although Quaternary geologic and tectonic processes included accretion to form a frontal prism, the study of seismic images, samples, and continental slope physiography shows a previous history of tectonic erosion. Implied asperities and barriers in the seismogenic zone could organize future great earthquake rupture.
Geophysical survey reveals tectonic structures in the Amundsen Sea embayment, West Antarctica
Gohl, K.; Eagles, G.; Netzeband, G.; Grobys, J.W.G.; Parsiegla, N.; Schlüter, P.; Leinweber, V.; Larter, R.D.; Uenzelmann-Neben, G.; Udintsev, G.B.
2007-01-01
Island Bay (PIB) reveal the crustal thickness and some tectonic features. The Moho is 24-22 km deep on the shelf. NE-SW trending magnetic and gravity anomalies and the thin crust indicate a former rift zone that was active during or in the run-up to breakup between Chatham Rise and West Antarctica before or at 90 Ma. NW-SE trending gravity and magnetic anomalies, following a prolongation of Peacock Sound, indicate the extensional southern boundary to the Bellingshausen Plate which was active between 79 and 61 Ma.
2016-02-22
This image from NASA 2001 Mars Odyssey spacecraft shows a different part of Olympica Fossae. In this region lava channels dominate. The complex interaction of volcanic and tectonic processes is illustrated by the central feature in this image.
NASA Astrophysics Data System (ADS)
Abdelazeem, Maha; El-Sawy, El-Sawy K.; Gobashy, Mohamed M.
2013-06-01
Ar Rika fault zone constitutes one of the two major parts of the NW-SE Najd fault system (NFS), which is one of the most prominent structural features located in the east of the center of the Arabian Shield, Saudi Arabia. By using Enhancement Thematic Mapper data (ETM+) and Principle Component Analysis (PCA), surface geological characteristics, distribution of rock types, and the different trends of linear features and faults are determined in the study area. First and second order magnetic gradients of the geomagnetic field at the North East of Wadi Ar Rika have been calculated in the frequency domain to map both surface and subsurface lineaments and faults. Lineaments as deduced from previous studies, suggest an extension of the NFS beneath the cover rocks in the study area. In the present study, integration of magnetic gradients and remote sensing analysis that resulted in different valuable derivative maps confirm the subsurface extension of some of the surface features. The 3D Euler deconvolution, the total gradient, and the tilt angle maps have been utilized to determine accurately the distribution of shear zones, the tectonic implications, and the internal structures of the terranes in the Ar Rika quadrangle in three dimensions.
NASA Astrophysics Data System (ADS)
Jamieson, J. W.; Clague, D. A.; Petersen, S.; Yeo, I. A.; Escartin, J.; Kwasnitschka, T.
2016-12-01
High-resolution, autonomous underwater vehicle (AUV)-derived multibeam bathymetry is increasingly being used as an exploration tool for delineating the size and extent of hydrothermal vent fields and associated seafloor massive sulfide deposits. However, because of the limited amount of seafloor that can be surveyed during a single dive, and the challenges associated with distinguishing hydrothermal chimneys and mounds from other volcanic and tectonic features using solely bathymetric data, AUV mapping surveys have largely been employed as a secondary exploration tool once hydrothermal sites have been discovered using other exploration methods such as plume, self-potential and TV surveys, or ROV and submersible dives. Visual ground-truthing is often required to attain an acceptable level of confidence in the hydrothermal origin of features identified in AUV-derived bathymetry. Here, we present examples of high-resolution bathymetric surveys of vent fields from a variety of tectonic environments, including slow- and intermediate-rate mid-ocean ridges, oceanic core complexes and back arc basins. Results illustrate the diversity of sulfide deposit morphologies, and the challenges associated with identifying hydrothermal features in different tectonic environments. We present a developing set of criteria that can be used to distinguish hydrothermal deposits in bathymetric data, and how AUV surveys can be used either on their own or in conjunction with other exploration techniques as a primary exploration tool.
NASA Technical Reports Server (NTRS)
Smith, R. B.; Bruhn, R. L.
1984-01-01
Using 1500 km of industry-released seismic reflection data, surface geology, velocity models from refraction data, and earthquake data, the large extensional structures in the crust of the eastern Basin-Range and its transition into the Middle Rocky Mountains and Colorado Plateau have been studied. It is suggested that the close spatial correlation between normal faults and thrust fault segmentation along the Wasatch Front reflects major east-trending structural and lithological boundaries inherited from tectonic processes associated with the evolution of the cordilleran miogeocline, which began in the Precambrian.
Merewether, E. Allen; McKinney, Kevin C.
2015-01-01
In this transect for time-stratigraphic units of the Cretaceous, lateral changes in lithologies, regional differences in thicknesses, and the abundance of associated disconformities possibly reflect local and regional tectonic events. Examples of evidence of those events follow: (1) Disconformities and the absence of strata of lowest Cretaceous age in western Montana, western Wyoming, and northern Utah indicate significant tectonism and erosion probably during the Late Jurassic and earliest Cretaceous; ( 2) stages of Upper Cretaceous deposition in the transect display major lateral changes in thickness, which probably reflect regional and local tectonism.
NASA Technical Reports Server (NTRS)
1997-01-01
Complex tectonism is evident in these images of Ganymede's surface. The solid state imaging camera on NASA's Galileo spacecraft imaged this region as it passed Ganymede during its second orbit through the Jovian system. The 80 kilometer (50 mile) wide lens-shaped feature in the center of the image is located at 32 degrees latitude and 188 degrees longitude along the border of a region of ancient dark terrain known as Marius Regio, and is near an area of younger bright terrain named Nippur Sulcus. The tectonism that created the structures in the bright terrain nearby has strongly affected the local dark terrain to form unusual structures such as the one shown here. The lens-like appearance of this feature is probably due to shearing of the surface, where areas have slid past each other and also rotated slightly. Note that in several places in these images, especially around the border of the lens-shaped feature, bright ridges appear to turn into dark grooves. Analysis of the geologic structures in areas like this are helping scientists to understand the complex tectonic history of Ganymede.
North is to the top-left of the image, and the sun illuminates the surface from the southeast. The image covers an area about 63 kilometers (39 miles) by 120 kilometers (75 miles) across at a resolution of 188 meters (627 feet) per picture element. The images were taken on September 6, 1996 at a range of 18,522 kilometers (11,576 miles) by the solid state imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.
2010-12-01
Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.
Tectonics on Iapetus: Despinning, respinning, or something completely different?
NASA Astrophysics Data System (ADS)
Singer, Kelsi N.; McKinnon, William B.
2011-11-01
Saturn's moon Iapetus is unique in that it has apparently despun while retaining a substantial equatorial bulge. Stresses arising from such a non-hydrostatic shape should in principle cause surface deformation (tectonics). As part of a search for such a tectonic signature, lineaments (linear surface features) on Iapetus were mapped on both its bright and dark hemispheres. Lineament orientations were then compared to model stress patterns predicted for spin-down from a rotation period of 16.5 h (or less) to its present synchronous period, and for a range of lithospheric thicknesses. Many lineaments are straight segments of crater rimwalls, which may be faults or joints reactivated during complex crater collapse. Most striking are several large troughs on the bright, trailing hemisphere. These troughs appear to be extensional and are distinctive on that hemisphere, because the interior floors and walls of the troughs contain dark material. Globally, no specific evidence of strike slip or thrust offsets are seen, but this could be due to the age and degraded nature of any such features. We find that observed lineament orientations do not correlate with predicted patterns due to despinning on either hemisphere (the equatorial ridge was specifically excluded from this analysis, and is considered separately). Modest evidence for preferred orientations ±40° from north could be construed as consistent with respinning, which is not necessarily far-fetched. Assuming the rigidity of unfractured ice, predicted maximum lithospheric differential stresses from despinning range from ˜1 MPa to ˜160 MPa for the elastic spheroid and thin lithosphere limits, respectively (although it is only for thicker elastic lithospheres that we expect a nonhydrostatic state to be maintained over geologic time against lithospheric failure). The tectonic signature of despinning may have been obscured over time because the surface of Iapetus is very ancient, Iapetus' thick lithosphere may have inhibited the full tectonic expression of despinning, or both. Several prominent lineaments strike E-W, and are thus parallel to the equatorial ridge (though not physically close to it), but a tectonic or volcanic origin for the ridge is highly problematic.
NASA Astrophysics Data System (ADS)
Gunnell, Y.; Calvet, M.; Meyer, B.; Pinna-Jamme, R.; Bour, I.; Gautheron, C.; Carter, A.; Dimitrov, D.
2017-01-01
Continental denudation is the mass transfer of rock from source areas to sedimentary depocentres, and is typically the result of Earth surface processes. However, a process known as tectonic denudation is also understood to expose deep-seated rocks in short periods of geological time by displacing large masses of continental crust along shallow-angle faults, and without requiring major contributions from surface erosion. Some parts of the world, such as the Basin and Range in the USA or the Aegean province in Europe, have been showcased for their Cenozoic tectonic denudation features, commonly described as metamorphic core-complexes or as supradetachment faults. Based on 22 new apatite fission-track (AFT) and 21 helium (AHe) cooling ages among rock samples collected widely from plateau summits and their adjacent valley floors, and elaborating on inconsistencies between the regional stratigraphic, topographic and denudational records, this study frames a revised perspective on the prevailing tectonic denudation narrative for southern Bulgaria. We conclude that conspicuous landforms in this region, such as erosion surfaces on basement-cored mountain ranges, are not primarily the result of Paleogene to Neogene core-complex formation. They result instead from "ordinary" erosion-driven, subaerial denudation. Rock cooling, each time suggesting at least 2 km of crustal denudation, has exposed shallow Paleogene granitic plutons and documents a 3-stage wave of erosional denudation which progressed from north to south during the Middle Eocene, Oligocene, Early to Middle Miocene, and Late Miocene. Denudation initially prevailed during the Paleogene under a syn-orogenic compressional regime involving piggyback extensional basins (Phase 1), but subsequently migrated southward in response to post-orogenic upper-plate extension driven by trench rollback of the Hellenic subduction slab (Phase 2). Rare insight given by the denudation pattern indicates that trench rollback progressed at a mean velocity of 3 to 4 km/Ma. The Neogene horst-and-graben mosaic that defines the modern landscape (Phase 3) has completely overprinted the earlier fabrics of Phases 1 and 2, and has been the prime focus of tectonic geomorphologists working in the region. The new narrative proposed here for linking the geodynamic evolution of SE Europe with surface landform assemblages raises issues in favour of better documenting the regional sedimentary record of existing Paleogene basins, which constitute a poorly documented missing link to the thermochronological evidence presented here.
NASA Astrophysics Data System (ADS)
Cung, Thu'ọ'ng Chí; Geissman, John W.
2013-09-01
Available paleomagnetic data from rock formations of Cretaceous age from Vietnam, Indochina and South China are compiled and reviewed in the context of their tectonic importance in a common reference frame with respect to Eurasia's coeval paleopoles. Key factors that play an important role in determining the reliability of a paleomagnetic result for utilization in tectonic studies have been taken into consideration and include the absence of evidence of remagnetization, which is a feature common to many rocks in this region. Overall, the Cretaceous paleomagnetic data from the South China Block show that the present geographic position of the South China Block has been relatively stable with respect to Eurasia since the mid-Cretaceous and that the paleomagnetically detected motion of a coherent lithospheric block must be based on the representative data obtained from different specific localities across the block in order to separate more localized, smaller scale deformation from true lithosphere scale motion (translation and/or rotation) of a tectonic block. Cretaceous to early Tertiary paleomagnetic data from the Indochina-Shan Thai Block reveal complex patterns of intra-plate deformation in response to the India-Eurasia collision. Paleomagnetically detected motions from the margins of tectonic blocks are interpreted to mainly reflect displacement of upper crustal blocks due to folding and faulting processes. Rigid, lithosphere scale block rotation is not necessarily supported by the paleomagnetic data. The paleomagnetic results from areas east and south of the Red River fault system suggest that this major transcurrent fault system has had a complicated slip history through much of the Cenozoic and that it does not demarcate completely non-rotated and significantly rotated parts of the crust in this area. However, most paleomagnetic results from areas east and south of the Red River fault system at the latitude of Yunnan Province are consistent with a very modest (about 800 km+-), yet paleomagnetically resolvable southward component of latitudinal translation. Accordingly, given the difficulty in separating actual lithosphere-scale plate motions from those of relatively thin, upper crustal blocks, we advocate extreme caution in interpreting paleomagnetic data from regions such as Indochina where block interaction and strong deformation are known to have occurred.
NASA Astrophysics Data System (ADS)
Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.
2017-11-01
The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.
Hydrogeologic Framework of the Salt Basin, New Mexico and Texas
NASA Astrophysics Data System (ADS)
Ritchie, A. B.; Phillips, F. M.
2010-12-01
The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.
Mountain building processes during continent continent collision in the Uralides
NASA Astrophysics Data System (ADS)
Brown, D.; Juhlin, C.; Ayala, C.; Tryggvason, A.; Bea, F.; Alvarez-Marron, J.; Carbonell, R.; Seward, D.; Glasmacher, U.; Puchkov, V.; Perez-Estaun, A.
2008-08-01
Since the early 1990's the Paleozoic Uralide Orogen of Russia has been the target of a significant research initiative as part of EUROPROBE and GEODE, both European Science Foundation programmes. One of the main objectives of these research programmes was the determination of the tectonic processes that went into the formation of the orogen. In this review paper we focus on the Late Paleozoic continent-continent collision that took place between Laurussia and Kazakhstania. Research in the Uralides was concentrated around two deep seismic profiles crossing the orogen. These were accompanied by geological, geophysical, geochronological, geochemical, and low-temperature thermochronological studies. The seismic profiles demonstrate that the Uralides has an overall bivergent structural architecture, but with significantly different reflectivity characteristics from one tectonic zone to another. The integration of other types of data sets with the seismic data allows us to interpret what tectonic processes where responsible for the formation of the structural architecture, and when they were active. On the basis of these data, we suggest that the changes in the crustal-scale structural architecture indicate that there was significant partitioning of tectonothermal conditions and deformation from zone to zone across major fault systems, and between the lower and upper crust. Also, a number of the structural features revealed in the bivergent architecture of the orogen formed either in the Neoproterozoic or in the Paleozoic, prior to continent-continent collision. From the end of continent-continent collision to the present, low-temperature thermochronology suggests that the evolution of the Uralides has been dominated by erosion and slow exhumation. Despite some evidence for more recent topographic uplift, it has so far proven difficult to quantify it.
NASA Astrophysics Data System (ADS)
Park, Seung-Ik; Kwon, Sanghoon; Kim, Sung Won; Hong, Paul S.; Santosh, M.
2018-05-01
The Early to Middle Mesozoic basins, distributed sporadically over the Korean Peninsula, preserve important records of the tectonic history of some of the major orogenic belts in East Asia. Here we present a comprehensive study of the structural, geochemical, geochronological, and paleontological features of a volcano-sedimentary package, belonging to the Oseosan Volcanic Complex of the Early to Middle Mesozoic Chungnam Basin, within the Mesozoic subduction-collision orogen in the southwestern Korean Peninsula. The zircon U-Pb data from rhyolitic volcanic rocks of the complex suggest Early to Middle Jurassic emplacement age of ca. 178-172 Ma, harmonious with plant fossil taxa found from the overlying tuffaceous sedimentary rock. The geochemical data for the rhyolitic volcanic rocks are indicative of volcanic arc setting, implying that the Chungnam Basin has experienced an intra-arc subsidence during the basin-expanding stage by subduction of the Paleo-Pacific (Izanagi) Plate. The Jurassic arc-related Oseosan Volcanic Complex was structurally stacked by the older Late Triassic to Early Jurassic post-collisional basin-fill of the Nampo Group by the Jangsan fault during basin inversion. The Late Jurassic to Early Cretaceous K-feldspar and illite K-Ar ages marked the timing of inversion tectonics, contemporaneous with the magmatic quiescence in the southern Korean Peninsula, likely due to flat-lying or low-angle subduction. The basin evolution history preserved in the Mesozoic Chungnam Basin reflects a Mesozoic orogenic cycle from post-collision to subduction in the southwestern Korean Peninsula. This, in turn, provides a better understanding of the spatial and temporal changes in Mesozoic tectonic environments along the East Asian continental margin.
Saltus, R.W.; Day, W.C.
2006-01-01
The Yukon-Tanana Upland is a complex composite assemblage of variably metamorphosed crystalline rocks with strong North American affinities. At the broadest scale, the Upland has a relatively neutral magnetic character. More detailed examination, however, reveals a fundamental northeast-southwest-trending magnetic gradient, representing a 20-nT step (as measured at a flight height of 300 m) with higher values to the northwest, that extends from the Denali fault to the Tintina fault and bisects the Upland. This newly recognized geophysical gradient is parallel to, but about 100 km east of, the Shaw Creek fault. The Shaw Creek fault is mapped as a major left-lateral, strike-slip fault, but does not coincide with a geophysical boundary. A gravity gradient coincides loosely with the southwestern half of the magnetic gradient. This gravity gradient is the eastern boundary of a 30-mGal residual gravity high that occupies much of the western and central portions of the Big Delta quadrangle. The adjacent lower gravity values to the east correlate, at least in part, with mapped post-metamorphic granitic rocks. Ground-based gravity and physical property measurements were made in the southeastern- most section of the Big Delta quadrangle in 2004 to investigate these geophysical features. Preliminary geophysical models suggest that the magnetic boundary is deeper and more fundamental than the gravity boundary. The two geophysical boundaries coincide in and around the Tibbs Creek region, an area of interest to mineral exploration. A newly mapped tectonic zone (the Black Mountain tectonic zone of O'Neill and others, 2005) correlates with the coincident geophysical boundaries.
NASA Astrophysics Data System (ADS)
Berry, M. A.; van Wijk, J.; Emry, E.; Axen, G. J.; Coblentz, D. D.
2016-12-01
Geomorphometrics provides a powerful tool for quantifying the topographic fabric of a landscape and can help with correlating surface features with underlying dynamic processes. Here we use a suite of geomorphometric metrics (including the topographic power spectra, fabric orientation/organization) to compare and contrast the geomorphology of two of the world's major rifts, the Rio Grande Rift (RGR) in western US and the East Africa Rift (EAR). The motivation for this study is the observation of fundamental differences between the characteristics of the intra-rift river drainage for the two rifts. The RGR consists of a series of NS trending rift basins, connected by accommodation or transfer zones. The Rio Grande river developed in the late Neogene, and follows these rift segments from the San Luis basin in Colorado to the Gulf of Mexico. Before the river system formed, basins are thought to have formed internally draining systems, characterized by shallow playa lakes. This is in contrast with lakes in the Tanganyika and Malawi rifts of the East African Rift that are deep and have existed for >5 My. We investigate the role of climate, tectonics and erosional processes in the formation of the through-going Rio Grande river. This occurred around the time of a slowing down of rift opening ( 10 Ma), but also climatic changes in the southwestern U.S. have been described for the late Neogene. To model our hypothesis, a tectonics and surface transport code TISC (Transport, Isostasy, Surface Transport, Climate) was used to evaluate the dynamics of a series of proto-rift basins and their connecting accommodation zones. Basin infill and drainage system development are studied as a result of varying sediment budgets, climate variables, and rift opening rate.
NASA Astrophysics Data System (ADS)
Boyce, A.; Bastow, I. D.; Darbyshire, F. A.; Ellwood, A. G.; Gilligan, A.; Levin, V.; Menke, W.
2016-07-01
The cratonic cores of the continents are remarkably stable and long-lived features. Their ability to resist destructive tectonic processes is associated with their thick (˜250 km), cold, chemically depleted, buoyant lithospheric keels that isolate the cratons from the convecting mantle. The formation mechanism and tectonic stability of cratonic keels remains under debate. To address this issue, we use P wave and S wave relative arrival-time tomography to constrain upper mantle structure beneath southeast Canada and the northeast USA, a region spanning three quarters of Earth's geological history. Our models show three distinct, broad zones: Seismic wave speeds increase systematically from the Phanerozoic coastal domains, through the Proterozoic Grenville Province, and to the Archean Superior craton in central Québec. We also recover the NW-SE trending track of the Great Meteor hot spot that crosscuts the major tectonic domains. The decrease in seismic wave speed from Archean to Proterozoic domains across the Grenville Front is consistent with predictions from models of two-stage keel formation, supporting the idea that keel growth may not have been restricted to Archean times. However, while crustal structure studies suggest that Archean Superior material underlies Grenvillian age rocks up to ˜300 km SE of the Grenville Front, our tomographic models show a near-vertical boundary in mantle wave speed directly beneath the Grenville Front. We interpret this as evidence for subduction-driven metasomatic enrichment of the Laurentian cratonic margin, prior to keel stabilization. Variable chemical depletion levels across Archean-Proterozoic boundaries worldwide may thus be better explained by metasomatic enrichment than inherently less depleted Proterozoic composition at formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulander, B.R.; Dean, S.L.; Barton, C.C.
1977-01-01
Methods results, and conclusions formulated during a prototype fractographic logging study of seventy-five feet of oriented Devonian shale core are summarized. The core analyzed is from the Nicholas Combs No. 7239 well located twelve miles due north of Hazard, Kentucky. The seventy-five foot core length was taken from a cored section lying between 2369.0 feet (subsea) and 2708.0 feet (subsea). Total core length is 339.0 feet. The core was extracted from the upper Devonian Ohio and Olentangy shale formations. Results indicate that there are few tectonic (pre-core) fractures within the studied core section. The region may nevertheless be cut atmore » core sample depth by well-defined vertical or inclined tectonic fractures that the vertically drilled test core didn't intersect. This is likely since surface Plateau systematic fractures in other Plateau areas are vertical to sub-vertical and seldom have a frequency of less than one major fracture per foot. The remarkable directional preference of set three fractures about strikes of N 40/sup 0/ E, N 10/sup 0/ W, N 45/sup 0/ W, suggests some incipient pre-core rock anisotropy or stored directional strain energy. If this situation exists, the anisotropy strike change or stored strain variance from N 40/sup 0/ E to N 45/sup 0/ W downcore remains an unanswered question. Tectonic features, indicating local and/or regional movement plans, are present on and within the tectonichorizontal fracture set one. Slickensides had a preferred orientation within several core levels, and fibrous-nonfibrous calcite serves as fracture fillings.« less
A Review of Magnetic Anomaly Field Data for the Arctic Region: Geological Implications
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.; vonFrese, Ralph; Roman, Daniel; Frawley, James J.
1999-01-01
Due to its inaccessibility and hostile physical environment remote sensing data, both airborne and satellite measurements, has been the main source of geopotential data over the entire Arctic region. Ubiquitous and significant external fields, however, hinder crustal magnetic field studies. These potential field data have been used to derive tectonic models for the two major tectonic sectors of this region, the Amerasian and Eurasian Basins. The latter is dominated by the Nansen-Gakkel or Mid-Arctic Ocean Ridge and is relatively well known. The origin and nature of the Alpha and Mendeleev Ridges, Chukchi Borderland and Canada Basin of the former are less well known and a subject of controversy. The Lomonosov Ridge divides these large provinces. In this report we will present a summary of the Arctic geopotential anomaly data derived from various sources by various groups in North America and Europe and show how these data help us unravel the last remaining major puzzle of the global plate tectonic framework. While Magnetic anomaly data represent the main focus of this study recently derived satellite gravity data (Laxon and McAdoo, 1998) are playing a major role in Arctic studies.
NASA Astrophysics Data System (ADS)
Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele
2015-11-01
The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.
NASA Astrophysics Data System (ADS)
Kostama, V.-P.; Tormanen, T.
The Venusian volcano-tectonic structures have been subject to many classification and characterisation schemes. Several structure-types have been identified (e.g. coronae, novae, arachnoids, calderas, and corona-novae). Of these groups, the relationship of arachnoids and coronae has been complicated, and is a subject to much debate. Some previous works and studies have fused these two categories together, and even promoted the view of non-existence of arachnoids at times. However, based on the recognisable differences in morphology and other characteristics (e.g. size, topography, volcanism), they should be treated as a separate class of structures. In our first global study of the volcano-tectonic features, we found 96 arachnoids [1, 2]. During the reanalysis of the features as a by-product of another study, the arachnoid population was re-evalueted, and more importantly, the identification criteria was rechecked. The revised population increases the arachnoid number to 130 features. The work also produced many examples of features that can be considered as transitional forms between different morphological groups. [1] Kostama, V.-P., M. Aittola, LPSC XXXII, Abstract#1185, 2001a. [2] Kostama, V.-P., M. Aittola, The Catalogue of Venusian Arachnoids, Coronae and Novae, http://cc.oulu.fi/tati/JR/Venus/volcanotectonics/catalogue.html, 2001b.
True polar wander on Europa from global-scale small-circle depressions.
Schenk, Paul; Matsuyama, Isamu; Nimmo, Francis
2008-05-15
The tectonic patterns and stress history of Europa are exceedingly complex and many large-scale features remain unexplained. True polar wander, involving reorientation of Europa's floating outer ice shell about the tidal axis with Jupiter, has been proposed as a possible explanation for some of the features. This mechanism is possible if the icy shell is latitudinally variable in thickness and decoupled from the rocky interior. It would impose high stress levels on the shell, leading to predictable fracture patterns. No satisfactory match to global-scale features has hitherto been found for polar wander stress patterns. Here we describe broad arcuate troughs and depressions on Europa that do not fit other proposed stress mechanisms in their current position. Using imaging from three spacecraft, we have mapped two global-scale organized concentric antipodal sets of arcuate troughs up to hundreds of kilometres long and 300 m to approximately 1.5 km deep. An excellent match to these features is found with stresses caused by an episode of approximately 80 degrees true polar wander. These depressions also appear to be geographically related to other large-scale bright and dark lineaments, suggesting that many of Europa's tectonic patterns may also be related to true polar wander.
NASA Astrophysics Data System (ADS)
Lin, A.; Yan, B.
2017-12-01
Knowledges on the activity of the strike-slip fault zones on the Tibetan Plateau have been promoted greatly by the interpretation of remote sensing images (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1977). The active strike-slip Xianshuihe-Xiaojiang Fault System (XXFS), with the geometry of an arc projecting northeastwards, plays an important role in the crustal deformation of the Tibetan Plateau caused by the continental collision between the Indian and Eurasian plates. The Xianshuihe Fault Zone (XFZ) is located in the central segment of the XXFS and extends for 370 km, with a maximum sinistral offset of 60 km since 13‒5 Ma. In this study, we investigated the tectonic landforms and slip rate along the central segment of the left-lateral strike-slip XFZ. Field investigations and analysis of ttectonic landforms show that horizontal offset has been accumulated on the topographical markers of different scales that developed since the Last Glacial Maximum (LGM). The central segment of the XFZ is composed of three major faults: Yalahe, Selaha, and Zheduotang faults showing a right-stepping echelon pattern, that is characterized by systematical offset of drainages, alluvial fans and terrace risers with typical scissoring structures, indicating a structural feature of left-lateral strike-slip fault. Based on the offset glacial morphology and radiocarbon dating ages, we estimate the Late Pleistocene-Holocene slip rate to be 10 mm/yr for the central segment of the XFZ, which is consistent with that estimated from the GPS observations and geological evidence as reported previously. Across the central segment of the XFZ, the major Selaha and Zheduotang faults participate a slip rate of 5.8 mm/yr and 3.4 mm/yr, respectively. Detailed investigations of tectonic landforms are essential for the understanding the activity of active faults. Our findings suggest that the left-lateral slipping of the XFZ partitions the deformation of eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate.
NASA Astrophysics Data System (ADS)
Walther, M.; Plenefisch, T.; Rümpker, G.
2014-02-01
Upper mantle anisotropy beneath Germany is investigated through the measurements and analysis of shear-wave splitting using SKS phases. We analysed teleseismic events recorded by 24 broadband stations of the German Regional Seismic Network (GRSN) and three broadband stations of the Gräfenberg-Array (GRF). These permanent German networks cover an area extending from the Alps in the south up to the Northern German basin towards north. In comparison to several former studies that are based either on short observation periods or that are restricted to limited areas of Germany, we resort to 22 yr of the GRSN (1991-2012) and 34 yr of GRF data archive (1979-2012). Due to the huge amount of data, we applied a fully automatic procedure to determine SKS splitting parameters from archived recordings and also applied strong quality constraints to obtain reliable solutions. From our analysis, two main features are obvious: For the stations in the middle and southern part of Germany we found homogeneous E-W to ENE-WSW fast-axis directions. In contrast, stations in NE-Germany exhibit a NW-SE oriented fast axis. Both findings can be correlated to major tectonic features in Central Europe. The E-W to ENE-WSW orientations in the middle and southern part of Germany are nearly parallel to the strike of the Variscan mountain belts, whereas the NW-SE direction in NE-Germany corresponds to the orientation of the nearby Tornquist-Teisseyre suture zone. For the southern part of Germany, there are indications for an alignment of the fast axis parallel to the curvature of the nearby Alps. Apart from the more large-scale features there are two stations (BFO and CLZ) which seem to have an imprint related to the regional geodynamic setting, namely the rifting in the Southern Rhine Graben and the formation of the Harz Mountains, respectively. We conclude that the observed regional variations of splitting parameter over Germany advocate for a mostly lithospheric route of the anisotropy. Furthermore, variations of the splitting parameters with respect to the azimuths of the incoming waves, as observed at some stations, point to vertical varying anisotropy. For some stations (BFO, RUE) the inversions for two anisotropic layers revealed directions of the fast axes that are similar to the strike directions of the surrounding tectonic units. For other stations, the confidence regions are too large for a tectonic interpretation.
Compressional intracontinental orogens: Ancient and modern perspectives
NASA Astrophysics Data System (ADS)
Raimondo, Tom; Hand, Martin; Collins, William J.
2014-03-01
Compressional intracontinental orogens are major zones of crustal thickening produced at large distances from active plate boundaries. Consequently, any account of their initiation and subsequent evolution must be framed outside conventional plate tectonics theory, which can only explain the proximal effects of convergent plate-margin interactions. This review considers a range of hypotheses regarding the origins and transmission of compressive stresses in intraplate settings. Both plate-boundary and intraplate stress sources are investigated as potential driving forces, and their relationship to rheological models of the lithosphere is addressed. The controls on strain localisation are then evaluated, focusing on the response of the lithosphere to the weakening effects of structural, thermal and fluid processes. With reference to the characteristic features of intracontinental orogens in central Asia (the Tien Shan) and central Australia (the Petermann and Alice Springs Orogens), it is argued that their formation is largely driven by in-plane stresses generated at plate boundaries, with the lithosphere acting as an effective stress guide. This implies a strong lithospheric mantle rheology, in order to account for far-field stress propagation through the discontinuous upper crust and to enable the support of thick uplifted crustal wedges. Alternative models of intraplate stress generation, primarily involving mantle downwelling, are rejected on the grounds that their predicted temporal and spatial scales for orogenesis are inconsistent with the observed records of deformation. Finally, inherited mechanical weaknesses, thick sedimentary blanketing over a strongly heat-producing crust, and pervasive reaction softening of deep fault networks are identified as important and interrelated controls on the ability of the lithosphere to accommodate rather than transmit stress. These effects ultimately produce orogenic zones with architectural features and evolutionary histories strongly reminiscent of typical collisional belts, suggesting that the deformational response of continental crust is remarkably similar in different tectonic settings.
NASA Astrophysics Data System (ADS)
Martin-Short, R.; Allen, R. M.; Porritt, R.
2017-12-01
Alaska consists of a complex arrangement of terranes of various geological affinities, mostof which have been accreted to the margin of North America over the last 200Myr. Today,the southern margin of Alaska is a site of active subduction, displaying a myriad ofenigmatic tectonic features. These include transition from compressional to strike-slipdominated deformation, accretion of the over-thickened Yakutat terrane, termination ofAleutian arc magnetism and the Wrangell Volcanic Field, whose magma source remainsdebated. The ongoing deployment of Transportable Array (TA) seismometers across Alaskaprovides an unprecedented opportunity to image these features in detail and learn moreabout the tectonic history of the region. Here we present a three dimensional model ofshear wave (Vsv) velocity beneath Alaska constructed using joint inversion of phasevelocity maps derived from ambient noise and teleseismic surface wave tomography. Thismodel possesses good resolution from the upper crust to about 150km depth, thuscomplementing recent body wave models of the region, which lack resolution above 100km.In the upper crust, we are able to distinguish major sedimentary basins and the cores ofmountain belts. At mid-crustal depths, we see a sharp velocity contrast across the Denalifault, suggesting that it marks a significant step in crustal thickness. In the mantle wedgeabove the subducting Yakutat terrane we observe a high velocity anomaly that may berelated to paucity of volcanism in this region. At greater depths, we image the subductingPacific-Yakutat slab as an elongate, high velocity anomaly that terminates abruptly at 145ºW, slightly further east than suggested by the Wadati-Benioff zone alone. There is alarge, low velocity anomaly beneath the Wrangell Volcanic Field, hinting that magmatismhere may be related to mantle upwelling around the slab edge.
Pit chains on Enceladus signal the recent tectonic dissection of the ancient cratered terrains
NASA Astrophysics Data System (ADS)
Martin, Emily S.; Kattenhorn, Simon A.; Collins, Geoffrey C.; Michaud, Robert L.; Pappalardo, Robert T.; Wyrick, Danielle Y.
2017-09-01
Enceladus is the first outer solar system body on which pit chains have been positively identified. We map the global distribution of pit chains and show that pit chains are among the youngest tectonic features on Enceladus's surface, concentrated in the cratered plains centered on Enceladus's Saturnian and anti-Saturnian hemispheres. Pit chains on Enceladus are interpreted as the surface expressions of subsurface dilational fractures underlying a cover of unconsolidated material, which we infer to be a geologically young cover of loose regolith that mantles the surface of Enceladus. A widespread layer of regolith may act to insulate the surface, which has implications for the thermal state of Enceladus's ice shell. The widespread distribution of pit chains across the cratered plains indicates that this ancient surface has recently been tectonically active.
Interactions of tectonic, igneous, and hydraulic processes in the North Tharsis Region of Mars
NASA Technical Reports Server (NTRS)
Davis, P. A.; Tanaka, Kenneth L.; Golombek, M. P.; Plescia, J. B.
1991-01-01
Recent work on the north Tharsis of Mars has revealed a complex geologic history involving volcanism, tectonism, flooding, and mass wasting. Our detailed photogeologic analysis of this region found many previously unreported volcanic vents, volcaniclastic flows, irregular cracks, and minor pit chains; additional evidence that volcanic tectonic processes dominated this region throughout Martian geologic time; and the local involvement of these processes with surface and near surface water. Also, photoclinometric profiles were obtained within the region of troughs, simple grabens, and pit chains, as well as average spacings of pits along pit chains. These data were used together with techniques to estimate depths of crustal mechanical discontinuities that may have controlled the development of these features. In turn, such discontinuities may be controlled by stratigraphy, presence of water or ice, or chemical cementation.
Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.
2011-01-01
An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.
NASA Astrophysics Data System (ADS)
Bethune, K. M.
2015-12-01
Forming the nucleus of Laurentia/Nuna, the Rae craton contains rocks and structures ranging from Paleo/Mesoarchean to Mesoproterozoic in age and has long been known for a high degree of tectonic complexity. Recent work strongly supports the notion that the Rae developed independently from the Hearne; however, while the Hearne appears to have been affiliated with the Superior craton and related blocks of 'Superia', the genealogy of Rae is far less clear. A diagnostic feature of the Rae, setting it apart from both Hearne and Slave, is the high degree of late Neoarchean to early Paleoproterozoic reworking. Indeed, following a widespread 2.62-2.58 Ga granite bloom, the margins of Rae were subjected to seemingly continuous tectonism, with 2.55-2.50 Ga MacQuoid orogenesis in the east superseded by 2.50 to 2.28 Ga Arrowsmith orogenesis in the west. A recent wide-ranging survey of Hf isotopic ratios in detrital and magmatic zircons across Rae has demonstrated significant juvenile, subduction-related crustal production in this period. Following break-up at ca. 2.1 Ga, the Rae later became a tectonic aggregation point as the western and eastern margins transitioned back to convergent plate boundaries (Thelon-Taltson and Snowbird orogens) marking onset of the 2.0-1.8 Ga assembly of Nuna. The distinctive features of Rae, including orogenic imprints of MacQuoid and Arrowsmith vintage have now been identified in about two dozen cratonic blocks world-wide, substantiating the idea that the Rae cratonic family spawned from an independent earliest Paleoproterozoic landmass before its incorportation in Nuna. While critical tests remain to be made, including more reliable ground-truthing of proposed global correlations, these relationships strongly support the notion of supercontinental cyclicity in the Precambrian, including the Archean. They also challenge the idea of a globally quiescent period in the early Paleoproterozoic (2.45-2.2 Ga) in which plate tectonics slowed or shut down.
DTM analysis and displacement estimates of a major mercurian lobate scarp.
NASA Astrophysics Data System (ADS)
Ferrari, S.; Massironi, M.; Pozzobon, R.; Castelluccio, A.; Di Achille, G.; Cremonese, G.
2012-04-01
During its second and third flybys, the MErcury Surface Space ENvironment GEochemistry and Ranging (MESSENGER) mission imaged a new large and well-preserved basin called Rembrandt Basin (Watters et al., 2009, Science) in Mercury's southern hemisphere. This basin is a 715-km-diameter impact feature which displays a distinct hummocky rim broken up by the presence of several large impact craters. Its interior is partially filled by volcanic materials, that extend up to the southern, eastern and part of the western rims, and is crossed by the 1000-km long homonymous lobate scarp. In attempt to reveal the basin-scarp complex evolution, we used MESSENGER Mercury Dual Imaging System (MDIS) mosaics to map the basin geological domains - inferring where possible their stratigraphic relationships, and fix the tectonic patterns. In contrast to other well-seen basins, Rembrandt displays evidence of global-scale in addition to basin-localized deformation that in some cases may be controlled by rheological layering within the crust. Extensional features are essentially radial and confined to the inner part, displaying one or more uplifts episodes that follow the impact. The widespread wrinkle ridges form a polygonal pattern of radial and concentric features on the whole floor, probably due to one or more near-surface compressional stages. On the other hand, Rembrandt scarp seems to be clearly unrelated to the basin formation stage and rather belonging to a global process like cooling contraction and/or tidal despinning of the planet. The main compressional phase responsible of the overall scarp build-up was followed by minor compressional structures detected within younger craters in turn cutting the main scarp. This suggests a prolonged slowing down phase of a global tectonic process. The whole feature displays an unusual transpressional nature for a common lobate scarp. Then we performed a structural and kinematic analysis subdividing the main feature into three branches: the southern one with clear evidences of a right-lateral strike slip movement acting together with an inverse kinematics, the northern one with the left-lateral component recorded on a prominent pop-up structure, and the central sector without any evidence of strike slip movements. The Digital Terrain Models of Preusker et al. (2011, PSS) help us to reconstruct the deformation, assessing the displacements along the three branches and considering different fault attitudes in depth.
NASA Astrophysics Data System (ADS)
Hauksson, E.; Shearer, P.
2004-12-01
We synthesize relocated regional seismicity and 3D velocity and Qp models to infer structure and deformation in the transpressive zone of southern California. These models provide a comprehensive synthesis of the tectonic fabric of the upper to middle crust, and the brittle ductile transition zone that in some cases extends into the lower crust. The regional seismicity patterns in southern California are brought into focus when the hypocenters are relocated using the double difference method. In detail, often the spatial correlation between background seismicity and late Quaternary faults is improved as the hypocenters become more clustered, and the spatial patterns are more sharply defined. Along some of the strike-slip faults the seismicity clusters decrease in width and form alignments implying that in many cases the clusters are associated with a single fault. In contrast, the Los Angeles Basin seismicity remains mostly scattered, reflecting a 3D distribution of the tectonic compression. We present the results of relocating 327,000 southern California earthquakes that occurred between 1984 and 2002. In particular, the depth distribution is improved and less affected by layer boundaries in velocity models or other similar artifacts, and thus improves the definition of the brittle ductile transition zone. The 3D VP and VP/VS models confirm existing tectonic interpretations and provide new insights into the configuration of the geological structures in southern California. The models extend from the US-Mexico border in the south to the Coast Ranges and Sierra Nevada in the north, and have 15 km horizontal grid spacing and an average vertical grid spacing of 4 km, down to 22 km depth. The heterogeneity of the crustal structure as imaged in both the VP and VP/VS models is larger within the Pacific than the North America plate, reflecting regional asymmetric variations in the crustal composition and past tectonic processes. Similarly, the relocated seismicity is deeper and shows a more complex 3D distribution in areas exhibiting compressional tectonics within the Pacific plate. The VP values are 0.2 to 0.4 km/s too high to support an abundant occurrence of schist beneath the Mojave Desert and the San Gabriel Mountains. The models reflect mapped changes, from east to west, in the lithology of the Peninsular Ranges. The interface between the shallow Moho of the Continental Borderland and the deep Moho of the continent forms a broad zone to the north beneath the western Transverse Ranges, Ventura basin and the Los Angles Basin and a narrow zone to the south, along the Peninsular Ranges. Similarly, the 3D Qp model includes several features that correspond to regional tectonic features and possibly the thermal structure of the southern California crust. A clear low Qp zone extends from the San Bernardino Basin, across the Chino Basin, San Gabriel Valley, into the Los Angeles Basin. This zone is consistent with the geology and decreases with depth from east to west. The Peninsular Ranges have a high Qp zone consistent with the high velocities in the 3D VP model. There are also zones of high Qp in the southern Mojave and southern Sierras. Several clear transition zones of rapidly varying Qp, extend across major late Quaternary faults and connect regions of high and low Qp. The strongest low Qp zone coincides with the Salton Trough where near-surface low Qp is associated with the sediments and the deeper low Qp may be associated with elevated mid-crustal temperatures.
Exchange processes from the deep interior to the surface of icy moons
NASA Astrophysics Data System (ADS)
Grasset, O.
Space exploration provides outstanding images of planetary surfaces. Galileo space- craft around Jupiter, and now Cassini in the saturnian system have revealed to us the variety of icy surfaces in the solar system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billions years. Composition of ices is also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. Water ice can be mixed with salts (Europa?), with hydrocarbons (Titan?) or with silicates (Callisto). The present surfaces of icy moons are the results of both internal (tectonic; volcanism; mantle composition; magnetic field; . . . ) and external processes (radiations, atmospheres, impacts, . . . ). Internal activity (past or present) is almost unknown. While the surfaces indicate clearly that an important activity existed (Ganymede, Europa, Titan, . . . ) or still exists (Enceladus, Titan?, . . . ), volcanic and tectonic processes within icy mantles are still very poorly understood. This project proposes some key studies for improving our knowledge of exchange processes within icy moons, which are: 1) Surface compositions: Interpretation of mapping spectrometer data. It addresses the interpretation of remote sensing data. These data are difficult to understand and a debate between people involved in Galileo and those who are now trying to interpret Cassini data might be fruitful. As an example, interpretation of Galileo data on Europa are still controversial. It is impossible to affirm that the "non-icy" material which does not present the classic infrared signature of pure ice is due to the presence of magnesium hydrates, sodium hydrates, magnesium sulfurs, "clays", or even altered water ice. Discussion on the subject are still needed. On Titan, the presence of the atmosphere impedes to link IR data from Cassini to the composition of the surface. 2) Past and present dynamics of icy surfaces: erosion, tectonics and cryovolcanism. This second topic is devoted to the description of the surface features. A synthesis of what has been seen in the jovian system and a presentation of what is now discovered in the saturnian system might be useful. 3) Internal processes: dynamics of icy mantles. Many works have been done specifically for icy moons (rheology of icy mantles, heating modes, effect of ice composition, internal activity of small moons, internal oceans,. . . ). Icy mantles present so many different convective processes, depending on parameters such as the ice composition, the heating mode, . . . , that a full review of the recent progress on the subject is required. 4) Physics and chemistry of ices: experimental constraints on hydrates, clathrates and organics. Nothing can be done without experimental data. Thermodynamical constraints, phase diagrams, but also mechanical properties of icy materials are required for constraining all models. Many progress have been made these last five years, especially for clathrate structures so important in the case of Titan. A review of these progresses is required. 5) Earth analogs: a tool for understanding surface/ internal features. Tectonic and volcanic features on icy moons are sometimes confronted to Earth structures. This procedure is very interesting. While materials are different (on Earth the melt is lighter than the rock, but on icy moons it is the contrary), tectonic and volcanic features can be very similar. Our good understanding of the Earth can be very useful for describing the processes responsible of tectonic/volcanic features on the moons. Discussing around the five themes described above may provide some constraints on open questions such as the characteristics of liquid layers within icy moons, the cryovolcanism on Titan, the resurfacing of Europa, the composition of Titan's surface, and the activity on Enceladus. 2
NASA Astrophysics Data System (ADS)
Kochemasov, Gennady G.
2010-05-01
A very unreliable interpretation of the deepest and large depressions on the Moon and Phobos as the impact features is not synonymous and causes many questions. A real scientific understanding of their origin should take into consideration a fact of their similar tectonic position with that of a comparable depression on so different by size, composition, and density heavenly body as Earth. On Earth as on other celestial bodies there is a fundamental division on two segments - hemispheres produced by an interference of standing warping wave 1 (long 2πR) of four directions [1]. One hemisphere is uplifted (continental, highlands) and the opposite subsided (oceanic, lowlands). Tectonic features made by wave 2 (sectors) adorn this fundamental structure. Thus, on the continental risen segment appear regularly disposed sectors, also uplifted and subsided. On the Earth's eastern continental hemisphere they are grouped around the Pamirs-Hindukush vertex of the structural octahedron made by interfering waves2. Two risen sectors (highly uplifted African and the opposite uplifted Asian) are separated by two fallen sectors (subsided Eurasian and the opposite deeply subsided Indoceanic). The Indoceanic sector with superposed on it subsided Indian tectonic granule (πR/4-structure) produce the deepest geoid minimum of Earth (-112 m). The Moon demonstrates its own geoid minimum of the same relative size and in the similar sectoral tectonic position - the SPA basin [2, 3]. This basin represents a deeply subsided sector of the sectoral structure around the Mare Orientale (one of vertices of the lunar structural octahedron). To this Mare converge four sectors: two subsided - SPA basin and the opposite Procellarum Ocean, and two uplifted - we call them the "Africanda sector" and the opposite "Antiafricanda one" to stress structural similarity with Earth [2]. The highest "Africanda sector" is built with light anorthosites; enrichment with Na makes them even less dense that is required by the sector highest elevation. Procellarum Ocean is filled with basalts and Ti-basalts. The SPA basin must be filled with even denser rocks. One expects here feldspar-free, pyroxene enriched rocks with some admixture of Fe metal and troilite. The spectral observations of Carle Pieters [4] confirm orthopyroxene enrichment and absence of feldspar. Enigmatic large and deep depression of crater Stickney on Phobos with an appropriate scale adjustment to much larger Earth and Moon occupies a similar structural position to the Indian geoid minimum and the SPA basin. Such situation cannot be random and proves a common origin of these remarkable tectonic features at so different celestial bodies. This conclusion is reinforced by taking for a comparison another small heavenly body- Uranus satellite Miranda. Imaged by Voyager 2 spacecraft in 1986 it shows two kinds of terrains (PIA01980 & others). Subsided provinces (ovoids) characterized by intensive curvilinear folding and faulting interrupt uplifted densely cratered old provinces. One of the deeply subsided ovoids with curvilinear folds pattern (compression under subsidence) perfectly fits into a sector boundary. References: [1] Kochemasov G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., V.1, #3, 700. [2] Kochemasov G.G. (1998) The Moon: Earth-type sectoral tectonics, relief and relevant chemical features // The 3rd International Confernce on Exploration and Utilization of the Moon, Oct. 11-14, 1998, Moscow, Russia, Abstracts, p. 29. [3] Kochemasov G.G. (1998) Moon-Earth: similarity of sectoral organization // 32nd COSPAR Scientific Assembly, Nagoya, Japan, 12-19 July 1998, Abstracts, p. 77. [4] Pieters C. (1997) Annales Geophys., v. 15, pt. III, p. 792.
NASA Astrophysics Data System (ADS)
Lotout, Caroline; Pitra, Pavel; Poujol, Marc; Van Den Driessche, Jean
2017-03-01
New U-Pb dating on zircon yielded ca. 470 Ma ages for the granitoids from the Lévézou massif in the southern French Massif Central. These new ages do not support the previous interpretation of these granitoids as syn-tectonic intrusions emplaced during the Late Devonian-Early Carboniferous thrusting. The geochemical and isotopic nature of this magmatism is linked to a major magmatic Ordovician event recorded throughout the European Variscan belt and related to extreme thinning of continental margins during a rifting event or a back-arc extension. The comparable isotopic signatures of these granitoids on each side of the eclogite-bearing leptyno-amphibolitic complex in the Lévézou massif, together with the fact that they were emplaced at the same time, strongly suggest that these granitoids were originally part of a single unit, tectonically duplicated by either isoclinal folding or thrusting during the Variscan tectonics.
The Pan-African nappe tectonics in the Shackleton Range
Buggisch, W.; Kleinschmidt, G.
2007-01-01
In memory of Campbell Craddock: When J. Campbell Craddock (1972) published his famous 1:5 000 000 map of the Geology of Antarctica, he established major units such as the East Antarctic Craton, the early Palaeozoic Ross, the Mesozoic Ellsworth, and the Cenozoic Andean orogens. It is already evident from this map, that the strike of the Ellsworth Mountains and the Shackleton Range is perpendicular to palaeo-Pacific and modern Pacific margins. While the Ellsworth-Whitmore block is classified as a rotated terrane, the Ross-aged orogen of the Shackleton Range requires another interpretation. The discovery of extended tectonic nappes with south directed transport in the southern Shackleton Range and west transport in the north established a plate tectonic scenery with a subduction dominated Ross Orogen in the Transantarctic Mountains and a transpressive tectonic regime in the Shackleton Range during the final closing of the Mozambique Ocean.
Flexurally-resisted uplift of the Tharsis Province, Mars
NASA Technical Reports Server (NTRS)
Phillips, R. J.; Sleep, N. H.
1987-01-01
The tectonic style of Mars is dominated by vertical motion, perhaps more than any of the terrestrial planets. The imprint of this tectonic activity has left a surface widely faulted even though younger volcanism has masked the expression of tectonism in many places. Geological activity associated with the Tharsis and, to a lesser extent, Elysium provinces is responsible for a significant portion of this faulting, while the origins of the remaining features are enigmatic in many cases. The origin and evolution of the Tharsis and Elysium provinces, in terms of their great elevation, volcanic activity, and tectonic style, has sparked intense debate over the last fifteen years. Central to these discussions are the relative roles of structural uplift and volcanic construction in the creation of immense topographic relief. For example, it is argued that the presence of very old and cratered terrain high on the Tharsis rise, in the vicinity of Claritas Fossae, points to structural uplift of an ancient crust. Others have pointed out, however, that there is no reason that this terrain could not be of volcanic origin and thus part of the constructional mechanism.
NASA Technical Reports Server (NTRS)
Mcewen, A. S.
1985-01-01
The thesis is that extensional tectonics and low-angle detachment faults probably occur on Io in association with the hot spots. These processes may occur on a much shorter timescale on Ion than on Earth, so that Io could be a natural laboratory for the study of thermotectonics. Furthermore, studies of heat and detachment in crustal extension on Earth and the other terresrial planets (especially Venus and Mars) may provide analogs to processes on Io. The geology of Io is dominated by volcanism and hot spots, most likely the result of tidal heating. Hot spots cover 1 to 2% of Io's surface, radiating at temperatures typically from 200 to 400 K, and occasionally up to 700K. Heat loss from the largest hot spots on Io, such as Loki Patera, is about 300 times the heat loss from Yellowstone, so a tremendous quantity of energy is available for volcanic and tectonic work. Active volcanism on Io results in a resurfacing rate as high as 10 cm per year, yet many structural features are apparent on the surface. Therefore, the tectonics must be highly active.
Tectonic map of Indonesia: A progress report
Hamilton, Warren Bell
1970-01-01
Orogeny, volcanism, and seismicity are now intensely active in Indonesia. Many Dutch tectonists--Brouwer, Umbgrove, van Bemifielen, Smit4Sibinga, Vening Meinesz, Westerveld, and others--recognized that this complex cluster of islands represents an early stage in the evolution of orogenic belts. Not until Indonesia is understood can we comprehend the Alps. This report summarizes some aspects of work to date on the Tectonic Map of Indonesia. The preparation of this map is a joint project of the Geological Survey of Indonesia and the United States Geological Survey, sponsored by the Government of Indonesia and the United States Agency for International Development. The Tectonic Map of Indonesia will be published at a scale of 1:5,000,000. Adjacent regions in other countries will be included to provide a broader context. The map limits presently envisaged are the parallels of 12° N. and 15° S., and the meridians of 91° and 148° E. Tectonic features will be shown in many colors and patterns. Bathymetry is being newly compiled, and will be shown with contours and shades of blue. Figure 1 shows the islands of Indonesia.
Nokleberg, Warren J.; Miller, Robert J.; Naumova, Vera V.; Khanchuk, Alexander I.; Parfenov, Leonid M.; Kuzmin, Mikhail I.; Bounaeva, Tatiana M.; Obolenskiy, Alexander A.; Rodionov, Sergey M.; Seminskiy, Zhan V.; Diggles, Michael F.
2003-01-01
This is the Web version of a CD-ROM publication. This report consists of summary major compilations and syntheses accomplished in the six-year project through April 2003 for the study on the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia (Eastern and Southern Siberia, Mongolia, Northeastern China, South Korea, and Japan). The major scientific goals and benefits of the project are to: (1) provide a comprehensive international data base on the mineral resources of the region that is the first, extensive knowledge available in English; (2) provide major new interpretations of the origin and crustal evolution of mineralizing systems and their host rocks, thereby enabling enhanced, broad-scale tectonic reconstructions and interpretations; and (3) promote trade and scientific and technical exchanges between the North America and Northeast Asia. Data from the project are providing sound scientific data and interpretations for commercial firms, governmental agencies, universities, and individuals that are developing new ventures and studies in the project area, and for land-use planning studies that deal with both mineral potential issues. Northeast Asia has vast potential for known and undiscovered mineral deposits; however, little information existed in English in the West until publication of products from this project. Consequently, data and interpretations from the project are providing basic knowledge for major scientific, commercial, national, and international endeavors by other interested individuals and groups.
Recent crustal movements and seismicity in the western coastal region of peninsular India
NASA Astrophysics Data System (ADS)
Kailasam, L. N.
1983-09-01
Recent crustal movements, tectonics and seismicity of the western coastal region of peninsular India have been studied in detail in the very recent past. Prominent geomorphic features and large-scale manifestation of Holocene deformation and crustal movements have been noticed and studied over this coastal region from the Gulf of Cambay to the southernmost parts of Kerala, evidence for which is afforded in the form of Recent and sub-Recent raised beaches, sandbars, raised old terraces, pebble beds, etc. The sedimentary formations in this narrow coastal belt include Neogene and Quaternary sediments. The Bouguer gravity map of the western coastal tract shows some prominent gravity features extending into the offshore regions, suggestive of some significant tectonic and structural features. The seismic data in the offshore regions bring out some prominent roughly northwest-southeast as well as east-west faults and shears, in addition to prominent structural "highs" off the Bombay and Ratnagiri coast which have proved oil. The seismicity in this coastal tract as well as the faulted western margin of the western continental shelf in the Arabian Sea is generally of magnitude 3-6.
NASA Astrophysics Data System (ADS)
Sembroni, Andrea; Molin, Paola; Dramis, Francesco; Faccenna, Claudio; Abebe, Bekele
2017-05-01
An outlier consists of an area of younger rocks surrounded by older ones. Its formation is mainly related to the erosion of surrounding rocks which causes the interruption of the original continuity of the rocks. Because of its origin, an outlier is an important witness of the paleogeography of a region and, therefore, essential to understand its topographic and geological evolution. The Mekele Outlier (N Ethiopia) is characterized by poorly incised Mesozoic marine sediments and dolerites (∼2000 m in elevation), surrounded by strongly eroded Precambrian and Paleozoic rocks and Tertiary volcanic deposits in a context of a mantle supported topography. In the past, studies about the Mekele outlier focused mainly in the mere description of the stratigraphic and tectonic settings without taking into account the feedback between surface and deep processes in shaping such peculiar feature. In this study we present the geological and geomorphometric analyses of the Mekele Outlier taking into account the general topographic features (slope map, swath profiles, local relief), the river network and the principal tectonic lineaments of the outlier. The results trace the evolution of the study area as related not only to the mere erosion of the surrounding rocks but to a complex interaction between surface and deep processes where the lithology played a crucial role.
A mechanism for tectonic deformation on Venus
NASA Technical Reports Server (NTRS)
Phillips, Roger J.
1986-01-01
In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.
SOGRA - Supporting Optimized GNSS Research in Africa
2014-12-08
velocities of the tectonic blocks in Africa, namely around the East African Rift. Figure 3 shows the recent results obtained for the relative...motion with respect to the neighboring tectonic blocks: (red) NUBI wrt SMLA; (white) NUBI and SMLA wrt VICT; (green) NUBI, SMLA, and VICT wrt RVMA. The...relative motions between the different blocks are small, in the order of few mm/yr for most of the plate boundaries. The major values are obtained in
Shelly, David R.
2016-01-01
Tectonic, non-volcanic tremor is a weak vibration of ground, which cannot be felt by humans but can be detected by sensitive seismometers. It is defined empirically as a low-amplitude, extended duration seismic signal associated with the deep portion (∼20–40 km depth) of some major faults. It is typically observed most clearly in the frequency range of 2–8 Hz and is depleted in energy at higher frequencies relative to regular earthquakes.
NASA Astrophysics Data System (ADS)
Singh, Vimal; Tandon, S. K.
2008-12-01
The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.
Horizontal gravity gradient - An aid to the definition of crustal structure in North America
NASA Technical Reports Server (NTRS)
Sharpton, V. L.; Grieve, R. A. F.; Thomas, M. D.; Halpenny, J. F.
1987-01-01
A map of the magnitude of the horizontal Bouguer gravity gradient over the North American continent is used to delineate lateral discontinuities in upper crustal density and/or thickness associated with such processes as suturing and rifting. The usefulness of gradient trends in mapping major structural boundaries, which are sometimes poorly exposed or completely buried, is demonstrated by examples such as the buried southward extension of the Grenville Front and buried boundaries of the Superior Province. Gradient trends also draw attention to poorly known structures, which may have major tectonic significance, and to a continent-wide structural fabric, which may provide a record of the tectonic growth of the North American continent.
Poag, C.W.; Sevon, W.D.
1989-01-01
The complex interplay between source-terrain uplift, basin subsidence, paleoclimatic shifts, and sea-level change, left an extensive sedimentary record in the contiguous offshore basins of the U.S. middle Atlantic margin (Salisbury Embayment, Baltimore Canyon Trough, and Hatteras Basin). Isopach maps of 23 postrift (Lower Jurassic to Quaternary) a allostratigraphic units, coupled with a revised stratigraphic framework, reveal that tectonism, by regulating sediment supply (accumulation rate), dominated the interplay of forcing mechanisms. Tectonic pulses are evidenced by abruptly accelerated sediment accumulation, marked latitudinal shifts in the location of depocenters, and regional changes in lithofacies. Relatively rapid tectonic subsidence during the Early and Middle Jurassic history of the basins may have enhanced sediment accumulation rates. Beginning in the Late Jurassic, however, subsidence rates decreased significantly, though occasional short pulses of subsidence may have effected relative sea-level rises. Sea-level change heavily influenced the distribution and redistribution of sediments one they reached the basins, and paleoclimate regulated the relative abundance of carbonates and evaporites in the basins. We conclude that source terrains of the central Appalachian Highlands were tectonically uplifted, intensely weathered, and rapidly eroded three times since the Late Triassic: (1) Early to Middle Jurassic (Aalenian to Callovian); (2) mid-Early Cretaceous (Barremian); and (3) Late Cenozoic (Middle Miocene). Intervals of tectonic quiescence following these three tectonic pulses provided conditions suitable for the formation of regional erosion surfaces, geomorphic features commonly reported to characterize the central Appalachian Highlands. This series of three, irregularly spaced, tectonic/quiescent cycles does not, however, match the traditional four-cycle concept of post-Triassic Appalachian "peneplanation". ?? 1989.
Optimal Planet Properties For Plate Tectonics Through Time And Space
NASA Astrophysics Data System (ADS)
Stamenkovic, Vlada; Seager, Sara
2014-11-01
Both the time and the location of planet formation shape a rocky planet’s mass, interior composition and structure, and hence also its tectonic mode. The tectonic mode of a planet can vary between two end-member solutions, plate tectonics and stagnant lid convection, and does significantly impact outgassing and biogeochemical cycles on any rocky planet. Therefore, estimating how the tectonic mode of a planet is affected by a planet’s age, mass, structure, and composition is a major step towards understanding habitability of exoplanets and geophysical false positives to biosignature gases. We connect geophysics to astronomy in order to understand how we could identify and where we could find planet candidates with optimal conditions for plate tectonics. To achieve this goal, we use thermal evolution models, account for the current wide range of uncertainties, and simulate various alien planets. Based on our best model estimates, we predict that the ideal targets for plate tectonics are oxygen-dominated (C/O<1) (solar system like) rocky planets of ~1 Earth mass with surface oceans, large metallic cores super-Mercury, rocky body densities of ~7000kgm-3), and with small mantle concentrations of iron 0%), water 0%), and radiogenic isotopes 10 times less than Earth). Super-Earths, undifferentiated planets, and especially hypothetical carbon planets, speculated to consist of SiC and C, are not optimal for the occurrence of plate tectonics. These results put Earth close to an ideal compositional and structural configuration for plate tectonics. Moreover, the results indicate that plate tectonics might have never existed on planets formed soon after the Big Bang—but instead is favored on planets formed from an evolved interstellar medium enriched in iron but depleted in silicon, oxygen, and especially in Th, K, and U relative to iron. This possibly sets a belated Galactic start for complex Earth-like surface life if plate tectonics significantly impacts the build up and regulation of gases relevant for life. This allows for the first time to discuss the tectonic mode of a rocky planet from a practical astrophysical perspective.
The Evil Twin of Agenor: More Evidence for Tectonic Convergence on Europa
NASA Astrophysics Data System (ADS)
Greenberg, R.; Hurford, T.
2003-03-01
Reconstruction along a lineament similar to Agenor, but located diametrically opposite, indicates it is a convergence site, confirming hypotheses that similar features elsewhere formed that way and helping solve the surface-area budget problem.
NASA Astrophysics Data System (ADS)
Essid, El Mabrouk; Kadri, Ali; Inoubli, Mohamed Hedi; Zargouni, Fouad
2016-07-01
The northern Tunisia is occupied by the Tellian domain constituent the eastern end of the Maghrebides, Alpine fold-thrust belt. Study area includes partially the Tellian domain (Mogodos belt) and its foreland (Bizerte region). Most of this region outcrops consist of Numidian thrust sheet flysch attributed to the lower Oligocene-Burdigalian. In the study area, the major fault systems are still subject of discussion. The Numidian nappe structure, the distribution of basalt and Triassic outcrops within and at the front of this Tellian domain deserve more explanation. In this work we intend to update the structural scheme and the tectonic evolution of the northern Tunisia, taking into account salt tectonics and magmatism. The updated tectonic evolution will be integrated in the geodynamic framework of the Central Mediterranean. For this purpose, we have analyzed morphologic, seismic and structural data. The compilation of the results has allowed the identification of new regional NE-trending faults dipping towards the NW: the Bled el Aouana-Bizerte, the Sejnane-Ras Enjla and the Oued el Harka faults. They correspond to the reactivation of deep-seated normal faults splaying on the Triassic evaporites. This fault system constitutes the main component of the northern Tunisia structural scheme and has influenced its tectonic evolution marked by the main following stages. The Tellian thrust-sheets were immobilized at the uppermost Langhian. During the major Tortonian NW-trending compressive phase, these faults were reactivated with reverse kinematics and controlled the distribution of the post-nappes Neogene continental deposits. At the early Pleistocene, a compressive NNW-trending event has reactivated again these faults with sinistral-reverse movements and deformed the post-nappes Neogene series. Late Quaternary to Actual, the tectonic regime continues to be compressive with a NNW-trending maximum horizontal stress.
Mantle structure and tectonic history of SE Asia
NASA Astrophysics Data System (ADS)
Hall, Robert; Spakman, Wim
2015-09-01
Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-wave velocity anomalies that are of great value in helping to understand the region's tectonic development. We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia, parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomography and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle structure. The slab-related velocity anomalies we identify in the upper and lower mantle based on the UU-P07 model are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE Asian region to depths of approximately 1600 km. In the upper mantle anomalies mainly record subduction during the last 10 to 25 Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between c.200-400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below SE Asia has a clear internal structure and we argue that many features can be identified as older subduction zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
1991-05-01
The Magellan mission to Venus is reviewed. The scientific investigations conducted by 243-day cycles encompass mapping with a constant incidence angle for the radar, observing surface changes from one cycle to the next, and targeting young-looking volcanos. The topography of Venus is defined by the upper boundary of the crust and upwelling from lower domains. Tectonic features such as rift zones, linear mountain belts, ridge belts, and tesserae are described. The zones of tesserae are unique to the planet. Volcanism accounts for about 80 percent of the observed surface, the remainder being volcanic deposits which have been reworked by tectonism or impacts. Magellan data reveal about 900 impact craters with flow-like ejecta resulting from the fall of meteoroids. It is concluded that the age of the Venusian surface varies between 0 and 800 million years. Tectonic and volcanic activities dominate the formation of the Venus topography; such processes as weathering and erosion are relatively unimportant on Venus.
Foose, M.P.; McLelland, J.M.
1995-01-01
Low-Ti iron-oxide deposits in exposed Grenville-age rocks of New York and New Jersey belong to a distinct class of iron-oxide (Cu-U-Au-rare earth element [REE]) deposits that includes similar iron deposits in southeastern Missouri and the Kiruna district of Sweden, the giant Olympic Dam U-Cu-Au-Ag deposit (Australia), and the Bayan Obo REE-Nb deposit (China). Most of the New York-New Jersey deposits exhibit features consistent with a hydrothermal origin and define a regionally significant metallogenic event that provides important clues to the evolution of this part of the Grenville orogen. In the Adirondacks, the tectonic setting of these deposits is consistent with postorogenic uplift and extensive crustal melting at 1070-1050 Ma that was accompanied by late tectonic to posttectonic deposition of iron. -Authors
Tests of crustal divergence models for Aphrodite Terra, Venus
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1989-01-01
This paper discusses the characteristics of Aphrodite Terra, the highland region of Venus which is considered to be a likely site of mantle upwelling, active volcanism, and extensional tectonics, and examines the relation of these features to three alternative kinematic models for the interaction of mantle convection with the surface. These the 'vertical tectonics' model, in which little horizontal surface displacement results from mantle flow; the 'plate divergence' model, in which shear strain from large horizontal displacements is accommodated only in narrow zones of deformation; and the 'distributed deformation' model, in which strain from large horizontal motions is broadly accommodated. No convincing observational evidence was found to support the rigid-plate divergence, while the evidence of large-scale horizontal motions of Aphrodite argues against purely vertical tectonics. A model is proposed, involving a broad disruption of a thin lithosphere. In such a model, lineaments are considered to be surface manifestations of mantle convective flow.
Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada
Dudley, William W.
1990-01-01
Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.
Europa: Initial Galileo Geological Observations
Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.
1998-01-01
Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.
NASA Astrophysics Data System (ADS)
Galindo-Zaldívar, Jesús; Azzouz, Omar; Chalouan, Ahmed; Pedrera, Antonio; Ruano, Patricia; Ruiz-Constán, Ana; Sanz de Galdeano, Carlos; Marín-Lechado, Carlos; López-Garrido, Angel Carlos; Anahnah, Farida; Benmakhlouf, Mohamed
2015-11-01
Westward motion of the Alboran Domain between the Eurasian and African plate boundaries determined crustal thickening along the southern border of the Gibraltar Arc, forming the Rif Cordillera. This process developed major sinistral NE-SW to ENE-WSW faults (such as the Nekor Fault), inactive since the Late Miocene. However, the Neogene-Quaternary Boudinar and Nekor basins underwent very intense recent tectonic and seismic activity related to N-S faults. Kinematics of this fault set changes with depth. While at ~ 10 km faults have a sinistral strike-slip kinematics, they become normal to normal-oblique at surface (Sfeha, Trougout and Boudinar faults). Their different kinematics could be explained by the existence of a crustal detachment separating two differently pre-structured domains. Shallow transtensive N-S faults trend orthogonal to the coastline, decreasing their slip southwards until disappearing. Paleostress analysis shows a progressive change from E-W extension near the coastline up to radial extension in southern areas of major fault terminations. The behavior of each fault-bounded block is conditioned by its inherited rheological features. The sequence of horsts (Bokoya, Ras Tarf, Ras Afraou) corresponds mainly to resistant rocks (volcanics or limestones), whereas the grabens (Nekor and Boudinar basins) are generally floored by weak metapelites and flysch. The presence of liquefaction structures, interpreted as seismites, underlines the continued recent seismic activity of the region. The recent structures deforming the two Alboran Sea margins come to support the continuity, at present, of orogenic processes undergone by the eastern internal regions of the Gibraltar Arc, involving regional E-W extension in the framework of NW-SE to N-S Eurasian-African convergence.
Conflicting drainage patterns in the Matera Horst Area, southern Italy
NASA Astrophysics Data System (ADS)
Beneduce, P.; Festa, V.; Francioso, R.; Schiattarella, M.; Tropeano, M.
The Matera Horst (“ Murgia materana”) is included in the Apulian plateau, basically formed by Mesozoic shallow-water carbonates. The zone is located in a present-day temperate belt and form a flat-topped morphostructural large element inside the foreland area of the southern Apennines. This horst is bordered by high-angle faults and surrounded by downthrown blocks covered by Plio-Quaternary marine and alluvial sediments. The structural high experienced several morphological cycles from Miocene to Quaternary. In particular, three evolutionary stages can be recognized at least. The first stage is currently represented by relics of a flat erosional landscape at the top of the relieves. The second one is testified by gentle slopes with wide glacis at the foothills, locally covered by coarse waste deposits. During the third stage a series of marine terraces formed and a drainage system developed creating both bland valleys and well-defined channels and gorges. The latter streams deeply carve the Cretaceous limestone of the Matera Horst for they represent the morphological response to the tectonic uplift of the area and clearly post-date the former features. Since the fluvial net took place on Pleistocene covers, later widely eroded, it is possible to conclude that the major part of the Matera Horst drainage system represents a good example of superimposition. However, low order streams and segments of major rivers appear to be structurally controlled, as suggested by comparison with the fracture system. Further, also open synclines and gently steeped flexures may locally exert a driving control on minor streams. These apparently conflicting genetic hypotheses can be explained by the role of exhumation of inherited structures of the bedrock in add to a constant interplay between tectonics, erosion and drainage evolution during Quaternary times.
NASA Astrophysics Data System (ADS)
Hernández, Mariano; Arrouy, María Julia; Scivetti, Nicolás; Franzese, Juan R.; Canalicchio, José M.; Poiré, Daniel G.
2017-11-01
At the northwestern portion of the Tandilia System, a detailed structural analysis on the Precambrian sedimentary units exposed in the quarries of the Olavarría-Sierras Bayas area was carried out. These units exhibit deformational structures of several scales, from centimeters to hundreds of meters. The hundreds of meters scale involves E-W- and NW-SE-trending normal faults and NW-SE- and NE-SW-trending contractional folds. The centimeters to meters scale involves veins, joints, normal faults, shear fractures and stylolites, with a prevailing ∼ E-W to NW-SE trend. All these structures were formed by two major tectonic events. The first was the folding event at ∼580 Ma, with NNE-SSW to NE-SW and NW-SE direction of contraction. The second was the extensional faulting event, given by the widespread NNE-SSW-directed extension event during the Atlantic Ocean opening (Jurassic-Cretaceous). Both major events would have been controlled by the reactivation of basement anisotropies. These major tectonic events controlled the deformation of the Precambrian sedimentary cover of the Tandilia system, leading to an economically important aspect in the mining development of the Olavarría-Sierras Bayas area.
Tectonic analysis of Baja California and Parras shear belt in Mexico
NASA Technical Reports Server (NTRS)
Abdel-Gawad, M. (Principal Investigator); Tubbesing, L.
1974-01-01
The author has identified the following significant results. Geological correlation of terrain across the Gulf of California using ERTS-1 imagery revealed significant similarities between Isla Tiburon, Isla Angel de la Guarda, and the San Carlos Range in mainland Mexico. ERTS-1 imagery was used to check the validity of the existence of major trans-Baja fault zones. ERTS-1 imagery also shows that high albedo sediments similar to known late Tertiary marine sediments are widespread in southern and middle Baja and extend in places to the eastern side of the Peninsula. Major faults in northern Mexico and across the border in the United States were mapped, and ample evidence was found that the Parras and parts of the Texas lineament are belts of major transverse shear faults in areas outside the supposed limit of the Texas and Parras lineaments. A fundamental concept which may help explain many complexities in the tectonic development is beginning to emerge: The southwestern part of North America was torn by massive left-lateral shear of transverse trend (east-west) during the compressive stage of the late Mesozoic and early Cenozoic. This tectonic style has changed into tensional rifting (Basin and Range) and right-lateral shear later in the Cenozoic and Quaternary.
NASA Astrophysics Data System (ADS)
Sanchez Bettucci, L.; Oyhantcabal, P.
2008-05-01
A compilation of available data about the geology of Uruguay allowed the definition of its main events and tectonic units. Based on a critical revision of different tectonic hypothesis found in the literature, a parsimonious tectonic evolution schema is presented, in the context of Western Gondwana. The tectonic map illustrates the general features of the structure and main tectonic units of Uruguay. The Precambrian shield, cropping out in the South and Southeast of the country is an Archean to Paleoprtoerozoic basement divided in three main tectonostratigraphic terrranes: the Piedra Alta (PAT) a juvenile Paleoproterozoic unit not reworked by later events; the Nico Pérez (NPT) a complex unit composed of several blocks where Archean to Mesoproterozoic events are recognised. The NPT was strongly reworked by Neoproterozoic (Brasiliano) orogeny. The Dom Feliciano Belt cropping out in eastern Uruguay is related to Western Gondwana amalgamation. Different tectonic settings are considered: pre-Brasiliano Basement inliers; supracrustal successions representing the evolution from a back- arc to a foreland basin; a magmatic arc; and post-collisional basins and related magmatism. In lower Paleozoic the Paraná foreland basin was generated as a consequence of orogenic events. The sedimentary successions in Uruguay include continental to shallow marine deposits where the influence of carboniferous to Permian glacial episode is recorded. The Mesozoic record is characterised by the influence of extension related to the break-up of Gondwana and the formation of the Atlantic Ocean: huge amounts of tholeiitic basalt were erupted (near 30.000 km3 in Uruguay), followed by cretaceous sediments in the northern area of the country while in the south-east, bimodal magmatism and sediments of the same age are associated to rift basins. The Cenozoic is characterised by tectonic quiescence. Subsidence is only observed in the western region (Chaco-Paraná Basin) and in the east (Laguna Merín Basin).
NASA Astrophysics Data System (ADS)
Zonenshain, L. P.; Kuzmin, M. I.; Bocharova, N. Yu.
1991-12-01
Intraplate, hot spot related volcanic occurrences do not have a random distribution on the Earth's surface. They are concentrated in two large regions (up to 10,000 km in diameter), the Pacific and the African, and two smaller areas (2000-3000 km in diameter), the Central Asian and the Tasmanian. These regions are considered as manifestations of hot fields in the mantle, whereas the regions lying in between are expressions of cold fields in the mantle. Large-scale anomalies coincide with the hot fields: topographic swells, geoid highs, uplifts of the "asthenospheric table", inferred heated regions in the lowermost mantle according to seismic tomographic images, geochemical anomalies showing the origin of volcanics from undepleted mantle sources. Hot fields are relatively stable features, having remained in the same position on the Earth's surface during the last 120 Ma, although they have other configurations and other positions in the Late Paleozoic and Early Mesozoic. Available data show that two main hot fields (Pacific and African) are possibly moving one with respect to the other, converging along the Eastern Pacific subduction system and diverging along that of the Western Pacific. If so, well-known differences between these subduction systems can also be connected with related displacement of the hot fields. Hot fields are assumed to correspond to upwelling branches of mantle and rather deep mantle convection, and cold fields to downwelling branches. Thus, hot fields can be regarded as expressions of deeper tectonics, comparative to the plate tectonics, which is operating in the upper layers of the Earth. We call it hot-field tectonics. Plate tectonics is responsible for the opening and closure of oceans and for the formation of orogenic belts, whereas hot-field tectonics accounts for a larger cyclicity of the Earth's evolution and for amalgamation and break up of Pangea-type supercontinents. Hot-field tectonics seems to be the only process to have existed on all of the terrestrial planets. We speculate that hot-field tectonics governs the global geodynamics of the Earth.
MEVTV Workshop on Tectonic Features on Mars
NASA Technical Reports Server (NTRS)
Watters, Thomas R. (Editor); Golombek, Matthew P. (Editor)
1989-01-01
The state of knowledge of tectonic features on Mars was determined and kinematic and mechanical models were assessed for their origin. Three sessions were held: wrinkle ridges and compressional structure; strike-slip faults; and extensional structures. Each session began with an overview of the features under discussion. In the case of wrinkle ridges and extensional structures, the overview was followed by keynote addresses by specialists working on similar structures on the Earth. The first session of the workshop focused on the controversy over the relative importance of folding, faulting, and intrusive volcanism in the origin of wrinkle ridges. The session ended with discussions of the origin of compressional flank structures associated with Martian volcanoes and the relationship between the volcanic complexes and the inferred regional stress field. The second day of the workshop began with the presentation and discussion of evidence for strike-slip faults on Mars at various scales. In the last session, the discussion of extensional structures ranged from the origin of grabens, tension cracks, and pit-crater chains to the origin of Valles Marineris canyons. Shear and tensile modes of brittle failure in the formation of extensional features and the role of these failure modes in the formation of pit-crater chains and the canyons of Valles Marineris were debated. The relationship of extensional features to other surface processes, such as carbonate dissolution (karst) were also discussed.
Regional magnetic anomaly constraints on continental rifting
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.
1985-01-01
Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.
NASA Astrophysics Data System (ADS)
Wallace, Laura M.; Stevens, Colleen; Silver, Eli; McCaffrey, Rob; Loratung, Wesley; Hasiata, Suvenia; Stanaway, Richard; Curley, Robert; Rosa, Robert; Taugaloidi, Jones
2004-05-01
The island of New Guinea is located within the deforming zone between the Pacific and Australian plates that converge obliquely at ˜110 mm/yr. New Guinea has been fragmented into a complex array of microplates, some of which rotate rapidly about nearby vertical axes. We present velocities from a network of 38 Global Positioning System (GPS) sites spanning much of the nation of Papua New Guinea (PNG). The GPS-derived velocities are used to explain the kinematics of major tectonic blocks in the region and the nature of strain accumulation on major faults in PNG. We simultaneously invert GPS velocities, earthquake slip vectors on faults, and transform orientations in the Woodlark Basin for the poles of rotation of the tectonic blocks and the degree of elastic strain accumulation on faults in the region. The data are best explained by six distinct tectonic blocks: the Australian, Pacific, South Bismarck, North Bismarck, and Woodlark plates and a previously unrecognized New Guinea Highlands Block. Significant portions of the Ramu-Markham Fault appear to be locked, which has implications for seismic hazard determination in the Markham Valley region. We also propose that rapid clockwise rotation of the South Bismarck plate is controlled by edge forces initiated by the collision between the Finisterre arc and the New Guinea Highlands.
Induced earthquake magnitudes are as large as (statistically) expected
Van Der Elst, Nicholas; Page, Morgan T.; Weiser, Deborah A.; Goebel, Thomas; Hosseini, S. Mehran
2016-01-01
A major question for the hazard posed by injection-induced seismicity is how large induced earthquakes can be. Are their maximum magnitudes determined by injection parameters or by tectonics? Deterministic limits on induced earthquake magnitudes have been proposed based on the size of the reservoir or the volume of fluid injected. However, if induced earthquakes occur on tectonic faults oriented favorably with respect to the tectonic stress field, then they may be limited only by the regional tectonics and connectivity of the fault network. In this study, we show that the largest magnitudes observed at fluid injection sites are consistent with the sampling statistics of the Gutenberg-Richter distribution for tectonic earthquakes, assuming no upper magnitude bound. The data pass three specific tests: (1) the largest observed earthquake at each site scales with the log of the total number of induced earthquakes, (2) the order of occurrence of the largest event is random within the induced sequence, and (3) the injected volume controls the total number of earthquakes rather than the total seismic moment. All three tests point to an injection control on earthquake nucleation but a tectonic control on earthquake magnitude. Given that the largest observed earthquakes are exactly as large as expected from the sampling statistics, we should not conclude that these are the largest earthquakes possible. Instead, the results imply that induced earthquake magnitudes should be treated with the same maximum magnitude bound that is currently used to treat seismic hazard from tectonic earthquakes.
NASA Astrophysics Data System (ADS)
Murphy, B. S.; Egbert, G. D.
2016-12-01
We use newly acquired long-period magnetotelluric data to examine lithospheric structure beneath the modern Southern Appalachian Mountains and the adjacent Piedmont. The New York-Alabama Lineament is clearly visible both in inverse models and in the data themselves as a major Appalachian-parallel, mid- to lower-crustal conductive feature. This observation supports geologically-based interpretations of the NY-AL Lineament as a major Grenville suture. We also discern several other suture zones in our inverse models, including the Central Piedmont Suture. Interestingly, we do not observe any geoelectric signature of the Suwannee Suture. Most strikingly, we find a zone of exceptionally high resistivity (>1000 μm) that extends to a depth of more than 200 km beneath the modern Piedmont. This resistive block abuts more conductive lithosphere ( 100 μm, as would be expected for Phanerozoic lithosphere) to the northwest. The boundary between these two distinct domains coincides with the modern Appalachian topographic escarpment to within our resolution. The high resistivity values would seem to require completely dry, highly depleted lithosphere at anomalously cold temperatures; however, corresponding seismically fast lithospheric mantle that would be expected for such a structure has not been observed in any previous studies. The exact nature of this feature therefore remains uncertain at present. Regardless, as it is a persistent feature in inversions and it is also readily apparent in the impedance data, this geoelectric structure likely holds important implications for the past, present, and future tectonic evolution of the Southeastern United States.
NASA Astrophysics Data System (ADS)
Chute, H.; Dombard, A. J.; Byrne, P. K.
2017-12-01
Lithospheric flexure associated with Arsia, Pavonis, and Ascraeus Montes has been previously studied to constrain the timeline and breadth of endogenic surface features surrounding these volcanoes. Here, we simulate the radial extent of two specific load-related features: annular graben and flank terraces. Detailed mapping of Ascraeus Mons (the youngest of the three volcanoes) showed a phase of compression of the edifice, forming the terraces and an annulus of graben immediately off the flanks, followed by a period of extension that formed additional graben superposed on the terraces on the lower flanks of the edifice. This transition from compression to extension on the lower flanks has been difficult to reconcile in mechanical models. We explore, with finite-element simulations, the effects of a thermal anomaly associated with an intrusive crustal underplate, which results in locally thinning the lithosphere (in contrast to past efforts that assumed a constant-thickness lithosphere). We find that it is primarily the horizontal extent of this thermal anomaly that governs how the lithosphere flexes under a volcano, as well as the transition from flank compression to a tight annulus of extensional stresses. Specifically, we propose that the structures on Ascraeus may be consistent with an early stage of volcanic growth accompanied by an underplate about the same width as the edifice that narrowed as volcanism waned, resulting in an inward migration of the extensional horizontal stresses from the surrounding plains onto the lower flanks. By linking the surface strains on the volcano with the volcano-tectonic evolution predicted by our flexure model, we can further constrain a more accurate timeline for the tectonic history of Ascraeus Mons. More broadly, because these tectonic structures are commonly observed, our results provide a general evolutionary model for large shield volcanoes on Mars.
Cinematic modeling of local morphostructures evolution
NASA Astrophysics Data System (ADS)
Bronguleev, Vadim
2013-04-01
With the use of a simple 3-dimensional cinematic model of slope development some characteristic features of morphostructure evolution were shown. We assume that the velocity of slope degradation along normal vector to a surface is determined by three morphological parameters: slope angle, its profile curvature and its plan curvature. This leads to the equation of parabolic type: where h=h(x,y,t) is the altitude of slope surface, Kpr(x,y,t)is the profile curvature of the slope, Kpl(x,y,t) is the plan curvature, f(x,y,t) is the velocity of tectonic deformation (or base level movement), A, B, and C are the coefficients which may depend on coordinates and time. The first term in the right part of the equation describes parallel slope retreat, typical to arid environment, the second term describes slope vertical grading due to viscous flow, typical to humid conditions, and the third term is responsible for slope plan grading due to such processes as desquamation, frost weathering, etc. This simple model describes a wide range of local morphostructures evolution: stepped slopes and piedmont benchlands, lithogenic forms - terraces and passages, flattened summits and rounded hills. Using different types of the function f (block rise, swell, tilt), we obtained interesting reformations of initial tectonic landforms during the concurrent action of denudation processes. The result of such action differs from that of the successive action of tectonic movements and denudation. The relation of rates of the endogenous and exogenous processes strongly affects the formation of local morphostructures. Preservation of initial features of slope such as steps or bends as well as their formation due to tectonics or lithology is possible if coefficients B and Care small in comparison toA.
Ruppert, N.A.; Prejean, S.; Hansen, R.A.
2011-01-01
An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.
Volcanism and Volatile Recycling on Venus from Lithospheric Delamination
NASA Technical Reports Server (NTRS)
Elkins-Tanton, L. T.; Hess, P. C.; Smrekar, S. E.; Parmentier, E. M.
2005-01-01
Venus has an unmoving lithosphere, a young surface indicative of volcanic resurfacing, and a wide variety of volcanic and tectonic features. The planet s ubiquitous magmatic features include 100,000 small shield volcanoes as well as the descriptively named pancakes, ticks, and arachnoids [1]. Coronae, volcanic and tectonic features up to 2,600 km in diameter, have been attributed to lithospheric interactions with upwelling plumes [e.g., 2], but more recently to delamination of the lower lithosphere with [3] or without [4] a central upwelling. Lavas issuing from different volcanic features appear to have a range of compositions, as evidenced by their apparent viscosities and by data from Soviet landers. Steep-sided or "pancake" domes [e.g., 5] appear to consist of more viscous magma [6], perhaps silicic compositions created by remelting basaltic crust [7]. These steep-sided domes are associated with coronae and with shield volcanoes effusing basaltic magmas [7,8] with apparently low viscosities (low enough to allow fluid flow for hundreds of km, creating channels reminiscent of water rivers on Earth). Pancake domes, in contrast, can be up to 3 km in height and have volumes from 30 to approx.3,000 km3 [calculated from data in 8], and hundreds dot the planet [6-8].
Velasco-Tapia, Fernando
2014-01-01
Magmatic processes have usually been identified and evaluated using qualitative or semiquantitative geochemical or isotopic tools based on a restricted number of variables. However, a more complete and quantitative view could be reached applying multivariate analysis, mass balance techniques, and statistical tests. As an example, in this work a statistical and quantitative scheme is applied to analyze the geochemical features for the Sierra de las Cruces (SC) volcanic range (Mexican Volcanic Belt). In this locality, the volcanic activity (3.7 to 0.5 Ma) was dominantly dacitic, but the presence of spheroidal andesitic enclaves and/or diverse disequilibrium features in majority of lavas confirms the operation of magma mixing/mingling. New discriminant-function-based multidimensional diagrams were used to discriminate tectonic setting. Statistical tests of discordancy and significance were applied to evaluate the influence of the subducting Cocos plate, which seems to be rather negligible for the SC magmas in relation to several major and trace elements. A cluster analysis following Ward's linkage rule was carried out to classify the SC volcanic rocks geochemical groups. Finally, two mass-balance schemes were applied for the quantitative evaluation of the proportion of the end-member components (dacitic and andesitic magmas) in the comingled lavas (binary mixtures). PMID:24737994
Geologic Map of the Pahranagat Range 30' x 60' Quadrangle, Lincoln and Nye Counties, Nevada
Jayko, A.S.
2007-01-01
Introduction The Pahranagat Range 30' x 60' quadrangle lies within an arid, sparsely populated part of Lincoln and Nye Counties, southeastern Nevada. Much of the area is public land that includes the Desert National Wildlife Range, the Pahranagat National Wildlife Refuge, and the Nellis Air Force Base. The topography, typical of much of the Basin and Range Province, consists of north-south-trending ranges and intervening broad alluvial valleys. Elevations range from about 1,000 to 2,900 m. At the regional scale, the Pahranagat Range quadrangle lies within the Mesozoic and early Tertiary Sevier Fold-and-Thrust Belt and the Cenozoic Basin and Range Province. The quadrangle is underlain by a Proterozoic to Permian miogeoclinal section, a nonmarine clastic and volcanic section of middle Oligocene or older to late Miocene age, and alluvial deposits of late Cenozoic age. The structural features that are exposed reflect relatively shallow crustal deformation. Mesozoic deformation is dominated by thrust faults and asymmetric or open folds. Cenozoic deformation is dominated by faults that dip more than 45i and dominostyle tilted blocks. At least three major tectonic events have affected the area: Mesozoic (Sevier) folding and thrust faulting, pre-middle Oligocene extensional deformation, and late Cenozoic (mainly late Miocene to Holocene) extensional deformation. Continued tectonic activity is expressed in the Pahranagat Range area by seismicity and faults having scarps that cut alluvial deposits.
Water isotopes and the Eocene. A tectonic sensitivity study
NASA Astrophysics Data System (ADS)
Legrande, A. N.; Roberts, C. D.; Tripati, A.; Schmidt, G. A.
2009-04-01
The early Eocene (54 Million years ago) is one of the warmest periods in the last 65 Million years. Its climate is postulated to have been the result of enhanced greenhouse gas concentration, with CO2 roughly 4 times pre-industrial and methane 7 times pre-industrial concentrations. One interesting feature of this period to emerge recently is the intermittent presence of fossilized Azolla, a type of freshwater fern, in the Arctic Ocean. Synchronous (within dating error) with this appearance were major changes in the restriction of the Arctic Ocean and the other global oceans. We investigate this time period using the Goddard Institute for Space Studies ModelE-R, a fully coupled atmosphere-ocean general circulation model that incorporates water isotopes throughout the hydrologic cycle, making it an ideal model to test hypotheses of past climate change and to compare to paleoclimate proxy data. We assess the impact of tectonic variability by using minimal and maximal levels of restriction for the Arctic Ocean seaways. We find that the modulation of connectivity of these basins dramatically alters global salinity distribution, leading to large changes in ocean circulation. Greater restriction of the Arctic Basin is associated with fresh and relatively warmer conditions. The same mechanisms responsible for this redistribution of salt also change the global distribution of water isotopes, and can alias (water isotope) proxy climate signals of warmth.
NASA Astrophysics Data System (ADS)
Zámolyi, A.; Salcher, B.; Draganits, E.; Exner, U.; Wagreich, M.; Gier, S.; Fiebig, M.; Lomax, J.; Surányi, G.; Diel, M.; Zámolyi, F.
2017-07-01
The transition zone between Eastern Alps and Pannonian Basin is a key area for the investigation of the interplay between regional uplift, local tectonic subsidence and depositional environment. Our study area, the western margin of the Little Hungarian Plain, is characterized by gentle hills, plateaus and depressions, of which several are filled by lakes—including one of Austria's largest and shallowest lakes, Lake Neusiedl. Geological investigation is hampered by the scarcity of outcrops, and thus direct observation of sedimentological or structural features is difficult. Despite a long research history in the area, a consistent landscape evolution model considering all relevant constraints is lacking so far. In this study, we apply multidisciplinary methods to decipher the complex tectonic and fluvial depositional evolution of the region. Local data from shallow-lake drilling and seismic investigation are combined with regional data from industrial seismics and core data to gain new insights into the latest Pannonian (Late Miocene) and Quaternary evolution. Shallow-lake seismic data show the erosionally truncated Pannonian sediments dipping and thickening toward southeast, toward the modern depocenter of the Little Hungarian Plain. Overlying Quaternary fluvial sediments show a very similar thickening trend except for the area on the plateau north of the lake indicating ongoing subsidence in major parts of the basin. Drill cores from locations along the lake seismic lines were analyzed concerning their age, mineralogy and heavy minerals and compared with outcrop samples from the surrounding plains and the plateau to derive indications on sediment provenance. A key observation is the apparent lack of a significant gravel layer on top of the tilted Pannonian sediments beneath Lake Neusiedl. Small-scale faults can be observed in the lake seismic sections along with key sedimentary features. Significant differences of the current elevation of the top Pannonian between the surrounding plains and the plateau indicate post-Pannonian normal faulting, which is a key process in shaping the present-day morphology of the region. Luminescence ages of samples from the Quaternary fluvial gravels on top of the Pannonian sediments are a significantly higher (>300 ka) compared to the gravels in the plain (102 ± 11 and 76 ± 8 ka), suggesting ongoing tectonic subsidence.
Wrench tectonics in Abu Dhabi, United Arab Emirates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.; Mohamed, A.S.
1995-08-01
Recent studies of the geodynamics and tectonic history of the Arabian plate throughout geologic time have revealed that Wrench forces played an important role in the structural generation and deformation of Petroleum basins and reservoirs of the United Arab Emirates. The tectonic analysis of Abu Dhabi revealed that basin facies evolution were controlled by wrench tectonics, examples are the Pre-Cambrian salt basin, the Permo-Triassic and Jurassic basins. In addition, several sedimentary patterns were strongly influenced by wrench tectonics, the Lower Cretaceous Shuaiba platform margin and associated reservoirs is a good example. Wrench faults, difficult to identify by conventional methods, weremore » examined from a regional perspective and through careful observation and assessment of many factors. Subsurface structural mapping and geoseismic cross-sections supported by outcrop studies and geomorphological features revealed a network of strike slip faults in Abu Dhabi. Structural modelling of these wench forces including the use of strain ellipses was applied both on regional and local scales. This effort has helped in reinterpreting some structural settings, some oil fields were interpreted as En Echelon buckle folds associated with NE/SW dextral wrench faults. Several flower structures were interpreted along NW/SE sinistral wrench faults which have significant hydrocarbon potential. Synthetic and Antithetic strike slip faults and associated fracture systems have played a significant role in field development and reservoir management studies. Four field examples were discussed.« less
NASA Astrophysics Data System (ADS)
Pérez, Lara F.; Bohoyo, Fernando; Hernández-Molina, F. Javier; Casas, David; Galindo-Zaldívar, Jesús; Ruano, Patricia; Maldonado, Andrés.
2016-04-01
The spatial distribution and temporal occurrence of mass transport deposits (MTDs) in the sedimentary infill of basins and submerged banks near the Scotia-Antarctic plate boundary allowed us to decode the evolution of the tectonic activity of the relevant structures in the region from the Oligocene to present day. The 1020 MTDs identified in the available data set of multichannel seismic reflection profiles in the region are subdivided according to the geographic and chronological distributions of these features. Their spatial distribution reveals a preferential location along the eastern margins of the eastern basins. This reflects local deformation due to the evolution of the Scotia-Antarctic transcurrent plate boundary and the impact of oceanic spreading along the East Scotia Ridge (ESR). The vertical distribution of the MTDs in the sedimentary record evidences intensified regional tectonic deformation from the middle Miocene to Quaternary. Intensified deformation started at about 15 Ma, when the ESR progressively replaces the West Scotia Ridge (WSR) as the main oceanic spreading center in the Scotia Sea. Coevally with the WSR demise at about 6.5 Ma, increased spreading rates of the ESR and numerous MTDs were formed. The high frequency of MTDs during the Pliocene, mainly along the western basins, is also related to greater tectonic activity due to uplift of the Shackleton Fracture Zone by tectonic inversion and extinction of the Antarctic-Phoenix Ridge and involved changes at late Pliocene. The presence of MTDs in the southern Scotia Sea basins is a relevant indicator of the interplay between sedimentary instability and regional tectonics.
NASA Astrophysics Data System (ADS)
Huang, Shiuh-Tsann; Yang, Kenn-Ming; Hung, Jih-Hao; Wu, Jong-Chang; Ting, Hsin-Hsiu; Mei, Wen-Wei; Hsu, Shiang-Horng; Lee, Min
2004-03-01
The geological setting south of the Tsengwen River and the Tsochen Fault is the transitional zone between the Tainan foreland basin and Manila accretionary wedge in Southwestern Taiwan. This transitional zone is characterized by the triangle zone geological model associated with back thrusts that is quite unique compared to the other parts of the Western foreland that are dominated by thrust imbrications. The Hsinhua structure, the Tainan anticline, and the offshore H2 anticline are the first group of major culminations in the westernmost part of the Fold-and-Thrust belt that formed during the Penglay Orogeny. Structures in the the Tainan and Kaohsiung areas provide important features of the initial mountain building stage in Western Taiwan. A deeply buried basal detachment with ramp-flat geometry existed in the constructed geological sections. A typical triangle is found by back thrusting, such as where the Hsinhua Fault cuts upsection of the Upper Pliocene and Pleistocene from a lower detachment along the lower Gutingkeng Formation. The Tainan structure is a southward extension of the Hinhua Fault and has an asymmetric geometry of gentle western and steep eastern limbs. Our studies suggest that the Tainan anticline is similar to the structure formed by the Hsinhua Fault. Both are characterized by back thrusts and rooted into a detachment about 5 km deep. The triangle zone structure stops at H2 anticline offshore Tainan and beyond the west of it, All the structures are replaced by rift tectonic settings developed in the passive continental margin. On the basal detachment, a major ramp interpreted as a tectonic discontinuity was found in this study. Above the northeastern end of the major ramp of basal detachment, the Lungchuan Fault is associated with a triangle system development, while at the southwestern end a thrust wedge is present. It could be deduced that a thrust wedge intrudes northwestward. The area below the major ramp, or equivalent to the trailing edge of the basal detachment, mud diapers often occur in relation to the thickest deposits of the Gutingkeng Formation and caused by the mechanism of detachment folding
Preliminary metallogenic belt and mineral deposit maps for northeast Asia
Obolenskiy, Alexander A.; Rodionov, Sergey M.; Dejidmaa, Gunchin; Gerel, Ochir; Hwang, Duk-Hwan; Distanov, Elimir G.; Badarch, Gombosuren; Khanchuk, Alexander I.; Ogasawara, Masatsugu; Nokleberg, Warren J.; Parfenov, Leonid M.; Prokopiev, Andrei V.; Seminskiy, Zhan V.; Smelov, Alexander P.; Yan, Hongquan; Birul'kin, Gennandiy V.; Davydov, Yuriy V.V.; Fridovskiy, Valeriy Yu.; Gamyanin, Gennandiy N.; Kostin, Alexei V.; Letunov, Sergey A.; Li, Xujun; Nikitin, Valeriy M.; Sotnikov, Sadahisa; Sudo, Vitaly I.; Spiridonov, Alexander V.; Stepanov, Vitaly A.; Sun, Fengyue; Sun, Jiapeng; Sun, Weizhi; Supletsov, Valeriy M.; Timofeev, Vladimir F.; Tyan, Oleg A.; Vetluzhskikh, Valeriy G.; Wakita, Koji; Yakovlev, Yakov V.; Zorina, Lydia M.
2003-01-01
The metallogenic belts and locations of major mineral deposits of Northeast Asia are portrayed on Sheets 1-4. Sheet 1 portrays the location of significant lode deposits and placer districts at a scale of 1:7,500,000. Sheets 2-4 portray the metallogenic belts of the region in a series of 12 time-slices from the Archean through the Quaternary at a scale of 1:15,000,000. For all four map sheets, a generalized geodynamics base map, derived from a more detailed map by Parfenov and others (2003), is used as an underlay for the metallogenic belt maps. This geodynamics map underlay permits depicts the major host geologic units and structures that host metallogenic belts. Four tables are included in this report. A hierarchial ranking of mineral deposit models is listed in Table 1. And summary features of lode deposits, placer districts, and metallogenic belts are described in Tables 2, 3, and 4, respectively. The metallogenic belts for Northeast Asia are synthesized, compiled, described, and interpreted with the use of modern concepts of plate tectonics, analysis of terranes and overlap assemblages, and synthesis of mineral deposit models. The data supporting the compilation are: (1) comprehensive descriptions of mineral deposits; (2) compilation and synthesis of a regional geodynamics map the region at 5 million scale with detailed explanations and cited references; and (3) compilation and synthesis of metallogenic belt maps at 15 million scale with detailed explanations and cited references. These studies are part of a major international collaborative study of the Mineral Resources, Metallogenesis, and Tectonics of Northeast Asia that is being conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, Northeastern China, South Korea, Japan, and the USA. Companion studies and previous publications are: (1) a detailed geodynamics map of Northeast Asia (Parfenov and 2003); (2) a compilation of major mineral deposit models (Rodionov and Nokleberg, 2000; Rodionov and others, 2000; Obolenskiy and others, 2003); and (3) a database on significant metalliferous and selected nonmetalliferous lode deposits, and selected placer districts (Ariunbileg and others, 2003).
Ogaden Basin subsidence history: Another key to the Red Sea-Gulf of Aden tectonic puzzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pigott, J.D.; Neese, D.; Carsten, G.
1995-08-01
Previous work has attempted to understand the tectonic evolution of the Red Sea-Gulf of Aden region through a focus upon plate kinematics and reconstruction of plate interactions in a two dimensional sense. A significant complement to the three dimensional puzzle can be derived from a critical examination of the vertical component, tectonic subsidence analysis. By removing the isostatic contributions of sediment loading and unloading, and fluctuations in sea level, the remaining thermal-mechanical contribution to a basin`s subsidence can be determined. Such an analysis of several Ogaden Basin wells reveals multiple pulses of tectonic subsidence and uplift which correspond to far-fieldmore » tectonic activities in the Red Sea and Gulf of Aden. One of the more dramatic is a Jurassic tectonic pulse circa 145-130 m.a., and a later extensional event which correlates to a major subsidence event ubiquitous through-out the Gulf of Aden, related to Gondwana Land breakup activities. Tectonic uplift during the Tertiary coincides with early Red Sea rifting episodes. Such activities suggest the Ogaden Basin has been a relatively stable East African cratonic basin, but with heating-extension events related to nearby plate interactions. In terms of hydrocarbon generation, the use of steady state present day geothermal gradients, coupled with subsidence analysis shows that potential Paleozoic and Mesozoic source rocks initiated generation as early as the Jurassic. The generating potential of Paleozoic source rocks would only be exacerbated by later heating events. Furthermore, cooling and tectonic uplift during the Tertiary would tend to arrest on-going hydrocarbon generation for Jurassic source rocks in the Ogaden area.« less
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
Geologic map of the Metis Mons quadrangle (V–6), Venus
Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.
2011-01-01
The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.
Spherical, axisymmetric convection: Applications to Mercury
NASA Astrophysics Data System (ADS)
Redmond, H. L.; King, S. D.
2004-05-01
Mercury is the densest of the four inner planets and contains a large, iron core that may be up to 75% the size of the planet (Siegfried and Solomon, 1974). The outer shell of the planet is most likely a silicate crust 100-300 km thick and it is believed that Mercury currently has no tectonic activity. Three major observations support this hypothesis: (1) there are no surface expressions supporting the existence of mantle plumes or plate tectonics, implying that the heavily cratered surface of Mercury has changed very little since the period of heavy bombardment; (2) large impact basins, in particular Caloris, have not been greatly altered and lack concentric graben outside their main ring (Strom et al., 1975) suggesting that subsidence of the basins has not taken place, consistent with an early planetary compressive stress field suppressing the development of tensional surface features (Cordell and Strom, 1977); (3) the global absence of extensional features except for a small amount of localized regions within the Caloris basin and the inter-crater plains (Trask and Guest, 1975). The lack of surface tectonic features make it difficult to determine the thermal evolution of Mercury. Normally, when core differentiation occurs in a homogeneous planet, there is a large increase in planetary volume (Solomon, 1976) and extensional features resulting from differentiation are often observed at the surface. However, this is not the case for Mercury. It is more likely that Mercury cooled very rapidly and had completely differentiated prior to the end of the period of extensive bombardment (Trask and Guest, 1975). However, in order to preserve the dynamo explanation for Mercury's magnetic field (Ness et al., 1975), deep mantle heat sources are needed to keep the core largely molten, protecting it against heat loss via mantle convection (Cassen et al., 1976). We present a series of axisymmetric convection calculations with an olivine rheology and thermal history calculations to address the thermal state of Mercury. In particular, we seek to address the rapid early cooling needed to achieve the compressive stress state and the need for high core temperatures today to maintain a dynamo. Preliminary results suggest that convection in the thin mantle of Mercury develops a long-wavelength convection pattern that may aid in the explanation of the more common broad, compressional features and, less common, extensional features observed at the surface. Our calculations thus far, which are purely isoviscous, produce β = 0.26 in the Ra ~ Nuβ relationship, providing us insight on the strength and thickness of the Mercurian lithosphere as well as present day mantle temperatures. By adding thermal history modeling to our calculations and incorporating a non-Newtonian, temperature-dependent rheology we hope to achieve more realistic results while resolving the inconsistencies in the thermal history of Mercury. References: Cassen, P. et al., Icarus, 28, 501-508, 1976. Cordell, B.M. and R.G. Strom, Phys. Earth Planet. Int., 15, 146-155, 1977. Ness, N.F. et al., J. Geophys. Res., 80, 2708-2716, 1975. Siegfried, R.W. and S.C. Solomon, Icarus, 23, 192-205, 1974. Solomon, S.C., Icarus, 28, 509-522, 1976. Strom, R.G. et al., J. Geophys. Res., 80, 2478-2507, 1975. Trask, N.J. and J.E. Guest, J. Geophys. Res., 80, 2461-2477, 1975.
Paleomagnetic and Tectonic studies in Uruguay: a brief synthesis of the last decade
NASA Astrophysics Data System (ADS)
Sanchez Bettucci, L.
2013-05-01
The paleomagnetic studies in Uruguay have been applied as a complementary tool to geological studies. Paleomagnetic data can be very useful for geodynamic reconstructions, fundamentally for determine the latitudinal tectonic transport, rotations of crustal blocks. This technique has been applied to Paleoproterozoic, Neoproterozoic and Paleozoic units. The geology of the Uruguayan territory is divided into four tectonic units of Uruguay that include a) the Piedra Alta tectonostratigraphic terrane (PATT) and b) Nico Pérez tectonostratigraphic terrane (NPTT), separated by the Sarandí del Yí high-strain zone. Both terranes are well exposed in the Río de La Plata craton (RPC) and have paleoproterozoic ages, the last was reworked in Neoproterozoic times (metacraton). The most thoroughly investigated Neoproterozoic sections are located in the eastern and southeastern regions of Uruguay. The c) Dom Feliciano Belt shows a tectonic evolution from back-arc to foreland basin characterized by fold-and-thrust, thick-skinned belts developed during the Brasiliano/Pan-African orogenic cycle. And finally d) The high metamorphic grade Punta del Este terrane where its most notable feature is their African affinity. There is a significant shortage of geochemical and geochronological data for the existing geological complexity.
Geodynamics map of northeast Asia
Parfenov, Leonid M.; Khanchuk, Alexander I.; Badarch, Gombosuren; Miller, Robert J.; Naumova, Vera V.; Nokleberg, Warren J.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Yan, Hongquan
2013-01-01
This map portrays the geodynamics of Northeast Asia at a scale of 1:5,000,000 using the concepts of plate tectonics and analysis of terranes and overlap assemblages. The map is the result of a detailed compilation and synthesis at 5 million scale and is part of a major international collaborative study of the mineral resources, metallogenesis, and tectonics of northeast Asia conducted from 1997 through 2002 by geologists from earth science agencies and universities in Russia, Mongolia, northeastern China, South Korea, Japan, and the USA.
NASA Astrophysics Data System (ADS)
Daly, M. C.; Watts, A. B.
2017-12-01
Integration of geomorphology, seismic reflection and gravity data, seismicity, DEM analysis and modelling defines a zone of NE/SW trending rifts extending into Central and SW Africa, orthogonal to the conventionally defined East African Rift System (EARS). These large-scale tectonic features have a relatively low level of seismicity and volcanism compared to the EARS, yet they generate significant topography and control the upper Congo drainage basin. They may also represent the beginning of an active but diffuse plate boundary developing to the southwest across Central Africa. The dominant feature of this broad zone is the Luangwa Rift Valley of eastern Zambia. Seismic reflection data show the Luangwa Rift developed as a thick ( 5km) Permo-Triassic basin. Inverted in the Mesozoic, it then experienced major Neogene extensional reactivation. The latter resulted in today's major border faults of varying polarity, with fault plane escarpments of up to 1000m, and associated rift flank uplifts that elevate the Central African plateau surface by 200 m. Late Miocene alluvial fans indicate a minimum age for the initiation of reactivation. Although having similar structural features to the EARS, the Luangwa Rift has a lower level of active seismicity and volcanism. 400 km northwest of the Luangwa, the north/south Luapula rift valley passes into the NE trending Mweru and Mweru Wantipa rift lakes. Pronounced border faults and fault terraces mark the NW and SE margins of these shallow lakes. Between the Luangwa and Luapula rift valleys lies the extensive upper Congo drainage basin of the Chambeshi river and the Lake Bangweulu wetlands. DEM mapping of topography from the Luangwa rift to the Luapula-Mweru Wantipa rift shows a low amplitude, large wavelength flexure of the Central African plateau surface compatible with an effective elastic thickness of 35 km. This regional warping controls the location and shape of the Chambeshi drainage basin and the Lake Bangweulu Wetlands. These results show Neogene rift valleys are active to the southwest of the EARS and are controlling the present-day continental drainage system of Central Africa. They also define a diffuse, divergent plate boundary between the Nubian Plate and an ill-defined southern African Plate that appears to exploit a zone of crustal anisotropy and thinner lithosphere.
The rotation and fracture history of Europa from modeling of tidal-tectonic processes
NASA Astrophysics Data System (ADS)
Rhoden, Alyssa Rose
Europa's surface displays a complex history of tectonic activity, much of which has been linked to tidal stress caused by Europa's eccentric orbit and possibly non-synchronous rotation of the ice shell. Cycloids are arcuate features thought to have formed in response to tidal normal stress while strike-slip motion along preexisting faults has been attributed to tidal shear stress. Tectonic features thus provide constraints on the rotational parameters that govern tidal stress, and can help us develop an understanding of the tidal-tectonic processes operating on ice covered ocean moons. In the first part of this work (Chapter 3), I test tidal models that include obliquity, fast precession, stress due to non-synchronous rotation (NSR), and physical libration by comparing how well each model reproduces observed cycloids. To do this, I have designed and implemented an automated parameter-searching algorithm that relies on a quantitative measure of fit quality to identify the best fits to observed cycloids. I apply statistical techniques to determine the tidal model best supported by the data and constrain the values of Europa's rotational parameters. Cycloids indicate a time-varying obliquity of about 1° and a physical libration in phase with the eccentricity libration, with amplitude >1°. To obtain good fits, cycloids must be translated in longitude, which implies non-synchronous rotation of the icy shell. However, stress from NSR is not well-supported, indicating that the rotation rate is slow enough that these stresses relax. I build upon the results of cycloid modeling in the second section by applying calculations of tidal stress that include obliquity to the formation of strike-slip faults. I predict the slip directions of faults with the standard formation model---tidal walking (Chapter 5)---and with a new mechanical model I have developed, called shell tectonics (Chapter 6). The shell tectonics model incorporates linear elasticity to determine slip and stress release on faults and uses a Coulomb failure criterion. Both of these models can be used to predict the direction of net displacement along faults. Until now, the tidal walking model has been the only model that reproduces the observed global pattern of strike-slip displacement; the shell tectonics model incorporates a more physical treatment of fault mechanics and reproduces this global pattern. Both models fit the regional patterns of observed strike-slip faults better when a small obliquity is incorporated into calculations of tidal stresses. Shell tectonics is also distinct from tidal walking in that it calculates the relative growth rates of displacements in addition to net slip direction. Examining these growth rates, I find that certain azimuths and locations develop offsets more quickly than others. Because faults with larger offsets are easier to identify, this may explain why observed faults cluster in azimuth in many regions. The growth rates also allow for a more sophisticated statistical comparison between the predictions and observations. Although the slip directions of >75% of faults are correctly predicted using shell tectonics and 1° of obliquity, a portion of these faults could be fit equally well with a random model. Examining these faults in more detail has revealed a region of Europa in which strike-slip faults likely formed through local extensional and compressional deformation rather than as a result of tidal shear stress. This approach enables a better understanding of the tectonic record, which has implications on Europa's rotation history.
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
10 CFR 60.122 - Siting criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Period. (12) Earthquakes which have occurred historically that if they were to be repeated could affect the site significantly. (13) Indications, based on correlations of earthquakes with tectonic processes and features, that either the frequency of occurrence or magnitude of earthquakes may increase. (14...
Evidence for volcanism in NW Ishtar Terra, Venus
NASA Technical Reports Server (NTRS)
Gaddis, L.; Greeley, Ronald
1989-01-01
Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred larg/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.
Evidence for volcanism in NW Ishtar Terra, Venus
NASA Astrophysics Data System (ADS)
Gaddis, L.; Greeley, Ronald
Venera 15/16 radar data for an area in NW Ishtar Terra, Venus, show an area with moderate radar return and a smooth textured surface which embays low lying areas of the surrounding mountainous terrain. Although this unit may be an extension of the lava plains of Lakshmi Planum to the southeast, detailed study suggests a separate volcanic center in NW Ishtar Terra. Lakshmi Planum, on the Ishtar Terra highland, exhibits major volcanic and tectonic features. On the Venera radar image radar brightness is influenced by slope and roughness; radar-facing slopes (east-facing) and rough surfaces (approx. 8 cm average relief) are bright, while west-facing slopes and smooth surfaces are dark. A series of semi-circular features, apparently topographic depressions, do not conform in orientation to major structural trends in this region of NW Ishtar Terra. The large depression in NW Ishtar Terra is similar to the calderas of Colette and Sacajawea Paterae, as all three structures are large irregular depressions. NW Ishtar Terra appears to be the site of a volcanic center with a complex caldera structure, possibly more than one eruptive vent, and associated lobed flows at lower elevations. The morphologic similarity between this volcanic center and those of Colette and Sacajawea suggests that centralized eruptions have been the dominant form of volcanism in Ishtar. The location of this volcanic center at the intersection of two major compressional mountain belts and the large size of the calders (with an inferred large/deep magma source) support a crustal thickening/melting rather than a hot-spot origin for these magmas.
NASA Technical Reports Server (NTRS)
Bodechtel, J. (Principal Investigator)
1975-01-01
The author has identified the following significant results. The geological interpretation on data exhibiting the Italian peninsula led to the recognition of tectonic features which are explained by a clockwise rotation of various blocks along left-handed transform faults. These faults can be interpreted as resulting from shear due to main stress directed north-eastwards. A land use map of the mountainous regions of Italy was produced on a scale of 1:250,000. For the digital treatment of MSS-CCTs an image processing software was written in FORTRAN 4. The software package includes descriptive statistics and also classification algorithms.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives
Badgley, Catherine; Smiley, Tara M.; Terry, Rebecca; Davis, Edward B.; DeSantis, Larisa R.G.; Fox, David L.; Hopkins, Samantha S.B.; Jezkova, Tereza; Matocq, Marjorie D.; Matzke, Nick; McGuire, Jenny L.; Mulch, Andreas; Riddle, Brett R.; Roth, V. Louise; Samuels, Joshua X.; Strömberg, Caroline A.E.; Yanites, Brian J.
2018-01-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. PMID:28196688
Venus - Complex Network of Narrow Fractures Near Hestia Rupes Region
1996-10-23
This image from NASA Magellan spacecraft covers region near Hestia Rupes on the northwestern corner of Aphrodite Terra. The complex network of narrow (<1 kilometer) fractures in the center of the image extends for approximately 50 kilometers (31 miles). This network exhibits tributary-like branches similar to those observed in river systems on Earth. However, the angular intersections of tributaries suggest tectonic control. These features appear to be due to drainage of lava along preexisting fractures and subsequent collapse of the surface. The underlying tectonic fabric can be observed in the northeast trending ridges which predate the plains. http://photojournal.jpl.nasa.gov/catalog/PIA00469
NASA Astrophysics Data System (ADS)
Su, Wenbo; Cai, Keda; Sun, Min; Wan, Bo; Wang, Xiangsong; Bao, Zihe; Xiao, Wenjiao
2018-06-01
The Yili-Central Tianshan Block, as a Late Paleozoic major continental silver of the Central Asian Orogenic Belt, holds a massive volume of Carboniferous volcanic rocks, occurring as subparallel magmatic belts. However, the petrogenesis and tectonic implications of these volcanic rocks remain enigmatic. This study compiled isotopic age data for mapping their temporal-spatial character, and conducted petrogenetic study of these magmatic belts, aiming to understand their tectonic implications. Our compiled dataset reveals four magmatic belts in the Yili-Central Tianshan Block, including the Keguqinshan-Tulasu belt and the Awulale belt in the north, and the Wusun Mountain belt and the Haerk-Nalati belt in the south. In addition, our new zircon U-Pb dating results define two significant Early Carboniferous eruptive events (ca. 355-350 Ma and 325 Ma) in the Wusun Mountain belt. Volcanic rocks of the early significant eruptive event (ca. 355-350 Ma) in the Wusun Mountain comprise basalt, trachy-andesite, andesite, dacite and rhyolite, which are similar to the typical rock assemblage of a continental arc. Their positive εNd(t) values (+0.3 to +1.5) and relatively high Th/Yb and Nb/Yb ratios suggest the derivation from a mantle source with additions of slab-derived components. The gabbroic dykes and rhyolites of the late volcanic event (ca. 325 Ma) form a bimodal rock association, and they show alkaline features, with relatively low Th/Yb and Th/Nb ratios, and higher positive εNd(t) values (εNd(t) = +3.3-+5.0). It is interpreted that the gabbroic dykes and rhyolites may have been derived from mantle and juvenile crustal sources, respectively. The isotopic and trace elemental variations with time elapse of the Wusun Mountain magmatic belt show an important clue for strengthening depletion of the magma sources. Considering the distinctive temporal-spatial character of the Carboniferous volcanic rocks, two separate subduction systems in the southern and northern margins of the Yili-Central Tianshan Block were suggested to be the causes for extensive emplacements of the igneous products, which may be in an association with synchronous subduction of the South Tianshan and the North Tianshan oceanic plates, respectively. In this tectonic context, the Carboniferous magmatic rocks of the Wusun Mountain may be a tectonic response to the change in magma sources due to back-arc propagation in the western Chinese Tianshan.
The geomorphology of Rhea - Implications for geologic history and surface processes
NASA Technical Reports Server (NTRS)
Moore, J. M.; Horner, V. M.; Greeley, R.
1985-01-01
Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.
Earthquake recurrence and risk assessment in circum-Pacific seismic gaps
Thatcher, W.
1989-01-01
THE development of the concept of seismic gaps, regions of low earthquake activity where large events are expected, has been one of the notable achievements of seismology and plate tectonics. Its application to long-term earthquake hazard assessment continues to be an active field of seismological research. Here I have surveyed well documented case histories of repeated rupture of the same segment of circum-Pacific plate boundary and characterized their general features. I find that variability in fault slip and spatial extent of great earthquakes rupturing the same plate boundary segment is typical rather than exceptional but sequences of major events fill identified seismic gaps with remarkable order. Earthquakes are concentrated late in the seismic cycle and occur with increasing size and magnitude. Furthermore, earthquake rup-ture starts near zones of concentrated moment release, suggesting that high-slip regions control the timing of recurrent events. The absence of major earthquakes early in the seismic cycle indicates a more complex behaviour for lower-slip regions, which may explain the observed cycle-to-cycle diversity of gap-filling sequences. ?? 1989 Nature Publishing Group.
NASA Astrophysics Data System (ADS)
Isaia, Roberto; Carapezza, Maria Luisa; Conti, Eric; Giulia Di Giuseppe, Maria; Lucchetti, Carlo; Prinzi, Ernesto; Ranaldi, Massimo; Tarchini, Luca; Tramparulo, Francesco; Troiano, Antonio; Vitale, Stefano; Cascella, Enrico; Castello, Nicola; Cicatiello, Alessandro; Maiolino, Marco; Puzio, Domenico; Tazza, Lucia; Villani, Roberto
2017-04-01
Recent volcanism at Campi Flegrei caldera produced more than 70 eruptions in the last 15 ka formed different volcanic edifices. The vent distribution was related to the main volcano-tectonic structure active in the caldera along which also concentrated part of the present hydrothermal and fumarolic activity, such as in the Solfatara area. In order to define the role of major faults in the Campi Flegrei Caldera, we analyzed some volcanic craters (Fondi di Baia and Astroni) and the Agnano caldera, by means of different geochemical and geophysical technics including CO2 flux, electrical resistivity (ERT), self-potential and permeability surveys. We provided some ERT profiles and different maps of geochemical and geophysical features. Major fault planes were identified comparing ERT imaging with alignments of anomalies in maps. The results can improve the knowledge on the present state of these volcanoes actually not fully monitored though included in the area with high probability of future vent opening within the Campi Flegrei caldera.
Overview of the Education and Public Outreach (EPO) program of the Caltech Tectonics Observatory
NASA Astrophysics Data System (ADS)
Kovalenko, L.; Jain, K.; Maloney, J.
2009-12-01
The Caltech Tectonics Observatory (TO) is an interdisciplinary center, focused on geological processes occurring at the boundaries of Earth's tectonic plates (http://www.tectonics.caltech.edu). Over the past year, the TO has made a major effort to develop an Education and Public Outreach (EPO) program. Our goals are to (1) stimulate the interest of students and the general public in Earth Sciences, particularly in the study of tectonic processes, (2) inform and educate the general public about science in the context of TO discoveries and advancements, and (3) provide opportunities for graduate students, postdocs, and faculty to do outreach in the local K-12 schools. We have hosted local high school students and teachers to provide them with research experience (as part of Caltech’s “Summer Research Connection”); participated in teacher training workshops (organized by the local school district); hosted tours for local elementary school students; and brought hands-on activities into local elementary and middle school classrooms, science clubs, and science nights. We have also led local school students and teachers on geology field trips through nearby parks. In addition, we have developed education modules for undergraduate classes (as part of MARGINS program), and have written educational web articles on TO research (http://www.tectonics.caltech.edu/outreach). The presentation will give an overview of these activities and their impact on our educational program.
NASA Astrophysics Data System (ADS)
Naeser, C. W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sigé, B.
The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times.
Naeser, C.W.; Crochet, J.-Y.; Jaillard, E.; Laubacher, G.; Mourier, T.; Sige, B.
1991-01-01
The results of five zircon fission-track ages of volcanic tuffs intercalated within the continental deposits of the Bagua syncline (northern Peru) are reported. These 2500-meter-thick deposits overlie mid-Campanian to lower Maastrichtian fine-grained red beds (Fundo El Triunfo Formation). The disconformable fluvial conglomerates of the Rentema Formation are associated with a 54 Ma tuff (upper Paleocene-lower Eocene?) and would reflect the Inca-1 tectonic phase. The Sambimera Formation (Eocene to mid-Miocene) is a coarsening-upward sequence (from lacustrine to fluvial) that contains three volcanic tuffs of 31, 29, and 12 Ma, respectively. A probable stratigraphic gap, upper Eocene-lower Oligocene, would be related to the late Eocene Inca-2 phase. Neither deformation nor sedimentary discontinuity has been recognized so far. However, the lacustrine to fluvial transition could relate to the late Oligocene Aymara tectonic phase. The unconformable fanglomerates and fluvial deposits of the San Antonio Formation contain in their upper part a 9 Ma tuff (mid-to upper Miocene), and thier base records a major tectonic event (Quechua-2 phase?). The unconformable fanglomerates of the Tambopara Formation date the folding of the Bagua syncline, which could be ascribed to the latest Miocene Quechua-3 tectonics. These formations are correlative with comparable deposits in the sub-Andean basins, suggesting that these eastern areas underwent strong tectonic subsidence of the foreland basin type since mid-Miocene times. ?? 1991.
Active deformation processes of the Northern Caucasus deduced from the GPS observations
NASA Astrophysics Data System (ADS)
Milyukov, Vadim; Mironov, Alexey; Rogozhin, Eugeny; Steblov, Grigory; Gabsatarov, Yury
2015-04-01
The Northern Caucasus, as a part of the Alpine-Himalayan mobile belt, is a zone of complex tectonics associated with the interaction of the two major tectonic plates, Arabian and Eurasian. The first GPS study of the contemporary geodynamics of the Caucasus mountain system were launched in the early 1990s in the framework of the Russia-US joint project. Since 2005 observations of the modern tectonic motion of the Northern Caucasus are carried out using the continuous GPS network. This network encompasses the territory of three Northern Caucasian Republics of the Russian Federation: Karachay-Cherkessia, Kabardino-Balkaria, and North Ossetia. In the Ossetian part of the Northern Caucasus the network of GPS survey-mode sites has been deployed as well. The GPS velocities confirm weak general compression of the Northern Caucasus with at the rate of about 1-2 mm/year. This horizontal motion at the boundary of the Northern Caucasus with respect to the Eurasian plate causes the higher seismic and tectonic activity of this transition zone. This result confirms that the source of deformation of the Northern Caucasus is the sub-meridional drift of the Arabian plate towards the adjacent boundary of the Eastern European part of the Eurasian lithospheric plate. The concept of such convergence implies that the Caucasian segment of the Alpine-Himalayan mobile belt is under compression, the layers of sedimentary and volcanic rocks are folded, the basement blocks are subject to shifts in various directions, and the upper crust layers are ruptured by reverse faults and thrusts. Weak deviation of observed velocities from the pattern corresponding to homogeneous compression can also be revealed, and numerical modeling of deformations of major regional tectonic structures, such as the Main Caucasus Ridge, can explain this. The deformation tensor deduced from the velocity field also exhibits the sub-meridional direction of the major compressional axes which coincides with the direction of the relative Arabian-Eurasian plate motion. This work is partly supported by the Russian Foundation for Basic Research under Grant No 14-45-01005 and № 14-05-90411.
Hydrothermal and tectonic activity in northern Yellowstone Lake, Wyoming
Johnson, S.Y.; Stephenson, W.J.; Morgan, L.A.; Shanks, Wayne C.; Pierce, K.L.
2003-01-01
Yellowstone National Park is the site of one of the world's largest calderas. The abundance of geothermal and tectonic activity in and around the caldera, including historic uplift and subsidence, makes it necessary to understand active geologic processes and their associated hazards. To that end, we here use an extensive grid of high-resolution seismic reflection profiles (???450 km) to document hydrothermal and tectonic features and deposits in northern Yellowstone Lake. Sublacustrine geothermal features in northern Yellowstone Lake include two of the largest known hydrothermal explosion craters, Mary Bay and Elliott's. Mary Bay explosion breccia is distributed uniformly around the crater, whereas Elliott's crater breccia has an asymmetric distribution and forms a distinctive, ???2-km-long, hummocky lobe on the lake floor. Hydrothermal vents and low-relief domes are abundant on the lake floor; their greatest abundance is in and near explosion craters and along linear fissures. Domed areas on the lake floor that are relatively unbreached (by vents) are considered the most likely sites of future large hydrothermal explosions. Four submerged shoreline terraces along the margins of northern Yellowstone Lake add to the Holocene record or postglacial lake-level fluctuations attributed to "heavy breathing" of the Yellowstone magma reservoir and associated geothermal system. The Lake Hotel fault cuts through northwestern Yellowstone Lake and represents part of a 25-km-long distributed extensional deformation zone. Three postglacial ruptures indicate a slip rate of ???0.27 to 0.34 mm/yr. The largest (3.0 m slip) and most recent event occurred in the past ???2100 yr. Although high heat flow in the crust limits the rupture area of this fault zone, future earthquakes of magnitude ???5.3 to 6.5 are possible. Earthquakes and hydrothermal explosions have probably triggered landslides, common features around the lake margins. Few high-resolution seismic reflection surveys have been conducted in lakes in active volcanic areas. Our data reveal active geothermal features with unprecedented resolution and provide important analogues for recognition of comparable features and potential hazards in other subaqueous geothermal environments.
NASA Astrophysics Data System (ADS)
Radaideh, Omar M. A.; Grasemann, Bernhard; Melichar, Rostislav; Mosar, Jon
2016-12-01
This study investigates the dominant orientations of morphological features and the relationship between these trends and the spatial orientation of tectonic structures in SW Jordan. Landsat 8 and hill-shaded images, constructed from 30 m-resolution ASTER-GDEM data, were used for automatically extracting and mapping geological lineaments. The ASTER-GDEM was further utilized to automatically identify and extract drainage network. Morphological features were analyzed by means of azimuth frequency and length density distributions. Tectonic controls on the land surface were evaluated using longitudinal profiles of many westerly flowing streams. The profiles were taken directly across the northerly trending faults within a strong topographic transition between the low-gradient uplands and the deeply incised mountain front on the east side of the Dead Sea Fault Zone. Streams of the area are widely divergent, and show numerous anomalies along their profiles when they transect faults and lineaments. Five types of drainage patterns were identified: dendritic, parallel, rectangular, trellis, and modified dendritic/trellis. Interpretation and analysis of the lineaments indicate the presence of four main lineament populations that trend E-W, N-S, NE-SW, and NW-SE. Azimuthal distribution analysis of both the measured structures and drainage channels shows similar trends, except for very few differences in the prevailing directions. The similarity in orientation of lineaments, drainage system, and subsurface structural trends highlights the degree of control exerted by underlying structure on the surface geomorphological features. Faults and lineaments serve as a preferential conduit for surface running waters. The extracted lineaments were divided into five populations based on the main age of host rocks outcropping in the study area to obtain information about the temporal evolution of the lineament trends through geologic time. A general consistency in lineament trends over the different lithological units was observed, most probably because repeated reactivation of tectonism along preexisting deep structural discontinuities which are apparently crustal weakness zones. The reactivation along such inherited discontinuities under the present-day stress field is the most probable explanation of the complicated pattern and style of present-day landscape features in SW Jordan.
NASA Astrophysics Data System (ADS)
Lymer, Gaël; Vendeville, Bruno; Gaullier, Virginie; Chanier, Frank; Gaillard, Morgane
2017-04-01
The Western Tyrrhenian Basin, Mediterranean Sea, is a fascinating basin in terms of interactions between crustal tectonics, salt tectonics and sedimentation. The METYSS (Messinian Event in the Tyrrhenian from Seismic Study) project is based on 2100 km of HR seismic data acquired in 2009 and 2011 along the Eastern Sardinian margin. The main aim is to study the Messinian Salinity Crisis (MSC) in the Western Tyrrhenian Basin, but we also investigate the thinning processes of the continental crust and the timing of crustal vertical motions across this complex domain. Our first results allowed us to map the MSC seismic markers and to better constrain the timing of the rifting, which ended before the MSC across the upper and middle parts of the margin. We also evidenced that crustal activity persisted long after the end of rifting. This has been particularly observed on the upper margin, where several normal faults and a surprising compressional structure were recently active. In this study we investigate the middle margin, the Cornaglia Terrace, where the Mobile Unit (MU, mobile Messinian salt) accumulated during the MSC and acts as a décollement. Our goal is to ascertain whether or not crustal tectonics existed after the pre-MSC rift. This is a challenge where the MU is thick, because potential basement deformations could be first accommodated by the MU and therefore would not find any expression in the supra-salt layers (Upper Unit, UU and Plio-Quaternary, PQ). However our investigations clearly reveal interactions between crustal and salt tectonics along the margin. We thus evidence gravity gliding of the salt and its brittle sedimentary cover along basement slopes generated by the post-MSC tilting of some basement blocks bounded by crustal normal faults, formerly due to the rifting. Another intriguing structure also got our interest. It corresponds to a wedge-shaped of MU located in a narrow N-S half graben bounded to the west by a major, east-verging, crustal normal fault. Below the MU, the sediments thicken toward the fault. The top of the MU is sub-horizontal and the supra-salt layers are sub-horizontal. At a first glance this geometry would suggest that the pre-salt unit and the MU are syn-tectonic and that nothing happened after Messinian times. However some subtle evidence of deformations in the UU and PQ (an anticline to the west and a small west-verging normal fault in the east) imply that some crustal tectonics activity persisted after the end of the rifting. To understand why the salt unit is wedge-shaped, we considered several scenarii that we tested with physical modelling. We demonstrate that this structure is related to the post-rift activity of the major crustal normal fault, whose vertical motion has been cushioned by lateral flow of an initially tabular salt layer, which thinned upslope and inflated downslope, keeping the overlying sediments remained sub-horizontal. Such interactions between thin-skinned and thick-skinned tectonics highlight how the analysis of the salt tectonics is a powerful tool to reveal recent deep crustal tectonics in the Western Mediterranean Basin.
Geophysical interpretations west of and within the northwestern part of the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.
1997-12-31
This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study includemore » (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.« less
Approach for computing 1D fracture density: application to fracture corridor characterization
NASA Astrophysics Data System (ADS)
Viseur, Sophie; Chatelée, Sebastien; Akriche, Clement; Lamarche, Juliette
2016-04-01
Fracture density is an important parameter for characterizing fractured reservoirs. Many stochastic simulation algorithms that generate fracture networks indeed rely on the determination of a fracture density on volumes (P30) to populate the reservoir zones with individual fracture surfaces. However, only 1D fracture density (P10) are available from subsurface data and it is then important to be able to accurately estimate this entity. In this paper, a novel approach is proposed to estimate fracture density from scan-line or well data. This method relies on regression, hypothesis testing and clustering techniques. The objective of the proposed approach is to highlight zones where fracture density are statistically very different or similar. This technique has been applied on both synthetic and real case studies. These studies concern fracture corridors, which are particular tectonic features that are generally difficult to characterize from subsurface data. These tectonic features are still not well known and studies must be conducted to better understand their internal spatial organization and variability. The presented synthetic cases aim at showing the ability of the approach to extract known features. The real case study illustrates how this approach allows the internal spatial organization of fracture corridors to be characterized.
Venus tectonics: initial analysis from magellan.
Solomon, S C; Head, J W; Kaula, W M; McKenzie, D; Parsons, B; Phillips, R J; Schubert, G; Talwani, M
1991-04-12
Radar imaging and altimetry data from the Magellan mission have revealed a diversity of deformational features at a variety of spatial scales on the Venus surface. The plains record a superposition of different episodes of deformation and volcanism; strain is both areally distributed and concentrated into zones of extension and shortening. The common coherence of strain patterns over hundreds of kilometers implies that many features in the plains reflect a crustal response to mantle dynamic processes. Ridge belts and mountain belts represent successive degrees of lithospheric shortening and crustal thickening; the mountain belts also show widespread evidence for extension and collapse both during and following crustal compression. Venus displays two geometrical patterns of concentrated lithospheric extension: quasi-circular coronae and broad rises with linear rift zones; both are sites of significant volcanism. No long, large-offset strike-slip faults have been observed, although limited local horizontal shear is accommodated across many zones of crustal shortening. In general, tectonic features on Venus are unlike those in Earth's oceanic regions in that strain typically is distributed across broad zones that are one to a few hundred kilometers wide, and separated by stronger and less deformed blocks hundreds of kilometers in width, as in actively deforming continental regions on Earth.
NASA Astrophysics Data System (ADS)
Schultz, A.; Bedrosian, P.; Key, K.; Livelybrooks, D.; Egbert, G. D.; Bowles-martinez, E.; Wannamaker, P. E.
2014-12-01
We report on preliminary analyses of data from the EarthScope MT Transportable Array, and from two high-resolution EarthScope MT studies in Cascadia. The first of these, iMUSH, is acquiring wideband MT data at 150 sites, as well as active and passive seismic data in SW Washington (including Mounts Saint Helens, Adams and Rainier). iMUSH seeks to determine details of crustal magma transport and storage, and to resolve major tectonic controls on volcanism along the arc. iMUSH may help to settle a debate over the origin of the SW Washington Crustal Conductor (SWCC), which covers ~5000 km2and that has alternately been attributed to accreted Eocene metasediments or to an extensive region of partial melt in the lower crust beneath the three volcanoes. The iMUSH array is continguous with an amphibious ~150 station MT experiment (MOCHA) onshore and offshore of the Washington and Oregon forearc. MOCHA iwill image the crust and upper mantle of the subduction system in 3D, constraining the fluid input to the system from offshore and the distribution of fluids released from the down-going slab, including along the transitional zone where Episodic Tremor and Slip occurs. Our goal is to refine our understanding of the segmentation, structure and fluid distribution along the convergent margin segments, and their relationship to the spatial pattern of ETS. In contrast to the active Cascadia margin, the Mid-Continent Rift (MCR) is the trace of a massive igneous event that nearly split North America 1.1 billion years ago. Initial results from 3D inversion of MT Transportable Array data show less fine-scale heterogeneity in the upper mantle (250 km depth) than is evident in western, tectonic North America, but a division at the base of thick lithosphere, with higher conductivities beneath and immediately south of the Great Lakes, than to the south. From the base of the lithosphere to the Moho, this high conductivity feature narrows, ultimately disappearing in the mid-crust. In the upper crust above this feature, an E-W elongated conductive feature appears that maps to surface expressions of the MCR. The significance of this deep feature, and its relationship to the failed rifting event of the mesoproterozoic era will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernest A. Mancini; Paul Aharon; Donald A. Goddard
2006-05-26
The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon expulsion commenced during the Early Cretaceous and continued into the Tertiary with peak expulsion occurring during the Early to Late Cretaceous. The geohistory of the North Louisiana Salt Basin is comparable to the Mississippi Interior Salt Basin with the major difference being the elevated heat flow the strata in the North Louisiana Salt Basin experienced in the Cretaceous due primarily to reactivation of upward movement, igneous activity, and erosion associated with the Monroe and Sabine Uplifts. Potential undiscovered reservoirs in the North Louisiana Salt Basin are Triassic Eagle Mills sandstone and deeply buried Upper Jurassic sandstone and limestone. Potential underdeveloped reservoirs include Lower Cretaceous sandstone and limestone and Upper Cretaceous sandstone.« less
NASA Astrophysics Data System (ADS)
Beardsley, A. G.; Avé Lallemant, H. G.; Levander, A.; Clark, S. A.
2006-12-01
The kinematic history of the Leeward Antilles (offshore Venezuela) can be characterized with the integration of onshore outcrop data and offshore seismic reflection data. Deformation structures and seismic interpretation show that oblique convergence and wrench tectonics have controlled the diachronous deformation identified along the Caribbean - South America plate boundary. Field studies of structural features in outcrop indicate one generation of ductile deformation (D1) structures and three generations of brittle deformation (F1 - F3) structures. The earliest deformation (D1/F1) began ~ 110 Ma with oblique convergence between the Caribbean plate and South American plate. The second generation of deformation (F2) structures initiated in the Eocene with the extensive development of strike-slip fault systems along the diffuse plate boundary and the onset of wrench tectonics within a large-scale releasing bend. The most recent deformation (F3) has been observed in the west since the Miocene where continued dextral strike-slip motion has led to the development of a major restraining bend between the Caribbean plate transform fault and the Oca - San Sebastian - El Pilar fault system. Deformation since the late Cretaceous has been accompanied by a total of 135° clockwise rotation. Interpretation of 2D marine reflection data indicates similar onshore and offshore deformation trends. Seismic lines that approximately parallel the coastline (NW-SE striking) show syndepositional normal faulting during F1/F2 and thrust faulting associated with F3. On seismic lines striking NNE-SSW, we interpret inversion of F2 normal faults with recent F3 deformation. We also observe both normal and thrust faults related to F3. The thick sequence of recent basin sedimentation (Miocene - Recent), interpreted from the seismic data, supports the ongoing uplift and erosion of the islands; as suggested by fluid inclusion analysis. Overall, there appears to be a strong correlation between onshore micro- and mesoscopic deformational structures and offshore macro-scale structural features seen in the reflection data. The agreement of features supports our regional deformation and rotation model along the Caribbean - South America obliquely convergent plate boundary.
NASA Astrophysics Data System (ADS)
Mouthereau, FréDéRic; Petit, Carole
2003-11-01
Deformation in western Taiwan is characterized by variable depth-frequency distribution of crustal earthquakes which are closely connected with along-strike variations of tectonic styles (thin or thick skinned) around the Peikang High, a major inherited feature of the Chinese margin. To fit the calculated high crustal geotherm and the observed distribution of the crustal seismic activity, a Qz-diorite and granulite composition for the upper and the lower crust is proposed. We then model the plate flexure, through Te estimates, using brittle-elastic-ductile plate rheology. Flexure modeling shows that the best fit combination of Te-boundary condition is for thrust loads acting at the belt front. The calculated Te vary in the range of ˜15-20 km. These values are primarily a reflection of the thermal state of the rifted Chinese margin inherited from the Oligocene spreading in the South China Sea. However, other mechanical properties such as the degree of crust/mantle coupling and the thickness of the mechanically competent crust and mantle are considered. South of the Peikang High, flexure modeling reveals lower Te associated with thinner mechanically strong layers. Variable stress/strain distribution associated with a higher degree of crust/mantle decoupling is examined to explain plate weakening. We first show that plate curvature cannot easily explain strength reduction and observed seismic activity. Additional plate-boundary forces arising from the strong coupling induced by more frontal subduction of a buoyant crustal asperity, i.e., the Peikang High, with the overriding plate are required. Favorably oriented inherited features in the adjacent Tainan basin produce acceleration of strain rates in the upper crust and hence facilitate the crust/mantle decoupling as attested by high seismic activity and thick-skinned deformation. The relative weakening of the lower crust and mantle then leads to weaken the lithosphere. By contrast, to the north, more oblique collision and the lack of inherited features keep the lithosphere stronger. This study suggests that when the Eurasian plate enters the Taiwan collision, tectonic inheritance of the continental margin exerts a strong control on the plate deformation by modifying its strength.
Occurrence of high-Al N-MORB along the Easternmost Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Meyzen, C. M.; Humler, E.; Ludden, J. N.
2017-12-01
One of the deepest and slowest part of the mid-ocean-ridge system lies within the easternmost part of the Southwest Indian Ridge between 61°E and 69° E. In this region, a distinctive sea-floor terrain characterized by high-relief segments separated by long, deep tectonized sections shows a predominance of tectonic over magmatic extensional processes, suggesting an unstable and weak, but locally focalized magma supply. Other features of this section include the absence of long-lived transforms, thick lithosphere, high upper mantle seismic wave velocities and thin oceanic crust (4-5 km). When compared to other ridge segments, most MORB erupted along this section distinguish themselves by their higher Na2O, Sr and Al2O3 compositions, very low CaO/Al2O3 ratios relative to TiO2 and depleted heavy rare-earth element (REE) distributions. Another peculiar feature is their subparallel LREE enriched patterns. The high-Al-MgO magma type erupted periodically around the ridge system is also found in this region at 61.93°E. These lavas are characterized by high Al2O3 (> 17 wt. %), MgO (> 8.8 wt. %) and FeO contents, low SiO2 (< 49 wt. %) and Na2O and very low TiO2 (< 1 wt. %), and a LREE depleted pattern compared to the main population. At slightly lower MgO, sporadically, two other dredges located at 63.36-63.66°E share some of these distinct compositional characteristics. As a whole, these lavas are the most depleted in highly incompatible elements, but are also characterized by an offset toward lower MREE/HREE ratios relative to the main population. These peculiar basalts are not parental to the more common lower MgO compositions and cannot be related to them by fractional crystallization alone. Instead, their major element features, and the occasional presence of positive Eu and Sr anomalies might indicate assimilation of plagioclase cumulates, while their offset in MREE/HREE might require a multistage melting evolution with an earlier event in the garnet stability field.
ERIC Educational Resources Information Center
Fink, Kristi R.
2017-01-01
Earth's easily seen surface features (mountains, volcanoes, and islands)--and the movement of the tectonic plates that lie below--offer hints about the processes that produced them. Inquiries in seismology, the study of earthquakes and other ground movements, can help students learn about Earth's geologic processes. This article describes an…
Elastic Thickness Estimates for Coronae Associated with Chasmata on Venus
NASA Technical Reports Server (NTRS)
Hoogenboom, T.; Martin, P.; Housean, G. A.
2005-01-01
Coronae are large-scale circular tectonic features surrounded by annular ridges. They are generally considered unique to Venus and may offer insights into the differences in lithospheric structure or mantle convective pattern between Venus and Earth. 68% of all coronae are associated with chasmata or fracture belts. The remaining 32% are located at volcanic rises or in the plains. Chasmata are linear to arcuate troughs, with trough parallel fractures and faults which extend for 1000 s of kilometers. Estimates of the elastic thickness of the lithosphere (T(sub e)) have been calculated in a number of gravity/topography studies of Venus and for coronae specifically. None of these studies, however, have explored the dependence of T(sub e) on the tectonic history of the region, as implied from the interpretation of relative timing relationships between coronae and surrounding features. We examine the relationship between the local T(sub e) and the relative ages of coronae and chasmata with the aim of further constraining the origin and evolution of coronae and chasmata systems.
NASA Technical Reports Server (NTRS)
Liggett, M. A. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Research progress in an investigation using ERTS-1 MSS imagery to study regional tectonics and related natural resources is summarized. Field reconnaissance guided by analysis of ERTS-1 imagery has resulted in development of a tectonic model relating strike-slip faulting to crustal extension in the southern Basin Range Province. The tectonics of the northern Death Valley-Furnace Creek Fault Zone and spacially associated volcanism and mercury mineralization were also investigated. Field work in the southern Sierra Nevada has confirmed the existence of faults and diabase dike swarms aligned along several major lineaments first recognized in ERTS-1 imagery. Various image enhancement and analysis techniques employed in the study of ERTS-1 data are summarized.
Li, Jun; Fu, Cuizhang; Lei, Guangchun
2011-01-01
Few studies have explored the role of Cenozoic tectonic evolution in shaping patterns and processes of extant animal distributions within East Asian margins. We select Hynobius salamanders (Amphibia: Hynobiidae) as a model to examine biogeographical consequences of Cenozoic tectonic events within East Asian margins. First, we use GenBank molecular data to reconstruct phylogenetic interrelationships of Hynobius by Bayesian and maximum likelihood analyses. Second, we estimate the divergence time using the Bayesian relaxed clock approach and infer dispersal/vicariance histories under the ‘dispersal–extinction–cladogenesis’ model. Finally, we test whether evolutionary history and biogeographical processes of Hynobius should coincide with the predictions of two major hypotheses (the ‘vicariance’/‘out of southwestern Japan’ hypothesis). The resulting phylogeny confirmed Hynobius as a monophyletic group, which could be divided into nine major clades associated with six geographical areas. Our results show that: (1) the most recent common ancestor of Hynobius was distributed in southwestern Japan and Hokkaido Island, (2) a sister taxon relationship between Hynobius retardatus and all remaining species was the results of a vicariance event between Hokkaido Island and southwestern Japan in the Middle Eocene, (3) ancestral Hynobius in southwestern Japan dispersed into the Taiwan Island, central China, ‘Korean Peninsula and northeastern China’ as well as northeastern Honshu during the Late Eocene–Late Miocene. Our findings suggest that Cenozoic tectonic evolution plays an important role in shaping disjunctive distributions of extant Hynobius within East Asian margins. PMID:21738684
The ambient noise and earthquake surface wave tomography of the North China Craton
NASA Astrophysics Data System (ADS)
Pan, J.; Obrebski, M. J.; Wu, Q.; Li, Y.
2010-12-01
The North China Craton (NCC) is unique for its unusual Phanerozoic tectonic activity. The NCC was internally tectonically stable until Jurassic when its southern margin collided with the Yangzte Craton. Subsequently, the eastern and central part of the NCC underwent distinctive evolutions during the Late Mesozoic and Cenozoic. In contrast to the Erdos block located in the western part of NCC and that seems to have preserved the typical features of a stable craton, the eastern NCC has experienced significant lithospheric thinning as evidenced by widespread magmatism activity and normal faulting, among other manifestations. The eastern part of the NCC is also one of the most seismically active intracontinental regions in the world. Here we focus on the region that comprises the North China Basin and the Yanshan-Taihang Mountains, two major tectonic units located to the east and in the center of the NCC, respectively. We combine ambient noise data and ballistic surface wave data recorded by the dense temporary seismic array deployed in the North China to obtain phase velocity maps at periods ranging from 5s to 60s. 1587 and 3667 ray paths were obtained from earthquake surface waves and ambient noise correlations, respectively. The phase velocity distribution was reconstructed with grid size 0.25x0.25 degrees and 0.5x0.5 degrees from ambient noise tomography and earthquake surface wave tomography. For periods shorter than 15s, the phase velocity variations are well correlated with the principal geological units in the NCC, with low-speed anomalies corresponding to the major sedimentary basins and high-speed anomalies coinciding with the main mountain ranges. Within the period range from 20s to 30s, the phase velocity variations seem to be related to the local variations of the crustal thickness. For the periods above 30s, the strength of the phase velocity variations decreases with increasing periods, which may imply that the uppermost mantle is much more homogeneous than the crust. In contrast with typical phase velocities documented worldwide in continental cratons, the phase velocities we measured within the NCC are low. Their range is actually similar to that of the typical phase velocities observed in rift regions around the globe (eg, Rio Grande rift), indicating that the lithosphere of the central and eastern NCC has apparently been eroded and modified.
Florida: A Jurassic transform plate boundary
Klitgord, Kim D.; Popenoe, Peter; Schouten, Hans
1984-01-01
Magnetic, gravity, seismic, and deep drill hole data integrated with plate tectonic reconstructions substantiate the existence of a transform plate boundary across southern Florida during the Jurassic. On the basis of this integrated suite of data the pre-Cretaceous Florida-Bahamas region can be divided into the pre-Jurassic North American plate, Jurassic marginal rift basins, and a broad Jurassic transform zone including stranded blocks of pre-Mesozoic continental crust. Major tectonic units include the Suwannee basin in northern Florida containing Paleozoic sedimentary rocks, a central Florida basement complex of Paleozoic age crystalline rock, the west Florida platform composed of stranded blocks of continental crust, the south Georgia rift containing Triassic sedimentary rocks which overlie block-faulted Suwannee basin sedimentary rocks, the Late Triassic-Jurassic age Apalachicola rift basin, and the Jurassic age south Florida, Bahamas, and Blake Plateau marginal rift basins. The major tectonic units are bounded by basement hinge zones and fracture zones (FZ). The basement hinge zone represents the block-faulted edge of the North American plate, separating Paleozoic and older crustal rocks from Jurassic rifted crust beneath the marginal basins. Fracture zones separate Mesozoic marginal sedimentary basins and include the Blake Spur FZ, Jacksonville FZ, Bahamas FZ, and Cuba FZ, bounding the Blake Plateau, Bahamas, south Florida, and southeastern Gulf of Mexico basins. The Bahamas FZ is the most important of all these features because its northwest extension coincides with the Gulf basin marginal fault zone, forming the southern edge of the North American plate during the Jurassic. The limited space between the North American and the South American/African plates requires that the Jurassic transform zone, connecting the Central Atlantic and the Gulf of Mexico spreading systems, was located between the Bahamas and Cuba FZ's in the region of southern Florida. Our plate reconstructions combined with chronostratigraphic and lithostratigraphic information for the Gulf of Mexico, southern Florida, and the Bahamas indicate that the gulf was sealed off from the Atlantic waters until Callovian time by an elevated Florida-Bahamas region. Restricted influx of waters started in Callovian as a plate reorganization, and increased plate separation between North America and South America/Africa produced waterways into the Gulf of Mexico from the Pacific and possibly from the Atlantic.
Tectonic isolation from regional sediment sourcing of the Paradox Basin
NASA Astrophysics Data System (ADS)
Smith, T. M.; Saylor, J.; Sundell, K. E.; Lapen, T. J.
2017-12-01
The Appalachian and Ouachita-Marathon mountain ranges were created by a series of tectonic collisions that occurred through the middle and late Paleozoic along North America's eastern and southern margins, respectively. Previous work employing detrital zircon U-Pb geochronology has demonstrated that fluvial and eolian systems transported Appalachian-derived sediment across the continent to North America's Paleozoic western margin. However, contemporaneous intraplate deformation of the Ancestral Rocky Mountains (ARM) compartmentalized much of the North American western interior and mid-continent. We employ lithofacies characterization, stratigraphic thickness, paleocurrent data, sandstone petrography, and detrital zircon U-Pb geochronology to evaluate source-sink relationships of the Paradox Basin, which is one of the most prominent ARM basins. Evaluation of provenance is conducted through quantitative comparison of detrital zircon U-Pb distributions from basin samples and potential sources via detrital zircon mixture modeling, and is augmented with sandstone petrography. Mixing model results provide a measure of individual source contributions to basin stratigraphy, and are combined with outcrop and subsurface data (e.g., stratigraphic thickness and facies distributions) to create tectonic isolation maps. These maps elucidate drainage networks and the degree to which local versus regional sources influence sediment character within a single basin, or multiple depocenters. Results show that despite the cross-continental ubiquity of Appalachian-derived sediment, fluvial and deltaic systems throughout much of the Paradox Basin do not record their influence. Instead, sediment sourcing from the Uncompahgre Uplift, which has been interpreted to drive tectonic subsidence and formation of the Paradox Basin, completely dominated its sedimentary record. Further, the strong degree of tectonic isolation experienced by the Paradox Basin appears to be an emerging, yet common feature among other intraplate, tectonically active basins.
NASA Astrophysics Data System (ADS)
Vansutre, Sandeep; Hari, K. R.
2010-11-01
The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.
Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Most of the geologic information in ERTS-1 imagery can be extracted from bulk processed black and white transparencies by a skilled interpreter using standard photogeologic techniques. In central and western Colorado, the detectability of lithologic contacts on ERTS-1 imagery is closely related to the time of year the imagery was acquired. Geologic structures are the most readily extractable type of geologic information contained in ERTS images. Major tectonic features and associated minor structures can be rapidly mapped, allowing the geologic setting of a large region to be quickly accessed. Trends of geologic structures in younger sedimentary appear to strongly parallel linear trends in older metamorphic and igneous basement terrain. Linears and color anomalies mapped from ERTS imagery are closely related to loci of known mineralization in the Colorado mineral belt.
NASA Technical Reports Server (NTRS)
Head, James W.; Hurwitz, D. M.; Ivanov, M. A.; Basilevsky, A. T.; Kumar, P. Senthil
2008-01-01
The geological features, structures, thermal conditions, interpreted processes, and outstanding questions related to both the Earth's Archean and Venus share many similarities and we are using a problem-oriented approach to Venus mapping, guided by perspectives from the Archean record of the Earth, to gain new insight into both. The Earth's preserved and well-documented Archean record provides important insight into high heat-flux tectonic and magmatic environments and structures and Venus reveals the current configuration and recent geological record of analogous high-temperature environments unmodified by subsequent several billion years of segmentation and overprinting, as on Earth. We have problems on which progress might be made through comparison. Here we present the major goals of the geological mapping of the V-1 Snegurochka Planitia Quadrangle, and themes that could provide important insights into both planets:
Ambient tremors in a collisional orogenic belt
Chuang, Lindsay Yuling; Chen, Kate Huihsuan; Wech, Aaron G.; Byrne, Timothy; Peng, Wei
2014-01-01
Deep-seated tectonic tremors have been regarded as an observation tied to interconnected fluids at depth, which have been well documented in worldwide subduction zones and transform faults but not in a collisional mountain belt. In this study we explore the general features of collisional tremors in Taiwan and discuss the possible generation mechanism. In the 4 year data, we find 231 ambient tremor episodes with durations ranging from 5 to 30 min. In addition to a coseismic slip-induced stress change from nearby major earthquake, increased tremor rate is also highly correlated with the active, normal faulting earthquake swarms at the shallower depth. Both the tremor and earthquake swarm activities are confined in a small, area where the high attenuation, high thermal anomaly, the boundary between high and low resistivity, and localized veins on the surfaces distributed, suggesting the involvement of fluids from metamorphic dehydration within the orogen.
Mineral exploration potential of ERTS-1 data
NASA Technical Reports Server (NTRS)
Brewer, W. A. (Principal Investigator); Erskine, M. C., Jr.; Prindle, R. O.
1972-01-01
The author has identified the following significant results. Preliminary analysis of a mosaic composing eight individual ERTS frames (1:1,000,000) extending well beyond the test site has revealed a number of tectonic structural trends that are controlled by regional lineations. So far most of the regional lineations fall into three general directions: east by northeast, northwest, and north-south. From preliminary examination, it appears that the older Precambrian basement predominates in the NE-bearing structural trends, whereas the predominate NW trend is most likely associated with the Texas Structural Zone, and the north-south trend being the Utah-Arizona belt and/or part of the southern Basin and Range Province. One major lineation, made up of many parallel lineations, is noticeable just north of Lake Pleasant which extends for approximately 100 miles in a northern direction out of the target area. This feature corresponds to a Precambrian schist formation shown on the USGS geologic map of Arizona.
NASA Astrophysics Data System (ADS)
Muller, E.
2006-12-01
When the weather is nice, I like to take my students on a walk to the center of the earth. Earthwalk is a hands-on and feet-on activity that gets students outdoors, having fun, moving and learning about the structures of the earth. Earthwalk is a lesson to help students visualize our planets size and scale. This activity has students calculate the ratio of a scaled 100m cross-sectional earth, mark the boundaries between major planetary layers, walk from the center of the earth to the surface and draw proportional manmade and natural surface features (mountains, building, mine shafts, etc). This lesson effectively integrates content and pedagogy while touching on skills and topics such as math, measurement, science, writing skills (they have to take notes), reading, listening and group dynamics. This activity fits well into the earth science curriculum by introducing basic seismology; tectonic, geochemistry and heat transfer concepts. Besides showcasing this lesson, a limited number of Earth Anatomy posters will be distributed.
The Geology of Pluto and Charon Through the Eyes of New Horizons
NASA Technical Reports Server (NTRS)
Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Howard, A. D.; Schenk, P. M.; Beyer, R. A.; Nimmo, F.; Singer, K. N.; Umurhan, O. M.; White, O. L.;
2016-01-01
NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that is involved in convection and advection, with a crater retention age no greater than 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic, and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to 4 Ga old that are extensionally fractured and extensively mantled and eroded by glacial or other processes. Charon is not currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest proposed impactor size-frequency distributions.
Unraveling tectonics and climate forcing in the late-Neogene exhumation history of South Alaska
NASA Astrophysics Data System (ADS)
Valla, Pierre; Champagnac, Jean-Daniel; Shuster, David; Herman, Frédéric; Giuditta Fellin, Maria
2015-04-01
The southern Alaska range presents an ideal setting to study the complex interactions between tectonics, climate and surface processes in landscape evolution. It exhibits active tectonics with the ongoing subduction/collision between Pacific and North America, and major active seismogenic reverse and strike-slip faults. The alpine landscape, rugged topography and the important ice-coverage at present reveal a strong glacial imprint associated with high erosion and sediment transport rates. Therefore, the relative importance of climatically-driven glacial erosion and tectonics for the observed late-exhumation history appears to be quite complex to decipher. Here, we first perform a formal inversion of an extensive bedrock thermochronological dataset from the literature to quantify the large-scale 20-Myr exhumation history over the entire southern Alaska. We show that almost half of the variability within the thermochronological record can be explained by modern annual precipitations spatial distribution, the residuals clearly evidencing localized exhumation along major tectonic structures of the frontal fold and thrust belt. Our results confirm high exhumation rates in the St Elias "syntaxis" and frontal zones for the last 0-2 Myr, where major ice fields and high precipitation rates likely sustained high exhumation rates; however the impact of late Cenozoic glaciations is difficult to constrain because of the low resolution on the exhumation history older than ~2 Myr. On the contrary, our inversion outcomes highlight that north of the Bagley Icefield the long-term exhumation has remained quite slow and continuous over the last ~20 Myr, with no late-stage signal of exhumation change since the onset of glaciations despite a clear glacial imprint on the landscape. We thus focus on the Granite Range (Wrangell-St Elias National Park, Alaska), an area presenting a strong glacial imprint but minor tectonic activity with only localized brittle deformation. We sampled four elevation profiles over an East-West transect for low-temperature thermochrometry. Apatite (U-Th-Sm)/He dating provides ages between ~10 and 30 Ma, in agreement with published data, and shows apparent low long-term exhumation rates (~0.1 km/Myr). 4He/3He thermochronometry on a subset of samples reveals a more complex exhumation history, with a significant increase in exhumation since ~6-4 Ma that we relate to the early onset of glaciations and associated glacial erosion processes. Our results, in agreement with offshore sediment records, thus confirm an early glacial activity and associated erosion response in Alaska, well before the onset of Pliocene-Pleistocene Northern Hemisphere glaciations.
Formation of cratonic lithosphere during the initiation of plate tectonics
NASA Astrophysics Data System (ADS)
Moresi, L. N.; Beall, A.; Cooper, C. M.
2017-12-01
The Earth's oldest near-surface material, the cratonic crust, is typically underlain by unusually thick Archean lithosphere (<300 km). This cratonic lithosphere likely thickened in a high compressional stress environment. Mantle convection in the hotter Archean Earth would have imparted relatively low stresses on the lithosphere, whether or not tectonics was operating, so a high stress signal from the early Earth is paradoxical. We propose that a rapid transition, from a stagnant lid Earth to the onset of plate tectonics, generated the high stresses required to thicken the cratonic lithosphere. Numerical calculations are used to demonstrate that an existing buoyant and strong layer, representing harzburgite and felsic crust, can thicken and stabilize during the lid-breaking event. The peak compressional stress experienced by lithosphere is 3-4 higher than for the stagnant lid or mobile lid regimes immediately before and after. It is plausible that the cratonic lithosphere has still not returned to this high stress-state, explaining its stability. The lid-breaking thickening event reproduces craton features previously attributed to subduction: thrust structures, assembled crustal fragments and transport of basaltic upper crust to depths required to generate felsic melt. Palaeoarchean `pre-tectonic' structures can also survive the lid-breaking event, acting as strong crustal rafts. Together, the results indicate that the signature of a catastrophic switch, from a stagnant lid Earth to the initiation of plate tectonics, has been captured and preserved in the unusual characteristics of cratonic crust and lithosphere.
Geologic Mapping of the Beta-Atla-Themis (BAT) Region of Venus: A Progress Report
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III
2009-01-01
The BAT province is of particular interest with respect to evaluating Venus geologic, tectonic, and volcanic history and provides tests of global paradigms regarding her thermal evolution. The BAT is "ringed" by volcano-tectonic troughs (Parga, Hecate, and Devana Chasmata), has an anomalously high-density of volcanic features with concentrations 2-4 times the global average [1], and is spatially coincident with "young terrain" as illustrated by Average Surface Model Ages [2, 3]. The BAT province is key to understanding Venus current volcanic and tectonic modes, which may provide insight for evaluating Venus historical record. Several quadrangles, two 1:5,000,000 scale - Isabella (V-50) Quadrangle and Devana Chasma (V-29) Quadrangle and two 1:10,000,000 scale - Helen Planitia (I-2477) and Guinevere Planitia (I-2457), are in various stages of production (Figure 1). This abstract will report on their levels of completion as well as highlight some current results and outstanding issues.
The role of latitude in mobilism debates
Irving, Edward
2005-01-01
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Köppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves. PMID:15684058
Discriminating Characteristics of Tectonic and Human-Induced Seismicity
NASA Astrophysics Data System (ADS)
Zaliapin, I. V.; Ben-Zion, Y.
2015-12-01
We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of "end-member" areas known to be dominated by human-induced earthquakes (the Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jacinto fault zone in southern California and Coso region excluding the Coso geothermal field in eastern central California) reveals several distinguishing characteristics. Induced seismicity is shown to have (i) higher rate of background events (both absolute and relative to the total rate), (ii) faster temporal offspring decay, (iii) higher intensity of repeating events, (iv) larger proportion of small clusters, and (v) larger spatial separation between parent and offspring, compared to regular tectonic activity. These differences also successfully discriminate seismicity within the Coso and Salton Sea geothermal fields in California before and after the expansion of geothermal production during the 1980s.
Tectonic map of Liberia based on geophysical and geological surveys
Behrendt, John Charles; Wotorson, Cletus S.
1972-01-01
Interpretation of the results of aeromagnetic, total-gamma radioactivity, and gravity surveys combined with geologic data for Western Liberia from White and Leo (1969) and other geologic information allows the construction of a tectonic map of Liberia. The map approximately delineates the boundaries between the Liberian (ca. 2700 m.y.) province in the northwestern two-thirds of the country, the Eburnean (ca. 2000 m.y.) province in the south-eastern one-third, and the Pan-African (ca. 550 m.y.) province in the coastal area of the northwestern two-thirds of the country. Rock follation and tectonic structural features trend northeastward in the Liberian province, east-northeastward to north-northeastward in the Eburnean province, and northwestward in the Pan-African age province. Linear residual magnetic anomailes 20-80 km wide and 200-600 gammas in amplitude and following the northeast structural trend typical of the Liberian age province cross the entire country and extend into Sierra Leone and Ivory Coast.
The role of latitude in mobilism debates.
Irving, Edward
2005-02-08
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves.
Planetary Analogs in Antarctica: Icy Satellites
NASA Technical Reports Server (NTRS)
Malin, M. C.
1985-01-01
As part of a study to provide semi-quantitative techniques to date past Antarctic glaciations, sponsored by the Antarctic Research Program, field observations pertinent to other planets were also acquired. The extremely diverse surface conditions, marked by extreme cold and large amounts of ice, provide potential terrain and process analogs to the icy satellites of Jupiter and Saturn. Thin ice tectonic features and explosion craters (on sea ice) and deformation features on thicker ice (glaciers) are specifically addressed.
NASA Astrophysics Data System (ADS)
Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel
2018-03-01
Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (< 50 cm) and resolution (< 10 cm) digital surface model (DSM) and (2) a georeferenced aerial photograph mosaic of the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.
ERIC Educational Resources Information Center
Chew, Berkeley
1993-01-01
Provides written tour of Colorado Rockies along San Juan Skyway in which the geological features and formation of the mountain range is explored. Discusses evidence of geologic forces and products such as plate tectonic movement and the Ancestral Rockies; subduction and the Laramide Orogeny; volcanism and calderas; erosion, faulting, land…
NASA Astrophysics Data System (ADS)
Argyropoulou, Evangelia
2015-04-01
The current study was focused on the seafloor morphology of the North Aegean Basin in Greece, through Object Based Image Analysis (OBIA) using a Digital Elevation Model. The goal was the automatic extraction of morphologic and morphotectonic features, resulting into fault surface extraction. An Object Based Image Analysis approach was developed based on the bathymetric data and the extracted features, based on morphological criteria, were compared with the corresponding landforms derived through tectonic analysis. A digital elevation model of 150 meters spatial resolution was used. At first, slope, profile curvature, and percentile were extracted from this bathymetry grid. The OBIA approach was developed within the eCognition environment. Four segmentation levels were created having as a target "level 4". At level 4, the final classes of geomorphological features were classified: discontinuities, fault-like features and fault surfaces. On previous levels, additional landforms were also classified, such as continental platform and continental slope. The results of the developed approach were evaluated by two methods. At first, classification stability measures were computed within eCognition. Then, qualitative and quantitative comparison of the results took place with a reference tectonic map which has been created manually based on the analysis of seismic profiles. The results of this comparison were satisfactory, a fact which determines the correctness of the developed OBIA approach.
NASA Astrophysics Data System (ADS)
Cañon-Tapia, Edgardo; Mendoza-Borunda, Ramón
2014-06-01
The distribution of volcanic features is ultimately controlled by processes taking place beneath the surface of a planet. For this reason, characterization of volcano distribution at a global scale can be used to obtain insights concerning dynamic aspects of planetary interiors. Until present, studies of this type have focused on volcanic features of a specific type, or have concentrated on relatively small regions. In this paper, (the first of a series of three papers) we describe the distribution of volcanic features observed over the entire surface of the Earth, combining an extensive database of submarine and subaerial volcanoes. The analysis is based on spatial density contours obtained with the Fisher kernel. Based on an empirical approach that makes no a priori assumptions concerning the number of modes that should characterize the density distribution of volcanism we identified the most significant modes. Using those modes as a base, the relevant distance for the formation of clusters of volcanoes is constrained to be on the order of 100 to 200 km. In addition, it is noted that the most significant modes lead to the identification of clusters that outline the most important tectonic margins on Earth without the need of making any ad hoc assumptions. Consequently, we suggest that this method has the potential of yielding insights about the probable occurrence of tectonic features within other planets.
Tectonics and kinematics of a foreland folded belt influenced by salt, arctic Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, J.C.
1996-12-31
The Ordovician (upper Arenig-Llanvirn) Bay Fiord Formation is one of three widespread evaporite units known to have profoundly influenced the style of contractional tectonics within the Innuitian orogen of Arctic Canada. In the western Arctic Islands, the salt-bearing Bay Fiord Formation has accommodated buckling and mostly subsurface thrusting in the west-trending Parry Islands foldbelt. A characteristic feature of this belt is a stratigraphic succession more than 10 km thick featuring three rigid and widespread sedimentary layers and two intervening ductile layers (lower salt and upper shale). The ductile strata have migrated to anticlinal welts during buckling. Other features of themore » foldbelt include (1) an extreme length of individual upright folds (up to 330 km), (2) extreme foldbelt width (up to 11%), (5) a shallow dipping salt decollement system (0.1{degrees}-0.6{degrees}) that has also been folded in the hinterland and later extended, and (6) a complete absence of halokinetic piercing diapirs. The progression from simple thrust-fold structure on the foldbelt periphery to complex in the interior provides a viable kinematic model for this and other contractional salt provinces. One feature of this model is a single massive triangle zone structure (passive roof duplex) that may envelop the entire 200-km width of the foldbelt and underlie an area exceeding 52,000 km{sup 2}.« less
Origin of marls from the Polish Outer Carpathians: lithological and sedimentological aspects
NASA Astrophysics Data System (ADS)
Górniak, Katarzyna
2012-10-01
Outcrops of marls, occurring within the sandstone-shaly flysch deposits of the Polish part of Outer Carpathians, considered to be
NASA Astrophysics Data System (ADS)
Raia, N. H.; Cooperdock, E. H. G.; Barnes, J.; Stockli, D. F.; Schwarzenbach, E. M.
2016-12-01
Serpentinized ultramafic rocks are commonly found in exhumed HP/LT subduction complexes, but their tectonic origins (i.e., setting of serpentinization) are difficult to decipher due to extensive alteration. Growing literature and geochemical datasets demonstrate that immobile elements (REE, HFSE) in serpentinites can retain magmatic signatures indicative of the tectonic setting of parent peridotite, while fluid-mobile elements and stable isotopic signatures shed light on the fluids causing serpentinization. This study combines whole-rock trace and major element geochemistry, stable isotope (δD and δO) analyses with petrographic observation to determine the tectonic origin of ultramafic rocks in the HP/LT Aegean subduction complex. The best-preserved HP rocks of the Cycladic Blueschist Unit (CBU) are found on Syros, Greece, where serpentinized ultramafic rocks within the CBU are closely associated with metamorphosed remnants of subducted oceanic crust. All samples are completely serpentinized, lacking relict pyroxene or spinel grains, with typical assemblages consisting of serpentine, talc, chlorite, magnetite, and minor carbonate. The serpentinizing fluid was characterized using stable isotopes. δD and δO values of bulk-rock serpentinite powders and chips, respectively, suggest seafloor serpentinites hydrated by seawater at low T, typical of alteration at mid-ocean ridges and hyper-extended margins (δD = -64 to -33‰ and δO = 5.2 to 9.0‰). To fingerprint a tectonic origin, whole rock serpentinite REE patterns are compared to a global database of whole rock serpentinite analyses from fore-arc mantle wedge, mid-ocean ridge, and hyper-extended margin tectonic settings. Whole rock major element, trace element, and REE analyses are consistent with limited melt extraction, flat REE patterns (LaN/SmN = 0.2-2.6, SmN/YbN = 0.3-3.5; N= C1 normalized), and do not show pronounced Eu anomalies. These data are consistent with abyssal peridotites derived from hyper-extended margin settings, although some overlap with mid-ocean ridge serpentinites makes it difficult to rule out. In any case, the geochemical signatures retained in these serpentinites indicate they are unlikely sourced from the mantle wedge, as has been historically speculated.
NASA Astrophysics Data System (ADS)
Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand
2017-10-01
Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.
NASA Astrophysics Data System (ADS)
Jalali, Mohammad; Ramazi, Hamidreza
2018-04-01
This article is devoted to application of a simulation algorithm based on geostatistical methods to compile and update seismotectonic provinces in which Iran has been chosen as a case study. Traditionally, tectonic maps together with seismological data and information (e.g., earthquake catalogues, earthquake mechanism, and microseismic data) have been used to update seismotectonic provinces. In many cases, incomplete earthquake catalogues are one of the important challenges in this procedure. To overcome this problem, a geostatistical simulation algorithm, turning band simulation, TBSIM, was applied to make a synthetic data to improve incomplete earthquake catalogues. Then, the synthetic data was added to the traditional information to study the seismicity homogeneity and classify the areas according to tectonic and seismic properties to update seismotectonic provinces. In this paper, (i) different magnitude types in the studied catalogues have been homogenized to moment magnitude (Mw), and earthquake declustering was then carried out to remove aftershocks and foreshocks; (ii) time normalization method was introduced to decrease the uncertainty in a temporal domain prior to start the simulation procedure; (iii) variography has been carried out in each subregion to study spatial regressions (e.g., west-southwestern area showed a spatial regression from 0.4 to 1.4 decimal degrees; the maximum range identified in the azimuth of 135 ± 10); (iv) TBSIM algorithm was then applied to make simulated events which gave rise to make 68,800 synthetic events according to the spatial regression found in several directions; (v) simulated events (i.e., magnitudes) were classified based on their intensity in ArcGIS packages and homogenous seismic zones have been determined. Finally, according to the synthetic data, tectonic features, and actual earthquake catalogues, 17 seismotectonic provinces were introduced in four major classes introduced as very high, high, moderate, and low seismic potential provinces. Seismotectonic properties of very high seismic potential provinces have been also presented.
Continental Extensional Tectonics in the Basins and Ranges and Aegean Regions: A Review
NASA Astrophysics Data System (ADS)
Cemen, I.
2017-12-01
The Basins and Ranges of North America and the Aegean Region of Eastern Europe and Asia Minor have been long considered as the two best developed examples of continental extension. The two regions contain well-developed normal faults which were considered almost vertical in the 1950s and 1960s. By the mid 1980s, however, overwhelming field evidence emerged to conclude that the dip angle normal faults in the two regions may range from almost vertical to almost horizontal. This led to the discovery that high-grade metamorphic rocks could be brought to surface by the exhumation of mid-crustal rocks along major low-angle normal faults (detachment faults) which were previously either mapped as thrust faults or unconformity. Within the last three decades, our understanding of continental extensional tectonics in the Basins and Ranges and the Aegean Region have improved substantially based on fieldwork, geochemical analysis, analog and computer modeling, detailed radiometric age determinations and thermokinematic modelling. It is now widely accepted that a) Basin and Range extension is controlled by the movement along the San Andreas fault zone as the North American plate moved southeastward with respect to the northwestward movement of the Pacific plate; b) Aegean extension is controlled by subduction roll-back associated with the Hellenic subduction zone; and c) the two regions contain best examples of detachment faulting, extensional folding, and extensional basins. However, there are still many important questions of continental extensional tectonics in the two regions that remain poorly understood. These include determining a) precise amount and percentage of cumulative extension; b) role of strike-slip faulting in the extensional processes; c) exhumation history along detachment surfaces using multimethod geochronology; d) geometry and nature of extensional features in the middle and lower crust; e) the nature of upper mantle and asthenospheric flow; f) evolutions of sedimentary basins associated with dip-slip and strike-slip faults; g) seismic hazards; and i) economic significance of extensional basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, S.C.
1979-04-10
The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement ofmore » the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers.« less
Fink, Jonathan H.; Anderson, Steven W.
2017-07-19
This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.
NASA Astrophysics Data System (ADS)
Lu, Haijian; Fu, Bihong; Shi, Pilong; Xue, Guoliang; Li, Haibing
2018-05-01
Constraints on the timing and style of the Tibetan Plateau growth help spur new understanding of the tectonic evolution of the northern Tibetan Plateau and its relation to the India-Asia continental collision. In this regard, records of tectonic deformation with accurate ages are urgently needed, especially in regions without relevant studies. The Kumkol basin, located between two major intermontane basins (the Hoh Xil and Qaidam basins), may hold clues to how these major basins evolve during the Cenozoic. However, little has been known about the exact ages of the strata and tectonic deformation of the basin. Herein, detailed paleomagnetic and structural studies are conducted on the southern Baiquanhe section in the central Kumkol basin, northern Tibetan Plateau. The magnetostratigraphic study indicates that the southern Baiquanhe section spans a time interval of 8.2-4.2 Ma. Well-preserved growth strata date to 7.5 Ma, providing evidence for a significant thrust fault-related folding. This thrust-related folding has also been identified in the Tian Shan foreland and in the northern Tibetan Plateau, most likely implying a pulsed basinward deformation during the late Miocene.
Tethys and the evolution in Afghanistan: tectonics and mineral resources
NASA Astrophysics Data System (ADS)
Okaya, N.; Onishi, C. T.; Mooney, W. D.
2009-12-01
The tectonic history and mineral resources of Afghanistan are related to the closing of the Paleo-Tethys Ocean and the opening of the Neo-Tethys Ocean. As part of this process, oceanic sediments and continental fragments were accreted onto northern Afghanistan during the Mesozoic Cimmerian orogeny. Deposits in the Paleo-Tethys Ocean iare presently represented by a thick sequence of Paleozoic sedimentary rocks within the Tajik/Turan block, part of the Eurasian continent in northern Afghanistan. The accreted micro-continents of the Cimmerian orogeny include: (1) the Farah block, (2) the Helmand block and (3) the exotic Kabul block. Later, during the Cretaceous, the East Nuristan island arc and the intra-oceanic island arc of Kohistan were sutured. Major faults in Afghanistan include: (1) the Herat fault, an E-W suture zone between the Eurasia continent and the terrains of the Cimmerian orogeny; (2) the N-S Punjao suture located between the Farah and Helmand blocks; and (3) the NE-SW oriented Chaman fault, part of a transpressional plate boundary located near the border with Pakistan. Such a complex blend of geology and tectonics gives host to abundant mineral resources. We summarize the tectonic evolution of Afghanistan in a series of lithospheric cross-sections, beginning at about 400 Ma., and identify the mineral resources in the context of the regional tectonics.
Biodiversity and Topographic Complexity: Modern and Geohistorical Perspectives.
Badgley, Catherine; Smiley, Tara M; Terry, Rebecca; Davis, Edward B; DeSantis, Larisa R G; Fox, David L; Hopkins, Samantha S B; Jezkova, Tereza; Matocq, Marjorie D; Matzke, Nick; McGuire, Jenny L; Mulch, Andreas; Riddle, Brett R; Roth, V Louise; Samuels, Joshua X; Strömberg, Caroline A E; Yanites, Brian J
2017-03-01
Topographically complex regions on land and in the oceans feature hotspots of biodiversity that reflect geological influences on ecological and evolutionary processes. Over geologic time, topographic diversity gradients wax and wane over millions of years, tracking tectonic or climatic history. Topographic diversity gradients from the present day and the past can result from the generation of species by vicariance or from the accumulation of species from dispersal into a region with strong environmental gradients. Biological and geological approaches must be integrated to test alternative models of diversification along topographic gradients. Reciprocal illumination among phylogenetic, phylogeographic, ecological, paleontological, tectonic, and climatic perspectives is an emerging frontier of biogeographic research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Models of convection-driven tectonic plates - A comparison of methods and results
NASA Technical Reports Server (NTRS)
King, Scott D.; Gable, Carl W.; Weinstein, Stuart A.
1992-01-01
Recent numerical studies of convection in the earth's mantle have included various features of plate tectonics. This paper describes three methods of modeling plates: through material properties, through force balance, and through a thin power-law sheet approximation. The results obtained are compared using each method on a series of simple calculations. From these results, scaling relations between the different parameterizations are developed. While each method produces different degrees of deformation within the surface plate, the surface heat flux and average plate velocity agree to within a few percent. The main results are not dependent upon the plate modeling method and herefore are representative of the physical system modeled.
Beaumont, C; Jamieson, R A; Nguyen, M H; Lee, B
2001-12-13
Recent interpretations of Himalayan-Tibetan tectonics have proposed that channel flow in the middle to lower crust can explain outward growth of the Tibetan plateau, and that ductile extrusion of high-grade metamorphic rocks between coeval normal- and thrust-sense shear zones can explain exhumation of the Greater Himalayan sequence. Here we use coupled thermal-mechanical numerical models to show that these two processes-channel flow and ductile extrusion-may be dynamically linked through the effects of surface denudation focused at the edge of a plateau that is underlain by low-viscosity material. Our models provide an internally self-consistent explanation for many observed features of the Himalayan-Tibetan system.
Rheology, tectonics, and the structure of the Venus lithosphere
NASA Technical Reports Server (NTRS)
Zuber, M. T.
1994-01-01
Given the absence of ground truth information on seismic structure, heat flow, and rock strength, or short wavelength gravity or magnetic data for Venus, information on the thermal, mechanical and compositional nature of the shallow interior must be obtained by indirect methods. Using pre-Magellan data, theoretical models constrained by the depths of impact craters and the length scales of tectonic features yielded estimates on the thickness of Venus' brittle-elastic lithosphere and the allowable range of crustal thickness and surface thermal gradient. The purpose of this study is to revisit the question of the shallow structure of Venus based on Magellan observations of the surface and recent experiments that address Venus' crustal rheology.
ERIC Educational Resources Information Center
Blueford, J. R.; And Others
A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…
Global evaluation of erosion rates in relation to tectonics
NASA Astrophysics Data System (ADS)
Hecht, Hagar; Oguchi, Takashi
2017-12-01
Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (< 0.68 g) and short distance (< 94.34 km) are almost inexistent suggesting a strong coupling between PGA and distance to tectonic plate boundary. Groups with low erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.
NASA Astrophysics Data System (ADS)
Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed
2015-06-01
We compiled 123 focal mechanisms from various sources for Tunisia and adjacent regions up to Sicily, to image the current stress field in the Maghrebides chain (from Tunisia to Sicily) and its foreland. Stress inversion of all the available data provides a first-order stress field with a N150°E horizontal compression (SHmax) and a transpressional tectonic regime, but the obtained stress tensor poorly fit to the data set. We separated them into regional subsets (boxes) in function of their geographical proximity, kinematic regime, homogeneity of kinematic orientations, and tectonic setting. Their respective inversion evidences second- and third-order spatial variations in tectonic regime and horizontal stress directions. The stress field gradually changes from compression in the Maghrebides thrust belt to transpression and strike slip in the Atlassic and Pelagian foreland, respectively, where preexisting NW-SE to E-W deep faults system are reactivated. This spatial variation of the sismotectonic stress field and tectonic regime is consistent with the neotectonic stress field determined by others from fault slip data. The major Slab Transfer Edge Propagator faults (i.e., North-South Axis-Hammamet relay and Malte Escarpment), which laterally delimit the subducting slabs, play an active role in second- and third-order lateral variations of the tectonic regime and stress field orientations over the Tunisian/Sicilian domain. The past and current tectonic deformations and kinematics of the central Mediterranean are subordinately guided by the plate convergence (i.e., Africa-Eurasia), controlled or influenced by lateral slab migration/segmentation and by deep dynamics such as lithosphere-mantle interaction.
Robinove, Charles J.
1970-01-01
The earth resources observation satellite (EROS) program in the Department of the Interior is intended to gather and use data from satellites and aircraft on natural and man-made features of the earth's surface. Earth resources technology satellite will provide the EROS program with data for use in dealing with natural resource problems and understanding the interaction between man and the environment. Applications will include studies of tectonic features, hydrologic problems, location of fish schools, determination of the conditions of range land, mapping land use for urban planning, studies of erosion and change along coastlines and major streams, and inventories of land use and land forms. In addition, the ERTS data may be used for detecting forest and crop diseases and inventorying crops. The ERTS satellite will be in a polar, sun-synchronous orbit so that each point on the earth's surface will be sensed every 17 to 20 days, at the same time of day. Multispectral photography is being investigated for its usefulness in hydrology. Side-looking airborne radar has not yet been widely used in hydrologic studies, although it is an excellent tool for all-weather, day or night, coverage of large areas. Other techniques being investigated include passive microwave radiometry, ultraviolet and visible stimulated luminescence, and absorption spectroscopy.
NASA Astrophysics Data System (ADS)
De Guidi, Giorgio; Caputo, Riccardo; Scudero, Salvatore; Perdicaro, Vincenzo
2013-04-01
An intense tectonic activity in eastern Sicily and southern Calabria is well documented by the differential uplift of Late Quaternary coastlines and by the record of the strong historical earthquakes. The extensional belt that crosses this area is dominated by a well established WNW-ESE-oriented extensional direction. However, this area is largely lacking of any structural analysis able to define the tectonics at a more local scale. In the attempt to fill this gap of knowledge, we carried out a systematic analysis of extension joint sets. In fact, the systematic field collection of these extensional features, coupled with an appropriate inversion technique, allows to determine the characteristic of the causative tectonic stress field. Joints are defined as outcrop-scale mechanical discontinuities showing no evidence of shear motion and being originated as purely extensional fractures. Such tectonic features are one of the most common deformational structures in every tectonic environment and particularly abundant in the study area. A particular arrangement of joints, called "fracture grid-lock system", and defined as an orthogonal joint system where mutual abutting and crosscutting relationships characterize two geologically coeval joint sets, allow to infer the direction and the magnitude of the tectonic stress field. We performed the analyses of joints only on Pleistocene deposits of Eastern Sicily and Southern Calabria. Moreover we investigated only calcarenite sediments and cemented deposits, avoiding claysh and loose matrix-supported clastic sediments where the deformation is generally accomodated in a distributed way through the relative motion between the single particles. In the selection of the sites, we also took into account the possibility to clearly observe the geometric relationships among the joints. For this reason we chose curvilinear road cuts or cliffs, wide coastal erosional surfaces and quarries. The numerical inversions show a similar stress tensors at all the investigated sites. Indeed, the maximum principal stress axis σ1 is vertical or subvertical, while the intermediate and the least axes (σ2 and σ3) lie on the horizontal plane or show low plunging values. The main direction of extension (σ3) at each site is in general agreement with the first-order regional stress field (WNW-ESE) even though some local perturbations have been recognized. These are interpreted as due to interferences between large active faults and their particular geometrical arrangement. In particular local stress deflections and stress swaps systematically occur in zones characterized by two overlapping fault segments or close to their tips.
Stress field during early magmatism in the Ali Sabieh Dome, Djibouti, SE Afar rift
NASA Astrophysics Data System (ADS)
Sue, Christian; Le Gall, Bernard; Daoud, Ahmed Mohamed
2014-09-01
The so-called Ali Sabieh range, SE Afar rift, exhibits an atypical antiform structure occurring in the overall extensional tectonic context of the Afar triple junction. We dynamically analyzed the brittle deformation of this specific structural high using four different methods in order to better constrain the tectonic evolution of this key-area in the Afar depression. Paleostress inversions appear highly consistent using the four methods, which a posteriori validates this approach. Computed paleostress fields document two major signals: an early E-W extensional field, and a later transcurrent field, kinematically consistent with the previous one. The Ali Sabieh range may have evolved continuously during Oligo-Miocene times from large-scale extensional to transcurrent tectonism, as the result of probable local stress permutation between σ1 and σ2 stress axes.
The evolution of volcanism, tectonics, and volatiles on Mars - An overview of recent progress
NASA Technical Reports Server (NTRS)
Zimbelman, James R.; Solomon, Sean C.; Sharpton, Virgil L.
1991-01-01
Significant results of the 'Mars: Evolution of Volcanism, Tectonics, and Volatiles' (MEVTV) project are presented. The data for the project are based on geological mapping from the Viking images, petrologic and chemical analyses of SNC meteorites, and both mapping and temporal grouping of major fault systems. The origin of the planet's crustal dichotomy is examined in detail, the kinematics and formation of wrinkle ridges are discussed, and some new theories are set forth. Because the SNC meteorites vary petrologically and isotopically, the sources of the parental Martian magma are heterogeneous. Transcurrent faulting coupled with the extensional strains that form Valles Marineris suggest early horizontal movement of lithospheric blocks. A theory which connects the formation of the crustal dichotomy to the Tharsis region associates the horizontal motions with plate tectonics that generated a new lithosphere.
John F. Dewey—Tectonics Editor
NASA Astrophysics Data System (ADS)
Richman, Barbara T.
‘I want the journal to acquire a reputation for very rapid, fair, and accurate reviewing,’ asserted John F. Dewey, editor-in-chief of AGU's newest journal, Tectonics. Dewey said that he will rule the bimonthly, which will begin publication in February, ‘with a bit of a rod of iron’ to ensure that Tectonics is ‘where only original and important papers are published.’‘I'm going to be very strict with reviewers,’ Dewey explained in his quick British clip. ‘If the review does not come back to me within 10 days to 2 weeks, I'll review the paper myself. I'm also going to have a system whereby, if a paper needs major surgery after being refereed, it will be rejected. Papers will have to be in virtually publishable condition before they are first submitted,’ he said.
MANTLE CONVECTION, PLATE TECTONICS, AND VOLCANISM ON HOT EXO-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Summeren, Joost; Conrad, Clinton P.; Gaidos, Eric, E-mail: summeren@hawaii.edu
Recently discovered exoplanets on close-in orbits should have surface temperatures of hundreds to thousands of Kelvin. They are likely tidally locked and synchronously rotating around their parent stars and, if an atmosphere is absent, have surface temperature contrasts of many hundreds to thousands of Kelvin between permanent day and night sides. We investigated the effect of elevated surface temperature and strong surface temperature contrasts for Earth-mass planets on the (1) pattern of mantle convection, (2) tectonic regime, and (3) rate and distribution of partial melting, using numerical simulations of mantle convection with a composite viscous/pseudo-plastic rheology. Our simulations indicate thatmore » if a close-in rocky exoplanet lacks an atmosphere to redistribute heat, a {approx}>400 K surface temperature contrast can maintain an asymmetric degree 1 pattern of mantle convection in which the surface of the planet moves preferentially toward subduction zones on the cold night side. The planetary surface features a hemispheric dichotomy, with plate-like tectonics on the night side and a continuously evolving mobile lid on the day side with diffuse surface deformation and vigorous volcanism. If volcanic outgassing establishes an atmosphere and redistributes heat, plate tectonics is globally replaced by diffuse surface deformation and volcanism accelerates and becomes distributed more uniformly across the planetary surface.« less
Barry, T L; Davies, J H; Wolstencroft, M; Millar, I L; Zhao, Z; Jian, P; Safonova, I; Price, M
2017-05-12
The evolution of the planetary interior during plate tectonics is controlled by slow convection within the mantle. Global-scale geochemical differences across the upper mantle are known, but how they are preserved during convection has not been adequately explained. We demonstrate that the geographic patterns of chemical variations around the Earth's mantle endure as a direct result of whole-mantle convection within largely isolated cells defined by subducting plates. New 3D spherical numerical models embedded with the latest geological paleo-tectonic reconstructions and ground-truthed with new Hf-Nd isotope data, suggest that uppermost mantle at one location (e.g. under Indian Ocean) circulates down to the core-mantle boundary (CMB), but returns within ≥100 Myrs via large-scale convection to its approximate starting location. Modelled tracers pool at the CMB but do not disperse ubiquitously around it. Similarly, mantle beneath the Pacific does not spread to surrounding regions of the planet. The models fit global patterns of isotope data and may explain features such as the DUPAL anomaly and long-standing differences between Indian and Pacific Ocean crust. Indeed, the geochemical data suggests this mode of convection could have influenced the evolution of mantle composition since 550 Ma and potentially since the onset of plate tectonics.
NASA Astrophysics Data System (ADS)
Nair, Nisha; Pandey, Dhananjai K.
2018-02-01
Interpretation of multichannel seismic reflection data along the Mumbai Offshore Basin (MOB) revealed the tectonic processes that led to the development of sedimentary basins during Cenozoic evolution. Structural interpretation along three selected MCS profiles from MOB revealed seven major sedimentary sequences (∼3.0 s TWT, thick) and the associated complex fault patterns. These stratigraphic sequences are interpreted to host detritus of syn- to post rift events during rift-drift process. The acoustic basement appeared to be faulted with interspaced intrusive bodies. The sections also depicted the presence of slumping of sediments, subsidence, marginal basins, rollover anticlines, mud diapirs etc accompanied by normal to thrust faults related to recent tectonics. Presence of upthrusts in the slope region marks the locations of local compression during collision. Forward gravity modeling constrained with results from seismic and drill results, revealed that the crustal structure beneath the MOB has undergone an extensional type tectonics intruded with intrusive bodies. Results from the seismo-gravity modeling in association with litholog data from drilled wells from the western continental margin of India (WCMI) are presented here.
Lunar seismicity and tectonics
NASA Technical Reports Server (NTRS)
Lammlein, D. R.
1977-01-01
Results are presented for an analysis of all moonquake data obtained by the Apollo seismic stations during the period from November 1969 to May 1974 and a preliminary analysis of critical data obtained in the interval from May 1974 to May 1975. More accurate locations are found for previously located moonquakes, and additional sources are located. Consideration is given to the sources of natural seismic signals, lunar seismic activity, moonquake periodicities, tidal periodicities in moonquake activity, hypocentral locations and occurrence characteristics of deep and shallow moonquakes, lunar tidal control over moonquakes, lunar tectonism, the locations of moonquake belts, and the dynamics of the lunar interior. It is concluded that: (1) moonquakes are distributed in several major belts of global extent that coincide with regions of the youngest and most intense volcanic and tectonic activity; (2) lunar tides control both the small quakes occurring at great depth and the larger quakes occurring near the surface; (3) the moon has a much thicker lithosphere than earth; (4) a single tectonic mechanism may account for all lunar seismic activity; and (5) lunar tidal stresses are an efficient triggering mechanism for moonquakes.
Collisional Tectonics in the St. Elias Orogen, Alaska Observed by GPS
NASA Astrophysics Data System (ADS)
Elliott, J.; Freymueller, J. T.; Larsen, C. F.
2008-12-01
The rugged topography of the St. Elias orogen of southern Alaska and the adjacent region of Canada is the result of the on-going collision of the Yakutat block with southern Alaska. Nearly 45 mm/yr of NW-SE directed convergence from the collision is currently accommodated within the St. Elias orogen. A key to understanding this complex collisional boundary is knowing the locations of the structures taking up the convergence. GPS provides a snapshot of the present-day strain field and helps to delineate active structures. As part of the St. Elias Erosion/Tectonics Project (STEEP), we re-surveyed 70 campaign GPS sites across the St. Elias orogen during the summer of 2008. Strain rates derived from our GPS data highlight several areas within the St. Elias orogen. The highest strain rates occur across Icy Bay and the western edge of the Malaspina Glacier. Rates there approach -1 microstrain/yr, a value higher than that observed in the Himalaya. Lower, but still significant, strain rates of about -0.2 microstrain/yr extend north from Icy Bay to the region surrounding Mt. St. Elias. The second major focus of compressive strain in the orogen is centered over the Yakataga fold-and-thrust belt. Strain rates there are in the range of -0.40 to -0.50 microstrain/yr. Little significant strain is seen across the Bagley icefield or to the north of that feature. These results suggest that most of the convergence across the St. Elias orogen is currently accommodated on structures located south of the Bagely icefield, specifically in the Icy Bay, upper Malaspina/Mt. St. Elias, and Yakataga fold-and-thrust belt regions. We use block modeling techniques to describe the tectonic elements of the St. Elias orogen and connect them with the tectonic regime in southeast Alaska. Our preliminary results indicate that a single thrust fault through Icy Bay cannot explain the data there; multiple NW and N directed thrust faults through Icy Bay, along the western edge of the Malaspina Glacier, and between Icy Bay and Mt. St. Elias are required. Over half of the relative convergence between the Yakutat block and southern Alaska may be accommodated by elastic strain accumulation on these faults.
Seafloor spreading on the Amsterdam-St. Paul hotspot plateau
NASA Astrophysics Data System (ADS)
Conder, James A.; Scheirer, Daniel S.; Forsyth, Donald W.
2000-04-01
The Amsterdam-St. Paul (ASP) platform on the intermediate rate Southeast Indian Ridge (SEIR) is the only oceanic hotspot plateau outside the Atlantic Ocean containing an active, mid-ocean ridge spreading axis. Because the ASP hotspot is small and remotely located, it has been relatively unstudied, and the ridge axis location in many places near the ASP plateau was previously unknown or ambiguous. We mapped the SEIR out to 1 Ma crust (Jaramillo anomaly) both on and near the ASP platform. We located the spreading center to within a few kilometers, based on side-scan sonar reflectivity. Recent off-platform magnetic anomalies and lineated abyssal hill topography are consistent with a simple spreading history. Off-platform full spreading rates increase from ˜63 km/Myr on segment H to the north of the platform to ˜65.5 km/Myr on segment K to the south. In contrast, inversions of seafloor magnetization based on uniform and variable thickness magnetic source layers reflect a complex on-platform tectonic history with ridge jumps, off-axis volcanism, and propagating rifts. On one section of the ASP plateau the spreading location has stabilized and is beginning to rift the plateau apart, generating symmetric magnetic anomalies and lineated topography for the last several hundred thousand years. The larger, more stable, spreading segments of the ASP platform are aligned with major volcanic edifices, suggesting that along-axis magma flow away from plume-fed centers is an important influence on spreading geometry. Many complex tectonic features observed on the ASP plateau, such as ridge jumps, en echelon, oblique spreading centers, and transforms oblique to the spreading direction, are comparable to features observed on Iceland. The similarities suggest that moderate crustal thickening at an intermediate rate spreading center may have similar effects to pronounced thickening at a slow rate spreading center.
Distribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.
Disribution and interplay of geologic processes on Titan from Cassini radar data
Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.
2010-01-01
The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.
View of portion of South Island, New Zealand as seen from Skylab
1973-12-22
SL4-137-3700 (22 Dec. 1973) --- A near vertical view of a portion of South Island, New Zealand, as see from the Skylab space station in Earth orbit. This picture was taken by one of the Skylab 4 crew members with a handheld 70mm Hasselblad camera using a 100mm lens. The picture should be held with the largest body of water (Tasman Sea) on the left. Cape Foulwind is at the upper left. The City of Christchurch is under clouds at the center right margin. Note the movement of sediment by alongshore currents, especially on the east (right) side of the island. The Alpine Fault, which is part of the circum-Pacific volcanic-tectonic belt, is clearly visible on the left (west) side of the island. The fault line is marked by a scarp, which appears very distinct from orbital altitude. Differences in topography and vegetation on either side of the fault are also sharp. Streams change direction at the fault line, and the change in slope at the fault line is evident in the widening of stream channels. The left side of the fault has moved northeast (upward) relative to the right side; some stream offsets indicate the direction of relative movement, but others are controlled by local topography. The Alpine Fault, which also transects New Zealand's North Island, was photographed and described more than a dozen times by the Skylab 4 crewmen. The circum-Pacific volcanic-tectonic belt is a feature of the Earth's crust which is related to sea floor spreading and continental drift. Though the Alpine Fault is sharply delineated in this photograph, other major crustal features are subtle that their existence was unknown before their observation from orbit. The distance from top to bottom is about 290 kilometers (175 miles). Photo credit: NASA
Study on 3-D velocity structure of crust and upper mantle in Sichuan-yunnan region, China
Wang, C.; Mooney, W.D.; Wang, X.; Wu, J.; Lou, H.; Wang, F.
2002-01-01
Based on the first arrival P and S data of 4 625 regional earthquakes recorded at 174 stations dispersed in the Yunnan and Sichuan Provinces, the 3-D velocity structure of crust and upper mantle in the region is determined, incorporating with previous deep geophysical data. In the upper crust, a positive anomaly velocity zone exists in the Sichuan basin, whereas a negative anomaly velocity zone exists in the western Sichuan plateau. The boundary between the positive and negative anomaly zones is the Longmenshan fault zone. The images of lower crust and upper mantle in the Longmenshan fault, Xianshuihe fault, Honghe fault and others appear the characteristic of tectonic boundary, indicating that the faults litely penetrate the Moho discontinuity. The negative velocity anomalies at the depth of 50 km in the Tengchong volcanic area and the Panxi tectonic zone appear to be associated with the temperature and composition variations in the upper mantle. The overall features of the crustal and the upper mantle structures in the Sichuan-Yunnan region are the lower average velocity in both crust and uppermost mantle, the large crustal thickness variations, and the existence of high conductivity layer in the crust or/and upper mantle, and higher geothermal value. All these features are closely related to the collision between the Indian and the Asian plates. The crustal velocity in the Sichuan-Yunnan rhombic block generally shows normal.value or positive anomaly, while the negative anomaly exists in the area along the large strike-slip faults as the block boundary. It is conducive to the crustal block side-pressing out along the faults. In the major seismic zones, the seismicity is relative to the negative anomaly velocity. Most strong earthquakes occurred in the upper-mid crust with positive anomaly or normal velocity, where the negative anomaly zone generally exists below.
Geologic analysis and evaluation of ERTS-A imagery for the State of New Mexico
NASA Technical Reports Server (NTRS)
Kottlowski, F. E. (Principal Investigator)
1974-01-01
The author has identified the following significant results. Many circular to elliptical features have been identified on the ERTS-1 images, only some of which can be accounted for by existing data. A small number of circular features are adjacent to existing ore deposits, but such relationships should not be emphasized unless other supporting data exists. Circular features may be tectonically or geomorphically controlled, or a combination of the two. A limited number are man-made. A preliminary listing of features which may have circular expression are listed. Photographic examples of identified and unidentified circular features will be included in the final report along with a thorough discussion and analysis. Comparisons will be made with existing gravity and magnetic data.
Long-lived volcanism within Argyre basin, Mars
NASA Astrophysics Data System (ADS)
Williams, Jean-Pierre; Dohm, James M.; Soare, Richard J.; Flahaut, Jessica; Lopes, Rosaly M. C.; Pathare, Asmin V.; Fairén, Alberto G.; Schulze-Makuch, Dirk; Buczkowski, Debra L.
2017-09-01
The Argyre basin, one of the largest impact structures on Mars with a diameter >1200 km, formed in the Early Noachian ∼3.93 Ga. The basin has collected volatiles and other material through time, and experienced partial infilling with water evident from stratigraphic sequences, crater statistics, topography, and geomorphology. Although volcanism has not been previously associated with the Argyre basin, our study of the northwest portion of the basin floor has revealed landforms suggesting volcanic and tectonic activity occurred including Argyre Mons, a ∼50 km wide volcanic-structure formed ∼3 Ga. Giant polygons with a similar surface age are also identified on terrain adjacent to the base of Argyre Mons, indicating the structure may have formed in a water-rich environment. In addition to Argyre Mons, cones, vents, mounds, dikes, and cavi or hollows, many of which are associated with extensional tectonics, are observed in the region. Multiple features appear to disrupt icy (and largely uncratered) terrain indicating a relatively young, Late Amazonian, formation age for at least some of the volcanic and tectonic features. The discovery of Argyre Mons, along with additional endogenic modification of the basin floor, suggests that the region has experienced episodes of volcanism over a protracted period of time. This has implications for habitability as the basin floor has been a region of elevated heat flow coupled with liquid water, water ice, and accumulation of sediments of diverse provenance with ranging geochemistry, along with magma-water interactions.
Quantitative study of tectonic geomorphology along Haiyuan fault based on airborne LiDAR
Chen, Tao; Zhang, Pei Zhen; Liu, Jing; Li, Chuan You; Ren, Zhi Kun; Hudnut, Kenneth W.
2014-01-01
High-precision and high-resolution topography are the fundamental data for active fault research. Light detection and ranging (LiDAR) presents a new approach to build detailed digital elevation models effectively. We take the Haiyuan fault in Gansu Province as an example of how LiDAR data may be used to improve the study of active faults and the risk assessment of related hazards. In the eastern segment of the Haiyuan fault, the Shaomayin site has been comprehensively investigated in previous research because of its exemplary tectonic topographic features. Based on unprecedented LiDAR data, the horizontal and vertical coseismic offsets at the Shaomayin site are described. The measured horizontal value is about 8.6 m, and the vertical value is about 0.8 m. Using prior dating ages sampled from the same location, we estimate the horizontal slip rate as 4.0 ± 1.0 mm/a with high confidence and define that the lower bound of the vertical slip rate is 0.4 ± 0.1 mm/a since the Holocene. LiDAR data can repeat the measurements of field work on quantifying offsets of tectonic landform features quite well. The offset landforms are visualized on an office computer workstation easily, and specialized software may be used to obtain displacement quantitatively. By combining precious chronological results, the fundamental link between fault activity and large earthquakes is better recognized, as well as the potential risk for future earthquake hazards.
Ridge-trench collision in Archean and Post-Archean crustal growth: Evidence from southern Chile
NASA Technical Reports Server (NTRS)
Nelson, E. P.; Forsythe, R. D.
1988-01-01
The growth of continental crust at convergent plate margins involves both continuous and episodic processes. Ridge-trench collision is one episodic process that can cause significant magmatic and tectonic effects on convergent plate margins. Because the sites of ridge collision (ridge-trench triple junctions) generally migrate along convergent plate boundaries, the effects of ridge collision will be highly diachronous in Andean-type orogenic belts and may not be adequately recognized in the geologic record. The Chile margin triple junction (CMTJ, 46 deg S), where the actively spreading Chile rise is colliding with the sediment-filled Peru-Chile trench, is geometrically and kinematically the simplest modern example of ridge collision. The south Chile margin illustrates the importance of the ridge-collision tectonic setting in crustal evolution at convergent margins. Similarities between ridge-collision features in southern Chile and features of Archean greenstone belts raise the question of the importance of ridge collision in Archean crustal growth. Archean plate tectonic processes were probably different than today; these differences may have affected the nature and importance of ridge collision during Archean crustal growth. In conclusion, it is suggested that smaller plates, greater ridge length, and/or faster spreading all point to the likelihood that ridge collision played a greater role in crustal growth and development of the greenstone-granite terranes during the Archean. However, the effects of modern ridge collision, and the processes involved, are not well enough known to develop specific models for the Archean ridge collison.
NASA Astrophysics Data System (ADS)
Ferrini, G.; Moretti, A.; De Rose, C.; Stagnini, E.,; Serafini, M.
2012-04-01
Intermountain basins, developed at the back side of the Apennines overturning front, are the most evident morphological expressions of extensional tectonics in Central Italy and can be recognized in many different sections of the chain. L'Aquila basin and the adjoining Subequana valley are part of a single NW-SE elongated depression (about 60 km long) which began to develop about in the early Quaternary in response to the identification of various regional extensional tectonic alignments and the consequent starting of the basin subsidence. This impressive morphological element is characterized by the presence of several large funnel-shaped features (locally named Fosse = trench) which affect mainly the Meso-Cenozoic carbonatic bedrock but also the Neogenic clastic sedimentary filling of the valley. Some of these last elements are often occupied by ponds or significant artesian water resurgences like the Sinizzo Lake where, during L'Aquila earthquake of April 6th 2009, the shores collapsed and strong microseismic activity, deep rumbles and flow rate changes were reported for the following months. The Fosse mapped in the L'Aquila basin have widths in the order of hundreds of meters, a considerable difference of elevation respect the rims and present a general morphology very close to that of the classic dissolution karst sinkholes. Their evolution/localization is strictly related to the active fault systems which controls also the main tracts of the relief; the low volume of residual sedimentary deposits within the depression, not comparable with the total volume of rock removed, indicates that surface karst dissolution phenomena are absent or secondary. The elevations of the floor of many Fosse are higher respect the actual flood plain depending on their age; in fact relict circular forms, recognizable at upper altitude on the relief slope, confirm that the phenomenon has been active for a considerable period of time. About the genesis of this features, even if at present there is no evidence of hydrothermal activity or gas diffusion, morphological and geostructural analogy with the hydrothermal field of San Vittorino (Rieti) suggest dissolution processes related to the rising of underground mineralized fluids (piping) and a subsequent collapse phase, in a classic sink-hole evolutionary model. To note the areal distribution of these elements developed in a narrow band , WNW-ESE oriented, running for about 40 km parallel back to the tectonic front of the Gran Sasso and coinciding, with good approximation, to the seismogenic source of the earthquake of April 6th 2009 and of the major historical earthquakes which hit the region. Geophysical survey carried out after the last strong seismic event pointed out the presence of large hidden cavities developed in the Neogene sedimentary filling of the L'Aquila basin confirming that the phenomenon cannot be considered exhausted; then a geochemical mapping of the all area is started to identify suitable sites for monitoring fluid in relation to seismic activity and to evaluate the risk of potential, sudden phenomena of gravitational collapse.
The southern Tyrrhenian basin: is something changing in its kinematics?
NASA Astrophysics Data System (ADS)
Pondrelli, S.; Piromallo, C.
2003-04-01
The Tyrrhenian Sea is unanimously considered an extensional basin opened through trench retreat and back-arc extension during subduction of the Calabrian slab. This subduction is presently active only beneath the southeasternmost part the Tyrrhenian Sea, as testified by seismicity, occuring from crustal depths down to 400 km, along a well defined Wadati-Benioff zone. If we analyze seismicity distribution and earthquakes focal mechanisms available for the southern part of the basin, the present-day situation looks however quite different from the one inferred from the reconstructions of the most recent evolution of the Tyrrhenian domain. Shallow seismicity with magnitude M_w >= 4.5 (for which computation of the moment tensor is certainly feasible), exhibits a clear compressional deformation, active at least since the last 25 years, and is located immediately off-shore all along the northern coast of Sicily --- also the last northern Sicily sequence, started on September 6, 2002, with a M_L=5.6 event, belongs to this activity. Thrust shallow events are clearly confined to the west of the Aeolian Archipelago, while to the east shallow seismicity is more sparse and rare, and concentrated onland. On the contrary, deep and intermediate seismicity is substantially distributed east of the Aeolian Islands, while almost absent west of them. Moreover, historical seismicity reports strong earthquakes related to extensional faults all along the Calabrian Arc, as in the rest of the Apenninic chain. As a sharp boundary to this transition in seismicity characteristics we therefore identify the location of Aeolian volcanic islands. It is well known that this subduction-related island arc grew over pre-existing tectonic features, coeval and related to the opening of the Tyrrhenian basin itself, through which magmatic material found a way to rise and build up the archipelago. The most relevant of these structures is certainly the Tindari-Giardini fault system which, moving southward from the Aeolian Islands, cross-cuts the Patti Gulf, the Etna volcano and joins with the Malta Escarpment. We discuss here seismological data for the region surrounding this important tectonic feature, together with volcanological and tectonic evidences and new results from seismic tomography, to obtain a sketch of the present-day kinematics and to face an interpretation of dynamics. We propose that, after a long period of extension dominating the evolution of the Tyrrhenian basin, at present something is changing, starting from its southwestern boundary. Slab retreat is likely still occurring, confined to the east of the major tectonic discontinuity, the transcurrent Tindari-Giardini-Etna-Malta Escarpment lineament, where a narrow stripe of oceanic lithosphere is still present in the foreland. Contrarily, to the west of this structure, where oceanic lithosphere is totally consumed and the thick, buoyant African shelf prevents further subduction of continental lithosphere, the retreat process has come to an end and large-scale Africa-Europe plate convergence has probably regained over the internal dynamics of the system.
Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.
1998-01-01
This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.
NASA Astrophysics Data System (ADS)
Bastida, F.; Brime, C.; García-López, S.; Sarmiento, G. N.
The palaeotemperature distribution in the transition from diagenesis to metamorphism in the western nappes of the Cantabrian Zone (Somiedo, La Sobia and Aramo Units) are analysed by conodont colour alteration index (CAI) and illite crystallinity (IC). Structural and stratigraphic control in distribution of CAI and IC values is observed. Both CAI and IC value distributions show that anchizonal conditions are reached in the lower part of the Somiedo Unit. A disruption of the thermal trend by basal thrusts is evidenced by CAI and IC values. There is an apparent discrepancy between the IC and CAI values in Carboniferous rocks of the Aramo Unit; the IC has mainly anchizonal values, whereas the CAI has diagenetic values. Discrepant IC values are explained as a feature inherited from the source area. In the Carboniferous rocks of the La Sobia Unit, both IC and CAI indicate diagenetic conditions. The anchimetamorphism predated completion of emplacement of the major nappes; it probably developed previously and/or during the early stages of motion of the units. Temperature probably decreased when the metamorphosed zones of the sheets rose along ramps and were intensely eroded. In the context of the Iberian Variscan belt, influence of tectonic factors on the metamorphism is greater in the internal parts, where the strain and cleavage are always present, than in the external parts (Cantabrian Zone), where brittle deformation and rock translation are dominant, with an increasing role of the burial on the metamorphism.
NASA Astrophysics Data System (ADS)
Blecha, V.
A new Bouguer anomaly map of western part of southern Yemen margin has been compiled. Densities of rock samples from main geological units (Precambrian base- ment, Mesozoic sediments, Tertiary volcanites) have been measured and used for grav- ity modeling. Regional gravity map indicates decrease of thickness of continental crust from volcanites of the Yemen Trap Series towards the coast of the Gulf of Aden. Most remarkable feature in the map of residual anomalies is a positive anomaly over the Dhala graben. The Dhala graben is a prominent geological structure in the area of study trending parallel to the Red Sea axis. Gravity modeling on a profile across the Dhala graben presumes intrusive plutonic rocks beneath the graben. There are two other areas in the southwestern tip of Arabia, which have essentially the same struc- tural position as the Dhala graben: the Jabal Tirf volcanic rift zone in the southern Saudi Arabia and Jabal Hufash extensional zone in northern Yemen. All three areas extend along the line trending parallel to the Red Sea axis with length of about 500 km. The line coincides with the axis of Afar (Danakil) depression after Arabia is shifted and rotated back to Africa. These facts imply conclusion that the Oligocene - Early Miocene magmatic activity on the Jabal Tirf - Dhala lineament is related to the same original deep tectonic zone, forming present-day Afar depression and still active.
NASA Astrophysics Data System (ADS)
Liu, Zhi-Chao; Ding, Lin; Zhang, Li-Yun; Wang, Chao; Qiu, Zhi-Li; Wang, Jian-Gang; Shen, Xiao-Li; Deng, Xiao-Qin
2018-07-01
The Yeba Formation volcanic rocks in the Gangdese arc recorded important information regarding the early history of the Neo-Tethyan subduction. To explore their magmatic evolution and tectonic significance, we performed a systematic petrological, geochronological and geochemical study on these volcanic rocks. Our data indicated that the Yeba Formation documents a transition from andesite-dominated volcanism (which started before 182 Ma and continued until 176 Ma) to bimodal volcanism ( 174-168 Ma) in the earliest Middle Jurassic. The early-stage andesite-dominated volcanics are characterized by various features of major and trace elements and are interpreted as the products of interactions between mantle-derived arc magmas and lower crustal melts. Their positive εNd(t) and εHf(t) values suggest a significant contribution of asthenosphere-like mantle. The late-stage bimodal volcanism is dominated by felsic rocks with subordinate basalts. Geochemical signatures of the basalts indicate a composite magma source that included a "subduction component", an asthenosphere-like upper mantle domain and an ancient subcontinental lithospheric mantle component. The felsic rocks of the late stage were produced mainly by the melting of juvenile crust, with some ancient crustal materials also involved. We suggest that the occurrence and preservation of the Yeba Formation volcanic rocks were tied to a tectonic switch from contraction to extension in the Gangdese arc, which probably resulted from slab rollback of the subducting Neo-Tethyan oceanic slab during the Jurassic.
Tectonics and hydrocarbon potential of the Barents Megatrough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, D.; Vinogradov, A.; Yunov, A.
1991-08-01
Interpretation of geophysical data shows that the geological structure of the Eastern Barents Shelf, named Barents Megatrough (BM), extends sublongitudinally almost from the Baltic shield to the Franz Josef Land archipelago. The earth crust within the axis part of the BM is attenuated up to 28-30 km, whereas in adjacent areas its thickness exceeds 35 km. The depression is filled with of more than 15 km of Upper Paleozoic, Mesozoic, and Cenozoic sediments overlying a folded basement of probable Caledonian age. Paleozoic sediments, with exception of the Upper Permian, are composed mainly of carbonates and evaporites. Mesozoic-Cenozoic sediments are mostlymore » terrigenous. The major force in the development of the BM was due to extensional tectonics. Three rifting phases are recognizable: Late Devonian-Early Carboniferous, Early Triassic, and Jurassic-Early Cretaceous. The principal features of the geologic structure and evolution of the BM during the late Paleozoic-Mesozoic correlate well with those of the Sverdup basin, Canadian Arctic. Significant quantity of Late Jurassic-Early Cretaceous basaltic dikes and sills were intruded within Triassic sequence during the third rifting phase. This was probably the main reason for trap disruption and hydrocarbon loss from Triassic structures. Lower Jurassic and Lower Cretaceous reservoir sandstones are most probably the main future objects for oil and gas discoveries within the BM. Upper Jurassic black shales are probably the main source rocks of the BM basin, as well as excellent structural traps for hydrocarbon fluids from the underlying sediments.« less
NASA Technical Reports Server (NTRS)
Golombek, M. P.; Banerdt, W. B.
1985-01-01
While it is generally agreed that the strength of a planet's lithosphere is controlled by a combination of brittle sliding and ductile flow laws, predicting the geometry and initial characteristics of faults due to failure from stresses imposed on the lithospheric strength envelope has not been thoroughly explored. Researchers used lithospheric strength envelopes to analyze the extensional features found on Ganymede. This application provides a quantitative means of estimating early thermal profiles on Ganymede, thereby constraining its early thermal evolution.
A generalized geologic map of Mars.
NASA Technical Reports Server (NTRS)
Carr, M. H.; Masursky, H.; Saunders, R. S.
1973-01-01
A geologic map of Mars has been constructed largely on the basis of photographic evidence. Four classes of units are recognized: (1) primitive cratered terrain, (2) sparsely cratered volcanic eolian plains, (3) circular radially symmetric volcanic constructs such as shield volcanoes, domes, and craters, and (4) tectonic erosional units such as chaotic and channel deposits. Grabens are the main structural features; compressional and strike slip features are almost completely absent. Most grabens are part of a set radial to the main volcanic area, Tharsis.
Surface features of central North America: a synoptic view from computer graphics
Pike, R.J.
1991-01-01
A digital shaded-relief image of the 48 contiguous United States shows the details of large- and small-scale landforms, including several linear trends. The features faithfully reflect tectonism, continental glaciation, fluvial activity, volcanism, and other surface-shaping events and processes. The new map not only depicts topography accurately and in its true complexity, but does so in one synoptic view that provides a regional context for geologic analysis unobscured by clouds, culture, vegetation, or artistic constraints. -Author
NASA Astrophysics Data System (ADS)
Jordan, T. A.; Ferraccioli, F.; Anderson, L.; Ross, N.; Corr, H.; Leat, P. T.; Bingham, R.; Rippin, D. M.; Le Brocq, A. M.; Siegert, M. J.
2013-12-01
The fragmentation of the Gondwana supercontinent began with continental rifting between the Weddell Sea region of Antarctica and South Africa during the Jurassic. This initial Jurassic phase of continental rifting is critical for understanding the process that initiated supercontinent breakup and dispersal, including the role of mantle plumes and major intracrustal tectonic structures. However, due to the remote location and blanketing ice sheets, the tectonic and magmatic evolution of the Weddell Sea Sector of Antarctica has remained relatively poorly understood. Our recent aeromagnetic and airborne gravity investigations have revealed the inland extent of the Weddell Sea Rift system beneath the West Antarctic Ice Sheet, and indicate the presence of a major left-lateral strike slip fault system separating the Ellsworth Whitmore block (a possible exotic microcontinent derived from the Natal Embayment, or the Shackleton Range region of East Antarctica) from East Antarctica (Jordan et al., 2013 Tectonophysics). In this study we use GPlates plate-tectonic reconstruction software to start evaluating the influence of strike-slip faulting between East and West Antarctica on Gondwana breakup models. Specifically, we investigate the possibility of poly-phase motion along the fault system and explore scenarios involving more diffuse strike slip faulting extending into the interior of East Antarctica in the hinterland of the Transantarctic Mountains. Our preliminary models suggest that there may be a link between the prominent step in the flank of the later Cretaceous-Cenozoic West Antarctic Rift System (at the southern end of Ellsworth-Whitmore Block) and the earlier Jurassic Weddell Sea rift system. Additionally, we present preliminary joint 3D magnetic and gravity models to investigate the crustal architecture of the proposed strike-slip fault system and assess its influence on the emplacement of voluminous Jurassic granitic magmatism along the boundary of the Ellsworth-Whitmore block.