Singh, Gurdip; Maurya, Sumitra; DeLampasona, M P; Catalan, Cesar A N
2007-09-01
The antioxidant, antifungal and antibacterial potentials of volatile oils and oleoresin of Cinnamomum zeylanicum Blume (leaf and bark) were investigated in the present study. The oleoresins have shown excellent activity for the inhibition of primary and secondary oxidation products in mustard oil added at the concentration of 0.02% which were evaluated using peroxide, thiobarbituric acid, p-anisidine and carbonyl values. Moreover, it was further supported by other complementary antioxidant assays such as ferric thiocyanate method in linoleic acid system, reducing power, chelating and scavenging effects on 1,1'-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals. In antimicrobial investigations, using inverted petriplate and food poison techniques, the leaf and bark volatile oils has been found to be highly effective against all the tested fungi except Aspergillus ochraceus. However, leaf oleoresin has shown inhibition only for Penicillium citrinum whereas bark oleoresin has caused complete mycelial zone inhibition for Aspergillus flavus and A. ochraceus along with Aspergillus niger, Aspergillus terreus, P. citrinum and Penicillium viridicatum at 6 microL. Using agar well diffusion method, leaf volatile oil and oleoresin have shown better results in comparison with bark volatile oil, oleoresin and commercial bactericide, i.e., ampicillin. Gas chromatographic-mass spectroscopy studies on leaf volatile oil and oleoresin resulted in the identification of 19 and 25 components, which accounts for the 99.4% and 97.1%, respectively of the total amount and the major component was eugenol with 87.3% and 87.2%, respectively. The analysis of cinnamon bark volatile oil showed the presence of 13 components accounting for 100% of the total amount. (E)-cinnamaldehyde was found as the major component along with delta-cadinene (0.9%), whereas its bark oleoresin showed the presence of 17 components accounting for 92.3% of the total amount. The major components were (E)-cinnamaldehyde (49.9%), along with several other components.
Liu, Qiutao; Zhang, Shanshan; Yang, Xihui; Wang, Ruilin; Guo, Weiying; Kong, Weijun; Yang, Meihua
2016-12-01
Atractylodes rhizome is a valuable traditional Chinese medicinal herb that comprises complex several species whose essential oils are the primary pharmacologically active component. Essential oils of Atractylodes lancea and Atractylodes koreana were extracted by hydrodistillation, and the yield was determined. The average yield of essential oil obtained from A. lancea (2.91%) was higher than that from A. koreana (2.42%). The volatile components of the essential oils were then identified by a gas chromatography with mass spectrometry method that demonstrated good precision. The method showed clear differences in the numbers and contents of volatile components between the two species. 41 and 45 volatile components were identified in A. lancea and A. koreana, respectively. Atractylon (48.68%) was the primary volatile component in A. lancea, while eudesma-4(14)-en-11-ol (11.81%) was major in A. koreana. However, the most significant difference between A. lancea and A. koreana was the major component of atractylon and atractydin. Principal component analysis was utilized to reveal the correlation between volatile components and species, and the analysis was used to successfully discriminate between A. lancea and A. koreana samples. These results suggest that different species of Atractylodes rhizome may yield essential oils that differ significantly in content and composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
El Hawary, Seham S; Zaghloul, Soumaya S; El Halawany, Ali M; El Bishbishy, Mahitab H
2013-11-01
The volatile oils obtained from the leaves of four pecan cultivars growing in Egypt were evaluated for their chemical composition and antimicrobial activity. The selected cultivars (cv.) were Carya illinoinensis (Wangneh.) K. Koch. cv. Wichita, C. illinoinensis cv. Western Schley, C. illinoinensis cv. Cherokee, and C. illinoinensis cv. Sioux. The gas chromatography-mass spectrometry analyses revealed that the volatile oils from samples of the different cultivars differ in composition and percentage of their components. β-Curcumene was found as the major constituent of the cv. Wichita oil, whereas germacrene D was the major component of cv. Sioux, cv. Cherokee, and cv. Western Schley. The antimicrobial activity was assayed using the Kirby-Bauer Method by measuring the zone of inhibition of growth. All volatile oils displayed an antimicrobial activity against the tested bacterial strains. On the other hand, only the volatile oil of cv. Wichita showed an antifungal effect on Aspergillus flavus. This work has identified candidates of volatile oils for future in vivo studies to develop antibiotic substitutes for the diminution of human and animal pathogenic bacteria. Nevertheless, the variations of the volatile oil components and antimicrobial potencies of the different studied cultivars, necessitate identifying the cultivars used in future studies.
Cho, In Hee; Choi, Hyung-Kyoon; Kim, Young-Suk
2006-06-28
The differences in volatile components of pine-mushrooms (Tricholoma matsutake Sing.) according to their grades were observed by applying multivariate statistical methods to GC-MS data sets. A total of 35 and 37 volatile components were identified in raw and cooked pine-mushrooms, respectively. The volatile components in pine-mushrooms were primarily composed of C8 species, such as 3-octanol, 1-octen-3-ol, 1-octanol, (E)-2-octen-1-ol, 3-octanone, 1-octen-3-one, (E)-2-octenal, and octanoic acid. The levels of ethyl octanoate, junipene, and 3-methyl-3-buten-2-one were much higher in raw pine-mushroom of higher grades, whereas the reverse was true for C8 components. On the other hand, furfuryl alcohol, benzyl alcohol, phenylethyl alcohol, dihydro-5-methyl-2(3H)-furanone, 2(5H)-furanone, (E)-2-methyl-2-butenal, furfural, phenylacetaldehyde, benzoic acid methyl ester, camphene, and beta-pinene were the major components of cooked mushrooms. These volatile components formed by various thermal reactions could be mainly responsible for the difference in volatile components of cooked pine-mushrooms according to their grades.
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts. PMID:24741358
Yilmaztekin, Murat
2014-01-01
Volatile components in cape gooseberry fruit at ripe stage were collected using headspace-solid phase microextraction, and analyzed by gas chromatography-mass spectrometry. Three solid phase microextraction fiber coatings (DVB/CAR/PDMS, CAR/PDMS, and PDMS/DVB) were tested for evaluation of volatile compounds. DVB/CAR/PDMS fiber showed a strong extraction capacity for volatile compounds and produced the best result in case of total peak areas. A total of 133 volatile compounds were identified in fruit pulp; among them 1-hexanol (6.86%), eucalyptol (6.66%), ethyl butanoate (6.47%), ethyl octanoate (4.01%), ethyl decanoate (3.39%), 4-terpineol (3.27%), and 2-methyl-1-butanol (3.10%) were the major components in the sample extracts.
Ab Ghani, Nurunajah; Ismail, Nor Hadiani; Asakawa, Yoshinori
2016-02-01
Analysis of the volatile components present in the fresh male and female flowers and young leaves shows that 2-phenylethanol is the major component in all these three organs, which play a significant role in the strong resinous aromatic odor. The male flowers contained styrene as a second major compound. The level of styrene does not affect the male flowers odor concentration. The level of β-phenylethyl cinnamate and trans-methyl cinnamate in the fermented male flowers decreased as the fermentation time increased. This was due to the Penicillium enzymatic action on the fermented male flowers.
Legako, J F; Brooks, J C; O'Quinn, T G; Hagan, T D J; Polkinghorne, R; Farmer, L J; Miller, M F
2015-02-01
Proximate data, consumer palatability scores and volatile compounds were investigated for four beef muscles (Longissimus lumborum, Psoas major, Semimembranosus and Gluteus medius) and five USDA quality grades(Prime, Upper 2/3 Choice, Low Choice, Select, and Standard). Quality grade did not directly affect consumer scores or volatiles but interactions (P < 0.05) between muscle and grade were determined. Consumer scores and volatiles differed (P < 0.05) between muscles. Consumers scored Psoas major highest for tenderness, juiciness, flavor liking and overall liking, followed by Longissimus lumborum, Gluteus medius, and Semimembranosus (P < 0.05). Principal component analysis revealed clustering of compound classes, formed by related mechanisms. Volatile n-aldehydes were inversely related to percent fat. Increases in lipid oxidation compounds were associated with Gluteus medius and Semimembranosus, while greater quantities of sulfur-containing compounds were associated with Psoas major. Relationships between palatability scores and volatile compound classes suggest that differences in the pattern of volatile compounds may play a valuable role in explaining consumer liking.
Verma, Ram Swaroop; Padalia, Rajendra Chandra; Chauhan, Amit; Singh, Anand; Yadav, Ajai Kumar
2011-10-01
Rosa damascena Mill. is an important aromatic plant for commercial production of rose oil, water, concrete and absolute. The rose water and rose oil produced under the mountainous conditions of Uttarakhand were investigated for their chemical composition. The major components of rose water volatiles obtained from the bud, half bloom and full bloom stages of cultivar 'Ranisahiba' were phenyl ethyl alcohol (66.2-79.0%), geraniol (3.3-6.6%) and citronellol (1.8-5.5%). The rose water volatiles of cultivar 'Noorjahan' and 'Kannouj' also possessed phenyl ethyl alcohol (80.7% and 76.7%, respectively) as a major component at full bloom stage. The essential oil of cultivar 'Noorjahan' obtained from two different growing sites was also compared. The major components of these oils were citronellol (15.9-35.3%), geraniol (8.3-30.2%), nerol (4.0-9.6%), nonadecane (4.5-16.0%), heneicosane (2.6-7.9%) and linalool (0.7-2.8%). This study clearly showed that the flower ontogeny and growing site affect the composition of rose volatiles. The rose oil produced in this region was comparable with ISO standards. Thus, it was concluded that the climatic conditions of Uttarakhand are suitable for the production of rose oil of international standards.
Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean.
Moy, Yin-Soon; Lu, Ting-Jang; Chou, Cheng-Chun
2012-02-01
In the present study, sufu, a soft cheese-like oriental fermented food, was prepared by ripening the salted-tofu cubes in Aspergillus oryzae-fermented soybean-rice koji at 37°C for 16 days (16-day sufu). Sufu was further held at room temperature for another 30 days (46-day sufu). The volatile components of the non-fermented tofu cubes and the sufu products were identified and quantified by GC and GC-MS. A total of 70 volatile compounds including 20 aldehydes, 18 alcohols, 16 esters, 5 ketones, 5 acids and 6 other compounds were identified. Sufu products contained more volatile compounds than non-fermented tofu cubes qualitatively and quantitatively. After 16-days of ripening, fatty acid, aldehyde and ester were noted to be the dominant volatile fractions. In contrast, the 46-day sufu contained ester, and alcohol as the major volatile fractions. They comprise approximately 63.9% of the total volatile components. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sulfur volatiles in guava (Psidium guajava L.) leaves: possible defense mechanism.
Rouseff, Russell L; Onagbola, Ebenezer O; Smoot, John M; Stelinski, Lukasz L
2008-10-08
Volatiles from crushed and intact guava leaves (Psidium guajava L.) were collected using static headspace SPME and determined using GC-PFPD, pulsed flame photometric detection, and GC-MS. Leaf volatiles from four common citrus culitvars were examined similarly to determine the potential component(s) responsible for guava's protective effect against the Asian citrus psyllid (Diaphorina citri Kuwayama), which is the insect vector of Huanglongbing (HLB) or citrus greening disease. Seven sulfur volatiles were detected: hydrogen sulfide, sulfur dioxide, methanethiol, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), methional, and dimethyl trisulfide (DMTS). Identifications were based on matching linear retention index values on ZB-5, DB-Wax, and PLOT columns and MS spectra in the case of DMDS and DMS. DMDS is an insect toxic, defensive volatile produced only by wounded guava but not citrus leaves and, thus, may be the component responsible for the protective effect of guava against the HLB vector. DMDS is formed immediately after crushing, becoming the major headspace volatile within 10 min. Forty-seven additional leaf volatiles were identified from LRI and MS data in the crushed guava leaf headspace.
Asakawa, Yoshinori; Tomiyama, Kenichi; Sakurai, Kazutoshi; Kawakami, Yukihiro; Yaguchi, Yoshihiro
2017-08-01
The volatile compounds obtained from the different organs of Houttuynia cordata (Saururaceae) and Litsea cubeba (Lauraceae) were analyzed by Gas Chromatography/Mass Spectrometry (GC/MS), Headspace Solid Phase Micro Extraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS), and GC/olfactometry (GC/O). The major component of all parts of H. cordata is assigned as 4-tridecanone. Each organ produces myrcene as the major monoterpenoid. The major monoterpene in the rhizomes and roots was β-pinene instead of myrcene. 1-Decanal which was responsible for the unpleasant odor of this plant, was the predominant polyketide in both leaves and stems. The presence of 1-decanal was very poor in flowers, stem collected in summer, rhizomes, and roots. GC/MS analyses were very simple in case of the crude extracts of flowers. The content of sesquiterpenoids was extremely poor. (8Z)-Heptadecene, geranial, and neral were detected as the major components in Litsea cubeba. Odor-contributing components by GC/O analysis of the ether extract of the fresh flowers of L. cubeba were neral and geranial which played an important role in sweet-lemon fragrance of the flowers. The role of a high content of (8Z)-heptadecene was still unknown but it might play a significant role in the dispersion of the volatile monoterpene hydrocarbons and aldehydes. The flower volatiles of the Japanese L. cubeba were chemically quite different from those of the Chinese same species.
Zhou, Yuzhi; Ren, Yanling; Ma, Zhijie; Jia, Guangcheng; Gao, Xiaoxia; Zhang, Lizeng; Qin, Xuemei
2012-05-07
Xiaoyaosan (XYS), a well-known formula for relieving depression, was originated from the book of "Taiping Huimin Heji Jufang" in Song Dynasty (960-1127 AD), composed of Radix Bupleuri, Radix Angelicae Sinensis, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae, Rhizoma Zingiberis Recens and Radix Glycyrrhizae with dose proportion of 6:6:6:6:6:3:2:2. It is commonly used for the treatment of depression-related syndromes in China. In the formula, Radix Bupleuri usually serves as the principal drug, Radix Angelicae Sinensis and Radix Paeoniae Alba serve as the ministerial drugs, Rhizoma Atractylodis Macrocephalae, Poria, Herba Menthae and Rhizoma Zingiberis Recens serve as adjunctive drugs, Radix Glycyrrhizae serves as messenger drug, they coordinate with each other and enhance the effect of the formula. In our previous experiments, the antidepressant effect of XYS was revealed. However, the antidepressant part (or component) of this prescription was still obscure. An experimental despair animal model: the mice tail suspension test (TST) was used to evaluate the antidepressant activity of XYS and its fractions. GC-MS method was developed to identify the volatile components and determine 4 major volatile components in active fraction. In the TST test, the effect of a low polar fraction (XY-EA) was superior to other fractions of XYS. 13 volatile compounds in the XY-EA were identified on the basis of standards, isolation and structural determination in our laboratory, NIST 05 database and literature data. The content of 4 major volatile compounds in XY-EA which is 6.703%. The petroleum ether fraction (XY-EA) appears to be the active fraction of XYS. 4 major components Z-ligustilide, palmitic acid, atractylenolide I, and atractylenolide II may be the antidepressant active compounds. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Zhang, Hongyang; Li, Yahui; Mi, Jianing; Zhang, Min; Wang, Yuerong; Jiang, Zhihong; Hu, Ping
2017-10-24
The fermentation products of Cordyceps sinensis ( C. sinensis ) mycelia are sustainable substitutes for natural C. sinensis . However, the volatile compositions of the commercial products are still unclear. In this paper, we have developed a simultaneous distillation-extraction (SDE) and gas chromatography-mass spectrometry (GC-MS) method for the profiling of volatile components in five fermentation products. A total of 64, 39, 56, 52, and 44 components were identified in the essential oils of Jinshuibao capsule (JSBC), Bailing capsule (BLC), Zhiling capsule (ZLC), Ningxinbao capsule (NXBC), and Xinganbao capsule (XGBC), respectively. 5,6-Dihydro-6-pentyl-2H-pyran-2-one (massoia lactone) was first discovered as the dominant component in JSBC volatiles. Fatty acids including palmitic acid (C16:0) and linoleic acid (C18:2) were also found to be major volatile compositions of the fermentation products. The multivariate partial least squares-discriminant analysis (PLS-DA) showed a clear discrimination among the different commercial products as well as the counterfeits. This study may provide further chemical evidences for the quality evaluation of the fermentation products of C. sinensis mycelia.
Volatile components of ethanolic extract from broccolini leaves.
Wang, Xiaoqin; Zhang, Bochao; Wang, Bingfang; Zhang, Xuewu
2012-01-01
Broccolini (Brassica oleracea Italica × Alboglabra) is a hybrid of broccoli and kai-lan, Chinese broccoli. To date, no study has been reported on the chemical composition of the volatile fractions of this raw material. In this study, the volatile constituents from the ethanolic extract of broccolini leaves were analysed by gas chromatography-mass spectrometry (GC-MS). Sixteen compounds were identified. The major components include 5-phenyl-undecane (11%), n-hexadecanoic acid (9.34%), octadecanoic acid (6.39%), 1,1,3-trimethyl-3-phenyl-indan (4.0%), 3-(2-phenylethyl)benzonitrile (3.48%) and phytol (3.37%).
Volatile components from mango (Mangifera indica L.) cultivars.
Pino, Jorge A; Mesa, Judith; Muñoz, Yamilie; Martí, M Pilar; Marbot, Rolando
2005-03-23
The volatile components of 20 mango cultivars were investigated by means of simultaneous distillation-extraction, GC, and GC-MS. Three hundred and seventy-two compounds were identified, of which 180 were found for the first time in mango fruit. The total concentration of volatiles was approximately 18-123 mg/kg of fresh fruit. Terpene hydrocarbons were the major volatiles of all cultivars, the dominant terpenes being delta-3-carene (cvs. Haden, Manga amarilla, Macho, Manga blanca, San Diego, Manzano, Smith, Florida, Keitt, and Kent), limonene (cvs. Delicioso, Super Haden, Ordonez, Filipino, and La Paz), both terpenes (cv. Delicia), terpinolene (cvs. Obispo, Corazon, and Huevo de toro), and alpha-phellandrene (cv. Minin). Other qualitative and quantitative differences among the cultivars could be demonstrated.
Fast characterization of cheeses by dynamic headspace-mass spectrometry.
Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis
2002-03-15
This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.
Galassi, F G; Fronza, G; Toloza, A C; Picollo, M I; González-Audino, P
2018-05-04
The head louse Pediculus humanus capitis (De Geer) (Phthiraptera: Pediculidae) is a cosmopolitan human ectoparasite causing pediculosis, one of the most common arthropod parasitic conditions of humans. The mechanisms and/or chemicals involved in host environment recognition by head lice are still unknown. In this study, we evaluated the response of head lice to volatiles that emanate from the human scalp. In addition, we identified the volatile components of the odor and evaluated the attractive or repellent activity of their pure main components. The volatiles were collected by means of Solid Phase microextraction and the extract obtained was chemically analyzed by gas chromatograph-mass spectrometer. Twenty-four volatile were identified in the human scalp odor, with the main compounds being the following: nonanal, sulcatone, geranylacetone, and palmitic acid. Head lice were highly attracted by the blend human scalp volatiles, as well as by the individual major components. A significant finding of our study was to demonstrate that nonanal activity depends on the mass of the compound as it is repellent at high concentrations and an attractant at low concentrations. The results of this study indicate that head lice may use chemical signals in addition to other mechanisms to remain on the host.
Zhan, Ru-Lin; Wu, Hong-Xia; Yao, Quan-Sheng; Xu, Wen-Tian; Luo, Chun; Zhou, Yi-Gang; Liang, Qing-Zhi; Wang, Song-Biao
2017-01-01
Aroma is important in assessing the quality of fresh fruit and their processed products, and could provide good indicators for the development of local cultivars in the mango industry. In this study, the volatile diversity of 25 mango cultivars from China, America, Thailand, India, Cuba, Indonesia, and the Philippines was investigated. The volatile compositions, their relative contents, and the intervarietal differences were detected with headspace solid phase microextraction tandem gas chromatography-mass spectrometer methods. The similarities were also evaluated with a cluster analysis and correlation analysis of the volatiles. The differences in mango volatiles in different districts are also discussed. Our results show significant differences in the volatile compositions and their relative contents among the individual cultivars and regions. In total, 127 volatiles were found in all the cultivars, belonging to various chemical classes. The highest and lowest qualitative abundances of volatiles were detected in ‘Zihua’ and ‘Mallika’ cultivars, respectively. Based on the cumulative occurrence of members of the classes of volatiles, the cultivars were grouped into monoterpenes (16 cultivars), proportion and balanced (eight cultivars), and nonterpene groups (one cultivars). Terpene hydrocarbons were the major volatiles in these cultivars, with terpinolene, 3-carene, caryophyllene and α-Pinene the dominant components depending on the cultivars. Monoterpenes, some of the primary volatile components, were the most abundant aroma compounds, whereas aldehydes were the least abundant in the mango pulp. β-Myrcene, a major terpene, accounted for 58.93% of the total flavor volatile compounds in ‘Xiaofei’ (Philippens). γ-Octanoic lactone was the only ester in the total flavor volatile compounds, with its highest concentration in ‘Guiya’ (China). Hexamethyl cyclotrisiloxane was the most abundant volatile compound in ‘Magovar’ (India), accounting for 46.66% of the total flavor volatiles. A typical aldehydic aroma 2,6-di-tert-butyl-4-sec-butylphenol, was detected in ‘Gleck’. A highly significant positive correlation was detected between Alc and K, Alk and Nt, O and L. Cultivars originating from America, Thailand, Cuba, India, Indonesia and the Philippines were more similar to each other than to those from China. This study provides a high-value dataset for use in development of health care products, diversified mango breeding, and local extension of mango cultivars. PMID:29211747
Major Odorants Released as Urinary Volatiles by Urinary Incontinent Patients
Pandey, Sudhir Kumar; Kim, Ki-Hyun; Choi, Si On; Sa, In Young; Oh, Soo Yeon
2013-01-01
In this study, volatile urinary components were collected using three different types of samples from patients suffering from urinary incontinence (UI): (1) urine (A); (2) urine + non-used pad (B); and (3) urine + used pad (C). In addition, urine + non-used pad (D) samples from non-patients were also collected as a reference. The collection of urinary volatiles was conducted with the aid of a glass impinger-based mini-chamber method. Each of the four sample types (A through D) was placed in a glass impinger and incubated for 4 hours at 37 °C. Ultra pure air was then passed through the chamber, and volatile urine gas components were collected into Tedlar bags at the other end. These bag samples were then analyzed for a wide range of VOCs and major offensive odorants (e.g., reduced sulfur compounds (RSCs), carbonyls, trimethylamine (TMA), ammonia, etc.). Among the various odorants, sulfur compounds (methanethiol and hydrogen sulfide) and aldehydes (acetaldehyde, butylaldehyde, and isovaleraldehyde) were detected above odor threshold and predicted to contribute most effectively to odor intensity of urine incontinence. PMID:23823973
Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA
NASA Astrophysics Data System (ADS)
Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.
The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.
Turmeric (Curcuma longa L.) volatile oil inhibits key enzymes linked to type 2 diabetes.
Lekshmi, P C; Arimboor, Ranjith; Indulekha, P S; Menon, A Nirmala
2012-11-01
Anti-diabetic capacity of Curcuma longa volatile oil in terms of its ability to inhibit glucosidase activities was evaluated. Turmeric volatile oils inhibited glucosidase enzymes more effectively than the reference standard drug acarbose. Drying of rhizomes was found to enhance α-glucosidase (IC₅₀ = 1.32-0.38 μg/ml) and α-amylase (IC₅₀ = 64.7-34.3 μg/ml) inhibitory capacities of volatile oils. Ar-Turmerone, the major volatile component in the rhizome also showed potent α-glucosidase (IC₅₀ = 0.28 μg) and α-amylase (IC₅₀ = 24.5 μg) inhibition.
[Comparison on extraction of volatile oils from Lithospermum erythrorhizon by different methods].
Yang, Ri-fu; Huang, Ping-ping; Qiu, Tai-qiu; Fan, Xiao-dan
2011-02-01
To extract the volatile oils from Lithospermum erythrorhizon via ultrasound-enhanced sub-critical water extraction (USWE) and compare with ultrasound-enhanced solvent extraction (USE) and steam distillation extraction (SD). The extraction yield of the volatile oils, the containing components of extract, the effect of scanvenging activities on free radical DPPH and reducing activities as well as the inhibitory on escherichia coli and staphylococcus aureus were investigated. The extraction yield of volatile oils by USWE, USE and SD were 2.39%, 1.93% and 0.62%, respectively, the extracts by three methods all contained six major components, but the extracts by SD and USE contained more impurities. The inhibitory effect on escherichia coli and staphylococcus aureus of the extract by SD and its reducing action were the best,but those by USWE were the worst. the extraction yield of volatile oils by USWE is the highest, and it contains less impurities based on the worst in reducing power and inhibitory effects.
The role of chondrules in nebular fractionations of volatiles and other elements
NASA Technical Reports Server (NTRS)
Grossman, J. N.
1994-01-01
For at least 30 years, cosmochemists have been grappling with the question of how and why groups of geochemically and volatility related elements became fractionated in the major chondrite groups. At least five relatively independent fractionations are known. Virtually everyone who has thought about these facts has been attempted to attribute at least some of the fractionations to the physical separation or mixing of the visible components. By far the most abundant of these components in meteorites is chondrules, and indeed chondrules have long been suspected of playing a direct role in fractionation of volatile elements. The question addressed here is whether chondrules formed before or after chemical components became separated is of fundamental importance to our understanding of the early solar system, as the answer constrains how, when, where, and from what chondrules formed, and tells us about how materials were processed in the nebula.
[Analysis of chemical constituents of volatile components from Jia Ga Song Tang by GC-MS].
Tan, Qing-long; Xiong, Tian-qin; Liao, Jia-yi; Yang, Tao; Zhao, Yu-min; Lin, Xi; Zhang, Cui-xian
2014-10-01
To analyze the chemical components of volatile components from Jia Ga Song Tang. The volatile oils were extracted by water steam distillation. The chemical components of essential oil were analyzed by GC-MS and quantitatively determined by a normalization method. 103 components were separated and 87 components were identified in the volatile oil of Zingiberis Rhizoma. 58 components were separated and 38 components were identified in the volatile oil of Myristicae Semen. 49 components were separated and 38 components were identified in the volatile oil of Amomi Rotundus Fructus. 89 components were separated and 63 components were identified in the volatile oil of Jia Ga Song Tang. Eucalyptol, β-phellandrene and other terpenes were the main compounds in the volatile oil of Jia Ga Song Tang. Changes in the kinds and content of volatile components can provide evidences for scientific and rational compatibility for Jia Ga Song Tang.
Khalil, Mohammed N A; Fekry, Mostafa I; Farag, Mohamed A
2017-02-15
Dates (Phoenix dactylifera L.) are distributed worldwide as major food complement providing a source of sugars and dietary fiber as well as macro- and micronutrients. Although phytochemical analyses of date fruit non-volatile metabolites have been reported, much less is known about the aroma given off by the fruit, which is critical for dissecting sensory properties and quality traits. Volatile constituents from 13 date varieties grown in Egypt were profiled using SPME-GCMS coupled to multivariate data analysis to explore date fruit aroma composition and investigate potential future uses by food industry. A total of 89 volatiles were identified where lipid-derived volatiles and phenylpropanoid derivatives were the major components of date fruit aroma. Multivariate data analyses revealed that 2,3-butanediol, hexanal, hexanol and cinnamaldehyde contributed the most to classification of different varieties. This study provides the most complete map of volatiles in Egyptian date fruit, with Siwi and Sheshi varieties exhibiting the most distinct aroma among studied date varieties. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kamenetsky, V.; Sobolev, A.; McDonough, W.
2003-04-01
Late Cretaceous komatiites of Gorgona Island are unambiguous samples of ultra-mafic melts related to a hot and possibly 'wet' mantle plume. Despite significant efforts in studying komatiites, their volatile abundances remain largely unknown because of significant alteration of rocks and lack of fresh glasses. This work presents major, trace and volatile element data for 22 partially homogenised (at 1275oC and 1 bar pressure) melt inclusions in olivine (Fo 90.5-91.5) from a Gorgona Isl. komatiite (# Gor 94-3). Major element compositions (except FeO which is notably lower by up to 5 wt% as a result of post-entrapment re-equilibration) and most lithophile trace elements of melt inclusions are indistinguishable from the whole rock komatiites. With the exception of three inclusions that have low Na, H2O, Cl, F and S (likely compromised and degassed during heating) most compositions are characterised by relatively constant and high volatile abundances (H2O 0.4-0.8 wt%, Cl 0.02-0.03 wt%, B 0.8-1.4 ppm). These are interpreted as representative of original volatiles in parental melts because they correspond to the internal volatile pressure in the closed inclusions significantly exceeding 1 bar pressure of heating experiment. Although H2O is strongly enriched (PM-normalised H2O/Ce 10-17) its concentrations correlate well with many elements (e.g. Yb, Er, Y, Ti, Sr, Be). Other positive anomalies on the overall depleted (La/Sm 0.26-0.33) PM normalized compositional spectra of melt inclusions are shown by B (B/K 2.4-5.4) and Cl (Cl/K 11-16). Compositions of melt inclusions, when corrected for Fe loss and recalculated in equilibrium with host olivine, have high MgO (15.4-16.4 wt%; Mg# of 74) and substantial H2O (0.4-0.6 wt%) contents. This together with the data on other 'enriched' elements argues for the presence of previously unknown volatile-enriched component in the parental melts of Gorgona Isl. komatiites. We discuss contamination of magmas by altered oceanic crust in the plumbing system, the involvement of volatile-rich subduction related component(s) in the mantle source, and the geochemical control from residual garnet during the generation of komatiite primary melts.
77 FR 7974 - Semiannual Agenda of Regulations
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
... Institute of Electrical and Electronics Engineers consensus standard. Additionally, a public hearing was... diacetyl, a major component in artificial butter flavoring. Diacetyl and a number of other volatile organic...
Deng, Jie; Yu, Hong-Jun; Li, Yun-Yun; Zhang, Xiao-Meng; Liu, Peng; Li, Qiang; Jiang, Wei-Jie
2016-01-01
Nitrogen (N) is an important macronutrient for plant growth and development, but the regulatory mechanism of volatile compounds in response to N deficiency is not well understood, especially in cucumber, which consumes excessive N during growth. In this study, the major volatile compounds from cucumber leaves subjected to N deficiency were analyzed by GC-MS. A total of 24 volatile components were identified including 15 aldehydes, two ketones, two alkenes, and five other volatile compounds in 9930 leaves. Principal component analysis using volatile compounds from cucumber leaves provided good separation between N-sufficient and N-deficient treatments. The main volatiles in cucumber leaves were found to be C6 and C9 aldehydes, especially (E)-2-hexanal and (E,Z)-2,6-nonadienal. (E)-2-hexanal belonged to the C6 aldehyde and was the most abundant compound, whereas (E,Z)-2,6-nonadienal was the chief component of C9 aldehydes. During N-deficient treatment, short-chain volatile content was significantly improved at 5 day, other volatiles displayed significant reduction or no significantly changes in all sampling points. Improvement of short-chain volatiles was confirmed in the six other inbred lines at 5 day after N-deficient treatments. The expression analysis of 12 cucumber LOX genes and two HPL genes revealed that CsLOX19, CsLOX20, and CsLOX22 had common up-regulated expression patterns in response to N-deficient stress in most inbred lines; meanwhile, most sample points of CsHPL1 also had significant up-regulated expression patterns. This research focused on the relationship between volatiles in cucumber and different nitrogen environments to provide valuable insight into the effect of cultivation and management of the quality of cucumber and contributes to further research on volatile metabolism in cucumber. PMID:27827841
Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai
2014-01-01
The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. Copyright © 2014. Published by Elsevier Ltd.
Guclu, Gamze; Sevindik, Onur; Kelebek, Hasim; Selli, Serkan
2016-01-01
Ayvalik is an important olive cultivar producing high quality oils in Turkey. In the present study, volatile and phenolic compositions of early-harvest extra virgin olive oil (cv. Ayvalik) were determined. The solvent-assisted flavor evaporation (SAFE) technique was used for the extraction of volatile components. The aromatic extract obtained by SAFE was representative of the olive oil odor. A total of 32 aroma compounds, including alcohols, aldehydes, terpenes, esters, and an acid, were identified in the olive oil. Aldehydes and alcohols were qualitatively and quantitatively the most dominant volatiles in the oil sample. Of these, six volatile components presented odor activity values (OAVs) greater than one, with (Z)-3-hexenal (green), hexanal (green-sweet) and nonanal (fatty-pungent) being those with the highest OAVs in olive oil. A total of 14 phenolic compounds were identified and quantified by liquid chromatography combined with a diode array detector and ion spray mass spectrometry. The major phenolic compounds were found as 3,4-DHPEA-EDA, 3,4-DHPEA-EA and p-HPEA-EDA. PMID:28231141
Apichartsrangkoon, Arunee; Wongfhun, Pronprapa; Gordon, Michael H
2009-01-01
The flavor characteristics of pennywort juices with added sugar treated by ultra-high pressure, pasteurization, and sterilization were investigated using solid phase microextraction combined with gas chromatography-mass spectrometry. It was found that sesquiterpene hydrocarbons comprised the major class of volatile components present and the juices had a characteristic aroma due to the presence of volatiles including beta-caryophyllene and humulene and alpha-copaene. In comparison with heated juices, HPP-treated samples could retain more volatile compounds such as linalool and geraniol similar to those present in fresh juice, whereas some volatiles such as alpha-terpinene and ketone class were apparently formed by thermal treatment. All processing operations produced juice that was not significantly different in the concentration of total volatiles. Practical Application: Pennywort juice is considered a nutraceutical drink for health benefits. Therefore, to preserve all aroma and active components in this juice, a nonthermal process such as ultra-high pressure should be a more appropriate technique for retention of its nutritive values than pasteurization and sterilization.
NASA Astrophysics Data System (ADS)
Kjonaas, Richard; Soller, Jean L.; McCoy, Leslee A.
1997-09-01
By placing a piece of chewing gum (Wrigley's) or a crushed piece of hard candy (LifeSavers or Runts) into a vial, followed by GC/MS analysis of a five microliter sample of the headspace, students are able to identify several of the volatile flavoring components which are present. The experiment has been used successfully with sophomore organic chemistry students, and with visiting groups of talented high school students over a three year period. Identification is simplified by handing out a list of the structural formulas of some likely candidates. Some of the components that these students easily identity include ethyl acetate, isobutyl acetate, isoamyl acetate, ethyl butyrate, benzaldehyde, benzyl alcohol, limonene, and cinnamaldehyde. Some of the more difficult to identify components include menthol, menthone, carvone, cineole, myrcene, alpha-pinene, beta-pinene, para-cymene, and gama-terpinene. Most of the major headspace components give signals whose size is comparable to that of the carbon dioxide which is present in each injection. Even with split injection, the background noise is trivial compared to the signals from the major components. The experiments were carried out with a commercially available tabletop GC/MS (Varian 3400 with Saturn MS).
Dickens, J C
1984-12-01
Electroantennogram (EAG) techniques were utilized to measure the antennal olfactory responsiveness of adult boll weevils,Anthonomus grandis Boh. (Coleoptera: Curculionidae), to 38 odorants, including both insect and host plant (Gossypium hirsutum L.) volatiles. EAGs of both sexes were indicative of at least two receptor populations: one receptor population primarily responsive to pheromone components and related compounds, the other receptor population primarily responsive to plant odors. Similar responses to male aggregation pheromone components (i.e., compounds I, II, and III + IV) were obtained from both sexes, but females were slightly more sensitive to I. Both sexes were highly responsive to components of the "green leaf volatile complex," especially the six-carbon saturated and monounsaturated primary alcohols. Heptanal was the most active aldehyde tested. More acceptors responded to oxygenated monoterpenes than to monoterpene hydrocarbons. β-Bisabolol, the major volatile of cotton, was the most active sesquiterpene. In general, males, which are responsible for host selection and pheromone production, were more sensitive to plant odors than were females. In fact, males were as sensitive to β-bisabolol and heptanal as to aggregation pheromone components. Electrophysiological data are discussed with regard to the role of insect and host plant volatiles in host selection and aggregation behavior of the boll weevil.
Kelebek, Hasim; Selli, Serkan
2011-08-15
Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.
Wardle, A R; Borden, J H; Pierce, H D; Gries, R
2003-04-01
Volatile compounds released by disturbed and calm female and male Lygus lineolaris were collected and analyzed. Six major compounds were present in samples from disturbed bugs and from calm females: (E)-2-hexenal, 1-hexanol, (E)-2-hexenol, hexyl butyrate, (E)-2-hexenyl butyrate, and (E)-2,4-oxohexenal. (E)-2-hexenal was lacking in volatiles collected from calm males. Hexyl butyrate accounted for approximately 68% and 66% of volatiles released by agitated and calm females, and 87% and 88% of volatiles released by agitated and calm males, respectively. Blends released by disturbed insects differed quantitatively from blends released by calm insects, with amounts of compounds increasing 75-350 times in samples from disturbed insects. In static air bioassays, both females and males were repelled by natural volatiles collected from females and by five-component [(E)-2,4-oxohexenal excluded] and six-component synthetic blends at doses of 1 and 10 bug-hours, indicating that these volatiles may serve an alarm or epideictic function, as well as a possible role as defensive allomones. Adults also avoided hexyl butyrate, (E)-2-hexenyl butyrate, (E)-2-hexenol, and (E)-2,4-oxohexenal, but not 1-hexanol and (E)-2-hexenal when compounds were assayed individually in static air bioassays at doses equal to 1 bug-hour. When tested over 1 day in two-choice cage trials, adults did not prefer untreated bean plants over bean plants surrounded by vials releasing up to 8.1 mg/hr (= 234 bug-hours) of the five-component synthetic blend. Therefore, the volatiles produced by disturbed adults would not be useful as a repellent for L. lineolaris.
Aroma profile and volatiles odor activity along gold cultivar pineapple flesh.
Montero-Calderón, Marta; Rojas-Graü, María Alejandra; Martín-Belloso, Olga
2010-01-01
Physicochemical attributes, aroma profile, and odor contribution of pineapple flesh were studied for the top, middle, and bottom cross-sections cut along the central axis of Gold cultivar pineapple. Relationships between volatile and nonvolatile compounds were also studied. Aroma profile constituents were determined by headspace solid-phase microextraction at 30 °C, followed by gas chromatography/mass spectrometry analysis. A total of 20 volatile compounds were identified and quantified. Among them, esters were the major components which accounted for 90% of total extracted aroma. Methyl butanoate, methyl 2-methyl butanoate, and methyl hexanoate were the 3 most abundant components representing 74% of total volatiles in pineapple samples. Most odor active contributors were methyl and ethyl 2-methyl butanoate and 2,5-dimethyl 4-methoxy 3(2H)-furanone (mesifuran). Aroma profile components did not vary along the fruit, but volatile compounds content significantly varied (P < 0.05) along the fruit, from 7560 to 10910 μg/kg, from the top to the bottom cross-sections of the fruit, respectively. In addition, most odor-active volatiles concentration increased from the top to the bottom 3rd of the fruit, concurrently with soluble solids content (SSC) and titratable acidity (TA) differences attributed to fruitlets distinct degree of ripening. Large changes in SSC/TA ratio and volatiles content throughout the fruit found through this study are likely to provoke important differences among individual fresh-cut pineapple trays, compromising consumer perception and acceptance of the product. Such finding highlighted the need to include volatiles content and SSC/TA ratio and their variability along the fruit as selection criteria for pineapples to be processed and quality assessment of the fresh-cut fruit. © 2010 Institute of Food Technologists®
Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M
2015-01-01
The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.
Zhao, Jianglin; Shan, Tijiang; Huang, Yongfu; Liu, Xili; Gao, Xiwu; Wang, Mingan; Jiang, Weibo; Zhou, Ligang
2009-11-01
Volatile oils were obtained by hydro-distillation from Gliomastix murorum and Pichia guilliermondii, two endophytic fungi isolated from the traditional Chinese medicinal herb Paris polyphylla var. yunnanensis. The oils were analyzed for their chemical composition by gas chromatography-mass spectrometry (GC-MS). Palmitic acid (15.5%), (E)-9-octadecenoic acid (11.6%), 6-pentyl-5,6-dihydropyran-2-one (9.7%), and (7Z,10Z)-7,10- hexadecadienoic acid (8.3%) were the major compounds of the 40 identified components in G. murorum volatile oil. 1,1,3a,7-Tetramethyl-1a,2,3,3a,4,5,6,7b-octahydro-1H-cyclopropa[a]- naphthalene (25.9%), palmitic acid (15.5%), 1-methyl-2,4-di- (prop-1-en-2-yl)-1- vinylcyclohexane (7.9%), (E)-9-octadecenoic acid (7.3%), and (9E,12E)-ethyl-9,12-octadecadienoate (5.2%) were the major compounds of the 27 identified components in P. guilliermondii volatile oil. The in vitro antimicrobial activity of the volatile oils was also investigated to evaluate their efficacy against six bacteria and one phytopathogenic fungus. The minimum inhibitory concentration (MIC) values of the volatile oils against the test bacteria ranged from 0.20 mg/mL to 1.50 mg/mL. One of the most sensitive bacteria was Xanthomonas vesicatoria with an MIC of 0.20 mg/mL and 0.40 mg/mL for G. murorum and P. guilliermondii, respectively. The mean inhibitory concentration (IC50) of the volatile oils against spore germination of Magnaporthe oryzae was 0.84 mg/mL for G. murorum and 1.56 mg/mL for P. guilliermondii. These results indicated that the volatile oils from the endophytic fungi have strong antimicrobial activity and could be a potential source of antimicrobial ingredients.
Shi, Z-H; Sun, J-H
2010-06-01
The red turpentine beetle (RTB), Dendroctonus valens LeConte, is a destructive invasive forest pest in China. For such tree-killing species, how to initiate a volatile-mediated mass attack is of great importance during the course of establishment. To understand the hindgut volatile production mechanism underlying mass attack initiated by RTB, coupled gas chromatography-mass spectrometry and 13C-labelled precursors were applied to explore the quantitative variation and biosynthesis of volatiles associated with RTB at different attack phases. Five previously described volatiles, trans-verbenol, myrtenol, cis-verbenol, myrtenal and verbenone, were identified and quantified from extracts of female and male hindguts, with the first two compounds as the major components and the latter three as minor constituents. In newly emerged females and males, only minute amounts of these compounds were detected. The quantity of volatiles from female adults significantly increased after they fed on bolts. Male adults also yielded larger quantities of volatiles after they joined females in galleries, which suggested that RTB males could accelerate the mass colonization on host trees. We also confirmed that RTB produced the five volatiles through oxidizing the major host monoterpene, alpha-pinene, but not synthesized de novo since products were labeled without 13C. The implication of this study in understanding the successful invasion of RTB is discussed.
Monggoot, Sakon; Kulsing, Chadin; Wong, Yong Foo; Pripdeevech, Patcharee
2018-06-01
Incubation with microbial culture supernatants improved essential oil yield from Aquilaria subintegra woodchips. The harvested woodchips were incubated with de man, rogosa and sharpe (MRS) agar, yeast mold (YM) agar medium and six different microbial culture supernatants obtained from Lactobacillus bulgaricus , L. acidophilus , Streptococcus thermophilus , Lactococcus lactis , Saccharomyces carlsbergensis and S. cerevisiae prior to hydrodistillation. Incubation with lactic acid bacteria supernatants provided higher yield of agarwood oil (0.45% w/w) than that obtained from yeast (0.25% w/w), agar media (0.23% w/w) and water (0.22% w/w). The composition of agarwood oil from all media and microbial supernatant incubations was investigated by using gas chromatography-mass spectrometry. Overall, three major volatile profiles were obtained, which corresponded to water soaking (control), as well as, both YM and MRS media, lactic acid bacteria, and yeast supernatant incubations. Sesquiterpenes and their oxygenated derivatives were key components of agarwood oil. Fifty-two volatile components were tentatively identified in all samples. Beta-agarofuran, α-eudesmol, karanone, α-agarofuran and agarospirol were major components present in most of the incubated samples, while S. cerevisiae -incubated A. subintegra provided higher amount of phenyl acetaldehyde. Microbial culture supernatant incubation numerically provided the highest yield of agarwood oil compared to water soaking traditional method, possibly resulting from activity of extracellular enzymes produced by the microbes. Incubation of agarwood with lactic acid bacteria supernatant significantly enhanced oil yields without changing volatile profile/composition of agarwood essential oil, thus this is a promising method for future use.
2007-01-01
found in this commodity. This conclusion is further supported by a study of sucrose pyrolysis products that listed furfural and 2-hydroxy-3-methyl-2...study that investigated the aroma compounds from citrus honey, and only furfural was found to be a major component in both sample matrices [40]. Analysis
Survey of ex situ fruit and leaf volatiles from several Pistacia cultivars grown in California.
Roitman, James N; Merrill, Glory B; Beck, John J
2011-03-30
California is the second largest cultivator of pistachios, producing over 375 million pounds and a revenue of $787 million in 2009. Despite the agricultural and economic importance of pistachios, little is known regarding their actual volatile emissions, which are of interest owing to their potential roles as semiochemicals to insect pests. The ex situ volatile analysis of leaves from Pistacia atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus, P. vera and P. weimannifolia demonstrated emission differences between species as well as between female and male leaves. Leaves from the female P. vera cultivars Bronte, Damghan, II, III, Kerman and Ohadi as well as fruits of P. atlantica, P. chinensis, P. lentiscus, P. palaestina, P. terebinthus and P. vera (cultivars II, III, Kaleh, Kerman, Momtaz and Ohadi) showed differences in the composition and relative quantity of major volatiles. The compounds in highest relative quantities from the various analyses were sabinene, Δ(3)-carene, β-myrcene, α-phellandrene, limonene, (Z)-ocimene, (E)-β-ocimene and α-terpinolene. This is the first ex situ survey of fruit and leaf volatile emissions from California-grown Pistacia species and a number of corresponding cultivars. The study provides an overview of the major and minor volatile emissions and also offers evidence of chemotypes based on monoterpenes. The results highlight the dissimilarity of major components detected between ex situ volatile collection and essential oil analysis. This article is a US Government work and is in the public domain in the USA. Published in 2011 by John Wiley & Sons, Ltd.
Hu, Mingli; Bai, Mei; Ye, Wei; Wang, Yaling; Wu, Hong
2018-06-01
Dried flower buds of Magnolia biondii Pamp. are the main ingredient in "Xin-yi" in China, and the volatile oils of M. biondii flower buds are the principal medicinal component. Gas chromatographymass spectrometry (GC-MS) and microscopic techniques were employed to detect the volatile yields of M. biondii flowers at various growth stages. The volatile oil yields of M. biondii flowers differed significantly at different growth stages and were closely related to flower dry weight, oil cell density and degree of oil accumulation. In February 2016, flower buds had the highest dry weight, the maximum percentage of oil cells at the oil saturation stage and the highest density of oil cells, which coincided with the highest oil yield. In March 2016, flower buds had a lower dry weight, a higher percentage of oil cells at the oil-degrading stage and the lowest oil cell density, resulting in decreased oil yields. The total amounts of the major medicinal components in the M. biondii flower also showed regular changes at different growth stages. In January and February of 2016, M. biondii flowers had a higher dry weight, volatile oil yield and total content of medicinal ingredients, which was the best time for harvesting high-quality medicinal components. Our study reveals that volatile oil content and chemical composition are closely related to the growth stage of M. biondii flower buds. The results provide a scientific morphology and composition index for evaluating the medicinal value and harvesting of high-quality M. biondii medicinal herbs.
[Study on volatile components from flowers of Gymnema sylvestre].
Qiu, Qin; Zhen, Han-Shen; Huang, Pei-Qian
2013-04-01
To analyze the volatile components from flowers of Gymnema sylvestre. Volatile components of flowers of Gymnema sylvestre were extracted by water vapor distilling, and the components were separated and identified by GC-MS. 55 components were separated and 33 components were identified, accounting for 88.73% of all quantity. The principal volatile components are Phytol, Pentacosane, 10-Heneicosene (c, t), 3-Eicosene, (E) -and 2-Methyl-Z-2-docosane. The research can pro-vide scientific basis for chemical component research of flowers of Gymnema sylvestre.
Leenheer, Jerry A.; Rostad, Colleen E.
2004-01-01
Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.
Patel, Kirti; Ruiz, Candy; Calderon, Rosa; Marcelo, Mavel; Rojas, Rosario
2016-11-01
The volatiles were characterised by headspace solid phase micro extraction (HS-SPME), gas chromatography mass spectrometry (GC-FID/MS). A total of 127 compounds were identified with terpenes (including mono terpenes and sesquiterpenes - a total of 45 compounds), esters (31 compounds) and hydrocarbons (20 compounds) were the predominant volatile compounds. Principal component analysis (PCA) of the volatile compounds yielded 2 significant PC's, which together accounted for 90.3% of the total variance in the data set and the scatter plot generated between PC1 and PC2 successfully segregated the 50 chili pepper samples into 7 groups. Clusters of hydrocarbons, esters, terpenes, aldehyde and ketones formed the major determinants of the difference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Essential oil variation among natural populations of Lavandula multifida L. (Lamiaceae).
Chograni, Hnia; Zaouali, Yosr; Rajeb, Chayma; Boussaid, Mohamed
2010-04-01
Volatiles from twelve wild Tunisian populations of Lavandula multifida L. growing in different bioclimatic zones were assessed by GC (RI) and GC/MS. Thirty-six constituents, representing 83.48% of the total oil were identified. The major components at the species level were carvacrol (31.81%), beta-bisabolene (14.89%), and acrylic acid dodecyl ester (11.43%). These volatiles, together with alpha-pinene, were also the main compounds discriminating the populations. According to these dominant compounds, one chemotype was revealed, a carvacrol/beta-bisabolene/acrylic acid dodecyl ester chemotype. However, a significant variation among the populations was observed for the majority of the constituents. A high chemical-population structure, estimated both by principal component analysis (PCA) and unweighted pair group method with averaging (UPGMA) cluster analysis based on Euclidean distances, was observed. Both methods allowed separation of the populations in three groups defined rather by minor than by major compounds. The population groups were not strictly concordant with their bioclimatic or geographic location. Conservation strategies should concern all populations, because of their low size and their high level of destruction. Populations exhibiting particular compounds other than the major ones should be protected first.
NASA Astrophysics Data System (ADS)
Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.
2015-12-01
An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant contributors to organic carbon. Results show that the Yangtze River Delta region should focus on the joint pollution control of industrial processing, combustion emissions, mobile source emissions, and fugitive dust. Regional transport of air pollution among the cities are prominent, and the implementation of regional joint prevention and control of air pollution will help to alleviate fine particulate matter concentrations under heavy pollution case significantly.
EMISSIONS FROM COATINGS USED IN THE AUTO REFINISHING INDUSTRY
The report presents results of EPA Methods 24 and 311 analyses of the volatile organic compound (VOC) content of selected auto refinishing coatings and their components that are sold by the five major auto coating manufacturers. These analyses were undertaken to determine the acc...
The major histocompatibility complex and the chemosensory signalling of individuality in humans.
Eggert, F; Luszyk, D; Haberkorn, K; Wobst, B; Vostrowsky, O; Westphal, E; Bestmann, H J; Müller-Ruchholtz, W; Ferstl, R
The chemosensory identity of mice and rats is determined partly by polymorphic genes of the major histocompatibility complex (MHC). In inbred strains of mice, as well as in seminatural populations, MHC-associated mating preferences selectively influence reproductive success, thus serving to promote heterozygocity in the MHC. In order to determine whether MHC-associated chemosignals are present in humans, two studies were conducted. In a first study, olfactory identification of MHC-associated chemosignals was conducted on 12 trained rats' responses to the urine odors of humans. In a second study, MHC-associated olfactory cues in humans were analyzed by means of gas chromatography. The results indicate that the urine odors of humans are associated with the MHC and demonstrate that the profile of volatile components in the urine odors shows some association with the MHC. Furthermore, results show that a profile of some specific components, as well as a few ubiquitous volatiles, constitutes MHC-associated odor signals in humans.
NASA Astrophysics Data System (ADS)
Miller, Shelly L.; Anderson, Melissa J.; Daly, Eileen P.; Milford, Jana B.
Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources modeled are environmental tobacco smoke, paint emissions, cleaning and/or pesticide products, gasoline vapors, automobile exhaust, and wastewater treatment plant emissions. The receptor models analyzed are chemical mass balance, principal component analysis/absolute principal component scores, positive matrix factorization (PMF), and graphical ratio analysis for composition estimates/source apportionment by factors with explicit restriction, incorporated in the UNMIX model. All models identified only the major contributors to total exposure concentrations. PMF extracted factor profiles that most closely represented the major sources used to generate the simulated data. None of the models were able to distinguish between sources with similar chemical profiles. Sources that contributed <5% to the average total VOC exposure were not identified.
Rodríguez, Ana; Peris, Josep E; Redondo, Ana; Shimada, Takehiko; Peña, Leandro
2016-12-01
We have categorized the dataset from content and emission of terpene volatiles of peel and juice in both Navelina and Pineapple sweet orange cultivars in which D-limonene was either up- (S), down-regulated (AS) or non-altered (EV; control) ("Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception"(A. Rodríguez, J.E. Peris, A. Redondo, T. Shimada, E. Costell, I. Carbonell, C. Rojas, L. Peña, (2016)) [1]). Data from volatile identification and quantification by HS-SPME and GC-MS were classified by Principal Component Analysis (PCA) individually or as chemical groups. AS juice was characterized by the higher influence of the oxygen fraction, and S juice by the major influence of ethyl esters. S juices emitted less linalool compared to AS and EV juices.
In-situ continuous water analyzing module
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.
Vuts, József; Woodcock, Christine M; Caulfield, John C; Powers, Stephen J; Pickett, John A; Birkett, Michael A
2018-03-08
The response of virgin females of the legume pest Acanthoscelides obtectus (Coleoptera: Bruchidae) to headspace extracts of volatiles collected from flowers of a nectar plant, Daucus carota, was investigated using behaviour (four-arm olfactometry) and coupled gas chromatography-electroantennography (GC-EAG). Odours from inflorescences were significantly more attractive to virgin female beetles than clean air. Similarly, a sample of volatile organic compounds (VOCs) collected by air entrainment (dynamic headspace collection) was more attractive to beetles than a solvent control. In coupled GC-EAG experiments with beetle antennae and the VOC extract, six components showed EAG activity. Using coupled GC-mass spectrometry (GC-MS) and GC peak enhancement with authentic standards, the components were identified as α-pinene (S:R 16:1), sabinene, myrcene, limonene (S:R 1:3), terpinolene and (S)-bornyl acetate. Females preferred the synthetic blend of D. carota EAG-active volatiles to the solvent control in bioassays. When compared directly, odours of D. carota inflorescences elicited stronger positive behaviour than the synthetic blend. This is the first report of behaviourally active volatiles linked to pollen location for A. obtectus, and development of the six-component blend is being pursued, which could underpin the design of semiochemical-based field management approaches against this major pest of stored products. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
Volatility of organic aerosol and its components in the Megacity of Paris
NASA Astrophysics Data System (ADS)
Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.
2015-08-01
Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.
Qin, Kunming; Zheng, Lijuan; Cai, Hao; Cao, Gang; Lou, Yajing; Lu, Tulin; Shu, Yachun; Zhou, Wei; Cai, Baochang
2013-01-01
Pericarpium Citri Reticulatae (Chenpi in Chinese) has been widely used as an herbal medicine in Korea, China, and Japan. Chenpi extracts are used to treat indigestion and inflammatory syndromes of the respiratory tract such as bronchitis and asthma. This thesis will analyze chemical compositions of Chenpi volatile oil, which was performed by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry (GC × GC-HR-TOFMS). One hundred and sixty-seven components were tentatively identified, and terpene compounds are the main components of Chenpi volatile oil, a significant larger number than in previous studies. The majority of the eluted compounds, which were identified, were well separated as a result of high-resolution capability of the GC × GC method, which significantly reduces, the coelution. β -Elemene is tentatively qualified by means of GC × GC in tandem with high-resolution TOFMS detection, which plays an important role in enhancing the effects of many anticancer drugs and in reducing the side effects of chemotherapy. This study suggests that GC × GC-HR-TOFMS is suitable for routine characterization of chemical composition of volatile oil in herbal medicines.
Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke
2014-06-13
In this study, a novel sulfonated graphene/polypyrrole (SG/PPy) solid-phase microextraction (SPME) coating was prepared and fabricated on a stainless-steel wire by a one-step in situ electrochemical polymerization method. Crucial preparation conditions were optimized as polymerization time of 15min and SG doping amount of 1.5mg/mL. SG/PPy coating showed excellent thermal stability and mechanical durability with a long lifespan of more than 200 stable replicate extractions. SG/PPy coating demonstrated higher extraction selectivity and capacity to volatile terpenes than commonly-used commercial coatings. Finally, SG/PPy coating was practically applied for the analysis of volatile components from star anise and fennel samples. The majority of volatile components identified were terpenes, which suggested the ultra-high extraction selectivity of SG/PPy coating to terpenes during real analytical projects. Four typical volatile terpenes were further quantified to be 0.2-27.4μg/g from star anise samples with good recoveries of 76.4-97.8% and 0.1-1.6μg/g from fennel samples with good recoveries of 80.0-93.1%, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.
2010-12-01
The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Nishanbaev, Sabir; Bobakulov, Khayrulla; Okhundedaev, Bakhodir; Sasmakov, Sobirdjan; Yusupova, Elvira; Azimova, Shakhnoz; Abdullaev, Nasrulla
2018-05-17
The volatile compounds of hexane, benzene extracts and essential oils (EOs) isolated by steam- and hydrodistillation methods from aerial part of Alhagi canescens were studied by GC-MS analysis. Seventeen components were found in the hexane and benzene extracts, among them palmitic acid (25.2 and 22.1%), neophytadiene (7.3 and 22.3%), cis-chrysanthenyl acetate (11.0% in benzene), cis-geranyl acetate (7.8% in benzene) were major components. The first time fifty-six volatile compounds were identified in the EOs and camphor (5.9 and 27.8%), bicyclogermacrene (13.4 and 4.0%), α-copaene (6.1 and 2.6%), (-)-germacrene D (10.8 and 3.6%) and eucalyptol (3.7 and 8.1%) were the main components. The benzene, hexane extracts and EOs were screened for their antibacterial and antifungal activity. The benzene extract possess the highest antibacterial activity against Bacillus subtilis (12.12 ± 0.20) and Staphylococcus aureus (10.04 ± 0.10).
Fernandes, Yanne S; Trindade, Luma M P; Rezende, Maria Helena; Paula, José R; Gonçalves, Letícia A
2016-03-01
Trichogonia cinerea is endemic to Brazil and occurs in areas of cerrado and campo rupestre. In this study, we characterized the glandular and non-glandular trichomes on the aerial parts of this species, determined the principal events in the development of the former, and identified the main constituents of the volatile oil produced in its aerial organs. Fully expanded leaves, internodes, florets, involucral bracts, and stem apices were used for the characterization of trichomes. Leaves, internodes, florets, and involucral bracts were examined by light microscopy and scanning electron microscopy, whereas stem apices were examined only by light microscopy. Branches in the reproductive phase were used for the extraction and determination of the composition of the volatile oil. The species has three types of glandular trichomes, biseriate vesicular, biseriate pedunculate, and multicellular uniseriate, which secrete volatile oils and phenolic compounds. The major components identified in the volatile oil were 3,5-muuroladiene (39.56%) and butylated hydroxytoluene (13.07%).
Beck, John J; Merrill, Glory B; Higbee, Bradley S; Light, Douglas M; Gee, Wai S
2009-05-13
Nonpareil almonds, Prunus dulcis , account for the largest percentage of almond varieties grown in the Central Valley of California. Several studies have investigated the various nonvolatile and volatile components of various plant parts; however, the volatile organic compound (VOC) emission of almonds from a single cultivar has not been studied over the course of a growing season. This aspect is particularly relevant to research concerning the navel orangeworm (NOW), a major insect pest of almonds and other tree nuts. Despite the continued presence of NOW, the identification of particular VOCs and their relationship to NOW have not been addressed. The VOC emission of Nonpareil almonds was collected in situ over the course of a growing season by solid-phase microextraction (SPME). The VOCs (Z)-hex-3-enyl acetate, (Z)-hex-3-enyl butyrate, undecan-2-ol, beta-bourbonene, and tetradecane were present for the majority of the days investigated. Several VOCs exhibited positive electroantennographic signals from male and/or female NOW moths.
Diffusive retention of atmospheric gases in chert
NASA Astrophysics Data System (ADS)
Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.
2016-12-01
Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal materials; an important step toward understanding atmospheric evolution over geologic history.
Volatile element content of the heterogeneous upper mantle
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Forsyth, D. W.; Kamenetsky, V. S.; Niu, Y.
2014-12-01
The physical properties of the asthenosphere (e.g., seismic velocity, viscosity, electrical conductivity) have been attributed to either mineral properties at relevant temperature, pressure, and water content or to the presence of a low melt fraction. We resort to the geochemical studies of MORB to unravel the composition of the asthenosphere. It is important to determine to what extent the geochemical variations in axial MORB do represent a homogeneous mantle composition and variations in the physical conditions of magma generation and transport; or alternatively, they represent mixing of melts from a heterogeneous upper mantle. Lavas from intra-transform faults and off-axis seamounts share a common mantle source with axial MORB, but experience less differentiation and homogenization. Therefore they provide better estimates for the end-member volatile budget of the heterogeneous upper mantle. We present major, trace, and volatile element data (H2O, CO2, Cl, F, S) as well as Sr, Nd, and Pb isotopic compositions [1, 2] of basaltic glasses (MgO > 6.0 wt%) from the NEPR seamounts, Quebrada-Discovery-Gofar transform fault system, and Macquarie Island. The samples range from incompatible trace element (ITE) depleted (DMORB: Th/La<0.035) to enriched (EMORB: Th/La>0.07) spanning the entire range of EPR MORB. The isotopic composition of the samples correlates with the degree of trace element enrichment indicating long-lived mantle heterogeneity. Once shallow-level processes (degassing, crystallization, and crustal assimilation) have been considered, we conducted a two-component (DMORB- and EMORB-) mantle melting-mixing model. Our model reproduces the major, trace and volatile element contents and isotopic composition of our samples and suggests that (1) 90% of the upper mantle is highly depleted in ITE (DMORB source) with only 10% of an enriched component (EMORB source), (2) the EMORB source is peridotitic rather than pyroxenitic, and (3) NMORB do not represent an actual mantle source, but the product of magma mixing between D- and E-MORB. Finally we use the volatile to trace element ratios of our samples to estimate the volatile element budget of the end-member components of the upper mantle. [1] Niu, Y. et al. (2002) EPSL, 199, 327-345. [2] Kamenetsky, V. S. et al. (2000) J. Petrology, 41, 411-430.
Liu, Zhibin; Wang, Zhiyao; Lv, Xucong; Zhu, Xiaoping; Chen, Liling; Ni, Li
2018-02-01
Hong Qu, which mainly contains Monascus sp. and other microorganisms, as well as numerous microbial metabolites, is used as the fermentation starter of Hong Qu glutinous rice wine, a traditional alcoholic beverage. Two widely-used types of Hong Qu, namely Wuyi Qu (WYQ) and Gutian Qu (GTQ), were thoroughly compared for their fermentation properties, volatile profiles, and microbiota structures in this study. Significantly higher color value, glucoamylase and α-amylase activities were discovered in WYQ. And substantial variation in volatile components and microbial communities were also observed between them. It was identified that bacterial genus Burkholderia dominated GTQ (71.62%) and Bacillus dominated WYQ (44.73%), while Monascus purpureus was the most abundant fungal species in both types of starters (76.99%). In addition, 213 bacterial genera and 150 fungal species with low-abundance were also detected. Since the Linear Discriminant Analysis Effect Size algorithm, 14 genus-level bacterial taxa and 10 species-level fungal taxa could be utilized to distinguish these two types of starters. Moreover, the potential correlation of the volatile components and microbiota within WYQ and GTQ were further analyzed, by utilizing Partial Least Squares Discriminant Analysis. Ultimately, this study provides detailed insight into the volatile profiles and microbial communities presented in Hong Qu. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) vectors the bacterial causal pathogen of the deadly citrus disease, Huanglongbing (citrus greening) which is a major threat to citrus industry worldwide. We studied antennal and behavioral responses to principal components of head...
Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...
Major and trace element chemistry of separated fragments from a hibonite-bearing Allende inclusion
NASA Technical Reports Server (NTRS)
Davis, A. M.; Grossman, L.; Allen, J. M.
1978-01-01
The major and trace elements of separated fragments and a bulk sample from CG-11, a hibonite-bearing inclusion in the Allende meteorite, were analyzed. Major element abundances were used to determine the minerology of separated fragments. The high degree of correlation between Eu/Sm ratios and Lu/Yb ratios for the samples studied indicates that their rare earth element (REE) distributions are governed by two components. One, Lu-, Eu-rich, is probably hibonite; the other, depleted in these elements, seems to be associated with the secondary alteration phases, grossular, nepheline and anorthite. The REE distribution in CG-11 precludes melting events after formation of the secondary alteration phases, but a melting event involving the primary minerals cannot be excluded. The enrichment of Lu with respect to other measured REE in hibonite can be explained by present REE condensation models. Two Hf-bearing components, most likely hibonite and perovskite, are necessary to account for variations in Sc/Hf ratios in the fragments studied. The lithophile volatiles Na, Mn, Fe, Zn, and probably Cr increase in the same order as the amount of secondary alteration minerals; the volatile siderophile elements Co and Au, however, do not.
NASA Astrophysics Data System (ADS)
Gurenko, Andrey A.; Kamenetsky, Vadim S.; Kerr, Andrew C.
2016-11-01
We report O isotopes in olivine grains (Fo89-93) and volatile contents (CO2, H2O, F, S, Cl) in olivine-hosted melt inclusions from one Gorgona picrite and five komatiites with the aim of constraining the origin of H2O in these magmas. These samples have previously been analysed for major and trace elements and volatile concentrations (H2O, S, Cl) and B isotopes in melt inclusions. A distinctive feature of the included melts is relatively high contents of volatile components and boron, which show positive anomalies in, otherwise depleted, primitive mantle normalised trace and rare earth element patterns and range in δ11 B from -11.5 to 15.6‰. In this study, the olivines were systematically analysed for O isotopes (1) in the centre of grains, (2) near the grain boundaries and, (3) as close as possible to the studied melt inclusions. The majority of olivines (∼66%) are ;mantle;-like, 4.8 ‰ ≤δ18 O ≤ 5.5 ‰, with a subordinate but still significant number (∼33%) above, and only 2 grains below, this range. There is no systematic difference between the central and marginal parts of the grains. Higher than ;mantle; δ18OOl values are ascribed to low-T (<300 °C) serpentinisation along inner fractures and grain boundaries of olivine phenocrysts. The measured concentrations of volatile components in the melt inclusions corrected for the effects of post-entrapment crystallisation and H2O-CO2 exsolution in inclusion shrinkage bubbles are: 286-1748 μg/g CO2, 0.2-0.86 wt.% H2O, 48-82 μg/g F, 398-699 μg/g S and 132-198 μg/g Cl. They correspond to a pressure of 86 ± 44MPa or ∼2.5-km crustal depth of olivine crystallisation. The correlations of S and, to a lesser extent, of H2O, with highly incompatible lithophile elements and the correlation of F with Cl, but no relationships of H2O with Cl, rule out shallow depth magma degassing and/or crustal contamination. Our new δ18 O olivine and volatile component data combined with the existing, highly variable δ11 B values for melt inclusions also support the deep mantle origin of H2O (and probably other volatiles) in the Gorgona mafic and ultramafic magmas.
Volatility of organic aerosol and its components in the megacity of Paris
NASA Astrophysics Data System (ADS)
Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.
2016-02-01
Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.
In-situ continuous water monitoring system
Thompson, Cyril V.; Wise, Marcus B.
1998-01-01
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer.
In-situ continuous water monitoring system
Thompson, C.V.; Wise, M.B.
1998-03-31
An in-situ continuous liquid monitoring system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container by the flow of carrier gas into the liquid directing device. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectrometer and the volatile components are continuously analyzed by the mass spectrometer. 2 figs.
System for loading executable code into volatile memory in a downhole tool
Hall, David R.; Bartholomew, David B.; Johnson, Monte L.
2007-09-25
A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.
[Chemical components of Vetiveria zizanioides volatiles].
Huang, Jinghua; Li, Huashou; Yang, Jun; Chen, Yufen; Liu, Yinghu; Li, Ning; Nie, Chengrong
2004-01-01
The chemical components of the volatiles from Vetiveria zizanioides were analyzed by SPME and GC-MS. In the roots, the main component was valencene (30.36%), while in the shoots and leaves, they were 9-octadecenamide (33.50%), 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene (27.46%), and 1,2-benzendicarboxylic acid, diisooctyl ester(18.29%). The results showed that there were many terpenoids in the volatils. In shoot volatiles, there existed 3 monoterpenes, 2 sequiterpenes and 1 triterpene. Most of the volatiles in roots were sesquiterpenes.
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-01-01
Background and Aims Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Methods Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Key Results Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Conclusions Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers. PMID:21498566
Rodriguez-Saona, Cesar; Parra, Leonardo; Quiroz, Andrés; Isaacs, Rufus
2011-06-01
Studies of the effects of pollination on floral scent and bee visitation remain rare, particularly in agricultural crops. To fill this gap, the hypothesis that bee visitation to flowers decreases after pollination through reduced floral volatile emissions in highbush blueberries, Vaccinium corymbosum, was tested. Other sources of variation in floral emissions and the role of floral volatiles in bee attraction were also examined. Pollinator visitation to blueberry flowers was manipulated by bagging all flowers within a bush (pollinator excluded) or leaving them unbagged (open pollinated), and then the effect on floral volatile emissions and future bee visitation were measured. Floral volatiles were also measured from different blueberry cultivars, times of the day and flower parts, and a study was conducted to test the attraction of bees to floral volatiles. Open-pollinated blueberry flowers had 32 % lower volatile emissions than pollinator-excluded flowers. In particular, cinnamyl alcohol, a major component of the floral blend that is emitted exclusively from petals, was emitted in lower quantities from open-pollinated flowers. Although, no differences in cinnamyl alcohol emissions were detected among three blueberry cultivars or at different times of day, some components of the blueberry floral blend were emitted in higher amounts from certain cultivars and at mid-day. Field observations showed that more bees visited bushes with pollinator-excluded flowers. Also, more honey bees were caught in traps baited with a synthetic blueberry floral blend than in unbaited traps. Greater volatile emissions may help guide bees to unpollinated flowers, and thus increase plant fitness and bee energetic return when foraging in blueberries. Furthermore, the variation in volatile emissions from blueberry flowers depending on pollination status, plant cultivar and time of day suggests an adaptive role of floral signals in increasing pollination of flowers.
NASA Astrophysics Data System (ADS)
Shimizu, K.; Saal, A. E.; Hauri, E. H.; Nagle, A.; Forsyth, D. W.; Niu, Y.
2011-12-01
Off-axis seamounts and intra-transform lavas provide more direct geochemical information of the mantle than axial lavas. These smaller volumes of melts undergo lower extent of crystal fractionation and mixing compared to basalts erupting within the ridge axis due to a lack of long-lived magma chambers or along axis melt migration. Therefore, their study provide not only a more reliable approach to determine the volatile content of the intrinsic components forming the Earth's upper mantle, but also help constrain mantle convection, heterogeneity, and crustal recycling. Samples from the Quebrada-Discovery-Gofar (QDG) transform fault system (EPR 3°-5°S) and from northern EPR seamounts (5°-15° N) were collected during KN182-13 (R/V Knorr) and RAIT 02 (R/V Thomas Washington) expeditions, respectively. 159 submarine glasses were analyzed for major elements, trace elements, and volatile elements by triplicate analyses, as well as for Sr and Nd isotopes in a subset of samples. The QDG and northern EPR seamounts have similar trace element and isotopic composition that is consistent with melting of two-component mantle common to both regions. The degree of trace element enrichment (e.g. Th/La), isotopic composition, and depth of melt segregation (e.g. Sm/Yb) have a positive correlation and range from ultra depleted to relatively enriched compositions. In order to investigate the primary volatile content of submarine glasses we first considered shallow level processes, such as volatile degassing, sulfide saturation and interaction of melt with hydrothermally altered material. The vapor-melt equilibrium pressure (Dixon et al., 1995) indicates that the majority of the samples were super-saturated in CO2-H2O vapor at the pressure of eruption, which implies rapid magma ascent rate that prevented complete CO2 degassing. Samples that were sulfide saturated (Liu et al., 2007) and contaminated by seawater or seawater derived material (high Cl/K) were filtered out. F/Nd, Cl/K, and H2O/Ce ratios in our samples positively correlate with Th/La, Sm/Yb, and isotope ratios suggesting that the enriched mantle component is also enriched in volatile contents. S/Dy ratios are the exception, with relatively constant values in both enriched, and depleted basalts. Although it has been argued that correlation between Sr, Nd and Pb isotope ratios and fractionation corrected major element in seamount samples indicate different mantle lithologies under the mid-ocean ridges, we will show that such correlation might be an artifact of ignoring the effect of water during the correction for fractional crystallization. [1] Dixon et al. (1995) J. Pet., 36, 1607-1631. [2] Liu et al. (2007) Geochim Cosmochim Ac., 71, 1783-1799.
Leclercq-Perlat, Marie-Noëlle; Latrille, Eric; Corrieu, Georges; Spinnler, Henry-Eric
2004-08-01
Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.
Terpenoid Metabolism in Wild-Type and Transgenic Arabidopsis PlantsW⃞
Aharoni, Asaph; Giri, Ashok P.; Deuerlein, Stephan; Griepink, Frans; de Kogel, Willem-Jan; Verstappen, Francel W. A.; Verhoeven, Harrie A.; Jongsma, Maarten A.; Schwab, Wilfried; Bouwmeester, Harro J.
2003-01-01
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants. PMID:14630967
Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E.
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano. PMID:25177730
Hernández-Hernández, Elvia; Regalado-González, Carlos; Vázquez-Landaverde, Pedro; Guerrero-Legarreta, Isabel; García-Almendárez, Blanca E
2014-01-01
The effect of solvent polarity (methanol and pentane) on the chemical composition of hydrodistilled essential oils (EO's) of Lippia graveolens H.B.K. (MXO) and Origanum vulgare L. (EUO) was studied by GC-MS. Composition of modified starch microencapsulated EO's was conducted by headspace-solid-phase microextraction (HS-SPME). The antimicrobial activity of free and microencapsulated EO's was evaluated. They were tested against Salmonella sp., Brochothrix thermosphacta, Pseudomonas fragi, Lactobacillus plantarum, and Micrococcus luteus. Thymol and carvacrol were among the main components of EO's and their free and microencapsulated inhibitory activity was tested against M. luteus, showing an additive combined effect. Chemical composition of EO's varied according to the solvent used for GC analysis and to volatile fraction as evaluated by HS-SPME. Thymol (both solvents) was the main component in essential oil of MXO, while carvacrol was the main component of the volatile fraction. EUO showed α-pinene (methanol) and γ-terpinene (pentane) as major constituents, the latter being the main component of the volatile fraction. EO's showed good stability after 3 months storage at 4°C, where antimicrobial activity of microencapsulated EO's remained the same, while free EO's decreased 41% (MXO) and 67% (EUO) from initial activity. Microencapsulation retains most antimicrobial activity and improves stability of EO's from oregano.
Effect of milk on the deodorization of malodorous breath after garlic ingestion.
Hansanugrum, Areerat; Barringer, Sheryl A
2010-08-01
The effect of milk and milk components on the deodorization of diallyl disulfide (DADS), allyl methyl disulfide (AMDS), allyl mercaptan (AM), allyl methyl sulfide (AMS), and methyl mercaptan (MM) in the headspace of garlic as well as in the mouth- and nose-space after garlic ingestion was investigated using selected ion flow tube-mass spectrometry (SIFT-MS). Fat-free and whole milk significantly reduced the head-, mouth-, and nose-space concentrations of all volatiles. Water was the major component in milk responsible for the deodorization of volatiles. Due to its higher fat content, whole milk was more effective than fat-free milk in the deodorization of the more hydrophobic volatiles diallyl disulfide and allyl methyl disulfide. Milk was more effective than water and 10% sodium caseinate in the deodorization of allyl methyl sulfide, a persistent garlic odor, in the mouth after garlic ingestion. Addition of milk to garlic before ingestion had a higher deodorizing effect on the volatiles in the mouth than drinking milk after consuming garlic. Practical Application: Ingesting beverages or foods with high water and/or fat content such as milk may help reduce the malodorous odor in breath after garlic ingestion and mask the garlic flavor during eating. To enhance the deodorizing effect, deodorant foods should be mixed with garlic before ingestion.
CO-OCCURRENCE OF METHYL- TERT-BUTYL ETHER (MTBE) AND BTEX COMPOUNDS AT MARINAS IN A LARGE RESEVOIR
Methyl tert-butyl ether (MTBE) is released into the environment as one of some gasoline components, not as a pure compound. BTEX compounds (benzene, tolune, ethylbenzene, and xylenes) are major volatile constituents found in gasoline and are water soluble and mobile. This study...
The PH gene determines fruit acidity and contributes to the evolution of sweet melons
USDA-ARS?s Scientific Manuscript database
Acids are one of the three major components of fleshy fruit taste, together with sugars and volatile flavor compounds. However, the molecular-genetic control of acid accumulation in fruit is poorly understood and, to date, no genes responsible for acid accumulation in fleshy fruit have been function...
Zhao, Hong-bing; Wang, Zhi-hui; He, Fang; Meng, Han; Peng, Jian-hua; Shi, Ji-lian
2015-04-01
To analyze the volatile components in different processed products of Zingiber officinale rhizome, and to make clear the effect of different heating degree on them. The volatile components were extracted from four kinds of processed products by applying steam distillation, and then were analyzed by GC-MS. There were totally 43 components of volatile oil identified from four kinds of processed products of Zingiber officinale rhizome. Fresh product, dried product, and charcoal product of Zingiber officinale rhizome each had 27 components of volatile oil, while sand fried product contained 24 components. Fresh Zingiber officinale rhizome contained 22. 59% of zingiberene, 20. 87% of a-citral and 11. 01% of β-phellandrene, respectively. After processing in different heating degree, the volatile components changed greatly in both of their quantity and quality, For instance, dried Zingiber officinale rhizome contained 40. 48% of α-citral and 8-phellandrene content was slightly lower at 10. 38%. 32.73% of 3,7,11-trimethyl-l, 6, 10-dodecatriene,16. 38% of murolan-3, 9 (11)-diene-10-peroxy and 3. 36% of cubebene newly emerged in the sand fried Zingiber officinale rhizome, and eudesm-4 (14) and β-bisabolol, etc. However, β-phellandrene content was only 1. 95%. The zingiberene and β-sesquiphellandrene were the highest in charcoal product, besides, new components such as α-cedrene, decanal and γ-elemene appeared. Volatile components in different processed products of Zingiber officinale rhizome were different in both of their kinds and contents. This method is suitable for the analysis of volatile components in Zingiber officinale rhizome, and this study can provide the experimental evidence for quality evaluation and clinical application for ginger processed products.
Wright, Cynthia R; Setzer, William N
2014-01-01
The essential oils from the cladodes of Opuntia littoralis, Opuntia ficus-indica and Opuntia prolifera growing wild on Santa Catalina Island, California, were obtained by hydrodistillation and analysed by gas chromatography-mass spectrometry (GC-MS). Terpenoids were the dominant class of volatiles in O. littoralis, with the two main components being the furanoid forms of cis-linalool oxide (10.8%) and trans-linalool oxide (8.8%). Fatty acid-derived compounds dominated the essential oil of O. ficus-indica with linoleic acid (22.3%), palmitic acid (12.7%), lauric acid (10.5%) and myristic acid (4.2%) as major fatty acids. O. prolifera oil was composed of 46.6% alkanes and the primary hydrocarbon component was heptadecane (19.2%). Sixteen compounds were common to all the three Opuntia species.
Methods of Si based ceramic components volatilization control in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie
A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.
NASA Astrophysics Data System (ADS)
Shimizu, Kei; Saal, Alberto E.; Myers, Corinne E.; Nagle, Ashley N.; Hauri, Erik H.; Forsyth, Donald W.; Kamenetsky, Vadim S.; Niu, Yaoling
2016-03-01
We report major, trace, and volatile element (CO2, H2O, F, Cl, S) contents and Sr, Nd, and Pb isotopes of mid-ocean ridge basalt (MORB) glasses from the Northern East Pacific Rise (NEPR) off-axis seamounts, the Quebrada-Discovery-GoFar (QDG) transform fault system, and the Macquarie Island. The incompatible trace element (ITE) contents of the samples range from highly depleted (DMORB, Th/La ⩽ 0.035) to enriched (EMORB, Th/La ⩾ 0.07), and the isotopic composition spans the entire range observed in EPR MORB. Our data suggest that at the time of melt generation, the source that generated the EMORB was essentially peridotitic, and that the composition of NMORB might not represent melting of a single upper mantle source (DMM), but rather mixing of melts from a two-component mantle (depleted and enriched DMM or D-DMM and E-DMM, respectively). After filtering the volatile element data for secondary processes (degassing, sulfide saturation, assimilation of seawater-derived component, and fractional crystallization), we use the volatiles to ITE ratios of our samples and a two-component mantle melting-mixing model to estimate the volatile content of the D-DMM (CO2 = 22 ppm, H2O = 59 ppm, F = 8 ppm, Cl = 0.4 ppm, and S = 100 ppm) and the E-DMM (CO2 = 990 ppm, H2O = 660 ppm, F = 31 ppm, Cl = 22 ppm, and S = 165 ppm). Our two-component mantle melting-mixing model reproduces the kernel density estimates (KDE) of Th/La and 143Nd/144Nd ratios for our samples and for EPR axial MORB compiled from the literature. This model suggests that: (1) 78% of the Pacific upper mantle is highly depleted (D-DMM) while 22% is enriched (E-DMM) in volatile and refractory ITE, (2) the melts produced during variable degrees of melting of the E-DMM controls most of the MORB geochemical variation, and (3) a fraction (∼65% to 80%) of the low degree EMORB melts (produced by ∼1.3% melting) may escape melt aggregation by freezing at the base of the oceanic lithosphere, significantly enriching it in volatile and trace element contents. Our results are consistent with previously proposed geodynamical processes acting at mid-ocean ridges and with the generation of the E-DMM. Our observations indicate that the D-DMM and E-DMM have (1) a relatively constant CO2/Cl ratio of ∼57 ± 8, and (2) volatile and ITE element abundance patterns that can be related by a simple melting event, supporting the hypothesis that the E-DMM is a recycled oceanic lithosphere mantle metasomatized by low degree melts. Our calculation and model give rise to a Pacific upper mantle with volatile content of CO2 = 235 ppm, H2O = 191 ppm, F = 13 ppm, Cl = 5 ppm, and S = 114 ppm.
NASA Astrophysics Data System (ADS)
Byers, John A.; Fefer, Daniela; Levi-Zada, Anat
2013-12-01
The plant bugs Lygus hesperus, Lygus lineolaris, and Lygus elisus (Hemiptera: Miridae) are major pests of many agricultural crops in North America. Previous studies suggested that females release a sex pheromone attractive to males. Other studies showed that males and females contain microgram amounts of ( E)-4-oxo-2-hexenal, hexyl butyrate, and ( E)-2-hexenyl butyrate that are emitted as a defense against predators. Using gas chromatography-mass spectrometry, we found that female L. lineolaris and L. elisus have a 4:10 ratio of hexyl butyrate to ( E)-2-hexenyl butyrate that is reversed from the 10:1 ratio in female L. hesperus (males of the three species have ~10:1 ratio). These reversed ratios among females of the species suggest a behavioral role. Because both sexes have nearly equal amounts of the major volatiles, females should release more to attract males. This expectation was supported because L. hesperus females released more hexyl butyrate (mean of 86 ng/h) during the night (1800-0700 hours) than did males (<1 ng/h). We used slow-rotating pairs of traps to test the attraction of species to blends of the volatiles with a subtractive method to detect synergism. Each species' major butyrate ester was released at 3 μg/h, the minor butyrate according to its ratio, and ( E)-4-oxo-2-hexenal at 2 μg/h. The resulting catches of only Lygus males suggest that ( E)-4-oxo-2-hexenal is an essential sex pheromone component for all three species, ( E)-2-hexenyl butyrate is essential for L. elisus and L. lineolaris, and hexyl butyrate is essential for L. hesperus. However, all three components are recognized by each species since ratios of the butyrate esters are critical for conspecific attraction and heterospecific avoidance by males and thus play a role in reproductive isolation among the three species. Because L. hesperus males and females are known to emit these major volatiles for repelling ant predators, our study links defensive allomones in Lygus bugs with an additional use as sex pheromones.
NASA Astrophysics Data System (ADS)
Pan, Zhiyuan; Liu, Li
2018-02-01
In this paper, we extend the GARCH-MIDAS model proposed by Engle et al. (2013) to account for the leverage effect in short-term and long-term volatility components. Our in-sample evidence suggests that both short-term and long-term negative returns can cause higher future volatility than positive returns. Out-of-sample results show that the predictive ability of GARCH-MIDAS is significantly improved after taking the leverage effect into account. The leverage effect for short-term volatility component plays more important role than the leverage effect for long-term volatility component in affecting out-of-sample forecasting performance.
Liu, Cui-Ting; Zhang, Min; Yan, Ping; Liu, Hai-Chan; Liu, Xing-Yun; Zhan, Ruo-Ting
2016-01-01
Zhengtian pills (ZTPs) are traditional Chinese medicine (TCM) which have been commonly used to treat headaches. Volatile components of ZTPs extracted by ethyl acetate with an ultrasonic method were analyzed by gas chromatography mass spectrometry (GC-MS). Twenty-two components were identified, accounting for 78.884% of the total components of volatile oil. The three main volatile components including protocatechuic acid, ferulic acid, and ligustilide were simultaneously determined using ultra-high performance liquid chromatography coupled with diode array detection (UHPLC-DAD). Baseline separation was achieved on an XB-C18 column with linear gradient elution of methanol-0.2% acetic acid aqueous solution. The UHPLC-DAD method provided good linearity (R (2) ≥ 0.9992), precision (RSD < 3%), accuracy (100.68-102.69%), and robustness. The UHPLC-DAD/GC-MS method was successfully utilized to analyze volatile components, protocatechuic acid, ferulic acid, and ligustilide, in 13 batches of ZTPs, which is suitable for discrimination and quality assessment of ZTPs.
USDA-ARS?s Scientific Manuscript database
Ammonia volatilization is a major component of the nitrogen balance of a feedyard, and the effects of ammonia loss range from the economic (loss of manure fertilizer value) to the environmental (air quality degradation, overfertilization of ecosystems). Seven years of research at the USDA-ARS Conser...
Alarm Pheromones of the Ant Atta Texana
John C. Moser; R. C. Brownlee; R. Silverstein
1968-01-01
Methyl-3-heptanone (0.59 μg/head) and 2-heptanone (0.14 μg/head) are the main volatile components of the mandibular glands of major workers. In the laboratory, worker ants detected and were attracted by 4-methyl-3-heptanone at a concentration of 5.7 x 10-13 g/cm3 (2.7 x 107 molecules...
NASA Astrophysics Data System (ADS)
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; Shilling, John E.; Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Schobesberger, Siegfried; Zaveri, Rahul A.; Mohr, Claudia; Lutz, Anna; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Rivera-Rios, Jean C.; Keutsch, Frank N.; Thornton, Joel A.
2017-01-01
We present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C5 compounds were major components (˜ 50 %) of SOA. The SOA composition and effective volatility evolved both as a function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, > 30 % of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.
Pickett, John A.; Barasa, Stephen; Birkett, Michael A.
2014-01-01
The interaction between volatile and non-volatile, e.g. proteinaceous, components of pheromone and other semiochemical-based signalling systems presents a daunting set of problems for exploitation in the management of vertebrates, good or bad. Aggravating this is the complexity of the mixtures involved with pheromones, not only by definition associated with each species, but also with individual members of that species and their positions within their immediate communities. Nonetheless, already in some contexts, particularly where signals are perceived at other trophic levels from those of the vertebrates, e.g. by arthropods, reductionist approaches can be applied whereby the integrity of complex volatile mixtures is maintained, but perturbed by augmentation with individual components. In the present article, this is illustrated for cattle husbandry, fish farming and human health. So far, crude formulations have been used to imitate volatile semiochemical interactions with non-volatile components, but new approaches must be developed to accommodate more sophisticated interactions and not least the activities of the non-volatile, particularly proteinaceous components, currently being deduced. PMID:25109967
Zhang, Delong; Wang, Xiaodong; Lu, Ruili; Li, Kangle; Hu, Fenglin
2011-12-01
To determine the volatile components of mycelia of Isaria cateinannulata cultured under different culture conditions, and to analyze the relationships between the culture conditions and volatile metabolites. Mycelia were cultured in solid plates with SDAY medium and liquid shake flasks with SDY medium. The culture conditions were at 25 degrees C and 8 days. Volatile components in the mycelia of I. cateinannulata were extracted with simultaneous distillation extraction and analyzed by gas chromatography-mass spectrometry. Alkenes, alkanes, heterocyclic and polycyclic aromatic hydrocarbons (PAH) were existed abundantly both in the mycelia of liquid and solid cultures, but the kinds and relative concentrations of the volatile components in mycelia of liquid and solid cultures were very different. Forty-one compounds were identified from the mycelia of solid culture and 32 compounds were identified from the mycelia of liquid culture. Esters, quinones and oximes were only found in solid cultured mycelia whereas carboxylic acids were only discovered in the mycelia of liquid culture. At the same time, mycelia of liquid culture contained much more phenols. The most abundant compounds in mycelia of liquid and solid cultures were hydrocarbons. The volatile extracts of solid cultured mycelia contained 57.6% alkenes and 9.19% alkanes. The volatile extracts of liquid cultured mycelia contained 7.85% alkenes and 22.4% alkanes. Liquid or solid culture conditions influenced the volatile components of mycelia of I. cateinannulata.
Marques, André M; Fingolo, Catharina E; Kaplan, Maria Auxiliadora C
2017-11-01
High Speed Countercurrent Chromatography (HSCCC) technique was used for the preparative isolation of the major leishmanicidal compounds from the essential oils of Piper claussenianum species in Brazil. The essential oils from inflorescences of P. claussenianum were analyzed by GC-FID and GC-MS. The enantiomeric ratio of the major constituents of the P. claussenianum essential oils were determined using a Rt-DEXsm chiral capillary column by GC-FID analysis. It was found an enantiomeric excess of (+)-(E)-nerolidol in the leaves, and (+)-linalool and (+)-(E)-nerolidol in the inflorescences essential oil. The major volatile terpenes alcohols were isolated in preparative scale from inflorescences: linalool (320.0 mg) and nerolidol (95.0 mg) in high purity level. The HSCCC, a support-free liquid-liquid partition chromatographic technique, proved to be an effective and useful method for fast isolation and purification of hydrophobic and similarly structured bioactive components from essential oils of Piper species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Possible complex organic compounds on Mars.
Kobayashi, K; Sato, T; Kajishima, S; Kaneko, T; Ishikawa, Y; Saito, T
1997-01-01
It is suggested that primitive Mars had somehow similar environments as primitive Earth. If life was born on the primitive earth using organic compounds which were produced from the early Earth environment, the same types of organic compounds were also formed on primitive Mars. Such organic compounds might have been preserved on Mars still now. We are studying possible organic formation on primitive and present Mars. A gaseous mixture of CO2, CO, N2 and H2O with various mixing ratios were irradiated with high energy protons (major components of cosmic rays). Hydrogen cyanide and formaldehyde were detected among volatile products, and yellow-brown-colored water-soluble non-volatile substances were produced, which gave amino acids after acid-hydrolysis. Major part of "amino acid precursors" were not simple molecules like aminonitriles, but complex compounds which eluted earlier than free amino acids in cation-exchange HPLC. These organic compounds should be major targets in the future Mars mission. Strategy for the detection of the complex organics on Mars will be discussed.
Typification of cider brandy on the basis of cider used in its manufacture.
Rodríguez Madrera, Roberto; Mangas Alonso, Juan J
2005-04-20
A study of typification of cider brandies on the basis of the origin of the raw material used in their manufacture was conducted using chemometric techniques (principal component analysis, linear discriminant analysis, and Bayesian analysis) together with their composition in volatile compounds, as analyzed by gas chromatography with flame ionization to detect the major volatiles and by mass spectrometric to detect the minor ones. Significant principal components computed by a double cross-validation procedure allowed the structure of the database to be visualized as a function of the raw material, that is, cider made from fresh apple juice versus cider made from apple juice concentrate. Feasible and robust discriminant rules were computed and validated by a cross-validation procedure that allowed the authors to classify fresh and concentrate cider brandies, obtaining classification hits of >92%. The most discriminating variables for typifying cider brandies according to their raw material were 1-butanol and ethyl hexanoate.
Lanzerstorfer, Christof
2015-11-01
In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues. © The Author(s) 2015.
Sun, Shi-Hao; Chai, Guo-Bi; Li, Peng; Xie, Jian-Ping; Su, Yue
2017-10-13
Jujube extract is commonly used as a food additive and flavoring. The unique jujube aroma and the mild sweet aroma of the extract are critical factors that determine product quality and affect consumer acceptability. The aroma changes with changes in the extraction condition, which is typically dependent on the characteristics of volatile oils in the extract. Despite their importance, the volatile oils of jujube extract have received less attention compared with the soluble components. So, an appropriate qualitative and quantitative method for determination of the volatile oils is vitally important for quality control of the product. A method coupling steam distillation/drop-by-drop extraction with gas chromatography-mass spectrometry (S3DE/GC-MS) was developed to determine the volatile components of jujube extract. Steam distillation was coupled with solvent extraction; the resulting condensate containing volatile components from jujube extract was drop-by-drop extracted using 2 mL of methyl tertiary butyl ether. The solvent served two purposes. First, the solvent extracted the volatile components from the condensate. Second, the volatile components were pre-concentrated by drop-by-drop accumulation in the solvent. As a result, the extraction, separation, and concentration of analytes in the sample were simultaneously completed in one step. The main parameters affecting the S3DE procedure, such as the water steam bubbling rate, extraction solvent volume, sample weight and S3DE time, were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R 2 ≥ 0.9887) and good repeatability (RSDs ≤ 10.35%, n = 5) for 16 analytes in spiked standard analyte samples were achieved. With the S3DE/GC-MS method, seventy-six volatile compounds from jujube extract were identified and the content of 16 compounds was measured. The results were similar to those from simultaneous distillation extraction. The developed method was simple, fast, effective, sensitive, and provided an overall profile of the volatile components in jujube extract. Thus, this method can be used to determine the volatile components of extracts. Graphical abstract The diagram of steam distillation/drop-by-drop extraction device.
Financial sector development, economic volatility and shocks in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Ibrahim, Muazu; Alagidede, Paul
2017-10-01
The role of financial sector development in economic volatility has been extensively studied albeit without informative results largely on the failure of extant studies to decompose volatility into its various components. By disaggregating volatility using the spectral approach, this study examines the effect of financial development on volatility components as well as channels through which finance affects volatility in 23 sub-Saharan African countries over the period 1980-2014. Our findings based on the newly developed panel cointegration estimation strategy reveal that while financial development affects business cycle volatility in a non-linear fashion, its effect on long run fluctuation is imaginary. More specifically, well developed financial sectors dampen volatility. Further findings show that while monetary shocks have large magnifying effect on volatility, their effect in the short run is minuscule. The reverse, however, holds for real shocks. The channels of manifestation shows that financial development dampens (magnifies) the effect of real shocks (monetary shocks) on the components of volatility with the dampening effects consistently larger only in the short run. Strengthening financial sector supervision and cross-border oversight may be very crucial in examining the right levels of finance and price stability necessary to falter economic fluctuations.
Zhao, D; Gao, J; Wang, Y; Jiang, J; Li, R
2012-08-01
Tessaratoma papillosa (Drury) (Hemiptera: Tessaratomidae) is a serious insect pest of litchi and longan in South China. When disturbed, this insect could release large quantities of disagreeable odorous volatiles from its scent gland. Knowledge on the scent gland and its secretion is crucial for developing the semiochemical methods to manage this pest. Morphology and ultrastructure of the metathoracic scent glands (MTGs) were studied under stereo and scanning electron microscopy, and the volatile compounds of MTGs from both male and female T. papillosa were analyzed with coupled gas chromatography-mass spectrometry (GC-MS). The MTG complex is located between the metathorax and the first abdominal segment at the ventral surface of the insect, which has a well-developed single double valve cystic-shaped orange median reservoir, paired colorless lateral glands in both sides, and a long and wavy tubular accessory gland that inlays tightly into the ventral edge around the median reservoir. The MTG opens to the body surface through paired ostioles located between the meso- and metacoxae of the evaporatorium with mushroom bodies. The GC-MS analyses showed that female and male adults have nine major volatile components in common. Tridecane is the most abundant in both females and males, reaching up to 47.1% and 51.8% of relative amount, respectively. The minor component is benzophenone with only 0.28% and 0.14%. Furthermore, undecane, tetradecane, 3-methyl-tridecane, and cyclopentadecane were found only in males. The possible function of volatile compounds of MTG contents in T. papillosa is addressed.
Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.
Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir
2003-04-01
High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.
NASA Technical Reports Server (NTRS)
Ganguly, Jibamitra
1990-01-01
The spectral and density characteristics of Phobos and Deimos (the two small natural satellites of Mars) strongly suggest that a significant fraction of the near-earth asteroids are made of carbonaceous chondrites, which are rich in volatile components and, thus, could serve as potential resources for propellants and life supporting systems in future planetary missions. However, in order to develop energy efficient engineering designs for the extraction of volatiles, knowledge of the nature and modal abundance of the minerals in which the volatiles are structurally bound and appropriate kinetic data on the rates of the devolatilization reactions is required. Theoretical calculations to predict the modal abundances and compositions of the major volatile-bearing and other mineral phases that could develop in the bulk compositions of C1 and C2 classes (the most volatile rich classes among the carbonaceous chondrites) were performed as functions of pressure and temperature. The rates of dehydration of talc at 585, 600, 637, and 670 C at P(total) = 1 bar were determine for the reaction: Talc = 3 enstatite + quartz + water. A scanning electron microscopic study was conducted to see if the relative abundance of phases can be determined on the basis of the spectral identification and x ray mapping. The results of this study and the other studies within the project are discussed.
NASA Astrophysics Data System (ADS)
Sato, Kei; Fujitani, Yuji; Inomata, Satoshi; Morino, Yu; Tanabe, Kiyoshi; Ramasamy, Sathiyamurthi; Hikida, Toshihide; Shimono, Akio; Takami, Akinori; Fushimi, Akihiro; Kondo, Yoshinori; Imamura, Takashi; Tanimoto, Hiroshi; Sugata, Seiji
2018-04-01
Traditional yield curve analysis shows that semi-volatile organic compounds are a major component of secondary organic aerosols (SOAs). We investigated the volatility distribution of SOAs from α-pinene ozonolysis using positive electrospray ionization mass analysis and dilution- and heat-induced evaporation measurements. Laboratory chamber experiments were conducted on α-pinene ozonolysis, in the presence and absence of OH scavengers. Among these, we identified not only semi-volatile products, but also less volatile highly oxygenated molecules (HOMs) and dimers. Ozonolysis products were further exposed to OH radicals to check the effects of photochemical aging. HOMs were also formed during OH-initiated photochemical aging. Most HOMs that formed from ozonolysis and photochemical aging had 10 or fewer carbons. SOA particle evaporation after instantaneous dilution was measured at < 1 and ˜ 40 % relative humidity. The volume fraction remaining of SOAs decreased with time and the equilibration timescale was determined to be 24-46 min for SOA evaporation. The experimental results of the equilibration timescale can be explained when the mass accommodation coefficient is assumed to be 0.1, suggesting that the existence of low-volatility materials in SOAs, kinetic inhibition, or some combined effect may affect the equilibration timescale measured in this study.
Volatile components of horsetail (Hippuris vulgaris L.) growing in central Italy.
Cianfaglione, Kevin; Papa, Fabrizio; Maggi, Filippo
2017-10-01
Hippuris vulgaris, also known as horsetail or marestail, is a freshwater macrophyte occurring in lakes, rivers, ponds and marshes. According to 'The IUCN Red List of Threatened Species', H. vulgaris is at a high risk of extinction in Italy in the medium-term future. In the present study, we analysed for the first time the volatile composition of H. vulgaris growing in central Italy. For the purpose, the essential oil was obtained by hydrodistillation and analysed by GC-MS. The chemical composition was dominated by aliphatic compounds such as fatty acids (26.0%), ketones (18.7%) and alkanes (11.4%), whereas terpenoids were poorer and mostly represented by diterpenes (7.4%). n-Hexadecanoic acid (25.5%), hexahydrofarnesyl acetone (17.5%) and trans-phytol (7.4%) were the major volatile constituents. These compounds are here proposed as chemotaxonomic markers of the species.
Proceedings of a workshop on Lunar Volcanic Glasses: Scientific and Resource Potential
NASA Technical Reports Server (NTRS)
Delano, John W. (Editor); Heiken, Grant H. (Editor)
1990-01-01
This workshop on lunar mare volcanism was the first since 1975 to deal with the major scientific advances that have occurred in this general subject, and the first ever to deal specifically with volcanic glasses. Lunar volcanic glasses are increasingly being recognized as the best geochemical and petrologic probes into the lunar mantle. Lunar volcanic glasses, of which 25 compositional varieties are presently known, appear to represent primary magmas that were produced by partial melting of differentiated mantle source regions at depths of perhaps 400 to 500 km. These high-magnesian picritic magmas were erupted onto the lunar surface in fire fountains associated with the release of indigenous lunar volatiles. The cosmic significance of this volatile component, in an otherwise depleted Moon, remains a lingering puzzle. The resource potential, if any, of the surface-correlated volatile sublimates on the volcanic glass spherules had not been systematically addressed prior to this workshop.
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2015-12-01
Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [2,3]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Hauri et al. 1996, Nature 382, 415-419. [2] Dixon et al. 2002, Nature 420:385-89 [3] Workman et al. 2006, EPSL 241:932-51.
Cha, Dong H; Yee, Wee L; Goughnour, Robert B; Sim, Sheina B; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2012-03-01
The apple maggot fly, Rhagoletis pomonella, infests apple (Malus domestica) and hawthorn species (most notably the downy hawthorn, Crataegus mollis) in the eastern USA. Evidence suggests that the fly was introduced into the western USA sometime in the last 60 years. In addition to apple, R. pomonella also infests two species of hawthorns in the western USA as major hosts: the native black hawthorn (C. douglasii) and the introduced ornamental English hawthorn, C. monogyna. Apple and downy hawthorn-origin flies in the eastern USA use volatile blends emitted from the surface of their respective ripening fruit to find and discriminate among host trees. To test whether the same is true for western flies, we used coupled gas chromatography and electroantennographic detection (GC-EAD) and developed a 7-component apple fruit blend for western apple-origin flies, an 8-component black hawthorn fruit blend for flies infesting C. douglasii, and a 9-component ornamental hawthorn blend for flies from C. monogyna. Crataegus douglasii and C. monogyna-origin flies showed similar levels of upwind directed flight to their respective natal synthetic fruit blends in flight tunnel assays compared to whole fruit adsorbent extracts, indicating that the blends contain all the behaviorally relevant fruit volatiles to induce maximal response levels. The black and ornamental hawthorn blends shared four compounds in common including 3-methylbutan-1-ol, which appears to be a key volatile for R. pomonella populations in the eastern, southern, and western USA that show a preference for fruit from different Crataegus species. However, the blends also differed from one another and from domesticated apple in several respects that make it possible that western R. pomonella flies behaviorally discriminate among fruit volatiles and form ecologically differentiated host races, as is the case for eastern apple and hawthorn flies.
NASA Astrophysics Data System (ADS)
Kim, Hyun-Wook; Lee, Soo-Yeon; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Yun-Kyung; Lee, Choong-Hee; Choi, Yun-Sang; Lee, Ju-Woon; Kim, Cheon-Jei
2014-10-01
The objective of this study is to determine the effect of soy sauce on volatile compounds and lipid oxidation of cooked irradiated beef patties. Sulfur-containing volatile components, which are produced by irradiation, were not found in all treatments. Volatile components derived from soy sauce, such as 3-hydroxy-2-butanone, acetic acid, 3-methyl-1-butanol and 2-methyl-1-butanol, were detected in beef patties containing soy sauce regardless of irradiation and packaging method. Volatile aldehydes, including hexanal, significantly decreased the irradiated beef patty prepared with soy sauce compared to those of irradiated beef patty made with NaCl at 1 day and 5 days after irradiation. In addition, combined use of vacuum packaging and soy sauce treatments could inhibit the formation of volatile compounds and 2-thiobarbituric acid reactive substances during chilled storage. Therefore, the use of soy sauce in cooked and irradiated beef could reduce the production of volatile components associated with the irradiation-induced off-flavor and lipid oxidation.
Wang, Chen; Lv, Shidong; Wu, Yuanshuang; Lian, Ming; Gao, Xuemei; Meng, Qingxiong
2016-10-01
Biluochun is a typical non-fermented tea and is also famous for its unique aroma in China. Few studies have been performed to evaluate the effect of the manufacturing process on the formation and content of its aroma. The volatile components were extracted at different manufacturing process steps of Biluochun green tea using fully automated headspace solid-phase microextraction (HS-SPME) and further characterised by gas chromatography-mass spectrometry (GC-MS). Among 67 volatile components collected, the fractions of linalool oxides, β-ionone, phenylacetaldehyde, aldehydes, ketones, and nitrogen compounds were increased while alcohols and hydrocarbons declined during the manufacturing process. The aroma compounds decreased the most during the drying steps. We identified a number of significantly changed components that can be used as markers and quality control during the producing process of Biluochun. The drying step played a major role in the aroma formation of green tea products and should be the most important step for quality control. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Conifer-Derived Monoterpenes and Forest Walking
Sumitomo, Kazuhiro; Akutsu, Hiroaki; Fukuyama, Syusei; Minoshima, Akiho; Kukita, Shin; Yamamura, Yuji; Sato, Yoshiaki; Hayasaka, Taiki; Osanai, Shinobu; Funakoshi, Hiroshi; Hasebe, Naoyuki; Nakamura, Masao
2015-01-01
Conifer and broadleaf trees emit volatile organic compounds in the summer. The major components of these emissions are volatile monoterpenes. Using solid phase microextraction fiber as the adsorbant, monoterpenes were successfully detected and identified in forest air samples. Gas chromatography/mass chromatogram of monoterpenes in the atmosphere of a conifer forest and that of serum from subjects who were walking in a forest were found to be similar each other. The amounts of α-pinene in the subjects became several folds higher after forest walking. The results indicate that monoterpenes in the atmosphere of conifer forests are transferred to and accumulate in subjects by inhalation while they are exposed to this type of environment. PMID:26819913
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL−1, and the average LOD for alcohols was 0.66 ng mL−1. This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis. PMID:26819905
Kakuta, Shoji; Yamashita, Toshiyuki; Nishiumi, Shin; Yoshida, Masaru; Fukusaki, Eiichiro; Bamba, Takeshi
2015-01-01
A dynamic headspace extraction method (DHS) with high-pressure injection is described. This dynamic extraction method has superior sensitivity to solid phase micro extraction, SPME and is capable of extracting the entire gas phase by purging the headspace of a vial. Optimization of the DHS parameters resulted in a highly sensitive volatile profiling system with the ability to detect various volatile components including alcohols at nanogram levels. The average LOD for a standard volatile mixture was 0.50 ng mL(-1), and the average LOD for alcohols was 0.66 ng mL(-1). This method was used for the analysis of volatile components from biological samples and compared with acute and chronic inflammation models. The method permitted the identification of volatiles with the same profile pattern as in vitro oxidized lipid-derived volatiles. In addition, the concentration of alcohols and aldehydes from the acute inflammation model samples were significantly higher than that for the chronic inflammation model samples. The different profiles between these samples could also be identified by this method. Finally, it was possible to analyze alcohols and low-molecular-weight volatiles that are difficult to analyze by SPME in high sensitivity and to show volatile profiling based on multi-volatile simultaneous analysis.
Melt focusing and geochemical evolution at mid-ocean ridges: simulations of reactive two-phase flow
NASA Astrophysics Data System (ADS)
Keller, T.; Katz, R. F.; Hirschmann, M. M.
2017-12-01
The geochemical character of MORB and related off-axis volcanic products reflects the signature of chemical reservoirs in the mantle, the processes of melt transport from source to surface, or both. Focusing of partial melt to the ridge axis controls the proportion of deep, volatile- and incompatible-rich melts that contribute to MORB formation. However, the effect of volatiles, including CO2 and H2O, on melt segregation and focusing remains poorly understood. We investigate this transport using 2-D numerical simulations of reactive two-phase flow. The phases are solid mantle and liquid magma. Major elements and volatiles are represented by a system with 4 or 6 pseudo-components. This captures accepted features of mantle melting with volatiles. The fluid-dynamical model is McKenzie's formulation [1], while melting and reactive transport use the R_DMC method [2,3]. Trace element transport is computed for 5 idealized elements between highly incompatible and compatible behavior. Our results indicate that volatiles cause channelized melt transport, which leads to fluctuations in volume and composition of melt focused to the axis. The volatile-induced expansion of the melting regime at depth, however, has no influence on melt focusing. Up to 50% of deep, volatile-rich melts are not focused to the axis, but are emplaced along the oceanic LAB. There, crystallization of accumulated melt leads to enrichment of volatiles and incompatibles in the deep lithosphere. This has implications for volatile recycling by subduction, seismic properties of the oceanic LAB, and potential sources for seamount volcanism. Results from a suite of simulations, constrained by catalogued observational data [4,5,6], enable prediction of global MORB and volatile output and systematic variations of major, volatile and trace element concentrations as a function of mantle conditions and dynamic properties. REFERENCES[1] McKenzie (1984), doi:10.1093/petrology/25.3.713.[2] Rudge, Bercovici & Spiegelman (2011), doi:10.1111/j.1365-246X.2010.04870.x.[3] Keller & Katz (2016), doi:10.1093/petrology/egw030.[4] Dalton, Langmuir & Gale (2014), doi:10.1126/science.1249466.[5] Gale, Langmuir & Dalton (2014), doi:10.1093/petrology/egu017.[6] White et al. (2001), doi:10.1093/petrology/42.6.1171.
Ghimire, Bimal Kumar; Yoo, Ji Hye; Yu, Chang Yeon; Chung, Ill-Min
2017-07-01
To investigate the composition of volatile compounds in the different accessions of Perilla frutescens (P. frutescens) collected from various habitats of China and Japan. In the present study, the essential oil from the leaves of P. frutescens cultivars from China and Japan was extracted by hydro-distillation and the chemical composition and concentration of the volatile components present in the oils were determined by gas chromatography-mass spectrometry (GC-MS) analysis. Among the volatile components, the major proportion was of perilla ketone, which was followed by elemicin and beta-caryophyllene in the Chinese Perilla cultivars. The main component in the oil extracted from the Japanese accessions was myristicin, which was followed by perilla ketone and beta-caryophyllene. We could distinguish seven chemotypes, namely the perilla ketone (PK) type, perilla ketone, myristicin (PM) type, perilla ketone, unknown (PU) type, perilla ketone, beta-caryophyllene, myristicine (PB) type, perilla ketone, myristicin, unknown (PMU) type, perilla ketone, elemicine, myristicin, beta-caryophyllene (PEMB) type, and the perilla ketone, limonene, beta-cryophyllene, myristicin (L) type. Most of the accessions possessed higher essential oil content before the flowering time than at the flowering stage. The average plant height, leaf length, leaf width of the Chinese accessions was higher than those of the Japanese accessions. The results revealed that the harvest time and geographical origin caused polymorphisms in the essential oil composition and morphological traits in the Perilla accessions originating from China and Japan. Therefore, these chemotypes with desirable characters might be useful for industrial exploitation and for determining the harvest time. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
D'Ambro, Emma L.; Lee, Ben H.; Liu, Jiumeng; ...
2017-01-04
Here, we present measurements of secondary organic aerosol (SOA) formation from isoprene photochemical oxidation in an environmental simulation chamber at a variety of oxidant conditions and using dry neutral seed particles to suppress acid-catalyzed multiphase chemistry. A high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) utilizing iodide-adduct ionization coupled to the Filter Inlet for Gases and Aerosols (FIGAERO) allowed for simultaneous online sampling of the gas and particle composition. Under high-HO 2 and low-NO conditions, highly oxygenated (O : C ≥ 1) C 5 compounds were major components (~50%) of SOA. The SOA composition and effective volatility evolved both as amore » function of time and as a function of input NO concentrations. Organic nitrates increased in both the gas and particle phases as input NO increased, but the dominant non-nitrate particle-phase components monotonically decreased. We use comparisons of measured and predicted gas-particle partitioning of individual components to assess the validity of literature-based group-contribution methods for estimating saturation vapor concentrations. While there is evidence for equilibrium partitioning being achieved on the chamber residence timescale (5.2 h) for some individual components, significant errors in group-contribution methods are revealed. In addition, >30% of the SOA mass, detected as low-molecular-weight semivolatile compounds, cannot be reconciled with equilibrium partitioning. These compounds desorb from the FIGAERO at unexpectedly high temperatures given their molecular composition, which is indicative of thermal decomposition of effectively lower-volatility components such as larger molecular weight oligomers.« less
Distribution of 28 elements in size fractions of lunar mare and highlands soils
NASA Technical Reports Server (NTRS)
Boynton, W. V.; Wasson, J. T.
1977-01-01
Four volatile, six siderophile and 18 generally lithophile elements were determined in six sieve fractions of mare soil 15100 (moderately mature) and seven sieve fractions of highlands soil 66080 (highly mature). Previous work (Boynton et al., 1976) showed that the volatile elements in lunar soils were enriched in the finest size fraction relative to the coarsest factors by up to about 20. The present investigation tests Boynton's interpretation that the distribution pattern of the volatiles indicates the presence of two components: a volume-correlated component having volatile concentrations independent of grain size and a surface-correlated component with concentration increasing with decreasing grain size.
NASA Astrophysics Data System (ADS)
Niculescu, R.; Iosub, I.; Clenci, A.; Zaharia, C.; Iorga-Simăn, V.
2017-10-01
Increased environmental awareness and depletion of fossil petroleum resources are driving the automotive industry to seek out and use alternative fuels. For instance, the biofuel is a major renewable energy source to supplement declining fossil fuel resources. The addition of alcohols like methanol and ethanol is practical in biodiesel blends due to its miscibility with the pure biodiesel. Alcohols also improve physico-chemical properties of biodiesel blends, which lead to improved combustion efficiency. Proper volatility of fuels is critical to the operation of internal combustion engines with respect to both performance and emissions. Volatility may be characterised by various measurements, the most common of which are vapour pressure, distillation and the vapour/liquid ratio. The presence of ethanol or other oxygenates may affect these properties and, as a result, performance and emissions, as well. However, in the case of diesel-biodiesel-alcohols mixtures, the variance of component volatility makes difficult the analysis of the overall volatility. Thus, the paper presents an experimental method of distilling diesel-biodiesel-alcohols mixtures by adjusting the boiler pressure of an i-Fischer Dist equipment.
Volatile Analyzer for Lunar Polar Missions
NASA Technical Reports Server (NTRS)
Gibons, Everett K.; Pillinger, Colin T.; McKay, David S.; Waugh, Lester J.
2011-01-01
One of the major questions remaining for the future exploration of the Moon by humans concerns the presence of volatiles on our nearest neighbor in space. Observational studies, and investigations involving returned lunar samples and using robotic spacecraft infer the existence of volatile compounds particularly water [1]. It seems very likely that a volatile component will be concentrated at the poles in circumstances where low-temperatures exist to provide cryogenic traps. However, the full inventory of species, their concentration and their origin and sources are unknown. Of particular importance is whether abundances are sufficient to act as a resource of consumables for future lunar expeditions especially if a long-term base involving humans is to be established. To address some of these issues requires a lander designed specifically for operation at a high-lunar latitude. A vital part of the payload needs to be a volatile analyzer such as the Gas Analysis Package specifically designed for identification quantification of volatile substances and collecting information which will allow the origin of these volatiles to be identified [1]. The equipment included, particularly the gas analyzer, must be capable of operation in the extreme environmental conditions to be encountered. No accurate information yet exists regarding volatile concentration even for sites closer to the lunar equator (because of contamination). In this respect it will be important to understand (and thus limit) contamination of the lunar surface by extraneous material contributed from a variety of sources. The only data for the concentrations of volatiles at the poles comes from orbiting spacecraft and whilst the levels at high latitudes may be greater than at the equator, the volatile analyzer package under consideration will be designed to operate at the highest specifications possible and in a way that does not compromise the data.
Kappers, Iris F; Verstappen, Francel W A; Luckerhoff, Ludo L P; Bouwmeester, Harro J; Dicke, Marcel
2010-05-01
Cucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography-mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-alpha-farnesene, and (E)-beta-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents.
Verstappen, Francel W. A.; Luckerhoff, Ludo L. P.; Bouwmeester, Harro J.; Dicke, Marcel
2010-01-01
Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents. PMID:20383796
NASA Astrophysics Data System (ADS)
Galin, Ts.; Gerstl, Z.; Yaron, B.
1990-05-01
The stability of kerosene in soils as affected by volatization was determined in a laboratory column experiment by following the losses in the total concentration and the change in composition of the residuals in a dune sand, a loamy sand, and a silty loam soil during a 50-day period. Seven major compounds ranging between C 9 and C 15 were selected from a large variety of hydrocarbons forming kerosene and their presence in the remaining petroleum product was determined. The change in composition of kerosene during the experimental period was determined by gas chromatography and related to the seven major compounds selected. The experimental conditions — air-dairy soil and no subsequent addition of water—excluded both biodegradative and leaching. losses. The losses of kerosene in air-dried soil columns during the 50-day experimental period and the changes in the composition of the remaining residues due to volatilization are reported. The volatilization of all the components determined was greater from the dune sand and loamy sand soils than from the silty loam soil. It was assumed that the reason for this behavior was that the dune sand and the loamy sand soils contain a greater proportion of large pores (>4.5 μm) than the silty loam soil, even though the total porosity of the loamy sand and the silty loam is similar. In all the soils in the experiment, the components with a high carbon number formed the main fraction of the kerosene residues after 50 days of incubation.
Effect of supercritical carbon dioxide decaffeination on volatile components of green teas.
Lee, S; Park, M K; Kim, K H; Kim, Y-S
2007-09-01
Volatile components in regular and decaffeinated green teas were isolated by simultaneous steam distillation and solvent extraction (SDE), and then analyzed by GC-MS. A total of 41 compounds, including 8 alcohols, 15 terpene-type compounds, 10 carbonyls, 4 N-containing compounds, and 4 miscellaneous compounds, were found in regular and decaffeinated green teas. Among them, linalool and phenylacetaldehyde were quantitatively dominant in both regular and decaffeinated green teas. By a decaffeination process using supercritical carbon dioxide, most volatile components decreased. The more caffeine was removed, the more volatile components were reduced in green teas. In particular, relatively nonpolar components such as terpene-type compounds gradually decreased according to the decaffeination process. Aroma-active compounds in regular and decaffeinated green teas were also determined and compared by aroma extract dilution analysis (AEDA). Most greenish and floral flavor compounds such as hexanal, (E)-2-hexenal, and some unknown compounds disappeared or decreased after the decaffeination process.
Deciphering the History of Martian Volatiles: A Multi-Component Space Exploration Program
NASA Astrophysics Data System (ADS)
Chassefiere, E.
2000-07-01
To characterize Mars climate evolution requires to trace back the history of volatile species, including water. Indeed, atmospheric gases control, through UV-visible absorption and IR radiative transfer, the thermal structure of the atmosphere, the surface temperature, and ultimately the global hydrological system, which is a major component of the present Earth climate system. The composition and mass of the atmosphere is controlled by physical/chemical processes acting as sources (outgassing) or sinks (atmospheric escape, surface weathering, physical trapping in the subsurface). The history of volatiles is influenced by inner planet processes, like core convection which may give rise to a planetary-scale magnetic field able to withhold the atmosphere from the solar wind, inhibiting escape, or mantle convection, through outgassing and recycling of gas by geochemical cycles. Conversely, atmosphere may possibly retroact on the inner planet dynamical regime, for example if large amounts of liquid water are maintained at the surface by greenhouse effect, which could favour specific tectonism styles (like plate tectonism). The history of volatiles may therefore be related, not only to climate, but also to the thermal history of the inner planet, through a complicated chain of causes and effects. It is an essential link for reconstructing the global evolution of the Mars system. Focusing on climate, it appears that, provided the present climate system is understood and modelled, it must be possible to extrapolate to the past, provided the way the atmosphere evolved is known, as well as solar emission fluxes controlling thermal structure and escape.
Feng, Xiao-Liang; He, Yun-biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria. PMID:24286016
Feng, Xiao-Liang; He, Yun-Biao; Liang, Yi-Zeng; Wang, Yu-Lin; Huang, Lan-Fang; Xie, Jian-Wei
2013-01-01
Gas chromatography-mass spectrometry and multivariate curve resolution were applied to the differential analysis of the volatile components in Agrimonia eupatoria specimens from different plant parts. After extracted with water distillation method, the volatile components in Agrimonia eupatoria from leaves and roots were detected by GC-MS. Then the qualitative and quantitative analysis of the volatile components in the main root of Agrimonia eupatoria was completed with the help of subwindow factor analysis resolving two-dimensional original data into mass spectra and chromatograms. 68 of 87 separated constituents in the total ion chromatogram of the volatile components were identified and quantified, accounting for about 87.03% of the total content. Then, the common peaks in leaf were extracted with orthogonal projection resolution method. Among the components determined, there were 52 components coexisting in the studied samples although the relative content of each component showed difference to some extent. The results showed a fair consistency in their GC-MS fingerprint. It was the first time to apply orthogonal projection method to compare different plant parts of Agrimonia eupatoria, and it reduced the burden of qualitative analysis as well as the subjectivity. The obtained results proved the combined approach powerful for the analysis of complex Agrimonia eupatoria samples. The developed method can be used to further study and quality control of Agrimonia eupatoria.
Ray, A M; Swift, I P; Moreira, J A; Millar, J G; Hanks, L M
2009-10-01
We report the identification and field bioassays of a major component of the male-produced aggregation pheromone of Anelaphus inflaticollis Chemsak, an uncommon desert cerambycine beetle. Male A. inflaticollis produced a sex-specific blend of components that included (R)-3-hydroxyhexan-2-one, (S)-2-hydroxyhexan-3-one, 2,3-hexanedione, and (2R,3R)- and (2R,3S)-2,3-hexanediols. Field trials with baited bucket traps determined that the reconstructed synthetic pheromone blend and (R)-3-hydroxyhexan-2-one alone attracted adult A. inflaticollis of both sexes, with significantly more beetles being attracted to the blend. We conclude that (R)-3-hydroxyhexan-2-one is a major pheromone component of A. inflaticollis, and our results suggest that one or more of the minor components may further increase attraction of conspecifics. Scanning electron microscopy showed that male A. inflaticollis have pores on the prothorax that are consistent in structure with sex-specific pheromone gland pores in related species. Males also displayed stereotyped calling behavior similar to that observed in other cerambycine species. This study represents the first report of volatile pheromones for a cerambycine species in the tribe Elaphidiini.
Electroantennographic Bioassay as a Screening Tool for Host Plant Volatiles
Beck, John J.; Light, Douglas M.; Gee, Wai S.
2012-01-01
Plant volatiles play an important role in plant-insect interactions. Herbivorous insects use plant volatiles, known as kairomones, to locate their host plant.1,2 When a host plant is an important agronomic commodity feeding damage by insect pests can inflict serious economic losses to growers. Accordingly, kairomones can be used as attractants to lure or confuse these insects and, thus, offer an environmentally friendly alternative to pesticides for insect control.3 Unfortunately, plants can emit a vast number volatiles with varying compositions and ratios of emissions dependent upon the phenology of the commodity or the time of day. This makes identification of biologically active components or blends of volatile components an arduous process. To help identify the bioactive components of host plant volatile emissions we employ the laboratory-based screening bioassay electroantennography (EAG). EAG is an effective tool to evaluate and record electrophysiologically the olfactory responses of an insect via their antennal receptors. The EAG screening process can help reduce the number of volatiles tested to identify promising bioactive components. However, EAG bioassays only provide information about activation of receptors. It does not provide information about the type of insect behavior the compound elicits; which could be as an attractant, repellent or other type of behavioral response. Volatiles eliciting a significant response by EAG, relative to an appropriate positive control, are typically taken on to further testing of behavioral responses of the insect pest. The experimental design presented will detail the methodology employed to screen almond-based host plant volatiles4,5 by measurement of the electrophysiological antennal responses of an adult insect pest navel orangeworm (Amyelois transitella) to single components and simple blends of components via EAG bioassay. The method utilizes two excised antennae placed across a "fork" electrode holder. The protocol demonstrated here presents a rapid, high-throughput standardized method for screening volatiles. Each volatile is at a set, constant amount as to standardize the stimulus level and thus allow antennal responses to be indicative of the relative chemoreceptivity. The negative control helps eliminate the electrophysiological response to both residual solvent and mechanical force of the puff. The positive control (in this instance acetophenone) is a single compound that has elicited a consistent response from male and female navel orangeworm (NOW) moth. An additional semiochemical standard that provides consistent response and is used for bioassay studies with the male NOW moth is (Z,Z)-11,13-hexdecadienal, an aldehyde component from the female-produced sex pheromone.6-8 PMID:22588282
Elevated carbon dioxide reduces emission of herbivore-induced volatiles in Zea mays.
Block, Anna; Vaughan, Martha M; Christensen, Shawn A; Alborn, Hans T; Tumlinson, James H
2017-09-01
Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO 2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO 2 had decreased emission of its major sesquiterpene, (E)-β-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-β-caryophyllene hyper-accumulated at elevated CO 2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO 2 . Our data indicate that elevated CO 2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO 2 on stomatal conductance. These findings suggest that elevated CO 2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses. © 2017 John Wiley & Sons Ltd.
Dong, Wenjiang; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Tan, Lehe
2017-11-01
This study investigated the effect of different drying techniques, namely, room-temperature drying (RTD), solar drying (SD), heat-pump drying (HPD), hot-air drying (HAD), and freeze drying (FD), on bioactive components, fatty acid composition, and the volatile compound profile of robusta coffee beans. The data showed that FD was an effective method to preserve fat, organic acids, and monounsaturated fatty acids. In contrast, HAD was ideal for retaining polyunsaturated fatty acids and amino acids. Sixty-two volatile compounds were identified in the differently dried coffee beans, representing 90% of the volatile compounds. HPD of the coffee beans produced the largest number of volatiles, whereas FD resulted in the highest volatile content. A principal component analysis demonstrated a close relationship between the HPD, SD, and RTD methods whereas the FD and HAD methods were significantly different. Overall, the results provide a basis for potential application to other similar thermal sensitive materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
Métoyer, Benjamin; Lebouvier, Nicolas; Hnawia, Edouard; Herbette, Gaëtan; Thouvenot, Louis; Asakawa, Yoshinori; Nour, Mohammed; Raharivelomanana, Phila
2018-06-05
Volatile components of seven species of the Bazzanioideae sub-family (Lepidoziaceae) native to New Caledonia, including three endemic species ( Bazzania marginata , Acromastigum caledonicum and A. tenax ), were analyzed by GC-FID-MS in order to index these plants to known or new chemotypes. Detected volatile constituents in studied species were constituted mainly by sesquiterpene, as well as diterpene compounds. All so-established compositions cannot successfully index some of them to known chemotypes but afforded the discovery of new chemotypes such as cuparane/fusicoccane. The major component of B. francana was isolated and characterized as a new zierane-type sesquiterpene called ziera-12(13),10(14)-dien-5-ol ( 23 ). In addition, qualitative intraspecies variations of chemical composition were very important particularly for B. francana which possessed three clearly defined different compositions. We report here also the first phytochemical investigation of Acromastigum species. Moreover, crude diethyl ether extract of B. vitatta afforded a new bis(bibenzyl) called vittatin ( 51 ), for which a putative biosynthesis was suggested.
Ara, Katayoun Mahdavi; Raofie, Farhad
2016-07-01
Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.
Deng, Xiao-Hua; Xie, Peng-Fei; Peng, Xin-Hui; Yi, Jian-Hua; Zhou, Ji-Heng; Zhou, Qing-Ming; Pu, Wen-Xuan; Dai, Yuan-Gang
2010-08-01
A pot experiment with the soils from Yongzhou, Liuyang, and Sangzhi, the high-quality tobacco planting regions of Hunan Province, was conducted to study the effects of climate, soil, and their interaction on some neutral volatile aroma components in flue-cured tobacco leaves. The contents of test neutral volatile aroma components in the flue-cured tobacco leaves were of medium variation, and the variation intensity was decreased in the order of dihydroactinolide, damascenone, furfural, total megastigmatrienone, and beta-ionone. Climate, soil, and their interaction affected the neutral volatile aroma components in different degrees. The furfural content was most affected by climate, the damascenone content was most affected by climate and by soil, the total megastigmatrienone and beta-ionone contents were most affected by the interaction of soil and climate, while the dihydroactinolide content was less affected by soil, climate, and their interaction. The contribution of climate, soil, and their interaction to the contents of the five aroma components was 40.82%, 20.67%, and 38.51%, respectively. During different growth periods of tobacco, different climate factors had different effects on the neutral volatile aroma components. The rainfall, cloudiness, and mean air temperature at rooting stage, the diurnal temperature amplitude, sunshine time, and evaporation at vigorous growth stage, and the rainfall, evaporation, and mean air temperature at maturing stage were the top three climate factors affecting the contents of the neutral volatile aroma components in flue-tobacco leaves. For the soil factors, the available potassium, available phosphorus, and pH were the top three factors affecting the contents of the five components.
Chen, Hong-Ping; Pan, Huan-Huan; Zhang, Xin; Liu, Fei; Chen, Mei-Jun; Luo, Guan-Hua; Liu, You-Ping
2016-07-01
To investigate the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma with different stir-baking degrees (from slight stir-baking, stir-baking to yellow, stir-baking to brown, to stir-baking to scorch). In the present experiment, the Atractylodis Macrocephalae Rhizoma samples with different stir-baking degrees were collected at different processing time points. The contents of volatile oil in various samples were determined by steam distillation method, and the volatile compounds were extracted by using static headspace sampling method. Gas chromatography-mass spectrography (GC-MS) and automated mass spectral deconrolution and identification system (AMDIS) were combined with Kováts retention index to analyze the chemical constituents of the volatile compounds. The results showed that with the deepening of the stir-baking degree, the content of volatile oil was decreased step by step in 4 phases, and both the compositions and contents of volatile components from Atractylodis Macrocephalae Rhizoma showed significant changes. The results showed that the dynamic change rules of volatile components from Atractylodis Macrocephalae Rhizoma in the process of stir-baking were closely related to the processing degree; in addition, Atractylodis Macrocephalae Rhizoma and honey bran had adsorption on each other. These results can provide a scientific basis for elucidating the stir-baking (with bran) mechanism of Atractylodis Macrocephalae Rhizoma. Copyright© by the Chinese Pharmaceutical Association.
[Study on absorbing volatile oil with mesoporous carbon].
Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan
2014-11-01
Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.
Matsushita, Takaya; Zhao, Jing Jing; Igura, Noriyuki; Shimoda, Mitsuya
2018-06-01
A simple and solvent-free method was developed for the authentication of commercial spices. The similarities between gas chromatographic fingerprints were measured using similarity indices and multivariate data analyses, as morphological differentiation between dried powders and small spice particles was challenging. The volatile compounds present in 11 spices (i.e. allspice, anise, black pepper, caraway, clove, coriander, cumin, dill, fennel, star anise, and white pepper) were extracted by headspace solid-phase microextraction, and analysed by gas chromatography-mass spectrometry. The largest 10 peaks were selected from each total ion chromatogram, and a total of 65 volatiles were tentatively identified. The similarity indices (i.e. the congruence coefficients) were calculated using the data matrices of the identified compound relative peak areas to differentiate between two sets of fingerprints. Where pairs of similar fingerprints produced high congruence coefficients (>0.80), distinctive volatile markers were employed to distinguish between these samples. In addition, hierarchical cluster analysis and principal component analysis were performed to visualise the similarity among fingerprints, and the analysed spices were grouped and characterised according to their distinctive major components. This method is suitable for screening unknown spices, and can therefore be employed to evaluate the quality and authenticity of various spices. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Chiu, Gloria M. Y.
Volatile organic compounds (VOCs), PAHs and carbonyl compounds are the major toxic components in Hong Kong. Emissions from motor vehicles have been one of the primary pollution sources in the metropolitan areas throughout Hong Kong for a long time. A 1-yr monitoring program for VOCs, PAHs and carbonyl compounds had been performed at a roadside urban station at Hong Kong Polytechnic University in order to determine the variations and correlations of each selected species (VOCs, PAHs and carbonyl compounds). This study is aimed to analyze toxic volatile organic compounds (benzene, toluene, ethylbenzene and xylene), two carbonyl compounds (formaldehyde, acetaldehyde), and selective polycyclic aromatic hydrocarbons. The monitoring program started from 16 April 1999 to 30 March 2000. Ambient VOC concentrations, many of which originate from the same sources as particulate PAHs and carbonyls compounds, show significant quantities of benzene, toluene and xylenes. Correlations and multivariate analysis of selected gaseous and particulate phase organic pollutants were performed. Source identification by principle component analysis and hierarchical cluster analysis allowed the identification of four sources (factors) for the roadside monitoring station. Factor 1 represents the effect of diesel vehicle exhaust. Factor 2 shows the contribution of aromatic compounds. Factor 3 explains photochemical products—formaldehyde and acetaldehyde. Factor 4 explains the effect of gasoline vehicle exhaust.
[Solidification of volatile oil with graphene oxide].
Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai; Sun, E; Xu, Yi-Hao
2015-02-01
To evaluate the properties of solidifying volatile oil with graphene oxide, clove oil and zedoary turmeric oil were solidified by graphene oxide. The amount of graphene oxide was optimized with the eugenol yield and curcumol yield as criteria. Curing powder was characterized by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The effects of graphene oxide on dissolution in vitro and thermal stability of active components were studied. The optimum solidification ratio of graphene oxide to volatile oil was 1:1. Dissolution rate of active components had rare influence while their thermal stability improved after volatile oil was solidified. Solidifying herbal volatile oil with graphene oxide deserves further study.
Effects of gamma irradiation on the yields of volatile extracts of Angelica gigas Nakai
NASA Astrophysics Data System (ADS)
Seo, Hye-Young; Kim, Jun-Hyoung; Song, Hyun-Pa; Kim, Dong-Ho; Byun, Myung-Woo; Kwon, Joog-Ho; Kim, Kyong-Su
2007-11-01
The study was carried out to determine the effects of gamma irradiation on the volatile flavor components including essential oils, of Angelica gigas Nakai. The volatile organic compounds from non- and irradiated A. gigas Nakai at doses of 1, 3, 5, 10 and 20 kGy were extracted by a simultaneous steam distillation and extraction (SDE) method and identified by GC/MS analysis. A total of 116 compounds were identified and quantified from non- and irradiated A. gigas Nakai. The major volatile compounds were identified 2,4,6-trimethyl heptane, α-pinene, camphene, α-limonene, β-eudesmol, α-murrolene and sphatulenol. Among these compounds, the amount of essential oils in non-irradiated sample were 77.13%, and the irradiated samples at doses of 1, 3, 5, 10 and 20 kGy were 84.98%, 83.70%, 83.94%, 82.84% and 82.58%, respectively. Oxygenated terpenes such as β-eudesmol, α-eudesmol, and verbenone were increased after irradiation but did not correlate with the irradiation dose. The yields of active substances such as essential oil were increased after irradiation; however, the yields of essential oils and the irradiation dose were not correlated. Thus, the profile of composition volatiles of A. gigas Nakai did not change with irradiation.
Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.
Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang
2005-02-15
This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.
NASA Astrophysics Data System (ADS)
Wallace, Henry W.; Sanchez, Nancy P.; Flynn, James H.; Erickson, Mathew H.; Lefer, Barry L.; Griffin, Robert J.
2018-01-01
From February 7 to 27, 2015, a mobile air quality laboratory was deployed to a location proximate to a major refinery, the Port of Houston, and several neighborhoods to conduct measurements of atmospheric trace gases and particulate matter. Two statistical models were utilized to apportion the sources of pollution impacting this site and the denizens of the nearby neighborhoods. Positive matrix factorization (PMF) was performed on the organic signal of the aerosol mass spectra, resulting in five factors totaling an average of 4.1 μg/m3 of the organic aerosol: hydrocarbon-like (0.67 μg/m3), cooking (0.35 μg/m3) biomass burning (1.14 μg/m3), low-volatility oxidized (1.15 μg/m3), and semi-volatile oxidized (0.78 μg/m3). Principal component analysis was performed on daytime and nighttime data, including concentrations from PMF output, of other PM1 components, and of trace gases. This generated five daytime and five nighttime factors that explained 74.5% and 73.0% of the variance, respectively. The most important factors impacting this site were from mobile source exhaust and petrochemical aromatic compound emissions. Together these two factors also constitute most of the observed carcinogens.
Portable Medical Diagnosis Instrument
NASA Technical Reports Server (NTRS)
Coleman, Matthew A. (Inventor); Straume, Tore (Inventor); Loftus, David J. (Inventor); Li, Jing (Inventor); Singh, Anup K. (Inventor); Davis, Cristina E. (Inventor)
2017-01-01
A system that integrates several technologies into a single, portable medical diagnostic apparatus for analyzing a sample body fluid (liquid and/or gas): (1) a mechanism to capture airborne microdroplets and to separate the body fluid into a first fluid component (primarily gas) and a second fluid component (primarily liquid); (2) a volatilizer to convert a portion of the second fluid component into a third fluid component that is primarily a gas; (3) a functionalized nanostructure (NS) array configured to receive, identify, and estimate concentration of at least one constituent in the first and/or third fluid components; (4) a miniaturized differential mobility spectrometer (DMS) module; and (5) a biomarker sensor, to detect volatile and non-volatile molecules in a sample fluid, which may contain one or more components of blood, breath, perspiration, saliva, and urine.
Han, Song-Lin; Li, Xin-Xia; Mian, Qiang-Hui; Lan, Wei; Liu, Yan
2013-01-01
To compare the antioxidant active components from two species of chamomile-matricaria and Roman chamomile produced in Xinjiang. The TLC-bioautography was used, with 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical as the experimental model. The peak areas of various antioxidant components were obtained by TLC-scanning for analyzing antioxidant active components contained in volatile oil extracts and flavone extracts from the two species of chamomiles. The total peak area was taken as the indicator for comparing the antioxidant capacities of the two types of extracts, and comparing them with the total antioxidant activity of flavone extracts of the two species of chamomiles. According to the result of TLC-bioautography in volatile oil extracts from the two species of chamomiles, volatile oil extracts from chamomile showed four white antioxidant spots, including en-yne-dicycloether, and volatile oil extracts from Roman chamomile showed only one white antioxidant spot. The TLC-scanning result showed that the peak area of antioxidant spots of volatile oil extracts from chamomile was significantly larger than that of volatile oil extracts from Roman chamomile. According to the test on the antioxidant activity of the two species of chamomiles with ultraviolet-visible spectrophotometry, the concentration of chamomile after scavenging 50% of DPPH radicals was 0.66 g x L(-1), whereas the figure for Roman chamomile was 0.33 g x L(-1). According to the result of TLC-bioautography in flavone extracts from the two species of chamomiles, flavone extracts from chamomile showed seven yellowish antioxidant spots, including apigenin and apigenin-7-glucoside, and flavone extracts of Roman chamomile showed eight yellowish antioxidant spots, including apigenin and apigenin-7-glucoside. The TLC-scanning results showed that the peak area of antioxidant spots of flavone extracts from Roman chamomile was significantly larger than that of flavone extracts from chamomile. Volatile oil extracts from the two species of chamomiles have significant difference in the antioxidant activity in TLC-bioautography. Specifically, the antioxidant activity of volatile oil extracts from chamomile is stronger than volatile oil extracts from Roman chamomile; the known antioxidant active components in volatile oil extracts from chamomile is en-yne-dicycloether, while all of the other three antioxidant active components as well as antioxidant active components in volatile oil extracts from Roman chamomile are unknown components and remain to be further determined. Considering the significant difference in the number of antioxidant active spots in volatile oil extracts from the two species of chamomiles, the result can be applied to distinguish the two species of chamomiles. The antioxidant activity determination result for flavone extracts from two species of chamomiles was consistent with the result of TLC-bioautography, showing that flavone extracts from chamomile and Roman chamomile are more antioxidant active, while that of Roman chamomile is stronger than chamomile. Flavone extracts from both of the two species of chamomiles contain apigenin and pigenin-7-glucoside, which are known, while all of the other five antioxidant active components contained in flavone extracts from chamomile and the other six antioxidant active components contained in flavone extracts from Roman chamomile are unknown and remain to be further identified. The method lays a foundation for further identification of antioxidant active components contained in chamomile.
Characterization of volatile aroma compounds from red and black rice bran.
Sukhonthara, Sukhontha; Theerakulkait, Chockchai; Miyazawa, Mitsuo
2009-01-01
The volatile oils from red and black rice bran were obtained by hydrodistillation using diethyl ester and the components of that oil were analyzed by capillary GC-MS. The volatile components of essential oil from red and black rice bran were analyzed by GC and GC-MS. One hundred twenty-nine (129) of volatile compounds were identified in red and black rice bran. Myristic acid, nonanal, (E)-beta-ocimene and 6, 10, 14-trimethyl-2-pentadecanone were main compounds in red rice bran, whereas myristic acid, nonanal, caproic acid, pentadecanal and pelargonic acid were main compounds in black rice bran. Guaiacol, presented at 0.81 mg/100 g in black rice bran, is responsible for the characteristic component in black rice.
Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage.
Wu, Yuwen; Zhu, Baoqing; Tu, Cui; Duan, Changqing; Pan, Qiuhong
2011-05-11
Evolution of volatile components during litchi (Litchi chinensis Sonn.) winemaking was monitored, and aroma profiles of litchi wines bottle aged for 5 months at ambient temperature (25-28 °C) and low temperature (8-10 °C) were compared via headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). The majority of terpenoids deriving from litchi juice decreased, even disappeared along with alcoholic fermentation, while terpenol oxides, ethers, and acetates came into being and increased. Ethyl octanote, isoamyl acetate, ethyl hexanoate, ethyl butanoate, cis-rose oxide, and trans-rose oxide had the highest odor activity values (OAVs) in young litchi wines. Six aromatic series were obtained by grouping OAVs of odor-active compounds with similar odor descriptions to establish the aroma profile for young litchi wines, and floral and fruity attributes were two major aroma series. Compared to ambient temperature when bottle aging, lower temperature benefited key aroma retention and expectantly extended the shelf life of young litchi wines.
NASA Astrophysics Data System (ADS)
Chung, Myeong Y.; Beene, Matt; Ashkan, Shawn; Krauter, Charles; Hasson, Alam S.
2010-02-01
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006-2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willse, Alan R.; Belcher, Ann; Preti, George
2005-04-15
Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MSmore » profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.« less
Kapoor, I P S; Singh, Bandana; Singh, Gurdip; De Heluani, Carola S; De Lampasona, M P; Catalan, Cesar A N
2009-06-24
Essential oil and oleoresins (ethanol and ethyl acetate) of Piper nigrum were extracted by using Clevenger and Soxhlet apparatus, respectively. GC-MS analysis of pepper essential oil showed the presence of 54 components representing about 96.6% of the total weight. beta-Caryophylline (29.9%) was found as the major component along with limonene (13.2%), beta-pinene (7.9%), sabinene (5.9%), and several other minor components. The major component of both ethanol and ethyl acetate oleoresins was found to contain piperine (63.9 and 39.0%), with many other components in lesser amounts. The antioxidant activities of essential oil and oleoresins were evaluated against mustard oil by peroxide, p-anisidine, and thiobarbituric acid. Both the oil and oleoresins showed strong antioxidant activity in comparison with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) but lower than that of propyl gallate (PG). In addition, their inhibitory action by FTC method, scavenging capacity by DPPH (2,2'-diphenyl-1-picrylhydrazyl radical), and reducing power were also determined, proving the strong antioxidant capacity of both the essential oil and oleoresins of pepper.
The Sands of the Bagnold Dunes, Mars and Volatiles in Mars Soils
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R. J., Jr.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C. J.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; Meslin, P. Y.; McHenry, M.; Ming, D. W.; Minitti, M. E.; Morookian, J.; Morris, R. V.; O'Connell-Cooper, C.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N.; Thompson, L. M.; Vaniman, D.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A.
2017-12-01
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in an active portion of the Bagnold dune field. The composition and grain size information were reviewed in Ehlmann et al. [2017, JGR-Planets and papers referenced therein]. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%) [Achilles et al., 2017]. Like Rocknest, release of CO2 and NO is higher than Gale rocks, implying enrichment in the carrier phases of these volatiles [Sutter et al., 2017]. Yet Bagnold and Rocknest bulk chemistries differ. Bagnold sands are Si-enriched relative to other soils at Gale crater [Cousin et al., 2017; O'Connell-Cooper et al., 2017], and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands [Cousin et al., 2017; O'Connell-Cooper et al., 2017], corroborated by visible/near-infrared spectra that suggest enrichment of olivine [Johnson et al., 2017]. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O. This has implications for the origins of the volatiles and their potential extractability. Future isotopic measurements of later-acquired sand samples may help elucidate the origins and timing of the volatiles sequestration in Martian sands and soils.
USDA-ARS?s Scientific Manuscript database
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the molecular mechanism and regulation of volatile production is not well understood. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. To this end fruits...
Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui
2016-04-01
Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Donfrancesco, Brizio Di; Koppel, Kadri
2017-06-17
Descriptive sensory analysis and gas chromatography-mass spectrometry (GC-MS) with a modified headspace solid-phase microextraction (SPME) method was performed on three extruded dry dog food diets manufactured with different fractions of red sorghum and a control diet containing corn, brewer's rice, and wheat as a grain source in order to determine the effect of sorghum fractions on dry dog food sensory properties. The aroma compounds and flavor profiles of samples were similar with small differences, such as higher toasted aroma notes, and musty and dusty flavor in the mill-feed sample. A total of 37 compounds were tentatively identified and semi-quantified. Aldehydes were the major group present in the samples. The total volatile concentration was low, reflecting the mild aroma of the samples. Partial least squares regression was performed to identify correlations between sensory characteristics and detected aroma compounds. Possible relationships, such as hexanal and oxidized oil, and broth aromatics were identified. Volatile compounds were also associated with earthy, musty, and meaty aromas and flavor notes. This study showed that extruded dry dog foods manufactured with different red sorghum fractions had similar aroma, flavor, and volatile profiles.
Li, Hailiang; Cui, Xiaoli; Tong, Yan; Gong, Muxin
2012-04-01
To compare inclusion effects and process conditions of two preparation methods-colloid mill and saturated solution-for beta-CD inclusion compound of four traditional Chinese medicine volatile oils and study the relationship between each process condition and volatile oil physical properties and the regularity of selective inclusion of volatile oil components. Volatile oils from Nardostachyos Radix et Rhizoma, Amomi Fructus, Zingiberis Rhizoma and Angelicaesinensis Radix were prepared using two methods in the orthogonal test. These inclusion compounds by optimized processes were assessed and compared by such methods as TLC, IR and scanning electron microscope. Inclusion oils were extracted by steam distillation, and the components found before and after inclusion were analyzed by GC-MS. Analysis showed that new inclusion compounds, but inclusion compounds prepared by the two processes had differences to some extent. The colloid mill method showed a better inclusion effect than the saturated solution method, indicating that their process conditions had relations with volatile oil physical properties. There were differences in the inclusion selectivity of components between each other. The colloid mill method for inclusion preparation is more suitable for industrial requirements. To prepare volatile oil inclusion compounds with heavy gravity and high refractive index, the colloid mill method needs longer time and more water, while the saturated solution method requires higher temperature and more beta-cyclodextrin. The inclusion complex prepared with the colloid mill method contains extended molecular weight chemical composition, but the kinds of components are reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleet, M.E.; Pan, Yuanming
The partitioning of rare earth elements (REEs) between fluorapatite (FAp) and H{sub 2}O- bearing phosphate-fluoride melts has been studied at about 700 and 800{degrees}C and 0.10-0.15 GPa. REE uptake patterns, i.e., plots of D(REE:FAp/melt), are convex upwards and peak near Nd for single-REE substituted FAp at minor (0.03-0.25 wt% REE{sub 2}O{sub 3}) abundances, and binary (LREE + HREE)-substituted FAp, and hexa-REE-substituted FAp at minor to major (0.25-7.8 wt% REE{sub 2}O{sub 3}) abundances. Partition coefficients for minor abundances of REE and depolymerized phosphate melts are about 5, 8, and 1 for La, Nd, and Lu, respectively and broadly comparable to thosemore » for early fluorapatite in the fractionation of melts of basaltic composition. The Ca2 site exerts marked control on the selectivity of apatite for REE because it preferentially incorporates LREE and its effective size varies with substitution of the A-site volatile anion component (F, Cl, OH). Using simple crystal-chemical arguments, melt(or fluid)-normalized REE patterns are predicted to peak near Nd for fluorapatite and be more LREE-enriched for chlorapatite. These predictions are consistent with data from natural rocks and laboratory experiments. The wide variation in D(REE:apatite/melt) in nature (from <1 for whitlockite-bearing lunar rocks to about 100 for evolved alkalic rocks) is attributed largely to the influence of the volatile components. 49 refs., 8 figs., 3 tabs.« less
2014-01-01
Background Perceptions of food products start when flavor compounds are released from foods, transported and appropriate senses in the oral and nose are triggered. However, the long-term stability of flavor compounds in food product has been a major concern in the food industry due to the complex interactions between key food ingredients (e.g., polysaccharides and proteins). Hence, this study was conducted to formulate emulsion-based beverage using natural food emulsifiers and to understand the interactions between emulsion compositions and flavor compounds. Results The influences of modified starch (x 1 ), whey protein isolate (x 2 ), soursop flavor oil (x 3 ) and deionized water (x 4 ) on the equilibrium headspace concentration of soursop volatile flavor compounds were evaluated using a four-component with constrained extreme vertices mixture design. The results indicated that the equilibrium headspace concentration of soursop flavor compounds were significantly (p < 0.05) influenced by the matrix and structural compositions of the beverage emulsions. Interface formed using modified starch and whey protein isolate (WPI) proved to be capable of inhibiting the release of volatile flavor compounds from the oil to the aqueous phase. Modified starch could retard the overall flavor release through its hydrophobic interactions with volatile flavor compounds and viscosity enhancement effect. Excessive amount of modified starch was also shown to be detrimental to the stability of emulsion system. However, both modified starch and WPI showed to be a much more effective barrier in inhibiting the flavor release of flavor compounds when used as individual emulsifier than as a mixture. Conclusions Overall, the mixture design can be practical in elucidating the complex interactions between key food components and volatile flavor compounds in an emulsion system. These studies will be useful for the manufacturers for the formulation of an optimum beverage emulsion with desirable emulsion properties and desirable flavor release profile. PMID:24708894
Qin, Yan; Pang, Yingming; Cheng, Zhihong
2016-11-01
The needle trap device (NTD) technique is a new microextraction method for sampling and preconcentration of volatile organic compounds (VOCs). Previous NTD studies predominantly focused on analysis of environmental volatile compounds in the gaseous and liquid phases. Little work has been done on its potential application in biological samples and no work has been reported on analysis of bioactive compounds in essential oils from herbal medicines. The main purpose of the present study is to develop a NTD sampling method for profiling VOCs in biological samples using herbal medicines as a case study. A combined method of NTD sample preparation and gas chromatography-mass spectrometry was developed for qualitative analysis of VOCs in Viola tianschanica. A 22-gauge stainless steel, triple-bed needle packed with Tenax, Carbopack X and Carboxen 1000 sorbents was used for analysis of VOCs in the herb. Furthermore, different parameters affecting the extraction efficiency and capacity were studied. The peak capacity obtained by NTDs was 104, more efficient than those of the static headspace (46) and hydrodistillation (93). This NTD method shows potential to trap a wide range of VOCs including the lower and higher volatile components, while the static headspace and hydrodistillation only detects lower volatile components, and semi-volatile and higher volatile components, respectively. The developed NTD sample preparation method is a more rapid, simpler, convenient, and sensitive extraction/desorption technique for analysis of VOCs in herbal medicines than the conventional methods such as static headspace and hydrodistillation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Socaci, Sonia A; Socaciu, Carmen; Tofană, Maria; Raţi, Ioan V; Pintea, Adela
2013-01-01
The health benefits of sea buckthorn (Hippophae rhamnoides L.) are well documented due to its rich content in bioactive phytochemicals (pigments, phenolics and vitamins) as well as volatiles responsible for specific flavours and bacteriostatic action. The volatile compounds are good biomarkers of berry freshness, quality and authenticity. To develop a fast and efficient GC-MS method including a minimal sample preparation technique (in-tube extraction, ITEX) for the discrimination of sea buckthorn varieties based on their chromatographic volatile fingerprint. Twelve sea buckthorn varieties (wild and cultivated) were collected from forestry departments and experimental fields, respectively. The extraction of volatile compounds was performed using the ITEX technique whereas separation and identification was performed using a GC-MS QP-2010. Principal component analysis (PCA) was applied to discriminate the differences among sample composition. Using GC-MS analysis, from the headspace of sea buckthorn samples, 46 volatile compounds were separated with 43 being identified. The most abundant derivatives were ethyl esters of 2-methylbutanoic acid, 3-methylbutanoic acid, hexanoic acid, octanoic acid and butanoic acid, as well as 3-methylbutyl 3-methylbutanoate, 3-methylbutyl 2-methylbutanoate and benzoic acid ethyl ester (over 80% of all volatile compounds). Principal component analysis showed that the first two components explain 79% of data variance, demonstrating a good discrimination between samples. A reliable, fast and eco-friendly ITEX/GC-MS method was applied to fingerprint the volatile profile and to discriminate between wild and cultivated sea buckthorn berries originating from the Carpathians, with relevance to food science and technology. Copyright © 2013 John Wiley & Sons, Ltd.
Fresh squeezed orange juice odor: a review.
Perez-Cacho, Pilar Ruiz; Rouseff, Russell L
2008-08-01
Fresh orange juice is a highly desirable but unstable product. This review examines analytical findings, odor activity, and variations due to cultivar, sampling methods, manner of juicing, plus possible enzymatic and microbial artifacts. Initial attempts to characterize orange juice odor were based on volatile quantitation and overemphasized the importance of high concentration volatiles. Although over 300 volatiles have been reported from GC-MS analytical studies, this review presents 36 consensus aroma active components from GC-olfactometry studies consisting of 14 aldehydes, 7 esters, 5 terpenes, 6 alcohols, and 4 ketones. Most are trace (microg/L) components. (+)-Limonene is an essential component in orange juice odor although its exact function is still uncertain. Total amounts of volatiles in mechanically squeezed juices are three to 10 times greater than hand-squeezed juices because of elevated peel oil levels. Elevated peel oil changes the relative proportion of several key odorants. Odor active components from solvent extraction studies differ from those collected using headspace techniques as they include volatiles with low vapor pressure such as vanillin. Some reported odorants such as 2,3-butanedione are microbial contamination artifacts. Orange juice odor models confirm that fresh orange aroma is complex as the most successful models contain 23 odorants.
Gopi, Sreeraj; Jacob, Joby; Varma, Karthik; Jude, Shintu; Amalraj, Augustine; Arundhathy, C A; George, Robin; Sreeraj, T R; Divya, C; Kunnumakkara, Ajaikumar B; Stohs, Sidney J
2017-12-01
Curcuminoids are the major bioactive molecules in turmeric, and poor bioavailability deters them from being the major components of many health and wellness applications. This study was conducted to assess the bioavailability of a completely natural turmeric matrix formulation (CNTMF) and compare its bioavailability with two other commercially available formulations, namely, curcumin with volatile oil (volatile oil formulation) and curcumin with phospholipids and cellulose (phospholipid formulation) in healthy human adult male subjects (15 each group) under fasting conditions. Each formulation was administrated orally as a single 500-mg dose in capsule form, and blood samples were analyzed by liquid chromatography mass spectrometry at various time intervals up to 24 h. The ingestion of the CNTMF was very well absorbed and resulted in a mean curcuminoids plasma C max of 170.14 ng/mL (T max = 4 h) compared with 47.54 ng/mL and 69.63 ng/mL for the volatile oil (T max = 3 h) and phospholipid (T max = 2.25 h) formulations, respectively. The extent of absorption of total curcuminoids in the blood for the CNTMF was 6× greater than volatile oil formulation and 5× greater than phospholipids formulation. The results of this study indicate that curcumin in a natural turmeric matrix exhibited greater bioavailability than the two comparator products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Distillation process using microchannel technology
Tonkovich, Anna Lee [Dublin, OH; Simmons, Wayne W [Dublin, OH; Silva, Laura J [Dublin, OH; Qiu, Dongming [Carbondale, IL; Perry, Steven T [Galloway, OH; Yuschak, Thomas [Dublin, OH; Hickey, Thomas P [Dublin, OH; Arora, Ravi [Dublin, OH; Smith, Amanda [Galloway, OH; Litt, Robert Dwayne [Westerville, OH; Neagle, Paul [Westerville, OH
2009-11-03
The disclosed invention relates to a distillation process for separating two or more components having different volatilities from a liquid mixture containing the components. The process employs microchannel technology for effecting the distillation and is particularly suitable for conducting difficult separations, such as the separation of ethane from ethylene, wherein the individual components are characterized by having volatilities that are very close to one another.
Wåler, S M
1997-10-01
Halitosis is most often caused by oral conditions. Volatile sulfur compounds (VSC), constituting the major components of oral malodor, are produced by anaerobic, gram-negative bacteria retained mainly in periodontal pockets or on the tongue dorsum. Sulfur-containing amino acids serve as substrate for these bacteria. VSC have also been found to have unfavorable effect on the tissue. The aim of this study was to examine whether normal, healthy individuals with no history of halitosis were able to produce VSC from cysteine, when applied as a mouthrinse. A further aim of the study was to investigate and compare the potential of other sulfur-containing amino acids and peptides as substrates for oral VSC production and to localize the odor-production sites. A portable sulfide monitor was used for VSC registration. Results showed that all test subjects produced high oral concentrations of VSC upon rinses with cysteine, which thus seems to be a major substrate for VSC production. The other sulfur-containing substrates had much less effect. It was found that the tongue was the major site for VSC production, and that saliva per se caused low VSC production.
Nojima, Satoshi; Linn, Charles; Roelofs, Wendell
2003-10-01
Solid-phase microextraction and gas chromatography coupled with electroantennographic detection were used to identify volatiles from fruit of flowering dogwood, Cornus florida, as key attractants for Rhagoletis pomonella flies originating from dogwood fruit. A six-component blend containing ethyl acetate (54.9%), 3-methylbutan-1-ol (27.5%), isoamyl acetate (0.9%), dimethyl trisulfide (1.9%), 1-octen-3-ol (9.1%), and beta-caryophyllene (5.8%) was identified from flowering dogwood fruit that gave consistent EAD activity. In a flight tunnel assay there was no significant difference in the response of individual dogwood flies exhibiting upwind anemotactic flight to volatile extracts from dogwood fruit and the six-component synthetic mixture. Dogwood flies also displayed significantly greater levels of upwind flight to sources with the dogwood volatile blend than with previously identified volatile blends from domestic apple or hawthorn fruit. Selected subtraction assays showed that the three-component mixture of 3-methylbutan-1-ol, 1-octen-3-ol, and beta-caryophyllene elicited levels of upwind flight to the source equivalent to the six-component mixture. Our study adds to previous ones showing that populations of Rhagoletis pomonella flies infesting apple, hawthorn, and flowering dogwood fruit are attracted to unique mixtures of fruit volatiles, supporting the hypothesis that host fruit odors could be key traits in sympatric host shifts and establishing host fidelity within members of the Rhagoletis pomonella species complex.
NASA Astrophysics Data System (ADS)
Bendera, M.; Ekesi, S.; Ndung'u, M.; Srinivasan, R.; Torto, B.
2015-10-01
Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior.
Volatility of source apportioned wintertime organic aerosol in the city of Athens
NASA Astrophysics Data System (ADS)
Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.
2017-06-01
The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.
Zhang, X M; Ai, N S; Wang, J; Tong, L J; Zheng, F P; Sun, B G
2016-11-01
The purpose of this study was to modify the amount and composition of volatile components in bovine milk products, in an attempt to create a recombined skim milk product with full-fat milk flavor but with only 0.5% fat. The experimental plan included lipase-catalyzed hydrolysis and esterification reactions using Palatase 20000L (Novozymes, Bagsværd, Denmark). The results, measured by the methods of volatile compositional analysis and sensory evaluation, showed that the flavor profiles of the optimal recombined milk products were effectively modified in this way, possessing intensified characteristic volatile flavor components with rather low level of fat contents, and the sensory characters were quite realistic to natural whole milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Volatiles in melt inclusions from Icelandic magmas
NASA Astrophysics Data System (ADS)
Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.
2006-12-01
Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context. Their compositions will show how the melt has evolved, enabling the relative roles of degassing, crystallisation and assimilation in the volatile systematics to be examined.
The relationship between volatile sulfur compounds and major halitosis-inducing factors.
Lee, Chae-Hoon; Kho, Hong-Seop; Chung, Sung-Chang; Lee, Sung-Woo; Kim, Young-Ku
2003-01-01
Although tongue coating and periodontal conditions have been reported to be major halitosis-inducing factors, the relationship between volatile sulfur compounds (VSC) and these 2 major factors is not yet fully understood. The aim of this study was to investigate the relationship of VSC concentrations to tongue coating and periodontal health. Forty subjects (mean age 33.3 years, range 14 to 64 years) were enrolled in this study. Gas chromatography was performed to analyze each VSC component from the mouth air sampled prior to tongue scraping, after tongue scraping, and after a subsequent prophylaxis on the interdental spaces. CH3SH was the most malodorous component among the 3 major VSC from the mouth air. The high CH3SH group showed a significantly higher organoleptic rating (P < 0.01), gingival index (P < 0.01), bleeding index (P < 0.01), probing depth (P < 0.05), and VSC concentrations prior to tongue scraping (P < 0.01), except for the amount of tongue coating, compared to the low CH3SH group. All VSC concentrations were vastly reduced by tongue scraping in both groups, and the remaining contents were nearly all removed by the subsequent prophylaxis. The VSC contents produced by the tongue coating played a major role [H2S: 76%; CH3SH: 52%; (CH3)2S: 55%] in the low CH3SH group. In the high CH3SH group which had poor periodontal health, the tongue coating still played a major role [H2S: 67%; CH3SH: 59%; (CH3)2S: 48%], but the interdental spaces also contributed to VSC production [H2S: 26%; CH3SH: 32%; (CH3)2S; 36%]. The tongue coating was demonstrated to be a primary halitosis-inducing factor. Periodontal health was also shown to contribute to VSC production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoneit, B.R.T.; Radzi bin Abas, M.; Cass, G.R.
Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Various molecular markers have been proposed for this process but additional specific tracers are needed. The injection of natural product organic compounds into smoke occurs primarily by direct volatilization/steam stripping and by pyrolysis. Although the composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. Homologous compounds and biomarkers present in smoke are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers (e.g., lignin, cutin, suberin), wax, gum andmore » resin. The component complexity is illustrated with examples from controlled bums of temperate and tropical biomass fuels. Conifer smoke contains characteristic tracers from diterpenoids as well as phenolics and other oxygenated species. These are recognizable in urban airsheds. The major organic components of smoke from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. Several compounds are potential key indicators for combustion of such biomass. The precursor to product approach of organic geochemistry can be applied successfully to provide molecular tracers for studying smoke plume chemistry and dispersion.« less
Zhang, Xin Hua; da Silva, Jaime A Teixeira; Jia, Yong Xia; Zhao, Jie Tang; Ma, Guo Hua
2012-01-01
The chemical composition of volatile compounds from pericarp oils of Indian sandalwood, Santalum album L., isolated by hydrodistillation and solvent extraction, were analyzed by GC and GC-MS. The pericarps yielded 2.6 and 5.0% volatile oil by hydrodistillation and n-hexane extraction, and they were colorless and yellow in color, respectively. A total of 66 volatile components were detected. The most prominent compounds were palmitic and oleic acids, representing about 40-70% of the total oil. Many fragrant constituents and biologically active components, such as alpha- and beta-santalol, cedrol, esters, aldehydes, phytosterols, and squalene were present in the pericarp oils. This is the first report of the volatile composition of the pericarps of any Santalum species.
Chemical Composition Analysis of Extracts from Ficus Hirta Using Supercritical Fluid
NASA Astrophysics Data System (ADS)
Deng, S. B.; Chen, J. P.; Chen, Y. Z.; Yu, C. Q.; Yang, Y.; Wu, S. H.; Chen, C. Z.
2018-05-01
Ficus hirta was extracted by supercritical carbon dioxide. The volatile chemical components of extracts were analyzed using gas chromatography-mass spectrometry (GC-MS). The percentage of products extracted by Supercritical Fluid Extraction(SFE) was 2.5%. Nineteen volatile compounds were identified. The main volatile components were Elemicin, Psoralen, Palmitic acid, Bergapten, α-Linolenic acid, Medicarpin, Retinoic Acid, Maackiain, and Squalene. The method is simple and quick, and can be used for the preliminary analysis of chemical constituents of supercritical extracts of Ficus hirta.
Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto
2016-01-01
A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).
Polatoğlu, Kaan; Arsal, Seniha; Demirci, Betül; Can Başer, Kemal Hüsnü
2016-01-01
Lathyrus species including L. ochrus and L. sativus are known for their food, feed and horticultural uses. Despite their widespread uses and cultivation, there is limited information on their chemistry. Previously, only the essential oil composition of L. rotundifolius, L. vernus and volatiles of L. odoratus have been reported. In the present research, volatiles of seven Lathyrus L. species, namely, L. aphaca, L. ochrus, L. cicera, L. sativus, L. gorgonei, L. saxatilis and L. blepharicarpos var. cyprius were analyzed by SPME GC-MS for the first time. Plant materials were collected from five different locations in Cyprus (February-March 2012). The main components of L. aphaca volatiles from four locations were yomogi alcohol 26.1-16.5%, camphor 21.6-10.1%, tetradecane 14.3-0%; L. cicera from five locations were yomogi alcohol 20.3-3.0%, camphor 18.7-2.0%; L. gorgonei from two locations were yomogi alcohol 24.5-13.1%, camphor 17.1-9.0% and L. sativus was yomogi alcohol 11.4%, camphor 9.0%. Yomogi alcohol was not present as the major compound in L. ochrus (2-methyl butanoic acid 7.2%), L. saxatilis (hexanal 7.7%) and L. blepharicarpos var. cyprius ((Z)-3-hexenal 8.6%) volatiles. The volatiles of the Lathyrus species were also compared with each other quantitative and qualitatively using AHC analysis to find out differences among the species. The irregular monoterpene yomogi alcohol is reported from the Lathyrus and the Leguminosae family for the first time. The existence of yomogi alcohol in Lathyrus volatiles points out that the irregular monoterpenes are not restricted solely to Asteraceae family.
Farneti, Brian; Di Guardo, Mario; Khomenko, Iuliia; Cappellin, Luca; Biasioli, Franco; Velasco, Riccardo; Costa, Fabrizio
2017-03-01
Fruit quality represents a fundamental factor guiding consumers' preferences. Among apple quality traits, volatile organic compounds and texture features play a major role. Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS), coupled with an artificial chewing device, was used to profile the entire apple volatilome of 162 apple accessions, while the fruit texture was dissected with a TAXT-AED texture analyzer. The array of volatile compounds was classed into seven major groups and used in a genome-wide association analysis carried out with 9142 single nucleotide polymorphisms (SNPs). Marker-trait associations were identified on seven chromosomes co-locating with important candidate genes for aroma, such as MdAAT1 and MdIGS. The integration of volatilome and fruit texture data conducted with a multiple factor analysis unraveled contrasting behavior, underlying opposite regulation of the two fruit quality aspects. The association analysis using the first two principal components identified two QTLs located on chromosomes 10 and 2, respectively. The distinction of the apple accessions on the basis of the allelic configuration of two functional markers, MdPG1 and MdACO1, shed light on the type of interplay existing between fruit texture and the production of volatile organic compounds. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Song, Yang; Li, Yang; Zhang, Wei; Wang, Fang; Bian, Yongrong; Boughner, Lisa A; Jiang, Xin
2016-07-13
Volatilization of semi/volatile persistent organic pollutants (POPs) from soils is a major source of global POPs emission. This proof-of-concept study investigated a novel biochar-plant tandem approach to effectively immobilize and then degrade POPs in soils using hexachlorobenzene (HCB) as a model POP and ryegrass (Lolium perenne L.) as a model plant growing in soils amended with wheat straw biochar. HCB dissipation was significantly enhanced in the rhizosphere and near rhizosphere soils, with the greatest dissipation in the 2 mm near rhizosphere. This enhanced HCB dissipation likely resulted from (i) increased bioavailability of immobilized HCB and (ii) enhanced microbial activities, both of which were induced by ryegrass root exudates. As a major component of ryegrass root exudates, oxalic acid suppressed HCB sorption to biochar and stimulated HCB desorption from biochar and biochar-amended soils, thus increasing the bioavailability of HCB. High-throughput sequencing results revealed that the 2 mm near rhizosphere soil showed the lowest bacterial diversity due to the increased abundance of some genera (e.g., Azohydromonas, Pseudomonas, Fluviicola, and Sporocytophaga). These bacteria were likely responsible for the enhanced degradation of HCB as their abundance was exponentially correlated with HCB dissipation. The results from this study suggest that the biochar-plant tandem approach could be an effective strategy for remediating soils contaminated with semi/volatile organic contaminants.
Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice.
Cheong, Mun Wai; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Yu, Bin
2012-12-15
Two cultivars (Citrus grandis (L.) Osbeck PO 51 and PO 52) of Malaysian pomelo juices were studied by examining their physicochemical properties (i.e. pH, °Brix and titratable acidity), volatile and non-volatile components (sugars and organic acids). Using solvent extraction and headspace solid-phase microextraction, 49 and 65 volatile compounds were identified by gas chromatography-mass spectrometer/flame ionisation detector, respectively. Compared to pink pomelo juice (cultivar PO 52), white pomelo juice (cultivar PO 51) contained lower amount of total volatiles but higher terpenoids. Descriptive sensory evaluation indicated that white pomelo juice was milder in taste especially acidity. Furthermore, principal component analysis and partial least square regression revealed a strong correlation in pomelo juices between their chemical components and some flavour attributes (i.e. acidic, fresh, peely and sweet). Hence, this research enabled a deeper insight into the flavour of this unique citrus fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.
What distinguishes individual stocks from the index?
NASA Astrophysics Data System (ADS)
Wagner, F.; Milaković, M.; Alfarano, S.
2010-01-01
Stochastic volatility models decompose the time series of financial returns into the product of a volatility factor and an iid noise factor. Assuming a slow dynamic for the volatility factor, we show via nonparametric tests that both the index as well as its individual stocks share a common volatility factor. While the noise component is Gaussian for the index, individual stock returns turn out to require a leptokurtic noise. Thus we propose a two-component model for stocks, given by the sum of Gaussian noise, which reflects market-wide fluctuations, and Laplacian noise, which incorporates firm-specific factors such as firm profitability or growth performance, both of which are known to be Laplacian distributed. In the case of purely Gaussian noise, the chi-squared probability for the density of individual stock returns is typically on the order of 10-20, while it increases to values of O(1) by adding the Laplace component.
Acevedo, Francisca; Torres, Paulina; Oomah, B Dave; de Alencar, Severino Matias; Massarioli, Adna Prado; Martín-Venegas, Raquel; Albarral-Ávila, Vicenta; Burgos-Díaz, César; Ferrer, Ruth; Rubilar, Mónica
2017-04-01
Ulmo honey originating from Eucryphia cordifolia tree, known locally in the Araucania region as the Ulmo tree is a natural product with valuable nutritional and medicinal qualities. It has been used in the Mapuche culture to treat infections. This study aimed to identify the volatile and non-volatile/semi-volatile compounds of Ulmo honey and elucidate its in vitro biological properties by evaluating its antioxidant, antibacterial, antiproliferative and hemolytic properties and cytotoxicity in Caco-2 cells. Headspace volatiles of Ulmo honey were isolated by solid-phase microextraction (SPME); non-volatiles/semi-volatiles were obtained by removing all saccharides with acidified water and the compounds were identified by GC/MS analysis. Ulmo honey volatiles consisted of 50 compounds predominated by 20 flavor components. Two of the volatile compounds, lyrame and anethol have never been reported before as honey compounds. The non-volatile/semi-volatile components of Ulmo honey comprised 27 compounds including 13 benzene derivatives accounting 75% of the total peak area. Ulmo honey exhibited weak antioxidant activity but strong antibacterial activity particularly against gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), the main strain involved in wounds and skin infections. At concentrations >0.5%, Ulmo honey reduced Caco-2 cell viability, released lactate dehydrogenase (LDH) and increased reactive oxygen species (ROS) production in a dose dependent manner in the presence of foetal bovine serum (FBS). The wide array of volatile and non-volatile/semi-volatile constituents of Ulmo honey rich in benzene derivatives may partly account for its strong antibacterial and antiproliferative properties important for its therapeutic use. Our results indicate that Ulmo honey can potentially inhibit cancer growth at least partly by modulating oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Environmental Barrier Coatings for Ceramics and Ceramic Composites
NASA Technical Reports Server (NTRS)
Lee, Kang N.; Fox, Dennis; Eldridge, Jeffrey; Robinson, R. Craig; Bansal, Narottam
2004-01-01
One key factor that limits the performance of current gas turbine engines is the temperature capability of hot section structural components. Silicon-based ceramics, such as SiC/SiC composites and monolithic Si3N4, are leading candidates to replace superalloy hot section components in the next generation gas turbine engines due to their excellent high temperature properties. A major stumbling block to realizing Si-based ceramic hot section components is the recession of Si-based ceramics in combustion environments due to the volatilization of silica scale by water vapor. An external environmental barrier coating (EBC) is the most promising approach to preventing the recession. Current EBCs are based on silicon, mullite (3A12O3-2SiO2) and BSAS (barium strontium aluminum silicate with celsian structure). Volatility of BSAS, BSAS-silica chemical reaction, and low melting point of silicon limit the durability and temperature capability of current EBCs. Research is underway to develop EBCs with longer life and enhanced temperature capability. Understanding key issues affecting the performance of current EBCs is necessary for successful development of advanced EBCs. These issues include stress, chemical compatibility, adherence, and water vapor stability. Factors that affect stress are thermal expansion mismatch, phase stability, chemical stability, elastic modulus, etc. The current understanding on these issues will be discussed.
Josino Soares, Denise; Pignitter, Marc; Ehrnhöfer-Ressler, Miriam Margit; Walker, Jessica; Montenegro Brasil, Isabella; Somoza, Veronika
2015-01-01
The pulp of pitanga (Eugenia uniflora L.) is used to prepare pitanga juice. However, there are no reports on the identification and quantification of the main constituents in pitanga pulp. The aim of this study was to identify and quantify the major volatile and non-volatile low-molecular-weight constituents of the pulp. Isolation of volatile compounds was performed by solvent-assisted flavor evaporation technique. Characterization of the main volatile and non-volatile constituents was performed by GC-MS, LC-MS and NMR spectroscopy. For quantitative measurements, the main volatile compound needed to be isolated from pitanga pulp to obtain a commercially not available reference standard. Cyanidin-3-glucoside was determined as one of the most abundant non-volatile pulp compound yielding 53.8% of the sum of the intensities of all ions detected by LC-MS. Quantification of cyanidin-3-glucoside in pitanga pulp resulted in a concentration of 344 ± 66.4 μg/mL corresponding to 688 ± 133 μg/g dried pulp and 530 ± 102 μg/g fruit. For the volatile fraction, oxidoselina-1,3,7(11)-trien-8-one was identified as the main volatile pulp constituent (27.7% of the sum of the intensities of all ions detected by GC-MS), reaching a concentration of 89.0 ± 16.9 μg/mL corresponding to 1.34 ± 0.25 μg/g fresh pulp and 1.03 ± 0.19 μg/g fruit. The results provide quantitative evidence for the occurrence of an anthocyanin and an oxygenated sesquiterpene as one of the major volatile and non-volatile low-molecular-weight compounds in pitanga pulp.
Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms.
de Pinho, P Guedes; Ribeiro, Bárbara; Gonçalves, Rui F; Baptista, Paula; Valentão, Patrícia; Seabra, Rosa M; Andrade, Paula B
2008-03-12
Volatile and semivolatile components of 11 wild edible mushrooms, Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius, were determined by headspace solid-phase microextraction (HS-SPME) and by liquid extraction combined with gas chromatography-mass spectrometry (GC-MS). Fifty volatiles and nonvolatiles components were formally identified and 13 others were tentatively identified. Using sensorial analysis, the descriptors "mushroomlike", "farm-feed", "floral", "honeylike", "hay-herb", and "nutty" were obtained. A correlation between sensory descriptors and volatiles was observed by applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the sensorial and chemical data. The studied edible mushrooms can be divided in three groups. One of them is rich in C8 derivatives, such as 3-octanol, 1-octen-3-ol, trans-2-octen-1-ol, 3-octanone, and 1-octen-3-one; another one is rich in terpenic volatile compounds; and the last one is rich in methional. The presence and contents of these compounds give a considerable contribution to the sensory characteristics of the analyzed species.
Detailed finite element method modeling of evaporating multi-component droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diddens, Christian, E-mail: C.Diddens@tue.nl
The evaporation of sessile multi-component droplets is modeled with an axisymmetic finite element method. The model comprises the coupled processes of mixture evaporation, multi-component flow with composition-dependent fluid properties and thermal effects. Based on representative examples of water–glycerol and water–ethanol droplets, regular and chaotic examples of solutal Marangoni flows are discussed. Furthermore, the relevance of the substrate thickness for the evaporative cooling of volatile binary mixture droplets is pointed out. It is shown how the evaporation of the more volatile component can drastically decrease the interface temperature, so that ambient vapor of the less volatile component condenses on the droplet.more » Finally, results of this model are compared with corresponding results of a lubrication theory model, showing that the application of lubrication theory can cause considerable errors even for moderate contact angles of 40°. - Graphical abstract:.« less
Identification of a volatile phytotoxin from algae
NASA Technical Reports Server (NTRS)
Garavelli, J. S.; Fong, F.; Funkhouser, E. A.
1984-01-01
The objectives were to develop a trap system for isolating fractions of volatile algal phytotoxin and to characterize the major components of the isolated phytotoxin fractions. A bioassay using Phaseolus vulgaris seedlings was developed to aid in investigating the properties of the phytotoxin produced by cultures of Euglena gracilis var. bacillaris and Chlorella vulgaris. Two traps were found, 1.0 M hydrochloric acid and 0 C, which removed the phytotoxin from the algal effluent and which could be treated to release that phytotoxin as judged with the bioassay procedure. It was also determined that pretraps of 1.0 M sodium hydroxide and 1.0 M potassium biocarbonate could be used without lowering the phytotoxin effect. Ammonia was identified in trap solutions by ninhydrin reaction, indophenol reaction and derivatization with dansyl chloride and phenylisothiocyanate. Ammonia at the gaseous concentrations detected was found to have the same effects in the bioassay system as the volatile phytotoxin. It is possible that other basic, nitrogen containing compounds which augment the effects of ammonia were present at lower concentrations in the algal effluent.
Rinaldi, Maurizio; Gindro, Roberto; Barbeni, Massimo; Allegrone, Gianna
2009-01-01
Orange (Citrus sinensis L.) juice comprises a complex mixture of volatile components that are difficult to identify and quantify. Classification and discrimination of the varieties on the basis of the volatile composition could help to guarantee the quality of a juice and to detect possible adulteration of the product. To provide information on the amounts of volatile constituents in fresh-squeezed juices from four orange cultivars and to establish suitable discrimination rules to differentiate orange juices using new chemometric approaches. Fresh juices of four orange cultivars were analysed by headspace solid-phase microextraction (HS-SPME) coupled with GC-MS. Principal component analysis, linear discriminant analysis and heuristic methods, such as neural networks, allowed clustering of the data from HS-SPME analysis while genetic algorithms addressed the problem of data reduction. To check the quality of the results the chemometric techniques were also evaluated on a sample. Thirty volatile compounds were identified by HS-SPME and GC-MS analyses and their relative amounts calculated. Differences in composition of orange juice volatile components were observed. The chosen orange cultivars could be discriminated using neural networks, genetic relocation algorithms and linear discriminant analysis. Genetic algorithms applied to the data were also able to detect the most significant compounds. SPME is a useful technique to investigate orange juice volatile composition and a flexible chemometric approach is able to correctly separate the juices.
Hierarchical Analytical Approaches for Unraveling the Composition of Proprietary Mixtures
The composition of commercial mixtures including pesticide inert ingredients, aircraft deicers, and aqueous film-forming foam (AFFF) formulations, and by analogy, fracking fluids, are proprietary. Quantitative analytical methodologies can only be developed for mixture components once their identities are known. Because proprietary mixtures may contain volatile and non-volatile components, a hierarchy of analytical methods is often required for the full identification of all proprietary mixture components.
Active non-volatile memory post-processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish
A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.
Quantitative estimation of pulegone in Mentha longifolia growing in Saudi Arabia. Is it safe to use?
Alam, Prawez; Saleh, Mahmoud Fayez; Abdel-Kader, Maged Saad
2016-03-01
Our TLC study of the volatile oil isolated from Mentha longifolia showed a major UV active spot with higher Rf value than menthol. Based on the fact that the components of the oil from same plant differ quantitatively due to environmental conditions, the major spot was isolated using different chromatographic techniques and identified by spectroscopic means as pulegone. The presence of pulegone in M. longifolia, a plant widely used in Saudi Arabia, raised a hot debate due to its known toxicity. The Scientific Committee on Food, Health & Consumer Protection Directorate General, European Commission set a limit for the presence of pulegone in foodstuffs and beverages. In this paper we attempted to determine the exact amount of pulegone in different extracts, volatile oil as well as tea flavoured with M. longifolia (Habak) by densitometric HPTLC validated methods using normal phase (Method I) and reverse phase (Method II) TLC plates. The study indicated that the style of use of Habak in Saudi Arabia resulted in much less amount of pulegone than the allowed limit.
Fractionation of highly siderophile and chalcogen elements in components of EH3 chondrites
NASA Astrophysics Data System (ADS)
Kadlag, Yogita; Becker, Harry
2015-07-01
Abundances of highly siderophile elements (HSE: Re, platinum group elements and Au), chalcogens (Te, Se and S), 187Os/188Os and the major and minor elements Mg, Ca, Mn, Fe, Ni and Co were determined in the components of Sahara 97072 (EH3, find) and Kota Kota (EH3, find) in order to understand the element fractionation processes. In a 187Re-187Os isochron diagram, most magnetic components lie close to the 4.56 Ga IIIA iron meteorite isochron, whereas most other components show deviations from the isochron caused by late redistribution of Re, presumably during terrestrial weathering. Metal- and sulfide rich magnetic fractions and metal-sulfide nodules are responsible for the higher 187Os/188Os in bulk rocks of EH chondrites compared to CI chondrites. The HSE and chalcogens are enriched in magnetic fractions relative to slightly magnetic and nonmagnetic fractions and bulk compositions, indicating that Fe-Ni metal is the main host phase of the HSE in enstatite chondrites. HSE abundance patterns indicate mixing of two components, a CI chondrite like end member and an Au-enriched end member. Because of the decoupled variations of Au from those of Pd or the chalcogens, the enrichment of Au in EH metal cannot be due to metal-sulfide-silicate partitioning processes. Metal and sulfide rich nodules may have formed by melting and reaction of pre-existing refractory element rich material with volatile rich gas. A complex condensation and evaporation history is required to account for the depletion of elements having very different volatility than Au in EH chondrites. The depletions of Te relative to HSE, Se and S in bulk EH chondrites are mainly caused by the depletion of Te in metal. S/Se and S/Mn are lower than in CI chondrites in almost all components and predominantly reflect volatility-controlled loss of sulfur. The latter most likely occurred during thermal processing of dust in the solar nebula (e.g., during chondrule formation), followed by the non-systematic loss of S during terrestrial weathering.
Xia, Qiang; Mei, Jun; Yu, Wenjuan; Li, Yunfei
2017-01-01
Germination favors to significantly enhance functional components and health attributes of whole-grain brown rice (BR), but the production of germinated BR (GBR) compromises the typical rice flavor perception due to soaking process. Simultaneously, high hydrostatic pressure (HHP) is considered as an effective processing technique to enhance micronutrients utilization efficiency of GBR and improve products flavor, but no information about the effects of HHP treatments on volatile fingerprinting of GBR has been reported. Therefore, the objective of this work was to apply HHP to improve the flavor and odor of GBR grains by exploring HHP-induced changes in aroma compounds. GBR grains were obtained by incubating at 37°C for 36h, and subsequently subjected to HHP treatments at pressures 100, 300 and 500MPa for 15min, using 0.1MPa as control. Headspace solid-phase micro extraction coupled to gas chromatography mass spectrometry was used to characterize process-induced shifts of volatile organic compounds fingerprinting, followed by multivariate analysis. Our results confirmed the significant reduction of total volatile fractions derived from germination process. Contrarily, the following HHP treatments greatly enhanced the flavor components of GBR, particularly characteristic odorants including aldehydes, ketones, and alcohols. Principal component analysis further indicated the different influence of germination and high pressure on the changes in volatile components. Partial least square-discrimination analysis suggested that 4-vinylguaiacol was closely linked to germination, whereas E,E-2,4-decadienal, E-2-hexenal, E,E-2,4-heptadienal and benzyl alcohol could be considered as volatile biomarkers of high pressure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Farag, Mohamed A; Ali, Sara E; Hodaya, Rashad H; El-Seedi, Hesham R; Sultani, Haider N; Laub, Annegret; Eissa, Tarek F; Abou-Zaid, Fouad O F; Wessjohann, Ludger A
2017-05-08
Plants of the Allium genus produce sulphur compounds that give them a characteristic (alliaceous) flavour and mediate for their medicinal use. In this study, the chemical composition and antimicrobial properties of Allium cepa red cv. and A. sativum in the context of three different drying processes were assessed using metabolomics. Bulbs were dried using either microwave, air drying, or freeze drying and further subjected to chemical analysis of their composition of volatile and non-volatile metabolites. Volatiles were collected using solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry (GC/MS) with 42 identified volatiles including 30 sulphur compounds, four nitriles, three aromatics, and three esters. Profiling of the polar non-volatile metabolites via ultra-performance liquid chromatography coupled to high resolution MS (UPLC/MS) annotated 51 metabolites including dipeptides, flavonoids, phenolic acids, and fatty acids. Major peaks in GC/MS or UPLC/MS contributing to the discrimination between A. sativum and A. cepa red cv. were assigned to sulphur compounds and flavonoids. Whereas sulphur conjugates amounted to the major forms in A. sativum , flavonoids predominated in the chemical composition of A. cepa red cv. With regard to drying impact on Allium metabolites, notable and clear separations among specimens were revealed using principal component analysis (PCA). The PCA scores plot of the UPLC/MS dataset showed closer metabolite composition of microwave dried specimens to freeze dried ones, and distant from air dried bulbs, observed in both A. cepa and A. sativum . Compared to GC/MS, the UPLC/MS derived PCA model was more consistent and better in assessing the impact of drying on Allium metabolism. A phthalate derivative was found exclusively in a commercial garlic preparation via GC/MS, of yet unknown origin. The freeze dried samples of both Allium species exhibited stronger antimicrobial activities compared to dried specimens with A. sativum being in general more active than A. cepa red cv.
Salmerón, Ivan; Rozada, Raquel; Thomas, Keith; Ortega-Rivas, Enrique; Pandiella, Severino S
2014-04-01
Most of the commercialized lactic acid fermented products are dairy-based. Hence, the development of non-dairy fermented products with probiotic properties draws significant attention within the functional foods industry. The microorganisms used in such products have complex enzyme systems through which they generate diverse metabolites (volatile and non-volatile) that provide significant flavour attributes of importance for fermented foods. The correlation of the volatile flavour compounds of a malt beverage fermented with a Bifidobacterium breve strain with its unique sensory characteristics was performed. The volatile composition analysis exposed the presence of 12 components. Eight of these flavour volatiles were produced through the metabolic activity of the bifidobacteria strain. Notably acetic acid, of reported sour flavour characteristics, exhibited the greatest intensity. Four components of considerable organoleptic characteristics were identified as Maillard-derived products, namely maltol, pyranone, 2 (5H)-furanmethanol and 3-furanmethanol. The sensory evaluation exhibited that the fermented cereal beverage had a sour flavour with mild sweet and malty notes. These results indicate that the volatile compounds identified can be appointed as significant flavour markers of the novel fermented cereal beverage.
Size segregation of component coals during pulverization of high volatile/low volatile blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, A.; Orban, P.C.
1995-12-31
Samples of single high volatile (hvb) and low volatile (lvb) coals and binary blends in proportions ranging from 75%hvb/25%lvb to 25%hvb/75%lvb were pulverized in a Raymond 271 bowl mill and then screened into different size fractions. The ranks of two of the feed coals were sufficiently different that individual particles could be distinguished microscopically. This enabled the proportions of each feed coal in the various blend size fractions to be determined. The difference in rank and therefore grindability of the components (Hardgrove indices of 99 versus 50) was such that significant segregation resulted. For example, the 25%hvb/75%lvb blend, upon grinding,more » produced a +50 mesh (300 {micro}m) fraction with 30% lvb coal, and a {minus}325 mesh (45 {micro}m) fraction with 84% lvb coal. The effect of this segregation according to size was a notable progressive decrease in volatility towards the finer fractions, consistent with an increase in the proportion of lvb particles; differences in volatile matter (d.b.) between coarsest and finest fractions of up to 6.9% were encountered. Although most of the segregation is attributable to rank difference between the component coals, part appears to be due to the lower grindability of liptinite-rich lithotypes in the hvb coal.« less
NASA Astrophysics Data System (ADS)
Pratama, Rusky I.; Rostini, I.; Rochima, E.
2018-02-01
Fish species and processing methods could affect the volatile flavour composition and amino acid profile of fishery commodity. The objectives of this study were to identify volatile components and amino acid profile of two considered predominant fish species in Indonesia which are freshwater Patin catfish (Pangasius hypophthalmus) and marine water fish, Spanish mackerel (Scomberomorus commerson). The methods used in this study were to detect volatile compounds using Gas Chromatography/Mass Spectrometry (GC/MS) on fresh and steamed of both species samples (100°C for 30 minutes) and amino acid profile were also analyzed using High Performance Liquid Chromatography (HPLC). The volatile components analysis successfully detects as much as 29 and 59 volatiles compounds in fresh and steamed Patin catfish respectively, while 37 and 102 compounds were detected in fresh and steamed Spanish mackerel samples. Most of detected components derives from hydrocarbons, aldehydes, alcohols and ketone groups which could affected by their chemical composition and resulted from various thermal involved reaction. The amino acids profile identification results showed that glutamic acid was found higher compared to other amino acids standards in both samples. Glutamic acid is non-essential amino acid which is important in umami taste substances.
USDA-ARS?s Scientific Manuscript database
Coupled gas chromatographic-electroantennographic detection (GC-EAD) analyses of Super Q collected worker honey bee volatiles revealed several components that elicited antennal responses by the small hive beetle Aethina tumida. However, GC-MS analysis showed that eight of these EAD-active components...
Chemical Composition and Character Impact Odorants in Volatile Oils from Edible Mushrooms.
Usami, Atsushi; Motooka, Ryota; Nakahashi, Hiroshi; Marumoto, Shinsuke; Miyazawa, Mitsuo
2015-11-01
The aim of this study was to investigate the chemical composition and the odor-active components of volatile oils from three edible mushrooms, Pleurotus ostreatus, Pleurotus eryngii, and Pleurotus abalonus, which are well-known edible mushrooms. The volatile components in these oils were extracted by hydrodistillation and identified by GC/MS, GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). The oils contained 40, 20, and 53 components, representing 83.4, 86.0, and 90.8% of the total oils in P. ostreatus, P. eryngii, and P. abalonus, respectively. Odor evaluation of the volatile oils from the three edible mushrooms was also carried out using GC-O, AEDA, and odor activity values, by which 13, eight, and ten aroma-active components were identified in P. ostreatus, P. eryngii, and P. abalonus, respectively. The most aroma-active compounds were C8 -aliphatic compounds (oct-1-en-3-ol, octan-3-one, and octanal) and/or C9 -aliphatic aldehydes (nonanal and (2E)-non-2-enal). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Magmatic volatiles and the weathering of Mars
NASA Technical Reports Server (NTRS)
Clark, B. C.
1993-01-01
The sources for volatiles on Mars have been the subject of many hypotheses for exogenous influences including late accretion of volatile-enriched material, impact devolatilization to create massive early atmospheres, and even major bombardment by comets. However, the inventory of chemically active volatiles observable at the contemporary surface of Mars is consistent with domination by endogenous, subsequent planetary processes, viz., persistent magmatic outgassing. Volcanism on Mars has been widespread in both space and time. Notwithstanding important specific differences between the mantles of Earth and Mars, the geochemical similarities are such that the suite of gases emitted from Martian volcanic activity should include H2O, CO2, S-containing gases (e.g. H2S and/or SO2), and Cl-containing gases (e.g., Cl2 and/or HCl). H2O and CO2 exist in the atmosphere of Mars. Both are also present as surface condensates. However, spectroscopic observations of the Martian atmosphere clearly show that the S- and Cl-containing gases are severely depleted, with upper limits of less than or equal to 10(exp -7) the abundance of CO2. Likewise, there is no evidence of polar condensates of compounds of these elements as there is for CO2 and H2O. Within the soil, on the other hand, there has been direct measurement of incorporated H2O and abundant compounds containing S and Cl. Barring some as yet implausible geochemical sequestering process, the S/Cl ratio of about 6:1 in Martian soils implies a limit of 5% on the contribution of matter of solarlike composition (e.g., carbonaceous chondrite or cometary material) to these volatiles. Hence, exogenous sources are minor or not yet observed. From analysis of elemental trends in Martian soils, it has been recently shown that a simple two-component model can satisfy the Viking in situ measurements. Component A includes Si and most or all the Al, Ca, Ti, and Fe. Component B, taken as 16 +/- 3% by weight of the total, contains S and most or all the Cl and Mg. These results constrain several models of Martian soil mineralogy but are consistent with a mixture of silicates (such as Fe-rich clays and accessory minerals and soluble salts). The overall element profile is notably like shergottites, with significant incorporation of chemically reactive atmospheric gases from magmatic degassing.
Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.
2016-04-01
The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.
REDUCTION OF INGESTION EXPOSURE TO TRIHALOMETHANES DUE TO VOLATILIZATION. (R825362)
Ingestion of tap water is one of the principal exposure
pathways for disinfection byproducts (DBPs). One major
class of DBPs, trihalomethanes (THM), are highly volatile,
and volatilization will tend to lower ingestion exposures.
This study quantifies volatilization...
Xin, Xiaowei; Liu, Qingshen; Zhang, Yingying; Gao, Demin
2016-01-01
The present study aimed to analyse the chemical components of the essential oil from Pyrrosia tonkinensis by GC-MS and evaluate the in vitro antibacterial activity. Twenty-eight compounds, representing 88.1% of the total essential oil, were identified and the major volatile components were trans-2-hexenal (22.1%), followed by nonanal (12.8%), limonene (9.6%), phytol (8.4%), 1-hexanol (3.8%), 2-furancarboxaldehyde (3.5%) and heptanal (3.1%). The antibacterial assays showed that the essential oil of P. tonkinensis had good antibacterial activities against all the tested microorganisms. This paper first reported the chemical composition and antimicrobial activity of the essential oil from P. tonkinensis.
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Composition of the water-soluble fraction of different cheeses.
Taborda, Gonzalo; Molina, Elena; Martínez-Castro, Isabel; Ramos, Mercedes; Amigo, Lourdes
2003-01-01
Volatile and nonvolatile compounds present in the water-soluble fraction (WSF) and water-soluble fraction with molecular weight lower than 1000 Da (WSF < 1000 Da) of six Spanish cheeses, Cabrales, Idiazábal, Mahón, Manchego, Roncal, and a goat's milk cheese, were analyzed. Different nitrogen fractions (determined by Kjeldahl method), caseins (by capillary electrophoresis), peptides and amino acids (by HPLC), and volatile components (by dynamic headspace coupled to GC-MS) as well as mineral content in the cheese fractions were analyzed and compared. The different nitrogen and volatile compounds identified in the WSF were characteristic of each cheese variety. Cabrales cheese displayed the highest content of free amino acids and the highest quantity and variety of volatile compounds. The WSF < 1000 Da fraction was less representative, especially for volatile compounds, as some of the components were lost in the ultrafiltration. Alcohols were better recovered than ketones and esters.
Volatile components and continental material of planets
NASA Technical Reports Server (NTRS)
Florenskiy, K. P.; Nikolayeva, O. V.
1986-01-01
It is shown that the continental material of the terrestrial planets varies in composition from planet to planet according to the abundances and composition of true volatiles (H20, CO2, etc.) in the outer shells of the planets. The formation of these shells occurs very early in a planet's evolution when the role of endogenous processes is indistinct and continental materials are subject to melting and vaporizing in the absence of an atmosphere. As a result, the chemical properties of continental materials are related not only to fractionation processes but also to meltability and volatility. For planets retaining a certain quantity of true volatile components, the chemical transformation of continental material is characterized by a close interaction between impact melting vaporization and endogeneous geological processes.
Mechanisms of volatile production from non-sulfur amino acids by irradiation
NASA Astrophysics Data System (ADS)
Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang
2016-02-01
Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.
Genetic diversity of volatile components in Xinjiang Wild Apple (Malus sieversii).
Chen, Xuesen; Feng, Tao; Zhang, Yanmin; He, Tianming; Feng, Jianrong; Zhang, Chunyu
2007-02-01
To evaluate genetic relationships using qualitative and/or quantitative differentiation of volatile components in Xinjiang Wild Apple (Malus sieversii (Lebed.) Roem.) and to acquire basic data for the conservation and utilization of the species, aroma components in ripe fruit of M. sieversii obtained from 30 seedlings at Mohe, Gongliu County, Xinjiang Autonomic Region, China, and in ripe fruit of 4 M. pumila cultivars ('Ralls', 'Delicious', 'Golden Delicious', and 'Fuji') were analyzed using head space-solid phase microextraction and gas chromatography-mass spectrometry. The results indicated that the values of similarity coefficient concerning volatile types between the two species were in accordance with the evolution of M. pumila cultivars (forms), and that M. sieversii seedlings showed considerable genetic variations in these aspects: the total content of volatile components, the classes and contents of each compound classes, the segregation ratio, and content of main components. The results showed significant difference among seedlings and wide genetic diversity within the populations. Comparison of the volatile components in M. sieversii with those in M. pumila cultivars showed that the common compounds whose number were larger than five with the contents over 0.04 mg/L simultaneously between M. sieversii and M. pumila cultivars belonged to esters, alcohols, aldehydes or ketones. This suggests fundamental identity in main volatile components of M. sieversii and M. pumila cultivars. The results above sustained the conclusion "M. sieversii is probably the ancestor of M. pumila". However, there were 48 compounds present in M. pumila that were not detected in M. sieversii, including 6 character impact components (i.e., propyl acetate, (Z)-3-hexenal, 2-methyl-1-butanol acetate, pentyl acetate, 3-furanmethanol, and benzene acetaldehyde). This suggested that in the domestication of M. pumila, introgression of other apple species, except for M. sieversii, by interspecies hybridization was possible. There were 177 compounds in total belonging to 11 classes detected in 30 M. sieversii seedlings, including esters, alcohols, ketones, aldehydes, acids, benzene ramifications, terpenes, heterocycles, hydrocarbon derivates, acetals, and lactones. Among them, acetals and lactones were not detected in M. pumila cultivars, 90 compounds were unique to M. sieversii, and 7 components (1-butanol, ethyl butanoate, 1-hexanol, ethyl hexanoate, 3-octen-1-ol, ethyl octanoate, and damascenone) belonged to character impact odors. Thus, the potential of M. sieversii in "utilization conservation" is enormous as a rare germplasm on genetic improvement of M. pumila cultivars.
Volatile components of grape pomaces from different cultivars of Sicilian Vitis vinifera L.
Ruberto, Giuseppe; Renda, Agatino; Amico, Vincenzo; Tringali, Corrado
2008-01-01
The volatile components of grape pomace coming from the processing of some of the most important varieties of grape (Vitis vinifera L.) cultivated in Sicily, namely Nero d'Avola, Nerello Mascalese, Frappato and Cabernet Sauvignon, have been determined by gas-chromatography (GC) and gas-chromatography-mass spectrometry (GC-MS). According to the winemaking procedure that entails the removal of stalks before fermentation, two kinds of grape pomace are obtained. The first consists of skins, pulp residues and seeds, the proper grape pomace, which is partially used for grappa, a typical Italian spirit, and alcohol production, the second consists almost exclusively of stalks. On the whole, 38 components have been characterized in the samples of grape pomaces, with Frappato cv. showing the richest composition; instead, 88 components have been detected in the stalks of Frappato, Nero d'Avola, Nerello Mascalese and Cabernet Sauvignon varieties. In order to make a comparison between the grape varieties easier, the volatile components detected in the two sets of samples (grape pomaces and stalks) have been grouped in different classes. Significant differences among varieties have been detected and statistical treatment of data is also reported. This study is part of a wider project aimed at the possible exploitation of the main agro-industrial by-products. At the same time it is one of the first reports on the volatile components of this waste material.
Ono, Toshirou; Yonejima, Yasunori; Ikeda, Atsushi; Kashima, Yusei; Nakaya, Satoshi; Miyazawa, Mitsuo
2014-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of Lactobacillus acidophilus were isolated by hydrodistillation (HD) and analyzed to investigate the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 46 and 19 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were fatty acids, including pentanoic acid (12.75%), heptanoic acid (14.05%), and nonanoic acid (14.04%). The important aroma-active compounds in the oils were detected by GC-MS/Olfactometry (GC-O), and their intensity of aroma were measured by aroma extraction dilution analysis (AEDA). Pyrazines were determined as key aroma components; in particular, 2-ethyl-5-methylpyrazine was the most primary aroma-active compound in MAI oil. In addition, as the characteristic aroma-active compounds, 3-(methylthio)-propanal, trimethylpyrazine, and pentanoic acid were also detected in MAI oil. These results imply that the waste medium after incubation of L. acidophilus may be utilized as a source of volatile oils.
Rong, Lei; Peng, Li-Juan; Ho, Chi-Tang; Yan, Shou-He; Meurens, Marc; Zhang, Zheng-Zhu; Li, Da-Xiang; Wan, Xiao-Chun; Bao, Guan-Hu; Gao, Xue-Ling; Ling, Tie-Jun
2016-04-15
Green tea, oolong tea and black tea were separately introduced to brew three kinds of tea beers. A model was designed to investigate the tea beer flavour character. Comparison of the volatiles between the sample of tea beer plus water mixture (TBW) and the sample of combination of tea infusion and normal beer (CTB) was accomplished by triangular sensory test and HS-SPME GC-MS analysis. The PCA of GC-MS data not only showed a significant difference between volatile features of each TBW and CTB group, but also suggested some key compounds to distinguish TBW from CTB. The results of GC-MS showed that the relative concentrations of many typical tea volatiles were significantly changed after the brewing process. More interestingly, the behaviour of yeast fermentation was influenced by tea components. A potential interaction between tea components and lager yeast could be suggested. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Jian Yan; Ye, Zheng Mei; Huang, Tian Yi; Chen, Xiao Dan; Li, Yong Yu; Wu, Shao Hua
2014-07-01
Alpinia zerumbet 'Variegata' is an aromatic medicinal plant, its foliage producing an intense, unique fragrant odor. This study identified 46 volatile compounds in the leaf tissue of this plant using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The major compounds included 1, 8-cineole (43.5%), p-cymene (14.7%), humulene (5.5%), camphor (5.3%), linalool (4.7%), (E)-methyl cinnamate (3.8%), gamma-cadinene (3.3%), humulene oxide II (2.1%) and a-terpineol (1.5%). The majority of the volatiles were terpenoids of which oxygenated monoterpenes were the most abundant, accounting for 57.2% of the total volatiles. Alcohols made up the largest (52.8%) and aldehydes the smallest (0.2%) portions of the volatiles. Many bioactive compounds were present in the volatiles.
Sanchez, Marciano; Karnae, Saritha; John, Kuruvilla
2008-01-01
Selected Volatile Organic Compounds (VOC) emitted from various anthropogenic sources including industries and motor vehicles act as primary precursors of ozone, while some VOC are classified as air toxic compounds. Significantly large VOC emission sources impact the air quality in Corpus Christi, Texas. This urban area is located in a semi-arid region of South Texas and is home to several large petrochemical refineries and industrial facilities along a busy ship-channel. The Texas Commission on Environmental Quality has setup two continuous ambient monitoring stations (CAMS 633 and 634) along the ship channel to monitor VOC concentrations in the urban atmosphere. The hourly concentrations of 46 VOC compounds were acquired from TCEQ for a comprehensive source apportionment study. The primary objective of this study was to identify and quantify the sources affecting the ambient air quality within this urban airshed. Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) was applied to the dataset. PCA identified five possible sources accounting for 69% of the total variance affecting the VOC levels measured at CAMS 633 and six possible sources affecting CAMS 634 accounting for 75% of the total variance. APCS identified natural gas emissions to be the major source contributor at CAMS 633 and it accounted for 70% of the measured VOC concentrations. The other major sources identified at CAMS 633 included flare emissions (12%), fugitive gasoline emissions (9%), refinery operations (7%), and vehicle exhaust (2%). At CAMS 634, natural gas sources were identified as the major source category contributing to 31% of the observed VOC. The other sources affecting this site included: refinery operations (24%), flare emissions (22%), secondary industrial processes (12%), fugitive gasoline emissions (8%) and vehicle exhaust (3%). PMID:19139530
Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le
2017-02-01
Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Late Wenlock (middle Silurian) bio-events: Caused by volatile boloid impact/s
NASA Technical Reports Server (NTRS)
Berry, W. B. N.; Wilde, P.
1988-01-01
Late Wenlockian (late mid-Silurian) life is characterized by three significant changes or bioevents: sudden development of massive carbonate reefs after a long interval of limited reef growth; sudden mass mortality among colonial zooplankton, graptolites; and origination of land plants with vascular tissue (Cooksonia). Both marine bioevents are short in duration and occur essentially simultaneously at the end of the Wenlock without any recorded major climatic change from the general global warm climate. These three disparate biologic events may be linked to sudden environmental change that could have resulted from sudden infusion of a massive amount of ammonia into the tropical ocean. Impact of a boloid or swarm of extraterrestrial bodies containing substantial quantities of a volatile (ammonia) component could provide such an infusion. Major carbonate precipitation (formation), as seen in the reefs as well as, to a more limited extent, in certain brachiopods, would be favored by increased pH resulting from addition of a massive quantity of ammonia into the upper ocean. Because of the buffer capacity of the ocean and dilution effects, the pH would have returned soon to equilibrium. Major proliferation of massive reefs ceased at the same time. Addition of ammonia as fertilizer to terrestrial environments in the tropics would have created optimum environmental conditions for development of land plants with vascular, nutrient-conductive tissue. Fertilization of terrestrial environments thus seemingly preceded development of vascular tissue by a short time interval. Although no direct evidence of impact of a volatile boloid may be found, the bioevent evidence is suggestive that such an impact in the oceans could have taken place. Indeed, in the case of an ammonia boloid, evidence, such as that of the Late Wenlockian bioevents may be the only available data for impact of such a boloid.
Constraints on the Organic Composition of Meteoroids
NASA Technical Reports Server (NTRS)
McKay, Chris P.; Steel, D. I.; Cuzzi, Jeffrey (Technical Monitor)
1996-01-01
One of the major results obtained from the spacecraft experiments at Comet Halley, and subsequent telescopic observations of comets, is the identification of a substantial organic fraction of cometary dust. There are also various meteor observations which indicate that there may also be a significant heavy organic component of small (mm-cm) meteoroids entering the terrestrial atmosphere. Here we describe the results of thermodynamic modelling of idealized meteoroids which was directed towards discovering which volatile species could survive for the (typically) millennia between release from a comet and entry into the atmosphere. We find that the most likely species to survive from plausible volatile constituents axe organic species with carbon numbers greater than -20 (i.e., tarry or kerogen-type chemicals). This result is in accord with recent observations of the heights of ablation of meteors observed using radar techniques, and provides supportive evidence for the idea that organic molecules are continually raining down upon our planet.
Munira, Abudukeremu; Muheta'er, Tu'erhong; Resalat, Yimin; Xia, Na
2015-04-01
Althaea rosea is a type of mallow plant. Its dry flowers are one of common herb in Uyghur medicines and recorded to have several efficacies such as external application for detumescence, moistening lung and arresting cough, sweating and relieving asthma, diminishing swelling and promoting eruption, soothing the nerves and strengthening heart. However, there are only fewer studies on effective components of A. rosea and no literature about its volatile oil and pharmacological activity. In this paper, the volatile oil of A. rosea was obtained by using the chemical distillation and extraction method. The individual chemical components were separated from the volatile oil and identified by the Gas Chromatograph-Mass Spectrometer technique (GC-MS). The antioxidant activity against free radicals was detected by the'ultraviolet and visible spectrophotometer method. The antibiotic activity was detected by the filter paper diffusion method. The experimental results showed nearly 70 compounds in the volatile oil, with complex chemical components. With a low content, most of the compounds were aromatic and aliphatic compounds and their derivatives. A. rosea had a better antibiotic activity for common microorganisms, with a wide antibacterial spectrum. According to the results, the volatile oil of A. rosea will have a good application value in medicine, food and cosmetic industries, which provided a scientific basis for the development of natural A. rosea resources.
Method For Removing Volatile Components From A Gel-Cast Ceramic Article
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2004-09-07
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Method for removing volatile components from a ceramic article, and related processes
Klug, Frederic Joseph; DeCarr, Sylvia Marie
2002-01-01
A method of removing substantially all of the volatile component in a green, volatile-containing ceramic article is disclosed. The method comprises freezing the ceramic article; and then subjecting the frozen article to a vacuum for a sufficient time to freeze-dry the article. Frequently, the article is heated while being freeze-dried. Use of this method efficiently reduces the propensity for any warpage of the article. The article is often formed from a ceramic slurry in a gel-casting process. A method for fabricating a ceramic core used in investment casting is also described.
Slab melting and magma formation beneath the southern Cascade arc
Walowski, Kristina J.; Wallace, Paul J.; Clynne, Michael A.; Rasmussen, D.J.; Weis, D.
2016-01-01
The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO>7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the slab (∼7–9 km below the slab top) cause flux melting of the subducted oceanic crust, producing hydrous slab melts that migrate into the overlying mantle, where they react with peridotite to induce further melting.
Mandibular gland chemistry of four Caribbean species of Camponotus (Hymenoptera:Formicidae)
Juan A. Torres; Roy R. Snelling; Murray S. Blum; Rusell C. Flournoy; Tappey H. Jones
2001-01-01
The volatile components of whole-body extracts of males, females and workers were analyzed in four species of Neotropical ants in the formicine genus, Camponotus. The species, C. kaura, C. sexguttatus, C. ramulorum and C. planatus, represent three different subgenera. Volatile mandibular gland components were found only in male extracts in three of the species. In C....
Identification of volatiles from the secretions and excretions of African wild dogs (Lycaon pictus).
Apps, Peter; Mmualefe, Lesego; McNutt, J Weldon
2012-11-01
Gas chromatography/mass spectrometry was used to identify 103 organic compounds from urine, feces, anal glands, and preputial glands of free-ranging African wild dogs, Lycaon pictus. Aliphatic acids were the dominant class of compound in all materials. In addition to aliphatic acids, urine contained dimethyl sulfone, 1,3-propanediol, benzoic acid, 1-methyl-2,4-imidazolidinedione, and squalene as major components: feces contained indole and cholesterol; and both contained 2-piperidone, phenol, 4-methyl phenol, benzeneacetic acid, and benzenepropanoic acid and other compounds. Anal gland secretion was particularly rich in cholesterol and fatty acids, and preputial gland secretion rich in squalene. A large majority of the identified compounds have been reported from other mammals, including species sympatric with African wild dogs. Eleven of the African wild dog components have not been reported previously from mammals and have not been found in sympatric species; one component, 1-methylimidazole-5-carboxaldehyde has not been reported previously as a natural product. In the chemical profiles of their urine, feces, and anal gland secretion African wild dogs differ markedly from other canids.
Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore
2006-08-01
The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.
USDA-ARS?s Scientific Manuscript database
A targeted approach using HS-SPME-GC–MS was performed to investigate volatile compounds of ordinary Valencia (VAL) and its more deeply colored mutant Rohde Red Valencia orange (RRV) at different developmental stages. Fifty-six volatile components classified into six chemical groups were quantified. ...
Chemometric evaluation of the volatile profile of probiotic melon and probiotic cashew juice.
de Godoy Alves Filho, Elenilson; Rodrigues, Tigressa Helena Soares; Fernandes, Fabiano André Narciso; Pereira, Ana Lucia Fernandes; Narain, Narendra; de Brito, Edy Sousa; Rodrigues, Sueli
2017-09-01
The aim of this study was to evaluate the influence of the lactic acid fermentation on volatile compounds of melon and cashew apple juices. The effect of the fermentation processing on the volatile profile of probiotic juices was assessed by HS-SPME/GC-MS coupled to chemometrics with 67.9% and 81.0% of the variance in the first principal component for melon and cashew juices, respectively. The Lactobacillus casei fermentation imparted a reduction of ethyl butanoate, ethyl-2-methylbutirate, and ethyl hexanoate for melon juice; and of ethyl acetate, ethyl-2-methyl butanoate, ethyl crotonate, ethyl isovalerate, benzaldehyde, and ethyl hexanoate for cashew juice. Measurements of the stability of these compounds and the formation of the component 3-methyl-2-butenyl in melon juice may be used as a volatile marker to follow the juice fermentation. These findings suggested that even though it is not a dairy product the lactic acid fermentation of fruits developed a volatile profile combining the fruit and lactic acid fermentation volatiles with mildly formation or degradation of aroma compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Volatiles from roasted byproducts of the poultry-processing industry.
Wettasinghe, M; Vasanthan, T; Temelli, F; Swallow, K
2000-08-01
Volatiles of roasted chicken breast muscle and byproducts, such as backbones, breastbones, spent bones, and skin, were investigated. Total volatile concentrations ranged from 2030 ppb in the roasted backbones to 4049 ppb in the roasted skin. The major classes of volatile compounds detected in roasted samples were aldehydes (648-1532 ppb) and alcohols (336-1006 ppb). Nitrogen- and/or sulfur-containing compounds were also detected in appreciable quantities (161-706 ppb) in all samples. For all samples, hexanal and 2-methyl-2-buten-1-ol were dominant among the aldehydes and alcohols, respectively. Among the nitrogen- and sulfur-containing compounds, Maillard reaction products, such as tetrahydropyridazines, piperidines, and thiazoles, were the major contributors to the total volatile content in all samples. The composition of volatiles observed in roasted byproducts was markedly different from that of the roasted breast muscle. Therefore, the blending of the byproducts in appropriate proportions or blending of volatile flavor extracts from different byproducts may be necessary to obtain an aroma that mimics roasted chicken aroma.
Comparative study of submerged and surface culture acetification process for orange vinegar.
Cejudo-Bastante, Cristina; Durán-Guerrero, Enrique; García-Barroso, Carmelo; Castro-Mejías, Remedios
2018-02-01
The two main acetification methodologies generally employed in the production of vinegar (surface and submerged cultures) were studied and compared for the production of orange vinegar. Polyphenols (UPLC/DAD) and volatiles compounds (SBSE-GC/MS) were considered as the main variables in the comparative study. Sensory characteristics of the obtained vinegars were also evaluated. Seventeen polyphenols and 24 volatile compounds were determined in the samples during both acetification processes. For phenolic compounds, analysis of variance showed significant higher concentrations when surface culture acetification was employed. However, for the majority of volatile compounds higher contents were observed for submerged culture acetification process, and it was also reflected in the sensory analysis, presenting higher scores for the different descriptors. Multivariate statistical analysis such as principal component analysis demonstrated the possibility of discriminating the samples regarding the type of acetification process. Polyphenols such as apigenin derivative or ferulic acid and volatile compounds such as 4-vinylguaiacol, decanoic acid, nootkatone, trans-geraniol, β-citronellol or α-terpineol, among others, were those compounds that contributed more to the discrimination of the samples. The acetification process employed in the production of orange vinegar has been demonstrated to be very significant for the final characteristics of the vinegar obtained. So it must be carefully controlled to obtain high quality products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Helmi, Zead; Al Azzam, Khaldun Mohammad; Tsymbalista, Yuliya; Ghazleh, Refat Abo; Shaibah, Hassan; Aboul-Enein, Hassan
2014-12-01
To investigate, for the first time, the chemical composition of essential oil of the tubers and leaves of Jerusalem artichoke (Helianthus tuberosus L.), a species of sunflower native to eastern North America, growing in Ukraine. A hydrodistillation apparatus was used for the extraction of volatile components and then it was analysed by gas chromatography equipped with a split-splitless injector (split ratio, 1:50) and flame ionization detector (FID). The oil was analyzed under linear temperature programming applied at 4°C/min from 50°C - 340°C. Temperatures of the injector and FID detector were maintained at 280°C and 300°C, respectively. The chemical analysis of the oil was carried out using gas chromatography coupled to mass spectrometry (GC-MS), to determine the chemical composition of the volatile fraction. The essential oils content ranged from 0.00019 to 0.03486 and 0.00011 to 0.00205 (g/100g), in leaves and tubers, respectively. The qualitative and quantitative analysis led to the identification of 17 components in both species samples. The major component found in leaves and tubers was (-)-β-bisabolene with 70.7% and 63.1%, respectively. Essential oil profile of Jerusalem artichoke species showed significant differences between leaves and tubers species. Additionally, the leaves of Jerusalem artichoke are a promising source of natural β-bisabolene.
NASA Astrophysics Data System (ADS)
Silva, A. Christian; Prange, Richard E.
2007-03-01
We introduce the concept of virtual volatility. This simple but new measure shows how to quantify the uncertainty in the forecast of the drift component of a random walk. The virtual volatility also is a useful tool in understanding the stochastic process for a given portfolio. In particular, and as an example, we were able to identify mean reversion effect in our portfolio. Finally, we briefly discuss the potential practical effect of the virtual volatility on an investor asset allocation strategy.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.
2004-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
2001-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.
Ibrahim, Sabrin R M; Abdallah, Hossam M; Mohamed, Gamal A; Farag, Mohamed A; Alshali, Khalid Z; Alsherif, Emad A; Ross, Samir A
2017-01-01
A comparative investigation of hydro-distilled essential oils from aerial parts of Mentha longifolia L. (ML), Mentha microphylla K.Koch (MM), Mentha australis R.Br. (MA), and Teucrium polium L. (TP) growing in Al Madinah Al Munawwarah, Saudi Arabia, was carried out. The total numbers of identified constituents were 22, 23, 14, and 20 in ML, MM, MA, and TP oils, representing 93.0, 99.3, 78.1, and 81.1% of the total oil composition, respectively. Pulegone (40.7%) and cineole (33.4%) were the major components in ML, whereas carvone (64.6%) was the major one in MM. Furthermore, β-linalool (22.9%) and α-terpineol (12%) were the major components in MA, whereas, (E)-3-caren-2-ol accounted for 12.1% in TP. The essential oils of TP and MA exhibited promising activities against Leishmania donovani promastigotes with IC50 values of 2.3 and 3.7 μg/mL, respectively. In contrast, MA essential oils exhibited antifungal activities towards Candida krusei and C. glabrata with IC50 values of 1 and 1.2 μg/mL, respectively.
[GC-MS analysis of essential oil from Curcuma aromatica rhizome of different growth periods].
Feng, Jie; Xu, Ming-ming; Huang, Xiu-lan; Liu, Hua-gang; Lai, Mao-xiang; Wei, Meng-han
2013-12-01
To analyze the essential oil from the rhizome of Curcuma aromatica of different growth periods, and to provide the scientific reference for reasonable cultivation and quality control of this plant. The essential oil was extracted by hydrodistillation and analyzed with GC-MS. The relative contents were determined with area normalization method. The main volatile constituents in the rhizome of Curcuma aromatica were basically the same. Among these volatile constituents, curdione was the major. The relative content of curdione was 16.35% in the rhizome of wild plant in Hengxian county, and 15.81% in the rhizome of one-year-old plant in Mingyang farm, Nanning city. The relative content of eucalyptol in the 2-year-old cultivated rhizome in Hengxian county was 15.40%, and 14.59% in the rhizome of wild plant in Hengxian county. beta-Elemene, beta-caryophyllene,eugenol and germacrone were also the main constituents in the rhizome essential oil. Volatile constituents in the rhizome of Curcuma aromatica are similar to each other,but the relative content of each component is different. This result can provide the scientific foundation for the cultivation of Curcuma aromatica.
Michereff, M F F; Borges, M; Aquino, M F S; Laumann, R A; Mendes Gomes, A C M; Blassioli-Moraes, M C
2016-10-01
During host selection, physical and chemical stimuli provide important cues that modify search behaviours of natural enemies. We evaluated the influence of volatiles released by eggs and egg extracts of the stink bug Euschistus heros and by soybean plants treated with the eggs and egg extracts on Telenomus podisi foraging behaviour. Responses to volatiles were evaluated in Y-tube olfactometers after exposure to (1) one egg cluster for 24 h; (2) plants with eggs laid by the stink bug, tested at 24, 48, and 72 h after treatment; (3) plants with eggs laid artificially, tested at 24, 48, and 72 h after treatment; and (4) plants treated with acetone or hexane extracts of eggs. Telenomus podisi was attracted to volatiles emitted by one egg cluster and to acetone extracts of one egg cluster, but not to air or acetone controls. There were no responses to odours of plants treated with eggs or egg extracts. Analysis of acetone extracts of egg clusters by gas chromatography revealed the major components were saturated and unsaturated fatty acids, including hexadecanoic acid, linoleic acid, and (Z)-9-octadecenoic acid. Our results suggest that one egg cluster and the acetone extract of one egg cluster contain volatile compounds that can modify T. podisi foraging behaviour, and that the amounts of these compounds, probably together with some minor compounds, are important for host recognition by T. podisi. Also, the oviposition damage or egg extracts on the plant did not elicit indirect defences that attracted Telenomus podisi.
Kubec, Roman; Krejčová, Petra; Mansur, Leví; García, Nicolás
2013-02-13
Profiles of S-substituted cysteine flavor precursors were determined in 42 Alliaceae species native to South Africa and South America. It was found that the pool of cysteine derivatives present in these plants is remarkably very simple, with S-((methylthio)methyl)cysteine 4-oxide (marasmin) being the principal flavor precursor, typically accounting for 93-100% of the pool. Out of the other cysteine derivatives, only minor quantities of methiin were present in some species. The marasmin-derived thiosulfinate marasmicin (2,4,5,7-tetrathiaoctane 4-oxide), a major sensory-active compound of the freshly disrupted plants, was isolated, and its organoleptic properties were evaluated. Furthermore, sulfur-containing volatiles formed upon boiling of these alliaceous species were studied by GC-MS. The profile of the volatiles formed was relatively simple, with 2,3,5-trithiahexane and 2,4,5,7-tetrathiaoctane being the major components. Despite the traditional belief, ingestion of the marasmin-rich plants was always accompanied by development of a strong "garlic breath". We believe that especially several Tulbaghia species deserve to attract much greater attention from the food industry thanks to their pungent garlicky taste and unusual yet pleasant alliaceous smell.
The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...
Steingass, Christof Björn; Jutzi, Manfred; Müller, Jenny; Carle, Reinhold; Schmarr, Hans-Georg
2015-03-01
Ripening-dependent changes of pineapple volatiles were studied in a nontargeted profiling analysis. Volatiles were isolated via headspace solid phase microextraction and analyzed by comprehensive 2D gas chromatography and mass spectrometry (HS-SPME-GC×GC-qMS). Profile patterns presented in the contour plots were evaluated applying image processing techniques and subsequent multivariate statistical data analysis. Statistical methods comprised unsupervised hierarchical cluster analysis (HCA) and principal component analysis (PCA) to classify the samples. Supervised partial least squares discriminant analysis (PLS-DA) and partial least squares (PLS) regression were applied to discriminate different ripening stages and describe the development of volatiles during postharvest storage, respectively. Hereby, substantial chemical markers allowing for class separation were revealed. The workflow permitted the rapid distinction between premature green-ripe pineapples and postharvest-ripened sea-freighted fruits. Volatile profiles of fully ripe air-freighted pineapples were similar to those of green-ripe fruits postharvest ripened for 6 days after simulated sea freight export, after PCA with only two principal components. However, PCA considering also the third principal component allowed differentiation between air-freighted fruits and the four progressing postharvest maturity stages of sea-freighted pineapples.
NASA Technical Reports Server (NTRS)
Vander Kaaden, Kathleen E.; Draper, David S.; McCubbin, Francis M.; Neal, Clive R.; Taylor, G. Jeffrey
2017-01-01
Highly volatile elements [condensation temperatures below about 700 K] and water are highly informative about lunar bulk composition (hence origin), differentiation and magmatic evolution, and the role of impacts in delivering volatiles to the Moon. Fractionation of volatile elements compared to moderately volatile and refractory elements are informative about high-temperature conditions that operated in the proto-lunar disk. Existing data show clearly that the Moon is depleted in volatile elements compared to the bulk silicate Earth. For example, K/Th is 400-700 in the Moon compared to 2800-3000 in Earth. A complicating factor is that the abundances of the highly volatile elements in major lunar lithologies vary by approximately two orders of magnitude. Perhaps most interesting, H2O is not correlated with the concentration of volatile elements, indicating a decoupling of highly volatile elements from the even more volatile H2O. We contend that this decoupling could be a significant tracer of processes operating during lunar formation, differentiation, and bombardment, and the combination of analyzing both volatile elements and water is likely to provide significant insight into lunar geochemical history. This variation and lack of correlation raises the question: what were the relative contributions of crystallization in the magma ocean, subsequent mantle overturn, production of secondary magmas, and addition of volatiles by large impacts in producing this apparently large range in volatile abundances? This current study will produce new partitioning data relevant to the role and distribution of the volatile and non-volatile, yet geochemically significant elements (Co, Ni, Zn, Se, Rb, Sr, Mo, Ag, Cd, In, Sb, Ce, Yb, Tl, Pb, Bi) during the thermal and magmatic evolution of the Moon.
Wang, Chao; Zhang, Chenxia; Kong, Yawen; Peng, Xiaopei; Li, Changwen; Liu, Shunhang; Du, Liping; Xiao, Dongguang; Xu, Yongquan
2017-10-01
Dianhong teas produced from fresh leaves of different tea cultivars (YK is Yunkang No. 10, XY is Xueya 100, CY is Changyebaihao, SS is Shishengmiao), were compared in terms of volatile compounds and descriptive sensory analysis. A total of 73 volatile compounds in 16 tea samples were tentatively identified. YK, XY, CY, and SS contained 55, 53, 49, and 51 volatile compounds, respectively. Partial least squares-discriminant analysis (PLS-DA) and hierarchical cluster analysis (HCA) were used to classify the samples, and 40 key components were selected based on variable importance in the projection. Moreover, 11 flavor attributes, namely, floral, fruity, grass/green, woody, sweet, roasty, caramel, mellow and thick, bitter, astringent, and sweet aftertaste were identified through descriptive sensory analysis (DSA). In generally, innate differences among the tea varieties significantly affected the intensities of most of the key sensory attributes of Dianhong teas possibly because of the different amounts of aroma-active and taste components in Dianhong teas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Teal, P E; Mitchell, E R; Tumlinson, J H; Heath, R R; Sugie, H
1985-06-01
Analysis of sex pheromone gland extracts and volatile pheromone components collected from the calling female southern armyworm,Spodoptera eridania (Cramer), by high-resolution capillary gas chromatography and mass spectroscopy indicated that a number of 14-carbon mono- and diunsaturated acetates and a monounsaturated 16-carbon acetate were produced. Gland extracts also indicated the presence of (Z)-9-tetradecen-1-ol. However, this compound was not found in collections of volatiles. Field trapping studies indicated that the volatile blend composed of (Z)-9-tetradecen-1-ol acetate (60%), (Z)-9-(E)-12-tetradecadien-1-ol acetate (17%), (Z)-9-(Z)-12-tetradecadien-1-ol acetate (15%), (Z)-9-(E)-11-tetradecadien-1-ol acetate (5%), and (Z)-11-hexadecen-1-ol acetate (3 %) was an effective trap bait for males of this species. The addition of (Z)-9-tetradecen-1-ol to the acetate blends tested resulted in the capture of beet armyworm,S. exigua (Hubner), males which provides further evidence that the alcohol is a pheromone component of this species.
Analysis of aroma compounds of pitaya fruit wine
NASA Astrophysics Data System (ADS)
Gong, Xiao; Ma, Lina; Li, Liuji; Yuan, Yuan; Peng, Shaodan; Lin, Mao
2017-12-01
In order to analyze the volatile components in red pitaya fruit wine, the study using headspace solid phase microextractionand gas chromatography-mass spectrometry technology of pitaya fruit juice and wine aroma composition analysis comparison. Results showed that 55 volatile components were detected in red pitaya fruit wine, including 12 kinds of alcohol (18.16%), 18 kinds of esters (66.17%), 7 kinds of acids (5.94%), 11 kinds of alkanes (4.32%), one kind of aldehyde (0.09%), 2 kinds of olefins (0.09%) and 3 kinds of other volatile substances (0.23%). Relative contents among them bigger have 11 species, such as decanoic acid, ethyl ester (22.92%), respectively, diisoamylene (20.75%), octanoic acid, ethyl ester (17.73%), etc. The red pitaya fruit wine contained a lot of aroma components, which offer the products special aroma like brandy, rose and fruit.
NASA Astrophysics Data System (ADS)
Isaacman, Gabriel Avram
Particles in the atmosphere are known to have negative health effects and important but highly uncertain impacts on global and regional climate. A majority of this particulate matter is formed through atmospheric oxidation of naturally and anthropogenically emitted gases to yield highly oxygenated secondary organic aerosol (SOA), an amalgamation of thousands of individual chemical compounds. However, comprehensive analysis of SOA composition has been stymied by its complexity and lack of available measurement techniques. In this work, novel instrumentation, analysis methods, and conceptual frameworks are introduced for chemically characterizing atmospherically relevant mixtures and ambient aerosols, providing a fundamentally new level of detailed knowledge on their structures, chemical properties, and identification of their components. This chemical information is used to gain insights into the formation, transformation and oxidation of organic aerosols. Biogenic and anthropogenic mixtures are observed in this work to yield incredible complexity upon oxidation, producing over 100 separable compounds from a single precursor. As a first step toward unraveling this complexity, a method was developed for measuring the polarity and volatility of individual compounds in a complex mixture using two-dimensional gas chromatography, which is demonstrated in Chapter 2 for describing the oxidation of SOA formed from a biogenic compound (longifolene: C15H24). Several major products and tens of substantial minor products were produced, but none could be identified by traditional methods or have ever been isolated and studied in the laboratory. A major realization of this work was that soft ionization mass spectrometry could be used to identify the molecular mass and formula of these unidentified compounds, a major step toward a comprehensive description of complex mixtures. This was achieved by coupling gas chromatography to high resolution time-of-flight mass spectrometry with vacuum ultraviolet (VUV) photo-ionization. Chapters 3 and 4 describe this new analytical technique and its initial application to determine the structures of unknown compounds and formerly unresolvable mixtures, including a complete description of the chemical composition of two common petroleum products related to anthropogenic emissions: diesel fuel and motor oil. The distribution of hydrocarbon isomers in these mixtures - found to be mostly of branched, cyclic, and saturated -- is described with unprecedented detail. Instead of measuring average bulk aerosol properties, the methods developed and applied in this work directly measure the polarity, volatility, and structure of individual components to allow a mechanistic understanding of oxidation processes. Novel characterizations of these complex mixtures are used to elucidate the role of structure and functionality in particle-phase oxidation, including in Chapter 4 the first measurements of relative reaction rates in a complex hydrocarbon particle. Molecular structure is observed to influence particle-phase oxidation in unexpected and important ways, with cyclization decreasing reaction rates by ~30% and branching increasing reaction rates by ~20-50%. The observed structural dependence is proposed to result in compositional changes in anthropogenic organic aerosol downwind of urban areas, which has been confirmed in subsequent work by applying the techniques described here. Measurement of organic aerosol components is extended to ambient environments through the development of instrumentation with the unprecedented capability to measure hourly concentrations and gas/particle partitioning of individual highly oxygenated organic compounds in the atmosphere. Chapters 5 and 6 describe development of new procedures and hardware for the calibration and analysis of oxygenates using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph (SV-TAG), a custom instrument for in situ quantification of gas- and particle-phase organic compounds in the atmosphere. High time resolution measurement of oxygenated compounds is achieved through a reproducible and quantitative methodology for in situ "derivatization" -- replacing highly polar functional groups that cannot be analyzed by traditional gas chromatography with less polar groups. Implementation of a two-channel sampling system for the simultaneous collection of particle-phase and total gas-plus-particle phase samples allows for the first direct measurements of gas/particle partitioning in the atmosphere, significantly advancing the study of atmospheric composition and variability, as well as the processes governing condensation and re-volatilization. This work presents the first in situ measurements of a large suite of highly oxygenated biogenic oxidation products in both the gas- and particle-phase. Isoprene, the most ubiquitous biogenic emission, oxidizes to form 2-methyltetrols and C5 alkene triols, while α-pinene, the most common monoterpene, forms pinic, pinonic, hydroxyglutaric, and other acids. These compounds are reported in Chapter 7 with unprecedented time resolution and are shown for the first time to have a large gas-phase component, contrary to typical assumptions. Hourly comparisons of these products with anthropogenic aerosol components elucidate the interaction of human and natural emissions at two rural sites: the southeastern, U.S. and Amazonia, Brazil. Anthropogenic influence on SOA formation is proposed to occur through the increase in liquid water caused by anthropogenic sulfate. Furthermore, these unparalleled observations of gas/particle partitioning of biogenic oxidation products demonstrate that partitioning of oxygenates is unexpectedly independent of volatility: many volatile, highly oxygenated compounds have a large particle-phase component that is poorly described by traditional models. These novel conclusions are reached in part by applying the new frameworks developed in previous chapters to understand the properties of unidentified compounds, demonstrating the importance of detailed characterization of atmospheric organic mixtures. Comprehensive analysis of anthropogenic and biogenic emissions and oxidation product mixtures is coupled in this work with high time-resolution measurement of individual organic components to yield significant insights into the transformations of organic aerosols. Oxidation chemistry is observed in both laboratory and field settings to depend on molecular properties, volatility, and atmospheric composition. However, this work demonstrates that these complex processes can be understood through the quantification of individual known and unidentified compounds, combined with their classification into descriptive frameworks.
The geologic classification of the meteorites
Elston, Donald Parker
1968-01-01
The meteorite classes of Prior and Mason are assigned to three proposed genetic groups on the basis of a combination of compositional, mineralogical, and elemental characteristics: l) the calcium-poor, volatile-rich carbonaceous chondrites and achondrites; 2) the calcium-poor, volatile-poor chondrites (enstatite, bronzite, hypersthene, and pigeonite), achondrites (enstatite, hypersthene, and pigeonite), stonyirons (pallasites, siderophyre), and irons; and, 3) the calcium-rich (basaltic) achondrites. Chondrites are correlated with calcium-poor achondrites and the silicate phase of the pallasitic meteorites on Fe contents of olivine and pyroxene; and with metal of the stony-irons and irons on the basis of trace elements (Ga and Ge). Transitions in structure and texture between the chondrites and achondrites are recognized. The Van Schmus-Wood chemical-petrologic classification of the chondrites has been modified and expanded to a mineralogic-petrologic classification of the chondrites and calcium-poor achondrites. Chondrites apparently are the first rocks of the solar system. Paragenetic and textural relations in the Murray carbonaceous chondrite shed new light on the manner of accretion, and on the character of dispersed solid materials ('dust', and chondrules and metal) that existed in the solar system before accretion. Two pre-accretionary mineral assemblages (components) are recognized in the carbonaceous chondrites and in the unequilibrated volatile-poor chondrites. They are: 1) a 'low temperature' water-, rare gas-, and carbon-bearing component; and, 2) a high temperature anhydrous silicate and metal component. Paragenetic relations indicate that component 2 materials predate chondrite formation. An accretionary assemblage (component 3) also is recognized in the carbonaceous chondrites and in the unequilibrated volatile-poor chondrites. Component 3 consists of very fine grains of olivine and pyroxene, which occur as pervasive disseminations, as small irregular aggregates of grains, and as large subround to round, finely granular accretional chondrules. Evidence in Murray indicates that component 3 silicates precipitated abruptly and at low pressures, possibly from a high temperature gas, in an environment that contained dispersed component 1 and 2 materials. All component 3 aggregates in Murray contain component 1 material, most commonly as flakes, and locally as tiny granules and larger spherules, some of which are hollow and some of which were broken prior to their mechanical incorporation in accretionary chondrules. Accretion may have occurred as ices associated with dispersed water-bearing component 1 materials temporarily melted during the precipitation of component 3 silicates, and then abruptly refroze to form an icy cementing material. Group 1 materials may be cometary, and group 2 materials may be asteroidal. Schematic models are proposed. Evidence is reviewed for the lunar origin of the pyroxeneplagioclase achondrites. On the basis of natural remanent magnetism, it is suggested that the very scarce diopside-olivine achondrites may be samples from Mars. A classification of the meteorite breccias, including the calcium-poor and calcium-rich mesosiderites, and irons that contain silicate fragments, is proposed. A fragmentation history of the meteorites is outlined on the basis of evidence in the polymict breccias, and from gas retention ages in stones and exposure ages in irons. Cometal impacts appear to have caused the initial fragmentation, stud possibly the perturbation of orbits, of two inferred asteroidal bodies (enstatite and bronzite), one and possibly both events occurring before 2000 m.y. ago. Several impacts apparently occurred on the inferred hypersthene body in the interval 1000 to 2000 m.y. ago. Major breakups of the three bodies apparently occurred as the result of interasteroidal collisions at about 900 m.y. ago, and 600 to 700 m.y. ago. The breakups were followed by a number of fr
Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L
1999-01-01
The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.
A Simulated Chlorine-Saturated Lunar Magmatic System at the Surface and At Depth
NASA Astrophysics Data System (ADS)
DiFrancesco, N.; Nekvasil, H.; Lindsley, D. H.
2016-12-01
Analysis of igneous minerals present in lunar rocks has provided evidence that volatiles such as water, chlorine and fluorine were concentrated in melts present at or near the lunar surface. While at depth, pressure on a magma allows these gases to remain dissolved in a silicate liquid, however as the magma ascends and depressurizes, these components become saturated and begin exsolving. While at pressure, it's possible for these components, specifically Cl, to form complexes in the melt with major cations such as Na, K, and Fe as well as trace elements such as Zn and Li. While dissolved in the melt, it may be possible for the Cl to inhibit the ability for these cations to enter into crystalline phases such as olivine, plagioclase, or pyroxene, potentially altering the composition of minerals associated with the melt. As the magma rises, these compounds are able to boil off from the magma, changing its bulk composition by effectively removing these cations as halides in a vapor phase. The goals of this project are to experimentally ascertain the nature of minerals sublimated by this degassing, and the effects that this process may have on the evolution and liquid line of decent for a cooling lunar magma. This is accomplished by crystallizing volatile-rich synthetic lunar basalts both at high and zero pressure and analyzing both vapor deposits and solidified liquids. Experimental data simulating volatile-rich magma degassing and crystallization at the lunar surface, and within the lunar crust has demonstrated that typical KREEP basalts (potentially rich in Cl) will crystallize more magnesian and calcic phases at high pressure, and subsequently lose alkalis and iron to a vapor phase at low pressure. We see evidence of vapor deposits and volatile element enrichment in returned Apollo samples such as "Rusty Rock", and on the surface of orange glass beads.
Pei, Fei; Shi, Ying; Gao, Xingyang; Wu, Fangning; Mariga, Alfred Mugambi; Yang, Wenjian; Zhao, Liyan; An, Xinxin; Xin, Zhihong; Yang, Fangmei; Hu, Qiuhui
2014-12-15
Button mushroom slices were dehydrated using freeze drying (FD) or FD combined with microwave vacuum drying (FMVD), and the non-volatile component profiles were studied. The results showed that the level of non-volatile components in button mushroom firstly increased during sublimation of FD/FMVD process and then fell during desorption in FD process and MVD in FMVD process. Compared to FD products, the contents of soluble sugars and polyols in FMVD products were relatively low, whereas the contents of total free amino acids were significantly higher, close to the level of fresh mushroom. However, there was no significant difference in the contents of 5'-nucleotides and organic acids between FD and FMVD products. The equivalent umami concentration (EUC) values for FD and FMVD products did not differ from fresh, indicating that both drying methods could effectively preserve MSG (monosodium glutamate)-like components in button mushroom. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Component and content changes of volatiles from Chinese cabbage damaged by Plutella xylostella].
Yang, Guang; You, Minsheng; Wei, Hui
2004-11-01
The study showed that Chinese cabbage, Brassica campestris could release a variety of volatiles, especially when infested by Plutella xylostella larvae. Among these volatiles, saturated hydrocarbon was dominant, aromatic hydrocarbon was the second, and unsaturated hydrocarbon, aldehyde, alcohol, ketone, acid and heteroaromatic compounds were existed with a small amount. Chinese cabbage damaged by Plutella xylostella larvae produced 3 times of volatiles in amount with more species than the control. The volatiles from control plants were mostly of small molecular weight, and those from Chinese cabbage damaged by Plutella xylostella were mostly of high molecular weight.
An Efficient Extraction Method for Fragrant Volatiles from Jasminum sambac (L.) Ait.
Ye, Qiuping; Jin, Xinyi; Zhu, Xinliang; Lin, Tongxiang; Hao, Zhilong; Yang, Qian
2015-01-01
The sweet smell of aroma of Jasminum sambac (L.) Ait. is releasing while the flowers are blooming. Although components of volatile oil have been extensively studied, there are problematic issues, such as low efficiency of yield, flavour distortion. Here, the subcritical fluid extraction (SFE) was performed to extract fragrant volatiles from activated carbon that had absorbed the aroma of jasmine flowers. This novel method could effectively obtain main aromatic compounds with quality significantly better than solvent extraction (SE). Based on the analysis data with response surface methodology (RSM), we optimized the extraction conditions which consisted of a temperature of 44°C, a solvent-to-material ratio of 3.5:1, and an extraction time of 53 min. Under these conditions, the extraction yield was 4.91%. Furthermore, the key jasmine essence oil components, benzyl acetate and linalool, increase 7 fold and 2 fold respectively which lead to strong typical smell of the jasmine oil. The new method can reduce spicy components which lead to the essential oils smelling sweeter. Thus, the quality of the jasmine essence oil was dramatically improved and yields based on the key component increased dramatically. Our results provide a new effective technique for extracting fragrant volatiles from jasmine flowers.
Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China
NASA Astrophysics Data System (ADS)
Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan
2018-02-01
Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.
Mango ginger (Curcuma amada Roxb.)--a promising spice for phytochemicals and biological activities.
Policegoudra, R S; Aradhya, S M; Singh, L
2011-09-01
Mango ginger (Curcuma amada Roxb.) is a unique spice having morphological resemblance with ginger but imparts a raw mango flavour. The main use of mango ginger rhizome is in the manufacture of pickles and culinary preparations. Ayurveda and Unani medicinal systems have given much importance to mango ginger as an appetizer, alexteric, antipyretic, aphrodisiac, diuretic, emollient, expectorant and laxative and to cure biliousness, itching, skin diseases, bronchitis, asthma, hiccough and inflammation due to injuries. The biological activities of mango ginger include antioxidant activity, antibacterial activity, antifungal activity, anti-inflammatory activity, platelet aggregation inhibitory activity, cytotoxicity, antiallergic activity, hypotriglyceridemic activity, brine-shrimp lethal activity, enterokinase inhibitory activity, CNS depressant and analgesic activity. The major chemical components include starch, phenolic acids, volatile oils, curcuminoids and terpenoids like difurocumenonol, amadannulen and amadaldehyde. This article brings to light the major active components present in C. amada along with their biological activities that may be important from the pharmacological point of view.
A method for the solvent extraction of low-boiling-point plant volatiles.
Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne
2005-01-01
A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.
Thermodynamics of Volatile Species in the Silicon-Oxygen-Hydrogen System Studied
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Opila, Elizabeth J.; Copland, Evan H.; Myers, Dwight
2005-01-01
The volatilization of silica (SiO2) to silicon hydroxides and oxyhydroxides because of reaction with water vapor is important in a variety of high-temperature corrosion processes. For example, the lifetimes of silicon carbide (SiC) and silicon nitride (Si3N4) - based components in combustion environments are limited by silica volatility. To understand and model this process, it is essential to have accurate thermodynamic data for the formation of volatile silicon hydroxides and oxyhydroxides.
Ewe's diet (pasture vs grain-based feed) affects volatile profile of cooked meat from light lamb.
Almela, Elisabeth; Jordán, María José; Martínez, Cristina; Sotomayor, José Antonio; Bedia, Mario; Bañón, Sancho
2010-09-08
The effects of ewe's diet during gestation and lactation on the volatile compounds profile in cooked meat from light lamb were compared. Two lamb groups from ewes that had been fed pasture (PA) or grain-based concentrate (FE) were tested. Cooked loin mixed with saliva was analyzed by solid phase microextraction, gas chromatography, and mass spectrometry. The fiber coating used was divinylbenzene-carboxen-polydimethylsiloxane. The volatiles detected and quantified were aldehydes, alcohols, ketones, phenols, indole, and sulfur compounds. The ewe's diet strongly affected the volatile compounds profile of the cooked meat. The total volatiles concentration was higher in PA (409 mg kg(-1)) than in FE (201 mg kg(-1)). The major volatiles in PA were phenol, 4-methylphenol, and hexanoic acid, while the major volatile in FE was 3-hydroxy-2-butanone. No branched C8-C9 fatty acids responsible for mutton flavor were detected in either group. The findings suggest that nutritional strategies can be use during gestation and lactation to modify the aroma of light lamb meat in the light of consumer preferences.
The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): a review.
Mercier, Beatrice; Prost, Josiane; Prost, Michel
2009-01-01
This paper provides a summary review of the major biological features concerning the essential oil of turpentine, its origin and use in traditional and modern medicine. More precisely, the safety of this volatile fraction to human health, and the medical, biological and environmental effects of the two major compounds of this fraction (alpha- and beta-pinenes) have been discussed.
NASA Technical Reports Server (NTRS)
Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.
2015-01-01
Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.
RESOLVE: Regolith and Environment Science and Oxygen and Lunar Volatile Extraction
NASA Technical Reports Server (NTRS)
Quinn, Jacqueline; Baird, Scott; Colaprete, Anthony; Larson, William; Sanders, Gerald; Picard, Martin
2011-01-01
Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) is an internationally developed payload that is intended to prospect for resources on other planetary bodies. RESOLVE is a miniature drilling and chemistry plant packaged onto a medium-sized rover to collect and analyze soil for volatile components such as water or hydrogen that could be used in human exploration efforts.
Effects of bedding material on ammonia volatilization in a broiler house
USDA-ARS?s Scientific Manuscript database
Ammonia volatilization from poultry house bedding material is a major production issues because the buildup of ammonia within the facilities is a human health issue and can negatively impact the performance of the birds. Major operational cost is associated with the ventilation of poultry houses to ...
Predicting the emission of volatile organic compounds from silage systems
USDA-ARS?s Scientific Manuscript database
As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...
Volatile organic compound emissions from silage systems
USDA-ARS?s Scientific Manuscript database
As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...
NASA Technical Reports Server (NTRS)
Morris, R. V.; Ming, D. W.; Gellert, R.; Vaniman, D. T.; Bish, D. L.; Blake, D. F.; Chipera, S. J.; Morrison, S. M.; Downs, R. T.; Rampe, E. B.;
2015-01-01
We have previously calculated the chemical compositions of the X-ray-diffraction (XRD) amorphous component of three solid samples (Rocknest (RN) soil, John Klein (JK) drill fines, and Cumberland (CB) drill fines) using major-element chemistry (APXS), volatile-element chemistry (SAM), and crystalline- phase mineralogy (CheMin) obtained by the Curiosity rover as a part of the ongoing Mars Science Laboratory mission in Gale Crater. According to CheMin analysis, the RN and the JK and CB samples are mineralogically distinct in that RN has no detectable clay minerals and both JK and CB have significant concentrations of high-Fe saponite. The chemical composition of the XRD amorphous component is the composition remaining after mathematical removal of the compositions of crystalline components, including phyllosilicates if present. Subsequent to, we have improved the unit cell parameters for Fe-forsterite, augite, and pigeonite, resulting in revised chemical compositions for the XRD-derived crystalline component (excluding clay minerals). We update here the calculated compositions of amorphous components using these revised mineral compositions.
It's the little things that matter most: The role of volatiles in volcanoes and their magmatic roots
NASA Astrophysics Data System (ADS)
Keller, T.; Suckale, J.
2017-12-01
Many volcanic eruptions are driven by volatiles - mostly H2O and CO2 - that degas from magmas rising up beneath the volcano. Gas expands during ascent, thus frequently creating lavas with upward of 50% vesicularity. That is a particularly compelling observation considering that volatiles are only present at concentrations of order 100 ppm in the mantle source. Yet, even at these small concentrations, volatiles significantly lower the peridotite solidus. That leads to the production of reactive volatile-rich melts at depth, which has important consequences for melt transport in the asthenosphere. Thus, volatiles have a pivotal role both at the beginning and the end of the magmatic storyline. A growing amount of observational evidence provides various perspectives on these systems. Volcanic products are characterised increasingly well by geochemical and petrological data. And, volcano monitoring now often provides continuous records of degassing flux and composition. What is missing to better interpret these data are coupled fluid mechanic and thermodynamic models that link melt production and reactive transport in the mantle and crust with degassing-driven volcanic activity at the surface. Such models need to describe the deformation and segregation of multiple material phases (liquids, solids, gases) and track the reactive transport of diverse chemical components (major elements, trace elements, volatiles). I will present progress towards a generalization of existing two-phase model for melt transport in the mantle, extending them to three-phase flows appropriate for magma circulation and degassing in volcanoes. What sets the two environments apart is the presence of a compressible vapor in volcanoes. Also, volcanic degassing may occur by convecting suspensions as well as porous segregation. The model framework we are developing for these processes is based on mixture theory. Uncovering the underlying physics that connects these diverse expressions of magma transport will provide an opportunity to gain deeper insights into magmatic and volcanic phenomena as related rather than separate processes. In time we may thus come to more fully understand how it is that the little things that are mantle volatiles do matter most in volcanoes and their magmatic roots.
Reddy, G V P; Holopainen, J K; Guerrero, A
2002-01-01
The parasitoids Trichogramma chilonis (Hymenoptera: Trichogrammatidae) and Cotesia plutellae (Hymenoptera: Braconidae), and the predator Chrysoperla carnea (Neuroptera: Chrysopidae), are potential biological control agents for the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). We present studies on the interactions between these bioagents and various host-associated volatiles using a Y olfactometer. T chilonis was attracted to a synthetic pheromone blend (Z11-16:Ald, Z11-16:Ac, and Z11-16:OH in a 1:1:0.01 ratio), to Z11-16:Ac alone, and to a 1:1 blend of Z11-16:Ac and Z11-16:Ald. C. plutellae responded to the blend and to Z11-16:Ac and Z11-16:Ald. Male and female C. carnea responded to the blend and to a 1:1 blend of the major components of the pheromone, although no response was elicited by single compounds. Among the four host larval frass volatiles tested (dipropyl disulfide, dimethyl disulfide, allyl isothiocyanate, and dimethyl trisulfide), only allyl isothiocyanate elicited significant responses in the parasitoids and predator, but C. plutellae and both sexes of C. carnea did respond to all four volatiles. Among the green leaf volatiles of cabbage (Brassica oleracea subsp. capitata), only Z3-6:Ac elicited significant responses from T. chilonis, C. plutellae, and C. carnea, but C. plutellae also responded to E2-6:Ald and Z3-6:OH. When these volatiles were blended with the pheromone, the responses were similar to those elicited by the pheromone alone, except for C. carnea males, which had an increased response. The effect of temperature on the response of the biological agents to a mixture of the pheromone blend and Z3-6:Ac was also studied. T. chilonis was attracted at temperatures of 25-35 degrees C, while C. plutellae and C. carnea responded optimally at 30-35 degrees C and 20-25 degrees C, respectively. These results indicate that the sex pheromone and larval frass volatiles from the diamondback moth, as well as volatile compounds from cabbage, may be used by these natural enemies to locate their diamondback moth host.
NASA Astrophysics Data System (ADS)
Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su
2012-08-01
The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.
[Analysis of the chemical constituents of volatile oils of Metasequoia glyptostroboides leave].
Shong, E; Lui, R
1997-10-01
The chemical constituents of volatile oils of Metasequoia glyptostroboides leave were analyzed by GC-MS-DS. 27 constituents were identified, alpha-pinene (70.65%) and caryophyllene (10.38%) of them are main components.
Jordán, María J; Quílez, María; Luna, María C; Bekhradi, Farzaneh; Sotomayor, José A; Sánchez-Gómez, Pedro; Gil, María I
2017-04-15
The main goal of the present study was to describe the volatile profile of three different basil genotypes (Genovese and Green and Purple Iranian), and the impact that water stress (75% and 50% field capacity) and storage time (up to 7days) have under mild refrigerated conditions. The chromatographic profile pointed to three different chemotypes: linalool/eugenol, neral/geranial, and estragol, for Genovese, Green, and Purple genotypes, respectively. Water stress depleted the volatile profile of these three landraces, due to a reduction in the absolute concentrations of some of the components related to fresh aroma (linalool, nerol, geraniol and eugenol). The stability of the basil volatile profile during storage varied depending on the water stress that had been applied. Concentration reductions of close to 50% were quantified for most of the components identified in the Purple genotype. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kulongoski, Justin T.; Hilton, David R.; Barry, Peter H.; Esser, Bradley K.; Hillegonds, Darren; Belitz, Kenneth
2013-01-01
To investigate the source of volatiles and their relationship to the San Andreas Fault System (SAFS), 18 groundwater samples were collected from wells near the Big Bend section of the SAFS in southern California and analyzed for helium and carbon abundance and isotopes. Concentrations of 4He, corrected for air-bubble entrainment, vary from 4.15 to 62.7 (× 10− 8) cm3 STP g− 1 H2O. 3He/4He ratios vary from 0.09 to 3.52 RA (where RA = air 3He/4He), consistent with up to 44% mantle helium in samples. A subset of 10 samples was analyzed for the major volatile phase (CO2) — the hypothesized carrier phase of the helium in the mantle–crust system: CO2/3He ratios vary from 0.614 to 142 (× 1011), and δ13C (CO2) values vary from − 21.5 to − 11.9‰ (vs. PDB). 3He/4He ratios and CO2 concentrations are highest in the wells located in the Mil Potrero and Cuddy valleys adjacent to the SAFS. The elevated 3He/4He ratios are interpreted to be a consequence of a mantle volatile flux though the SAFS diluted by radiogenic He produced in the crust. Samples with the highest 3He/4He ratios also had the lowest CO2/3He ratios. The combined helium isotope, He–CO2 elemental relationships, and δ13C (CO2) values of the groundwater volatiles reveal a mixture of mantle and deep crustal (metamorphic) fluid origins. The flux of fluids into the seismogenic zone at high hydrostatic pressure may cause fault rupture, and transfer volatiles into the shallow crust. We calculate an upward fluid flow rate of 147 mm a− 1 along the SAFS, up to 37 times higher than previous estimates (Kennedy et al., 1997). However, using newly identified characteristics of the SAFS, we calculate a total flux of 3He along the SAFS of 7.4 × 103 cm3 STP a− 1 (0.33 mol 3He a− 1), and a CO2 flux of 1.5 × 1013 cm3STP a− 1 (6.6 × 108 mol a− 1), ~ 1% of previous estimates. Lower fluxes along the Big Bend section of the SAFS suggest that the flux of mantle volatiles alone is insufficient to cause the super hydrostatic pressure in the seismogenic zone; however, results identify crustal (metamorphic) fluids as a major component of the CO2 volatile budget, which may represent the additional flux necessary for fault weakening pressure in the SAFS.
Guetat, Arbi; Al-Ghamdi, Faraj A; Osman, Ahmed K
2017-03-01
Four species of the genus Artemisia L. (Artemisia monosperma, Artemisia scoparia, Artemisia judaica and Artemisia sieberi) growing in the northern region of Saudi Arabia were investigated with respect to their volatile oil contents. The yield of oil varied between 0.30 and 0.41%, % (w/w). A. monosperma showed the highest number of compounds with 30 components representing 93.78% of oil composition. However, A. judaica showed the lowest number of compounds with only 16 components representing 87.47% of essential oil. A. scoparia and A. sieberi are both composed of 17 components, representing 97.14 and 94.2% of total oil composition. A. sieberi and A. judaica were dominated by spathulenol (30.42 and 28.41%, respectively). For A. monosperma, butanoic acid (17.87%) was a major component. However, A. scoparia was a chemotype of acenaphthene. (83.23%). Essential oil of studied species showed high antibacterial activities against common human pathogens.
Removal of Perfluorinated Grease Components from NTO Oxidizer
NASA Technical Reports Server (NTRS)
McClure, Mark B.; Greene, Ben; Johnson, Harry T.
2004-01-01
Perfluorinated greases are typically used as a thread lubricant in the assembly of non-welded nitrogen tetroxide (NTO) oxidizer systems. These greases, typically a perfluoroalkylether, with suspended polytetrafluoroethylene (PTFE) micro-powder, have attractive lubricating properties toward threaded components and are relatively chemically inert toward NTO oxidizers. A major drawback, however, is that perfluoroalkylether greases are soluble or dispersible in NTO oxidizers and can contaminate the propellant. The result is propellant that fails the non-volatile residue (NVR) specification analyses and that may have negative effects on test hardware performance and lifetime. Consequently, removal of the grease contaminants from NTO may be highly desirable. Methods for the removal of perfluorinated grease components from NTO oxidizers including distillation, adsorption, filtration, and adjustment of temperature are investigated and reported in this work. Solubility or dispersibility data for the perfluoroalkylether oil (Krytox(tm)143 AC) component of a perfluorinated grease (Krytox 240 AC) and for Krytox 240 AC in NTO were determined and are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bean, R. M.; Mann, D. C.; Riley, R. G.
1980-06-01
The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractionsmore » according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.« less
A BENCH SCALE STUDY ON BIODEGRADATION AND VOLATILIZATION OF ETHYLBENZOATE IN AQUIFERS. (R825549C039)
Experiments were conducted to investigate the fate of ethylbenzoate and soil microorganisms in shallow aquifers. Biodegradation and volatilization have been identified as the major mechanisms in attenuating ethylbenzoate in contaminated soils. The rate of volatilization was ex...
Yu, Jiahui; Zhang, Wen; Zhang, Yiqian; Wang, Yadong; Zhang, Boli; Fan, Guanwei; Zhu, Yan
2017-08-04
Component-based Chinese medicine (CCM) is derived from traditional Chinese medicine but produced with modern pharmaceutical standard and clearer clinical indications. However, it still faces challenges of defining individual component contribution in the complex formula. Using QiShenYiQi (QSYQ) as a model CCM, we investigated the role of Dalbergia odorifera (DO), an herbal component, in preventing myocardial damage. We showed that in vitro, QSYQ exerted considerable protective activities on cardiomyocytes from H 2 O 2 -induced mitochondrial dysfunction with or without DO. However, in isolated rat hearts, myocardial protection by QSYQ was significantly weakened without DO. In everted gut sac model, DO significantly enhanced absorption of the major QSYQ ingredients in different regions of rat intestine. Finally, in in vivo mouse model of doxorubicin (DOX)-induced myocardial damage, only QSYQ, but not QiShenYiQi without DO (QSYQ-DO), exerted a full protection. Taken together, our results showed that instead of directly contributing to the myocardial protection, Dalbergia odorifera facilitates the major active ingredients absorption and increases their efficacy, eventually enhancing the in vivo potency of QSYQ. These findings may shed new lights on our understanding of the prescription compatibility theory, as well as the impacts of "courier herbs" in component-based Chinese medicine.
Stashenko, Elena E; Jaramillo, Beatriz E; Martínez, Jairo René
2004-01-30
Hydrodistillation (HD), simultaneous distillation-solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE), were employed to isolate volatile secondary metabolites from Colombian Xylopia aromatica (Lamarck) fruits. Static headspace (S-HS), simultaneous purge and trap (P&T) in solvent (CH2Cl2), and headspace (HS) solid-phase microextraction (SPME) were utilised to obtain volatile fractions from fruits of X. aromatica trees, which grow wild in Central and South America, and are abundant in Colombia. Kováts indices, mass spectra or standard compounds, were used to identify more than 50 individual components in the various volatile fractions. beta-Phellandrene was the main component found in the HD and MWHD essential oils, SDE and SFE extracts (61, 65, 57, and ca. 40%, respectively), followed by beta-myrcene (9.1, 9.3, 8.2 and 5.1%), and alpha-pinene (8.1, 7.3, 8.1 and 5.9%). The main components present in the volatile fractions of the X. aromatica fruits, isolated by S-HS, P&T and HS-SPME were beta-phellandrene (53.8, 35.7 and 39%), beta-myrcene (13.3, 12.3 and 10.1%), p-mentha-1(7),8-diene (7.1, 10.6 and 10.4%), alpha-phellandrene (2.2, 5.0 and 6.4%), and p-cymene (2.2,4.7 and 4.4%), respectively.
Franco, M R; Shibamoto, T
2000-04-01
Twenty-one volatile compounds were identified for the first time by GC-MS in umbu-caja and in camu-camu, plus 30 volatile compounds were identified in araça-boi samples. Terpenic compounds predominated among the volatile compounds in these fruit samples, with the major compounds being identified as cis-beta-ocimene and caryophyllene in the northeastern fruit; alpha-pinene and d-limonene were the most abundant volatile compounds in the headspace of the Amazonian fruit camu-camu. Sesquiterpenes were the most abundant compounds in the araça-boi sample, with germacrene D presenting a higher relative percentage. The chemical class of esters predominated in the cupuaçu sample. Ethyl butyrate and hexanoate were the major compounds in the headspace of this Amazonian fruit.
Sarnat, Stefanie Ebelt; Coull, Brent A; Ruiz, Pablo A; Koutrakis, Petros; Suh, Helen H
2006-02-01
Particle infiltration is a key determinant of the indoor concentrations of ambient particles. Few studies have examined the influence of particle composition on infiltration, particularly in areas with high concentrations of volatile particles, such as ammonium nitrate (NH4NO3). A comprehensive indoor monitoring study was conducted in 17 Los Angeles-area homes. As part of this study, indoor/outdoor concentration ratios during overnight (nonindoor source) periods were used to estimate the fraction of ambient particles remaining airborne indoors, or the particle infiltration factor (FINF), for fine particles (PM2.5), its nonvolatile (i.e., black carbon [BC]) and volatile (i.e., nitrate [NO3-]) components, and particle sizes ranging between 0.02 and 10 microm. FINF was highest for BC (median = 0.84) and lowest for NO3- (median = 0.18). The low FINF for NO3- was likely because of volatilization of NO3- particles once indoors, in addition to depositional losses upon building entry. The FINF for PM2.5 (median = 0.48) fell between those for BC and NO3-, reflecting the contributions of both particle components to PM25. FINF varied with particle size, air-exchange rate, and outdoor NO3- concentrations. The FINF for particles between 0.7 and 2 microm in size was considerably lower during periods of high as compared with low outdoor NO3- concentrations, suggesting that outdoor NO3- particles were of this size. This study demonstrates that infiltration of PM2.5 varies by particle component and is lowest for volatile species, such as NH4NO3. Our results suggest that volatile particle components may influence the ability for outdoor PM concentrations to represent indoor and, thus, personal exposures to particles of ambient origin, because volatilization of these particles causes the composition of PM2.5 to differ indoors and outdoors. Consequently, particle composition likely influences observed epidemiologic relationships based on outdoor PM concentrations, especially in areas with high concentrations of NH4NO3 and other volatile particles.
Advances in fruit aroma volatile research.
El Hadi, Muna Ahmed Mohamed; Zhang, Feng-Jie; Wu, Fei-Fei; Zhou, Chun-Hua; Tao, Jun
2013-07-11
Fruits produce a range of volatile compounds that make up their characteristic aromas and contribute to their flavor. Fruit volatile compounds are mainly comprised of esters, alcohols, aldehydes, ketones, lactones, terpenoids and apocarotenoids. Many factors affect volatile composition, including the genetic makeup, degree of maturity, environmental conditions, postharvest handling and storage. There are several pathways involved in volatile biosynthesis starting from lipids, amino acids, terpenoids and carotenoids. Once the basic skeletons are produced via these pathways, the diversity of volatiles is achieved via additional modification reactions such as acylation, methylation, oxidation/reduction and cyclic ring closure. In this paper, we review the composition of fruit aroma, the characteristic aroma compounds of several representative fruits, the factors affecting aroma volatile, and the biosynthetic pathways of volatile aroma compounds. We anticipate that this review would provide some critical information for profound research on fruit aroma components and their manipulation during development and storage.
Profiling Taste and Aroma Compound Metabolism during Apricot Fruit Development and Ripening
Xi, Wanpeng; Zheng, Huiwen; Zhang, Qiuyun; Li, Wenhui
2016-01-01
Sugars, organic acids and volatiles of apricot were determined by HPLC and GC-MS during fruit development and ripening, and the key taste and aroma components were identified by integrating flavor compound contents with consumers’ evaluation. Sucrose and glucose were the major sugars in apricot fruit. The contents of all sugars increased rapidly, and the accumulation pattern of sugars converted from glucose-predominated to sucrose-predominated during fruit development and ripening. Sucrose synthase (SS), sorbitol oxidase (SO) and sorbitol dehydrogenase (SDH) are under tight developmental control and they might play important roles in sugar accumulation. Almost all organic acids identified increased during early development and then decrease rapidly. During early development, fruit mainly accumulated quinate and malate, with the increase of citrate after maturation, and quinate, malate and citrate were the predominant organic acids at the ripening stage. The odor activity values (OAV) of aroma volatiles showed that 18 aroma compounds were the characteristic components of apricot fruit. Aldehydes and terpenes decreased significantly during the whole development period, whereas lactones and apocarotenoids significantly increased with fruit ripening. The partial least squares regression (PLSR) results revealed that β-ionone, γ-decalactone, sucrose and citrate are the key characteristic flavor factors contributing to consumer acceptance. Carotenoid cleavage dioxygenases (CCD) may be involved in β-ionone formation in apricot fruit. PMID:27347931
Mothana, Ramzi A; Noman, Omar M; Al-Sheddi, Ebtesam S; Khaled, Jamal M; Al-Said, Mansour S; Al-Rehaily, Adnan J
2017-02-27
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.
Mitaka, Yuki; Mori, Naoki; Matsuura, Kenji
2017-07-26
Division of labour in eusocial insects is characterized by efficient communication systems based on pheromones. Among such insects, termites have evolved specialized sterile defenders, called soldiers. Because they are incapable of feeding themselves, it has been suggested that soldiers are sustained by workers and emit the pheromone arresting workers. However, such a soldier pheromone has not been identified in any termite species, and the details of the soldier-worker interaction remain to be explored. Here, we identified a soldier-specific volatile sesquiterpene as a worker arrestant, which also acts as a primer pheromone regulating soldier differentiation and fungistatic agent in a termite Reticulitermes speratus Chemical analyses revealed that (-)- β -elemene is the major component of soldier extract, and its authentic standard exhibited arrestant activity to workers and inhibited the differentiation from workers to soldiers. This compound also showed fungistatic activity against entomopathogenic fungi. These suggest that (-)- β -elemene secreted by soldiers acts not only as a worker arrestant but also as one component of inhibitory primer pheromone and an anti-pathogenic agent. Our study provides novel evidence supporting the multi-functionality of termite soldier pheromone and provides new insights into the role of soldiers and the evolutionary mechanisms of pheromone compounds. © 2017 The Author(s).
Jiang, Shun-Yuan; Sun, Hong-Bing; Sun, Hui; Ma, Yu-Ying; Chen, Hong-Yu; Zhu, Wen-Tao; Zhou, Yi
2016-03-01
This paper aims to explore a comprehensive assessment method combined traditional Chinese medicinal material specifications with quantitative quality indicators. Seventy-six samples of Notopterygii Rhizoma et Radix were collected on market and at producing areas. Traditional commercial specifications were described and assigned, and 10 chemical components and volatile oils were determined for each sample. Cluster analysis, Fisher discriminant analysis and correspondence analysis were used to establish the relationship between the traditional qualitative commercial specifications and quantitative chemical indices for comprehensive evaluating quality of medicinal materials, and quantitative classification of commercial grade and quality grade. A herb quality index (HQI) including traditional commercial specifications and chemical components for quantitative grade classification were established, and corresponding discriminant function were figured out for precise determination of quality grade and sub-grade of Notopterygii Rhizoma et Radix. The result showed that notopterol, isoimperatorin and volatile oil were the major components for determination of chemical quality, and their dividing values were specified for every grade and sub-grade of the commercial materials of Notopterygii Rhizoma et Radix. According to the result, essential relationship between traditional medicinal indicators, qualitative commercial specifications, and quantitative chemical composition indicators can be examined by K-mean cluster, Fisher discriminant analysis and correspondence analysis, which provide a new method for comprehensive quantitative evaluation of traditional Chinese medicine quality integrated traditional commodity specifications and quantitative modern chemical index. Copyright© by the Chinese Pharmaceutical Association.
Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice
Muchtaridi; Diantini, Adjeng; Subarnas, Anas
2011-01-01
Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.
Zou, Ju-Ying; Chen, Sheng-Huang; Li, Qin-Wen; Chen, Han-Jun; Liu, Bei-Bei; Du, Fan
2012-04-01
To analyze the chemical constituents of volatile oil from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by GC-MS. The volatile oil was extracted from the rhizomes and leaves of Pileostegia viburnoides var. glabrescens by steam distillation. The constituents of volatile oil were identified by GC-MS technology. 37 compounds were identified from the oil of rhizomes. 36 compounds were identified from the oil of leaves. The rhizomes and leaves volatile oil had 18 compounds in common. This study is the first one to report the volatile components of Pileostegia viburnoides var. glabrescens. It can provide a scientific basis for rational use of the rhizomes and leaves of Pileostegia viburnoides var. glabrescens.
Cha, Dong H; Adams, Todd; Rogg, Helmuth; Landolt, Peter J
2012-11-01
Previous studies suggest that olfactory cues from damaged and fermented fruits play important roles in resource recognition of polyphagous spotted wing Drosophila flies (SWD), Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). They are attracted to fermented sweet materials, such as decomposing fruits but also wines and vinegars, and to ubiquitous fermentation volatiles, such as acetic acid and ethanol. Gas chromatography coupled with electroantennographic detection (GC-EAD), gas chromatography-mass spectrometry (GC-MS), two-choice laboratory bioassays, and field trapping experiments were used to identify volatile compounds from wine and vinegar that are involved in SWD attraction. In addition to acetic acid and ethanol, consistent EAD responses were obtained for 13 volatile wine compounds and seven volatile vinegar compounds, with all of the vinegar EAD-active compounds also present in wine. In a field trapping experiment, the 9-component vinegar blend and 15-component wine blend were similarly attractive when compared to an acetic acid plus ethanol mixture, but were not as attractive as the wine plus vinegar mixture. In two-choice laboratory bioassays, 7 EAD-active compounds (ethyl acetate, ethyl butyrate, ethyl lactate, 1-hexanol, isoamyl acetate, 2-methylbutyl acetate, and ethyl sorbate), when added singly to the mixture at the same concentrations tested in the field, decreased the attraction of SWD to the mixture of acetic acid and ethanol. The blends composed of the remaining EAD-active chemicals, an 8-component wine blend [acetic acid + ethanol + acetoin + grape butyrate + methionol + isoamyl lactate + 2-phenylethanol + diethyl succinate] and a 5-component vinegar blend [acetic acid + ethanol + acetoin + grape butyrate + 2-phenylethanol] were more attractive than the acetic acid plus ethanol mixture, and as attractive as the wine plus vinegar mixture in both laboratory assays and the field trapping experiment. These results indicate that these volatiles in wine and vinegar are crucial for SWD attraction to fermented materials on which they feed as adults.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites
NASA Astrophysics Data System (ADS)
Sarafian, Adam R.; Hauri, Erik H.; McCubbin, Francis M.; Lapen, Thomas J.; Berger, Eve L.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Righter, Kevin; Sarafian, Emily
2017-04-01
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207Pb-206Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.
Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.
Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily
2017-05-28
Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).
Rosé wine volatile composition and the preferences of Chinese wine professionals.
Wang, Jiaming; Capone, Dimitra L; Wilkinson, Kerry L; Jeffery, David W
2016-07-01
Rosé wine aromas range from fruity and floral, to more developed, savoury characters. Lighter than red wines, rosé wines tend to match well with Asian cuisines, yet little is known about the factors driving desirability of rosé wines in emerging markets such as China. This study involved Chinese wine professionals participating in blind rosé wine tastings comprising 23 rosé wines from Australia, China and France in three major cities in China. According to the sensory results, a link between the preference, quality and expected retail price of the wines was observed, and assessors preferred wines with prominent red fruit, floral, confectionery and honey characters, and without developed attributes or too much sweetness. Basic wine chemical parameters and 47 volatile compounds, including 5 potent thiols, were determined. Correlations between chemical components, sensory attributes and preference/quality/expected price were visualised by network analysis, revealing relationships that are worthy of further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cocchi, Marina; Durante, Caterina; Grandi, Margherita; Manzini, Daniela; Marchetti, Andrea
2008-01-15
The present research is aimed at monitoring the evolution of the volatile organic compounds of different samples of aceto balsamico tradizionale of modena (ABTM) during ageing. The flavouring compounds, headspace fraction, of the vinegars of four batterie were sampled by solid phase microextraction technique (SPME), and successively analysed by gas chromatography. Obtaining a data set characterized by different sources of variability such as, different producers, samples of different age and chromatographic profile. The gas chromatographic signals were processed by a three-way data analysis method (Tucker3), which allows an easy visualisation of the data by furnishing a distinct set of graphs for each source of variability. The obtained results indicate that the samples can be separated according to their age highlighting the chemical constituents, which play a major role for their differentiation. The present study represents an example of how the application of Tucker3 models, on gas chromatographic signals may help to follow the transformation processes of food products.
Zhang, Qing-He; McDonald, Danny L; Hoover, Doreen R; Aldrich, Jeffrey R; Schneidmiller, Rodney G
2015-09-01
A new invader, the "tawny crazy ant", Nylanderia fulva (Hymenoptera: Formicidae; Formicinae), is displacing the red imported fire ant, Solenopsis invicta (Formicidae: Myrmicinae), in the southern U.S., likely through its superior chemical arsenal and communication. Alone, formic acid is unattractive, but this venom (= poison) acid powerfully synergizes attraction of tawny crazy ants to volatiles from the Dufour's gland secretion of N. fulva workers, including the two major components, undecane and 2-tridecanone. The unexpected pheromonal synergism between the Dufour's gland and the venom gland appears to be another key factor, in addition to previously known defensive and detoxification semiochemical features, for the successful invasion and domination of N. fulva in the southern U.S. This synergism is an efficient mechanism enabling N. fulva workers to outcompete Solenopsis and other ant species for food and territory. From a practical standpoint, judicious point-source release formulation of tawny crazy ant volatiles may be pivotal for enhanced attract-and-kill management of this pest.
Liu, Shugen; Zhu, Nanwen; Li, Loretta Y
2012-01-01
Batch experiment was carried out in a simulated thermophilic aerobic digester to investigate the digestion process of one-stage autothermal thermophilic aerobic digester and to explore the sludge stabilization mechanism. Volatile solids removal was 38.4% at 408 h and 45.0% at 552 h. Chemical oxidation demand, total nitrogen, and ammonia nitrogen in supernatant increased rapidly up to 168 h, and all of them fluctuated moderately after 360 h. Volatile fatty acid (VFA) accumulated rapidly up to 24 to 168 h, then declined sharply, reaching a low concentration after 312 h. Propionic, iso-valeric, and iso-butyric acids, in addition to acetic acids, were also the major components of VFA. As the biochemical metabolic process was inhibited under oxygen-deficiency condition, the digestion system can produce acetic, propionic, butyric acids and other VFA constituents to meet the demand for NAD(+) and maximize ATP generation. The ORP affected the VFA production and depletion as well as sulfate levels. Copyright © 2011 Elsevier Ltd. All rights reserved.
Anaerobic digestion of cattail by rumen cultures.
Hu, Zhen-Hu; Yu, Han-Qing
2006-01-01
The anaerobic digestion of aquatic plants could serve the dual roles for producing renewable energy and reducing waste. In this study, the anaerobic digestion of cattail (Typha latifolia linn), a lignocellulosic aquatic plant, by rumen microorganisms in batch cultures was investigated. At a substrate level of 12.4 g/l volatile solids (VS) and pH 6.7, maximum VS conversion of 66% was achieved within an incubation time of 125 h. However, a decrease in pH from 6.7 to 5.8 resulted in a marked reduction in VS conversion. The total volatile fatty acids (VFAs) yield was about 0.56 g/g VS digested. Acetate and propionate were the major aqueous fermentation products, while butyrate, i-butyrate and valerate were also formed in smaller quantities. Biogas that was produced was composed of carbon dioxide, methane and hydrogen. A modified Gompertz equation was developed to describe substrate consumption and product formation. The hydrolysis of insoluble components was the rate-limiting step in the anaerobic digestion of cattail.
New insights in the chemical composition of benzoin balsams.
Burger, Pauline; Casale, Alexandre; Kerdudo, Audrey; Michel, Thomas; Laville, Rémi; Chagnaud, Francis; Fernandez, Xavier
2016-11-01
Benzoin balsam is an anthropic exudate obtained from the bark of several species of Styrax trees that is mainly used as a perfume fixative as well as a flavouring agent. Benzoe tonkinensis Laos (also commercialized under the denomination Siam benzoin balsam) displaying characteristic vanilla notes and already being largely used to flavour all kinds of edible goods, was intended to be proposed by Agroforex Company to the Codex Committee on Food Additives for evaluation as a food additive. For this purpose, the present paper reports the phytochemical characterisation of both the volatile and non-volatile fractions of benzoin balsams and the quantitation of some of the major components by gas and liquid chromatography techniques. Four coniferyl and two morinol derivatives were characterised for the first time in Benzoe tonkinensis Laos. Finally, two liquid chromatographic methods used to easily discriminate Siam from Sumatra balsam (also known as Benzoe sumatranus Indonesia) were developed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino
2012-11-15
Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.
Diel rhythms in the volatile emission of apple and grape foliage.
Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio
2017-06-01
This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.
Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris).
Barney, Jacob N; Hay, Anthony G; Weston, Leslie A
2005-02-01
Several volatile allelochemicals were identified and characterized from fresh leaf tissue of three distinct populations of the invasive perennial weed, mugwort (Artemisia vulgaris). A unique bioassay was used to demonstrate the release of volatile allelochemicals from leaf tissues. Leaf volatiles were trapped and analyzed via gas chromatography coupled with mass spectrometry. Some of the components identified were terpenes, including camphor, eucalyptol, alpha-pinene, and beta-pinene. Those commercially available were tested individually to determine their phytotoxicity. Concentrations of detectable volatiles differed in both absolute and relative proportions among the mugwort populations. The three mugwort populations consisted of a taller, highly branched population (ITH-1); a shorter, lesser-branched population (ITH-2) (both grown from rhizome fragments from managed landscapes); and a population grown from seed with lobed leaves (VT). Considerable interspecific variation existed in leaf morphology and leaf surface chemistry. Bioassays revealed that none of the individual monoterpenes could account for the observed phytotoxicity imparted by total leaf volatiles, suggesting a synergistic effect or activity of a component not tested. Despite inability to detect a single dominant phytotoxic compound, decreases in total terpene concentration with increase in leaf age correlated with decreases in phytotoxicity. The presence of bioactive terpenoids in leaf surface chemistry of younger mugwort tissue suggests a potential role for terpenoids in mugwort establishment and proliferation in introduced habitats.
Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"
NASA Astrophysics Data System (ADS)
Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.
2015-01-01
Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified simulated cloud solutions and model estimates of generated aqSOA mass should take into account possible generation of, or competition for, oxidant molecules by organic components found in the complex matrices typically associated with real atmospheric water droplets. Additionally, it is likely that some components of real atmospheric waters have not yet been identified as aqSOA precursors, but could be distinguished through further simplified bulk oxidations of known atmospheric water components.
Pereira, Gustavo Araujo; Arruda, Henrique Silvano; de Morais, Damila Rodrigues; Eberlin, Marcos Nogueira; Pastore, Glaucia Maria
2018-06-01
Soluble carbohydrates, volatile and phenolic compounds from calabura fruit as well as its antioxidant activity were assessed. The low amount of fermentable oligo-, di-, and monosaccharides and polyols (FODMAPs) and similar amount of glucose and fructose allow us to classify the calabura berry as low-FODMAPs. The terpenes β-Farnesene and dendrolasin identified by SPME-GC-MS were the major volatile components. UHPLC-MS/MS analysis revelled gallic acid (5325 μg/g dw) and cyanidin-3-O-glucoside (171 μg/g dw) as the main phenolic compounds, followed by gentisic acid, gallocatechin, caffeic acid and protocatechuic acid. In addition, gallic acid was found mainly in esterified (2883 μg/g dw) and insoluble-bound (2272 μg/g dw) forms. Free and glycosylated forms showed however the highest antioxidant activity due to occurrence of flavonoids (0.28-27 μg/g dw) in these fractions, such as catechin, gallocatechin, epigallocatechin, naringenin, and quercetin. These findings clearly suggest that calabura is a berry with low energy value and attractive colour and flavour that may contribute to the intake of several bioactive compounds with antioxidant activity. Furthermore, this berry have great potential for use in the food industry and as functional food. Copyright © 2018 Elsevier Ltd. All rights reserved.
Volpe, Maria Grazia; De Cunzo, Fausta; Siano, Francesco; Paolucci, Marina; Barbarisi, Costantina; Cammarota, Giancarlo
2014-01-01
The purpose of this study was to investigate three types of extraction methods of extra virgin olive oil (EVOO) from the same cultivar (Ortice olive cultivar): traditional or pressing (T) system, decanter centrifugation (DC) system and a patented horizontal axis decanter centrifugation (HADC) system. Oil samples were subjected to chemical analyses: free acidity, peroxide value, ultraviolet light absorption K232 and K270, total polyphenols, antioxidant capacity, volatile compounds and olfactory characteristics by electronic nose. The two centrifugation systems showed better free acidity and peroxides value but total polyphenol content was particularly high in extra virgin olive oil produced by patented HADC system. Same volatile substances that positively characterize the oil aroma were found in higher amount in the two centrifugation systems, although some differences have been detected between DC and HADC system, other were found in higher amount in extra virgin olive oil produced by T system. The electronic nose analysis confirmed these results, principal component analysis (PCA) and correlation matrix showed the major differences between EVOO produced by T and HADC system. Taken together the results showed that DC and HADC systems produce EVOO with better characteristics than T system and patented HADC is the best extraction system.
Calvo, M V; Groba, H F; Martínez, G; Sellanes, C; Rossini, C; González, A
2017-12-23
The bronze bug, Thaumastocoris peregrinus Carpintero & Dellape (Heteroptera: Thaumastocoridae), is an exotic emerging pest in Eucalyptus commercial forests in South America, Africa and southern Europe. Information on the chemical communication system and reproductive ecology of this insect is scant, and it may be relevant for designing management strategies for eucalypt plantations. Adults and nymphs usually aggregate in the field, possibly by means of chemical signals. Males emit large amounts of 3-methyl-2-butenyl butyrate, which attracts conspecific adult males but not females. The ecological role of this putative male aggregation pheromone remains unknown. Here, we report olfactometer bioassays showing that late-instar male nymphs are also attracted to synthetic 3-methyl-2-butenyl butyrate and to adult male volatile extracts, which contain this compound as the major component. As previously shown for adult females, nymphs that moulted into females were not attracted to either volatile stimulus. The intra-gender attraction of nymphs and adults may be related to the exploitation of food resources, or as a reproductive strategy for newly emerged males. Further studies on the reproductive behaviour and mating system of T. peregrinus will contribute to understanding the ecological significance of male-male, adult-nymph attraction, as well as the practical applications that may result from these findings.
NASA Astrophysics Data System (ADS)
Oduro, Harry; Kamyshny, Alexey; Zerkle, Aubrey L.; Li, Yue; Farquhar, James
2013-11-01
We have quantified the major forms of volatile organic sulfur compounds (VOSCs) distributed in the water column of stratified freshwater Fayetteville Green Lake (FGL), to evaluate the biogeochemical pathways involved in their production. The lake's anoxic deep waters contain high concentrations of sulfate (12-16 mmol L-1) and sulfide (0.12 μmol L-1 to 1.5 mmol L-1) with relatively low VOSC concentrations, ranging from 0.1 nmol L-1 to 2.8 μmol L-1. Sulfur isotope measurements of combined volatile organic sulfur compounds demonstrate that VOSC species are formed primarily from reduced sulfur (H2S/HS-) and zero-valent sulfur (ZVS), with little input from sulfate. Thedata support a role of a combination of biological and abiotic processes in formation of carbon-sulfur bonds between reactive sulfur species and methyl groups of lignin components. These processes are responsible for very fast turnover of VOSC species, maintaining their low levels in FGL. No dimethylsulfoniopropionate (DMSP) was detected by Electrospray Ionization Mass Spectrometry (ESI-MS) in the lake water column or in planktonic extracts. These observations indicate a pathway distinct from oceanic and coastal marine environments, where dimethylsulfide (DMS) and other VOSC species are principally produced via the breakdown of DMSP by plankton species.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Chemical vapor deposition of high T(sub c) superconducting films in a microgravity environment
NASA Technical Reports Server (NTRS)
Levy, Moises; Sarma, Bimal K.
1994-01-01
Since the discovery of the YBaCuO bulk materials in 1987, Metalorganic Chemical Vapor Deposition (MOCVD) has been proposed for preparing HTSC high T(sub c) films. This technique is now capable of producing high-T(sub c) superconducting thin films comparable in quality to those prepared by any other methods. The MOCVD technique has demonstrated its superior advantage in making large area high quality HTSC thin films and will play a major role in the advance of device applications of HTSC thin films. The organometallic precursors used in the MOCVD preparation of HTSC oxide thin films are most frequently metal beta-diketonates. High T(sub c) superconductors are multi-component oxides which require more than one component source, with each source, containing one kind of precursor. Because the volatility and stability of the precursors are strongly dependent on temperature, system pressure, and carrier gas flow rate, it has been difficult to control the gas phase composition, and hence film stoichiometry. In order circumvent these problems we have built and tested a single source MOCVD reactor in which a specially designed vaporizer was employed. This vaporizer can be used to volatilize a stoichiometric mixture of diketonates of yttrium, barium and copper to produce a mixed vapor in a 1:2:3 ratio respectively of the organometellics. This is accomplished even though the three compounds have significantly different volatilities. We have developed a model which provides insight into the process of vaporizing mixed precursors to produce high quality thin films of Y1Ba2Cu3O7. It shows that under steady state conditions the mixed organometallic vapor must have a stoichiometric ratio of the individual organometallics identical to that in the solid mixture.
NASA Astrophysics Data System (ADS)
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Rampe, E. B.; Graff, T. G.; Archer, P. D., Jr.; Le, L.; Ming, D. W.; Sutter, B.
2015-01-01
The Mars Science Laboratory (MSL) CheMin instrument on the Curiosity rover is a transmission X-ray diffractometer (Co-Kalpha radiation source and a approx.5deg to approx.52deg 2theta range) where the analyzed powder samples are constrained to have discrete particle diameters <150 microns by a sieve. To date, diffraction patterns have been obtained for one basaltic soil (Rocknest (RN)) and four drill fines of coherent rock (John Klein (JK), Cumberland (CB), Windjana (WJ), and Confidence Hills (CH)). The CheMin instrument has detected and quantified the abundance of both primary igneous (e.g., feldspar, olivine, and pyroxene) and secondary (e.g., Ca-sulfates, hematite, akaganeite, and Fe-saponite) minerals. The diffraction patterns of all CheMin samples are also characterized by a broad diffraction band centered near 30deg 2theta and by increasing diffraction intensity (scattering continuum) from approx.15deg to approx.5deg, the 2theta minimum. Both the broad band and the scattering continuum are attributed to the presence of an XRD amorphous component. Estimates of amorphous component abundance, based on the XRD data itself and on mass-balance calculations using APXS data crystalline component chemistry derived from XRD data, martian meteorites, and/or stoichiometry [e.g., 6-9], range from approx.20 wt.% to approx.50 wt.% of bulk sample. The APXSbased calculations show that the amorphous component is rich in volatile elements (esp. SO3) and is not simply primary basaltic glass, which was used as a surrogate to model the broad band in the RN CheMin pattern. For RN, the entire volatile inventory (except minor anhydrite) is assigned to the amorphous component because no volatile-bearing crystalline phases were reported within detection limits [2]. For JK and CB, Fesaponite, basanite, and akaganeite are volatile-bearing crystalline components. Here we report transmission XRD patterns for sulfate and silicate phases relevant to interpretation of MSL-CheMin XRD amorphous components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic... § 59.106 of this subpart, any coating resulting from the mixing instructions of a regulated entity must... § 59.104(a). (b) Different combinations or mixing ratios of coating components constitute different...
NASA Astrophysics Data System (ADS)
Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.
2014-05-01
Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.
Yang, Yanqin; Chu, Guohai; Zhou, Guojun; Jiang, Jian; Yuan, Kailong; Pan, Yuanjiang; Song, Zhiyu; Li, Zuguang; Xia, Qian; Lu, Xinbo; Xiao, Weiqiang
2016-03-01
An ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction was first employed to determine the volatile components in tobacco samples. The method combined the advantages of ultrasound, microwave, and headspace solid-phase microextraction. The extraction, separation, and enrichment were performed in a single step, which could greatly simplify the operation and reduce the whole pretreatment time. In the developed method, several experimental parameters, such as fiber type, ultrasound power, and irradiation time, were optimized to improve sampling efficiency. Under the optimal conditions, there were 37, 36, 34, and 36 components identified in tobacco from Guizhou, Hunan, Yunnan, and Zimbabwe, respectively, including esters, heterocycles, alkanes, ketones, terpenoids, acids, phenols, and alcohols. The compound types were roughly the same while the contents were varied from different origins due to the disparity of their growing conditions, such as soil, water, and climate. In addition, the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method was compared with the microwave-assisted extraction coupled to headspace solid-phase microextraction and headspace solid-phase microextraction methods. More types of volatile components were obtained by using the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction method, moreover, the contents were high. The results indicated that the ultrasound-microwave synergistic extraction coupled to headspace solid-phase microextraction technique was a simple, time-saving and highly efficient approach, which was especially suitable for analysis of the volatile components in tobacco. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDOE Top-of-Rail Lubricant Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohumad F. Alzoubi; George R. Fenske; Robert A. Erck
2002-02-01
Lubrication of wheel/rail systems has been recognized for the last two decades as a very important issue for railroads. Energy savings and less friction and wear can be realized if a lubricant can be used at the wheel/rail interface. On the other hand, adverse influences are seen in operating and wear conditions if improper or excessive lubrication is used. Also, inefficiencies in lubrication need to be avoided for economic and environmental reasons. The top-of-rail (TOR) lubricant concept was developed by Texaco Corporation to lubricate wheels and rails effectively and efficiently. Tranergy Corporation has been developing its SENTRAEN 2000{trademark} lubrication systemmore » for the last ten years, and this revolutionary new high-tech on-board rail lubrication system promises to dramatically improve the energy efficiency, performance, safety, and track environment of railroads. The system is fully computer-controlled and ensures that all of the lubricant is consumed as the end of the train passes. Lubricant quantity dispensed is a function of grade, speed, curve, and axle load. Tranergy also has its LA4000{trademark} wheel and rail simulator, a lubrication and traction testing apparatus. The primary task of this project was collecting and analyzing the volatile and semivolatile compounds produced as the lubricant was used. The volatile organic compounds were collected by Carbotrap cartridges and analyzed by adsorption and gas chromatography/mass spectrometry (GC/MS). The semivolatile fraction was obtained by collecting liquid that dripped from the test wheel. The collected material was also analyzed by GC/MS. Both of these analyses were qualitative. The results indicated that in the volatile fraction, the only compounds on the Environmental Protection Agency's (EPA) Superfund List of Analytes detected were contaminants either in the room air or from other potential contamination sources in the laboratory. Similarly, in the semivolatile fraction none of the detected compounds are on the EPA's Superfund List of Analytes. The major compound in the semivolatile fraction is 1,2-propanediol, which was also found as the major component of the TOR lubricant before testing. Other compounds found in trace quantities either were present in the TOR lubricant or were small fragments from the polymeric component of the TOR lubricant. The second task for Argonne in this project was to investigate the effects of axle load, angle of attack, and quantity of lubricant on lateral friction forces, as well as the consumption time of the TOR lubricant. The second task was to collect and qualitatively identify any volatile and semivolatile compounds produced upon use of the TOR lubricant.« less
NASA Astrophysics Data System (ADS)
Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.
2014-12-01
The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.
NASA Astrophysics Data System (ADS)
Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.
2013-11-01
Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.
Stashenko, Elena E; Jaramillo, Beatriz E; Martínez, Jairo René
2004-01-30
Hydrodistillation (HD), simultaneous distillation solvent extraction (SDE), microwave-assisted hydrodistillation (MWHD), and supercritical fluid (CO2) extraction (SFE) were employed to isolate volatile secondary metabolites from fresh leaves and stems of Colombian Lippia alba (Mill.) N.E. Brown. Kovàts indices, mass spectra or standard compounds were used to identify around 40 components in the various volatile fractions. Carvone (40-57%) was the most abundant component, followed by limonene (24-37%), bicyclosesquiphellandrene (5-22%), piperitenone (1-2%), piperitone (ca. 1.0%), and beta-bourbonene (0.6-1.5%), in the HD, SDE, MWHD, and SFE volatile fractions. Static headspace (S-HS), simultaneous purge and trap in solvent (CH2Cl2) (P&T), and headspace solid-phase microextraction (HS-SPME) were used to sample volatiles from fresh L. alba stems and leaves. The main components isolated from the headspace of the fresh plant material were limonene (27-77%), carvone (14-30%), piperitone (0.3-0.5%), piperitenone (ca. 0.4%), and beta-bourbonene (0.5-6.5%). The in vitro antioxidant activity of L. alba essential oil, obtained by hydrodistillation was evaluated by determination of hexanal, the main carbonyl compound released by linoleic acid subjected to peroxidation (1 mm Fe2+, 37 degrees C, 12 h), and by quantification of this acid as its methyl ester. Under the same conditions, L. alba HD-essential oil and Vitamin E exhibited similar antioxidant effects.
From Purgatory to Paradise: The Volatile Life of Hawaiian Magma
NASA Astrophysics Data System (ADS)
Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.
2014-12-01
Variations in radiogenic isotope ratios and magmatic volatile abundances (e.g., CO2 or H2O) in Hawaiian lavas reveal key processes within a deep-seated mantle plume (e.g., mantle heterogeneity, source lithology, partial melting, and magma degassing). Shield-stage Hawaiian lavas likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes (e.g., 206Pb/204Pb). The mantle source region may also be heterogeneous with respect to volatile contents, yet the link between pre-eruptive volatile budgets and mantle source lithology in the Hawaiian plume is poorly constrained due to shallow magmatic degassing and mixing. Here, we use a novel approach to investigate this link using Os isotopic ratios, and major, trace, and volatile elements in olivines and mineral-hosted melt inclusions (MIs) from 34 samples from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi. These samples reveal a strong correlation between volatile contents in olivine-hosted MIs and Os isotopes of the same olivines, in which lavas that originated from greater proportions of recycled oceanic crust/pyroxenite (i.e. 'Loa' chain volcanoes: Koolau, Mauna Loa, Loihi) have MIs with the lower H2O, F, and Cl contents than 'Kea' chain volcanoes (i.e. Kilauea) that contain greater amounts of peridotite in the source region. No correlation is observed with CO2 or S. The depletion of fluid-mobile elements (H2O, F, and Cl) in 'Loa' chain volcanoes indicates ancient dehydrated oceanic crust is a plume component that controls much of the compositional variation of Hawaiian Volcanoes. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes the mafic part of the oceanic crust. These results are similar to the observed shifts in H2O/Ce ratios near the Easter and Samoan hotspots [1,2]. Thus, it appears that multiple hotspots may record relative H2O depletions and possibly other volatiles. [1] Dixon et al. 2002, Nature 420:385-89 [2] Workman et al. 2006, EPSL 241:932-51
NASA Astrophysics Data System (ADS)
Lee, Hyunwoo; Fischer, Tobias P.; Muirhead, James D.; Ebinger, Cynthia J.; Kattenhorn, Simon A.; Sharp, Zachary D.; Kianji, Gladys; Takahata, Naoto; Sano, Yuji
2017-10-01
Geochemical investigations of volatiles in hydrothermal systems are used to understand heat sources and subsurface processes occurring at volcanic-tectonic settings. This study reports new results of gas chemistry and isotopes (O, H, N, C, and He) of thermal spring samples (T = 36.8-83.5 °C; pH = 8.5-10.3) from the Magadi and Natron basin (MNB) in the East African Rift (EAR). Although a number of thermal springs are shown to ascend along normal faults and feed into major lakes (Magadi, Little Magadi, and Natron), volatile sources and fluxes of these fluids are poorly constrained. CO2 is the most abundant phase (up to 996.325 mmol/mol), and the N2-He-Ar abundances show a mixture of dissolved gases from deep (mantle-derived) and shallow (air/air saturated water) sources. The H2-Ar-CH4-CO2 geothermometers indicate that equilibrium temperatures range from 100 to 150 °C. δ18O (- 4.4 to - 0.2‰) and δD (- 28.9 to - 3.9‰) values of the MNB thermal waters still lie slightly to the right of the local meteoric water lines, reflecting minor evaporation. Each mixing relationship of N2 (δ15N = - 1.5 to 0.4‰; N2/3He = 3.92 × 106-1.33 × 109, except for an anomalous biogenic sample (δ15N = 5.9‰)) and CO2 (δ13C = - 5.7 to 1.6‰; CO2/3He = 7.24 × 108-1.81 × 1011) suggests that the predominant mantle component of the MNB volatiles is Subcontinental Lithospheric Mantle (SCLM). However, N2 is mostly atmospheric, and minor CO2 is contributed by the limestone end-member. 3He/4He ratios (0.64-4.00 Ra) also indicate a contribution of SCLM (R/Ra = 6.1 ± 0.9), with radiogenic 4He derived from a crustal source (R/Ra = 0.02). The MNB 4He flux rates (3.64 × 1011 to 3.34 × 1014 atoms/m2 s) are significantly greater than the reported mean of global continental flux values (4.18 × 1010 atoms/m2 s), implying that magma intrusions could supply mantle 4He, and related heating and fracturing release crustal 4He from the Tanzanian craton and Mozambique belt. Total flux values (mol/yr) of 3He, N2, and CO2 are 8.18, 4.07 × 107, and 5.31 × 109, which are 1.28%, 2.04%, and 0.24% of global fluxes, respectively. Our results suggest that the primary source of magmatic volatiles in the MNB is SCLM, with additional crustal contributions, which is different from the KRV volatiles that have more asthenospheric mantle components. Volatiles from SCLM in magmas stall in the crust to heat and fracture country rock, with accompanying crustal volatile release. These volatile signatures reveal that MORB-type mantle replaces a relatively small volume of SCLM during incipient rifting (< 10 Ma) in the EAR.
Lime treatment has been used in contaminated sediment management activities for many purposes such as dewatering, improvement of physical properties, and reducing contaminant mobility. Exothermic volatilization of volatile organic compounds from lime-treated sediment is well kno...
HS-GC-MS Volatile compounds recovered in freshly pressed and commercial Wonderful pomegranate juices
USDA-ARS?s Scientific Manuscript database
Consumption and production of superfruits has been increasing. Highly colored fruits often have bitter and astringent components that may make them undesirable, especially when processed. Many pomegranate volatile reports involved commercial samples, complicated isolation methods, or blending and ...
USDA-ARS?s Scientific Manuscript database
Infusions of citronella grass (Cymbopogon nardus) and lemongrass (Cymbopogon citratus) have been commonly used in folk medicine in Thailand and other Asian countries. This study focuses on a systematic comparison of two extraction methods for major volatile aromatic compounds (VACs) of citronella g...
The history of Martian volatiles
NASA Astrophysics Data System (ADS)
Jakosky, Bruce M.; Jones, John H.
The behavior of water and other volatiles on Mars is key to understanding the evolution of the climate. The early climate played a fundamental role in producing the observed surface morphology and possibly in enabling the existence of an early biosphere. Geochemical and isotopic data can be used to infer the history of volatiles. On the basis of the isotopic data from the atmosphere and from components of the surface (as measured in meteorites that come from Mars), there appear to be at least two reservoirs of volatiles, one that has undergone exchange with the atmosphere and has been isotopically fractionated, and a second that is unfractionated and may represent juvenile gases. The fractionation of the atmospheric component has occurred primarily through the escape of gas to space. In addition, the atmospheric gases have mixed substantially with crustal reservoirs of volatiles. Such exchange may have occurred in aqueous or hydrothermal environments. The history of escape to space, as driven by the properties of the Sun through time, is consistent with the surface geomorphology. Together, they suggest an early environment that was substantially different from the present one and the evolution through time to a colder, dryer climate.
USDA-ARS?s Scientific Manuscript database
A major concern of the broiler industry is the volatilization of ammonia (NH3) from the mixture of bedding material and broiler excretion that covers the floor of broiler houses. Gypsum has been proposed as a litter amendment to reduce NH3 volatilization, but reports of NH3 abatement vary among stu...
Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F
2014-10-22
Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.
NASA Astrophysics Data System (ADS)
Kostenidou, Evangelia; Karnezi, Eleni; Hite, James R., Jr.; Bougiatioti, Aikaterini; Cerully, Kate; Xu, Lu; Ng, Nga L.; Nenes, Athanasios; Pandis, Spyros N.
2018-04-01
The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol-1 for the LO-OOA, 89 ± 10 kJ mol-1 for the MO-OOA, 55 ± 11 kJ mol-1 for the BBOA, and 63 ± 15 kJ mol-1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.
Wang, Xing-Jie; Tao, Yong-Sheng; Wu, Yun; An, Rong-Yan; Yue, Zhuo-Ya
2017-07-01
Aroma characteristics and their impact volatile components of noble-rot wines elaborated from artificial botrytized Chardonnay grapes, obtained by spraying Botrytis cinerea suspension in Yuquan vineyard, Ningxia, China, were explored in this work. Dry white wine made from normal-harvested grapes and sweet wine produced from delay-harvested grapes were compared. Wine aromas were analysed by trained sensory panelists, and aroma compounds were determined by SPME-GC-MS. Results indicated that esters, fatty acids, thiols, lactones, volatile phenols and 2-nonanone increased markedly in noble-rot wines. In addition to typical aromas of noble-rot wines, artificial noble-rot wines were found to contain significant cream and dry apricot attributes. Partial Least-Squares Regression models of aroma characteristics against aroma components revealed that non-fermentative odorants were the primary contributor to dry apricot attribute, especially, thiols, C13-norisoprenoids, lactones, terpenols and phenolic acid derivatives, while cream attribute was dependent on both fermentative and non-fermentative volatile components. Copyright © 2017 Elsevier Ltd. All rights reserved.
High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (SOT)
Chemical components of consumer products and articles of commerce such as carpet and clothing are key drivers of exposure in the near-field environment. These chemicals include semi-volatile organic compounds (SVOCs), some of which have been shown to alter endocrine functionality...
MODIFICATION OF METAL PARTITIONING BY SUPPLEMENTING ACID VOLATILE SULFIDE IN FRESHWATER SEDIMENTS
Acid volatile sulfide is a component of sediments which complexes some cationic metals and thereby influences the toxicity of these metals to benthic organisms. EPA has proposed AVS as a key normalization phase for the development of sediment quality criteria for metals. Experime...
Valero, E; Sanz, J; Martínez-Castro, I
2001-06-01
Direct thermal desorption (DTD) has been used as a technique for extracting volatile components of cheese as a preliminary step to their gas chromatographic (GC) analysis. In this study, it is applied to different cheese varieties: Camembert, blue, Chaumes, and La Serena. Volatiles are also extracted using other techniques such as simultaneous distillation-extraction and dynamic headspace. Separation and identification of the cheese components are carried out by GC-mass spectrometry. Approximately 100 compounds are detected in the examined cheeses. The described results show that DTD is fast, simple, and easy to automate; requires only a small amount of sample (approximately 50 mg); and affords quantitative information about the main groups of compounds present in cheeses.
Implications for metal and volatile cycles from the pH of subduction zone fluids
NASA Astrophysics Data System (ADS)
Galvez, Matthieu E.; Connolly, James A. D.; Manning, Craig E.
2016-11-01
The chemistry of aqueous fluids controls the transport and exchange—the cycles—of metals and volatile elements on Earth. Subduction zones, where oceanic plates sink into the Earth’s interior, are the most important geodynamic setting for this fluid-mediated chemical exchange. Characterizing the ionic speciation and pH of fluids equilibrated with rocks at subduction zone conditions has long been a major challenge in Earth science. Here we report thermodynamic predictions of fluid-rock equilibria that tie together models of the thermal structure, mineralogy and fluid speciation of subduction zones. We find that the pH of fluids in subducted crustal lithologies is confined to a mildly alkaline range, modulated by rock volatile and chlorine contents. Cold subduction typical of the Phanerozoic eon favours the preservation of oxidized carbon in subducting slabs. In contrast, the pH of mantle wedge fluids is very sensitive to minor variations in rock composition. These variations may be caused by intramantle differentiation, or by infiltration of fluids enriched in alkali components extracted from the subducted crust. The sensitivity of pH to soluble elements in low abundance in the host rocks, such as carbon, alkali metals and halogens, illustrates a feedback between the chemistry of the Earth’s atmosphere-ocean system and the speciation of subduction zone fluids via the composition of the seawater-altered oceanic lithosphere. Our findings provide a perspective on the controlling reactions that have coupled metal and volatile cycles in subduction zones for more than 3 billion years7.
Volatility of ten priority pollutants from fortified avian toxicity test diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrady, J.K.; Johnson, D.E.; Turner, L.W.
1985-01-01
With a few important exceptions, most pesticides have low volatility. However, a significant number of the industrial chemicals under the jurisdiction of TSCA have sufficient volatility to affect availability in fortified test diets and consequently the test results. Although extremely volatile chemicals might evaportate from test diets, there is insufficient data to indicate what levels of volatility are of concern. Volatility may be only one of a variety of factors influencing the fate of organic chemicals in test diets. Other mechanisms such as hydrolysis, adsorption, and photolysis should also be considered, but for many chemicals having significant vapor pressures, volatilitymore » is likely to be the major source of loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajt, S; Sandford, S A; Flynn, G J
2007-08-28
Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less
Cao, Gang; Cai, Hao; Cong, Xiaodong; Liu, Xiao; Ma, Xiaoqing; Lou, Yajing; Qin, Kunming; Cai, Baochang
2012-08-21
The sulfur-fumigation process can induce changes in the contents of volatile compounds and the chemical transformation of herbal medicines. Although literature has reported many methods for analyzing volatile target compounds from herbal medicine, all of them are largely limited to target compounds and sun-dried samples. This study provides a comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC-TOF/MS) method based on a chemical profiling approach to identify non-target and target volatile compounds from sun-dried and sulfur-fumigated herbal medicine. Using Chrysanthemum morifolium as a model herbal medicine, the combined power of this approach is illustrated by the identification of 209 and 111 volatile compounds with match quality >80% from sun-dried and sulfur-fumigated Chrysanthemum morifolium, respectively. The study has also shown that sulfur-fumigated samples showed a significant loss of the main active compounds and a more destructive fingerprint profile compared to the sun-dried ones. 50 volatile compounds were lost in the sulfur-fumigated Chrysanthemum morifolium sample. The approach and methodology reported in this paper would be useful for identifying complicated target and non-target components from various complex mixtures such as herbal medicine and its preparations, biological and environmental samples. Furthermore, it can be applied for the intrinsic quality control of herbal medicine and its preparations.
Diacetyl levels and volatile profiles of commercial starter distillates and selected dairy foods.
Rincon-Delgadillo, M I; Lopez-Hernandez, A; Wijaya, I; Rankin, S A
2012-03-01
Starter distillates (SDL) are used as ingredients in the formulation of many food products such as cottage cheese, margarine, vegetable oil spreads, processed cheese, and sour cream to increase the levels of naturally occurring buttery aroma associated with fermentation. This buttery aroma results, in part, from the presence of the vicinal dicarbonyl, diacetyl, which imparts a high level of buttery flavor notes and is a key component of SDL. Diacetyl (2,3-butanedione) is a volatile product of citrate metabolism produced by certain bacteria, including Lactococcus lactis ssp. diacetylactis and Leuconostoc citrovorum. In the United States, SDL are regarded as generally recognized as safe ingredients, whereby usage in food products is limited by good manufacturing practices. Recently, diacetyl has been implicated as a causative agent in certain lung ailments in plant workers; however, little is published about the volatile composition of SDL and the levels of diacetyl or other flavoring components in finished dairy products. The objective of this work was to characterize the volatile compounds of commercial SDL and to quantitate levels of diacetyl and other Flavor and Extract Manufacturers Association-designated high-priority flavoring components found in 18 SDL samples and 24 selected dairy products. Headspace volatiles were assessed using a solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. In addition to diacetyl (ranging from 1.2 to 22,000 μg/g), 40 compounds including 8 organic acids, 4 alcohols, 3 aldehydes, 7 esters, 3 furans, 10 ketones, 2 lactones, 2 sulfur-containing compounds, and 1 terpene were detected in the SDL. A total of 22 food samples were found to contain diacetyl ranging from 4.5 to 2,700 μg/100g. Other volatile compounds, including acetaldehyde, acetic acid, acetoin, benzaldehyde, butyric acid, formic acid, furfural, 2,3-heptanedione, 2,3-pentanedione, and propanoic acid, were also identified and quantified in SDL or food samples, or both. The results obtained in this work summarize the volatile composition of commercial SDL and the approximate levels of diacetyl and other Flavor and Extract Manufacturers Association-designated high-priority flavoring components found in SDL and selected dairy foods. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis
NASA Astrophysics Data System (ADS)
Slim, Skander
2016-12-01
This paper investigates the performance of time-changed Lévy processes with distinct sources of return volatility variation for modeling cross-sectional option prices on the CAC40 index during the subprime crisis. Specifically, we propose a multi-factor stochastic volatility model: one factor captures the diffusion component dynamics and two factors capture positive and negative jump variations. In-sample and out-of-sample tests show that our full-fledged model significantly outperforms nested lower-dimensional specifications. We find that all three sources of return volatility variation, with different persistence, are needed to properly account for market pricing dynamics across moneyness, maturity and volatility level. Besides, the model estimation reveals negative risk premium for both diffusive volatility and downward jump intensity whereas a positive risk premium is found to be attributed to upward jump intensity.
Composition and antioxidant activities of leaf and root volatile oils of Morinda lucida.
Okoh, Sunday O; Asekun, Olayinka T; Familoni, Oluwole B; Afolayan, Anthony J
2011-10-01
Morinda lucida (L.) Benth. (Rubiacae) is used in traditional medicine in many West African countries for the treatment of various human diseases. The leaves and roots of this plant were subjected to hydro-distillation to obtain volatile oils which were analyzed by high resolution GC/MS. Fifty compounds were identified in the leaf volatile oil and the major compounds were alpha-terpinene (17.8%) and beta-bisabolene (16.3%). In the root oil, 18 compounds were identified, the major constituents being 3-fluoro-p-anidine (51.8%) and hexadecanoic acid (12.0%). Antioxidant activities of the oils were examined using the DPPH, ABTS, reducing power and lipid peroxidation assays. All assays were concentration dependent with varying antioxidant potentials. The antioxidant activity of the root volatile oil of M. lucida was similar to that of the standard drugs used.
Aerosol volatility in a boreal forest environment
NASA Astrophysics Data System (ADS)
Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.
2012-04-01
Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.
Volatile compounds of dry beans (Phaseolus vulgaris L.).
Oomah, B Dave; Liang, Lisa S Y; Balasubramanian, Parthiba
2007-12-01
Volatile compounds of uncooked dry bean (Phaseolus vulgaris L.) cultivars representing three market classes (black, dark red kidney and pinto) grown in 2005 were isolated with headspace solid phase microextraction (HS-SPME), and analyzed with gas chromatography mass spectrometry (GC-MS). A total of 62 volatiles consisting of aromatic hydrocarbons, aldehydes, alkanes, alcohols and ketones represented on average 62, 38, 21, 12, and 9 x 10(6) total area counts, respectively. Bean cultivars differed in abundance and profile of volatiles. The combination of 18 compounds comprising a common profile explained 79% of the variance among cultivars based on principal component analysis (PCA). The SPME technique proved to be a rapid and effective method for routine evaluation of dry bean volatile profile.
Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1982-01-01
The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.
Mendes, Berta; Gonçalves, João; Câmara, José S
2012-01-15
In this study the feasibility of different extraction procedures was evaluated in order to test their potential for the extraction of the volatile (VOCs) and semi-volatile constituents (SVOCs) from wines. In this sense, and before they could be analysed by gas chromatography-quadrupole first stage masss spectrometry (GC-qMS), three different high-throughput miniaturized (ad)sorptive extraction techniques, based on solid phase extraction (SPE), microextraction by packed sorbents (MEPS) and solid phase microextraction (SPME), were studied for the first time together, for the extraction step. To achieve the most complete volatile and semi-volatile signature, distinct SPE (LiChrolut EN, Poropak Q, Styrene-Divinylbenzene and Amberlite XAD-2) and MEPS (C(2), C(8), C(18), Silica and M1 (mixed C(8)-SCX)) sorbent materials, and different SPME fibre coatings (PA, PDMS, PEG, DVB/CAR/PDMS, PDMS/DVB, and CAR/PDMS), were tested and compared. All the extraction techniques were followed by GC-qMS analysis, which allowed the identification of up to 103 VOCs and SVOCs, distributed by distinct chemical families: higher alcohols, esters, fatty acids, carbonyl compounds and furan compounds. Mass spectra, standard compounds and retention index were used for identification purposes. SPE technique, using LiChrolut EN as sorbent (SPE(LiChrolut EN)), was the most efficient method allowing for the identification of 78 VOCs and SVOCs, 63 and 19 more than MEPS and SPME techniques, respectively. In MEPS technique the best results in terms of number of extractable/identified compounds and total peak areas of volatile and semi-volatile fraction, were obtained by using C(8) resin whereas DVB/CAR/PDMS was revealed the most efficient SPME coating to extract VOCs and SVOCs from Bual wine. Diethyl malate (18.8±3.2%) was the main component found in wine SPE(LiChrolut EN) extracts followed by ethyl succinate (13.5±5.3%), 3-methyl-1-butanol (13.2±1.7%), and 2-phenylethanol (11.2±9.9%), while in SPME(DVB/CAR/PDMS) technique 3-methyl-1-butanol (43.3±0.6%) followed by diethyl succinate (18.9±1.6%), and 2-furfural (10.4±0.4%), are the major compounds. The major VOCs and SVOCs isolated by MEPS(C8) were 3-methyl-1-butanol (26.8±0.6%, from wine total volatile fraction), diethyl succinate (24.9±0.8%), and diethyl malate (16.3±0.9%). Regardless of the extraction technique, the highest extraction efficiency corresponds to esters and higher alcohols and the lowest to fatty acids. Despite some drawbacks associated with the SPE procedure such as the use of organic solvents, the time-consuming and tedious sampling procedure, it was observed that SPE(LiChrolut EN), revealed to be the most effective technique allowing the extraction of a higher number of compounds (78) rather than the other extraction techniques studied. Copyright © 2011 Elsevier B.V. All rights reserved.
Melt generation in the West Antarctic Rift System: the volatile legacy of Gondwana subduction?
NASA Astrophysics Data System (ADS)
Aviado, K.; Rilling-Hall, S.; Mukasa, S. B.; Bryce, J. G.; Cabato, J.
2013-12-01
The West Antarctic Rift System (WARS) represents one of the largest extensional alkali volcanic provinces on Earth, yet the mechanisms responsible for driving rift-related magmatism remain controversial. The failure of both passive and active models of decompression melting to explain adequately the observed volume of volcanism has prompted debate about the relative roles of thermal plume-related melting and ancient subduction-related flux melting. The latter is supported by roughly 500 Ma of subduction along the paleo-Pacific margin of Gondwana, although both processes are capable of producing the broad seismic anomaly imaged beneath most of the Southern Ocean. Olivine-hosted melt inclusions from basanitic lavas provide a means to evaluate the volatile budget of the mantle responsible for active rifting beneath the WARS. We present H2O, CO2, F, S and Cl concentrations determined by SIMS and major oxide compositions by EMPA for olivine-hosted melt inclusions from lavas erupted in Northern Victoria Land (NVL) and Marie Byrd Land (MBL). The melt inclusions are largely basanitic in composition (4.05 - 17.09 wt % MgO, 37.86 - 45.89 wt % SiO2, and 1.20 - 5.30 wt % Na2O), and exhibit water contents ranging from 0.5 up to 3 wt % that are positively correlated with Cl and F. Coupling between Cl and H2O indicates metasomatic enrichment by subduction-related fluids produced during dehydration reactions; coupling between H2O and F, which is more highly retained in subducting slabs, may be related to partial melting of slab remnants [1]. Application of source lithology filters [2] to whole rock major oxide data shows that primitive lavas (MgO wt % >7) from the Terror Rift, considered the locus of on-going tectonomagmatic activity, have transitioned from a pyroxenite source to a volatilized peridotite source over the past ~4 Ma. Integrating the volatile data with the modeled characteristics of source lithologies suggests that partial melting of lithosphere modified by subduction processes is the source of pyroxenite and volatiles in the mantle beneath the present-day rift. The earliest magmatic activity preferentially removed the most readily fusible components from the mantle, resulting in transition to a metasomatized peridotite source over time. [1] Straub & Layne, 2003, GCA; [2] Herzberg & Asimow, 2008, G3; [3] Rilling et al., 2009, JGR.
Fruit characters and volatile organic components in peach-to-nectarine mutants
USDA-ARS?s Scientific Manuscript database
Peach-to-nectarine mutants showed broad pleiotropic effects on fruit size, taste, and aroma, in addition to hairlessness. In this study, we compared nine fruit attributes and 27 detected volatiles in the peach progenitor, ‘Flameprince’ (FPP), its two independently discovered peach-to-nectarine mutan...
Drought and leaf herbivory influence floral volatiles and pollinator attraction
Laura A. Burkle; Justin B. Runyon
2016-01-01
The effects of climate change on species interactions are poorly understood. Investigating the mechanisms by which species interactions may shift under altered environmental conditions will help form a more predictive understanding of such shifts. In particular, components of climate change have the potential to strongly influence floral volatile organic...
USDA-ARS?s Scientific Manuscript database
Flavor is an important attribute of mandarin (Citrus reticulata Blanco) and flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly rel...
USDA-ARS?s Scientific Manuscript database
The waste product of the artificial larval rearing media of the primary screwworm, Cochliomyia hominivorax, attracts gravid female screwworm flies to oviposit. The volatile component of this waste product was collected using solid phase microextraction techniques and subjected to gas chromatography-...
Career Counseling in a Volatile Job Market: Tiedeman's Perspective Revisited
ERIC Educational Resources Information Center
Duys, David K.; Ward, Janice E.; Maxwell, Jane A.; Eaton-Comerford, Leslie
2008-01-01
This article explores implications of Tiedeman's original theory for career counselors. Some components of the theory seem to be compatible with existing volatile job market conditions. Notions of career path recycling, development in reverse, nonlinear progress, and parallel streams in career development are explored. Suggestions are made for…
Quantitative organic vapor-particle sampler
Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.
1998-01-01
A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.
Effect of edible coating on the aromatic attributes of roasted coffee beans.
Rattan, Supriya; Parande, A K; Ramalakshmi, K; Nagaraju, V D
2015-09-01
Coffee is known throughout the world for its distinct aroma and flavour which results from a number of volatile compounds present in it. It is very difficult to arrest the aromatic compounds once the roasting process is complete and it becomes even more challenging to store the beans for a longer time with the retained volatiles as these compounds are easily lost during industrialized processing such as the grinding of roasted coffee beans and storage of ground coffee. Thus, an attempt was made to minimise the loss of volatile from roasted coffee beans by coating with Carboxymethyl cellulose (CMC), Hydroxypropylmethyl cellulose (HPMC) and Whey protein concentrate. Coffee volatiles were analysed by Gas chromatography and 14 major compounds were identified and compared in this study. Results showed an increase in the relative area of major volatile compounds in coated roasted coffee beans when compared with unroasted coffee beans for consecutive two months. Moreover, effect of coating on textural properties and non-volatiles were also analysed. The results have indicated that edible coatings preserve the sensory properties of roasted coffee beans for a longer shelf life and cellulose derivatives, as an edible coating, exhibited the best protecting effect on roasted coffee beans.
Zhang, Bo; Tieman, Denise M; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J; Klee, Harry J
2016-11-01
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology.
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Di Marco, C. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J.-L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2013-09-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of EUCAARI and the intensive campaigns of EMEP during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we propose a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 datasets accounting for urban, rural, remote and high altitude sites and therefore it is likely suitable for the treatment of AMS-related ambient datasets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling evaluation purposes.
Effect of Sulfate on Rhenium Partitioning during Melting of Low-Activity Waste Glass Feeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tongan; Kim, Dong-Sang; Schweiger, Michael J.
2015-10-01
The volatile loss of technetium-99 (99Tc) is a major concern of the low-activity waste (LAW) vitrification at Hanford. We investigated the incorporation and volatile loss of Re (a nonradioactive surrogate for 99Tc) during batch-to-glass conversion up to 1100°C. The AN-102 feed, which is one of the representative Hanford LAW feeds, containing 0.59 wt% of SO3 (in glass if 100% retained) was used. The modified sulfate-free AN-102_0S feed was also tested to investigate the effect of sulfate on Re partitioning and retention during melting. After heating of the dried melter feed (mixture of LAW simulant and glass forming/modifying additives) to differentmore » temperatures, the heat-treated samples were quenched. For each heat-treated sample, the salts (soluble components in room temperature leaching), early glass forming melt (soluble components in 80°C leaching), and insoluble solids were separated by a two-step leaching and the chemical compositions of each phase were quantitatively analyzed. The final retention ratio of AN-102 and AN-102_0S in glass (insoluble solids) are 32% and 63% respectively. The presence of sulfate in the salt phase between 600 and 800°C leads to a significantly higher Re loss via volatilization from the salt layer. At ≥800°C, for both samples, there is no more incorporation of Re into the insoluble phase because: for AN-102_0S there is no salt left i.e., the split into the insoluble and gas phases is complete by 800°C and for AN-102 all the Re contained in the remaining salt phase is lost through volatilization. The present results on the effect of sulfate, although not directly applicable to LAW vitrification in the melter, will be used to understand the mechanism of Re incorporation into glass to eventually develop the methods that can increase the 99Tc retention during LAW vitrification at Hanford.« less
Suzuki, Taku T; Sakaguchi, Isao
2016-01-01
Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.
Huang, Daihong; Zhang, Zhenguo; Chen, Guoping; Li, Houhun; Shi, Fuchen
2015-03-01
The floral scent plays the important key role in maintaining the obligate pollination mutualism between Glochidion plants and Epicephala moths. In the study, the dynamic headspace adsorption technique was employed to collect the floral scent emitted by Glochidion puberum, gas chromatography coupled with mass spectrometry (GC-MS) was used for the detection and identification of volatile chemical components in headspace samples of flowers from G. puberum. The peak area normalization was used to determine the relative contents of each odour component. The results showed that 45 compounds mainly consisting of monoterpenes and sesquiterpenes were isolated from the floral scent produced by G. puberum. Especially, both linalool (38.06%) and β-elemene (23.84%) were considered as the major scent components of G. puberum. It was speculated that linalool and β-elemene may be the two potential compounds attracting female Epicephala moths. The study provided the basic data for further electroantennographic detection and bioassays to identify the compounds having the actual physiological activity to female Epicephala moths.
Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants
NASA Technical Reports Server (NTRS)
1979-01-01
During this quarter the technical activities were directed toward the reformulation of ethylene/vinyl acetate copolymer for use as a compound in solar cell module fabrication. Successful formulations were devised that lowered the temperature required for cure and raised the gel content. A major volatile component was also eliminated (acrylate crosslinking agent) which should aid in the production of bubble free laminates. Adhesive strengths and primers for the bonding of ethylene/vinyl acetate to supersyrate and substrate materials was assessed with encouraging results. The incorporation of silane compounds gave high bond strengths. A survey of scrim materials was also conducted.
Rowan, Daryl D.
2011-01-01
Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243
NASA Astrophysics Data System (ADS)
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
Wang, Lei; Elliott, Brad; Jin, Xixuan; Zeng, Ling; Chen, Jian
2015-12-01
The antimicrobial property of volatiles produced by red imported fire ants, Solenopsis invicta, against Beauveria bassiana, a common entomopathogenic fungus, was demonstrated. The germination rate of B. bassiana spores was significantly reduced after they were exposed to volatiles within an artificial ant nest. Since the air that contained the same level of O2 and CO2 as that in artificial fire ant nests did not suppress the germination rate of B. bassiana, the observed reduction of germination rate must be caused by the toxicity of nest volatiles. Nest fumigation may be an important component of the social immune system in S. invicta.
NASA Technical Reports Server (NTRS)
Ganguly, Jibamitra; Saxena, Surendra K.
1989-01-01
Carbonaceous chondrites are usually believed to be the primary constituents of near-Earth asteroids and Phobos and Diemos, and are potential resources of fuels which may be exploited for future planetary missions. The nature and abundances are calculated of the major volatile bearing and other phases, including the vapor phase that should form in C1 and C2 type carbonaceous chondrites as functions of pressure and temperature. The results suggest that talc, antigorite plus or minus magnesite are the major volatile bearing phases and are stable below 400 C at 1 bar in these chondritic compositions. Simulated heating of a kilogram of C2 chondrite at fixed bulk composition between 400 and 800 C at 1 bar yields about 135 gm of volatile, which is made primarily of H2O, H2, CH4, CO2 and CO. The relative abundances of these volatile species change as functions of temperature, and on a molar basis, H2 becomes the most dominant species above 500 C. In contrast, Cl chondrites yield about 306 gm of volatile under the same condition, which consist almost completely of 60 wt percent H2O and 40 wt percent CO2. Preliminary kinetic considerations suggest that equilibrium dehydration of hydrous phyllosilicates should be attainable within a few hours at 600 C. These results provide the framework for further analyses of the volatile and economic resource potentials of carbonaceous chondrites.
Volatile-rich lunar soil - Evidence of possible cometary impact.
NASA Technical Reports Server (NTRS)
Gibson, E. K., Jr.; Moore, G. W.
1973-01-01
A subsurface Apollo 16 soil, 61221, is much richer in volatile compounds than soils from any other locations or sites as shown by thermal analysis-gas release measurements. A weight loss of 0.03% during the interval 175 to 350 C was associated with the release of water, carbon dioxide, methane, hydrogen cyanide, hydrogen, and minor amounts of hydrocarbons and other species. These volatile components may have been brought to this site by a comet, which may have formed North Ray crater.
NASA Astrophysics Data System (ADS)
Cheong, Chin Wen
2008-02-01
This article investigated the influences of structural breaks on the fractionally integrated time-varying volatility model in the Malaysian stock markets which included the Kuala Lumpur composite index and four major sectoral indices. A fractionally integrated time-varying volatility model combined with sudden changes is developed to study the possibility of structural change in the empirical data sets. Our empirical results showed substantial reduction in fractional differencing parameters after the inclusion of structural change during the Asian financial and currency crises. Moreover, the fractionally integrated model with sudden change in volatility performed better in the estimation and specification evaluations.
Hu, Zenghui; Wang, Chunling; Shen, Hong; Zhang, Kezhong; Leng, Pingsheng
2017-12-01
This study aims to investigate the antioxidant effect of aromatic volatiles of three common aromatic plants, Lavandula dentata, Mentha spicata, and M. piperita. In this study, kunming mice subjected to low oxygen condition were treated with the volatiles emitted from these aromatic plants through inhalation administration. Then the blood cell counts, and the activities and gene expressions of antioxidant enzymes in different tissues were tested. The results showed that low oxygen increased the counts of red blood cells, white blood cells, and blood platelets of mice, and aromatic volatiles decreased their counts. Exposure to aromatic volatiles resulted in decreases in the malonaldehyde contents, and increases in the activities and gene expressions of superoxide dismutase, glutathione peroxidase, and catalase in different tissues under low oxygen. In addition, as the main component of aromatic volatiles, eucalyptol was the potential source that imparted positive antioxidant effect.
NASA Astrophysics Data System (ADS)
Cain, Kerrigan P.; Pandis, Spyros N.
2017-12-01
Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.
Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro
2013-01-01
We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408
da Rocha, Renier Felinto Julião; da Silva Araújo, Ídila Maria; de Freitas, Sílvia Maria; Dos Santos Garruti, Deborah
2017-11-01
Optimization of the extraction conditions to investigate the volatile composition of papaya fruit involving headspace solid phase micro-extraction was carried out using multivariate strategies such as factorial design and response surface methodology. The performance of different combinations of time for reaching the equilibrium in the headspace and time for maximum extraction of volatiles was evaluated by GC-olfactometry of the extract (intensity of papaya characteristic aroma), number of peaks and total area in the chromatogram. Thirty-two compounds were identified by GC-MS under the optimized extraction conditions, the majority of which were aldehydes, both in number of compounds and area. Major compounds were δ-octalactone, β-citral, benzaldehyde, heptanal, benzyl isothiocyanate, isoamyl acetate, γ-octalactone, (E)-linalool oxide and benzyl alcohol. Seven aldehydes and two other compounds are reported for the first time in papaya's volatile profile.
Suriano, S; Alba, V; Di Gennaro, D; Basile, T; Tamborra, M; Tarricone, L
2016-08-01
In red winemaking de-stemming is crucial since the stems contain polymeric phenolic compounds responsible for the astringency of wine. Wine such as Primitivo has low phenolic constituents and tannins and stems affect aroma, taste body and olfactory characteristics. The aim of the study was to evaluate the effects of presence of stems during fermentation on polyphenolic, volatile compounds and sensory characteristics of wine. Primitivo grapes vinified in presence of different percentage of stems: 100 % de-stemmed (D100), 75 % de-stemmed (D75) and 50 % de-stemmed (D50). Results confirmed that the wines vinified in presence of stems were higher in tannins, flavans, to vanillin and proanthocyanidins, colour intensity with lower anthocyanins. The presence of stems during fermentation conferred more structure and flavour to wines. They facilitated must aeration thus promoting synthesis of higher alcohols and ethyl esters by yeast. In particular, a higher content of hexan-1-ol, hex-3-en-1-ol and 2-phenyl ethanol in D50 and D75 gave the wines that suggest green grass, herb and floral. Wine from D75 seemed to be better than D50 in terms of volatile compounds as well as fruity, floral and balsamic components preserved, without any unpleasant taste of long chain fatty acids found in D50.
El-Tantawy, Mona E; Shams, Manal M; Afifi, Manal S
2016-01-01
The essential oil from the aerial parts of Nephrolepis exaltata and Nephrolepis cordifolia obtained by hydro-distillation were analyzed by gas chromatography/ mass spectrometry. The essential oils exhibited potential antibacterial and antifungal activities against a majority of the selected microorganisms. NEA oil showed promising cytotoxicity in breast, colon and lung carcinoma cells. The results presented indicate that NEA oil could be useful alternative for the treatment of dermatophytosis. Comparative investigation of hydro-distilled volatile constituents from aerial parts (A) of Nephrolepis exaltata (NE) and Nephrolepis cordifolia (NC) (Family Nephrolepidaceae) was carried out. Gas chromatography/mass spectrometry revealed that oils differ in composition and percentages of components. Oxygenated compounds were dominant in NEA and NCA. 2,4-Hexadien-1-ol (16.1%), nonanal (14.4%), β-Ionone (6.7%) and thymol (2.7%) were predominant in NEA. β-Ionone (8.0%), eugenol (7.2%) and anethol (4.6%) were the main constituents in NCA. Volatile samples were screened for their antibacterial and antifungal activities using agar diffusion method and minimum inhibitory concentrations. The cytotoxic activity was evaluated using viability assay in breast (MCF-7), colon (HCT-116) and lung carcinoma (A-549) cells by the MTT assay. The results revealed that NEA oil exhibited potential antimicrobial activity against most of the tested organisms and showed promising cytotoxicity.
[Study on chemical diversity of volatile oils in Houttuynia cordata and their genetic basis].
Wu, Lingshang; Si, Jinping; Zhou, Hui; Zhu, Yan; Lan, Yunlong
2009-01-01
To reveal chemical diversify of volatile oils in Houttuynia cordata from major producing areas in China and their genetic basis, lay a foundation for breeding a quality H. cordata variety. The volatile oils in H. cordata from 22 provenances were determined by GC. And the relationship among the peak areas of volatile oils, biological characteristics and RAPD makers were analyzed. There were common and special volatile oils in H. cordata from different provenances. The peak areas of common volatile oils in samples were significantly different. The clustering figure based on the peak areas or the relative peak areas of common volatile oils was almost agreed with the one based on RAPD makers analysis. And the differences in chromatograms could be distinguished according to the biological characteristics. The diversity of volatile oils exists in H. cordata from different provenances which relate with biological characteristics and has genetic basis. H. cordata can be divided into 2 types according to volatile oils, biological characteristics or RAPD marker.
NASA Technical Reports Server (NTRS)
O'D. Alexander, Conel
2003-01-01
The chondrites are aggregates of components (e.g. chondrules, chondrule rims and matrix) that formed in the nebula but, at present, there is no consensus on how any of these components formed or whether their formation produced or post dated the chemical fractionations between the chondrites. Chondrites are, at present, the most primitive Solar System objects available for laboratory study and the conditions under which their principle components formed would provide the most direct constraints for models of nebula formation and evolution. The conditions under which chondrules formed is of particular importance because, if their relative abundance in chondrites approximates that in the nebula, they are the products of one of the most energetic and pervasive processes that operated in the early Solar System. The goal of this proposal was to combine theoretical modeling with a comprehensive study of the elemental and isotopic compositions of the major components in unequilibrated ordinary chondrites (UOCs), with the aim of determining the conditions in the nebula at the time of their formation. The isotopes of volatile and moderately volatile elements should be particularly revealing of conditions during chondrule formation, as evaporation under most conditions would lead to isotopic mass fractionation. Modeling of chondrule and matrix formation requires the development of a kinetic model of evaporation and condensation, and calibration of this model against experiments. Cosmic spherules present an opportunity to test our evaporation models under flash heating conditions that would be difficult to simulate experimentally. However, there is surprisingly little known about the isotopic compositions of silicate cosmic spherules, and a number of questions need to be addressed. Is the range of compositions they exhibit due to evaporation? If they are, are the relative volatilities consistent with the models/experiments and are the isotopic fractionations consistent with Rayleigh conditions? For instance, do the alkalis and S evaporate prior to significant melting so that conditions did not meet the Rayleigh criteria of rapid diffusion? If so, their isotopic fractionation might be considerably suppressed. Could this mechanism of K loss apply to chondrule formation? The Fe isotopic fractionation during evaporation of silicates has not been measured, so cosmic spherules might provide a clue to whether FeO diffusion is fast enough to maintain Rayleigh conditions during evaporation. And so on.
Yang, Yan-Qin; Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties.
Cai, Xiaoming; Bian, Lei; Xu, Xiuxiu; Luo, Zongxiu; Li, Zhaoqun; Chen, Zongmao
2017-01-01
Attractants for pest monitoring and controlling can be developed based on plant volatiles. Previously, we showed that tea leafhopper (Empoasca onukii) preferred grapevine, peach plant, and tea plant odours to clean air. In this research, we formulated three blends with similar attractiveness to leafhoppers as peach, grapevine, and tea plant volatiles; these blends were composed of (Z)-3-hexenyl acetate, (E)-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene, benzaldehyde, and ethyl benzoate. Based on these five compounds, we developed two attractants, formula-P and formula-G. The specific component relative to tea plant volatiles in formula-P was benzaldehyde, and that in formula-G was ethyl benzoate. These two compounds played a role in attracting leafhoppers. In laboratory assays, the two attractants were more attractive than tea plant volatiles to the leafhoppers, and had a similar level of attractiveness. However, the leafhoppers were not attracted to formula-P in the field. A high concentration of benzaldehyde was detected in the background odour of the tea plantations. In laboratory tests, benzaldehyde at the field concentration was attractive to leafhoppers. Our results indicate that the field background odour can interfere with a point-releasing attractant when their components overlap, and that a successful attractant must differ from the field background odour. PMID:28150728
Yin, Hong-Xu; Yuan, Hai-Bo; Jiang, Yong-Wen; Dong, Chun-Wang; Deng, Yu-Liang
2018-01-01
In the present work, a novel infrared-assisted extraction coupled to headspace solid-phase microextraction (IRAE-HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) was developed for rapid determination of the volatile components in green tea. The extraction parameters such as fiber type, sample amount, infrared power, extraction time, and infrared lamp distance were optimized by orthogonal experimental design. Under optimum conditions, a total of 82 volatile compounds in 21 green tea samples from different geographical origins were identified. Compared with classical water-bath heating, the proposed technique has remarkable advantages of considerably reducing the analytical time and high efficiency. In addition, an effective classification of green teas based on their volatile profiles was achieved by partial least square-discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). Furthermore, the application of a dual criterion based on the variable importance in the projection (VIP) values of the PLS-DA models and on the category from one-way univariate analysis (ANOVA) allowed the identification of 12 potential volatile markers, which were considered to make the most important contribution to the discrimination of the samples. The results suggest that IRAE-HS-SPME/GC-MS technique combined with multivariate analysis offers a valuable tool to assess geographical traceability of different tea varieties. PMID:29494626
Hammerstein system represention of financial volatility processes
NASA Astrophysics Data System (ADS)
Capobianco, E.
2002-05-01
We show new modeling aspects of stock return volatility processes, by first representing them through Hammerstein Systems, and by then approximating the observed and transformed dynamics with wavelet-based atomic dictionaries. We thus propose an hybrid statistical methodology for volatility approximation and non-parametric estimation, and aim to use the information embedded in a bank of volatility sources obtained by decomposing the observed signal with multiresolution techniques. Scale dependent information refers both to market activity inherent to different temporally aggregated trading horizons, and to a variable degree of sparsity in representing the signal. A decomposition of the expansion coefficients in least dependent coordinates is then implemented through Independent Component Analysis. Based on the described steps, the features of volatility can be more effectively detected through global and greedy algorithms.
NASA Astrophysics Data System (ADS)
Hsieh, Y.; Bugna, G.
2006-12-01
Uncertainty of black carbon (BC) research is often plagued by the analytical difficulty associated with separating carbon components in solid samples. A rapid and sensitive multi-elemental scanning thermal analysis (MESTA), originally developed for organic matter analysis in solid samples, was applied to this study. The objective was to identify the chemical signature of biomass burning emitted PM2.5 (aerosols less than 2.5 micron) for tracing purposes. We collected PM2.5 from the burning of various biomass of a pine forest and from the ambient air of an urban campus using a PM sampler. The MESTA provides simultaneous C, N and S thermograms of the PM2.5 samples that can be used for characterization and identification purposes. This study showed that the PM2.5 samples produced from the burning of forest biomass can be characterized by a high temperature (greater than 350 oC) volatile organic component with high C/N ratio and no S content while those produced from the ambient air can be characterized by a low temperature (less than 350 oC) volatile organic component with low C/N ratio and high S content. Burning of the soaked woody debris, however, produced significant amount of the low-temperature volatile organic component similar to that of the ambient air in C/N ratio but different in S content. Most PM2.5 samples have a very low temperature (less than 110 oC) volatile N component that is identified as absorbed ammonia. The absorbed ammonia is most significant in the PM2.5 of the ambient air and the burning of soaked woody debris. All PM2.5 samples have significant amount of BC which volatilized above 500 oC with very high C/N ratio. This study also shows that MESTA can provide an objective means to present the chemical signature of the whole spectrum of OC/BC in the PM2.5 samples.
Comparison of fruit characters and volatile components in peach-to-nectarine mutants
USDA-ARS?s Scientific Manuscript database
In this study, we compared nine fruit attributes and 27 detected volatiles in the peach progenitor, ‘Flameprince’ (FPP), its two independently discovered peach-to-nectarine mutants (HFN and PFN), and a selected nectarine hybrid (SLN). HFN and PFN differed from FPP in fruit size and taste, but shared...
USDA-ARS?s Scientific Manuscript database
Gas chromatography coupled with electroantennogram detection (GC-EAD) was used to identify volatiles from the fruit of Snowberry, Symphoricarpos albus laevigatus, as key attractants for Rhagoletis zephyria flies reared from snowberry fruit. A nine-component blend containing 3-methylbutan-1-ol (3%), ...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
Cai, Yongqing; Hu, Xiaogang; Huang, Mingchun; Sun, Fengjun; Yang, Bo; He, Juying; Wang, Xianfeng; Xia, Peiyuan; Chen, Jianhong
2012-06-25
Rubus parvifolius L. (Rp) is a medicinal herb that possesses antibacterial activity. In this study, we extracted the volatile oil from the leaves of Rp to assess its antibacterial activity and analyze its chemical composition. A uniform distribution design was used to optimize the extraction procedure, which yielded 0.36% (w/w) of light yellowish oil from the water extract of Rp leaves. We found that the extracted oil effectively inhibited the growth of a wide range of Gram positive and negative bacteria, including Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumanii, Bacillus cloacae, and Klebsiella pneumoniae. We further analyzed the components contained in the hydro-distillated Rp volatile oil by gas chromatography-mass spectroscopy. Twenty nine compounds were identified, including 4-hydroxy-3-methoxystyrene (66%), 3,7,11,15-tetramethyl-2-hexadecen-1-ol (10%) and 4-tert-butylbenzoic acid (2%). Our results suggest that one or multiple constituents contained in Rp volatile oil may account for its antibacterial activity.
Birkett, M A; Chamberlain, K; Guerrieri, E; Pickett, J A; Wadhams, L J; Yasuda, T
2003-07-01
The blend of volatile compounds emitted by bean plants (Phaseolus vulgaris) infested with greenhouse whitefly (Trialeurodes vaporariorum) has been studied comparatively with undamaged plants and whiteflies themselves. Collection of the volatiles and analysis by gas chromatography revealed more than 20 compounds produced by plants infested with whitefly. Of these, 4 compounds, (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, 3-octanone, and one unidentified compound were emitted at higher levels than from the undamaged control plants. Synthetic (Z)-3-hexen-1-ol, 4,8-dimethyl-1,3,7-nonatriene, or 3-octanone all elicited a significant increase in oriented flight and landing on the source by the parasitoid, Encarsia formosa, in wind tunnel bioassays. Two-component mixtures of the compounds and the three-component mixture all elicited a similar or, in most cases, a better response by the parasitoid, the most effective being a mixture of (Z)-3-hexen-1-ol and 3-octanone. These results demonstrate that E. formosa uses volatiles from the plant-host complex as olfactory cues for host location.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Shinpuku, Hideto; Yonejima, Yasunori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) during the cultivation process of Lactobacillus brevis were isolated by hydrodistillation (HD) and analyzed to determine the utility of the liquid waste. The composition of the volatile oils was analyzed by capillary gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). In total, 55 and 36 compounds were detected in the volatile oils from MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were N-containing compounds, including 2,3-dimethylpyrazine (16, 37.1 %), methylpyrazine (4, 17.1 %). The important aroma-active compounds in the oils were detected by GC-Olfactometry (GC-O), and their intensity of aroma were measured by aroma extract dilution analysis (AEDA). Expressly, pyrazine compounds were determined as key aroma components; in particular, 2,5-dimethylpyrazine and 2,3-dimethylpyrazine were the most primary aroma-active compound in MAI oil. These results imply that the waste medium after incubation of L. brevis may be utilized as a source of volatile oils.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti.
Kaminski, E; Stawicki, S; Wasowicz, E
1974-06-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant.
Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti
Kaminski, E.; Stawicki, S.; Wasowicz, E.
1974-01-01
Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant. PMID:16349989
Yang, Lu; Cheng, Ping; Wang, Jin-Hui; Li, Hong
2017-10-23
This study investigated the volatile flavor compounds and antioxidant properties of the essential oil of chrysanthemums that was extracted from the fresh flowers of 10 taxa of Chrysanthemum morifolium from three species; namely Dendranthema morifolium (Ramat.) Yellow, Dendranthema morifolium (Ramat.) Red, Dendranthema morifolium (Ramat.) Pink, Dendranthema morifolium (Ramat.) White, Pericallis hybrid Blue, Pericallis hybrid Pink, Pericallis hybrid Purple, Bellis perennis Pink, Bellis perennis Yellow, and Bellis perennis White. The antioxidant capacity of the essential oil was assayed by spectrophotometric analysis. The volatile flavor compounds from the fresh flowers were collected using dynamic headspace collection, analyzed using auto thermal desorber-gas chromatography/mass spectrometry, and identified with quantification using the external standard method. The antioxidant activities of Chrysanthemum morifolium were evaluated by DPPH and FRAP assays, and the results showed that the antioxidant activity of each sample was not the same. The different varieties of fresh Chrysanthemum morifolium flowers were distinguished and classified by fingerprint similarity evaluation, principle component analysis (PCA), and cluster analysis. The results showed that the floral volatile component profiles were significantly different among the different Chrysanthemum morifolium varieties. A total of 36 volatile flavor compounds were identified with eight functional groups: hydrocarbons, terpenoids, aromatic compounds, alcohols, ketones, ethers, aldehydes, and esters. Moreover, the variability among Chrysanthemum morifolium in basis to the data, and the first three principal components (PC1, PC2, and PC3) accounted for 96.509% of the total variance (55.802%, 30.599%, and 10.108%, respectively). PCA indicated that there were marked differences among Chrysanthemum morifolium varieties. The cluster analysis confirmed the results of the PCA analysis. In conclusion, the results of this study provide a basis for breeding Chrysanthemum cultivars with desirable floral scents, and they further support the view that some plants are promising sources of natural antioxidants.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.
2016-01-01
The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl in apatite.
NASA Astrophysics Data System (ADS)
Muhamad Fahmi, M. H.; Ahmad Bukhary, A. K.; Norma, H.; Idris, A. B.
2016-11-01
The main attractant compound for Eleidobius kamerunicus to male spikelet Elaeis guineensis (oil palm) were determined by analyzing volatile organic compound extracted from E. guineenses inflorescences planted on different soil types namely peat soil, clay soil and sandy soil. Anthesizing male oil palm inflorescences were randomly choosen from palm aged between 4-5 years old age. Extraction of the volatiles from the oil palm inflorescences were performed by Accelerated Solvent Extraction method (ASE). The extracted volatile compound were determined by using gas chromatography-mass spectrometry. Out of ten identified compound, estragole was found to be a major compound in sandy soil (37.49%), clay soil (30.71%) and peat soil (27.79%). Other compound such as 9,12-octadecadieonic acid and n-hexadecanoic acid were found as major compound in peat soil (27.18%) and (7.45%); sandy soil (14.15 %) and (9.31%); and clay soil (30.23%) and (4.99%). This study shows that estragole was the predominant volatile compound detected in oil palm inflorescences with highly concentrated in palm planted in sandy soil type.
Effects of daylight savings time changes on stock market volatility.
Berument, M Hakan; Dogan, Nukhet; Onar, Bahar
2010-04-01
The presence of daylight savings time effects on stock returns and on stock volatility was investigated using an EGARCH specification to model the conditional variance. The evidence gathered from the major United States stock markets for the period between 1967 and 2007 did not support the existence of the daylight savings time effect on stock returns or on volatility. Returns on the first business day following daylight savings time changes were not lower nor was the volatility higher, as would be expected if there were an effect.
Teale, Stephen A; Wickham, Jacob D; Zhang, Feiping; Su, Jun; Chen, Yi; Xiao, Wei; Hanks, Lawrence M; Millar, Jocelyn G
2011-10-01
The beetle Monochamus alternatus Hope (Coleoptera: Cerambycidae) is an efficient vector of pine wood nematode, the causal pathogen of pine wilt disease, that has resulted in devastating losses of pines in much of Asia. We assessed the response of adult M. alternatus to 2-(undecyloxy)-ethanol, the male-produced pheromone of the congeneric M. galloprovincialis Dejean, in field experiments in Fujian Province, People's Republic of China. Both sexes of M. alternatus were attracted to lures consisting of 2-(undecyloxy)-ethanol combined with the host plant volatiles alpha-pinene and ethanol. A follow-up experiment showed that 2-(undecyloxy)-ethanol was synergized by both ethanol and alpha-pinene. Coupled gas-chromatography mass-spectrometry analyses of volatiles sampled from field-collected beetles of both sexes revealed that 2-(undecyloxy)-ethanol was a sex-specific pheromone component produced only by males. The combination of 2- (undecyloxy) -ethanol with ethanol and/or alpha-pinene will provide a valuable and badly needed tool for quarantine detection, monitoring, and management of M. alternatus.
Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean
Arrieta, Jesús M.; Duarte, Carlos M.; Sala, M. Montserrat; Dachs, Jordi
2016-01-01
Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget. PMID:26834717
Dry halide method for separating the components of spent nuclear fuels
Christian, Jerry Dale; Thomas, Thomas Russell; Kessinger, Glen F.
1998-01-01
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.
Dry halide method for separating the components of spent nuclear fuels
Christian, J.D.; Thomas, T.R.; Kessinger, G.F.
1998-06-30
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.
Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean.
Arrieta, Jesús M; Duarte, Carlos M; Sala, M Montserrat; Dachs, Jordi
2015-01-01
Volatile and semi-volatile gas-phase organic carbon (GOC) is a largely neglected component of the global carbon cycle, with poorly resolved pools and fluxes of natural and anthropogenic GOC in the biosphere. Substantial amounts of atmospheric GOC are exchanged with the surface ocean, and subsequent utilization of specific GOC compounds by surface ocean microbial communities has been demonstrated. Yet, the final fate of the bulk of the atmospheric GOC entering the surface ocean is unknown. Our data show experimental evidence of efficient use of atmospheric GOC by marine prokaryotes at different locations in the NE Subtropical Atlantic, the Arctic Ocean and the Mediterranean Sea. We estimate that between 2 and 27% of the prokaryotic carbon demand was supported by GOC with a major fraction of GOC inputs being consumed within the mixed layer. The role of the atmosphere as a key vector of organic carbon subsidizing marine microbial metabolism is a novel link yet to be incorporated into the microbial ecology of the surface ocean as well as into the global carbon budget.
Ando, H; Kurata, A; Kishimoto, N
2015-04-01
To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting. © 2015 The Society for Applied Microbiology.
Kuś, Piotr M; Okińczyc, Piotr; Jakovljević, Martina; Jokić, Stela; Jerković, Igor
2018-05-25
The supercritical CO 2 (SC-CO 2 ) extraction process of black poplar (Populus nigra L.) buds was optimized (pressure, temperature) based on the yields of major phytochemicals (volatiles and non-volatiles). The optimal settings were 30 MPa/60 °C. Major volatiles determined by GC-MS in the optimized SC-CO 2 extract (mg of benzyl salicylate equivalent (BSE) per 100 g of buds) were: pinostrobin chalcone (1574.2), β-eudesmol (640.8), α-eudesmol (581.9), 2-methyl-2-butenyl-p-coumarate (289.9), pentyl-p-coumarate (457.0), γ-eudesmol (294.4), and benzyl salicylate (289.2). Partial qualitative similarity was observed between SC-CO 2 extracts and corresponding hydrodistilled essential oil dominated by sesquiterpenes, but with lower yields. Major compounds (mg per 100 g of buds) identified by UHPLC-DAD-QqTOF-MS in the optimized SC-CO 2 extract were: pinostrobin (751.7), pinocembrin (485.6), 3-O-pinobanksin acetate and methyl-butenyl-p-coumarate (290.2; 144.9 of pinobanksin and p-coumaric acid equivalents, respectively). SC-CO 2 extraction was found useful for green, efficient and simultaneous extraction of both volatile/non-volatile, bioactive phytochemicals of poplar buds - precursors of poplar-type propolis. Copyright © 2018 Elsevier B.V. All rights reserved.
Cha, Dong H; Powell, Thomas H Q; Feder, Jeffrey L; Linn, Charles E
2011-09-01
The apple maggot fly, Rhagoletis pomonella, infests several hawthorn species in the southern USA. Here, we tested the hypothesis that these populations could serve as reservoirs for fruit odor discrimination behaviors facilitating sympatric host race formation and speciation, specifically the recent shift from downy hawthorn (Crataegus mollis) to domestic apple (Malus domestica) in the northern USA. Coupled gas chromatography and electroantennographic detection (GC-EAD), gas chromatography with mass spectrometry (GC-MS), and flight tunnel bioassays were used to identify the behaviorally active natal fruit volatile blends for three of the five major southern hawthorns: C. opaca (western mayhaw), C. aestivalis (eastern mayhaw), and C. rufula (a possible hybrid between C. opaca and C. aestivalis). A 6-component blend was developed for C. opaca (3-methylbutan-1-ol [44%], pentyl acetate [6%], butyl butanoate [6%], propyl hexanoate [6%], butyl hexanoate [26%], and hexyl butanoate [12%]); an 8-component blend for C. aestivalis (3-methylbutan-1-ol [2%], butyl acetate [47%], pentyl acetate [2%], butyl butanoate [12%], propyl hexanoate [1%], butyl hexanoate [25%], hexyl butanoate [9%], and pentyl hexanoate [2%]); and a 9-component blend for C. rufula (3-methylbutan-1-ol [1%], butyl acetate [57%], 3-methylbutyl acetate [3%], butyl butanoate [5%], propyl hexanoate [1%], hexyl propionate [1%], butyl hexanoate [23%], hexyl butanoate [6%], and pentyl hexanoate [3%]). Crataegus aestivalis and C. opaca-origin flies showed significantly higher levels of upwind directed flight to their natal blend in flight tunnel assays compared to the non-natal blend and previously developed apple, northern downy hawthorn, and flowering dogwood blends. Eastern and western mayhaw flies also were tested to the C. rufula blend, with eastern flies displaying higher levels of upwind flight compared with the western flies, likely due to the presence of butyl acetate in the C. aestivalis and C. rufula blends, an agonist compound for eastern mayhaw-origin flies, but a behavioral antagonist for western flies. The results discount the possibility that the apple fly was "pre-assembled" and originated via a recent introduction of southern mayhaw flies predisposed to accepting apple. Instead, the findings are consistent with the possibility of southern mayhaw-infesting fly host races. However, mayhaw fruits do emit several volatiles found in apple. It is, therefore, possible that the ability of the fly to evolve a preference for apple volatiles, although not the entire blend, stemmed, in part, from standing variation related to the presence of these compounds in southern mayhaw fruit.
Primitive ultrafine matrix in ordinary chondrites
NASA Technical Reports Server (NTRS)
Rambaldi, E. R.; Fredriksson, B. J.; Fredriksson, K.
1981-01-01
Ultrafine matrix material has been concentrated by sieving and filtering disaggregated samples of six ordinary chondrites of different classes. This component(s), 'Holy Smoke' (HS), is enriched in both volatile, e.g. Na, K, Zn, Sb, and Pb, as well as refractory elements, e.g. W and REE; however, the element ratios vary greatly among the different chondrites. SEM studies show that HS contains fragile crystals, differing in composition, and apparently in gross disequilibrium not only among themselves but also with the major mineral phases and consequently thermodynamic equilibration did not occur. Thus HS must have originated from impacting bodies and/or was inherent in the 'primitive' regolith. Subsequent impact brecciation and reheating appears to have altered, to varying degrees, the original composition of this ultrafine matrix material. Recent 'cosmic dust' studies may indicate that HS still exists in the solar system. Survival of such delicate material must be considered in all theories for the origin of chondrites.
State of research: environmental pathways and food chain transfer.
Vaughan, B E
1984-01-01
Data on the chemistry of biologically active components of petroleum, synthetic fuel oils, certain metal elements and pesticides provide valuable generic information needed for predicting the long-term fate of buried waste constituents and their likelihood of entering food chains. Components of such complex mixtures partition between solid and solution phases, influencing their mobility, volatility and susceptibility to microbial transformation. Estimating health hazards from indirect exposures to organic chemicals involves an ecosystem's approach to understanding the unique behavior of complex mixtures. Metabolism by microbial organisms fundamentally alters these complex mixtures as they move through food chains. Pathway modeling of organic chemicals must consider the nature and magnitude of food chain transfers to predict biological risk where metabolites may become more toxic than the parent compound. To obtain predictions, major areas are identified where data acquisition is essential to extend our radiological modeling experience to the field of organic chemical contamination. PMID:6428875
Yu, Qibin; Plotto, Anne; Baldwin, Elizabeth A; Bai, Jinhe; Huang, Ming; Yu, Yuan; Dhaliwal, Harvinder S; Gmitter, Frederick G
2015-03-06
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit.
Zhang, Bo; Tieman, Denise M.; Jiao, Chen; Xu, Yimin; Chen, Kunsong; Fei, Zhangjun; Giovannoni, James J.; Klee, Harry J.
2016-01-01
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles are sensitive to temperatures below 12 °C, and their loss greatly reduces flavor quality. Here, we provide a comprehensive view of the effects of chilling on flavor and volatiles associated with consumer liking. Reduced levels of specific volatiles are associated with significant reductions in transcripts encoding key volatile synthesis enzymes. Although expression of some genes critical to volatile synthesis recovers after a return to 20 °C, some genes do not. RNAs encoding transcription factors essential for ripening, including RIPENING INHIBITOR (RIN), NONRIPENING, and COLORLESS NONRIPENING are reduced in response to chilling and may be responsible for reduced transcript levels in many downstream genes during chilling. Those reductions are accompanied by major changes in the methylation status of promoters, including RIN. Methylation changes are transient and may contribute to the fidelity of gene expression required to provide maximal beneficial environmental response with minimal tangential influence on broader fruit developmental biology. PMID:27791156
Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds.
Bergougnoux, Véronique; Caissard, Jean-Claude; Jullien, Frédéric; Magnard, Jean-Louis; Scalliet, Gabriel; Cock, J Mark; Hugueney, Philippe; Baudino, Sylvie
2007-09-01
The localization and timing of production and emission of scent was studied in different Rosa x hybrida cultivars, focusing on three particular topics. First, it was found that petals represent the major source of scent in R. x hybrida. In heavily scented cultivars, the spectrum and levels of volatiles emitted by the flower broadly correlated with the spectrum and levels of volatiles contained within the petal, throughout petal development. Secondly, analysis of rose cultivars that lacked a detectable scent indicated that the absence of fragrance was due to a reduction in both the biosynthesis and emission of scent volatiles. A cytological study, conducted on scented and non-scented rose cultivars showed that no major difference was visible in the anatomy of the petals either at small magnification in optical sections or in ultrathin sections observed by TEM. In particular, the cuticle of epidermal cells was not thicker in scentless cultivars. Thirdly, using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis was localized in both epidermal layers.
Ammagarahalli, Byrappa; Gemeno, César
2015-10-01
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.
Marsol-Vall, Alexis; Kortesniemi, Maaria Katariina; Karhu, Saila; Kallio, Heikki; Yang, Baoru
2018-06-25
The volatile profile of three blackcurrant (Ribes nigrum L.) cultivars grown in Finland and their response to growth latitude and weather conditions were studied over an eight-year period by headspace solid-phase microextraction (HS-SPME) followed by gas chromatographic-mass spectrometric (GC-MS) analysis. Monoterpene hydrocarbons and oxygenated monoterpenes were the major classes of volatiles. The cultivar 'Melalahti' presented lower content of volatiles compared with 'Ola' and 'Mortti', the two latter showing a very similar composition. Higher contents of volatiles were found in berries cultivated at higher latitude (66° 34' N) than in those from the southern location (60° 23' N). Among the meteorological variables, radiation and temperature during the last month before harvest were negatively linked with the volatile content. Storage time had a negative impact on the amount of blackcurrant volatiles.
Mix or un-mix? Trace element segregation from a heterogeneous mantle, simulated.
NASA Astrophysics Data System (ADS)
Katz, R. F.; Keller, T.; Warren, J. M.; Manley, G.
2016-12-01
Incompatible trace-element concentrations vary in mid-ocean ridge lavas and melt inclusions by an order of magnitude or more, even in samples from the same location. This variability has been attributed to channelised melt flow [Spiegelman & Kelemen, 2003], which brings enriched, low-degree melts to the surface in relative isolation from depleted inter-channel melts. We re-examine this hypothesis using a new melting-column model that incorporates mantle volatiles [Keller & Katz 2016]. Volatiles cause a deeper onset of channelisation: their corrosivity is maximum at the base of the silicate melting regime. We consider how source heterogeneity and melt transport shape trace-element concentrations in basaltic lavas. We use both equilibrium and non-equilibrium formulations [Spiegelman 1996]. In particular, we evaluate the effect of melt transport on probability distributions of trace element concentration, comparing the inflow distribution in the mantle with the outflow distribution in the magma. Which features of melt transport preserve, erase or overprint input correlations between elements? To address this we consider various hypotheses about mantle heterogeneity, allowing for spatial structure in major components, volatiles and trace elements. Of interest are the roles of wavelength, amplitude, and correlation of heterogeneity fields. To investigate how different modes of melt transport affect input distributions, we compare melting models that produce either shallow or deep channelisation, or none at all.References:Keller & Katz (2016). The Role of Volatiles in Reactive Melt Transport in the Asthenosphere. Journal of Petrology, http://doi.org/10.1093/petrology/egw030. Spiegelman (1996). Geochemical consequences of melt transport in 2-D: The sensitivity of trace elements to mantle dynamics. Earth and Planetary Science Letters, 139, 115-132. Spiegelman & Kelemen (2003). Extreme chemical variability as a consequence of channelized melt transport. Geochemistry Geophysics Geosystems, http://doi.org/10.1029/2002GC000336
Hong, Joon Ho; Khan, Naeem; Jamila, Nargis; Hong, Young Shin; Nho, Eun Yeong; Choi, Ji Yeon; Lee, Cheong Mi; Kim, Kyong Su
2017-09-01
Citrus fruits are known to have characteristic enantiomeric key compounds biosynthesised by highly stereoselective enzymatic mechanisms. In the past, evaluation of the enantiomeric ratios of chiral compounds in fruits has been applied as an effective indicator of adulteration by the addition of synthetic compounds or natural components of different botanical origin. To analyse the volatile flavour compounds of Citrus junos Sieb. ex Tanaka (yuzu), Citrus limon BURM. f. (lemon) and Citrus aurantifolia Christm. Swingle (lime), and determine the enantiomeric ratios of their chiral compounds for discrimination and authentication of extracted oils. Volatile flavour compounds of the fruits of the three Citrus species were extracted by simultaneous distillation extraction and analysed by gas chromatography-mass spectrometry. The enantiomeric composition (ee%) of chiral camphene, sabinene, limonene and β-phellandrene was analysed by heart-cutting multidimensional gas chromatography-mass spectrometry. Sixty-seven (C. junos), 77 (C. limon) and 110 (C. aurantifolia) volatile compounds were identified with limonene, γ-terpinene and linalool as the major compounds. Stereochemical analysis (ee%) revealed 1S,4R-(-) camphene (94.74, 98.67, 98.82), R-(+)-limonene (90.53, 92.97, 99.85) and S-(+)-β-phellandrene (98.69, 97.15, 92.13) in oil samples from all three species; R-(+)-sabinene (88.08) in C. junos; and S-(-)-sabinene (81.99, 79.74) in C. limon and C. aurantifolia, respectively. The enantiomeric composition and excess ratios of the chiral compounds could be used as reliable indicators of genuineness and quality assurance of the oils derived from the Citrus fruit species. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Liu, Cuihua; Yan, Fuhua; Gao, Huijun; He, Min; Wang, Zhuang; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan
2015-01-01
Terpenoids are major components of carotenoids, limonoids and aromas in citrus fruits, resulting in fruit coloration, bitterness and aroma. In this study the carotenoid, limonoid and volatile profiles of red-flesh Chuhong pummelo (CH) and pale green-flesh Feicui pummelo (FC) were investigated by HPLC and GC/MS. Large differences were found in constituents of carotenoids and limonoids in juice sacs and flavedo and of aromas in flavedo of the two pummelos. For carotenoids in juice sacs, CH contained 57 times the amount in FC, mainly all-trans-lycopene and phytoene, whereas in flavedo it contained only 25% of that in FC, the latter showing a high proportion of β-carotene and other chloroplastic carotenoids. In comparison with FC, limonin and nomilin aglycone production was boosted in juice sacs of CH while being almost absent in flavedo. For volatiles in flavedo, the total amount was significantly higher in CH. PCA suggested that germacrene-type sesquiterpenoids, etc. were principal in distinguishing volatile profiles of the two pummelos. The data showed a different tissue-biased pattern of carotenoid and limonoid aglycone synthesis in pummelos with different flesh color, and the possible independently regulated synthesis of those metabolites in different fruit tissues. Furthermore, decreased carotenoid and limonoid aglycone production accompanied by increased accumulation of volatile terpenoids in flavedo of red-flesh CH was identified, indicating that a total capacity or a balance of production of various terpenoids might exist in pummelo fruit tissues. It was also suggested that substrate concentration is not the key factor affecting product concentrations during the synthesis of monoterpene derivatives. © 2014 Society of Chemical Industry.
Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H
2007-03-01
Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different.
Origin of conductivity anomalies in the asthenosphere
NASA Astrophysics Data System (ADS)
Yoshino, T.; Zhang, B.
2013-12-01
Electrical conductivity anomalies with anisotropy parallel to the plate motion have been observed beneath the oceanic lithosphere by electromagnetic studies (e.g., Evans et al., 2005; Baba et al., 2010; Naif et al., 2013). Electrical conductivity of the oceanic asthenosphere at ~100 km depth is very high, about 10-2 to 10-1 S/m. This zone is also known in seismology as the low velocity zone. Since Karato (1990) first suggested that electrical conductivity is sensitive to water content in NAMs, softening of asthenosphere has been regarded as a good indicator for constraining the distribution of water. There are two difficulties to explain the observed conductivity features in the asthenosphere. Recent publications on electrical conductivity of hydrous olivine suggested that olivine with the maximum soluble H2O content at the top of the asthenosphere has much lower conductivity less than 0.1 S/m (e.g., Yoshino et al., 2006; 2009a; Poe et al., 2010; Du Frane and Tyburczy, 2012; Yang, 2012), which is a typical value of conductivity anomaly observed in the oceanic mantle. Partial melting has been considered as an attractive agent for substantially raising the conductivity in this region (Shankland and Waff, 1977), because basaltic melt has greater electrical conductivity (> 100.5 S/m) and high wetting properties. However, dry mantle peridotite cannot reach the solidus temperature at depth 100 km. Volatile components can dramatically reduce melting temperature, even if its amount is very small. Recent studies on conductivity measurement of volatile-bearing melt suggest that conductivity of melt dramatically increases with increasing volatile components (H2O: Ni et al., 2010a, b; CO2: Gaillard et al., 2008; Yoshino et al., 2010; 2012a). Because incipient melt includes higher amount of volatile components, conductivity enhancement by the partial melt is very effective at temperatures just above that of the volatile-bearing peridotite solidus. In this study, the electrical conductivity of peridotite with trace amount of volatile phases was measured in single crystal olivine capsule to protect escape of water from the sample at 3 GPa. The conductivity values were significantly higher than those of dry peridotite, suggesting that the observed conductivity anomalies at the asthenosphere are caused by a presence of trace amount of volatile component in fluid or melt. On the other hand, conductivity of partial molten peridotite measured under shear showed that the conductivity parallel to the shear direction becomes one order of magnitude higher than that normal direction. These observations suggest that partial melting can explain softening and the observed geophysical anomalies of asthenosphere.
Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao
2018-06-13
The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.
Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2016-08-01
We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.
Resource Prospector, the Decadal Survey and the Scientific Context for the Exploration of the Moon
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Andrews, D. R.
2017-01-01
The Inner Planets Panel of the Planetary Exploration Decadal Survey defined several science questions related to the origins, emplacement, and sequestration of lunar polar volatiles: 1. What is the lateral and vertical distribution of the volatile deposits? 2. What is the chemical composition and variability of polar volatiles? 3. What is the isotopic composition of the volatiles? 4. What is the physical form of the volatiles? 5. What is the rate of the current volatile deposition? A mission concept study, the Lunar Polar Volatiles Explorer (LPVE), defined a approximately $1B New Frontiers mission to address these questions. The NAS/NRC report, 'Scientific Context for the Exploration of the Moon' identified he lunar poles as special environments with important implications. It put forth the following goals: Science Goal 4a-Determine the compositional state (elemental, isotopic, mineralogic) and compositional distribution (lateral and depth) of the volatile component in lunar polar regions. Science Goal 4b-Determine the source(s) for lunar polar volatiles. Science Goal 4c-Understand the transport, retention, alteration, and loss processes that operate on volatile materials at permanently shaded lunar regions. Science Goal 4d-Understand the physical properties of the extremely cold (and possibly volatile rich) polar regolith. Science Goal 4e-Determine what the cold polar regolith reveals about the ancient solar environment.
40 CFR 52.970 - Identification of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... FR 54308 Ref 52.999(c)(66) Chapter 21—Control of Emissions of Organic Compounds Subchapter A General... Storage of Volatile Organic Compounds (Large Tanks) Dec. 1995, LR21:1333 10/22/96, 61 FR 54737 Ref 52.999(c)(71)(E)(F)(G) Section 2105 Storage of Volatile Organic Components (Small Tanks) NOT IN SIP Section...
Emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from oil and natural gas production were investigated using direct measurements of component-level emissions on well pads in the Denver-Julesburg (DJ) Basin and remote measurements of production pad-...
An unusual and persistent contamination of drinking water by cutting oil.
Rella, R; Sturaro, A; Parvoli, G; Ferrara, D; Doretti, L
2003-02-01
Drinking water contamination by materials, such as cutting oil, used to set up pipelines is an uncommon but possible event. This paper describes the analytical procedures used to identify the components of that contaminant in drinking water. Volatile and semi-volatile chemical species, responsible for an unpleasant taste and odour, were recognised by solid phase microextraction and GC/MS techniques. Among the volatile compounds, the presence of xylenes, bornyl acetate and diphenyl ether was confirmed by certificate standards and quantified in the most contaminated samples.
A volatile trail Pheromone of the Leaf-Cutting Ant, Atta Texana
J. H. Tumlinson; John C. Moser; R. M. Silverstein; R. G. Brownlee; J. M. Ruth
1972-01-01
The major volatile trail-marking pheromone of the Texas leaf-cutting Ant, Atta texana, was isolated, identified as methyl 4-methylpyrrole-2-carboxylate, and synthesized. The synthesized pheromone elicited strong trail-following response from workers in the laboratory and field.
Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence
NASA Technical Reports Server (NTRS)
Christiansen, Eric H.; Hopler, Jennifer A.
1987-01-01
The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.
NASA Astrophysics Data System (ADS)
Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.
2016-04-01
Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875-890. Webster et al., 2014. J. Pet., 55, 2217-2248. Brenan, 1993. Chem. Geol., 110, 195-210.
Analysis of volatile organic compounds from illicit cocaine samples
NASA Astrophysics Data System (ADS)
Robins, W. H.; Wright, Bob W.
1994-10-01
Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds which may be residues of processing solvents were observed in some samples. The equilibrium emissivity of cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.
Octanoic acid confers to royal jelly varroa-repellent properties
NASA Astrophysics Data System (ADS)
Nazzi, Francesco; Bortolomeazzi, Renzo; Della Vedova, Giorgio; Del Piccolo, Fabio; Annoscia, Desiderato; Milani, Norberto
2009-02-01
The mite Varroa destructor Anderson & Trueman is a parasite of the honeybee Apis mellifera L. and represents a major threat for apiculture in the Western world. Reproduction takes place only inside bee brood cells that are invaded just before sealing; drone cells are preferred over worker cells, whereas queen cells are not normally invaded. Lower incidence of mites in queen cells is at least partly due to the deterrent activity of royal jelly. In this study, the repellent properties of royal jelly were investigated using a lab bioassay. Chemical analysis showed that octanoic acid is a major volatile component of royal jelly; by contrast, the concentration is much lower in drone and worker larval food. Bioassays, carried out under lab conditions, demonstrated that octanoic acid is repellent to the mite. Field studies in bee colonies confirmed that the compound may interfere with the process of cell invasion by the mite.
Ehlmann, B L; Edgett, K S; Sutter, B; Achilles, C N; Litvak, M L; Lapotre, M G A; Sullivan, R; Fraeman, A A; Arvidson, R E; Blake, D F; Bridges, N T; Conrad, P G; Cousin, A; Downs, R T; Gabriel, T S J; Gellert, R; Hamilton, V E; Hardgrove, C; Johnson, J R; Kuhn, S; Mahaffy, P R; Maurice, S; McHenry, M; Meslin, P-Y; Ming, D W; Minitti, M E; Morookian, J M; Morris, R V; O'Connell-Cooper, C D; Pinet, P C; Rowland, S K; Schröder, S; Siebach, K L; Stein, N T; Thompson, L M; Vaniman, D T; Vasavada, A R; Wellington, D F; Wiens, R C; Yen, A S
2017-12-01
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H 2 O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H 2 O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H 2 O.
Reis, Analú C; Neta, Palmira L S; Jordão, Jéssica P; Moura, José Inácio L; Vidal, Diogo M; Zarbin, Paulo H G; Fávaro, Carla F
2018-05-01
The bearded weevil, Rhinostomus barbirostris (Coleoptera: Curculionidae: Dryophthorinae), attacks coconut trees, oil palms and other species of Arecaceae. Besides direct damage, R. barbirostris may be a vector of diseases in coconut and oil palms, such as stem bleeding (resinosis) and red ring disease. Currently, the only method to control this weevil is by visual observation of damage and removal of infected plants. Semiochemical-based trapping could improve the effectiveness of monitoring and management of R. barbirostris. In comparisons of volatiles released by R. barbirostris males and females by gas chromatography (GC) two male-specific compounds were observed. GC-mass spectrometry (MS) and GC-Fourier transform-infrared (FTIR) analyses of the natural compounds suggested these were diastereoisomers of 5-hydroxy-4-methylheptan-3-one, also known as sitophilure, a pheromone component of other dryophthorine species. Synthesis of the mixture of all four stereoisomers of sitophilure was performed in two steps, and the chemical structures were confirmed by comparing GC retention times and MS and FTIR spectra of natural and synthetic compounds. The absolute configurations of the two male-specific compounds were elucidated by enantioselective GC; the major component was the (4S,5R)-isomer, and the minor component (4S,5S)-sitophilure. In analyses by GC-electroantennography (EAG) the antennae of male and female R. barbirostris only responded to the (4S,5R)-isomer of the synthetic sitophilure. The stereoisomeric mixture of sitophilure was attractive to both sexes of R. barbirostris in laboratory experiments in the presence of sugar cane volatiles, and a similar result was obtained in a preliminary field trapping test.
NASA Astrophysics Data System (ADS)
Crippa, M.; Canonaco, F.; Lanz, V. A.; Äijälä, M.; Allan, J. D.; Carbone, S.; Capes, G.; Ceburnis, D.; Dall'Osto, M.; Day, D. A.; DeCarlo, P. F.; Ehn, M.; Eriksson, A.; Freney, E.; Hildebrandt Ruiz, L.; Hillamo, R.; Jimenez, J. L.; Junninen, H.; Kiendler-Scharr, A.; Kortelainen, A.-M.; Kulmala, M.; Laaksonen, A.; Mensah, A. A.; Mohr, C.; Nemitz, E.; O'Dowd, C.; Ovadnevaite, J.; Pandis, S. N.; Petäjä, T.; Poulain, L.; Saarikoski, S.; Sellegri, K.; Swietlicki, E.; Tiitta, P.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.
2014-06-01
Organic aerosols (OA) represent one of the major constituents of submicron particulate matter (PM1) and comprise a huge variety of compounds emitted by different sources. Three intensive measurement field campaigns to investigate the aerosol chemical composition all over Europe were carried out within the framework of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) and the intensive campaigns of European Monitoring and Evaluation Programme (EMEP) during 2008 (May-June and September-October) and 2009 (February-March). In this paper we focus on the identification of the main organic aerosol sources and we define a standardized methodology to perform source apportionment using positive matrix factorization (PMF) with the multilinear engine (ME-2) on Aerodyne aerosol mass spectrometer (AMS) data. Our source apportionment procedure is tested and applied on 25 data sets accounting for two urban, several rural and remote and two high altitude sites; therefore it is likely suitable for the treatment of AMS-related ambient data sets. For most of the sites, four organic components are retrieved, improving significantly previous source apportionment results where only a separation in primary and secondary OA sources was possible. Generally, our solutions include two primary OA sources, i.e. hydrocarbon-like OA (HOA) and biomass burning OA (BBOA) and two secondary OA components, i.e. semi-volatile oxygenated OA (SV-OOA) and low-volatility oxygenated OA (LV-OOA). For specific sites cooking-related (COA) and marine-related sources (MSA) are also separated. Finally, our work provides a large overview of organic aerosol sources in Europe and an interesting set of highly time resolved data for modeling purposes.
Variability of hazardous air pollutants in an urban area
NASA Astrophysics Data System (ADS)
Spicer, Chester W.; Buxton, Bruce E.; Holdren, Michael W.; Smith, Deborah L.; Kelly, Thomas J.; Rust, Steven W.; Pate, Alan D.; Sverdrup, George M.; Chuang, Jane C.
The variability of hazardous air pollutants (HAPs) is an important factor in determining human exposure to such chemicals, and in designing HAP measurement programs. This study has investigated the factors which contribute to HAP variability in an urban area. Six measurement sites separated by up to 12 km collected data with 3 h time resolution to examine spatial variability within neighborhoods and between neighborhoods. The measurements were made in Columbus, OH. The 3 h results also were used to study temporal variability, and duplicate samples collected at each site were used to determine the component of variability attributable to the measurement process. Hourly samples collected over 10 days at one site provided further insight into the temporal resolution needed to capture short-term peak concentrations. Measurements at the 6 spatial sites focused on 78 chemicals. Twenty-three of these species were found in at least 95% of the 3 h samples, and 39 chemicals were present at least 60% of the time. The relative standard deviations for most of these 39 frequently detected chemicals was 1.0 or lower. Variability was segmented into temporal, spatial, and measurement components. Temporal variation was the major contributor to HAP variability for 19 of the 39 frequently detected compounds, based on the 3 h data. Measurement imprecision contributed less than 25% for most of the volatile organic species, but 30% or more of the variability for carbonyl compounds, trace elements, and particle-bound extractable organic mass. Interestingly, the spatial component contributed less than 20% of the total variability for all the chemicals except sulfur. Based on the data with hourly resolution, peak to median ratios (hourly peak to 24 h median) averaged between 2 and 4 for most of the volatile organic compounds, but there were two species with peak to median ratios of about 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine- to medium- sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nonetheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprisingmore » >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet, Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si-enriched relative to other soils at Gale crater, and H 2O, S, and Cl are lower relative to all previously measured martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by VNIR spectra that suggest enrichment of olivine. Together, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses; and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe-, S-, and Cl-enriched with low Si and adsorbed and structural H 2O.« less
NASA Astrophysics Data System (ADS)
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; Achilles, C. N.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; McHenry, M.; Meslin, P.-Y.; Ming, D. W.; Minitti, M. E.; Morookian, J. M.; Morris, R. V.; O'Connell-Cooper, C. D.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N. T.; Thompson, L. M.; Vaniman, D. T.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A. S.
2017-12-01
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized ( 45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Edgett, K. S.; Sutter, B.; Achilles, C. N.; Litvak, M. L.; Lapotre, M. G. A.; Sullivan, R.; Fraeman, A. A.; Arvidson, R. E.; Blake, D. F.; Bridges, N. T.; Conrad, P. G.; Cousin, A.; Downs, R. T.; Gabriel, T. S. J.; Gellert, R.; Hamilton, V. E.; Hardgrove, C.; Johnson, J. R.; Kuhn, S.; Mahaffy, P. R.; Maurice, S.; McHenry, M.; Meslin, P.‐Y.; Ming, D. W.; Minitti, M. E.; Morookian, J. M.; Morris, R. V.; O'Connell‐Cooper, C. D.; Pinet, P. C.; Rowland, S. K.; Schröder, S.; Siebach, K. L.; Stein, N. T.; Thompson, L. M.; Vaniman, D. T.; Vasavada, A. R.; Wellington, D. F.; Wiens, R. C.; Yen, A. S.
2017-01-01
Abstract The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust‐covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt‐sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse‐sieved fraction of Bagnold sands, corroborated by visible/near‐infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand‐sized fraction (represented by Bagnold) that are Si‐enriched, hydroxylated alteration products and/or H2O‐ or OH‐bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O. PMID:29497589
Ehlmann, B. L.; Edgett, K. S.; Sutter, B.; ...
2017-06-12
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine- to medium- sized (~45-500 µm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nonetheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprisingmore » >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet, Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si-enriched relative to other soils at Gale crater, and H 2O, S, and Cl are lower relative to all previously measured martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by VNIR spectra that suggest enrichment of olivine. Together, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or impact or volcanic glasses; and (2) amorphous components in the fine fraction (<40 µm; represented by Rocknest and other bright soils) that are Fe-, S-, and Cl-enriched with low Si and adsorbed and structural H 2O.« less
NASA Astrophysics Data System (ADS)
Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi
2016-05-01
In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.
Correlation and volatility in an Indian stock market: A random matrix approach
NASA Astrophysics Data System (ADS)
Kulkarni, Varsha; Deo, Nivedita
2007-11-01
We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000 2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.
Kinetics of scrap tyre pyrolysis under vacuum conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, Gartzen; Aguado, Roberto; Olazar, Martin
2009-10-15
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less
Kinetics of scrap tyre pyrolysis under vacuum conditions.
Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier
2009-10-01
Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.
Anfora, Gianfranco; Vitagliano, Silvia; Larsson, Mattias C; Witzgall, Peter; Tasin, Marco; Germinara, Giacinto S; De Cristofaro, Antonio
2014-04-01
Phthorimaea operculella is a key pest of potato. The authors characterised the P. operculella olfactory system, selected the most bioactive host plant volatiles and evaluated their potential application in pest management. The electrophysiological responses of olfactory receptor neurons (ORNs) housed in long sensilla trichodea of P. operculella to plant volatiles and the two main sex pheromone components were evaluated by the single-cell recording (SCR) technique. The four most SCR-active volatiles were tested in a laboratory oviposition bioassay and under storage warehouse conditions. The sensitivity of sensilla trichodea to short-chained aldehydes and alcohols and the existence of ORNs tuned to pheromones in females were characterised. Male recordings revealed at least two types of ORN, each of which typically responded to one of the two pheromone components. Hexanal, octanal, nonanal and 1-octen-3-ol significantly disrupted the egg-laying behaviour in a dose-dependent manner. Octanal reduced the P. operculella infestation rate when used under storage conditions. This work provides new information on the perception of plant volatiles and sex pheromones by P. operculella. Laboratory and warehouse experiments show that the use of hexanal, octanal, nonanal and 1-octen-3-ol as host recognition disruptants and/or oviposition deterrents for P. operculella control appears to be a promising strategy. © 2013 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Hachicha Hbaieb, Rim; Kotti, Faten; Gargouri, Mohamed; Msallem, Monji; Vichi, Stefania
2016-07-15
The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Volatile Composition of Some Cultivated and Wild Culinary-Medicinal Mushrooms from Hungary.
Csóka, Mariann; Geosel, Andras; Amtmann, Maria; Korany, Kornel
2017-01-01
The volatile constituents of the fruiting bodies of 4 culinary-medicinal mushroom species (Agaricus bisporus, Boletus edulis, Cantharellus cibarius, and Hericium erinaceus) from Hungary were examined to review their aroma composition. Simultaneous distillation/extraction was applied to extract volatile compounds from fungi, and the values were measured with gas chromatography--mass spectrometry. Although the fragrances of fungi are not as characteristic as those of spices, several groups of volatile compounds have been found in mushrooms. The number of identified components ranged between 61 and 100, with a high ratio of 8-carbon volatiles generally occurring in fungi. Beyond common properties, individual attributes have been identified as well: an outstanding ratio of benzene compounds in champignons, numerous N-containing volatiles in boletes, carotenoid degradation products in chanterelles, and esters and fatty acids with a high carbon number in the lion's mane mushroom. The identification of these characteristic fragrance constituents can be very important in differentiating between species and confirming their presence in mushroom products.
Asikin, Yonathan; Taira, Ikuko; Inafuku, Sayuri; Sumi, Hidekazu; Sawamura, Masayoshi; Takara, Kensaku; Wada, Koji
2012-04-01
The flavedo peel extracts of unripe Shiikuwasha (Citrus depressa Hayata) fruits were extracted using steam distillation (SD) or a cold-press (CP) system. Volatile aroma content and composition were determined using gas chromatography (GC) and each compound was identified using gas chromatography-mass spectrophotometry (GC-MS). The major constituents of the extracts were monoterpene hydrocarbons (91.75-93.75%[709.32-809.05 mg/100 g of fresh flavedo peel]) including limonene (43.08-45.13%[341.46-379.81 mg/100 g of fresh flavedo peel]), γ-terpinene (27.88-29.06%[219.90-245.86 mg/100 g of fresh flavedo peel]), and p-cymene (8.13-11.02%[61.47-97.22 mg/100 g of fresh flavedo peel]). The extraction process used was determined to be a decisive factor that affects the composition of key citrus aroma components, as well as the antioxidant activities of the Shiikuwasha fruit. Antioxidant capabilities of the extracts were examined by assay of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and β-carotene bleaching inhibition. The cold-press extraction system may better retain the total phenolic content of the flavedo peel and display superior antioxidant activities, compared to the steam distillation extraction method. Shiikuwasha (Citrus depressa Hayata) is a type of small citrus fruit, and has been used as raw material for beverage and food additive productions in Japan. It had a unique aroma composition in which the limonene content of its peels is lower than that of other commonly known citrus peels. The present study detailed the volatile aroma composition, as well as antioxidant capabilities of Shiikuwasha peel extracts of different extraction methods, that are cold-press and steam distillation methods. The results of this study may provide a basis for selection of Shiikuwasha peel extracts in food industry for citrus flavor production. © 2012 Institute of Food Technologists®
Numerical simulation of magma chamber dynamics.
NASA Astrophysics Data System (ADS)
Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea
2010-05-01
Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective patterns, giving origin to a density-stratified magma chamber.
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...
Soltani, M; Sahingil, D; Gokce, Y; Hayaloglu, A A
2016-10-01
The effect of using various combinations of Rhizomucor miehei protease and camel chymosin (100:0, 75:25, 50:50, 25:75, and 0:100, respectively) on volatile composition and sensory scores in Iranian ultrafiltered white cheese was studied during 90d of ripening. A solid-phase microextraction-gas chromatography-mass spectrometric method was used for determining the volatile compounds of the cheeses. Forty compounds including esters (12), acids (6), ketones (9), alcohols (3), and miscellaneous compounds (10) were identified. The main classes of volatile components in the cheeses are esters, miscellaneous compounds, and ketones. The type and concentration of the coagulants influenced both volatile composition and sensory scores of the cheeses. Principal component analysis separated the cheeses based on the use of 2 coagulants in various combinations and ripening time. The cheeses produced using higher concentrations of R. miehei were separately located on the plot compared with the cheeses produced using higher concentrations of camel chymosin. Sensory evaluation of the cheeses showed that, in general, the cheeses produced using higher concentrations of camel chymosin received higher body and texture and odor and flavor scores than the cheese produced using higher concentrations of R. miehei. In conclusion, 2 combinations of R. miehei and camel chymosin (75:25 and 25:75, respectively) can be successfully used for the production of Iranian ultrafiltered white cheese, considering the results of volatile composition and sensory analysis. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Woodcock, Christine M; Sumner, Mary E; Caulfield, John C; Reed, Katy; Inward, Daegan JG; Leather, Simon R; Pickett, John A; Birkett, Michael A; Denman, Sandra
2016-01-01
Abstract BACKGROUND Agrilus bigutattus (Fabricius) is a forest pest of increasing importance in the United Kingdom. The larvae damage weakened native oaks and are thought to contribute to premature tree death. Suspected links with acute oak decline (AOD) are not yet confirmed, but AOD‐predisposed trees appear to become more susceptible to A. biguttatus attack. Thus, management may be necessary for control of this insect. To explore the possibility of monitoring beetle populations by baited traps, the host tree volatiles regulating A. biguttatus–oak interactions were studied. RESULTS Biologically active volatile organic compounds in dynamic headspace extracts of oak foliage and bark were identified initially by coupled gas chromatography–electroantennography (GC‐EAG) and GC–mass spectrometry (GC‐MS), and the structures were confirmed by GC coinjection with authentic compounds. Of two synthetic blends of these compounds comprising the active leaf volatiles, the simpler one containing three components evoked strongly positive behavioural responses in four‐arm olfactometer tests with virgin females and males, although fresh leaf material was more efficient than the blend. The other blend, comprising a five‐component mixture made up of bark volatiles, proved to be as behaviourally active for gravid females as bark tissue. CONCLUSIONS These initial results on A. biguttatus chemical ecology reveal aspects of the role of attractive tree volatiles in the host‐finding of beetles and underpin the development of semiochemically based surveillance strategies for this forest insect. © 2015 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:26663022
NASA Astrophysics Data System (ADS)
Gitelson, I. I.; Tikhomirov, A. A.; Parshina, O. V.; Ushakova, S. A.; Kalacheva, G. S.
The effect of elevated temperatures of 35 and 45°C (at the intensities of photosynthetically active radiation 322, 690 and 1104 μmol·m -2·s -1) on the photosynthesis, respiration, and qualitative and quantitative composition of the volatiles emitted by wheat ( Triticum aestuvi L., cultivar 232) crops was investigated in growth chambers. Identification and quantification of more than 20 volatile compounds (terpenoids-α-pinene, Δ3 carene, limonene, benzene, α-and trans-caryophyllene, α- and γ-terpinene, their derivatives, aromatic hydrocarbons, etc.) were conducted by gas chromatograph/mass spectrometry. Under light intensity of 1104 μmol·m -2·s -1 heat resistance of photosynthesis and respiration increased at 35°C and decreased at 45°C. The action of elevated temperatures brought about variations in the rate and direction of the synthesis of volatile metabolites. The emission of volatile compounds was the greatest under a reduced irradiation of 322 μmol·m -2·s -1 and the smallest under 1104 μmol·m -2·s -1, at 35°C. During the repair period, the contents and proportions of volatile compounds were different from their initial values, too. The degree of disruption and the following recovery of the functional state depended on the light intensity during the exposure to elevated temperatures. The investigation of the atmosphere of the growth chamber without plants has revaled the substances that were definitely technogenic in origin: tetramethylurea, dimethylsulfide, dibutylsulfide, dibutylphthalate, and a number of components of furan and silane nature.
NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit[W][OPEN
Tikunov, Yury M.; Molthoff, Jos; de Vos, Ric C.H.; Beekwilder, Jules; van Houwelingen, Adele; van der Hooft, Justin J.J.; Nijenhuis-de Vries, Mariska; Labrie, Caroline W.; Verkerke, Wouter; van de Geest, Henri; Viquez Zamora, Marcela; Presa, Silvia; Rambla, Jose Luis; Granell, Antonio; Hall, Robert D.; Bovy, Arnaud G.
2013-01-01
Phenylpropanoid volatiles are responsible for the key tomato fruit (Solanum lycopersicum) aroma attribute termed “smoky.” Release of these volatiles from their glycosylated precursors, rather than their biosynthesis, is the major determinant of smoky aroma in cultivated tomato. Using a combinatorial omics approach, we identified the NON-SMOKY GLYCOSYLTRANSFERASE1 (NSGT1) gene. Expression of NSGT1 is induced during fruit ripening, and the encoded enzyme converts the cleavable diglycosides of the smoky-related phenylpropanoid volatiles into noncleavable triglycosides, thereby preventing their deglycosylation and release from tomato fruit upon tissue disruption. In an nsgt1/nsgt1 background, further glycosylation of phenylpropanoid volatile diglycosides does not occur, thereby enabling their cleavage and the release of corresponding volatiles. Using reverse genetics approaches, the NSGT1-mediated glycosylation was shown to be the molecular mechanism underlying the major quantitative trait locus for smoky aroma. Sensory trials with transgenic fruits, in which the inactive nsgt1 was complemented with the functional NSGT1, showed a significant and perceivable reduction in smoky aroma. NSGT1 may be used in a precision breeding strategy toward development of tomato fruits with distinct flavor phenotypes. PMID:23956261
Sparks, Jackson T; Bohbot, Jonathan D; Ristic, Mihailo; Mišic, Danijela; Skoric, Marijana; Mattoo, Autar; Dickens, Joseph C
2017-07-01
Nepeta essential oil (Neo; catnip) and its major component, nepetalactone, have long been known to repel insects including mosquitoes. However, the neural mechanisms through which these repellents are detected by mosquitoes, including the yellow fever mosquito Aedes aegypti (L.), an important vector of Zika virus, were poorly understood. Here we show that Neo volatiles activate olfactory receptor neurons within the basiconic sensilla on the maxillary palps of female Ae. aegypti. A gustatory receptor neuron sensitive to the feeding deterrent quinine and housed within sensilla on the labella of females was activated by both Neo and nepetalactone. Activity of a second gustatory receptor neuron sensitive to the feeding stimulant sucrose was suppressed by both repellents. Our results provide neural pathways for the reported spatial repellency and feeding deterrence of these repellents. A better understanding of the neural input through which female mosquitoes make decisions to feed will facilitate design of new repellents and management strategies involving their use. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
USDA-ARS?s Scientific Manuscript database
MS with GC-RI evidence was found for the presence of Linden ether in cooked carrot. Evaluation of the GC effluent from cooked carrot volatiles using Aroma Extract Dilution Analysis (AEDA) found Linden ether with the highest Flavor Dilution (FD) factor. Others with 10 fold lower FD factors were B-i...
de Lima Morais da Silva, Patricia; de Lima, Liliane Schier; Caetano, Ísis Kaminski; Torres, Yohandra Reyes
2017-12-01
The volatile composition of honeys produced by eight species of stingless bees collected in three municipalities in the state of Paraná (Brazil) was compared by combining static headspace GC-MS and chemometrics methods. Forty-four compounds were identified using NIST library and linear retention index relative to n-alkanes (C 8 -C 40 ). Linalool derivatives were the most abundant peaks in most honeys regardless geographical or entomological origin. However, Principal Component Analysis discriminated honeys from different geographical origins considering their distinctive minor volatile components. Honey samples from Guaraqueçaba were characterized by the presence of hotrienol while those from Cambará showed epoxylinalol, benzaldehyde and TDN as minor discriminating compounds. Punctual species such as Borá showed similar fingerprints regardless geographical origin, with ethyl octanoate and ethyl decanoate as characteristic intense chromatographic peaks, which may suggest a specialized behavior for nectar collection. Discriminant Analysis allowed correct geographic discrimination of most honeys produced in the three spots tested. We concluded that volatile profile of stingless bee honeys can be used to attest authenticity related to regional origin of honeys. Copyright © 2017. Published by Elsevier Ltd.
Shirooye, Pantea; Mokaberinejad, Roshanak; Ara, Leila; Hamzeloo-Moghadam, Maryam
2016-01-01
Herbal medicines formulated as oils were believed to possess more powerful effects than their original plants in Iranian Traditional Medicine (ITM). One of the popular oils suggested for treatment of various indications was ginger oil. In the present study, to suggest a more convenient method of oil preparation (compared to the traditional method), ginger oil has been prepared according to both the traditional and conventional maceration methods and the volatile oil constituents have been compared. Ginger oil was obtained in sesame oil according to both the traditional way and the conventional (maceration) methods. The volatile oil of dried ginger and both oils were obtained by hydro-distillation and analyzed by gas chromatography/mass spectroscopy. Fifty five, fifty nine and fifty one components consisting 94 %, 94 % and 98 % of the total compounds were identified in the volatile oil of ginger, traditional and conventional oils, respectively. The most dominant compounds of the traditional and conventional oils were almost similar; however they were different from ginger essential oil which has also been to possess limited amounts of anti-inflammatory components. It was concluded that ginger oil could be prepared through maceration method and used for indications mentioned in ITM.
Advanced heat pump for the recovery of volatile organic compounds
NASA Astrophysics Data System (ADS)
1992-03-01
Emissions of Volatile Organic Compounds (VOC) from stationary industrial and commercial sources represent a substantial portion of the total U.S. VOC emissions. The 'Toxic-Release Inventory' of the U.S. Environmental Protection Agency estimates this to be at about 3 billion pounds per year (1987 estimates). The majority of these VOC emissions are from coating processes, cleaning processes, polymer production, fuel production and distribution, foam blowing, refrigerant production, and wood products production. The U.S. Department of Energy's (DOE) interest in the recovery of VOC stems from the energy embodied in the recovered solvents and the energy required to dispose of them in an environmentally acceptable manner. This Phase 1 report documents 3M's work in close working relationship with its subcontractor Nuclear Consulting Services (Nucon) for the preliminary conceptual design of an advanced Brayton cycle heat pump for the recovery of VOC. The Nucon designed Brayton cycle heat pump for the recovery of methyl ethyl ketone and toluene from coating operations at 3M Weatherford, OK, was used as a base line for the work under cooperative agreement between 3M and ODE. See appendix A and reference (4) by Kovach of Nucon. This cooperative agreement report evaluates and compares an advanced Brayton cycle heat pump for solvent recovery with other competing technologies for solvent recovery and reuse. This advanced Brayton cycle heat pump is simple (very few components), highly reliable (off the shelf components), energy efficient, and economically priced.
Antifungal and antioxidant activities of Coleonema album and C. pulchellum against skin diseases.
Fajinmi, Olufunke O; Grúz, Jiří; Tarkowski, Petr; Kulkarni, Manoj G; Finnie, Jeffrey F; Van Staden, Johannes
2017-12-01
Coleonema album (Thunb) Bart. & H. L. Wendl (Rutaceae) has been used in the formulation of skincare products, and the Khoisan people rub it on their skin to add luster. Coleonema pulchellum I. Williams has received less attention in the South African traditional medicine. This study investigates the antifungal and antioxidant activities of C. album and C. pulchellum essential oil (EO) and leaf extracts; and analyzes the chemical components of their EOs. Antifungal activity of leaf extracts was determined using the microdilution method with griseofulvin and ketoconazole as controls. Antifungal capacity of EO was investigated using the 'Volatile release plate method'. Trichophyton rubrum (ATCC 28188) and T. mentagrophytes (ATCC 9533) mycelia (0.3 cm diameter) were placed on fresh yeast malt agar in Petri dishes with filter paper (impregnated with 20 μL of EO) on the lid for direct exposure to EO volatiles while plates without EO were used as controls. The incubation time was seven days. Antioxidant activities of the leaf extracts were determined. Methanol leaf extract of C. pulchellum inhibited the growth of three fungi tested with MIC values of 195, 391 and 49 μg/mL for Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum gypseum, respectively. Terpenes formed the major components of the EO. The EO from both plants inhibited the growth of T. rubrum in vitro. This study revealed the therapeutic value of C. pulchellum. Coleonema album and C. pulchellum should be considered as potential plants for skin ointment from natural origin.
Continuous anaerobic digestion of food waste and design of digester with lipid removal.
Li, Dong; Sun, Yongming; Guo, Yanfeng; Yuan, Zhenhong; Wang, Yao; Zhen, Feng
2013-01-01
Separation of municipal solid waste has been implemented in many cities in China. As a major component of municipal solid waste, food waste can be treated by anaerobic digestion (AD) for energy production. To provide reference data for disposing of food waste through engineering applications, continuous AD was carried out under various organic loading rates (OLRs) at 27 +/- 2 degrees C in the laboratory. The anaerobic reactor was stable with pH 7.0-7.1, total volatile fatty acid (VFA) concentrations of 206-746 mg/L, and NH4+ -N concentrations of 525-1293 mg/L when the OLR was 1.118-5.588 kg volatile solids (VS)/m(3) x d. The maximum volumetric biogas production rate was 4.41 L/L x d when the OLR was increased to 5.588 kg VS/m(3) x d with a hydraulic retention time of 30 d. When the OLR was increased to 6.706 and 8.382 kg VS/m(3) x d, biogas production was seriously inhibited by VFAs, with maximum total VFA and propionate concentrations of 8738 mg/L and 2864 mg/L, respectively. Due to the incomplete degradation of lipids, the specific methane production rate of 353-488 L/kg VS accounted for 55.2-76.3% of the theoretical methane potential calculated based on the component composition. A retrofitted anaerobic digester with lipid removal was designed to improve the efficiency.
Fontana, Ariel; Rodríguez, Isaac; Cela, Rafael
2018-04-20
The suitability of dispersive liquid-liquid microextraction (DLLME) and gas chromatography accurate mass spectrometry (GC-MS), based on a time-of-flight (TOF) MS analyzer and using electron ionization (EI), for the characterization of volatile and semi-volatile profiles of grape marc distillates (grappa) are evaluated. DLLME conditions are optimized with a selection of compounds, from different chemical families, present in the distillate spirit. Under final working conditions, 2.5 mL of sample and 0.5 mL of organic solvents are consumed in the sample preparation process. The absolute extraction efficiencies ranged from 30 to 100%, depending on the compound. For the same sample volume, DLLME provided higher responses than solid-phase microextraction (SPME) for most of the model compounds. The GC-EI-TOF-MS records of grappa samples were processed using a data mining non-targeted search algorithm. In this way, chromatographic peaks and accurate EI-MS spectra of sample components were linked. The identities of more than 140 of these components are proposed from comparison of their accurate spectra with those in a low resolution EI-MS database, accurate masses of most intense fragment ions of known structure, and available chromatographic retention index. The use of chromatographic and spectral data, associated to the set of components mined from different grappa samples, for multivariate analysis purposes is also illustrated in the study. Copyright © 2018 Elsevier B.V. All rights reserved.
Aroma composition of shalgam: a traditional Turkish lactic acid fermented beverage.
Tanguler, Hasan; Selli, Serkan; Sen, Kemal; Cabaroglu, Turgut; Erten, Huseyin
2017-06-01
Shalgam, a traditional red, cloudy and sour soft beverage, is produced by lactic acid fermentation of black carrot, sourdough, salt, bulgur flour, turnip and adequate water. The present study was designed to characterize the volatile compounds of shalgam obtained from different methods. The aroma compounds of shalgams produced by traditional and direct methods, and addition of Lactic acid bateria (LAB) cultures were examined. Volatile components of shalgam samples were extracted by liquid-liquid extraction technique with pentane/dichloromethane and analyzed by gas chromatography-mass spectrometry (GC-MS). Sixty aroma compounds were identified in shalgam samples including 20 terpenes, 9 esters, 9 alcohols, 5 volatile acids, 6 volatile phenols, 5 lactones, 3 naphthalenes, 2 carbonyl compounds and 1 C13-norisoprenoids. It was found that the aroma profiles of shalgams were quite similar. However, the total volatile content of the shalgam samples increased with addition of Lb. plantarum .
NASA Astrophysics Data System (ADS)
Feng, Xi; Ahn, Dong Uk
2016-10-01
Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant.
Corpas Iguarán, Eduardo; Taborda Ocampo, Gonzalo; Tapasco Alzate, Omar
2018-01-01
Lulo ( Solanum quitoense Lam.) is an exotic fruit cultivated in Colombia. During ripening and senescence, this climactic fruit undergoes biochemical processes that produce the volatiles responsible for its aroma. This study aimed to evaluate the changes in the volatile content during the ripening and senescence of lulo. Analysis of the volatile composition of lulo harvested in each of its five ripening stages and during its senescence time when stored at 18 ± 2 °C was performed using HS-SPME with GC-MS. Throughout ripening, the most notable change was the transformation of alcohols such as (Z)-3-hexen-1-ol and 1-penten-3-ol to afford esters such as (Z)-3-hexenyl acetate and ketones such as 1-penten-3-one. Some acids reacted with alcohols to produce acetate and hexanoate esters, concentrations which increased more than sixfold between stage one and five. Moreover, all the major compounds were C 6 straight chain compounds related to the lipoxygenase pathway. During senescence, majority of compounds were methyl esters, which increased in concentration consistently until day eight. Remarkably, the content of methyl butanoate increased from 0.9% of the total amount of volatiles on day two up to 76.4% on day eight. Some of these volatiles are probably contributors to the "off flavor" during senescence.
The fate of dissolved dimethylsulfoniopropionate (DMSP) in seawater: tracer studies using 35S-DMSP
NASA Astrophysics Data System (ADS)
Kiene, Ronald P.; Linn, Laura J.
2000-08-01
The algal osmolyte dimethylsulfoniopropionate (DMSP) is distributed globally in the marine euphotic zone, where it represents a major form of reduced sulfur. Previous investigations of DMSP cycling have focused mainly on its degradation to the volatile sulfur species dimethylsulfide (DMS) and little is known about the other possible fates of the sulfur. In this study 35S-DMSP was used to trace the biogeochemical fate of sulfur in the natural pool of dissolved DMSP in seawater. Dissolved 35S-DMSP added to seawater was degraded within hours, with the 35S partitioning into three major, relatively stable, operational pools: particulates, dissolved non-volatile degradation products (DNVS), and volatiles. The mean values for partitioning of DMSP obtained from 20 different seawater incubations were (in terms of sulfur): particulates (33%; range 6-85%;); DNVS (46%; range 21-74%); and volatiles (9%; range 2-21%). Oceanic water samples had lower incorporation of DMSP-S into particulates and higher incorporation into DNVS as compared with coastal-shelf samples. Transient accumulation of untransformed 35S-DMSP in bacteria accounted for some of the particulate 35S, but most of the cell-associated DMSP was rapidly transformed and the sulfur incorporated into relatively stable macromolecules. 35S-labeled DNVS accumulated steadily during DMSP metabolism and approximately half of this pool was confirmed to be sulfate, implying that oxidation of DMSP-sulfur takes place on time scales of minutes to hours. Volatile products were produced rapidly from 35S-DMSP, but most were consumed within 1-3 h. Experiments showed that methanethiol (MeSH) was the major volatile compound produced from tracer DMSP, with longer-lived DMS formed in lower amounts. Tracer additions of 35S-MeSH to seawater resulted in incorporation of sulfur into cellular macromolecules and DNVS, suggesting MeSH was an intermediate in the conversion of DMSP into these pools. Experiments with 35S-DMS revealed that turnover of DMS was much slower than for DMSP or MeSH, and the retention of the DMS-sulfur in particles was only a minor fraction of the total amount metabolized. The majority of the 35S-DMS was transformed into DNVS including sulfate. Temperature and DMSP concentration significantly affected the partitioning of sulfur during DMSP degradation, with lower temperatures and higher substrate concentrations causing a shift from particulate into volatile and non-volatile dissolved products. Our work demonstrates that natural turnover of dissolved DMSP results in minor net production of sulfur gases, and substantial production of previously unrecognized products (particulate and dissolved non-volatile sulfur). The main fates of DMSP are tied to assimilation and oxidation of the reduced sulfur by microorganisms, both of which may act as important controls on the production of climatically active DMS.
Chemically-resolved volatility measurements of organic aerosol fom different sources.
Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L
2009-07-15
A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.
TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)
Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...
Separation process using pervaporation and dephlegmation
Vane, Leland M.; Mairal, Anurag P.; Ng, Alvin; Alvarez, Franklin R.; Baker, Richard W.
2004-06-29
A process for treating liquids containing organic compounds and water. The process includes a pervaporation step in conjunction with a dephlegmation step to treat at least a portion of the permeate vapor from the pervaporation step. The process yields a membrane residue stream, a stream enriched in the more volatile component (usually the organic) as the overhead stream from the dephlegmator and a condensate stream enriched in the less volatile component (usually the water) as a bottoms stream from the dephlegmator. Any of these may be the principal product of the process. The membrane separation step may also be performed in the vapor phase, or by membrane distillation.
Non-volatile taste components of several cultivated mushrooms.
Li, Wen; Gu, Zhen; Yang, Yan; Zhou, Shuai; Liu, Yanfang; Zhang, Jingsong
2014-01-15
Five species of dried mushrooms are commercially available in China, namely Agrocybe cylindracea, Pleurotus cystidiosus, Agaricus blazei, Pleurotus eryngii, and Coprinus comatus, and their nonvolatile taste components were studied. Trehalose (12.23-301.63mg/g) and mannitol (12.37-152.11mg/g) were considered as the major mushroom sugar/polyol in the five test species. The total free amino acid levels ranged from 4.09 to 22.73mg/g. MSG-like components contents ranged from 0.97 to 4.99mg/g. 5'-Nucleotide levels ranged from 1.68mg/g in P. eryngii to 3.79mg/g in C. comatus. Fumaric acid (96.11mg/g) in P. cystidiosus were significantly higher compared with the other mushrooms, and citric acid (113.13mg/g), as the highest of any organic acid among the five mushrooms, were found in A. blazei. Equivalent umami concentrations values in these five test mushrooms ranged from 11.19 to 88.37g/100g dry weight. A. blazei, C.comatus and A. cylindracea possessed highly strong umami taste. Copyright © 2013 Elsevier Ltd. All rights reserved.
Volatile contents of mafic-to-intermediate magmas at San Cristóbal volcano in Nicaragua
NASA Astrophysics Data System (ADS)
Robidoux, P.; Aiuppa, A.; Rotolo, S. G.; Rizzo, A. L.; Hauri, E. H.; Frezzotti, M. L.
2017-02-01
San Cristóbal volcano in northwest Nicaragua is one of the most active basaltic-andesitic stratovolcanoes of the Central American Volcanic Arc (CAVA). Here we provide novel constraints on the volcano's magmatic plumbing system, by presenting the first direct measurements of major volatile contents in mafic-to-intermediate glass inclusions from Holocene and historic-present volcanic activity. Olivine-hosted (forsterite [Fo] < 80; Fo< 80) glass inclusions from Holocene tephra layers contain moderate amounts of H2O (0.1-3.3 wt%) and S and Cl up to 2500 μg/g, and define the mafic (basaltic) endmember component. Historic-present scoriae and tephra layers exhibit more-evolved olivines (Fo69-72) that contain distinctly lower volatile contents (0.1-2.2 wt% H2O, 760-1675 μg/g S, and 1021-1970 μg/g Cl), and represent a more-evolved basaltic-andesitic magma. All glass inclusions are relatively poor in CO2, with contents reaching 527 μg/g (as measured by nanoscale secondary ion mass spectrometry), suggesting pre- to postentrapment CO2 loss to a magmatic vapor. We use results of Raman spectroscopy obtained in a population of small (< 50 μm) inclusions with CO2-bearing shrinkage bubbles (3-12 μm) to correct for postentrapment CO2 loss to bubbles, and to estimate the original minimum CO2 content in San Cristóbal parental melts at 1889 μg/g, which is consistent with the less-CO2-degassed melt inclusions (MI) (> 1500 μg/g) found in Nicaragua at Cerro Negro, Nejapa, and Granada. Models of H2O and CO2 solubilities constrain the degassing pathway of magmas up to 425 MPa ( 16 km depth), which includes a deep CO2 degassing step (only partially preserved in the MI record), followed by coupled degassing of H2O and S plus crystal fractionation at magma volatile saturation pressures from ∼ 195 to < 10 MPa. The variation in volatile contents from San Cristóbal MI is interpreted to reflect (1) Holocene eruptive cycles characterized by the rapid emplacement of basaltic magma batches, saturated in volatiles, at depths of 3.8-7.4 km, and (2) the ascent of more-differentiated and cogenetic volatile-poor basaltic andesites during historic-present eruptions, having longer residence times in the shallowest (< 3.4 km) and hence coolest regions of the magmatic plumbing system. We also report the first measurements of the compositions of noble-gas isotopes (He, Ne, and Ar) in fluid inclusions in olivine and pyroxene crystals. While the measured 40Ar/36Ar ratios (300-304) and 4He/20Ne ratios (9-373) indicate some degree of air contamination, the 3He/4He ratios (7.01-7.20 Ra) support a common mantle source for Holocene basalts and historic-present basaltic andesites. The magmatic source is interpreted as generated by a primitive MORB-like mantle, that is influenced to variable extents by distinct slab fluid components for basalts (Ba/La 76 and U/Th 0.8) and basaltic andesites (Ba/La 86 and U/Th 1.0) in addition to effects of magma differentiation. These values for the geochemical markers are particularly high, and their correlation with strong plume CO2/S ratios from San Cristóbal is highly consistent with volatile recycling at the CAVA subduction zone, where sediment involvement in mantle fluids influences the typical relatively C-rich signature of volcanic gases in Nicaragua.
Volatile compounds in samples of cork and also produced by selected fungi.
Barreto, M C; Vilas Boas, L; Carneiro, L C; San Romão, M V
2011-06-22
The production of volatile compounds by microbial communities of cork samples taken during the cork manufacturing process was investigated. The majority of volatiles were found in samples collected at two stages: resting after the first boiling and nontreated cork disks. Volatile profiles produced by microbiota in both stages are similar. The releasable volatile compounds and 2,4,6-trichloroanisole (TCA) produced in cork-based culture medium by five isolated fungal species in pure and mixed cultures were also analyzed by gas chromatography coupled with mass spectrometry (GC-MS).The results showed that 1-octen-3-ol and esters of fatty acids (medium chain length C8-C20) were the main volatile compounds produced by either pure fungal species or their mixture. Apparently, Penicillium glabrum is the main contributor to the overall volatile composition observed in the mixed culture. The production of releasable TCA on cork cannot be attributed to any of the assayed fungal isolates.
Rusty rock 66095 - A paradigm for volatile-element mobility in highland rocks
NASA Astrophysics Data System (ADS)
Hunter, R. H.; Taylor, L. A.
The ultimate goals of Apollo 16 consortia investigations are related to a determination of the nature of the early crust of the moon, taking into account questions regarding the petrogenesis of highland breccias and melt-rocks. In addition to these potential objectives, the consortia study of 66095 has also the goal to provide information for an understanding of the origin of volatile elements. Since 66095 is the most volatile-rich sample returned by the Apollo missions and its elemental ratios mimic those in many Apollo 16 breccias, it was selected as a paradigm for the highland breccias. 66095 is a clast-laden, impact-melt breccia. The volatile-rich nature is manifest in the presence of rust, schreibersite, and minor volatile-bearing compounds, usually in association with native metal and/or troilite. Attention is given to aspects of petrography, mineral chemistry, major element chemistry, the volatile bearing phases, and the history of the volatiles starting with their ultimate origin.
USDA-ARS?s Scientific Manuscript database
Global climate change is already occurring and may affect biogenic volatile organic compounds (VOCs) involved in plant communication. Whether climate change will promote expansion of invasive species is still unclear. Centaurea solstitialis (yellow starthistle) is a major invasive weed in western No...
VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE
Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...
Behavioural responses of wheat stem sawflies to wheat volatiles
D. Piesik; D. K. Weaver; J. B. Runyon; M. Buteler; G. E. Peck; W. L. Morrill
2008-01-01
1) Adult wheat stem sawflies Cephus cinctus, pests of cultivated cereals that also infests wild grasses, migrate into wheat fields where they oviposit in elongating, succulent stems. 2) Volatiles released by wheat plants at susceptible stages were analyzed to determine potential semiochemical compounds. Seven major compounds were identified and...
The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...
NASA Technical Reports Server (NTRS)
Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.
1991-01-01
A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.
Hydraulic Universal Display Processor System (HUDPS).
1981-11-21
emphasis on smart alphanumeric devices in Task II. Volatile and non-volatile memory components were utilized along with the Intel 8748 microprocessor...system. 1.2 TASK 11 Fault display methods for ground support personnel were investigated during Phase II with emphasis on smart alphanumeric devices...CONSIDERATIONS Methods of display fault indication for ground support personnel have been investigated with emphasis on " smart " alphanumeric devices
Szendrei, Zsofia; Averill, Anne; Alborn, Hans; Rodriguez-Saona, Cesar
2011-04-01
Studies were conducted to develop an attractant for the cranberry weevil, Anthonomus musculus, a pest of blueberry and cranberry flower buds and flowers in the northeastern United States. In previous studies, we showed that cinnamyl alcohol, the most abundant blueberry floral volatile, and the green leaf volatiles (Z)-3-hexenyl acetate and hexyl acetate, emitted from both flowers and flower buds, elicit strong antennal responses from A. musculus. Here, we found that cinnamyl alcohol did not increase capture of A. musculus adults on yellow sticky traps compared with unbaited controls; however, weevils were highly attracted to traps baited with the Anthonomus eugenii Cano aggregation pheromone, indicating that these congeners share common pheromone components. To identify the A. musculus aggregation pheromone, headspace volatiles were collected from adults feeding on blueberry or cranberry flower buds and analyzed by gas chromatography-mass spectrometry. Three male-specific compounds were identified: (Z)-2-(3,3-dimethyl-cyclohexylidene) ethanol (Z grandlure II); (Z)-(3,3-dimethylcyclohexylidene) acetaldehyde (grandlure III); and (E)-(3,3- dimethylcyclohexylidene) acetaldehyde (grandlure IV). A fourth component, (E)-3,7-dimethyl-2,6-octadien-1-ol (geraniol), was emitted in similar quantities by males and females. The emission rates of these volatiles were about 2.8, 1.8, 1.3, and 0.9 ng/adult/d, respectively. Field experiments in highbush blueberry (New Jersey) and cranberry (Massachusetts) examined the attraction of A. musculus to traps baited with the male-produced compounds and geraniol presented alone and combined with (Z)-3-hexenyl acetate and hexyl acetate, and to traps baited with the pheromones of A. eugenii and A. grandis. In both states and crops, traps baited with the A. musculus male-produced compounds attracted the highest number of adults. Addition of the green leaf volatiles did not affect A. musculus attraction to its pheromone but skewed the sex ratio of the captured adults towards females. Although the role of plant volatiles in host-plant location by A. musculus is still unclear, our studies provide the first identification of the primary A. musculus aggregation pheromone components that can be used to monitor this pest in blueberry and cranberry pest management programs.
Identification of Campylobacter infection in chickens from volatile faecal emissions.
Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S
2008-06-01
Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.
NASA Technical Reports Server (NTRS)
Barker, C.
1972-01-01
A high vacuum system was built for extracting volatiles from rocks either by heating or crushing, and preliminary analyses of the volatiles were made for selected terrestrial basalts and granites. The apparatus and experimental procedures are described, and the major problems associated with water measurement and choice of argon to replace neon as the internal standard are discussed. Preliminary analyses of granites and basalts indicate the following: All analyses lie in the H2O-CO2-CO triangle on a C-H-O ternary diagram. The compositions of the volatiles plot in distinct, but overlapping, areas of the C-H-O diagram. Pre-Cambrian granites have a higher volatile content than younger granites. Continental basalts have a higher volatile content than oceanic basalts.
Genomic hardwiring and phenotypic plasticity of terpenoid-based defenses in conifers.
Huber, Dezene P W; Ralph, Steven; Bohlmann, Jörg
2004-12-01
Over evolutionary history, conifers have faced a myriad of threats from phloem- and xylem-feeding insects, defoliating insects, and fungal pathogens. Among the trees' defenses, terpenoids appear to play a major role by harming, disabling, deterring, repelling, or otherwise reducing the fitness of potential invaders. Each of the three classes of terpenoids in conifers, monoterpenes, sesquiterpenes, and diterpenes, are composed of a large number of representative compounds. In most cases, the presence of a particular terpenoid compound in the oleoresin or volatile emissions from a specific conifer can be accounted for by the expression of one of many committed terpene synthase (TPS) genes. However, while each TPS may produce one or a few major products, many produce a variety of minor products with relatively constant component ratios in the product blends. TPS genes exist in conifers in large and functionally diverse, yet monophyletic, gene families. Within these gene families, new biochemical functions of TPS appear to have evolved by gene duplication and changes in the amino acid sequence of the enzyme's active site. In addition, TPS genes may be differentially expressed prior to, during, and following attack by insects or pathogens. Thus, while the production of any particular terpenoid is hardwired into a conifer's genome, these trees have the capacity to change the mixture of terpenoids in oleoresin secretions and volatile emissions. Anatomical changes may also accompany induced terpenoid production, supplementing the plasticity of the molecular and biochemical events.
NASA Astrophysics Data System (ADS)
Calabrese, Sergio; Scaglione, Sarah; Milazzo, Silvia; D'Alessandro, Walter; Bobrowski, Nicole; Giuffrida, Giovanni; Tedesco, Dario; Parello, Francesco
2014-05-01
Volcanoes are well known as an impressive large natural source of trace elements into the troposphere. Among others, Etna (Italy) and Nyiragongo (D.R. Congo), two noteworthy emitters on Earth, are two stratovolcanoes located in different geological settings, both characterized by persistent passive degassing from their summit craters. Here, we present some results on trace element composition in volcanic plume emissions, atmospheric bulk deposition (rainwater) and their uptake of the surrounding vegetation, with the aim to compare and identify differences and similarities between this these two volcanoes. Volcanic emissions were sampled by using active filter-pack for acid gases (sulfur and halogens) and specific teflon filters for particulates (major and trace elements). The impact of the volcanogenic deposition in the surrounding of the crater rims was investigated by using different sampling techniques: bulk rain collectors gauges were used to collect atmospheric bulk deposition, and biomonitoring technique was carried out to collect gases and particulates by using endemic plant species. Concentrations of major and trace elements of volcanic plume emissions (gases and particulates) were obtained by elution and microwave digestion of the collected filters: sulfur and halogens were determined by ion chromatography and ICP-MS, and untreated filters for particulate were acid digested and analysed by ICP-OES and ICP-MS. Rain water and plant samples were also analysed for major and trace elements by using ICP-OES and ICP-MS. In total 55 elements were determined. The estimates of the trace element fluxes confirm that Etna and Nyiragongo are large sources of metals to the atmosphere, especially considering their persistent state of passive degassing. In general, chemical composition of the volcanic aerosol particles of both volcanoes is characterized by two main components: one is related to the silicic component produced by magma bursting and fragmentation, enriching the plume in Si, Al, Fe, Ti, Mg, Ca, Na, K and other trace elements like Ni, Cr, Co, Th and U; another one components, is dominated by volatile trace elements (As, Bi, Cd, Cu, Hg, Se, Te, Tl) related to the gas volatile phase (H2O, CO2, SO2, HCl, HF) and transported to the atmosphere mainly as hydro-soluble salts and/or in gaseous form in some cases. The large amount of emitted trace elements have a strong impact on the close surrounding of both volcanoes. This is clearly reflected by in the chemical composition of rain water collected at the summit areas both for Etna and Nyiragongo. In fact, rain water samples have low pH values (<2) and high concentrations of dissolved toxic metals. Moreover, the biomonitoring results highlight that bioaccumulation of trace elements is extremely high in the proximity of the crater rim and decreases with the distance from the active craters. In particular, we found a good correlation between volatile elements (Tl, As, Bi, Cd, Se, Cu) concentrations in the leaves of Senecio species collected in on both volcanoes, showing a clear influence of volcanic deposition.
Evaluation of the volatile profile of Tuber liyuanum by HS-SPME with GC-MS.
Liu, Changjiao; Li, Yu
2017-04-01
The volatile components of Tuber liyuanum were determined by HS-SPME with GC-MS for the first time. The effects of different fibre coating, extraction time, extraction temperature and sample amount were studied to get optimal extraction conditions. The optimal conditions were SPME fibre of Carboxen/PDMS, extraction time of 40 min, extraction temperature of 80 °C, sample amount of 2 g. Under these conditions 57 compounds in volatile of T. liyuanum were detected with a resemblance percentage above 80%. Aldehydes and aromatics were the main chemical families identified. The contribution of 3-Octanone(11.67%), phenylethyl alcohol (10.60%), isopentana (9.29%) and methylbutana (8.06%) for the total volatile profile were more significant in T. liyuanum than other compounds.
NASA Astrophysics Data System (ADS)
Messina, Valeria; Biolatto, Andrea; Sancho, Ana; Descalzo, Adriana; Grigioni, Gabriela; de Reca, Noemí Walsöe
2011-09-01
The aim of the performed work was to evaluate with an electronic nose changes in odor profile of Arauco and Arbequina varieties of extra-virgin olive oil during deep-frying. Changes in odor were analyzed using an electronic nose composed of 16 sensors. Volatile compounds were analyzed by SPME-GC-FID. Principal Component Analysis was applied for electronic results. Arauco variety showed the highest response for sensors. Statistical analysis for volatile compounds indicated a significant (P<0.001) interaction between variety and time of frying processes. Arauco variety showed the highest production of volatile compounds at 60 min of deep frying. The two varieties presented distinct patterns of volatile products, being clearly identified with the electronic nose.
Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach
Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla
2014-01-01
Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils. PMID:24971152
Essid, Faten; Sifi, Samira; Beltrán, Gabriel; Sánchez, Sebastián; Raïes, Aly
2016-07-01
The quality of olive oil is defined as a combination of characteristics that significantly determine its acceptance by consumers. This study was carried out to compare sensorial and chemical characteristics of sixty 'Chétoui' extra virgin olive oils (EVOOc) samples from six northern areas in Tunisia (Tebourba (EVOOT); Other regions (EVOON): Mornag, Sidi Amor, El Kef, Béjà and Jendouba). Trained panel taste detected ten sensory attributes. EVOOT and EVOON were defined by 'tomato' and 'grass/ leave notes, respectively. Twenty one volatile compounds from EVOOc were extracted and identified by Headspace Solid-Phase Microextraction followed by Gas Chromatography- Flame Ionization Detector. Principal component and cluster analysis of all studied parameters showed that EVOOT differed from EVOON. Sensory and volatile profiles of EVOOc revealed that the perception of different aromas, in monovarietal olive oil, was the result of synergic effect of oils' various components, whose composition was influenced by the geographical growing area.
Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara
2016-01-01
Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130
Precondensed matter - Key to the early solar system
NASA Technical Reports Server (NTRS)
Clayton, D. D.
1978-01-01
Explicit astrophysical details are developed for the hypothesis that chemical and isotopic anomalies in primitive solar-system samples reflect routine initial chemical conditions within precondensed matter. The central feature of this theory concerns the chemical state of presolar dust, which is regarded as never having been vaporized in the region where the most chemically primitive samples (carbonaceous meteorites) accumulated. It is suggested that the initial chemical state of heavy atoms during meteorite and planetary accumulation was distributed between a refractory-mineral component from high-temperature condensation and a volatile component resulting from cold matter adhering to preexisting grains. Thermal conditions in the solar nebula are considered along with the existence of supernova condensates and other thermal condensates in the interstellar dust. Fractionation into volatile and refractory elements is idealized in terms of four distinct interstellar components, and the fractionated precondensed matter is described.
NASA Astrophysics Data System (ADS)
Fan, Yan; Yin, Li'ang; Xue, Yong; Li, Zhaojie; Hou, Hu; Xue, Changhu
2017-04-01
Shrimp paste is a type of condiments with high nutritional value. However, the flavors of shrimp paste, particularly the non-uniformity flavors, have limited its application in food processing. In order to identify the characteristic flavor compounds in Chinese traditional shrimp pastes, five kinds of typical commercial products were evaluated in this study. The differences in the volatile composition of the five products were investigated. Solid phase micro-extraction method was employed to extract the volatile compounds. GC-MS and electronic nose were applied to identify the compounds, and the data were analyzed using principal component analysis (PCA). A total of 62 volatile compounds were identified, including 8 alcohols, 7 aldehydes, 3 ketones, 7 ethers, 7 acids, 3 esters, 6 hydrocarbons, 12 pyrazines, 2 phenols, and 7 other compounds. The typical volatile compounds contributing to the flavor of shrimp paste were found as follows: dimethyl disulfide, dimethyl tetrasulfide, dimethyl trisulfide, 2, 3, 5-trimethyl-6-ethyl pyrazine, ethyl-2, 5-dimethyl-pyrazine, phenol and indole. Propanoic acid, butanoic acid, furans, and 2-hydroxy-3-pentanone caused unpleasant odors, such as pungent and rancid odors. Principal component analysis showed that the content of volatile compounds varied depending on the processing conditions and shrimp species. These results indicated that the combinations of multiple analysis and identification methods could make up the limitations of a single method, enhance the accuracy of identification, and provide useful information for sensory research and product development.
Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1997-01-01
Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suomela, K.D.; Highsmith, R.L.; Rapuano, K.F.
1994-11-15
An Expanded Site Inspection (ESI) was conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation. The ASA contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components. Fifteen Solid Waste Management Units (SWMUs) were the focus of the ESI, of which 11 were recommend for further investigation. The work included amore » review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Contamination from volatile organic compounds and semi volatile organic compounds is not a major problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values levels in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchholz, B A; Mueller, C J; Garbak, J.
2001-08-02
Accelerator mass spectrometry (AMS) is an isotope-ratio measurement technique developed in the late 1970s for tracing long-lived radioisotopes (e.g., {sup 14}C half life = 5760 y). The technique counts individual nuclei rather than waiting for their radioactive decay, allowing measurement of more than 100 low-level {sup 14}C samples per day (Vogel et al, 1995). The LLNL AMS system is shown in Fig.1. The contemporary quantity of {sup 14}C in living things ({sup 14}C/C = 1.2 x 10{sup -12} or 110 fmol {sup 14}C/ g C) is highly elevated compared to the quantity of {sup 14}C in petroleum-derived products. This isotopicmore » elevation is sufficient to trace the fate of bio-derived fuel components in the emissions of an engine without the use of radioactive materials. If synthesis of a fuel component from biologically-derived source material is not feasible, another approach is to purchase {sup 14}C-labeled material (e.g., dibutyl maleate (DBM)) and dilute it with petroleum-derived material to yield a contemporary level of {sup 14}C. In each case, the virtual absence of {sup 14}C in petroleum based fuels gives a very low {sup 14}C background that makes this approach to tracing fuel components practical. Regulatory pressure to significantly reduce the particulate emissions from diesel engines is driving research into understanding mechanisms of soot formation. If mechanisms are understood, then combustion modeling can be used to evaluate possible changes in fuel formulation and suggest possible fuel components that can improve combustion and reduce PM emissions. The combustion paradigm assumes that large molecules break down into small components and then build up again during soot formation. AMS allows us to label specific fuel components, including oxygenates, trace the carbon atoms, and test this combustion modeling paradigm. Volatile and non-volatile organic fractions (VOF, NVOF) in the PM can be further separated. The VOF of the PM can be oxidized with catalysts in the exhaust stream to further decrease PM. The effectiveness of exhaust stream catalysts to oxidize products from tracer fuel components can be monitored through AMS measurement of carbon in PM. The objects of this report are: (1) Determine contribution of diesel fuel components and oxygenates to soot formation; (2) Separate volatile and non-volatile fractions of soot; (3) Test combustion paradigm that all carbon and oxygen in fuel is equal; and (4) Produce data to validate combustion modeling.« less
Eco-evolutionary factors drive induced plant volatiles: a meta-analysis.
Rowen, Elizabeth; Kaplan, Ian
2016-04-01
Herbivore-induced plant volatiles (HIPVs) mediate critical ecological functions, but no studies have quantitatively synthesized data published on HIPVs to evaluate broad patterns. We tested three hypotheses that use eco-evolutionary theory to predict volatile induction: feeding guild (chewing arthropods > sap feeders), diet breadth (specialist herbivores > generalists), and selection history (domesticated plants < wild species). To test these hypotheses, we extracted data from 236 experiments that report volatiles produced by herbivore-damaged and undamaged plants. These data were subjected to meta-analysis, including effects on total volatiles and major biochemical classes. Overall, we found that chewers induced more volatiles than sap feeders, for both total volatiles and most volatile classes (e.g. green leaf volatiles, monoterpenes). Although specialist herbivores induced more total volatiles than generalists, this was inconsistent across chemical classes. Contrary to our expectation, domesticated species induced stronger volatile responses than wild species, even when controlling for plant taxonomy. Surprisingly, this is the first quantitative synthesis of published studies on HIPVs. Our analysis provides support for perceptions in the published literature (chewers > sap feeders), while challenging other commonly held notions (wild > crop). Despite the large number of experiments, we identified several gaps in the existing literature that should guide future investigations. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
The lunar core can be a major reservoir for volatile elements S, Se, Te and Sb.
Steenstra, Edgar S; Lin, Yanhao; Dankers, Dian; Rai, Nachiketa; Berndt, Jasper; Matveev, Sergei; van Westrenen, Wim
2017-11-06
The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.
Jiang, Bao; Zhang, Zhenwen
2010-12-10
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with "fruity'' and ''ripe fruit'' odor descriptors.
Liu, Cuihua; Jiang, Dong; Cheng, Yunjiang; Deng, Xiuxin; Chen, Feng; Fang, Liu; Ma, Zhaocheng; Xu, Juan
2013-01-01
Volatile profiles yielded from gas chromatography-mass spectrometry (GC-MS) analysis provide abundant information not only for metabolism-related research, but also for chemotaxonomy. To study the chemotaxonomy of Mangshanyegan, its volatile profiles of fruit and leaf and those of 29 other genotypes of Citrus, Poncirus, and Fortunella were subjected to phylogenetic analyses. Results showed that 145 identified (including 64 tentatively identified) and 15 unidentified volatile compounds were detected from their peel oils. The phylogenetic analysis of peel oils based on hierarchical cluster analysis (HCA) demonstrated a good agreement with the Swingle taxonomy system, in which the three genera of Citrus, Poncirus, and Fortunella were almost completely separated. As to Citrus, HCA indicated that Citrophorum, Cephalocitrus, and Sinocitrus fell into three subgroups, respectively. Also, it revealed that Mangshanyegan contain volatile compounds similar to those from pummelo, though it is genetically believed to be a mandarin. These results were further supported by the principal component analysis of the peel oils and the HCA results of volatile profiles of leaves in the study. PMID:23516475
Volatile compound in cut and un-cut flowers of tetraploid Freesia hybrida.
Ao, Man; Liu, Baofeng; Wang, Li
2013-01-01
The flower volatile compounds (FVCs) of two tetraploid Freesia hybrida (pink-yellow and yellow) cultivars and their cut flowers were analysed by headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Twelve FVCs were identified in the pink-yellow cultivar, with linalool as the major compound; 30 FVCs were identified in the yellow cultivar, with linalool and terpineol as the two major compounds. The FVCs (>1%) of the two cut flower cultivars were very similar to that of the un-cut flowers, and no significant difference was observed.
USDA-ARS?s Scientific Manuscript database
Florida ‘Valencia’ oranges have a wide harvest window covering four months after first reaching the commercial maturity. However, the influence of harvest time on juice flavor chemicals is not well documented with the exception of sugars and acids. Therefore, we investigated the major flavor chemica...
Modeling emissions of volatile organic compounds from silage
USDA-ARS?s Scientific Manuscript database
Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...
USDA-ARS?s Scientific Manuscript database
Commercial tomatoes are widely perceived by consumers as lacking flavor. A major part of that problem is a postharvest handling system that chills fruit. Low-temperature storage is widely used to slow ripening and reduce decay. However, chilling results in loss of flavor. Flavor-associated volatiles...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Govind, R.; Wang, Z.; Bishop, D.F.
1997-12-31
In recent years, regulation of hazardous air pollutants under the Clean Air Act and its amendments, has emerged as a major environmental issue. Major sources of volatile organic compounds (VOCs) in air are chemical production plants, manufacturing sites using common solvents, combustion sources, and waste treatment operations, such as waste water treatment plants, vacuum extraction of contaminated soils, and ground water stripping operations. Biofiltration is an emerging technology for treatment of biodegradable volatile organic compounds (VOCs) present in air. In biofiltration, the contaminants are contacted with active microorganisms present either in naturally bioactive materials, such as soil, peat, compost, etc.,more » or immobilized on an inactive support media. Design of biofilters requires information on biodegradation kinetics which controls biofilter size. In this paper, an experimental microbiofilter system is presented which can be used to measure biofiltration kinetics for any volatile organic compound. A mathematical model is used to derive the Monod biokinetic parameters from the experimental data. Finally, a structure-bioactivity relationship is derived for estimating the biofiltration biokinetic parameters for a variety of VOCs.« less
Umano, K; Hagi, Y; Nakahara, K; Shoji, A; Shibamoto, T
2000-08-01
Extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.) were obtained using two methods: steam distillation under reduced pressure followed by dichloromethane extraction (DRP) and simultaneous purging and extraction (SPSE). A total of 192 volatile chemicals were identified in the extracts obtained by both methods using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). They included 47 monoterpenoids (oxygenated monoterpenes), 26 aromatic compounds, 19 aliphatic esters, 18 aliphatic alcohols, 17 monoterpenes (hydrocarbon monoterpenes), 17 sesquiterpenes (hydrocarbon sesquiterpenes), 13 sesquiterpenoids (oxygenated sesquiterpenes), 12 aliphatic aldehydes, 8 aliphatic hydrocarbons, 7 aliphatic ketones, and 9 miscellaneous compounds. The major volatile constituents of the extract by DRP were borneol (10.27 ppm), alpha-thujone (3.49 ppm), artemisia alcohol (2.17 ppm), verbenone (1.85 ppm), yomogi alcohol (1.50 ppm), and germacren-4-ol (1.43 ppm). The major volatile constituents of the extract by SPSE were 1,8-cineole (8.12 ppm), artemisia acetate (4.22 ppm), alpha-thujone (3.20 ppm), beta-caryophyllene (2.39 ppm), bornyl acetate (2.05 ppm), borneol (1.80 ppm), and trans-beta-farnesene (1. 78 ppm).
Colville, Louise
2012-01-01
The volatile compounds released by orthodox (desiccation-tolerant) seeds during ageing can be analysed using gas chromatography–mass spectrometry (GC-MS). Comparison of three legume species (Pisum sativum, Lathyrus pratensis, and Cytisus scoparius) during artificial ageing at 60% relative humidity and 50 °C revealed variation in the seed volatile fingerprint between species, although in all species the overall volatile concentration increased with storage period, and changes could be detected prior to the onset of viability loss. The volatile compounds are proposed to derive from three main sources: alcoholic fermentation, lipid peroxidation, and Maillard reactions. Lipid peroxidation was confirmed in P. sativum seeds through analysis of malondialdehyde and 4-hydroxynonenal. Volatile production by ageing orthodox seeds was compared with that of recalcitrant (desiccation-sensitive) seeds of Quercus robur during desiccation. Many of the volatiles were common to both ageing orthodox seeds and desiccating recalcitrant seeds, with alcoholic fermentation forming the major source of volatiles. Finally, comparison was made between two methods of analysis; the first used a Tenax adsorbent to trap volatiles, whilst the second used solid phase microextraction to extract volatiles from the headspace of vials containing powdered seeds. Solid phase microextraction was found to be more sensitive, detecting a far greater number of compounds. Seed volatile analysis provides a non-invasive means of characterizing the processes involved in seed deterioration, and potentially identifying volatile marker compounds for the diagnosis of seed viability loss. PMID:23175670
Effect of gamma irradiation on curcuminoids and volatile oils of fresh turmeric ( Curcuma longa)
NASA Astrophysics Data System (ADS)
Dhanya, R.; Mishra, B. B.; Khaleel, K. M.
2011-11-01
In our earlier study a radiation dose of 5 kGy was reported to be suitable for microbial decontamination and shelf life extension of fresh turmeric ( Curcuma longa), while maintaining its quality attributes. In continuation of that work, the effect of gamma radiation on curcuminoids and volatile oil constituents in fresh turmeric was studied. Fresh peeled turmeric rhizomes were gamma irradiated at doses of 1, 3 and 5 kGy. Curcuminoid content and volatile oils were analyzed by reverse phase HPLC and GC-MS, respectively. The curcuminoid content was slightly increased by gamma irradiation. No statistically significant changes were observed due to irradiation in majority of the volatile oil constituents.
The Salt Lake City EPA Environmental
Monitoring for Public Access and Community Tracking (EMPACT) project,
initiated in October 1999, is designed to evaluate the usefulness of a
newly developed real-time continuous monitor (RAMS) for total
(non-volatil...
Flash drive memory apparatus and method
NASA Technical Reports Server (NTRS)
Hinchey, Michael G. (Inventor)
2010-01-01
A memory apparatus includes a non-volatile computer memory, a USB mass storage controller connected to the non-volatile computer memory, the USB mass storage controller including a daisy chain component, a male USB interface connected to the USB mass storage controller, and at least one other interface for a memory device, other than a USB interface, the at least one other interface being connected to the USB mass storage controller.
NASA Astrophysics Data System (ADS)
Pathak, Binita; Basu, Saptarshi
2016-03-01
Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.
NASA Astrophysics Data System (ADS)
Cai, C.; Zhao, C.
2017-12-01
Quantifying the gas/particle partitioning of organic compounds is of great significance to the understanding of atmospheric aerosol indirect effect. Accurate determination of the hygroscopicities and vapor pressures of semi-volatile organic compounds (SVOC) is of crucial importance in studying their partitioning behavior into atmospheric aerosol, as current published vapor pressures results of compounds of interest (usually with vapor pressures smaller than 0.01 Pa) vary by several orders of magnitude. On the other hand, influences on SVOCs evaporation from participation of inorganic species remains ambiguous. In this study we present quantitative investigation of hygroscopicities and volatilities of single aerosol droplets in an aerosol optical tweezers. The trapped droplet (3-7 µm radii) in the aerosol optical tweezers acts as a micro cavity, which stimulates the cavity enhanced Raman spectroscopy (CERS) signal. Size and composition of the particle are calculated from Mie fit to the positions of the "whispering gallery modes" in the CERS fingerprint. Hygroscopic behaviors and SVOC pure component vapor pressure can then be extracted from the correlation between the changing droplet radius and solute concentration (derived from experimentally determined RI real part). We will further present the influences between mass transfer on the gas-particle interface and within the droplet.
Chen, Min-Hung; Huang, Tzou-Chi
2016-12-17
As local varieties of citrus fruit in Taiwan, Ponkan ( Citrus reticulata Blanco), Tankan ( C. tankan Hayata), and Murcott ( C. reticulate × C. sinensis ) face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g), limonoids (111.7~406.2 mg/g), and phytosterols (686.1~1316.4 μg/g). The DPPH (1,1-Diphenyl-2-picrylhydrazyl), ABTS [2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.
Pang, Xueli; Cao, Jianmin; Wang, Dabin; Qiu, Jun; Kong, Fanyu
2017-05-24
For the characterization of chemical components contributing to the aroma of ginger, which could benefit the development of deep-processed ginger products, volatile extracts were isolated by a combination of direct solvent extraction-solvent-assisted flavor evaporation and static headspace analysis. Aroma-impact components were identified by gas chromatography-olfactometry-mass spectrometry, and the most potent odorants were further screened by aroma extract dilution analysis (AEDA) and static headspace dilution analysis (SHDA). The AEDA results revealed that geranial, eucalyptol, β-linalool, and bornyl acetate were the most potent odorants, exhibiting the highest flavor dilution factor (FD factor) of 2187. SHDA indicated that the predominant headspace odorants were α-pinene and eucalyptol. In addition, odorants exhibiting a high FD factor in SHDA were estimated to be potent aroma contributors in AEDA. The predominant odorants were found to be monoterpenes and sesquiterpenes, as along with their oxygenated derivatives, providing minty, lemon-like, herbal, and woody aromas. On the other hand, three highly volatile compounds detected by SHDA were not detected by AEDA, whereas 34 high-polarity, low-volatility compounds were identified only by AEDA, demonstrating the complementary natures of SHDA and AEDA and the necessity of utilizing both techniques to accurately characterize the aroma of ginger.
Usami, Atsushi; Nakaya, Satoshi; Nakahashi, Hiroshi; Miyazawa, Mitsuo
2014-01-01
This study is focused on the volatile oils from the fruiting bodies of Pleurotus salmoneostramineus (PS) and P. sajor-caju (PSC), which was extracted by hydrodistillation (HD) and solvent-assisted flavor evaporation (SAFE) methods. The oils are analyzed by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), and aroma extract dilution analysis (AEDA). A total of 31, 31, 45, and 15 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), representing about 80.3%, 92.2%, 88.9%, and 83.0% of the oils, respectively. Regarding the aroma-active components, 13, 12, 13, and 5 components were identified in PS (HD and SAFE) and PSC (HD and SAFE), respectively, by the GC-O analyses. The results of the sniffing test, odor activity value (OAV) and flavor dilution (FD) factor indicate that 1-octen-3-ol and 3-octanone are the main aroma-active components of PS oils. On the other hands, methional and 1-octen-3-ol were estimated as the main aroma-active components of PSC oils.
NASA Astrophysics Data System (ADS)
Venugopal, S.; Moune, S.; Williams-Jones, G.
2015-12-01
Cerro Negro, the youngest volcano in the Central American Volcanic Belt, is a polygenetic cinder cone with relatively frequent explosive basaltic eruptions. Las Pilas, on the other hand, is a much larger and older complex with milder and less frequent eruptions. Based on historical data, these two closely spaced volcanoes have shown concurrent eruptive behavior, suggesting a subsurface connection. To further investigate this link, melt inclusions, which are blebs of melt trapped in growing crystals, were the obvious choice for optimal comparison of sources and determination of pre-eruptive volatile contents and magmatic conditions. Olivine-hosted inclusions were chosen for both volcanoes and pyroxene-hosted inclusions were also sampled from Las Pilas to represent the evolved melt. Major, volatile and trace elements reveal a distinct geochemical continuum with Cerro Negro defining the primitive end member and Las Pilas representing the evolved end member. Volatile contents are high for Cerro Negro (up to 1260 ppm CO2, 4.27 wt% H2O and 1700 ppm S) suggesting that volatile exsolution is likely the trigger for Cerro Negro's explosive eruptions. Las Pilas volatile contents are lower but consistent with degassing and evolutionary trends shown by major oxides. Trace element contents are rather unique and suggest Cerro Negro magmas fractionally crystallize while Las Pilas magmas are the products of mixing. Magmatic conditions were estimated with major and volatile contents: at least 2.4 kbar and 1170 °C for Cerro Negro melts and 1.3 kbar and 1130 °C for Las Pilas melts with an overall oxygen fugacity at the NNO buffer. In combination with available literature data, this study suggests an interconnected subsurface plumbing system and thus Cerro Negro should be considered as the newest vent within the Las Pilas-El Hoyo Complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaeger, C.; Huisken, F.; Henning, Th.
2009-05-01
Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less
Avoseh, Opeyemi N; Oyedeji, Ope-oluwa O; Aremu, Kayode; Nkeh-Chungag, Benedicta N; Songca, Sandile P; Oluwafemi, Samuel O; Oyedeji, Adebola O
2015-01-01
The volatile oils of the leaves and the stem bark of Acacia mearnsii de Wild obtained by hydro-distillation were analysed by gas chromatography-mass spectrometry. A total of 20, 38, 29 and 38 components accounted for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark, respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, fresh stem, dry stem bark, respectively. Oral administration of essential oils at a dose of 2% showed significant (p < 0.05) anti-inflammatory properties in the albumin-induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. The potent anti-inflammatory activity of essential oils of A. mearnsii hereby confirmed its traditional use in treating various inflammatory diseases.
NASA Astrophysics Data System (ADS)
Pringle, Emily A.; Moynier, Frédéric; Beck, Pierre; Paniello, Randal; Hezel, Dominik C.
2017-06-01
Volatile lithophile elements are depleted in the different planetary materials to various degrees, but the origin of these depletions is still debated. Stable isotopes of moderately volatile elements such as Zn can be used to understand the origin of volatile element depletions. Samples with significant volatile element depletions, including the Moon and terrestrial tektites, display heavy Zn isotope compositions (i.e. enrichment of 66Zn vs. 64Zn), consistent with kinetic Zn isotope fractionation during evaporation. However, Luck et al. (2005) found a negative correlation between δ66Zn and 1/[Zn] between CI, CM, CO, and CV chondrites, opposite to what would be expected if evaporation caused the Zn abundance variations among chondrite groups. We have analyzed the Zn isotope composition of multiple samples of the major carbonaceous chondrite classes: CI (1), CM (4), CV (2), CO (4), CB (2), CH (2), CK (4), and CK/CR (1). The bulk chondrites define a negative correlation in a plot of δ66Zn vs 1/[Zn], confirming earlier results that Zn abundance variations among carbonaceous chondrites cannot be explained by evaporation. Exceptions are CB and CH chondrites, which display Zn systematics consistent with a collisional formation mechanism that created enrichment in heavy Zn isotopes relative to the trend defined by CI-CK. We further report Zn isotope analyses of chondrite components, including chondrules from Allende (CV3) and Mokoia (CV3), as well as an aliquot of Allende matrix. All chondrules are enriched in light Zn isotopes (∼500 ppm on 66Zn/64Zn) relative to the bulk, contrary to what would be expected if Zn were depleted during evaporation, on the other hand the matrix has a complementary heavy isotope composition. We report sequential leaching experiments in un-equilibrated ordinary chondrites, which show sulfides are isotopically heavy compared to silicates and the bulk meteorite by ca. +0.65 per mil on 66Zn/64Zn. We suggest isotopically heavy sulfides were removed from either chondrules or their precursors, thereby producing the light Zn isotope enrichments in chondrules.
Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; ...
2017-11-15
Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.
Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less
Mao, Guo-Feng; Mo, Xiao-Chang; Fouad, Hatem; Abbas, Ghulam; Mo, Jian-Chu
2018-03-01
Utilisation of Anagrus nilaparvatae is a promising and effective method for planthoppers manipulation. Twenty-seven components of remote lemongrass (Cymbopogon distans) oil were identified by GC/MS and nine volatiles were selected for behavioural experiments. In this study, we noted that the remote lemongrass oil was attractive to female A. nilaparvatae at concentrations of 0.1 and 1 mg/L. α-Pinene, β-pinene, eucalyptol, carveol and D-carvone attracted female wasps in the dose-dependent bioassays. Blend 1 (a mixture of eucalyptol, D-carvone, carveol, α-pinene, and β-pinene with ratios of remote lemongrass oil volatiles of 625:80:11:5:3) attracted female wasps at 10 mg/L, while blend 2 (a mixture of the same five volatiles at the same loading ratio) attracted them at 0.1 and 1 mg/L. These results suggested that plant essential oils could be attractants for natural enemies to control pests. The ratios of volatiles in the mixtures affect the attractiveness of the synthetic mixtures.