Sample records for major winter storms

  1. NASA Sees Winter Storm Slamming Eastern United States

    NASA Image and Video Library

    2017-12-08

    NASA satellite imagery captured the size of the massive winter storm that continued to pummel the U.S. East Coast early on January 23, 2016. This visible image of the major winter storm was taken from NOAA's GOES-East satellite on Saturday, January 23, 2016 at 1437 UTC (9:37 a.m. EST) as the Baltimore/Washington corridor was under a blizzard warning. Read more: go.nasa.gov/1RFv70u Credits: NASA/NOAA GOES Project NASA Sees Winter Storm Slamming Eastern United States

  2. Satellites see major winter storm marching toward the U.S. East Coast

    NASA Image and Video Library

    2017-12-08

    NASA and NOAA satellites are providing various views of the major winter storm marching toward the U.S. East coast on March 13. The storm is forecast to merge with another system and is expected to bring large snowfall totals from the Mid-Atlantic to New England. NASA's Aqua satellite gathered infrared data from the storm system and the area ahead of the storm for cloud and ground temperatures. NOAA's GOES-East satellite provided visible and infrared imagery that showed the extent and the movement of the system. Forecasters at the National Weather Service's Weather Prediction Center (WPC) noted that the low pressure system crossing the Midwest states and Ohio Valley is expected to merge with another low off the southeast U.S. coast. WPC stated "This will allow for a strong nor'easter to develop near the coast and cause a late-season snowstorm from the central Appalachians to New England, including many of the big cities in the Northeast U.S." Credits: NASA/NOAA GOES Project

  3. GenCade Version 1 Model Theory and User’s Guide

    DTIC Science & Technology

    2012-12-01

    summer, severe waves associated with extratropical storms frequent during winter and spring, and severe waves associated with tropical storms during...that the majority of waves are from the southeast and the more severe waves associated with extratropical storms are from the east- southeast. This...decades to centuries. However, these tools should also resolve processes that occur at the scale of individual storms and tidal cycles to calculate

  4. Satellite Sees Winter Storm March Over Mid-Atlantic

    NASA Image and Video Library

    2014-03-03

    On March 3, a major winter storm brought snow to the mid-Atlantic, freezing rain to the Carolinas and rain and some freezing rain to the Gulf Coast states. NOAA's GOES-East satellite captured an image of the clouds associated with the winter storm on March 3 at 12:45 p.m. EST (1745 UTC)/ as it continued on its march over the mid-Atlantic. Bands of snow and sometimes heavy snow affected the Washington, D.C., region, Delaware and central Virginia, stretching west into West Virginia and eastern Kentucky. Snow also stretched back into the Ohio and Tennessee valleys while rain and freezing rain affected the Carolinas, and while the Gulf Coast states received rain. National Weather Service Winter Storm Warnings remained in effect until 6 p.m. EST on March 3 for Washington, D.C., and Baltimore, Md. In Richmond and Norfolk, Va., the Winter Storm warnings were in effect for six additional hours ending at midnight. On March 3, NOAA's National Weather Prediction Center in College Park, Md., noted the late-season winter storm will continue to shift eastward through the Tennessee Valley and the mid-Atlantic today, making for hazardous travel conditions. NOAA noted that unseasonably cold temperatures more typical of January will prevail east of the Rocky Mountains for the next few days keeping winter around for a while longer. The clouds are associated with a cold front that stretched from eastern Maine through Maryland and west into the Tennessee Valley. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md., the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. February 1994 ice storm: forest resource damage assessment in northern Mississippi

    Treesearch

    Dennis M. Jacobs

    2000-01-01

    During February 8­11, 1994, a severe winter storm moved from Texas and Oklahoma to the mid-Atlantic depositing in northern Mississippi a major ice accumulation of 3 to 6 inches. An assessment of forest resource damage was initiated immediately after the storm by performing an airborne video mission to acquire aerial imagery linked to global positioning coordinates....

  6. Significantly Increased Extreme Precipitation Expected in Europe and North America from Extratropical Storms

    NASA Astrophysics Data System (ADS)

    Hawcroft, M.; Hodges, K.; Walsh, E.; Zappa, G.

    2017-12-01

    For the Northern Hemisphere extratropics, changes in circulation are key to determining the impacts of climate warming. The mechanisms governing these circulation changes are complex, leading to the well documented uncertainty in projections of the future location of the mid-latitude storm tracks simulated by climate models. These storms are the primary source of precipitation for North America and Europe and generate many of the large-scale precipitation extremes associated with flooding and severe economic loss. Here, we show that in spite of the uncertainty in circulation changes, by analysing the behaviour of the storms themselves, we find entirely consistent and robust projections across an ensemble of climate models. In particular, we find that projections of change in the most intensely precipitating storms (above the present day 99th percentile) in the Northern Hemisphere are substantial and consistent across models, with large increases in the frequency of both summer (June-August, +226±68%) and winter (December-February, +186±34%) extreme storms by the end of the century. Regionally, both North America (summer +202±129%, winter +232±135%) and Europe (summer +390±148%, winter +318±114%) are projected to experience large increases in the frequency of intensely precipitating storms. These changes are thermodynamic and driven by surface warming, rather than by changes in the dynamical behaviour of the storms. Such changes in storm behaviour have the potential to have major impacts on society given intensely precipitating storms are responsible for many large-scale flooding events.

  7. New Method for Estimating Landslide Losses for Major Winter Storms in California.

    NASA Astrophysics Data System (ADS)

    Wills, C. J.; Perez, F. G.; Branum, D.

    2014-12-01

    We have developed a prototype system for estimating the economic costs of landslides due to winter storms in California. This system uses some of the basic concepts and estimates of the value of structures from the HAZUS program developed for FEMA. Using the only relatively complete landslide loss data set that we could obtain, data gathered by the City of Los Angeles in 1978, we have developed relations between landslide susceptibility and loss ratio for private property (represented as the value of wood frame structures from HAZUS). The landslide loss ratios estimated from the Los Angeles data are calibrated using more generalized data from the 1982 storms in the San Francisco Bay area to develop relationships that can be used to estimate loss for any value of 2-day or 30-day rainfall averaged over a county. The current estimates for major storms are long projections from very small data sets, subject to very large uncertainties, so provide a very rough estimate of the landslide damage to structures and infrastructure on hill slopes. More importantly, the system can be extended and improved with additional data and used to project landslide losses in future major winter storms. The key features of this system—the landslide susceptibility map, the relationship between susceptibility and loss ratio, and the calibration of estimates against losses in past storms—can all be improved with additional data. Most importantly, this study highlights the importance of comprehensive studies of landslide damage. Detailed surveys of landslide damage following future storms that include locations and amounts of damage for all landslides within an area are critical for building a well-calibrated system to project future landslide losses. Without an investment in post-storm landslide damage surveys, it will not be possible to improve estimates of the magnitude or distribution of landslide damage, which can range up to billions of dollars.

  8. Winter in the Ouachitas--a severe winter storm signature in Pinus echinata in the Ouachita Mountains of Oklahoma and Arkansas, USA

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; Pradip Saud; Robert Heineman; Randal Holeman; Dennis Wilson; Keith Anderson; Chris Cerny; James M. Guldin

    2016-01-01

    Each year severe winter storms (≈ice storms) damage trees throughout the southern USA. Arkansas and Oklahoma have a history of severe winter storms. To extend that history back beyond the reach of written records, a distinctive tree ring pattern or signature is needed. Storm-caused breakage, branch loss and bending stress provide that signature. We found a severe storm...

  9. Specification Guide for Snow Removal Vehicles for Rail Transit Systems

    DOT National Transportation Integrated Search

    1983-11-01

    During the Winter of 1977-1978, a major snow storm shut down the Boston transit system for almost a week and the Winter of 1978-1979 produced similar snow conditions that paraylzed the Chicago transit system and disabled more than half of their rail ...

  10. Major dust storms and westward traveling waves on Mars

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun

    2017-04-01

    Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.

  11. Multiple storm event impacts on epikarst storage and transport of organic soil amendments in South-Central Kentucky.

    USDA-ARS?s Scientific Manuscript database

    The groundwater in agricultural karst areas is susceptible to contamination from organic soil amendments and pesticides. During major storm events of winter and spring 2011, dye traces were initiated using sulphorhodamine-B, fluorescein and eosine in a known groundwater recharge area where manure wa...

  12. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  13. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  14. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  15. 7 CFR 760.702 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms, ice storms, snow, blizzard, hurricane, typhoons, tropical storms, and cold wet weather. A disaster..., moisture, humidity, severe storms, thunderstorms, ground saturation or standing water, hail, winter storms...

  16. Episodic acidification of a coastal plain stream in Virginia

    USGS Publications Warehouse

    O'Brien, A. K.; Eshleman, K.N.

    1996-01-01

    This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.

  17. Aggregated responses of human mobility to severe winter storms: An empirical study.

    PubMed

    Wang, Yan; Wang, Qi; Taylor, John E

    2017-01-01

    Increasing frequency of extreme winter storms has resulted in costly damages and a disruptive impact on the northeastern United States. It is important to understand human mobility patterns during such storms for disaster preparation and relief operations. We investigated the effects of severe winter storms on human mobility during a 2015 blizzard using 2.69 million Twitter geolocations. We found that displacements of different trip distances and radii of gyration of individuals' mobility were perturbed significantly. We further explored the characteristics of perturbed mobility during the storm, and demonstrated that individuals' recurrent mobility does not have a higher degree of similarity with their perturbed mobility, when comparing with its similarity to non-perturbed mobility. These empirical findings on human mobility impacted by severe winter storms have potential long-term implications on emergency response planning and the development of strategies to improve resilience in severe winter storms.

  18. A survey of major east coast snowstorms, 1960-1983. Part 2: Case studies of eighteen storms

    NASA Technical Reports Server (NTRS)

    Kocin, P. J.; Uccellini, L. W.

    1985-01-01

    Snowfall, surface and upper air charts, and available satellite images are presented for eighteen major East Coast snowstorms that occurred between 1960 and 1983. The charts and descriptions of key fields are provided so that students, weather forecasters, and researchers alike can visualize how a large sample of major winter cyclones form and intensify. Although there are noted similarities in certain aspects of the surface and upper tropospheric development of the storms, significant case-to-case variability precludes the ability to effectively composite these weather systems.

  19. Lightning Evolution In Two North Central Florida Summer Multicell Storms and Three Winter/Spring Frontal Storms

    NASA Astrophysics Data System (ADS)

    Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.

    2018-01-01

    We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.

  20. What Role do Nor'Easters have on the Jamaica Bay Wetlands Sediment Budget?

    NASA Astrophysics Data System (ADS)

    Clarke, R. C.; Bentley, S. J.; Wang, H.; Smith, J.

    2017-12-01

    The wetlands of Jamaica Bay, located on the outskirts of Queens, New York, have lost over half their surface area in the last 50 years due both anthropogenic and natural causes, including channel dredging, urban drainage construction, and greater tidal amplitudes partially due to rising local sea levels. Superstorm Sandy made landfall in 2014 as a powerful coastal geomorphic agent, highlighting the vulnerability of that region to large cyclonic storms that are more commonly encountered along coastal reaches of southeastern North America. After this event, research aimed at quantifying the geomorphic impact of Superstorm Sandy and to evaluate the record of past documented major winter storms on Jamaica Bay's wetlands. 12 sediment cores were collected from the surface of remaining wetlands in August 2014 by the USGS Wetland and Aquatic Research Center; the cores have been analyzed for Pb-210/Cs-137 geochronology, organic content, and water content to establish chronology of mineral sediment supply to the wetlands over the past 120 years. Most cores were found to be organic-rich, marked with periodic cm-scale beds with increased mineral content. Historic storm data, dating as far back as the late 1800's, were used to identify hurricanes and major winter storms determined by the National Weather Service passing within 100 km of the study area. Likely storm-event deposits in each core were identified as layers with mineral content higher than the core mean plus one standard deviation, and were matched to historic events via radioisotope geochronology, incorporating age-model uncertainty. Overall, 22 out of the 35 defined storm layers match the timing of historic strong storms (within uncertainty ranging from 2 to 5 years) from 1894 to Superstorm Sandy in 2014. Our findings show that over multidecadal timescales, nor'easters and winter storms play a role in the vertical accretion of sediment in the Jamaica Bay wetlands, but are substantially less important than sediment delivery under typical tidal conditions. Event deposits from tropical cyclones are also present, but less common than those produced by frontal storms.

  1. Hawaiian Winter Workshop Proceedings of Parameterization of Small-Scale Processes Held in Manoa, Hawaii on 17-20 January 1989

    DTIC Science & Technology

    1989-01-01

    England while waiting for an outbreak of cold air (Larson, 1988). Even before the arrival of the storm trailing the cold air behind it, both shear and...and simulation of storm -induced mixed-layer deepening. J. Phys. Oceanogr., 8. 582-599. 217 Riley, J.J., and R.W. Metcalf: 1987. Direct numerical...the severe downslope wind storm which occurs in the lee of major mountain barriers (Lilly and Kennedy, 1973: Lilly. 1978) under suitable atmospheric

  2. Interannual Modulation of Northern Hemisphere Winter Storm Tracks by the QBO

    NASA Astrophysics Data System (ADS)

    Wang, Jiabao; Kim, Hye-Mi; Chang, Edmund K. M.

    2018-03-01

    Storm tracks, defined as the preferred regions of extratropical synoptic-scale disturbances, have remarkable impacts on global weather and climate systems. Causes of interannual storm track variation have been investigated mostly from a troposphere perspective. As shown in this study, Northern Hemisphere winter storm tracks are significantly modulated by the tropical stratosphere through the quasi-biennial oscillation (QBO). The North Pacific storm track shifts poleward during the easterly QBO winters associated with a dipole change in the eddy refraction and baroclinicity. The North Atlantic storm track varies vertically with a downward shrinking (upward expansion) in easterly (westerly) QBO winters associated with the change of the tropopause height. These results not only fill the knowledge gap of QBO-storm track relationship but also suggest a potential route to improve the seasonal prediction of extratropical storm activities owing to the high predictability of the QBO.

  3. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    View a video of the storm here: bit.ly/1m9aJFY This visible image of the winter storm over the U.S. south and East Coast was taken by NOAA's GOES-13 satellite on Feb. 12 at 1855 UTC/1:55 p.m. EST. Snow covered ground can be seen over the Great Lakes region and Ohio Valley. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. Modeling of Coastal Inundation, Storm Surge, and Relative Sea-Level Rise at Naval Station Norfolk, Norfolk, Virginia, U.S.A.

    DTIC Science & Technology

    2012-01-01

    of 2 m. ADDITIONAL INDEX WORDS: Nearshore hydrodynamic modeling, waves, synthetic tropical storms , extratropical storms , Hurricane Isabel, land...an increase in SLR and coastal storms , including hurricanes (tropical storms ) and winter storms ( extratropical storms ), will increase the risk of... storms ) corresponding to 50-year and 100-year return periods and a most probable winter storm ( extratropical ) that occurred in October 1982 (Burks-Copes

  5. 76 FR 11835 - Oregon Disaster #OR-00036

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-03

    ... declaration of a major disaster for Public Assistance Only for the State of Oregon (FEMA-1956- DR), dated 02/17/2011. Incident: Severe Winter Storm, Flooding, Mudslides, Landslides, and Debris Flows. Incident...

  6. Winter storm intensity, hazards, and property losses in the New York tristate area.

    PubMed

    Shimkus, Cari E; Ting, Mingfang; Booth, James F; Adamo, Susana B; Madajewicz, Malgosia; Kushnir, Yochanan; Rieder, Harald E

    2017-07-01

    Winter storms pose numerous hazards to the Northeast United States, including rain, snow, strong wind, and flooding. These hazards can cause millions of dollars in damages from one storm alone. This study investigates meteorological intensity and impacts of winter storms from 2001 to 2014 on coastal counties in Connecticut, New Jersey, and New York and underscores the consequences of winter storms. The study selected 70 winter storms on the basis of station observations of surface wind strength, heavy precipitation, high storm tide, and snow extremes. Storm rankings differed between measures, suggesting that intensity is not easily defined with a single metric. Several storms fell into two or more categories (multiple-category storms). Following storm selection, property damages were examined to determine which types lead to high losses. The analysis of hazards (or events) and associated damages using the Storm Events Database of the National Centers for Environmental Information indicates that multiple-category storms were responsible for a greater portion of the damage. Flooding was responsible for the highest losses, but no discernible connection exists between the number of storms that afflict a county and the damage it faces. These results imply that losses may rely more on the incidence of specific hazards, infrastructure types, and property values, which vary throughout the region. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. 77 FR 16047 - Oregon; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-19

    .... FEMA-4055-DR; Docket ID FEMA-2012-0002] Oregon; Major Disaster and Related Determinations AGENCY... declaration of a major disaster for the State of Oregon (FEMA-4055-DR), dated March 2, 2012, and related... determined that the damage in certain areas of the State of Oregon resulting from a severe winter storm...

  8. Geography of blizzards in the conterminous United States, 1959--2000

    NASA Astrophysics Data System (ADS)

    Schwartz, Robert Michael

    2001-07-01

    Many individuals think of tornadoes and hurricanes when considering weather-related storms. However, winter storms and blizzards have potential impacts on millions of people and effects on the social landscape such as fatalities, injuries, and economic consequences. Additionally, these storms can last from a few hours to over a week. This study established a climatology of blizzards in the conterminous United States from 1959-2000 utilizing data from Storm Data to identify the spatial and temporal patterns of blizzards. The annual probability of a blizzard on a county level was calculated to give the empirical probability of having a blizzard in any given winter season. Additionally, the number of blizzards were compared to the El Nino Southern Oscillation (ENSO) teleconnection by running a linear regression to check for correlation. Finally, the social impacts of blizzards studied included the population affected, fatalities, injuries, property damage, crop damage, and federal disaster declarations. Maps were produced utilizing MapInfo and ArcView Geographic Information Systems (GIS) to summarize regional differences and temporal trends. There were 438 blizzards analyzed in the study with an annual mean of 10.7 blizzards per winter season with the majority of storms occurring in the northern Plains states of North Dakota, South Dakota, and western Minnesota. Time series analysis indicated an increase in the number of blizzards over the 41-year period while there was no linear trend of the area affected by blizzards. Annual probabilities of a blizzard were as high as 76% for Cavalier, Rolette, Steele, Towner, and Traill Counties in North Dakota. The ENSO teleconnection and the number of blizzards on the national scale suggested a negative correlation with fewer blizzards during El Nino episodes. Social impacts indicated blizzards affected 26.3 million per season with 16 fatalities and 49 injuries per season reported to Storm Data . The total population affected each winter did not show a linear trend. An average winter reported 551 million in property damage and 26 million in crop damage according to Storm Data. The number of declared disasters or emergencies due to blizzards has been increasing, especially in the 1990s.

  9. 75 FR 13144 - California Disaster #CA-00151

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... declaration of a major disaster for Public Assistance Only for the State of California (FEMA- 1884-DR), dated 03/08/2010. Incident: Severe Winter Storms, Flooding, and Debris and Mud Flows. Incident Period: 01...

  10. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    USGS Publications Warehouse

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  11. Readiness of Military Installations for Increasing Heavy Storms

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.; Mortuza, M. R.; Yan, E.

    2016-12-01

    Recent analysis of historical and future precipitation data suggests that the frequency and intensity of heavy storms are in raising trends in most parts of U.S. Majority of the climate models also suggest that increased winter snow pack, and late winter rainfall, may result in groundwater level rise and soil saturation that can lead to potentially severe flooding. The Department of Defense, which own more than 7,000 military installations throughout the world, has also recognized that changes in precipitation and increasing storm frequency and intensity present a real threat to most of its installations and impacting the national security. Identify vulnerabilities is the first step to reduce the risks posed by climate change and associated change in storm magnitude and frequency. In this study, a risk/consequence based approach was applied to evaluating the vulnerability of the Joint Base Lewis-McChord, which is located in suburb of Seattle. The intensity-duration-frequency (IDF) curves used to design storm water-related infrastructures was evaluated by considering the recent and expected changes in heavy storms in the region. The ability of existing stormwater management system to accommodate the changes in storms was assessed based on expected peaks and volumes of runoff, and suggestions were made to improve their overall effectiveness.

  12. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California

    USGS Publications Warehouse

    Dettinger, M.D.; Martin, Ralph F.; Hughes, M.; Das, T.; Neiman, P.; Cox, D.; Estes, G.; Reynolds, D.; Hartman, R.; Cayan, D.; Jones, L.

    2012-01-01

    The USGS Multihazards Project is working with numerous agencies to evaluate and plan for hazards and damages that could be caused by extreme winter storms impacting California. Atmospheric and hydrological aspects of a hypothetical storm scenario have been quantified as a basis for estimation of human, infrastructure, economic, and environmental impacts for emergency-preparedness and flood-planning exercises. In order to ensure scientific defensibility and necessary levels of detail in the scenario description, selected historical storm episodes were concatentated to describe a rapid arrival of several major storms over the state, yielding precipitation totals and runoff rates beyond those occurring during the individual historical storms. This concatenation allowed the scenario designers to avoid arbitrary scalings and is based on historical occasions from the 19th and 20th Centuries when storms have stalled over the state and when extreme storms have arrived in rapid succession. Dynamically consistent, hourly precipitation, temperatures, barometric pressures (for consideration of storm surges and coastal erosion), and winds over California were developed for the so-called ARkStorm scenario by downscaling the concatenated global records of the historical storm sequences onto 6- and 2-km grids using a regional weather model of January 1969 and February 1986 storm conditions. The weather model outputs were then used to force a hydrologic model to simulate ARkStorm runoff, to better understand resulting flooding risks. Methods used to build this scenario can be applied to other emergency, nonemergency and non-California applications. ?? 2011 The Author(s).

  13. 76 FR 5856 - California Disaster #CA-00164

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ... declaration of a major disaster for Public Assistance Only for the State of California (FEMA- 1952-DR), dated 01/26/2011. Incident: Severe Winter Storms, Flooding, and Debris and Mud Flows Incident Period: 12/17...

  14. Dominance of grain size impacts on seasonal snow albedo at open sites in New Hampshire

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Lazarcik, James; Dibb, Jack E.; Amante, Jacqueline M.; Price, Andrea

    2017-01-01

    Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate.

  15. Winter maintenance performance measure.

    DOT National Transportation Integrated Search

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  16. Exceptional winter storms affecting Western Iberia and extremes: diagnosis, modelling and multi-model ensemble projection

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Pinto, J. G.; Gil, V.; Ramos, A. M.; Trigo, R. M.

    2017-12-01

    Extratropical cyclones dominate autumn and winter weather over Western Europe and particularly over the Iberian Peninsula. Intense, high-impact storms are one of the major weather risks in the region, mostly due to the simultaneous occurrence of high winds and extreme precipitation events. These intense extratropical cyclones may result in windstorm damage, flooding and coastal storm surges, with large societal impacts. In Portugal, due to the extensive human use of coastal areas, the natural and built coastal environments have been amongst the most affected. In this work several historical winter storms that adversely affected the Western Iberian Peninsula are studied in detail in order to contribute to an improved assessment of the characteristics of these events. The diagnosis has been performed based on instrumental daily precipitation and wind records, on satellite images, on reanalysis data and through model simulations. For several examples the synoptic evolution and upper-level dynamics analysis of physical processes controlling the life cycle of extratropical storms associated with the triggering of the considered extreme events has also been accomplished. Furthermore, the space-time variability of the exceptionally severe storms affecting Western Iberia over the last century and under three climate scenarios (the historical simulation, the RCP4.5 and RCP8.5 scenarios) is presented. These studies contribute to improving the knowledge of atmospheric dynamics controlling the life cycle of midlatitude storms associated to severe weather (precipitation and wind) in the Iberian Peninsula. AcknowledgementsThis work is supported by the Portuguese Foundation for Science and Technology (FCT), Portugal, through project UID/GEO/50019/2013 - Instituto Dom Luiz. A. M. Ramos is also supported by a FCT postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012).

  17. 77 FR 15787 - Washington; Major Disaster and Related Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ... declaration of a major disaster for the State of Washington (FEMA-4056-DR), dated March 5, 2012, and related determinations. DATES: Effective Date: March 5, 2012. FOR FURTHER INFORMATION CONTACT: Peggy Miller, Office of... determined that the damage in certain areas of the State of Washington resulting from a severe winter storm...

  18. Flood Losses Associated with Winter Storms in the U.S. Northeast

    NASA Astrophysics Data System (ADS)

    Ting, M.; Shimkus, C.

    2015-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain, snow, strong wind, cold temperatures, and flooding. These hazards can cause millions in property damages from one storm alone. This study addresses the impacts of winter storms from 2001 - 2012 on coastal counties in the U.S. Northeast and underscores the significant economic consequences extreme winter storms have on property. The analysis on the types of hazards (floods, strong wind, snow, etc.) and associated damage from the National Climatic Data Center Storm Events Database indicates that floods were responsible for the highest damages. This finding suggests that winter storm vulnerability could grow in the future as precipitation intensity increases and sea level rise exacerbate flood losses. Flood loss maps are constructed based on damage amount, which can be compared to the flood exposure maps constructed by the NOAA Office of Coastal Management. Interesting agreements and discrepancies exist between the two methods, which warrant further examination. Furthermore, flood losses often came from storms characterized as heavy precipitation storms and strong surge storms, and sometimes both, illustrating the compounding effect of flood risks in the region. While New Jersey counties experienced the most damage per unit area, there is no discernable connection between population density and damage amount, which suggests that societal impacts may rely less on population characteristics and more on infrastructure types and property values, which vary throughout the region.

  19. The Use of Pre-Storm Boundary-Layer Baroclinicity in Determining and Operationally Implementing the Atlantic Surface Cyclone Intensification Index

    NASA Astrophysics Data System (ADS)

    Cione, Joseph; Pietrafes, Leonard J.

    The lateral motion of the Gulf Stream off the eastern seaboard of the United States during the winter season can act to dramatically enhance the low-level baroclinicity within the coastal zone during periods of offshore cold advection. The ralative close proximity of the Gulf Stream current off the mid-Atlantic coast can result in the rapid and intense destabilization of the marine atmospheric boundary layer directly above and shoreward of the Gulf Stream within this region. This airmass modification period often precedes either wintertime coastal cyclogenesis or the cyclonic re-development of existing mid-latitude cyclones. A climatological study investigating the relationship between the severity of the pre-storm, cold advection period and subsequent cyclogenic intensification was undertaken by Cione et al. in 1993. Findings from this study illustrate that the thermal structure of the continental airmass as well as the position of the Gulf Stream front relative to land during the pre-storm period (i.e., 24-48 h prior to the initial cyclonic intensification) are linked to the observed rate of surface cyclonic deepening for storms that either advected into or initially developed within the Carolina-southeast Virginia offshore coastal zone. It is a major objective of this research to test the potential operational utility of this pre-storm low level baroclinic linkage to subsequent cyclogenesis in an actual National Weather Service (NWS) coastal winter storm forecast setting.The ability to produce coastal surface cyclone intensity forecasts recently became available to North Carolina State University researchers and NWS forecasters. This statistical forecast guidance utilizes regression relationships derived from a nine-season (January 1982-April 1990), 116-storm study conducted previously. During the period between February 1994 and February 1996, the Atlantic Surface Cyclone Intensification Index (ASCII) was successfully implemented in an operational setting by the NWS at the Raleigh-Durham (RAH) forecast office for 10 winter storms. Analysis of these ASCII forecasts will be presented.

  20. Martian dust storms witnessed by Viking Lander 1

    NASA Technical Reports Server (NTRS)

    Moore, H. J.; Guinness, R. E. A.

    1984-01-01

    Viking Lander 1 observations on Mars were punctuated by a strong local dust storm after two martian years of mild wind conditions. Tens of micrometers of dust settled to the surface during global dust storms of the first two falls and winters; some of this dust was locally removed during the second year. A late winter local dust storm of the first year caused little or no erosion of the surface materials despite wind speeds of 25 to 30 m/s. The strong local dust storm occurred during late winter of the third martian year. Winds of this storm altered and demolished small conical piles of surface materials constructed at the onset the first winter, removed 4 to 5 mm size fragments, displaced centimeter size fragments, destroyed clouds in areas disrupted by the sampler and footpad, eroded impact pits, and darkened the sky. Movement of erosional products and tiny wind tails indicate easterly to northeasterly winds. If the 4 to 5 mm size fragments were entrained and removd by the wind, threshold friction speeds near 3 to 5 m/s would have been required for the atmospheric temperatures and pressures that prevailed during the late winter of the third year.

  1. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Suspended sediment samples were collected in westside tributaries and the main stem of the San Joaquin River, California, in June 1994 during the irrigation season and in January 1995 during a winter storm. These samples were analyzed for 15 organochlorine pesticides to determine their occurrence and their concentrations on suspended sediment and to compare transport during the irrigation season (April to September) to transport during winter storm runoff (October to March). Ten organochlorine pesticides were detected during the winter storm runoff; seven during the irrigation season. The most frequently detected organochlorine pesticides during both sampling periods were p,p'-DDE, p,p'-DDT, p,p'-DDD, dieldrin, toxaphene, and chlordane. Dissolved samples were analyzed for three organochlorine pesticides during the irrigation season and for 15 during the winter storm. Most calculated total concentrations of p,p'-DDT, chlordane, dieldrin, and toxaphene exceeded chronic criteria for the protection of freshwater aquatic life. At eight sites in common between sampling periods, suspended sediment concentrations and streamflow were greater during the winter storm runoff median concentration of 3,590 mg/L versus 489 mg/and median streamflow of 162 ft3/s versus 11 ft3/s. Median concentrations of total DDT (sum of p,p'-DDD, p,p'-DDE, and p,p'-DDT), chlordane, dieldrin, and toxaphene on suspended sediment were slightly greater during the irrigation season, but instantaneous loads of organochlorine pesticides at the time of sampling were substantially greater during the winter storm. Estimated loads for the entire irrigation season exceeded estimated loads for the January 1995 storm by about 2 to 4 times for suspended transport and about 3 to 11 times for total transport. However, because the mean annual winter runoff is about 2 to 4 times greater than the runoff during the January 1995 storm, mean winter transport may be similar to irrigation season transport. This conclusion is tentative primarily because of insufficient information on long-term seasonal variations in suspended sediment and organochlorine concentrations. Nevertheless, runoff from infrequent winter storms will continue to deliver a significant load of sediment-bound organochlorine pesticides to the San Joaquin River even if irrigation-induced sediment transport is reduced. As a result, concentrations of organochlorine pesticides in San Joaquin River biota will continue to be relatively high compared to other regions of the United States.

  2. Satellite Sees Major Winter Storm Ready to Wallop Mid-Atlantic

    NASA Image and Video Library

    2014-03-02

    A major winter storm is poised to wallop the Mid-Atlantic and bring large amounts of snow to cities including Baltimore, Md., Washington, D.C. area on March 2 and 3, according to NOAA's National Weather Service. NOAA's GOES-East satellite captured this image of the clouds associated with the winter storm as it continued moving east toward those cities. On March 2, the National Weather Prediction Center in College Park, Md. noted that there is a slight risk for severe thunderstorms over parts of the western Gulf Coast and the Lower Mississippi Valley as a result of the southern portion of the system. The update at 7 a.m. EST noted that freezing rain/sleet is possible over parts of the lower Mississippi Valley and parts of the central Appalachians, while eastern Texas and the lower Mississippi Valley into the Ohio Valley are expected to experience heavy rain. The NWS Short Range Forecast Discussion stated "A strong storm over the Southern Plains/Lower Mississippi Valley will advance northeastward along a quasi-stationary front to off the Southern Mid-Atlantic Coast by Monday evening. Moisture from the Gulf of Mexico will overrun and pool along the associated front producing an area of snow extending from the Central Plains into the Northeast." The clouds are associated with a cold from that stretches from eastern Maine through Maryland and west into the Tennessee Valley. The low pressure center associated with the front was located over Arkansas. At NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. the cloud data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the position of this major winter storm. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA Goddard Space Flight Center, Greenbelt, Md. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Tree-ring record of droughts and severe winter storms in the Ouachita Mountains since 1745

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2015-01-01

    Severe winter storms cause serious damage to trees, timber, power lines, and transportation systems each year. In the Ouachita Mountains, historical records of these storms extend back only 117 years, and many of them are of low-quality or have missing data.

  4. Potential Seasonal Predictability for Winter Storms over Europe

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2017-04-01

    Reliable seasonal forecasts of strong extra-tropical cyclones and windstorms would have great social and economical benefits, as these events are the most costly natural hazards over Europe. In a previous study we have shown good agreement of spatial climatological distributions of extra-tropical cyclones and wind storms in state-of-the-art multi-member seasonal prediction systems with reanalysis. We also found significant seasonal prediction skill of extra-tropical cyclones and windstorms affecting numerous European countries. We continue this research by investigating the mechanisms and precursor conditions (primarily over the North Atlantic) on a seasonal time scale leading to enhanced extra-tropical cyclone activity and winter storm frequency over Europe. Our results regarding mechanisms show that an increased surface temperature gradient at the western edge of the North Atlantic can be related to enhanced winter storm frequency further downstream causing for example a greater number of storms over the British Isles, as observed in winter 2013-14.The so-called "Horseshoe Index", a SST tripole anomaly pattern over the North Atlantic in the summer months can also cause a higher number of winter storms over Europe in the subsequent winter. We will show results of AMIP-type sensitivity experiments using an AGCM (ECHAM5), supporting this hypothesis. Finally we will analyse whether existing seasonal forecast systems are able to capture these identified mechanisms and precursor conditions affecting the models' seasonal prediction skill.

  5. Diagnosis and Modeling of the Explosive Development of Winter Storms: Sensitivity to PBL Schemes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Pradhan, Prabodha K.

    2014-05-01

    The correct representation of extreme windstorms in regional models is of great importance for impact studies of climate change. The Iberian Peninsula has recently witnessed major damage from winter extratropical intense cyclones like Klaus (January 2009), Xynthia (February 2010) and Gong (January 2013) which formed over the mid-Atlantic, experienced explosive intensification while travelling eastwards at lower latitudes than usual [Liberato et al. 2011; 2013]. In this paper the explosive development of these storms is simulated by the advanced mesoscale Weather Research and Forecasting Model (WRF v 3.4.1), initialized with NCEP Final Analysis (FNL) data as initial and lateral boundary conditions (boundary conditions updated in every 3 hours intervals). The simulation experiments are conducted with two domains, a coarser (25km) and nested (8.333km), covering the entire North Atlantic and Iberian Peninsula region. The characteristics of these storms (e.g. wind speed, precipitation) are studied from WRF model and compared with multiple observations. In this context simulations with different Planetary Boundary Layer (PBL) schemes are performed. This approach aims at understanding which mechanisms favor the explosive intensification of these storms at a lower than usual latitudes, thus improving the knowledge of atmospheric dynamics (including small-scale processes) on controlling the life cycle of midlatitude extreme storms and contributing to the improvement in predictability and in our ability to forecast storms' impacts over Iberian Peninsula. Acknowledgments: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010). References: Liberato M.L.R., J.G. Pinto, I.F. Trigo, R.M. Trigo (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66: 330-334 doi:10.1002/wea.755 Liberato M.L.R., J.G. Pinto, R.M. Trigo, P. Ludwig, P. Ordóñez, D. Yuen, I.F. Trigo (2013) Explosive development of winter storm Xynthia over the Subtropical North Atlantic Ocean, Nat. Hazards Earth Syst. Sci., 13, 2239-2251, doi:10.5194/nhess-13-2239-2013

  6. Major winter and nonwinter floods in selected basins in New York and Pennsylvania

    USGS Publications Warehouse

    Langbein, Walter Basil

    1947-01-01

    The scientific design of flood-control works is based on an evaluation of the hydrologic factors basic to flood events, particularly how rainfall and snow runoff, soil conditions, and channel influences can combine to produce greater or lesser floods. For this purpose an analysis of the pertinent hydrologic data is needed. The methods of analysis adopted should conform as closely as possible to those already in use and must be adapted to the quality of the available information. Maximum floods in 8 basins in New York and Pennsylvania during the winter and nonwinter months were studied, a total of 21 floods. The most outstanding winter flood of record in the North Atlantic region was that of March 1936. Rainfall plus snow melt in the basins studied ranged between 3.04 and 6.87 inches, and associated volumes of direct runoff from 1.88 to 5.63 inches. Winter floods have a common characteristic in their relation to freezing temperature. The antecedent periods, representing a period of snow accumulation and frost penetration, are below freezing, and the flood itself is contemporaneous with a period of above-freezing temperatures, usually associated with rain, during which the previously accumulated snow is melted. A second common characteristic of major winter floods is their tendency to be associated with widespread causal meteorologic conditions. There was a more complete conversion of rainfall and snow melt into runoff during the winter storms studied than during the wettest nonwinter flood. Snow melt during winter floods ranged from 0.04 to 0.07 inch per degree-day above 32° F. The depth of mean areal rainfall produced by the nonwinter storms studied ranged from 3.05 to 4.96 inches. The maximum 24-hour quantity at single stations was 14 inches, which was measured during the storm of July 1935 in New York. The volume of direct runoff ranged between 1.39 and 3.41 inches. The portion of rainfall that was converted into runoff varied in accordance with the rate of antecedent base flow, expressed in second-feet per square mile, and emphasized the influence of antecedent conditions. The average volume of direct runoff during winter floods was 4.24 inches, and the average during nonwinter floods was 2.44 inches. The latter, however, were more concentrated as to time, tending to compensate for large volume of runoff in winter, so that the crest rates of direct runoff averaged 0.056 inches per hour during the winter and 0.051 inches during the nonwinter period.

  7. [LESSONS FROM PREPAREDNESS OF HOSPITALS TO SNOWSTORMS].

    PubMed

    Merin, Ofer; Goldberg, Sara; Peyser, Amos; Gros, Moshe; Weiss, Gali; Bitan, Aria; Zarka, Salman; Shapira, Kelin

    2015-11-01

    Snowstorms are not a usual scene in Israel, which normally enjoys relatively warm weather, even in the winter. In the last two years we faced three severe snowstorms that had a major impact on the routine daily life in Israel. Roads were blocked, people experienced long electricity power failures, and secondary to slippery conditions, there was more than a threefold increase of orthopedic injuries. These storms confronted hospitals with unique challenges, both medical and logistic. Hospitals must be prepared to cope with the challenge of maintaining continuation of care. We propose four phases of preparedness strategy: at the beginning of the winter, once there is a weather forecast warning, during the storm itself, and returning to norm. This manuscript deals with the lessons learned by two hospitals in Safed and Jerusalem dealing with snowstorms.

  8. Unintentional carbon monoxide poisoning following a winter storm--Washington, January 1993.

    PubMed

    1993-02-19

    Carbon monoxide (CO) poisoning was a major health consequence of a severe storm that struck the Puget Sound region of western Washington state the morning of January 20, 1993. Wind gusts up to 94 miles per hour interrupted electrical power for an estimated 776,000 residents, and during the 4 nights following the storm, temperatures fell to near freezing. Because of the use of alternative sources of energy for indoor cooking and home heating, the risk of exposure to CO increased for many persons. This report summarizes cases of storm-related CO poisoning among persons who were initially evaluated at Seattle's Harborview Medical Center (HMC) or who were referred to the Virginia Mason Medical Center (VMMC) for hyperbaric oxygen therapy.

  9. Prediction of Winter Storm Tracks and Intensities Using the GFDL fvGFS Model

    NASA Astrophysics Data System (ADS)

    Rees, S.; Boaggio, K.; Marchok, T.; Morin, M.; Lin, S. J.

    2017-12-01

    The GFDL Finite-Volume Cubed-Sphere Dynamical core (FV3) is coupled to a modified version of the Global Forecast System (GFS) physics and initial conditions, to form the fvGFS model. This model is similar to the one being implemented as the next-generation operational weather model for the NWS, which is also FV3-powered. Much work has been done to verify fvGFS tropical cyclone prediction, but little has been done to verify winter storm prediction. These costly and dangerous storms impact parts of the U.S. every year. To verify winter storms we ran the NCEP operational cyclone tracker, developed at GFDL, on semi-real-time 13 km horizontal resolution fvGFS forecasts. We have found that fvGFS compares well to the operational GFS in storm track and intensity, though often predicts slightly higher intensities. This presentation will show the track and intensity verification from the past two winter seasons and explore possible reasons for bias.

  10. Application of an extreme winter storm scenario to identify vulnerabilities, mitigation options, and science needs in the Sierra Nevada mountains, USA

    USGS Publications Warehouse

    Albano, Christine M.; Dettinger, Michael; McCarthy, Maureen; Schaller, Kevin D.; Wellborn, Toby; Cox, Dale A.

    2016-01-01

    In the Sierra Nevada mountains (USA), and geographically similar areas across the globe where human development is expanding, extreme winter storm and flood risks are expected to increase with changing climate, heightening the need for communities to assess risks and better prepare for such events. In this case study, we demonstrate a novel approach to examining extreme winter storm and flood risks. We incorporated high-resolution atmospheric–hydrologic modeling of the ARkStorm extreme winter storm scenario with multiple modes of engagement with practitioners, including a series of facilitated discussions and a tabletop emergency management exercise, to develop a regional assessment of extreme storm vulnerabilities, mitigation options, and science needs in the greater Lake Tahoe region of Northern Nevada and California, USA. Through this process, practitioners discussed issues of concern across all phases of the emergency management life cycle, including preparation, response, recovery, and mitigation. Interruption of transportation, communications, and interagency coordination were among the most pressing concerns, and specific approaches for addressing these issues were identified, including prepositioning resources, diversifying communications systems, and improving coordination among state, tribal, and public utility practitioners. Science needs included expanding real-time monitoring capabilities to improve the precision of meteorological models and enhance situational awareness, assessing vulnerabilities of critical infrastructure, and conducting cost–benefit analyses to assess opportunities to improve both natural and human-made infrastructure to better withstand extreme storms. Our approach and results can be used to support both land use and emergency planning activities aimed toward increasing community resilience to extreme winter storm hazards in mountainous regions.

  11. High-Latitude Topside Ionospheric Vertical Electron Density Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-01-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst -100nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial andor temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  12. High-latitude topside ionospheric vertical electron density profile changes in response to large magnetic storms

    NASA Astrophysics Data System (ADS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2016-05-01

    Large magnetic-storm-induced changes were detected in high-latitude topside vertical electron density profiles Ne(h) in a database of profiles and digital topside ionograms, from the International Satellites for Ionospheric Studies (ISIS) program, that enabled Ne(h) profiles to be obtained in nearly the same region of space before, during, and after a major magnetic storm (Dst < -100 nT). Storms where Ne(h) profiles were available in the high-latitude Northern Hemisphere had better coverage of solar wind parameters than storms with available Ne(h) profiles in the high-latitude Southern Hemisphere. Large Ne(h) changes were observed during all storms, with enhancements and depletions sometimes near a factor of 10 and 0.1, respectively, but with substantial differences in the responses in the two hemispheres. Large spatial and/or temporal Ne(h) changes were often observed during Dst minimum and during the storm recovery phase. The storm-induced Ne(h) changes were the most pronounced and consistent in the Northern Hemisphere in that large enhancements were observed during winter nighttime and large depletions during winter and spring daytime. The limited available cases suggested that these Northern Hemisphere enhancements increased with increases of the time-shifted solar wind velocity v, magnetic field B, and with more negative values of the B components except for the highest common altitude (1100 km) of the profiles. There was also some evidence suggesting that the Northern Hemisphere depletions were related to changes in the solar wind parameters. Southern Hemisphere storm-induced enhancements and depletions were typically considerably less with depletions observed during summer nighttime conditions and enhancements during summer daytime and fall nighttime conditions.

  13. Large Scale Drivers for the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14

    NASA Astrophysics Data System (ADS)

    Wild, Simon; Befort, Daniel J.; Leckebusch, Gregor C.

    2016-04-01

    The British Isles experienced exceptional stormy and rainy weather conditions in winter 2013-2014 while large parts of central North America recorded near record minimum surface temperatures values. Potential drivers for these cold conditions include increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the Europe, particularly the UK. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We will firstly analyse anomaly patterns along such a potential link in winter 2013-14. Secondly, we will investigate whether these identified anomaly patterns show a strong interannual relationship in the recent past. Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  14. Reconstruction of Atlantic historical winter coastal storms in the Spanish coasts of the Gulf of Cadiz, 1929-2005

    NASA Astrophysics Data System (ADS)

    Ribera, P.; Gallego, D.; Pena-Ortiz, C.; Del Rio, L.; Plomaritis, T. A.; Benavente, J.

    2011-06-01

    This paper presents the reconstruction of a climatological series of winter coastal storms on the northern coasts of the Gulf of Cadiz. This series has been put together using information extracted from regional and local Spanish newspapers. It includes all the storms coming from the Atlantic sector that have been detected during the winter season, from October to March, between 1929 and 2005. In order to validate this historical storm series, it has been compared with storms series identified from quasi-observational data and using different wave heights as thresholds to decide what is to be considered as a coastal storm. Nearly 2.6 reports per year about coastal storms are published in the press which correspond to waves of 3.6 m high or more and to prevailing winds from a direction ranging between SSW and WNW. A long- term positive trend has been detected for the complete storm series. If only the instrumental period is analysed, no significant trend is detected. It is suggested that this difference might be associated with the impact of the North Atlantic Oscillation over the occurrence of storms in this area.

  15. Inputs of the Dormant-Spray Pesticide, Diazinon, to the San Joaquin River, California, February 1993

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dubrovsky, Neil M.; Kratzer, Charles R.

    1995-01-01

    INTRODUCTION The objective of the National Water Quality Assessment (NAWQA) Program of the U.S. Geological Survey is to describe the status and trends of the Nation's water quality with respect to natural features of the environment and human activities or land-use. Pesticides are a major water-quality issue in the San Joaquin Valley of California (fig. 1), and pesticide residues may be transported to rivers and streams in agricultural runoff following winter storms. Three sites in the western San Joaquin Valley were monitored during and after two February 1993 storms. The storms occurred after extensive spraying of organophosphate insecticides, mostly diazinon, on almond and other stone-fruit orchards.

  16. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  17. The effects of storms and storm-generated currents on sand beaches in Southern Maine, USA

    USGS Publications Warehouse

    Hill, H.W.; Kelley, J.T.; Belknap, D.F.; Dickson, S.M.

    2004-01-01

    Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms. Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999-2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000-2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999-2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer. A northeast storm on March 5-6, 2001, resulted in currents in excess of 1 m s-1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months. ?? 2004 Elsevier B.V. All rights reserved.

  18. Electrification in winter storms and the analysis of thunderstorm overflight data

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1993-01-01

    We have been focusing our study of electrification in winter storms on the lightning initiation process, making inferences about the magnitude of the electric fields from the initial pulses associated with breakdown, i.e., with the formation of the initial streamers. The essence of the most significant finding is as follows: (1) initial breakdown radiation pulses from stepped leaders prior to the first return stroke are very large, reaching values of 20-30 Volts/meter, comparable to return stroke radiation; and (2) the duration of the stepped leader, from the initial detectable radiation pulse to the return stroke onset, is very-short-ranging from a minimum 1.5 ms to a maximum of 4.5 ms. This past summer (June-August of 1991) we participated in the CAPE program at the Kennedy Space Center in order to acquire data on stepped leaders in summer storms with the same equipment used to get the winter storm data. We discovered that the vigorous leaders seen in winter so frequently were present in summer storms, although not as large in amplitude and certainly not as frequent.

  19. From cyclone tracks to the costs of European winter storms: A probabilistic loss assessment model

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Corti, Thierry; Reese, Stefan; Wueest, Marc; Viktor, Elisabeth; Zimmerli, Peter

    2014-05-01

    The quantitative assessment of the potential losses of European winter storms is essential for the economic viability of a global reinsurance company. For this purpose, reinsurance companies generally use probabilistic loss assessment models. This work presents an innovative approach to develop physically meaningful probabilistic events for Swiss Re's new European winter storm loss model. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20th Century Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of properties of historical events (e.g. track, intensity). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account. The low-resolution wind footprints taken from 20th Century Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints of the historical and probabilistic winter storm events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country- and risk-specific vulnerability functions and detailed market- or client-specific exposure information to compute (re-)insurance risk premiums.

  20. Prominent November Coldwaves in the North Central United States Since 1901.

    NASA Astrophysics Data System (ADS)

    Wendland, Wayne M.

    1987-06-01

    The frequency and intensity of early winter (November) coldwaves were investigated for the north central United States. Twenty-two such storms occurred from 1901 to 1985, and were most frequent in the 1950s and early 1960s, and again from the mid 1970s to the present.November coldwaves are most often the result of Colorado cyclones moving to the cast northeast. On average, temperature declines of 22°C or more within 24 hours, falling to at least 0°C, impacted about 40 percent of the 12-state region. The storms were most often accompanied by strong winds, wind chill, heavy snow to the west, and thunderstorms to the cast, i.e., the trappings of a severe winter storm. Many of these storms inflicted severe damage on land and on the Great Lakes, sometimes taking lives of those not anticipating such a severe "winter" storm in November.

  1. Eurasian Winter Storm Activity at the End of the Century: A CMIP5 Multi-model Ensemble Projection

    NASA Astrophysics Data System (ADS)

    Basu, Soumik; Zhang, Xiangdong; Wang, Zhaomin

    2018-01-01

    Extratropical cyclone activity over Eurasia has exhibited a weakening trend in the recent decade. Extratropical cyclones bring precipitation and hence supply fresh water for winter crops in the mid- and high-latitude regions of Eurasia. Any changes in extratropical cyclone activity over Eurasia in the future may have a critical impact on winter agriculture and the economies of affected communities. However, potential future changes in regional storm activity over Eurasia have not been studied in detail. Therefore, in this study, we investigate anticipated changes in extratropical storm activity by the end of the century through a detailed examination of the historical and future emission scenarios from six different models from CMIP5. A statistical analysis of different parameters of storm activity using a storm identification and tracking algorithm reveals a decrease in the number of storms over mid-latitude regions. However, intense storms with longer duration are projected over high latitude Eurasia. A further examination of the physical mechanism for these changes reveals that a decrease in the meridional temperature gradient and a weakening of the vertical wind shear over the mid-latitudes are responsible for these changes in storm activity.

  2. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin

    2018-05-01

    Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  3. Snowpack-runoff relationships for mid-elevation snowpacks on the Workman Creek watersheds of Central Arizona

    Treesearch

    Gerald J. Gottfried; Daniel G. Neary; Peter F. Ffolliott

    2002-01-01

    Snowpacks in the southwestern United States melt intermittently throughout the winter. At some mid-elevation locations, between 7,000 and 7,500 ft, snowpacks appear and disappear, depending on the distribution of storms during relatively dry winters. Some winter precipitation can occur as rain during warm storms and is not reflected in the snow course data. The USDA...

  4. USGS Multi-Hazards Winter Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Perry, S. C.

    2008-12-01

    The USGS began an inter-disciplinary effort, the Multi Hazards Demonstration Project (MHDP), in 2007 to demonstrate how hazards science can improve a community's resiliency to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages the user community in setting research goals and directs efforts towards research products that can be applied to loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. It detailed the realistic outcomes of a hypothetical, but plausible, magnitude 7.8 earthquake on the San Andreas Fault in southern California. Over 300 scientist and experts contributed to designing the earthquake and understanding the impacts of such a disaster, including the geotechnical, engineering, social, cultural, environmental, and economic consequences. The scenario advanced scientific understanding and exposed numerous vulnerabilities related to emergency response and lifeline continuity management. The ShakeOut Scenario was the centerpiece of the Nation's largest-ever emergency response exercise in November 2008, dubbed "The Great Southern California ShakeOut" (www.shakeout.org). USGS Multi-Hazards is now preparing for its next major public project, a Winter Storm Scenario. Like the earthquake scenario, experts will be brought together to examine in detail the possibility, cost and consequences of a winter storm disaster including floods, landslides, coastal erosion and inundation; debris flows; biologic consequences like extirpation of endangered species; physical damages like bridge scour, road closures, dam failure, property loss, and water system collapse. Consideration will be given to the vulnerabilities associated with a catastrophic disruption to the water supply to southern California; the resulting impacts on ground water pumping, seawater intrusion, water supply degradation, and land subsidence; and a detailed examination on climatic change forces that could exacerbate the problems. Similar to the ShakeOut Scenario, the Winter Storm Scenario is designing a large but scientifically plausible physical event followed by an expert analysis of the secondary hazards, and the physical, social, and economic consequences. Unlike the earthquake scenario, the winter storm event may occur over days, weeks, and possibly months, and the stakeholder community is broadening to include resource managers as well as local governments and the emergency and lifeline management communities. Developing plans for this Scenario will be presented at this session, and feedback will be welcomed.

  5. Modelling the economic losses of historic and present-day high-impact winter storms in Switzerland

    NASA Astrophysics Data System (ADS)

    Welker, Christoph; Stucki, Peter; Bresch, David; Dierer, Silke; Martius, Olivia; Brönnimann, Stefan

    2014-05-01

    Severe winter storms such as "Vivian" in February 1990 and "Lothar" in December 1999 are among the most destructive meteorological hazards in Switzerland. Disaster severity resulting from such windstorms is attributable, on the one hand, to hazardous weather conditions such as high wind gust speeds; and on the other hand to socio-economic factors such as population density, distribution of values at risk, and damage susceptibility. For present-day winter storms, the data basis is generally good to describe the meteorological development and wind forces as well as the associated socio-economic impacts. In contrast, the information on historic windstorms is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. This study illustrates a promising technique to simulate the economic impacts of both historic and present winter storms in Switzerland since end of the 19th century. Our approach makes use of the novel Twentieth Century Reanalysis (20CR) spanning 1871-present. The 2-degree spatial resolution of the global 20CR dataset is relatively coarse. Thus, the complex orography of Switzerland is not realistically represented, which has considerable ramifications for the representation of wind systems that are strongly influenced by the local orography, such as Föhn winds. Therefore, a dynamical downscaling of the 20CR to 3 km resolution using the Weather Research and Forecasting (WRF) model was performed, for in total 40 high-impact winter storms in Switzerland since 1871. Based on the downscaled wind gust speeds and the climada loss model, the estimated economic losses were calculated at municipality level for current economic and social conditions. With this approach, we find an answer to the question what would be the economic losses of e.g. a hazardous Föhn storm - which occurred in northern Switzerland in February 1925 - today, i.e. under current socio-economic conditions. Encouragingly, the pattern of simulated losses for this specific storm is very similar to historic loss reports. A comparison of wind gust speeds with simulated storm losses for all highly damaging winter storms in Switzerland since the late 19th century considered in this study shows that storm losses have been related primarily to population density (and distribution of values at risk, respectively) rather than hazardous wind speed.

  6. What caused the Extreme Storm Season over the North Atlantic and the UK in Winter 2013-14?

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Wild, S.; Befort, D. J.

    2015-12-01

    In winter 2013-2014, the UK experienced exceptional stormy and rainy weather conditions. Concurrently, surface temperatures over large parts of central North America fell to near record minimum values. One potential driver for these cold conditions is discussed to be the increasingly warm surface waters of the tropical west Pacific. It has been suggested these increasing sea surface temperatures could also be the cause for extreme weather over the British Isles. Testing this hypothesis, we investigate mechanisms linking the tropical west Pacific and European wind storm activity. We focus on two research questions. Firstly: Was a chain of anomaly patterns with origin in the west Pacific present in the winter 2013-14? And secondly: Can centres of action along such a chain be identified with a strong interannual relationship in the recent past? Our results, using primarily ERA-Interim Reanalysis from 1979 to 2014, show an absolute maximum of wind storm frequency over the northeast Atlantic and the British Isles in winter 2013-14. We also find absolute minimum surface temperatures in central North America and increased convective activity over the tropical west Pacific in the same season. The winter 2013-14 was additionally characterized by anomalous warm sea surface temperatures over the subtropical northwest Atlantic. Although the interannual variability of wind storms in the northeast Atlantic and surface temperatures in North America are significantly anti-correlated, we cannot directly relate wind storm frequency with tropical west Pacific anomalies. We thus conclude that the conditions over the Pacific in winter 2013-14 were favourable but not sufficient to explain the record number of wind storms in this season. Instead, we suggest that warm north Atlantic sea surface temperature anomalies in combination with cold surface temperatures over North America played a more important role for generating higher wind storm counts over the northeast Atlantic and the UK.

  7. Satellite Video Shows Movement of Major U.S. Winter Storm

    NASA Image and Video Library

    2014-02-12

    A new NASA video of NOAA's GOES satellite imagery shows three days of movement of the massive winter storm that stretches from the southern U.S. to the northeast. Visible and infrared imagery from NOAA's GOES-East or GOES-13 satellite from Feb. 10 at 1815 UTC/1:15 p.m. EST to Feb. 12 to 1845 UTC/1:45 p.m. EST were compiled into a video made by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. In the video, viewers can see the development and movement of the clouds associated with the progression of the frontal system and related low pressure areas that make up the massive storm. The video also shows the snow covered ground over the Great Lakes region and Ohio Valley that stretches to northern New England. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. On February 12 at 10 a.m. EST, NOAA's National Weather Service or NWS continued to issue watches and warnings from Texas to New England. Specifically, NWS cited Winter Storm Warnings and Winter Weather Advisories were in effect from eastern Texas eastward across the interior section of southeastern U.S. states and across much of the eastern seaboard including the Appalachians. Winter storm watches are in effect for portions of northern New England as well as along the western slopes of northern and central Appalachians. For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. NOAA's Weather Prediction Center or WPC noted the storm is expected to bring "freezing rain spreading into the Carolinas, significant snow accumulations are expected in the interior Mid-Atlantic states tonight into Thursday and ice storm warnings and freezing rain advisories are in effect across much of central Georgia. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  8. Clustering of European winter storms: A multi-model perspective

    NASA Astrophysics Data System (ADS)

    Renggli, Dominik; Buettner, Annemarie; Scherb, Anke; Straub, Daniel; Zimmerli, Peter

    2016-04-01

    The storm series over Europe in 1990 (Daria, Vivian, Wiebke, Herta) and 1999 (Anatol, Lothar, Martin) are very well known. Such clusters of severe events strongly affect the seasonally accumulated damage statistics. The (re)insurance industry has quantified clustering by using distribution assumptions deduced from the historical storm activity of the last 30 to 40 years. The use of storm series simulated by climate models has only started recently. Climate model runs can potentially represent 100s to 1000s of years, allowing a more detailed quantification of clustering than the history of the last few decades. However, it is unknown how sensitive the representation of clustering is to systematic biases. Using a multi-model ensemble allows quantifying that uncertainty. This work uses CMIP5 decadal ensemble hindcasts to study clustering of European winter storms from a multi-model perspective. An objective identification algorithm extracts winter storms (September to April) in the gridded 6-hourly wind data. Since the skill of European storm predictions is very limited on the decadal scale, the different hindcast runs are interpreted as independent realizations. As a consequence, the available hindcast ensemble represents several 1000 simulated storm seasons. The seasonal clustering of winter storms is quantified using the dispersion coefficient. The benchmark for the decadal prediction models is the 20th Century Reanalysis. The decadal prediction models are able to reproduce typical features of the clustering characteristics observed in the reanalysis data. Clustering occurs in all analyzed models over the North Atlantic and European region, in particular over Great Britain and Scandinavia as well as over Iberia (i.e. the exit regions of the North Atlantic storm track). Clustering is generally weaker in the models compared to reanalysis, although the differences between different models are substantial. In contrast to existing studies, clustering is driven by weak and moderate events, and not by extreme storms. Thus, the decision which climate model to use to quantify clustering can have a substantial impact on the risk assessment in the (re)insurance business.

  9. Forensic pollen geolocation techniques used to identify the origin of boll weevil reinfestation

    USDA-ARS?s Scientific Manuscript database

    The boll weevil, Anthonomus grandis, entered the United States of America in the early 20th century and became a major pest in cotton, Gossypium spp. Shortly after the passage of Tropical Storm Erin on 16 August 2007 through the South Texas/Winter Garden boll weevil eradication zone, over 150 boll ...

  10. Ionospheric storms—A challenge for empirical forecast of the total electron content

    NASA Astrophysics Data System (ADS)

    Borries, C.; Berdermann, J.; Jakowski, N.; Wilken, V.

    2015-04-01

    Since the last decades, the functioning of society depends more and more on well-functioning communication and navigation systems. As the availability and reliability of most of these satellite-based systems can be severely impacted by ionospheric storms, the accurate forecast of these events becomes a required task for mitigating social and economic risks. Here we aim to make initial steps toward an empirical model for ionospheric perturbations related to space weather events that are observable in the total electron content (TEC). The perturbation TEC forecast model will be a fast and robust approach, improving TEC forecasts based on climatological models during storm conditions. The derivation of such a model is a challenging task, because although a general dependence of the storm features (enhancement or depletion of electron density) on the storm onset time, local time, season and geomagnetic latitude is well known, there is a large deviation from the mean behavior. For a better understanding of storm conditions, this paper presents analyses of ionospheric storms observed in the TEC, broken down into diverse classes of storms. It provides a detailed characterization of the typical ionospheric storm behavior over Europe from high to midlatitudes, beyond case studies. Generally, the typical clear strong TEC enhancement starting in high latitudes and propagating equatorward is found to be strongest for storms starting in the morning hours independent of the season. In midlatitudes, it is strongest during noon. In addition, a clear difference between summer and winter storms is reported. While only winter storms develop high-latitude TEC enhancements, only summer storms typically exhibit TEC depletions during the storm recovery phase. During winter storms TEC enhancements can also occur the day following the storm onset, in contrast to summer storms. Strong correlation of TEC perturbation amplitudes to the Bz component of the interplanetary magnetic field and to a proxy of the polar cap potential are shown especially for summer midlatitude TEC enhancements during storms with and onset in the morning hours (6 to 12 UT over Europe) and for winter high-latitude TEC enhancements (around 60∘N). The results indicate the potential to derive improved predictions of maximum TEC deviations during space weather events, based on solar wind measurements.

  11. Storm related closures of I-5 and I-90 : freight transportation economic impact assessment report, winter 2007-2008.

    DOT National Transportation Integrated Search

    2008-09-01

    This report documents the economic impact analysis undertaken by WSDOTs Freight Systems Division in response to the : storm-related closures of I-5 and I-90 in the winter 2007-2008. The closures were the result of severe weather that : overwhelmed...

  12. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms

    PubMed Central

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-01-01

    Introduction: This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Methods: Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. Results: Results indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Discussion: Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced. PMID:25685629

  13. Snow Tweets: Emergency Information Dissemination in a US County During 2014 Winter Storms.

    PubMed

    Bonnan-White, Jess; Shulman, Jason; Bielecke, Abigail

    2014-12-22

    This paper describes how American federal, state, and local organizations created, sourced, and disseminated emergency information via social media in preparation for several winter storms in one county in the state of New Jersey (USA). Postings submitted to Twitter for three winter storm periods were collected from selected organizations, along with a purposeful sample of select private local users. Storm-related posts were analyzed for stylistic features (hashtags, retweet mentions, embedded URLs). Sharing and re-tweeting patterns were also mapped using NodeXL. RESULTS indicate emergency management entities were active in providing preparedness and response information during the selected winter weather events. A large number of posts, however, did not include unique Twitter features that maximize dissemination and discovery by users. Visual representations of interactions illustrate opportunities for developing stronger relationships among agencies. Whereas previous research predominantly focuses on large-scale national or international disaster contexts, the current study instead provides needed analysis in a small-scale context. With practice during localized events like extreme weather, effective information dissemination in large events can be enhanced.

  14. Evaluation of sources and loading of pesticides to the Sacramento River, California, USA, during a storm event of winter 2005.

    PubMed

    Guo, Lei; Kelley, Kevin; Goh, Kean S

    2007-11-01

    A monitoring study was conducted in the tributaries and main stem of the Sacramento River, California, USA, during the storm event of January 26 to February 1, 2005. The purpose of the study was to evaluate the sources and loading of pesticides in the Sacramento River watershed during the winter storm season. A total of 26 pesticides or pesticide degradates were analyzed, among which five pesticides and one triazine degradate were detected. Diuron, diazinon, and simazine were found in all streams with a total load of 110.4, 15.4, and 15.7 kg, respectively, in the Sacramento River over the single storm event. Bromacil, hexazinone, and the triazine degradate diaminochlorotriazine were only detected in two smaller drainage canals with a load ranged from 0.25 to 7 kg. The major source of pesticides detected in the main stem Sacramento River was from the most upstream subbasin, the Sacramento River above Colusa, where detected pesticides either exceeded or were close to those at the main outlet of the Sacramento River at Alamar Marina. The higher precipitation in this subbasin was partly responsible for the greater contribution of pesticides observed. Diazinon was the only pesticide with concentrations above water quality criteria, indicating that additional mitigation measures may be needed to reduce its movement to surface water.

  15. From Cyclone Tracks to the Costs of European Winter Storms: A Probabilistic Loss Assessment Model

    NASA Astrophysics Data System (ADS)

    Orwig, K.; Renggli, D.; Corti, T.; Reese, S.; Wueest, M.; Viktor, E.; Zimmerli, P.

    2014-12-01

    European winter storms cause billions of dollars of insured losses every year. Therefore, it is essential to understand potential impacts of future events, and the role reinsurance can play to mitigate the losses. The authors will present an overview on natural catastrophe risk assessment modeling in the reinsurance industry, and the development of a new innovative approach for modeling the risk associated with European winter storms.The new innovative approach includes the development of physically meaningful probabilistic (i.e. simulated) events for European winter storm loss assessment. The meteorological hazard component of the new model is based on cyclone and windstorm tracks identified in the 20thCentury Reanalysis data. The knowledge of the evolution of winter storms both in time and space allows the physically meaningful perturbation of historical event properties (e.g. track, intensity, etc.). The perturbation includes a random element but also takes the local climatology and the evolution of the historical event into account.The low-resolution wind footprints taken from the 20thCentury Reanalysis are processed by a statistical-dynamical downscaling to generate high-resolution footprints for both the simulated and historical events. Downscaling transfer functions are generated using ENSEMBLES regional climate model data. The result is a set of reliable probabilistic events representing thousands of years. The event set is then combined with country and site-specific vulnerability functions and detailed market- or client-specific information to compute annual expected losses.

  16. Decadal predictability of winter windstorm frequency in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Höschel, Ines; Grieger, Jens; Ulbrich, Uwe

    2017-04-01

    Winter windstorms are one of the most impact relevant extreme-weather events in Europe. This study is focussed on windstorm frequency in Eastern Europe at multi-year time scale. Individual storms are identified by using 6-hourly 10m-wind-fields. The impact-oriented tracking algorithm is based on the exceedance of the local 98 percentile of wind speed and a minimum duration of 18 hours. Here, storm frequency is the number of 1000km-footprints of identified windstorms touching the location during extended boreal winter from October to March. The temporal development of annual storm frequencies in Eastern Europe shows variations on a six to fifteen years period. Higher than normal windstorm frequency occurred end of the 1950s and in beginning of the seventies, while lower than normal frequency were around 1960 and in the forties, for example. The correlation between bandpass filtered storm frequency and North Atlantic sea surface temperature shows a significant pattern with a positive correlation in the subtropical East Atlantic and significant negative correlations in the Gulfstream region. The relationship between these multi-year variations and predictability on decadal time scales is discussed. The resulting skill of winter wind storms in the German decadal prediction system MiKlip, based on the numerical earth system model MPI-ESM, will be presented.

  17. Operational Impact of Data Collected from the Global Hawk Unmanned Aircraft During SHOUT

    NASA Astrophysics Data System (ADS)

    Wick, G. A.; Dunion, J. P.; Sippel, J.; Cucurull, L.; Aksoy, A.; Kren, A.; Christophersen, H.; Black, P.

    2017-12-01

    The primary scientific goal of the Sensing Hazards with Operational Unmanned Technology (SHOUT) Project was to determine the potential utility of observations from high-altitude, long-endurance unmanned aircraft systems such as the Global Hawk (GH) aircraft to improve operational forecasts of high-impact weather events or mitigate potential degradation of forecasts in the event of a future gap in satellite coverage. Hurricanes and tropical cyclones are among the most potentially destructive high-impact weather events and pose a major forecasting challenge to NOAA. Major winter storms over the Pacific Ocean, including atmospheric river events, which make landfall and bring strong winds and extreme precipitation to the West Coast and Alaska are also important to forecast accurately because of their societal impact in those parts of the country. In response, the SHOUT project supported three field campaigns with the GH aircraft and dedicated data impact studies exploring the potential for the real-time data from the aircraft to improve the forecasting of both tropical cyclones and landfalling Pacific storms. Dropsonde observations from the GH aircraft were assimilated into the operational Hurricane Weather Research and Forecasting (HWRF) and Global Forecast System (GFS) models. The results from several diverse but complementary studies consistently demonstrated significant positive forecast benefits spanning the regional and global models. Forecast skill improvements within HWRF reached up to about 9% for track and 14% for intensity. Within GFS, track skill improvements for multi-storm averages exceeded 10% and improvements for individual storms reached over 20% depending on forecast lead time. Forecasted precipitation was also improved. Impacts for Pacific winter storms were smaller but still positive. The results are highly encouraging and support the potential for operational utilization of data from a platform like the GH. This presentation summarizes the observations collected and highlights the multiple impact studies completed.

  18. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  19. North Atlantic explosive cyclones and large scale atmospheric variability modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.

    2015-04-01

    Extreme windstorms are one of the major natural catastrophes in the extratropics, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the last decades Europe witnessed major damage from winter storms such as Lothar (December 1999), Kyrill (January 2007), Klaus (January 2009), Xynthia (February 2010), Gong (January 2013) and Stephanie (February 2014) which exhibited uncommon characteristics. In fact, most of these storms crossed the Atlantic in direction of Europe experiencing an explosive development at unusual lower latitudes along the edge of the dominant North Atlantic storm track and reaching Iberia with an uncommon intensity (Liberato et al., 2011; 2013; Liberato 2014). Results show that the explosive cyclogenesis process of most of these storms at such low latitudes is driven by: (i) the southerly displacement of a very strong polar jet stream; and (ii) the presence of an atmospheric river (AR), that is, by a (sub)tropical moisture export over the western and central (sub)tropical Atlantic which converges into the cyclogenesis region and then moves along with the storm towards Iberia. Previous studies have pointed to a link between the North Atlantic Oscillation (NAO) and intense European windstorms. On the other hand, the NAO exerts a decisive control on the average latitudinal location of the jet stream over the North Atlantic basin (Woollings et al. 2010). In this work the link between North Atlantic explosive cyclogenesis, atmospheric rivers and large scale atmospheric variability modes is reviewed and discussed. Liberato MLR (2014) The 19 January 2013 windstorm over the north Atlantic: Large-scale dynamics and impacts on Iberia. Weather and Climate Extremes, 5-6, 16-28. doi: 10.1016/j.wace.2014.06.002 Liberato MRL, Pinto JG, Trigo IF, Trigo RM. (2011) Klaus - an exceptional winter storm over Northern Iberia and Southern France. Weather 66:330-334. doi:10.1002/wea.755 Liberato MLR, Pinto JG, Trigo RM, Ludwig P, Ordóñez P, Yuen D, Trigo IF (2013) Explosive development of winter storm Xynthia over the subtropical North Atlantic Ocean. Nat Hazards Earth Syst Sci 13:2239-2251. doi:10.5194/nhess-13-2239-2013 Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Quart. J. Roy. Meteor. Soc., 136, 856-868, doi:10.1002/qj.625 Acknowledgements: This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  20. Isotopic Variability in Central Valley Precipitation Events

    NASA Astrophysics Data System (ADS)

    Keene, D.; Sowers, T.; Wagner, A. J.

    2017-12-01

    Wintertime precipitation in the Sacramento Valley is characterized by two regimes: northerly storms generated by the polar jet stream and southerly storms generated by subtropical atmospheric rivers (ARs). Polar jet stream storms account for the majority of storm activity in the central valley, but the amount of subtropical moisture available for transport tends to increase during El Niño years. However, during the El Niño of 2015-2016, California continued to experience drought conditions with the Sacramento area receiving below average wintertime precipitation. Although the 2016-2017 winter was not an El Niño year, the Sacramento area received more than 190% of its average precipitation from ARs in the opening months of 2017. While this suggests that ARs are a significant part of California's hydrologic cycle independent of El Niño, it has not been established whether these storms have an isotopically distinct signature compared to those generated by the polar jet stream or if their signature covaries with ENSO. To investigate the potential isotopic variability of ARs, rainwater was collected over a period of three years in the Sacramento Valley and the surrounding areas and analyzed for δD and δ18O. Since El Niño is generally considered to cause an increase in the amount of available subtropical moisture delivered to the Sacramento valley, we would expect precipitation during those years to be less depleted than precipitation in non-El Niño years. On average, δD and δ18O values of precipitation during the 2015-2016 winter were not significantly different compared to precipitation from 2016-2017 even though 2016-2017 was dominated by historic amounts of AR rainfall. This suggests that the frequency and intensity of atmospheric river storm events may not be intimately linked with the ENSO cycle.

  1. Impacts of winter storms on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqing; Perrie, Will; Vagle, Svein

    2006-07-01

    The objective of this study is to investigate air-sea gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on sea state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.

  2. High-Latitude Topside Ionospheric Vertical Electron-Density-Profile Changes in Response to Large Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Benson, Robert F.; Fainberg, Joseph; Osherovich, Vladimir A.; Truhlik, Vladimir; Wang, Yongli; Bilitza, Dieter; Fung, Shing F.

    2015-01-01

    Large magnetic-storm induced changes have been detected in high-latitude topside vertical electron-density profiles Ne(h). The investigation was based on the large database of topside Ne(h) profiles and digital topside ionograms from the International Satellites for Ionospheric Studies (ISIS) program available from the NASA Space Physics Data Facility (SPDF) at http://spdf.gsfc.nasa.gov/isis/isis-status.html. This large database enabled Ne(h) profiles to be obtained when an ISIS satellite passed through nearly the same region of space before, during, and after a major magnetic storm. A major goal was to relate the magnetic-storm induced high-latitude Ne(h) profile changes to solar-wind parameters. Thus an additional data constraint was to consider only storms where solar-wind data were available from the NASA/SPDF OMNIWeb database. Ten large magnetic storms (with Dst less than -100 nT) were identified that satisfied both the Ne(h) profile and the solar-wind data constraints. During five of these storms topside ionospheric Ne(h) profiles were available in the high-latitude northern hemisphere and during the other five storms similar ionospheric data were available in the southern hemisphere. Large Ne(h) changes were observed during each one of these storms. Our concentration in this paper is on the northern hemisphere. The data coverage was best for the northern-hemisphere winter. Here Ne(h) profile enhancements were always observed when the magnetic local time (MLT) was between 00 and 03 and Ne(h) profile depletions were always observed between 08 and 10 MLT. The observed Ne(h) deviations were compared with solar-wind parameters, with appropriate time shifts, for four storms.

  3. An outbreak of carbon monoxide poisoning after a major ice storm in Maine.

    PubMed

    Daley, W R; Smith, A; Paz-Argandona, E; Malilay, J; McGeehin, M

    2000-01-01

    Unintentional carbon monoxide (CO) exposure kills over 500 people in the U.S. annually. Outbreaks of CO poisoning have occurred after winter storms. The objective of this study was to describe clinical features and identify important risk factors of a CO poisoning outbreak occurring after a major ice storm. The study design included a case series of CO poisoning patients, a telephone survey of the general community, and a case-controlled study of households using specific CO sources. The setting was the primary service area of four hospital emergency departments located in the heavily storm-impacted interior region of Maine. Participants included all patients with a laboratory-confirmed diagnosis of CO poisoning during the 2 weeks after the storm onset, and a population-based comparison group of 522 households selected by random digit dialing. There were 100 cases identified, involving 42 common-source exposure incidents, most of them during the first week. Though classic CO symptoms of headache, dizziness, and nausea predominated, 9 patients presented with chest pain and 10 were asymptomatic. One patient died and 5 were transferred for hyperbaric oxygen therapy. Gasoline-powered electric generators were a CO source in 30 incidents, kerosene heaters in 8, and propane heaters in 4. In the community, 31.4% of households used a generator after the ice storm. The strongest risk factor for poisoning was locating a generator in a basement or an attached structure such as a garage. Cases of CO poisoning with various presentations can be expected in the early aftermath of a severe ice storm. Generators are a major CO source and generator location an important risk factor for such disasters.

  4. GIS-based estimation of the winter storm damage probability in forests: a case study from Baden-Wuerttemberg (Southwest Germany).

    PubMed

    Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen; Kohnle, Ulrich

    2012-01-01

    Data on storm damage attributed to the two high-impact winter storms 'Wiebke' (28 February 1990) and 'Lothar' (26 December 1999) were used for GIS-based estimation and mapping (in a 50 × 50 m resolution grid) of the winter storm damage probability (P(DAM)) for the forests of the German federal state of Baden-Wuerttemberg (Southwest Germany). The P(DAM)-calculation was based on weights of evidence (WofE) methodology. A combination of information on forest type, geology, soil type, soil moisture regime, and topographic exposure, as well as maximum gust wind speed field was used to compute P(DAM) across the entire study area. Given the condition that maximum gust wind speed during the two storm events exceeded 35 m s(-1), the highest P(DAM) values computed were primarily where coniferous forest grows in severely exposed areas on temporarily moist soils on bunter sandstone formations. Such areas are found mainly in the mountainous ranges of the northern Black Forest, the eastern Forest of Odes, in the Virngrund area, and in the southwestern Alpine Foothills.

  5. ARkStorm@Tahoe: Stakeholder perspectives on vulnerabilities and preparedness for an extreme storm event in the greater Lake Tahoe, Reno, and Carson City region

    USGS Publications Warehouse

    Albano, Christine M.; Cox, Dale A.; Dettinger, Michael; Shaller, Kevin; Welborn, Toby L.; McCarthy, Maureen

    2014-01-01

    Atmospheric rivers (ARs) are strongly linked to extreme winter precipitation events in the Western U.S., accounting for 80 percent of extreme floods in the Sierra Nevada and surrounding lowlands. In 2010, the U.S. Geological Survey developed the ARkStorm extreme storm scenario for California to quantify risks from extreme winter storms and to allow stakeholders to better explore and mitigate potential impacts. To explore impacts on natural resources and communities in montane and adjacent environments, we downscaled the scenario to the greater Lake Tahoe, Reno and Carson City region of northern Nevada and California. This ArkStorm@Tahoe scenario was presented at six stakeholder meetings, each with a different geographic and subject matter focus. Discussions were facilitated by the ARkStorm@Tahoe team to identify social and ecological vulnerabilities to extreme winter storms, science and information needs, and proactive measures that might minimize impacts from this type of event. Information collected in these meetings was used to develop a tabletop emergency response exercise and set of recommendations for increasing resilience to extreme winter storm events in both Tahoe and the downstream communities of Northern Nevada.Over 300 individuals participated in ARkStorm@Tahoe stakeholder meetings and the emergency response exercise, including representatives from emergency response, natural resource and ecosystem management, health and human services, public utilities, and businesses. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human systems by impeding emergency response efforts. Other key issues that arose in discussions included contamination risks to water supplies and aquatic ecosystems, especially in the Tahoe Basin and Pyramid Lake, interagency coordination, credentialing, flood management, and coordination of health and human services during such an event. Mitigation options were identified for each of the key issues. Several science needs were identified, particularly the need for improved flood inundation maps. Finally, key lessons learned were identified and may help to increase preparedness, response and recovery from extreme storms in the future.

  6. ARkStorm@Tahoe: Science as a foundation for discussing, recognizing and mitigating storm-disaster vulnerabilities in mountain and downstream communities

    NASA Astrophysics Data System (ADS)

    McCarthy, M.; Dettinger, M. D.; Kauneckis, D. L.; Cox, D. A.; Albano, C.; Welborn, T.

    2014-12-01

    Atmospheric rivers (ARs) have historically caused ~80% of the most extreme winter storms and largest floods in California and parts of northwestern Nevada. In 2010, the U.S. Geological Survey developed the ARkStorm extreme-storm scenario to quantify risks from extreme winter storms and to allow stakeholders to explore and mitigate potential impacts. The scenario was constructed by concatenating two historical AR sequences and quantified by simulating them using a regional-weather model nested within global weather fields, resulting in a climatologically plausible 23-day storm sequence. The ARkStorm@Tahoe scenario was presented at six meetings with over 300 participants from local agencies, first-responders and local communities, each meeting having a different geographic or sectoral focus. These stakeholder meetings and an 18-question survey identified a wide range of social and ecological vulnerabilities to extreme winter storms, science and information needs to prepare and mitigate consequenses, and proactive measures to minimize impacts. Interruption of transportation, communications, and lack of power and backup fuel supplies were identified as the most likely and primary points of failure across multiple sectors and geographies, as these interruptions have cascading effects on natural and human environments by impeding emergency response efforts. Natural resource impacts of greatest concern include flooding, impacts to water quality, spread and establishment of invasive species, and interactions with other disturbance types (e.g., fire, landslides). Science needs include improved monitoring and models to facilitate better prediction and response, real-time and forecast inundation mapping to understand flood risks, and vulnerability assessments related to geomorphic hazards and water quality impacts. Results from this effort highlight several opportunities for increasing the resilience of communities and the environment to extreme storm events. Information collected in these meetings was used to develop a "tabletop" emergency-response exercise with over 120 participants in March 2014, as well as reports back to the community including specific recommendations for increasing preparedness, response, recovery, and resilience to extreme winter storm events.

  7. The Framework of a Coastal Hazards Model - A Tool for Predicting the Impact of Severe Storms

    USGS Publications Warehouse

    Barnard, Patrick L.; O'Reilly, Bill; van Ormondt, Maarten; Elias, Edwin; Ruggiero, Peter; Erikson, Li H.; Hapke, Cheryl; Collins, Brian D.; Guza, Robert T.; Adams, Peter N.; Thomas, Julie

    2009-01-01

    The U.S. Geological Survey (USGS) Multi-Hazards Demonstration Project in Southern California (Jones and others, 2007) is a five-year project (FY2007-FY2011) integrating multiple USGS research activities with the needs of external partners, such as emergency managers and land-use planners, to produce products and information that can be used to create more disaster-resilient communities. The hazards being evaluated include earthquakes, landslides, floods, tsunamis, wildfires, and coastal hazards. For the Coastal Hazards Task of the Multi-Hazards Demonstration Project in Southern California, the USGS is leading the development of a modeling system for forecasting the impact of winter storms threatening the entire Southern California shoreline from Pt. Conception to the Mexican border. The modeling system, run in real-time or with prescribed scenarios, will incorporate atmospheric information (that is, wind and pressure fields) with a suite of state-of-the-art physical process models (that is, tide, surge, and wave) to enable detailed prediction of currents, wave height, wave runup, and total water levels. Additional research-grade predictions of coastal flooding, inundation, erosion, and cliff failure will also be performed. Initial model testing, performance evaluation, and product development will be focused on a severe winter-storm scenario developed in collaboration with the Winter Storm Working Group of the USGS Multi-Hazards Demonstration Project in Southern California. Additional offline model runs and products will include coastal-hazard hindcasts of selected historical winter storms, as well as additional severe winter-storm simulations based on statistical analyses of historical wave and water-level data. The coastal-hazards model design will also be appropriate for simulating the impact of storms under various sea level rise and climate-change scenarios. The operational capabilities of this modeling system are designed to provide emergency planners with the critical information they need to respond quickly and efficiently and to increase public safety and mitigate damage associated with powerful coastal storms. For instance, high resolution local models will predict detailed wave heights, breaking patterns, and current strengths for use in warning systems for harbor-mouth navigation and densely populated coastal regions where beach safety is threatened. The offline applications are intended to equip coastal managers with the information needed to manage and allocate their resources effectively to protect sections of coast that may be most vulnerable to future severe storms.

  8. Electrification in winter storms and the analysis of thunderstorm overflight

    NASA Technical Reports Server (NTRS)

    Brook, Marx

    1991-01-01

    The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.

  9. Impact of prolonged storm activity on the Ecological Status of intertidal benthic habitats within oyster (Crassostrea gigas) trestle cultivation sites.

    PubMed

    O'Carroll, Jack P J; Quinn, Christina; Forde, James; Patterson, Adrian; O'Beirn, Francis X; Kennedy, Robert

    2016-09-15

    The Ecological Status (ES; sensu the Water Framework Directive) of intertidal benthic communities within six oyster trestle cultivation sites was found to be negatively impacted along the access routes to trestles in a 2013 study. All cultivation sites occur within Natura 2000 sites. The current study revisited four of the 2013 cultivation sites in February 2014 one month after the storm activity of winter 2013/14 to test if the compaction effect along access routes persisted after the storms. Three levels of the fixed factor treatment were sampled; immediately below the trestles, along the access route and 300m away from any anthropogenic activity. The compaction effect at the Access treatment persisted in spite of the major storm activity. The current study showed the IQI to be effective for assessing the impacts of aquaculture and highlights the IQI as a tool for monitoring Conservation Status of intertidal communities under the Habitats Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Impact of the winter 2013-2014 series of severe Western Europe storms on a double-barred sandy coast: Beach and dune erosion and megacusp embayments

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Marieu, Vincent; Bujan, Stéphane; Splinter, Kristen D.; Robinet, Arhur; Sénéchal, Nadia; Ferreira, Sophie

    2015-06-01

    The winter of 2013/2014 was characterized by a striking pattern of temporal and spatial extreme storm wave clustering in Western Europe. The 110-km long Gironde coast, SW France, was exposed to the most energetic wave conditions over the last 18 years. The period was outstanding in terms of the available energy to move sediment and cause large-scale erosion with the 2-month average significant wave height (Hs) exceeding 3.6 m, just below the 0.95 quantile, and 4 distinct 10-year return period storms with Hs > 9 m. These storm waves caused unprecedented beach and dune erosion along the Gironde coast, including severely damaged sea defences at the coastal towns. At the end of the winter, dune erosion scarp height was highly variable alongshore and often exceeded 10 m. Megacusp embayments were observed along the Gironde coast with an average alongshore spacing of 1000 m in the south progressively decreasing to 500 m in the north, with an average cross-shore amplitude of 20 m. While beach megacusps were previously observed to systematically couple to the inner bar along the Gironde coast during low- to moderate-energy wave conditions, severe storm-driven megacusp embayments cutting the dune were found to be enforced and coupled to the outer crescentic bar. A detailed inspection of the 1500 m-long bimonthly topographic surveys of Truc Vert beach shows that in early January 2014 the outstanding shore-normal incident storm swell 'Hercules', with Hs and peak wave period Tp peaking at 9.6 m and 22 s, respectively, triggered the formation of a localized megacusp embayment with the erosion scarp height exceeding 6 m in its centre where the dune retreat reached 30 m. The subsequent storms progressively smoothed the megacusp by the end of the winter, mostly through severe erosion of the megacusp horns. Because of the very long period (16 s < Tp < 23 s) storm waves with persistent shore-normal incidence, the well-developed outer crescentic bar observed prior to the winter did not straighten. Instead, the outer-bar three-dimensionality developed further, particularly during 'Hercules'. Our observations indicate that both the antecedent outer sandbar morphology and storm wave characteristics, including period and angle of incidence, govern patterns of beach and dune erosion along open multiple-barred sandy coasts during severe storms.

  11. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  12. Impacts of Synoptic Weather Patterns on Snow Albedo at Sites in New England

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Lazarcik, J.; Dibb, J. E.; Amante, J.; Price, A. N.

    2015-12-01

    Winter snow in the northeastern United States has changed over the last several decades, resulting in shallower snow packs, fewer days of snow cover and increasing precipitation falling as rain in the winter. In addition to these changes which cause reductions in surface albedo, increasing winter temperatures also lead to more rapid snow grain growth, resulting in decreased snow reflectivity. We present in-situ measurements and analyses to test the sensitivity of seasonal snow albedo to varying weather conditions at sites in New England. In particular, we investigate the impact of temperature on snow albedo through melt and grain growth, the impact of precipitation event frequency on albedo through snow "freshening," and the impact of storm path on snow structure and snow albedo. Over three winter seasons between 2013 and 2015, in-situ snow characterization measurements were made at three non-forested sites across New Hampshire. These near-daily measurements include spectrally resolved albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density and local meteorological parameters. Combining this information with storm tracks derived from HYSPLIT modeling, we quantify the current sensitivity of northeastern US snow albedo to temperature as well as precipitation type, frequency and path. Our analysis shows that southerly winter storms result in snow with a significantly lower albedo than storms which come from across the continental US or the Atlantic Ocean. Interannual variability in temperature and statewide spatial variability in snowfall rates at our sites show the relative importance of snowfall amount and temperatures in albedo evolution over the course of the winter.

  13. Linked Extreme Weather Events during Winter 2009-2010 and 2010-2011 in the Context of Northern Hemisphere Circulation Anomalies

    NASA Astrophysics Data System (ADS)

    Bosart, L. F.; Archambault, H. M.; Cordeira, J. M.

    2011-12-01

    Lance F. Bosart, Heather M. Archambault, and Jason M. Cordeira Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York The Northern Hemisphere (NH) planetary-scale circulation during winter 2009-2010 was characterized by an unusual combination of persistent high-latitude blocking and southward-displaced storm tracks, manifest by a strongly negative Arctic Oscillation (AO), in conjunction with a moderate El Nino event. The high-latitude blocking activity and southward-displaced storm tracks supported episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, eastern North America, and western Europe as well as anomalous warmth over northeastern Canada and Greenland that delayed sea ice formation and ice thickening in these areas during winter 2009-2010. Although somewhat less extreme than winter 2009-2010, the first half of winter 2010-2011 was also characterized by high-latitude blocking and southward-displaced storm tracks (manifest by negative values of the AO) while the Pacific-North American (PNA), initially negative, became neutral in late December and most of January. Winter 2010-2011 was characterized by moderate La Nina conditions in contrast to moderate El Nino conditions that prevailed during winter 2009-2010. Despite the reversal of the ENSO phase from winter 2009-2010 to winter 2010-2011, high-latitude blocking activity and the associated southward-displaced storm tracks again allowed for episodic cold-air outbreaks and enhanced storminess over parts of midlatitude eastern Asia, central and eastern North America, and western Europe with delayed sea ice formation and thickening over the Davis Strait and adjacent regions during the first half of winter 2010-2011. Beginning in late January and continuing through early February 2011 the phase of the AO and the PNA reversed with the AO and PNA becoming positive and negative, respectively. This linked AO/PNA phase transition was associated with an extreme weather event that brought severe and record-setting cold to parts of the U.S. and Mexico, a powerful snow and ice storm in the Central U.S., and a subsequent and spectacular warm-up east of the Rockies. The purpose of this presentation will be to present an overview of the structure and evolution of the large-scale NH circulation anomalies during the 2009-2010 and 2010-2011 winters. Emphasis will be placed on showing how individual synoptic-scale weather events (e.g., recurving and transitioning western Pacific tropical cyclones, diabatically driven upper-level outflow from organized deep convection associated with the Madden-Julian Oscillation, and western North Atlantic storminess) contributed to the formation of significant and persistent large-scale circulation anomalies and how these large-scale circulation anomalies in turn impacted the storm tracks, regional temperature and precipitation anomalies, and the associated extreme weather.

  14. Applying stochastic small-scale damage functions to German winter storms

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-03-01

    Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.

  15. Forecasting Winter Storms in the Sierra: A Social Science Perspective in Keeping the Public Safe without Negatively Impacting the Local Tourism Industry

    NASA Astrophysics Data System (ADS)

    Milne, R.; Wallmann, J.; Myrick, D. T.

    2010-12-01

    The National Weather Service Office in Reno is responsible for issuing Blizzard Warnings, Winter Storm Warnings, and Winter Weather Advisories for the Sierra, including the Lake Tahoe Basin and heavily traveled routes such as Interstate 80, Highway 395 and Highway 50. These forecast products prepare motorists for harsh travel conditions as well as those venturing into the backcountry, which are essential to the NWS mission of saving lives and property. During the winter season, millions of people from around the world visit the numerous world class ski resorts in the Sierra and the Lake Tahoe Basin, which is vital to the local economy. This situation creates a challenging decision for the forecasters to provide appropriate wording in winter statements to keep the public safe, without significantly impacting the local tourism-based economy. Numerous text and graphical products, including online weather briefings, are utilized by NWS Reno to highlight hazards in ensuring the public, businesses, and other government agencies are prepared for winter storms and take appropriate safety measures. The effectiveness of these product types will be explored, with past snowstorms used as examples to show how forecasters determine which type of text or graphical product is most appropriate to convey the hazardous weather threats.

  16. Coherence of river and ocean conditions along the US West Coast during storms

    USGS Publications Warehouse

    Kniskern, T.A.; Warrick, J.A.; Farnsworth, K.L.; Wheatcroft, R.A.; Goni, M.A.

    2011-01-01

    The majority of water and sediment discharge from the small, mountainous watersheds of the US West Coast occurs during and immediately following winter storms. The physical conditions (waves, currents, and winds) within and acting upon the proximal coastal ocean during these winter storms strongly influence dispersal patterns. We examined this river-ocean temporal coherence for four coastal river-shelf systems of the US West Coast (Umpqua, Eel, Salinas, and Santa Clara) to evaluate whether specific ocean conditions occur during floods that may influence coastal dispersal of sediment. Eleven years of corresponding river discharge, wind, and wave data were obtained for each river-shelf system from USGS and NOAA historical records, and each record was evaluated for seasonal and event-based patterns. Because near-bed shear stresses due to waves influence sediment resuspension and transport, we used spectral wave data to compute and evaluate wave-generated bottom-orbital velocities. The highest values of wave energy and discharge for all four systems were consistently observed between October 15 and March 15, and there were strong latitudinal patterns observed in these data with lower discharge and wave energies in the southernmost systems. During floods we observed patterns of river-ocean coherence that differed from the overall seasonal patterns. For example, downwelling winds generally prevailed during floods in the northern two systems (Umpqua and Eel), whereas winds in the southern systems (Salinas and Santa Clara) were generally downwelling before peak discharge and upwelling after peak discharge. Winds not associated with floods were generally upwelling on all four river-shelf systems. Although there are seasonal variations in river-ocean coherence, waves generally led floods in the three northern systems, while they lagged floods in the Santa Clara. Combined, these observations suggest that there are consistent river-ocean coherence patterns along the US West Coast during winter storms and that these patterns vary substantially with latitude. These results should assist with future evaluations of flood plume formation and sediment fate along this coast. ?? 2011 Elsevier Ltd.

  17. NASA Sees Major Winter Storm Headed for Eastern U.S.

    NASA Image and Video Library

    2017-12-08

    On Jan. 20 at 2:30 p.m. EST the VIIRS instrument aboard NASA-NOAA's Suomi NPP captured this image of the winter storm moving through the central U.S. Credits: NASA Goddard Rapid Response The low pressure area from the Eastern Pacific Ocean moved into the western U.S. and tracked across the four corners region into Texas where NASA-NOAA's Suomi NPP satellite observed the clouds associated with the storm. The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument aboard Suomi NPP satellite captured the visible image on January 20, 2016 at 19:30 UTC (2:30 p.m. EST) when the storm was over the central U.S. In the image, snow cover is visible in the Rockies and southern Great Lakes states. VIIRS collects visible and infrared imagery and global observations of land, atmosphere, cryosphere and oceans. That low pressure system located over the south central United States on Jan. 21 is expected to track east across the Tennessee Valley and will give way to a deepening coastal low pressure area. The National Weather Service said "This latter feature takes over and becomes a dominant force in setting up heavy snow bands over the Mid-Atlantic and very gusty winds." The storm system is expected to bring an increased risk of severe weather from far southeastern Texas across southern Louisiana/Mississippi, and into the far western Florida Panhandle on Thursday, Jan. 21. That threat for severe weather will move east as the low pressure area continues heading in that direction. The National Weather Service Weather Prediction Center in College Park, Maryland said "A potentially crippling winter storm is anticipated for portions of the mid-Atlantic Friday into early Saturday. Snowfall may approach two feet for some locations, including the Baltimore and Washington, D.C. metro areas. Farther north, there is uncertainty in snowfall for the New York City-to-Boston corridor. Farther south, significant icing is likely for portions of Kentucky and North Carolina." NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Latitudinal and Seasonal Investigations of Storm-Time TEC Variation

    NASA Astrophysics Data System (ADS)

    Adimula, I. A.; Oladipo, O. A.; Adebiyi, S. J.

    2016-07-01

    The ionosphere responds markedly and unpredictably to varying magnetospheric energy inputs caused by solar disturbances on the geospace. Knowledge of the impact of the space weather events on the ionosphere is important to assess the environmental effect on the operations of ground- and space-based technologies. Thus, global positioning system (GPS) measurements from the international GNSS service (IGS) database were used to investigate the ionospheric response to 56 geomagnetic storm events at six different latitudes comprising the northern and southern hemispheres in the Afro-European sector. Statistical distributions of total electron content (TEC) response show that during the main phase of the storms, enhancement of TEC is more pronounced in most of the seasons, regardless of the latitude and hemisphere. However, a strong seasonal dependence appears in the TEC response during the recovery phase. Depletion of TEC is majorly observed at the high latitude stations, and its appearance at lower latitudes is seasonally dependent. In summer hemisphere, the depletion of TEC is more pronounced in nearly all the latitudinal bands. In winter hemisphere, enhancement as well as depletion of TEC is observed over the high latitude, while enhancement is majorly observed over the mid and low latitudes. In equinoxes, the storm-time TEC distribution shows a fairly consistent characteristic with the summer distribution, particularly in the northern hemisphere.

  19. Direct observations of atmosphere - sea ice - ocean interactions during Arctic winter and spring storms

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.

    2017-12-01

    To study the thinner and younger sea ice that now dominates the Arctic the Norwegian Young Sea ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in air temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of sea salt aerosol and sea ice deformation. The heavy snow load caused widespread negative freeboard; during sea ice deformation events, level ice floes were flooded by sea water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation processes opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters through mixing. Finally, the combination of a higher lead fraction and thinner ice cover, driven in part by storms, helped facilitate an early under-ice phytoplankton bloom in May, far inside the ice pack. In summary the storms entail significant effects on the ice pack that may last much longer than the short-lived storm events.

  20. Temporal and spatial variations in suspended matter in continental shelf and slope waters off the north-eastern United States

    USGS Publications Warehouse

    Bothner, Michael H.; Parmenter, Carol M.; Milliman, John D.

    1981-01-01

    Seston in waters of Georges Bank originates primarily from biological production and from resuspension of bottom sediments. The concentrations of suspended matter observed on the central shoals are more influenced by storms than by seasonal changes. Winter storms produce highest concentrations of non-combustible material throughout the water column, and summer storms appear to increase biological production by mixing additional nutrients into the photic zone. On the south-east flank of the bank, in water depths between 80 and 200 in, the concentrations of total suspended matter and non-combustible material show little variation compared with the central shoals, and storm effects are far less noticeable.Highest concentrations (>15 mg 1−1) of suspended matter occur in bottom waters south of Nantucket Island after winter storms and appear to be primarily resuspended bottom sediment. Resuspended sediment is also common in near-bottom waters of the south-western Gulf of Maine, and occasionally near the intersection of the shelf/slope water mass front and the bottom.Seasonal variations were observed in the distribution and species composition of phytoplankton. Coccoliths are predominant on the central bank during the winter, but during the spring and summer they are concentrated on the eastern flank at deeper depths.

  1. Extreme storm activity in North Atlantic and European region

    NASA Astrophysics Data System (ADS)

    Vyazilova, N.

    2010-09-01

    The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.

  2. Atmosphere-Wave-Ocean Coupling from Regional to Global Earth System Models for High-Impact Extreme Weather Prediction

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Curcic, M.

    2017-12-01

    The need for acurrate and integrated impact forecasts of extreme wind, rain, waves, and storm surge is growing as coastal population and built environment expand worldwide. A key limiting factor in forecasting impacts of extreme weather events associated with tropical cycle and winter storms is fully coupled atmosphere-wave-ocean model interface with explicit momentum and energy exchange. It is not only critical for accurate prediction of storm intensity, but also provides coherent wind, rian, ocean waves and currents forecasts for forcing for storm surge. The Unified Wave INterface (UWIN) has been developed for coupling of the atmosphere-wave-ocean models. UWIN couples the atmosphere, wave, and ocean models using the Earth System Modeling Framework (ESMF). It is a physically based and computationally efficient coupling sytem that is flexible to use in a multi-model system and portable for transition to the next generation global Earth system prediction mdoels. This standardized coupling framework allows researchers to develop and test air-sea coupling parameterizations and coupled data assimilation, and to better facilitate research-to-operation activities. It has been used and extensively tested and verified in regional coupled model forecasts of tropical cycles and winter storms (Chen and Curcic 2016, Curcic et al. 2016, and Judt et al. 2016). We will present 1) an overview of UWIN and its applications in fully coupled atmosphere-wave-ocean model predictions of hurricanes and coastal winter storms, and 2) implenmentation of UWIN in the NASA GMAO GEOS-5.

  3. Comprehensive Condition Survey and Storm Waves, Circulation, and Sediment Study, Dana Point Harbor, California

    DTIC Science & Technology

    2014-12-01

    waters; 3) west to northwest local sea; 4) prefrontal local sea; 5) tropical storm swell; and 6) extratropical cyclone in the southern hemisphere...14-13 58 Prefrontal local sea The coastal zone within the south Orange County area is vulnerable under extratropical winter storm conditions (a...wave characteristics for severe extratropical storms during the 39 yr time period (1970–2008) are comparable to peak storm wave heights that were

  4. Effect of the El Nino/southern oscillation on Gulf of Mexico, winter, frontal-wave cyclones: 1960-1989. (Volumes I and II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manty, R.E.

    Seasonal counts of frontal-wave cyclones forming over the Gulf of Mexico and its coastal plain show more storms in the five El Nino winters and fewer storms in the eight La Nina winters, from 1960 to 1989, significant at the .01 level by a rank sum test. This is corroborated by two results. First, during the same period, the frequency of frontal-overrunning weather conditions in the region, indicative of storms, was higher in El Nino winters and lower in La Nina winters. Second, 100 years of precipitation and temperature records show wetter, cooler El Nino winters and drier, warmer Lamore » Nina winters at gulf-region land stations and climatic divisions. A threefold explanation, based on National Meteorological Center, upper-air data, is offered for the greater frequency of gulf-region cyclogenesis during El Nino winters between 1960 and 1989. (1) The winter, mean, 250-mb jet over the southern US is intensified by 5 to 10 ms[sup [minus]1] and displaced southward between 110[degrees] and 75[degrees]W by an average of 200 to 285 km during the five El Nino winters. This implies stronger and more frequent episodes of jet-associated, upper-level troughing and divergence over the region, reinforcing surface, frontal-wave cyclones. (2) In the five El Nino winters between 1963 and 1989, seasonal average heights and temperatures of the 850-, 700-, 500-, and 200-mb surfaces are lower over the region than they are in non-El Nino winters. This implies more-common presence of cold, low-pressure troughs at upper levels, reinforcing surface cyclones. (3) A 10[degrees] eastward shift, at sea level, of the western edge of the Bermuda high during the eight El Nino winters, changes normally due-easterly trades in the northwestern Caribbean Sea to slightly south of east, allowing greater advection of moisture and heat into the gulf from the tropics, preconditioning the area for development of surface cyclones. Only winter season shows all three conditions and an increase in cyclogenesis.« less

  5. Trends in Northern Hemisphere surface cyclone frequency and intensity

    USGS Publications Warehouse

    McCabe, G.J.; Clark, M.P.; Serreze, Mark C.

    2001-01-01

    One of the hypothesized effects of global warming from increasing concentrations of greenhouse gases is a change in the frequency and/or intensity of extratropical cyclones. In this study, winter frequencies and intensities of extratropical cyclones in the Northern Hemisphere for the period 1959-97 are examined to determine if identifiable trends are occurring. Results indicate a statistically significant decrease in midlatitude cyclone frequency and a significant increase in high-latitude cyclone frequency. In addition, storm intensity has increased in both the high and midlatitudes. The changes in storm frequency correlate with changes in winter Northern Hemisphere temperature and support hypotheses that global warming may result in a northward shift of storm tracks in the Northern Hemisphere.

  6. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    NASA Astrophysics Data System (ADS)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  7. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  8. Revisiting the synoptic-scale predictability of severe European winter storms using ECMWF ensemble reforecasts

    NASA Astrophysics Data System (ADS)

    Pantillon, Florian; Knippertz, Peter; Corsmeier, Ulrich

    2017-10-01

    New insights into the synoptic-scale predictability of 25 severe European winter storms of the 1995-2015 period are obtained using the homogeneous ensemble reforecast dataset from the European Centre for Medium-Range Weather Forecasts. The predictability of the storms is assessed with different metrics including (a) the track and intensity to investigate the storms' dynamics and (b) the Storm Severity Index to estimate the impact of the associated wind gusts. The storms are well predicted by the whole ensemble up to 2-4 days ahead. At longer lead times, the number of members predicting the observed storms decreases and the ensemble average is not clearly defined for the track and intensity. The Extreme Forecast Index and Shift of Tails are therefore computed from the deviation of the ensemble from the model climate. Based on these indices, the model has some skill in forecasting the area covered by extreme wind gusts up to 10 days, which indicates a clear potential for early warnings. However, large variability is found between the individual storms. The poor predictability of outliers appears related to their physical characteristics such as explosive intensification or small size. Longer datasets with more cases would be needed to further substantiate these points.

  9. Winter Survival: A Consumer's Guide to Winter Preparedness.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet discusses a variety of topics to help consumers prepare for winter. Tips for the home include: winterizing the home, dealing with a loss of heat or power failure, and what you need to have on hand. Another section gives driving tips and what to do in a storm. Health factors include suggestions for keeping warm, signs and treatment for…

  10. Wave processes and geologic responses on the floor of the Yellow Sea

    USGS Publications Warehouse

    Booth, James S.; Winters, William J.

    1991-01-01

    The floor of the Yellow Sea is a geologically mundane surface: it is nearly horizontal, lacks relief, and, with few exceptions, is devoid of conspicuous geomorphologic features. However, it is the principal repository for the prodigious sediment load of the Huanghe (Yellow River); and, due to its inherent shallowness (average depth is 40 m), it is frequently stressed by waves generated by winter storms and typhoons. Analyses of mass physical properties of cores representing the upper few meters of sediment in the central and north-central Yellow Sea (near the Shandong Peninsula), in conjunction with analyses of slope stability, failure modes, and erodibility, permit an assessment of the likelihood and effect of dynamic, transient geologic events on the seabed.Vane shear-strength profiles along with consolidation test data indicate that the present surface of the seabed is in a depositional mode and is compacting normally. in addition, liquid-limit profiles imply that in the study area these neritic sediments have been accumulating in an environment that probably has not been modified significantly since sea level reached its current level. There is no geotechnical evidence in the nine cores recovered that slope failures have occurred, and clasts, sand lenses or other manifestations of mass movements, including flows, also are absent. These observations support previous interpretations of seismic records. Moreover, slope stability analysis for static conditions shows that the sea floor is quite stable.Regardless, shear-stress levels generated by cyclic loading during major storms may approach the sediment shear strengths, and, when coupled with concomitant excess pore pressures, could cause slope failure. Unless the failed beds collapsed or flowed, however, there probably would be little conspicuous evidence of such a failure. in fact, evaluation of the potential of these sediments for disintegrative behavior suggests that they are not prone to either collapse or flow.Storm waves also generate oscillatory bottom currents that may erode the seabed. Whether the sediment is considered as cohesionless or cohesive, typhoons could have the potential to erode at all water depths within the Yellow Sea (i.e., to 90 m), and winter storms to water depths of 60 m or more. However, in the case of cohesive behavior, it could be that the effect of winter storms and most typhoons is generally less extreme. If the sea floor is repeatedly scoured, it is likely limited to the top few centimeters.Despite the fact that storm waves may cause slope failure and are certainly responsible for frequent scouring, they probably leave only a subtle sedimentologic imprint on the seabed.

  11. F layer positive response to a geomagnetic storm - June 1972

    NASA Technical Reports Server (NTRS)

    Miller, N. J.; Grebowsky, J. M.; Mayr, H. G.; Harris, I.; Tulunay, Y. K.

    1979-01-01

    A circulation model of neutral thermosphere-ionosphere coupling is used to interpret in situ spacecraft measurements taken during a topside midlatitude ionospheric storm. The data are measurements of electron density taken along the circular polar orbit of Ariel 4 at 550 km during the geomagnetically disturbed period June 17-18, 1972. It is inferred that collisional momentum transfer from the disturbed neutral thermosphere to the ionosphere was the dominant midday process generating the positive F-layer storm phase in the summer hemisphere. In the winter hemisphere the positive storm phase drifted poleward in the apparent response to magnetospheric E x B drifts. A summer F-layer positive phase developed at the sudden commencement and again during the geomagnetic main phase; a winter F-layer positive phase developed only during the geomagnetic main phase. The observed seasonal differences in both the onsets and the magnitudes of the positive phases are attributed to the interhemispheric asymmetry in thermospheric dynamics.

  12. Characteristics of ionospheric storms in East Asia

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wang, Guojun; Shi, Jiankui

    The ionosphere experiences intense response during the geomagnetic storm and it varies with latitude and longitude. The DPS-4 digisonde measurements and GPS-TEC data of ionospheric stations located at different latitudes in the longitudinal sector of 90-130E during 2002 to 2012 were analyzed to investigate the ionospheric effects in the different latitude of East Asia during geomagnetic storm. About 70 geomagnetic storms are selected according to the Dst index and observed data and they are in different seasons and different solar activity levels. A few quiet days’ averages of data before geomagnetic storm were used as the undisturbed level. Results show that for the middle and high latitude, the short-lived positive disturbance associated with the initial phase of the every storm was observed in each season and then the disturbances were negative till the termination of storm. At the low latitude, storm-time disturbances of foF2 have obvious diurnal, seasonal and solar cycle characteristics. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime except for the summer in low solar activity period. The intensity of response of foF2 is stronger at nighttime than that at daytime. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only. It’s notable that geomagnetic activities occurred at local time nighttime can cause stronger and longer responses of foF2 at the low latitude. All in all, the obvious negative phase ionospheric storms often occurred at the low latitude. Moreover a notable phenomenon was observed for the low latitude, there are the intensive oscillations of foF2 occurring during the main storm phase of enhanced storm in Hainan, and it occurred in the morning generally. For the TEC data, strong disturbances can be observed simultaneously from high latitude to low latitude during the main phase of some storms. Generally strong/weak storms can cause the negative/positive phase storms of TEC in the low latitude and which are obvious in the daytime for the summer and winter and in the period from noon to midnight for the equinox. The differences of the responses of foF2 and TEC are also investigated.

  13. Impacts of a Destructive and Well-Observed Cross-Country Winter Storm.

    NASA Astrophysics Data System (ADS)

    Martner, Brooks E.; Rauber, Robert M.; Ramamurthy, Mohan K.; Rasmussen, Roy M.; Prater, Erwin T.

    1992-02-01

    A winter storm that crossed the continental United States in mid-February 1990 produced hazardous weather across a vast area of the nation. A wide range of severe weather was reported, including heavy snowfall; freezing rain and drizzle; thunderstorms with destructive winds, lightning, large hail, and tornadoes; prolonged heavy rain with subsequent flooding; frost damage to citrus orchards; and sustained destructive winds not associated with thunderstorms. Low-end preliminary estimates of impacts included 9 deaths, 27 injuries, and $120 million of property damage. At least 35 states and southeastern Canada were adversely affected. The storm occurred during the field operations of four independent atmospheric research projects that obtained special, detailed observations of it from the Rocky Mountains to the eastern great Lakes.

  14. Is It Going to Rain Today? Understanding the Weather Forecast.

    ERIC Educational Resources Information Center

    Allsopp, Jim; And Others

    1996-01-01

    Presents a resource for science teachers to develop a better understanding of weather forecasts, including outlooks, watches, warnings, advisories, severe local storms, winter storms, floods, hurricanes, nonprecipitation hazards, precipitation probabilities, sky condition, and UV index. (MKR)

  15. Enhanced Preliminary Assessment Report: Presidio of San Francisco Military Reservation, San Francisco, California

    DTIC Science & Technology

    1989-11-01

    Secretary of War for the Treasury Department for use as a Life Saving Service. This site was relocated in 1915 to land originally to be used for the...San Francisco Bay, PSF has a temperate, Mediterranean climate. 4 Generally, winter is rainy and mild, spring is sunny and mild, summer is foggy and cool ...associated with major Pacific storms and are of short duration. 4 The topography of the PSF shelters most of the north shore from the cool marine air

  16. Satellite Shows Major Winter Storm Hitting the U.S. South

    NASA Image and Video Library

    2014-02-11

    Clouds associated with the major winter storm that is bringing wintry precipitation and chilly temperatures to the U.S. south is the focus in an image from NOAA's GOES-East satellite today, February 12 at 1310 UTC/ 8:10 EST. Rain, freezing rain, sleet and snow are part of the large front that stretches from eastern Texas to the Carolinas in the Geostationary Operational Environmental satellite or GOES image. NOAA's weather maps show several areas of low pressure along the frontal boundary. One low pressure is in the northern Gulf of Mexico, while the other is in the Atlantic Ocean, just south of South Carolina. (Insert link: www.hpc.ncep.noaa.gov/noaa/noaad1.gif). NOAA's National Weather Service has been issuing watches and warnings throughout the south that extend along Mid-Atlantic east coast. The visible cloud and ground snow data in this image was taken from NOAA's GOES-East satellite. The image was created by the NASA GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds and fallen snow were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites. NOAA's Weather Prediction Center, or WPC noted on Feb. 11 at 3:59 a.m. EST, "Once the intensifying surface low moves off the Southeast coast and begins its track up the Eastern Seaboard Wednesday night...winter weather will start lifting northward into the northern Mid-Atlantic states." GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website; www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. The contribution of sting-jet windstorms to extreme wind risk in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Hart, Neil C.; Gray, Suzanne L.; Clark, Peter A.

    2016-04-01

    Windstorms are a major winter weather risk for many countries in Europe. These storms are predominantly associated with explosively-developing extratropical cyclones that track across the region. A substantial body of literature exists on the synoptic-scale dynamics, predictability and climatology of such storms. More recently, interest in the mesoscale variability of the most damaging winds has led to a focus on the role of sting jets in enhancing windstorm severity. We present a present-era climatology of North Atlantic cyclones that had potential to produce sting jets. Considering only explosively-developing cyclones, those with sting-jet potential are more likely to have higher relative vorticity and associated low-level wind maxima. Furthermore, the strongest winds for sting-jet cyclones are more often in the cool sector, behind the cold front, when compared with other explosively-developing cyclones which commonly have strong warm-sector winds too. The tracks of sting-jet cyclones, and explosively-developing cyclones in general, show little offset from the climatological storm track. While rare over Europe, sting-jet cyclones are relatively frequent within the main storm track with up to one third of extratropical cyclones exhibiting sting-jet potential. Thus, the rarity and, until recently, lack of description of sting-jet windstorms is more due to the climatological storm track location away from highly-populated land masses, than due to an actual rarity of such storms in nature.

  18. The likelihood of winter sprites over the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Price, Colin; Burrows, William; King, Patrick

    2002-11-01

    With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.

  19. Spatial Scaling of Floods in Atlantic Coastal Watersheds

    NASA Astrophysics Data System (ADS)

    Plank, C.

    2013-12-01

    Climate and land use changes are altering global, regional and local hydrologic cycles. As a result, past events may not accurately represent the events that will occur in the future. Methods for hydrologic prediction, both statistical and deterministic, require adequate data for calibration. Streamflow gauges tend to be located on large rivers. As a result, statistical flood frequency analysis, which relies on gauge data, is biased towards large watersheds. Conversely, the complexity of parameterizing watershed processes in deterministic hydrological models limits these to small watersheds. Spatial scaling relationships between drainage basin area and discharge can be used to bridge these two methodologies and provide new approaches to hydrologic prediction. The relationship of discharge (Q) to drainage basin area (A) can be expressed as a power function: Q = αAθ. This study compares scaling exponents (θ) and coefficients (α) for floods of varying magnitude across a selection of major Atlantic Coast watersheds. Comparisons are made by normalizing flood discharges to a reference area bankfull discharge for each watershed. These watersheds capture the geologic and geomorphic transitions along the Atlantic Coast from narrow bedrock-dominated river valleys to wide coastal plain watersheds. Additionally, there is a range of hydrometeorological events that cause major floods in these basins including tropical storms, thunderstorm systems and winter-spring storms. The mix of flood-producing events changes along a gradient as well, with tropical storms and hurricanes increasing in dominance from north to south as a significant cause of major floods. Scaling exponents and coefficients were determined for both flood quantile estimates (e.g. 1.5-, 10-, 100-year floods) and selected hydrometeorological events (e.g. hurricanes, summer thunderstorms, winter-spring storms). Initial results indicate that southern coastal plain watersheds have lower scaling exponents (θ) than northern watersheds. However, the relative magnitudes of 100-year and other large floods are higher in the coastal plain rivers. In the transition zone between northern and southern watersheds, basins like the Potomac in the Mid-Atlantic region have similar scaling exponents as northern river basins, but relative flood magnitudes comparable to the southern coastal plain watersheds. These differences reflect variations in both geologic/geomorphic and climatic settings. Understanding these variations are important to appropriately using these relationships to improve flood risk models and analyses.

  20. Hydrographic and particle distributions over the Palos Verdes continental shelf: Spatial, seasonal and daily variability

    USGS Publications Warehouse

    Jones, B.H.; Noble, M.A.; Dickey, T.D.

    2002-01-01

    Moorings and towyo mapping were used to study the temporal and spatial variability of physical processes and suspended particulate material over the continental shelf of the Palos Verdes Peninsula in southwestern Los Angeles, California during the late summer of 1992 and winter of 1992-93. Seasonal evolution of the hydrographic structure is related to seasonal atmospheric forcing. During summer, stratification results from heating of the upper layer. Summer insolation coupled with the stratification results in a slight salinity increase nearsurface due to evaporation. Winter cooling removes much of the upper layer stratification, but winter storms can introduce sufficient quantities of freshwater into the shelf water column again adding stratification through the buoyancy input. Vertical mixing of the low salinity surface water deeper into the water column decreases the sharp nearsurface stratification and reduces the overall salinity of the upper water column. Moored conductivity measurements indicate that the decreased salinity persisted for at least 2 months after a major storm with additional freshwater inputs through the period. Four particulate groups contributed to the suspended particulate load in the water column: phytoplankton, resuspended sediments, and particles in treated sewage effluent were observed in every towyo mapping cruise; terrigenous particles are introduced through runoff from winter rainstorms. Terrigenous suspended particulate material sinks from the water column in <9 days and phytoplankton respond to the stormwater input of buoyancy and nutrients within the same period. The suspended particles near the bottom have spatially patchy distributions, but are always present in hydrographic surveys of the shelf. Temporal variations in these particles do not show a significant tidal response, but they may be maintained in suspension by internal wave and tide processes impinging on the shelf. ?? 2002 Elsevier Science Ltd. All rights reserved.

  1. NASA Sees Winter's Northeastern U.S. Snowcover Extend Farther South

    NASA Image and Video Library

    2015-02-17

    A winter storm that moved through the Mid-Atlantic on Feb. 16 and 17, 2015 extended the northeastern U.S. snowcover farther south. Until this storm hit, southern New Jersey and southeastern Pennsylvania appeared snow-free on satellite imagery from the previous week. The overnight storm blanketed the entire states of New Jersey and Pennsylvania, as seen on this Feb. 16 image. The image was taken from the MODIS or Moderate Resolution Imaging Spectroradiometer instrument that flies aboard NASA's Terra satellite. The snow cover from the storm actually extended even farther south than the image. Snowfall also blanketed West Virginia, Kentucky, Maryland, Delaware and Virginia, while freezing rain and icy conditions affected the Carolinas, Tennessee and Georgia. On Feb. 17, 2015, NOAA's National Weather Service noted "The winter storm that brought widespread snow, sleet and freezing rain to parts of the south-central U.S. and Mid-Atlantic will wind down as it moves offshore Tuesday. Lingering snow and freezing rain is possible early Tuesday for parts of the Northeast and mid-Atlantic, with rain across parts of the Southeast." Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. An evaluation of winter operational runway friction measurement equipment, procedures and research

    DOT National Transportation Integrated Search

    1995-01-25

    For many years, the aviation community has struggled with runway friction reporting practices. Airport operations personnel, in taking on the responsibility for conducting friction measurements during winter storms, work diligently to keep up with ra...

  3. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc

    NASA Astrophysics Data System (ADS)

    Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.

    2016-09-01

    The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.

  4. The Mars Science Laboratory Optical Depth Record

    NASA Astrophysics Data System (ADS)

    Lemmon, M. T.

    2014-07-01

    MSL’s Mastcam has been used to measure atmospheric dust loading. The observations show dust storms and the settling of dust during southern fall/winter and show mean dust radius declining from 1.6 to 1.4 microns as the dust settled post-storm.

  5. Extreme Event impacts on Seafloor Ecosystems

    NASA Astrophysics Data System (ADS)

    Canals, Miquel; Sanchez-Vidal, Anna; Calafat, Antoni; Pedrosa-Pàmies, Rut; Lastras, Galderic

    2013-04-01

    The Mediterranean region is among those presenting the highest concentration of cyclogenesis during the northern hemisphere winter, thus is frequently subjected to sudden events of extreme weather. The highest frequency of storm winds occur in its northwestern basin, and is associated to NE and NW storms. The occurrence of such extreme climatic events represents an opportunity of high scientific value to investigate how natural processes at their peaks of activity transfer matter and energy, as well as how impact ecosystems. Due to the approximately NE-SW orientation of the western Mediterranean coast, windforced motion coming from eastern storms generate the most intense waves and with very long fetch in the continental shelf and the coast, causing beach erosion, overwash and inundation of low-lying areas, and damage to infrastructures and coastal resources. On December 26, 2008 a huge storm afforded us the opportunity to understand the effect of storms on the deep sea ecosystems, as impacted violently an area of the Catalan coast covered by a dense network of monitoring devices including sediment traps and currentmeters. The storm, with measured wind gusts of more than 70 km h-1 and associated storm surge reaching 8 m, lead to the remobilisation of a shallow water large reservoir of marine organic carbon associated to fine particles and to its redistribution across the deep basin, and also ignited the motion of large amounts of coarse shelf sediment resulting in the abrasion and burial of benthic communities. In addition to eastern storms, increasing evidence has accumulated during the last few years showing the significance of Dense Shelf Water Cascading (DSWC), a type of marine current driven exclusively by seawater density contrast caused by strong and persistent NW winds, as a key driver of the deep Mediterranean Sea in many aspects. A network of mooring lines with sediment traps and currentmeters deployed in the Cap de Creus canyon in winter 2005-06 recorded a major DSWC event, the latest to date. Data show that DSWC modifies the properties of intermediate and deep waters, carries massive amounts of organic carbon to the basin thus fuelling the deep ecosystem, transports huge quantities of coarse and fine sedimentary particles that abrade canyon floors and rise the load of suspended particles, and also exports pollutants from the coastal area to deeper compartment. Our findings demonstrate that both types of climate-driven extreme events (coastal storms and DSWC) are highly efficient in transporting organic carbon from shallow to deep, thus contributing to its sequestration, and have the potential to tremendously impact the deep-sea ecosystems.

  6. Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Balan, N.; Le, Huijun; Chen, Yiding; Zhao, Biqiang

    2018-05-01

    Using C/NOFS satellite observations, this paper studies the disturbance field-aligned plasma drifts in the equatorial topside ionosphere during eight geomagnetic storms in 2011-2015. During all six storms occurred in the solstices, the disturbance field-aligned plasma drift is from winter to summer hemisphere especially in the morning-midnight local time sector and the disturbance is stronger in June solstice. The two storms occurred at equinoxes have very little effect on the field-aligned plasma drift. Using the plasma temperature data from DMSP satellites and Global Positioning System-total electron content, it is suggested that the plasma density gradient seems likely to cause the disturbance winter-to-summer plasma drift while the role of plasma temperature gradient is opposite to the observed plasma drift.

  7. Evaluation of ikonos satellite imagery for detecting ice storm damage to oak forests in Eastern Kentucky

    Treesearch

    W. Henry McNab; Tracy Roof

    2006-01-01

    Ice storms are a recurring landscape-scale disturbance in the eastern U.S. where they may cause varying levels of damage to upland hardwood forests. High-resolution Ikonos imagery and semiautomated detection of ice storm damage may be an alternative to manually interpreted aerial photography. We evaluated Ikonos multispectral, winter and summer imagery as a tool for...

  8. Susceptibility of central hardwood trees to stem breakage due to ice glazing

    Treesearch

    KaDonna C. Randolph

    2014-01-01

    During January 26-28, 2009, a winter storm dropped a mix of rain, ice, and snow from Texas across the Ohio River Valley and into New England. The storm caused multiple fatalities and millions of dollars of property damage and was called "the biggest natural disaster in modern Kentucky history" (Brammer and Funk 2009: 13). The storm disturbed an estimated 2.4...

  9. Numerical Modeling of Coastal Inundation and Sedimentation by Storm Surge, Tides, and Waves at Norfolk, Virginia, USA

    DTIC Science & Technology

    2012-07-01

    hurricanes (tropical) with a 50-year and a 100-year return period, and one winter storm ( extratropical ) occurred in October 1982. There are a total of 15...under the 0-m and 2-m SLR scenarios, respectively. • Tropical and extratropical storms induce extensive coastal inundation around the military...1 NUMERICAL MODELING OF COASTAL INUNDATION AND SEDIMENTATION BY STORM SURGE, TIDES, AND WAVES AT NORFOLK, VIRGINIA, USA Honghai Li 1 , Lihwa Lin 1

  10. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West coast of North America based on eight years of SSM/I satellite observations

    USGS Publications Warehouse

    Neiman, P.J.; Ralph, F.M.; Wick, G.A.; Lundquist, J.D.; Dettinger, M.D.

    2008-01-01

    The pre-cold-frontal low-level jet within oceanic extratropical cyclones represents the lower-tropospheric component of a deeper corridor of concentrated water vapor transport in the cyclone warm sector. These corridors are referred to as atmospheric rivers (ARs) because they are narrow relative to their length scale and are responsible for most of the poleward water vapor transport at midlatitudes. This paper investigates landfalling ARs along adjacent north- and south-coast regions of western North America. Special Sensor Microwave Imager (SSM/ I) satellite observations of long, narrow plumes of enhanced integrated water vapor (IWV) were used to detect ARs just offshore over the eastern Pacific from 1997 to 2005. The north coast experienced 301 AR days, while the south coast had only 115. Most ARs occurred during the warm season in the north and cool season in the south, despite the fact that the cool season is climatologically wettest for both regions. Composite SSM/I IWV analyses showed landfalling wintertime ARs extending northeastward from the tropical eastern Pacific, whereas the summertime composites were zonally oriented and, thus, did not originate from this region of the tropics. Companion SSM/I composites of daily rainfall showed significant orographic enhancement during the landfall of winter (but not summer) ARs. The NCEP-NCAR global reanalysis dataset and regional precipitation networks were used to assess composite synoptic characteristics and overland impacts of landfalling ARs. The ARs possess strong vertically integrated horizontal water vapor fluxes that, on average, impinge on the West Coast in the pre-cold-frontal environment in winter and post-cold-frontal environment in summer. Even though the IWV in the ARs is greater in summer, the vapor flux is stronger in winter due to much stronger flows associated with more intense storms. The landfall of ARs in winter and north-coast summer coincides with anomalous warmth, a trough offshore, and ridging over the Intermountain West, whereas the south-coast summer ARs coincide with relatively cold conditions and a near-coast trough. ARs have a much more profound impact on near-coast precipitation in winter than summer, because the terrain-normal vapor flux is stronger and the air more nearly saturated in winter. During winter, ARs produce roughly twice as much precipitation as all storms. In addition, wintertime ARs with the largest SSM/I IWV are tied to more intense storms with stronger flows and vapor fluxes, and more precipitation. ARs generally increase snow water equivalent (SWE) in autumn/winter and decrease SWE in spring. On average, wintertime SWE exhibits normal gains during north-coast AR storms and above-normal gains during the south-coast AR storms. The north-coast sites are mostly lower in altitude, where warmer-than-normal conditions more frequently yield rain. During those events when heavy rain from a warm AR storm falls on a preexisting snowpack, flooding is more likely to occur. ?? 2008 American Meteorological Society.

  11. Overview and first results of the Wind and Storms Experiment (WASTEX): a field campaign to observe the formation of gusts using a Doppler lidar

    NASA Astrophysics Data System (ADS)

    Pantillon, Florian; Wieser, Andreas; Adler, Bianca; Corsmeier, Ulrich; Knippertz, Peter

    2018-05-01

    Wind gusts are responsible for most damages in winter storms over central Europe, but capturing their small scale and short duration is a challenge for both models and observations. This motivated the Wind and Storms Experiment (WASTEX) dedicated to investigate the formation of gusts during the passage of extratropical cyclones. The field campaign took place during the winter 2016-2017 on a former waste deposit located close to Karlsruhe in the Upper Rhine Valley in southwest Germany. Twelve extratropical cyclones were sampled during WASTEX with a Doppler lidar system performing vertical scans in the mean wind direction and complemented with a Doppler C-band radar and a 200 m instrumented tower. First results are provided here for the three most intense storms and include a potential sting jet, a unique direct observation of a convective gust and coherent boundary-layer structures of strong winds.

  12. Anticipating and Communicating Plausible Environmental and Health Concerns Associated with Future Disasters: The ShakeOut and ARkStorm Scenarios as Examples

    NASA Astrophysics Data System (ADS)

    Plumlee, G. S.; Morman, S. A.; Alpers, C. N.; Hoefen, T. M.; Meeker, G. P.

    2010-12-01

    Disasters commonly pose immediate threats to human safety, but can also produce hazardous materials (HM) that pose short- and long-term environmental-health threats. The U.S. Geological Survey (USGS) has helped assess potential environmental health characteristics of HM produced by various natural and anthropogenic disasters, such as the 2001 World Trade Center collapse, 2005 hurricanes Katrina and Rita, 2007-2009 southern California wildfires, various volcanic eruptions, and others. Building upon experience gained from these responses, we are now developing methods to anticipate plausible environmental and health implications of the 2008 Great Southern California ShakeOut scenario (which modeled the impacts of a 7.8 magnitude earthquake on the southern San Andreas fault, http://urbanearth.gps.caltech.edu/scenario08/), and the recent ARkStorm scenario (modeling the impacts of a major, weeks-long winter storm hitting nearly all of California, http://urbanearth.gps.caltech.edu/winter-storm/). Environmental-health impacts of various past earthquakes and extreme storms are first used to identify plausible impacts that could be associated with the disaster scenarios. Substantial insights can then be gleaned using a Geographic Information Systems (GIS) approach to link ShakeOut and ARkStorm effects maps with data extracted from diverse database sources containing geologic, hazards, and environmental information. This type of analysis helps constrain where potential geogenic (natural) and anthropogenic sources of HM (and their likely types of contaminants or pathogens) fall within areas of predicted ShakeOut-related shaking, firestorms, and landslides, and predicted ARkStorm-related precipitation, flooding, and winds. Because of uncertainties in the event models and many uncertainties in the databases used (e.g., incorrect location information, lack of detailed information on specific facilities, etc.) this approach should only be considered as the first of multiple steps toward a more quantitative, predictive approach to understanding the potential sources, types, environmental behavior, and health implications of HM predicted to result from these disaster scenarios. Although only a first step, this qualitative approach will help enhance planning for, mitigation of, and resilience to environmental-health consequences of future disasters. This qualitative approach also requires careful communication to stakeholders that does not sensationalize or overstate potential problems, but rather conveys plausible impacts and next steps to improve understanding of potential risks and their mitigation.

  13. Satellite Shows a Mid-Atlantic St. Patrick's Day Snow

    NASA Image and Video Library

    2014-03-17

    The green of St. Patrick's Day in the Mid-Atlantic was covered by white snow as a result of a late winter snow storm. The covering of the green was captured in a movie made at NASA using NOAA's GOES satellite data. The winter storm dropped snow totals from 6" to 12" of snow from Baltimore, Md. to Richmond, Va. The storm arrived during the evening of March 16 and continued through March 17. As of 1 p.m. EDT, light bands of snow continued to fall throughout the Washington, D.C. area. NOAA's GOES-East satellite captured the path the storm took through the Mid-Atlantic as it moved in from the west on March 15 and dropped snow March 16 and 17. NOAA's GOES-East satellite sits in a fixed orbit in space and captures visible and infrared imagery of all weather over the eastern U.S. and Atlantic Ocean. As of 1 p.m. EDT on March 17, the National Weather Service still maintained a Winter Storm Warning from Cecil County in northeastern Maryland that stretched west to Frederick County. The warning continued in Virginia counties including Clarke, Warren, Rappahannock, Madison and stretched to Albemarle and southwest. Southeastern counties in Virginia south of the city of Fredericksburg remained under a Winter Weather Advisory. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Solute Response To Arid-Climate Managed-River Flow During Storm Events

    NASA Astrophysics Data System (ADS)

    McLean, B.; Shock, E.

    2006-12-01

    Storm pulses are widely used in unmanaged, temperate and subtropical river systems to resolve in-stream surface and subsurface flow components. Resulting catchment-scale hydrochemical mixing models yield insight into mechanisms of solute transport. Managed systems are far more complicated due to the human need for high quality water resources, which drives processes that are superimposed on most, if not all, of the unmanaged components. As an example, an increasingly large portion of the water supply for the Phoenix metropolitan area is derived from multiple surface water sources that are impounded, diverted and otherwise managed upstream from the urban core that consumes the water and produces anthropogenic impacts. During large storm events this managed system is perturbed towards natural behavior as it receives inputs from natural hydrologic pathways in addition to impervious surfaces and storm water drainage channels. Our goals in studying managed river systems during this critical transition state are to determine how the well- characterized behavior of natural systems break down as the system responds then returns to its managed state. Using storm events as perturbations we can contrast an arid managed system with the unmanaged system it approaches during the storm event. In the process, we can extract geochemical consequences specifically related to unknown urban components in the form of chemical fingerprints. The effects of river management on solute behavior were assessed by taking advantage of several anomalously heavy winter storm events in late 2004 and early 2005 using a rigorous sampling routine. Several hundred samples collected between January and October 2005 were analyzed for major ion, isotopic, and trace metal concentrations with 78 individual measurements for each sample. The data are used to resolve managed watershed processes, mechanisms of solute transport and river mixing from anthropogenic inputs. Our results show that concentrations of major solutes change slowly and are independent of discharge downstream from the dams on two major tributaries. This is indicative of reservoir release water. In addition, a third input is derived from the Colorado River via the Central Arizona Project canal system. Cross plots including concentrations of solutes such as nitrate and sulfate from downstream of the confluence indicate at least three end-member sources, as do Piper diagrams using major anion and cation data. Dynamic contributions from natural event water and urban inputs can be resolved from the slowly changing release water, and may dictate the short-term transport of pollutants during the storm-induced transition state.

  15. Final Scientific/Technical Report for Subseasonal to Seasonal Prediction of Extratropical Storm Track Activity over the U.S. using NMME data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Edmund Kar-Man

    The goals of the project are: 1) To develop and assess subseasonal to seasonal prediction products for storm track activity derived from NMME data; 2) Assess how much of the predictable signal can be associated with ENSO and other modes of large scale low frequency atmosphere-ocean variability; and 3) Further explore the link between storm track variations and extreme weather statistics. Significant findings of this project include the followings: 1) Our assessment of NMME reforecasts of storm track variability has demonstrated that NMME models have substantial skill in predicting storm track activity in the vicinity of North America - Subseasonalmore » skill is high only for leads of less than 1 month. However, seasonal (winter) prediction skill near North America is high even out to 4 to 5 months lead - Much of the skill for leads of 1 month or longer is related to the influence of ENSO - Nevertheless, lead 0 NMME predictions are significantly more skillful than those based on ENSO influence 2) Our results have demonstrated that storm track variations highly modulate the frequency of occurrence of weather extremes - Extreme cold, high wind, and extreme precipitation events in winter - Extreme heat events in summer - These results suggest that NMME storm track predictions can be developed to serve as a useful guidance to assist the formulation of monthly/seasonal outlooks« less

  16. Severe Weather Guide - Mediterranean Ports. 4. Augusta Bay

    DTIC Science & Technology

    1988-03-01

    the year. The track o-f strong extratropical storms has moved northward and poses little tiireat to Augusta Bay. Sea breezes are daily occurrences...as temperatures, begin to moderate. Extratropi cal systems begin to transit Europe as the storm track moves southward in advance of the winter...SUB-GROUP 18. SUBJECT TERMS {Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Augusta Bay

  17. Long-Range Operational Military Forecasts for Afghanistan

    DTIC Science & Technology

    2007-03-01

    the winter and early spring months with eastward–moving extratropical synoptic storms , such as the Cyprus and Genoa low pressure systems out of the...significant impact on the storm track, temperature, and precipitation across the Northern Atlantic and into Europe and the Mediterranean. The positive...advection of moisture out of the Arabian Sea or out of central Asia. The NAO impacts on 850hPa temperatures are associated with variations in storm

  18. Long Range Forecast Possibilities for X-Band Radar Construction on Shemya

    DTIC Science & Technology

    2002-05-24

    strong winds, since the Aleutian Low and expanding polar vortex affect the region in the winter, as do tropical storms and frontal passages in the...summer. This, combined with Shemya being located near the exit region of the climatological storm track off the East Asian continent, makes the island...12-13 5. Path of tropical storms in the North Pacific, for the entire 160-year period

  19. Interannual variability of the North Pacific winter storm track and its relationship with extratropical atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaojiao; Zhang, Yaocun

    2018-01-01

    Interannual variability of the North Pacific storm track and the three-dimensional atmosphere circulation during winter are investigated using NCEP/NCAR reanalysis data during 1950-2015. Results show that year-to-year variations of the storm track exhibit two principal modes, i.e. the monopole intensity change and the meridional shift of the storm track, respectively. The intensity change mode is linked to weakening of the Siberian high, northward shift of the western Pacific jet stream and Aleutian Low, and well corresponding to the Western Pacific teleconnection. The meridional shift mode is related to intensification and south-eastward extension of western Pacific jet stream and Aleutian Low, and linked to the Pacific-North America teleconnection. The internal atmospheric dynamics responsible for the storm track variability is further investigated from the perspective of wave-flow energy conversion. For the intensity change mode, accompanied by the enhanced baroclinity over the entrance region of the storm track, more energy is converted from mean available potential energy to eddy available potential energy and then transferred to eddy kinetic energy, which is favorable for the overall enhancement of the storm track intensity. For the meridional shift mode, more energy is transformed from mean available potential energy to eddy available potential energy and further transferred to eddy kinetic energy over the southern (northern) areas of the storm track, contributing to the southward (northward) shift of the storm track. Additionally, the increased (decreased) conversion from mean-flow kinetic energy to eddy kinetic energy over the north-eastern Pacific region is also in favor of the southward (northward) shift of the storm track.

  20. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard.

    PubMed

    Campbell-Staton, Shane C; Cheviron, Zachary A; Rochette, Nicholas; Catchen, Julian; Losos, Jonathan B; Edwards, Scott V

    2017-08-04

    Extreme environmental perturbations offer opportunities to observe the effects of natural selection in wild populations. During the winter of 2013-2014, the southeastern United States endured an extreme cold event. We used thermal performance, transcriptomics, and genome scans to measure responses of lizard populations to storm-induced selection. We found significant increases in cold tolerance at the species' southern limit. Gene expression in southern survivors shifted toward patterns characteristic of northern populations. Comparing samples before and after the extreme winter, 14 genomic regions were differentiated in the surviving southern population; four also exhibited signatures of local adaptation across the latitudinal gradient and implicate genes involved in nervous system function. Together, our results suggest that extreme winter events can rapidly produce strong selection on natural populations at multiple biological levels that recapitulate geographic patterns of local adaptation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Response of extreme floods in the southwestern United States to climatic variations in the late Holocene

    NASA Astrophysics Data System (ADS)

    Ely, Lisa L.

    1997-07-01

    A regional synthesis of paleoflood chronologies on rivers in Arizona and southern Utah reveals that the largest floods over the last 5000 years cluster into distinct time periods that are related to regional and global climatic fluctuations. The flood chronologies were constructed using fine-grained slackwater deposits that accumulate in protected areas along the margins of bedrock canyons and selectively preserve evidence of the largest events. High-magnitude floods were frequent on rivers throughout the region from 5000 to 3600 14C yrs BP (dendrocalibrated age = 3800-2200 BC) and increased again after 2200 BP (400 BC), with particularly prominent peaks in magnitude and frequency around 1100-900 BP (AD 900-1100) and after 500 yrs BP (AD 1400). In contrast, the periods 3600-2200 BP (2200-400 BC) and 800-600 yrs BP (1200-1400 AD) are marked by sharp decreases in the occurrence of large floods on these rivers. In the modern record, storms that generate large floods (≥ 10-year) in the region fall into three categories: (1) winter North Pacific frontal storms; (2) late-summer and fall storms that draw in moisture from recurved Pacific tropical cyclones; and (3) summer storms, mainly convective thunderstorms. Winter storms and tropical cyclones are associated with the most severe floods on the rivers in this study, and are the most probable causes of the paleofloods over the last 5000 years. Floods from both winter storms and tropical cyclones occur when deep mid-latitude troughs steer storm systems into the region. Composite anomaly maps of daily 700-mbar heights indicate that these floods are associated with a low-pressure anomaly off the California coast and a high-pressure anomaly over the Aleutians or Gulf of Alaska. A strong connection exists between the negative phase of the Southern Oscillation Index (often associated with El Nin˜o conditions) and the large floods associated with winter storms and tropical cyclones. The paleoflood records confirm the existence of centennial-scale variations in the conditions conducive to the occurrence of extreme floods and flood-generating storms in this region. The episodes with an increased frequency of high-magnitude floods coincide with periods of cool, wet climate in the western U.S., whereas warm intervals, such as the Medieval Warm Period, are times of dramatic decreases in the number of large floods. A positive relationship between the paleofloods and long-term variations in the frequency of El Nin˜o events is evident over the last 1000 years. This relationship continues over at least the last 3000 years with warm coastal sea-surface temperatures indicative of El Nin˜o-like conditions.

  2. Monitoring and modeling conditions for regional shallow landslide initiation in the San Francisco Bay area, California

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Stock, J. D.; Godt, J. W.

    2012-12-01

    Intense winter storms in the San Francisco Bay area (SFBA) of California often trigger widespread landsliding, including debris flows that originate as shallow (<3 m) landslides. The strongest storms result in the loss of lives and millions of dollars in damage. Whereas precipitation-based rainfall intensity-duration landslide initiation thresholds are available for the SFBA, antecedent soil moisture conditions also play a major role in determining the likelihood for landslide generation from a given storm. Previous research has demonstrated that antecedent triggering conditions can be obtained using pre-storm precipitation thresholds (e.g., 250-400 mm of seasonal pre-storm rainfall). However, these types of thresholds do not account for the often cyclic pattern of wetting and drying that can occur early in the winter storm season (i.e. October - December), and which may skew the applicability of precipitation-only based thresholds. To account for these cyclic and constantly evolving soil moisture conditions, we have pursued methods to measure soil moisture directly and integrate these measurements into predictive analyses. During the past three years, the USGS installed a series of four subsurface hydrology monitoring stations in shallow landslide-prone locations of the SFBA to establish a soil-moisture-based antecedent threshold. In addition to soil moisture sensors, the monitoring stations are each equipped with piezometers to record positive pore water pressure that is likely required for shallow landslide initiation and a rain gauge to compare storm intensities with existing precipitation-based thresholds. Each monitoring station is located on a natural, grassy hillslope typically composed of silty sands, underlain by sandstone, sloping at approximately 30°, and with a depth to bedrock of approximately 1 meter - conditions typical of debris flow generation in the SFBA. Our observations reveal that various locations respond differently to seasonal precipitation, with some areas (e.g., Marin County) remaining at higher levels of saturation for longer periods of time during the winter compared to other areas (e.g., the East Bay Hills). In general, this coincides directly with relative precipitation totals in each region (i.e., Marin county typically receives more rainfall over a longer period of time than the East Bay). In those areas that are saturated for longer periods, the shallow landslide hazard is prolonged because these conditions are first needed for storm-related precipitation to subsequently generate positive pore pressure on the failure plane. Both piezometric field measurements and limit equilibrium slope stability analyses indicate that positive pore pressure is required for most shallow landslide failures to occur in the study regions. Based on measurements from two of the sites, our analyses further indicate that at least 2 kPa of pressure is required to trigger shallow landsliding. We measured this pressure at one of our sites in 2011, where more than 30 landslides, including several that mobilized into debris flows, occurred. Additional monitoring at these sites will be used to further constrain and refine antecedent moisture-based thresholds for shallow landslide initiation.

  3. The message, meteorology and myths of the historic West Coast winter flooding of 1861 - 62

    NASA Astrophysics Data System (ADS)

    Schick, L. J.

    2012-12-01

    The greatest known recorded flooding, ever to impact the West Coast of the United States, occurred during the winter of 1861-1862. In fact, the extraordinary flood flows on five major rivers, remain the record peaks to this day. The flooding was caused by a series of Pacific mid-latitude cyclones and several strong atmospheric rivers. The extreme rainy pattern initially strikes Oregon. The high water causes the flood of record on the Willamette River, with extensive devastation, wiping out several major towns along the river. Communications, food and supplies were cut off for much of the winter in Oregon.The intense wet weather, then redevelops, moves south and stalls - pummeling Northern California with major flooding. The runoff fills California's Central Valley with a huge inland lake. Sacramento is submerged, turned into what was described as a "frontier Venice". Flood damages eliminate a large part of the state's tax base.Finally the stormy pattern shifts into Southern California, producing major flooding. Most of lowland Los Angeles, Orange and San Diego Counties are flooded under several feet of water for weeks.The author researched limited weather data, historical accounts, maps and ship reports to reconstruct this series of storms and their effects along the West Coast. The extent and evolution of this series of flood events is unprecedented. Myths regarding the causes of this flooding are common, but its sheer magnitude is undisputable. This presentation will also demonstrate the nature and impacts of these consecutive major flood events, while revealing the lessons to be learned in light of advances in modern forecasting techniques.

  4. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  5. Transport of sediment-bound organochlorine pesticides to the San Joaquin River, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced Rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  6. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  7. Meteorological conditions in a thinner Arctic sea ice regime from winter to summer during the Norwegian Young Sea Ice expedition (N-ICE2015)

    NASA Astrophysics Data System (ADS)

    Cohen, Lana; Hudson, Stephen R.; Walden, Von P.; Graham, Robert M.; Granskog, Mats A.

    2017-07-01

    Atmospheric measurements were made over Arctic sea ice north of Svalbard from winter to early summer (January-June) 2015 during the Norwegian Young Sea Ice (N-ICE2015) expedition. These measurements, which are available publicly, represent a comprehensive meteorological data set covering the seasonal transition in the Arctic Basin over the new, thinner sea ice regime. Winter was characterized by a succession of storms that produced short-lived (less than 48 h) temperature increases of 20 to 30 K at the surface. These storms were driven by the hemispheric scale circulation pattern with a large meridional component of the polar jet stream steering North Atlantic storms into the high Arctic. Nonstorm periods during winter were characterized by strong surface temperature inversions due to strong radiative cooling ("radiatively clear state"). The strength and depth of these inversions were similar to those during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. In contrast, atmospheric profiles during the "opaquely cloudy state" were different to those from SHEBA due to differences in the synoptic conditions and location within the ice pack. Storm events observed during spring/summer were the result of synoptic systems located in the Barents Sea and the Arctic Basin rather than passing directly over N-ICE2015. These synoptic systems were driven by a large-scale circulation pattern typical of recent years, with an Arctic Dipole pattern developing during June. Surface temperatures became near-constant 0°C on 1 June marking the beginning of summer. Atmospheric profiles during the spring and early summer show persistent lifted temperature and moisture inversions that are indicative of clouds and cloud processes.

  8. Convective structure of the planetary boundary layer of the ocean during gale

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Boers, R.

    1986-01-01

    The structure of the Planetary Boundary Layer (PBL) was measured, using an airborne lidar, over the Atlantic Ocean during several intensive observation periods of the Genesis of Atlantic Lows Experiment (GALE). Primary emphasis is on the understanding of the convective structure within the PBL during cold air outbreaks. Cold outbreaks generally occur in between the development of coastal storms; and behind a cold front sweeping down from Canada out across the Atlantic. As the cold dry air moves over the relatively warm ocean, it is heated and moistened. The transfer of latent and sensible heat during these events accounts for most of the heat transfer between the ocean and atmosphere during winter. Moistening of the PBL during these eventsis believed to be an important factor in determining the strength of development of the storm system which follows. In general, the more PBL moisture available as latent heat the higher the probability the storm will intensify. The major mechanism for vertical mixing of heat and mositure within the PBL is cellular convection. Knowlede of the organization and structure of the convection is important for understanding the process.

  9. Cardiovascular and respiratory mortality attributed to ground-level ozone in Ahvaz, Iran.

    PubMed

    Goudarzi, Gholamreza; Geravandi, Sahar; Foruozandeh, Hossein; Babaei, Ali Akbar; Alavi, Nadali; Niri, Mehdi Vosoughi; Khodayar, Mohammad Javad; Salmanzadeh, Shokrollah; Mohammadi, Mohammad Javad

    2015-08-01

    Ahvaz, the capital city of Khuzestan Province, which produces Iran's most oil, is on the rolls of fame in view of air pollution. It has also suffered from dust storm during the recent two decades. So, emissions from transportation systems, steel, oil, black carbon, and other industries as anthropogenic sources and dust storm as a new phenomenon are two major concerns of air pollution in Ahvaz. Without any doubt, they can cause many serious problems for the environment and humans in this megacity. The main objective of the present study was to estimate the impact of ground-level ozone (GLO) as a secondary pollutant on human heath. Data of GLO in four monitoring stations were collected at the first step and they were processed and at the final step they were inserted to a health effect model. Findings showed that cumulative cases of cardiovascular and respiratory deaths which attributed to GLO were 43 and 173 persons, respectively. Corresponding RR for these two events were 1.008 (95% CI) and 1.004 (95% CI), respectively. Although we did not provide a distinction between winter and summer in case of mentioned mortalities attributed to GLO, ozone concentrations in winter due to more fuel consumption and sub adiabatic condition in tropospheric atmospherewere higher than those GLO in summer.

  10. Intercomparison of Targeted Observation Guidance for Tropical Cyclones in the Northwestern Pacific

    DTIC Science & Technology

    2009-08-01

    sensitivity of NCVAR is usually located near the midlatitude jet or extratropical storm , where high winds may be collocated with large DLM wind variance or the...the six guidance products and to interpret the dynamical systems affecting the TC motion in the northwestern Pacific. Among the three storms studied...Atmospheric Administration (NOAA) Winter Storms Corresponding author address: Dr. Chun-Chieh Wu, Dept. of Atmospheric Sciences, National Taiwan University, No

  11. From precipitation to ice cores: an isotopic comparison at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Kopec, B. G.; Feng, X.; Adolph, A. C.; Virginia, R. A.; Posmentier, E. S.

    2015-12-01

    The observed deuterium excess (d-excess) in ice cores from Summit, Greenland has high summer values and low winter values, which is opposite of the seasonal variations of most northern hemisphere locations. The interpretation of this d-excess seasonality in the context of moisture source changes is made more complicated by possible post-depositional modifications. We investigate potential post-depositional modifications within 3-4 years after precipitation events by collecting precipitation samples and comparing them with snow pit profiles at Summit. Precipitation was sampled on a storm-by-storm basis from July 2011 to September 2014. To assess the effect of wind blown snow on cross-storm contamination, we sampled at three heights (1, 2, and 4 m). Snow pits were sampled in the summers of 2013 and 2015 to span the entirety of our precipitation record. All samples were analyzed for δD and δ18O and d-excess was calculated. Mixing of snow between different storms was identified only for samples collected at the lowest height. We thus use the samples collected at the top height for interpretation. The annual cycle of precipitation isotopes follow the established seasonal relationship with the average summer enrichment of -217 and -29‰, and winter depletion of -317 and -40‰ for δD and δ18O, respectively. The d-excess shows an average summer maximum of 16‰ and winter minimum of 3‰. In the snow pit, the seasonal amplitude and phase of both oxygen and hydrogen isotopic ratios as well as the d-excess compare remarkably well with those of the precipitation. The profile appeared to be devoid of major post depositional effects except for a thin layer that changed during a melt event in 2012. However, this type of event is extremely rare at Summit, and should not significantly compromise the interpretation of precipitation isotopes in ice cores, except perhaps during climatic warm period summers. The precipitation d-excess seasonality is typically interpreted as resulting from changing moisture sources, but this does not explain the positive relationship between d-excess and d18O at Summit, Greenland. We propose that moisture sublimated from the snow surface, which typically has high d-excess values, may be an important moisture source captured in the isotope record.

  12. Using the Moist Static Energy Budget to Understand Storm Track Shifts across a Range of Timescales

    NASA Astrophysics Data System (ADS)

    Barpanda, P.; Shaw, T.

    2017-12-01

    Storm tracks shift meridionally in response to forcing across a range of time scales. Here we formulate a moist static energy (MSE) framework for storm track position and use it to understand storm track shifts in response to seasonal insolation, El Niño minus La Niña conditions, and direct (increased CO2 over land) and indirect (increased sea surface temperature) effects of increased CO2. Two methods (linearized Taylor series and imposed MSE flux divergence) are developed to quantify storm track shifts and decompose them into contributions from net energy (MSE input to the atmosphere minus atmospheric storage) and MSE flux divergence by the mean meridional circulation and stationary eddies. Net energy is not a dominant contribution across the time scales considered. The stationary eddy contribution dominates the storm-track shift in response to seasonal insolation, El Niño minus La Niña conditions, and CO2 direct effect in the Northern Hemisphere, whereas the mean meridional circulation contribution dominates the shift in response to CO2 indirect effect during northern winter and in the Southern Hemisphere during May and October. Overall, the MSE framework shows the seasonal storm-track shift in the Northern Hemisphere is connected to the stationary eddy MSE flux evolution. Furthermore, the equatorward storm-track shift during northern winter in response to El Niño minus La Niña conditions involves a different regime than the poleward shift in response to increased CO2 even though the tropical upper troposphere warms in both cases.

  13. Overview of the ARkStorm scenario

    USGS Publications Warehouse

    Porter, Keith; Wein, Anne; Alpers, Charles N.; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to set research goals and provides decision-making information for loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. This detailed depiction of a hypothetical magnitude 7.8 earthquake on the San Andreas Fault in southern California served as the centerpiece of the largest earthquake drill in United States history, involving over 5,000 emergency responders and the participation of over 5.5 million citizens. This document summarizes the next major public project for MHDP, a winter storm scenario called ARkStorm (for Atmospheric River 1,000). Experts have designed a large, scientifically realistic meteorological event followed by an examination of the secondary hazards (for example, landslides and flooding), physical damages to the built environment, and social and economic consequences. The hypothetical storm depicted here would strike the U.S. West Coast and be similar to the intense California winter storms of 1861 and 1862 that left the central valley of California impassible. The storm is estimated to produce precipitation that in many places exceeds levels only experienced on average once every 500 to 1,000 years. Extensive flooding results. In many cases flooding overwhelms the state's flood-protection system, which is typically designed to resist 100- to 200-year runoffs. The Central Valley experiences hypothetical flooding 300 miles long and 20 or more miles wide. Serious flooding also occurs in Orange County, Los Angeles County, San Diego, the San Francisco Bay area, and other coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  14. Ice damage in loblolly pine: understanding the factors that influence susceptibility

    Treesearch

    Doug P. Aubrey; Mark D. Coleman; David R. Coyle

    2007-01-01

    Winter ice storms frequently occur in the southeastern United States and can severely damage softwood plantations. In January 2004, a severe storm deposited approximately 2 cm of ice on an intensively managed 4-year-old loblolly pine (Pinus taeda L.) plantation in South Carolina. Existing irrigation and fertilization treatments presented an...

  15. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets

    NASA Astrophysics Data System (ADS)

    Chang, Edmund K. M.; Yau, Albert M. W.

    2016-09-01

    In this study, a comprehensive comparison of Northern Hemisphere winter storm track trend since 1959 derived from multiple reanalysis datasets and rawinsonde observations has been conducted. In addition, trends in terms of variance and cyclone track statistics have been compared. Previous studies, based largely on the National Center for Environmental Prediction-National Center for Atmospheric Research Reanalysis (NNR), have suggested that both the Pacific and Atlantic storm tracks have significantly intensified between the 1950s and 1990s. Comparison with trends derived from rawinsonde observations suggest that the trends derived from NNR are significantly biased high, while those from the European Center for Medium Range Weather Forecasts 40-year Reanalysis and the Japanese 55-year Reanalysis are much less biased but still too high. Those from the two twentieth century reanalysis datasets are most consistent with observations but may exhibit slight biases of opposite signs. Between 1959 and 2010, Pacific storm track activity has likely increased by 10 % or more, while Atlantic storm track activity has likely increased by <10 %. Our analysis suggests that trends in Pacific and Atlantic basin wide storm track activity prior to the 1950s derived from the two twentieth century reanalysis datasets are unlikely to be reliable due to changes in density of surface observations. Nevertheless, these datasets may provide useful information on interannual variability, especially over the Atlantic.

  16. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2015-01-26

    National Weather Service forecasters have been tracking a low pressure area that moved from the Midwest into the Atlantic Ocean today, and is expected to become a strong nor'easter that will bring blizzard conditions to the northeastern U.S. The path of the system was captured in a NASA movie of NOAA's GOES-East satellite imagery. (This GOES 13 image was captured on January 26, 2015 at 1445 UTC.) On Monday, January 26, 2015, the National Weather Service noted: A storm system off the East Coast will continue to strengthen as it develops into a major nor'easter on Monday. As the storm moves up the coast, it is expected to bring snowfall of 1-3 feet or more to many parts of the Northeast through Tuesday evening, including New York City and Boston. Strong, gusty winds will combine with the snow to create blizzard conditions along and near the coast. Winter storm warnings are in effect for the panhandles of West Virginia and Maryland, much of interior New England down to the northern Mid-Atlantic as well as for Nantucket Island, Massachusetts. Winter weather advisories are in effect for portions of the Ohio Valley, Mid-Atlantic and the southern Appalachians as well as a narrow area across interior New England. To create the video and imagery, NASA/NOAA's GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center

  17. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2015-01-26

    National Weather Service forecasters have been tracking a low pressure area that moved from the Midwest into the Atlantic Ocean today, and is expected to become a strong nor'easter that will bring blizzard conditions to the northeastern U.S. The path of the system was captured in a NASA movie of NOAA's GOES-East satellite imagery. On Monday, January 26, 2015, the National Weather Service noted: A storm system off the East Coast will continue to strengthen as it develops into a major nor'easter on Monday. As the storm moves up the coast, it is expected to bring snowfall of 1-3 feet or more to many parts of the Northeast through Tuesday evening, including New York City and Boston. Strong, gusty winds will combine with the snow to create blizzard conditions along and near the coast. Winter storm warnings are in effect for the panhandles of West Virginia and Maryland, much of interior New England down to the northern Mid-Atlantic as well as for Nantucket Island, Massachusetts. Winter weather advisories are in effect for portions of the Ohio Valley, Mid-Atlantic and the southern Appalachians as well as a narrow area across interior New England. To create the video and imagery, NASA/NOAA's GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center

  18. Finding Snowmageddon: Detecting and quantifying northeastern U.S. snowstorms in a multi-decadal global climate ensemble

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.

    2017-12-01

    The northeastern coast of the United States is particularly vulnerable to impacts from extratropical cyclones during winter months, which produce heavy precipitation, high winds, and coastal flooding. These impacts are amplified by the proximity of major population centers to common storm tracks and include risks to health and welfare, massive transportation disruption, lost spending productivity, power outages, and structural damage. Historically, understanding regional snowfall in climate models has generally centered around seasonal mean climatologies even though major impacts typically occur at the scales of hours to days. To quantify discrete snowstorms at the event level, we describe a new objective detection algorithm for gridded data based on the Regional Snowfall Index (RSI) produced by NOAA's National Centers for Environmental Information. The algorithm uses 6-hourly precipitation to collocate storm-integrated snowfall with population density to produce a distribution of snowstorms with societally relevant impacts. The algorithm is tested on the Community Earth System Model (CESM) Large Ensemble Project (LENS) data. Present day distributions of snowfall events is well-replicated within the ensemble. We discuss classification sensitivities to assumptions made in determining precipitation phase and snow water equivalent. We also explore projected reductions in mid-century and end-of-century snowstorms due to changes in snowfall rates and precipitation phase, as well as highlight potential improvements in storm representation from refined horizontal resolution in model simulations.

  19. Partitioning of Metals Throughout a Winter Storm-Generated Fluid Mud Event, Atchafalaya Shelf, Louisiana

    NASA Astrophysics Data System (ADS)

    Clark, F. R.; McKee, B. A.; Duncan, D. D.

    2002-12-01

    Particulate and dissolved phases of a suite of metals and radionuclides were analyzed in fluid mud samples collected during a time series. This time series was taken during the passage of a winter storm on the Atchafalaya Shelf off the coast of Louisiana. The shelf receives an estimated 30% of the flow of the Mississippi River from its distributary, the Atchafalaya River. This input contributes a high sediment load to the shelf. Frequent winter storms provide shear stress to resuspend sediments and form fluid mud. Samples of fluid mud and overlying water were collected every two hours for 56 hours. Meteorological data as well as turbidity measurements by OBS were collected throughout the study. Bottom sediments were also collected before and after the time series. Partitioning effects were investigated on Be7, Th234, and Pb210 by gamma spectroscopy. These effects were also studied on several redox-sensitive metals, including Fe, Mn, Mo, Te, Re, U, Al, Ti, and V by ICP-MS analysis. Preliminary results indicate a rapid establishment of reducing conditions in fluid mud immediately overlying the seabed. These conditions persist until the suspended sediments in the fluid mud settle, and the fluid mud dissipates. The recurrence of storm front passages and their subsequent fluid mud formation cause repeated cycling from oxic to suboxic conditions in these coastal bottom waters. This redox cycling could potentially alter the fates of redox-sensitive metals, especially those associated with metal oxide carrier phases.

  20. View from Space Shows Winter Storm Sweep Over U.S. East Coast

    NASA Image and Video Library

    2015-03-05

    A winter storm was bringing snow, sleet and freezing rain from lower Mississippi Valley to Northeastern U.S. on Thursday, March 5, 2015. A new NASA animation of NOAA's GOES-East satellite imagery showed the progression of the clouds associated with the storm system that triggered winter storm warnings and winter weather advisories from the southern Plains eastward through the Mid-Atlantic and southern New England coast. The system also triggered flood warnings along and to the west of the central Appalachians. An animation of GOES satellite visible and infrared imagery from March 3 through March 5 showed clouds associated with a cold front push over U.S. East coast. Behind the front, Arctic air is expected to drop low temperatures into the single numbers from Washington, D.C. to Minnesota overnight. Temperatures in the Carolinas and Tennessee are expected to drop to the low 20s. NOAA's National Weather Service Weather Prediction Center (NWS NPC) in College Park, Maryland noted "a strong cold front moving across the eastern U.S. will bring heavy snow from parts of the Ohio Valley to the Northeast today (March 5) with rain, freezing rain and sleet possible from parts of the lower Mississippi Valley across the Southeast to the southern Mid-Atlantic. Snowfall totals of 5 to 10 inches are possible for some areas. Winter Storm Warnings remain in effect from Texas to Nantucket." The animation ends at 17:45 UTC (12:45 p.m. EST). Before the end of the animation, the low pressure center along an arctic frontal boundary was nearly stationary over western North Carolina at 9 a.m. EST on March 5, according to the NWS NPC. NWS radar and surface observations indicated an extended swath of precipitation from near the Texas Gulf Coast through the interior eastern U.S. into southern New England. NPC's storm summary noted at that time "rain was changing to sleet/freezing rain and to all snow along a band within this swath as colder air continues to filter in from the north. Some areas in Tennessee, the northern mid-Atlantic and southern New England were reporting moderate to heavy snow." To create the video and imagery, NASA/NOAA's GOES Project takes the cloud data from NOAA's GOES-East satellite and overlays it on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, those data created the entire picture of the storm and show its movement. After the storm system passes, the snow on the ground becomes visible. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Synoptic Scale North American Weather Tracks and the Formation of North Atlantic Windstorms

    NASA Astrophysics Data System (ADS)

    Baum, A. J.; Godek, M. L.

    2014-12-01

    Each winter, dozens of fatalities occur when intense North Atlantic windstorms impact Western Europe. Forecasting the tracks of these storms in the short term is often problematic, but long term forecasts provide an even greater challenge. Improved prediction necessitates the ability to identify these low pressure areas at formation and understand commonalities that distinguish these storms from other systems crossing the Atlantic, such as where they develop. There is some evidence that indicates the majority of intense windstorms that reach Europe have origins far west, as low pressure systems that develop over the North American continent. This project aims to identify the specific cyclogenesis regions in North America that produce a significantly greater number of dangerous storms. NOAA Ocean Prediction Center surface pressure reanalysis maps are used to examine the tracks of storms. Strong windstorms are characterized by those with a central pressure of less than 965 hPa at any point in their life cycle. Tracks are recorded using a coding system based on source region, storm track and dissipation region. The codes are analyzed to determine which region contains the most statistical significance with respect to strong Atlantic windstorm generation. The resultant set of codes also serves as a climatology of North Atlantic extratropical cyclones. Results indicate that a number of windstorms favor cyclogenesis regions off the east coast of the United States. A large number of strong storms that encounter east coast cyclogenesis zones originate in the central mountain region, around Colorado. These storms follow a path that exits North America around New England and subsequently travel along the Canadian coast. Some of these are then primed to become "bombs" over the open Atlantic Ocean.

  2. Total nitrogen and suspended-sediment loads and identification of suspended-sediment sources in the Laurel Hill Creek watershed, Somerset County, Pennsylvania, water years 2010-11

    USGS Publications Warehouse

    Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.

    2012-01-01

    Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.

  3. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed

    Ma, Xiaohui; Chang, Ping; Saravanan, R; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-12-04

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy-atmosphere interaction in forecast and climate models.

  4. Influence of prolonged Anomalies in North Atlantic Sea Surface Temperature on Winter Windstorms

    NASA Astrophysics Data System (ADS)

    Höschel, Ines; Schuster, Mareike; Grieger, Jens; Ulbrich, Uwe

    2016-04-01

    The focus of this presentation is on decadal scale variations in the frequency and in the intensity of mid-latitude winter windstorms. Projections for the end of the next century are often beyond the time horizon of business, thus there is an increasing interest on decadal prediction, especially for infrastructural planning and in the insurance industry. One source of decadal predictability is the Atlantic multidecadal variability (AMV), a change in the sea surface temperature of the North Atlantic, strongly linked to the meridional overturning circulation. Correlation patterns between annual AMV-indices and annual mean of geopotential height at 500 hPa in reanalysis data show an anti-correlation in the North Atlantic. That is, during AMV warm phases the North Atlantic Oscillation (NAO) is more negative. Consequently, AMV should influence the characteristics of winter windstorms at multi-year scales. For the presented investigations a 10-member ensemble of 38-year-long idealized simulations with the atmosphere model ECHAM6 with lower boundary conditions, representing warm and cool phases of the AMV, is used. In the idealized simulations, the anti-correlation between AMV and NAO is well represented. For the identification of winter windstorms an objective wind tracking algorithm based on the exceedance of the local 98th percentile of 10m wind speed is applied. Storms under AMV-warm and AMV-cool conditions will be compared in terms of storm track density and probability distribution of storm characteristics.

  5. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM

    NASA Astrophysics Data System (ADS)

    Jackson, L. C.; Kahana, R.; Graham, T.; Ringer, M. A.; Woollings, T.; Mecking, J. V.; Wood, R. A.

    2015-12-01

    The impacts of a hypothetical slowdown in the Atlantic Meridional Overturning Circulation (AMOC) are assessed in a state-of-the-art global climate model (HadGEM3), with particular emphasis on Europe. This is the highest resolution coupled global climate model to be used to study the impacts of an AMOC slowdown so far. Many results found are consistent with previous studies and can be considered robust impacts from a large reduction or collapse of the AMOC. These include: widespread cooling throughout the North Atlantic and northern hemisphere in general; less precipitation in the northern hemisphere midlatitudes; large changes in precipitation in the tropics and a strengthening of the North Atlantic storm track. The focus on Europe, aided by the increase in resolution, has revealed previously undiscussed impacts, particularly those associated with changing atmospheric circulation patterns. Summer precipitation decreases (increases) in northern (southern) Europe and is associated with a negative summer North Atlantic Oscillation signal. Winter precipitation is also affected by the changing atmospheric circulation, with localised increases in precipitation associated with more winter storms and a strengthened winter storm track. Stronger westerly winds in winter increase the warming maritime effect while weaker westerlies in summer decrease the cooling maritime effect. In the absence of these circulation changes the cooling over Europe's landmass would be even larger in both seasons. The general cooling and atmospheric circulation changes result in weaker peak river flows and vegetation productivity, which may raise issues of water availability and crop production.

  6. Probable influence of early Carboniferous (Tournaisian-early Visean) geography on the development of Waulsortian and Waulsortian-like mounds

    NASA Astrophysics Data System (ADS)

    King, David T., Jr.

    1990-07-01

    All of the known Tournaisian-early Visean (ca. 360-348 Ma) age carbonate mud mounds (Waulsortian and Waulsortian-like mounds) developed in low paleolatitudes on the southern shelf margin of Laurussia and in the Laurussian interior seaway. The Tournaisian-early Visean geography probably prevented hurricanes, tropical storms, and winter storms from crossing the shelf margin or interior seaway where these mounds developed. Implications of the lack of storm energy on mound development are discussed.

  7. Physical and Chemical Properties of Seasonal Snow and the Impacts on Albedo in New Hampshire, USA

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Amante, J.; Dibb, J. E.

    2014-12-01

    Snow albedo is critical to surface energy budgets and thus to the timing of mid-winter and vernal melt events in seasonal snow packs. Timing of these melt events is important in predicting flooding, understanding plant and animal phenology, and the availability of winter recreational activity. The state of New Hampshire experiences large spatial and temporal variability in snow albedo as a result of differences in meteorological conditions, physical snow structure, and chemical impurities in the snow, particularly highly absorptive black carbon (BC) and dust particles. This work focuses on the winters of 2012-2013 and 2013-2014, comparing three intensive study sites. Data collected at these sites include sub-hourly meteorological data, near daily measurements of snow depth, snow density, surface IR temperature, specific surface area (SSA) from contact spectroscopy, and spectrally resolved snow albedo using an ASD FieldSpec4 throughout the winter season. Additionally, snow samples were analyzed for black carbon content and other chemical impurities including Cl-, NO3-, NH4 , K , Na , Mg2+ , Ca2+ and SO42-. For each storm event at the three intensive sites, moisture sources and paths were determined using HYPLIT back trajectory modeling to determine potential sources of black carbon and other impurities in the snow. Storms with terrestrial-based paths across the US Midwest and Canada resulted in higher BC content than storms with ocean-based paths and sources. In addition to the variable storm path between sites and between years, the second year of study was on average 2.5°C colder than the first year, impacting duration of snow cover at each site and the SSA of surface snow which is sensitive to frequency of snow events and relies on cold temperatures to reduce grain metamorphism. Combining an understanding of storm frequency and path with physical and chemical attributes of the snow allows us to investigate snow albedo sensitivities with implications for understanding the impacts of future climate change on snow albedo in the Northeastern US.

  8. Freeze-thaw processes and intense winter rainfall: The one-two punch for high streambank legacy sediment and nutrient loads from Mid-Atlantic watersheds

    NASA Astrophysics Data System (ADS)

    Inamdar, S. P.; Johnson, E. R.; Rowland, R. D.; Walter, R. C.; Merritts, D.

    2017-12-01

    Historic and contemporary anthropogenic soil erosion combined with early-American milldams resulted in large deposits of legacy sediments in the valley bottoms of Piedmont watersheds of the eastern US. Breaching of milldams subsequently yielded highly incised streams with exposed vertical streambanks that are vulnerable to erosion. Streambank erosion is attributed to fluvial scouring, freeze-thaw processes and mass wasting. While streambanks represent a large reservoir of fine sediments and nutrients, there is considerable uncertainty about the contribution of these sources to watershed nonpoint source pollution. Using high-frequency hydrologic, sediment, and turbidity data we show that freeze-thaw events followed by intense winter rainstorms can export unusually high concentrations of suspended sediment and particulate nutrients from watersheds. Data from a 12 ha forested, Piedmont, stream following an intense rain event (54 mm) on February 2016 yielded suspended sediment and particulate nutrient (organic carbon and nitrogen) concentrations and exports that exceeded those from tropical storms Irene, Lee, and Sandy that had much greater rainfall and discharge amounts, but which occurred later in the year. A similar response was also observed with regards to turbidity data for USGS stream monitoring locations at Brandywine Creek (813 km2) and White Clay Creek (153 km2). We hypothesize that much of the sediment export associated with winter storms is likely due to erosion of streambank sediments and was driven by the coupled occurrence of freeze-thaw conditions and intense rainfall events. We propose that freeze-thaw erosion represents an important and underappreciated mechanism in streams that "recharges" the sediment supply, which then is available for flushing by moderate to large storms. Future climate projections indicate increased intensification of storm events and increased variability of winter temperatures. Freeze-thaw cycles coupled with winter rain events could increase erosion and transport of streambank sediments with detrimental consequences for water quality and health of downstream aquatic ecosystems. This study underscores the need to better understand the mechanisms of legacy sediment erosion and transport along with appropriate restoration strategies.

  9. Auroras observations of the MAIN in Apatity during 2014/15 winter season

    NASA Astrophysics Data System (ADS)

    Guineva, V.; Despirak, I.; Kozelov, B.

    2017-08-01

    In this work we review substorms, originated during the 2014/2015 winter season. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were estimated by the 1-min sampled OMNI data base from CDAWeb (http://cdaweb.gsfc.nasa.gov/cdaweb/ istp_public/). Auroral disturbances were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the review were the peculiarities in the development of substorms occurred during different geomagnetic conditions. The behavior of the substorms developed in non-storm time and during different phases of geomagnetic storms was discussed.

  10. Legal immigrants: invasion of alien microbial communities during winter occurring desert dust storms.

    PubMed

    Weil, Tobias; De Filippo, Carlotta; Albanese, Davide; Donati, Claudio; Pindo, Massimo; Pavarini, Lorenzo; Carotenuto, Federico; Pasqui, Massimiliano; Poto, Luisa; Gabrieli, Jacopo; Barbante, Carlo; Sattler, Birgit; Cavalieri, Duccio; Miglietta, Franco

    2017-03-10

    A critical aspect regarding the global dispersion of pathogenic microorganisms is associated with atmospheric movement of soil particles. Especially, desert dust storms can transport alien microorganisms over continental scales and can deposit them in sensitive sink habitats. In winter 2014, the largest ever recorded Saharan dust event in Italy was efficiently deposited on the Dolomite Alps and was sealed between dust-free snow. This provided us the unique opportunity to overcome difficulties in separating dust associated from "domestic" microbes and thus, to determine with high precision microorganisms transported exclusively by desert dust. Our metagenomic analysis revealed that sandstorms can move not only fractions but rather large parts of entire microbial communities far away from their area of origin and that this microbiota contains several of the most stress-resistant organisms on Earth, including highly destructive fungal and bacterial pathogens. In particular, we provide first evidence that winter-occurring dust depositions can favor a rapid microbial contamination of sensitive sink habitats after snowmelt. Airborne microbial depositions accompanying extreme meteorological events represent a realistic threat for ecosystem and public health. Therefore, monitoring the spread and persistence of storm-travelling alien microbes is a priority while considering future trajectories of climatic anomalies as well as anthropogenically driven changes in land use in the source regions.

  11. Early density management of longleaf pine reduces susceptibility to ice storm damage

    Treesearch

    Timothy B. Harrington; Thaddeus A. Harrington

    2016-01-01

    The Pax winter storm of February 2014 caused widespread damage to forest stands throughout the southeastern U.S. In a long-term study of savanna plant community restoration at the Savannah River Site, Aiken, SC, precommercial thinning (PCT) of 8- to 11-year-old plantations of longleaf pine (Pinus palustris) in 1994 reduced...

  12. Effect high intensity storms on soil slippage on mountainous watersheds in Southern California

    Treesearch

    R. M. Rice; G. T. Foggin

    1971-01-01

    The conversion of brush areas to grassland increased soil slip erosion on mountainous watersheds in southern California during the intense winter storms of 1969. The incidence of soil slippage, site factors affecting slope stability, and amount of debris generated by slippage were investigated for sample brush and grass areas in the San Dimas Experimental Forest. Soil...

  13. Seasonal Variations in Survival of Indicator Bacteria in Soil and Their Contribution to Storm-water Pollution

    PubMed Central

    Van Donsel, Dale J.; Geldreich, Edwin E.; Clarke, Norman A.

    1967-01-01

    Survival of a fecal coliform (Escherichia coli) and a fecal streptococcus (Streptococcus faecalis var. liquifaciens) was studied through several years at shaded and exposed outdoor soil plots. Death rates for both organisms were calculated for the different seasons at both sites. The 90% reduction times for the fecal coliform ranged from 3.3 days in summer to 13.4 days in autumn. For the fecal streptococcus, 90% reduction times were from 2.7 days in summer to 20.1 days in winter. During summer, the fecal coliform survived slightly longer than the fecal streptococcus; during autumn, survival was the same; and in spring and winter the fecal streptococcus survived much longer than the fecal coliform. Both organisms were isolated from storm-water runoff collected below a sampling site when counts were sufficiently high in soil. Isolation was more frequent during prolonged rains, lasting up to 10 days, than during short rain storms. There was evidence of aftergrowth of nonfecal coliforms in the soil as a result of temperature and rainfall variations. Such aftergrowth may contribute to variations in bacterial count of storm-water runoff which have no relation to the sanitary history of the drainage area. PMID:16349746

  14. Deconstructing the Effects of Flow on DOC, Nitrate, and Major Ion Interactions Using a High-Frequency Aquatic Sensor Network

    NASA Astrophysics Data System (ADS)

    Koenig, L. E.; Shattuck, M. D.; Snyder, L. E.; Potter, J. D.; McDowell, W. H.

    2017-12-01

    Streams provide a physical linkage between land and downstream river networks, delivering solutes derived from multiple catchment sources. We analyzed high-frequency time series of stream solutes to characterize the timing and magnitude of major ion, nutrient, and organic matter transport over event, seasonal, and annual timescales as well as to assess whether nitrate (NO3-) and dissolved organic carbon (DOC) transport are coupled in catchments, which would be expected if they are subject to similar biogeochemical controls throughout the watershed. Our data set includes in situ observations of NO3-, fluorescent dissolved organic matter (DOC proxy), and specific conductance spanning 2-4 years in 10 streams and rivers across New Hampshire, including observations of nearly 700 individual hydrologic events. We found a positive response of NO3- and DOC to flow in forested streams, but watershed development led to a negative relationship between NO3- and discharge, and thus a decoupling of the overall NO3- and DOC responses to flow. On event and seasonal timescales, NO3- and DOC consistently displayed different behaviors. For example, in several streams, FDOM yield was greatest during summer storms while NO3- yield was greatest during winter storms. Most streams had generalizable storm NO3- and DOC responses, but differences in the timing of NO3- and DOC transport suggest different catchment sources. Further, certain events, including rain-on-snow and summer storms following dry antecedent conditions, yielded disproportionate NO3- responses. High-frequency data allow for increased understanding of the processes controlling solute variability and will help reveal their responses to changing climatic regimes.

  15. Effect of pellet-cladding interaction (PCI) and degradation mechanisms on spent nuclear fuel rod mechanical performance during transportation

    NASA Astrophysics Data System (ADS)

    Peterson, Brittany Ann

    Winter storms can affect millions of people, with impacts such as disruptions to transportation, hazards to human health, reduction in retail sales, and structural damage. Blizzard forecasts for Alberta Clippers can be a particular challenge in the Northern Plains, as these systems typically depart from the Canadian Rockies, intensify, and impact the Northern Plains all within 24 hours. The purpose of this study is to determine whether probabilistic forecasts derived from a local physics-based ensemble can improve specific aspects of winter storm forecasts for three Alberta Clipper cases. Verification is performed on the ensemble members and ensemble mean with a focus on quantifying uncertainty in the storm track, two-meter winds, and precipitation using the MERRA and NOHRSC SNODAS datasets. This study finds that addition improvements are needed to proceed with operational use of the ensemble blizzard products, but the use of a proxy for blizzard conditions yields promising results.

  16. Pesticide transport in the San Joaquin River Basin

    USGS Publications Warehouse

    Dubrovsky, N.M.; Kratzer, C.R.; Panshin, S.Y.; Gronberg, J.A.M.; Kuivila, K.M.

    2000-01-01

    Pesticide occurrence and concentrations were evaluated in the San Joaquin River Basin to determine potential sources and mode of transport. Land use in the basin is mainly agricultural. Spatial variations in pesticide occurrence were evaluated in relation to pesticide application and cropping patterns in three contrasting subbasins and at the mouth of the basin. Temporal variability in pesticide occurrence was evaluated by fixed interval sampling and by sampling across the Hydrograph during winter storms. Four herbicides (simazine, metolachlor, dacthal, and EPTC) and two insecticides (diazinon and chlorpyrifos) were detected in more than 50 percent of the samples. Temporal, and to a lesser extent spatial, variation in pesticide occurrence is usually consistent with pesticide application and cropping patterns. Diazinon concentrations changed rapidly during winter storms, and both eastern and western tributaries contributed diazinon to the San Joaquin River at concentrations toxic to the water flea Ceriodaphnia dubia at different times during the hydrograph. During these storms, toxic concentrations resulted from the transport of only a very small portion of the applied diazinon.

  17. Spatio-temporal variability of streamwater chemistry within a Peri-urban Mediterranean catchment

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Coelho, Celeste O. A.

    2015-04-01

    The complex landscape of peri-urban areas, characterized by a mosaic of land-uses and urban fabric, provides different sources of runoff and pollutants which affect stream ecosystems. This study investigates the impact of land-uses and their location within catchments on streamwater quality in a peri-urban Mediterranean catchment, including temporal variations driven by antecedent weather and rainstorm characteristics. The study is based in Ribeira dos Covões, a small (6 km2) catchment in the city of Coimbra, central Portugal. Land-use is dominated by woodland (56%) and urban cover (40%), with a small agriculture area (4%). Streamwater was monitored at the catchment outlet (ESAC) and three upstream locations: Espírito Santo and Porto Bordalo, with similar urban cover (42% and 49%) but different imperviousness (27% and 15%) and lithologies (sandstone versus limestone), and Quinta with lower urban extent (25%) but including a construction site covering 10% of the area. Samples collected throughout ten rainfall events between October 2011 and March 2013 were analysed for natural water chemistry and major pollutants (notably ammonium, nitrates, total phosphorus, COD and metals). In the paper, temporal variations in water quality are explored via hysteresis loop and correlation analysis. Hydrological regime exerted a major influence on water quality. Major nutrients declined within and after the dry summer than in winter events, because of limited dilution by the low stream baseflow. Through the wet season, increasing baseflow led to increased concentrations of major cations (Na, Mg and Ca) because of reduced dilution by solute-poor stormflow. Espírito Santo, the most urbanized sub-catchment, displayed higher concentrations of COD and NO3 (tended to peak with stormflow), but the latter was thought to result from agricultural fields located adjacent the tributary. At the catchment outlet (ESAC), the high Nk and NH4 concentrations exceeded water quality standards (2 mg/l and 1 mg/l) at summer baseflow and at peak flow during late winter storms. Zn, Cu and Cd also attained pollutant levels in late winter storms. When clear-felled areas were located close to tributary watercourses they supplied high suspended sediment concentrations into streamflow, whereas when they were located upslope the impact was minor, due to enhanced opportunities for overland flow retention and infiltration. Artificial drainage systems, however, increase the connectivity between the sources and the stream channel; this explained the greatest turbidity in the Quinta sub-catchment, where sediment was derived from an upslope construction site. Specific loads of water quality parameters (except for suspended sediment) increased with percentage impervious area, but linear relationships were only significant for NO3 and major cations (Na, Mg, Ca and K), possibly due to cement chemical composition. Sources of contaminants include bare surfaces (turbidity), untreated sewage (COD, TP, NH4, Fe and Zn), manure (NH4), industrial pollution (Fe and Zn) and vehicles (metals). The identification of pollutant sources and knowledge about seasonal and within-storm variations are important to establish spatially- and temporally-explicit water management strategies to improve local water quality. Moreover, a better understanding of the potential sources and sinks of pollutants should guide stakeholders to design more sustainable peri-urban areas.

  18. Emerging European winter precipitation pattern linked to atmospheric circulation changes over the North Atlantic region in recent decades

    NASA Astrophysics Data System (ADS)

    Ummenhofer, Caroline C.; Seo, Hyodae; Kwon, Young-Oh; Parfitt, Rhys; Brands, Swen; Joyce, Terrence M.

    2017-08-01

    Dominant European winter precipitation patterns over the past century, along with their associated extratropical North Atlantic circulation changes, are evaluated using cluster analysis. Contrary to the four regimes traditionally identified based on daily wintertime atmospheric circulation patterns, five distinct seasonal precipitation regimes are detected here. Recurrent precipitation patterns in each regime are linked to changes in atmospheric blocking, storm track, and sea surface temperatures across the North Atlantic region. Multidecadal variability in the frequency of the precipitation patterns reveals more (fewer) winters with wet conditions in northern (southern) Europe in recent decades and an emerging distinct pattern of enhanced wintertime precipitation over the northern British Isles. This pattern has become unusually common since the 1980s and is associated with changes in moisture transport and more frequent atmospheric river events. The observed precipitation changes post-1950 coincide with changes in storm track activity over the central/eastern North Atlantic toward the northern British Isles.

  19. Coastal change from Hurricane Sandy and the 2012-13 winter storm season: Fire Island, New York

    USGS Publications Warehouse

    Hapke, Cheryl J.; Brenner, Owen; Henderson, Rachel E.; Reynolds, B.J.

    2013-01-01

    The U.S. Geological Survey (USGS) mounted a substantial effort in response to Hurricane Sandy including an assessment of the morphological impacts to the beach and dune system at Fire Island, New York. Field surveys of the beach and dunes collected just prior to and after landfall were used to quantify change in several focus areas. In order to quantify morphologic change along the length of the island, pre-storm (May 2012) and post-storm (November 2012) lidar and aerial photography were used to assess changes to the shoreline and beach, and to measure volumetric changes. The extent and thicknesses of overwash deposits were mapped in the field, and measurements were used to determine volume, distribution, and characteristics of the deposits. The beaches and dunes on Fire Island were severely eroded during Hurricane Sandy, and the island breached in three locations on the eastern segment of the island. Landward shift of the upper portion of the beach averaged 19.7 meters (m) but varied substantially along the coast. Shoreline change was also highly variable, but the shoreline prograded during the storm by an average of 11.4 m, due to the deposition of material eroded from the upper beach and dunes onto the lower portion of the beach. The beaches and dunes lost 54.4 percent of their pre-storm volume, and the dunes experienced overwash along 46.6 percent of the island. The inland overwash deposits account for 14 percent of the volume lost from the beaches and dunes, indicating that the majority of material was moved offshore. In the winter months following Hurricane Sandy, seven storm events with significant wave heights greater than four m were recorded at a wave buoy 30 nautical miles south of Fire Island. Monthly shoreline and profile surveys indicate that the beach continued to erode dramatically. The shoreline, which exhibited a progradational trend immediately after Sandy, eroded an average of 21.4 m between November 2012 and mid-March 2013, with a maximum landward shift of nearly 60 m. By March 2013 the elevation of the beach in the majority of the surveyed profiles was lowered below the mean high water level (0.46 m), and the beach lost an additional 18.9 percent of its remaining volume. In the final time period of the field surveys (March to April 2013), the beach began to show signs of rapid recovery, and in 90 percent of the profiles, the volume of the beach in April 2013 was similar to the volume measured immediately after Hurricane Sandy. Overall, Hurricane Sandy profoundly impacted the morphology of Fire Island and resulted in an extremely low elevation, low relief configuration that has left the barrier island vulnerable to future storms. The coastal system subsequently began to show signs of recovery, and although the beach is likely to experience continued recovery in the form of volume gains, the dunes will take years to rebuild. Events such as Sandy result in a coastal environment that is a more vulnerable to future storm impacts, but they are an important natural process of barrier islands that allow these systems to evolve in response to sea-level rise.

  20. Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios

    NASA Astrophysics Data System (ADS)

    Barcikowska, Monika J.; Weaver, Scott J.; Feser, Frauke; Russo, Simone; Schenk, Frederik; Stone, Dáithí A.; Wehner, Michael F.; Zahn, Matthias

    2018-06-01

    Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2 °C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes. The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25° not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional- to local-scale extreme wind speeds and precipitation in a more realistic way. Our analysis of the future response for the 2 °C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5 °C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea. Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.

  1. Debris Flows and Road Damage Following a Wildfire in 2014 on the Klamath National Forest, Northern California, Near the Community of Seiad, CA

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Mikulovsky, R. P.

    2016-12-01

    Wildfires in summer 2014 burned more than 200,000 acres on the Klamath National Forest in Northern California, east of Seiad, CA. Much of the area burned at high and moderate severity, and is underlain by Slinkard Pluton granitic rock. During winter 2014-2015, there were a few debris flows in small streams, and some clogged culverts on the road system, but overall road damage was minor. In July of 2015, a strong convective storm triggered several large debris flows, including East Fork Walker and No Name Creeks. These and other debris flows damaged road stream crossings, and delivered a large volume of sediment to the stream network. LiDAR differencing is being used to identify and quantify erosion and deposition from that storm. Field inventories revealed widespread rills and small gullies on steep, burned hillslopes, particularly where underlain by granitic rock. Resulting debris flows were of the sediment bulking variety, and no landslide-triggered debris flows were observed. This may be because intense summer storms are of short duration, and are unlikely to saturate the surface mantle, due also to water repellant soil conditions. It is unknown if erosion during the first winter affected the response to the July storm. Storms around January 17, 2016 initiated many road fill failures, and most were limited to the outer half of the road. Field investigations revealed that granitic road fills failed in a variety of settings, including planar hillslopes, on the flanks of ridges, channel crossings, and at road dips. In virtually all cases, vegetation on the fills, up to 50 years old, had been killed by the 2014 fire. Some fills developed small cracks and scarps, whereas others failed catastrophically as debris slides/flows. Few sediment-bulking debris flows were observed in January, 2016. Road damage exceeded two million dollars, and qualified for Emergency Relief Federally Owned funding (ERFO). The effects of the July, 2015 storm were dominated by sheet wash, rilling, flooding, and debris flows, and road damage was concentrated at stream crossings. In contrast, storms in winter 2015-2016 produced many road fill failures, often far from stream crossings, and these were probably associated with deeper saturation of the regolith. Thus, it is critical that road repair measures address both overland flow and saturation responses.

  2. Occurrence and Transport of Diazinon in the Sacramento River and Selected Tributaries, California, during Two Winter Storms, January?February 2001

    USGS Publications Warehouse

    Dileanis, Peter D.; Brown, David L.; Knifong, Donna L.; Saleh, Dina

    2003-01-01

    Diazinon, an organophosphate insecticide, is applied as an orchard dormant spray in the Sacramento Valley during the winter months when the area receives most of its annual rainfall. During winter rainstorms that frequently follow dormant spray applications, some of the applied pesticide is transported in storm runoff to the Sacramento River and its tributaries. Diazinon is also used to control insect pests on residential and commercial properties in urban areas and is frequently detected in urban storm runoff draining into the Sacramento River system. Between January 24 and February 14, 2001, diazinon concentrations and loads were measured in the Sacramento River and selected tributaries during two winter storms that occurred after dormant spray applications were made to orchards in the Sacramento Valley. Water samples were collected at 21 sites that represented agricultural and urban inputs on a variety of scales, from small tributaries and drains representing local land use to main-stem river sites representing regional effects. Concentrations of diazinon ranged from below laboratory reporting levels to 1,380 nanograms per liter (ng/L), with a median of 55 ng/L during the first monitored storm and 26 ng/L during the second. The highest concentrations were observed in small channels draining predominantly agricultural land. About 26,000 pounds of diazinon were reported applied to agricultural land in the study area just before and during the monitoring period. About 0.2 percent of the applied insecticide appeared to be transported to the lower Sacramento River during that period. The source of about one third of the total load measured in the lower Sacramento River appears to be in the portion of the drainage basin upstream of the city of Colusa. About 12 percent of the diazinon load in the lower Sacramento River was transported from the Feather River Basin, which drains much of the mountainous eastern portions of the Sacramento River Basin. Diazinon use in the study area during the 2000?2001 dormant spray season continued a declining trend observed since 1993. The maximum concentrations of diazinon observed during the last 2 years of monitoring were lower than concentrations observed in previous years when larger amounts of diazinon had been applied as dormant sprays.

  3. Distant Influence of Kuroshio Eddies on North Pacific Weather Patterns?

    PubMed Central

    Ma, Xiaohui; Chang, Ping; Saravanan, R.; Montuoro, Raffaele; Hsieh, Jen-Shan; Wu, Dexing; Lin, Xiaopei; Wu, Lixin; Jing, Zhao

    2015-01-01

    High-resolution satellite measurements of surface winds and sea-surface temperature (SST) reveal strong coupling between meso-scale ocean eddies and near-surface atmospheric flow over eddy-rich oceanic regions, such as the Kuroshio and Gulf Stream, highlighting the importance of meso-scale oceanic features in forcing the atmospheric planetary boundary layer (PBL). Here, we present high-resolution regional climate modeling results, supported by observational analyses, demonstrating that meso-scale SST variability, largely confined in the Kuroshio-Oyashio confluence region (KOCR), can further exert a significant distant influence on winter rainfall variability along the U.S. Northern Pacific coast. The presence of meso-scale SST anomalies enhances the diabatic conversion of latent heat energy to transient eddy energy, intensifying winter cyclogenesis via moist baroclinic instability, which in turn leads to an equivalent barotropic downstream anticyclone anomaly with reduced rainfall. The finding points to the potential of improving forecasts of extratropical winter cyclones and storm systems and projections of their response to future climate change, which are known to have major social and economic impacts, by improving the representation of ocean eddy–atmosphere interaction in forecast and climate models. PMID:26635077

  4. Investigating Added Value of Regional Climate Modeling in North American Winter Storm Track Simulations

    NASA Astrophysics Data System (ADS)

    Poan, E.; Gachon, P., Sr.; Laprise, R.; Aider, R.; Dueymes, G.

    2017-12-01

    This study describes a framework using possibilities given by regional climate models (RCMs) to gain insight into extratropical cyclone (EC) activity during winter over North America (NA). Recent past climate period (1981 - 2005) is firstly considered using the NCEP regional reanalysis (NARR) as a reference, along with the European global reanalysis ERA-Interim (ERAI) and two CMIP5 Global Climate Models (GCMs) used to drive the Canadian RCM - version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological EC track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while their intensity is well captured. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over the eastern coast. In addition, storm occurrence from GCMs over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with main relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value from the CRCM5 is less prominent and systematic, except over western areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Finally, time period near the end of the 21st century (2071-2100) is considered to analyze EC characteristic trends and changes relative to the current climate conditions, showing important modifications in storm activity for certain winter months, especially in term of intensity over the eastern coast.

  5. Glaze Damage In 13- To 18-Year-Old, Natural, Even-Aged Stands of Loblolly Pines in Southeastern Arkansas

    Treesearch

    Michael D. Cain; Michael G. Shelton

    2002-01-01

    In late December 1998, a severe winter storm deposited 2.1 inches of precipitation on the Crossett Experimental Forest in southeastern Arkansas. Ice, in the form of glaze, accumulated on needles and branches of trees, and resulted in visual damage to sapling and pulpwood-sized pines. Within 60 days after the storm, damage was assessed within naturally regenerated,...

  6. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    Treesearch

    Pablo A. Garcia-Chevesich; Sergio Alvarado; Daniel G. Neary; Rodrigo Valdes; Juan Valdes; Juan Jose Aguirre; Marcelo Mena; Roberto Pizarro; Paolo Jofre; Mauricio Vera; Claudio Olivares

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of...

  7. Windthrown trees on the Kings River Ranger District, Sierra National Forest: meteorological aspects

    Treesearch

    Michael A. Fosberg

    1986-01-01

    Blowdown in shelterwood, sanitation cuts, and other partial cuts on the Kings River Ranger District, Sierra National Forest, are due to Mono winds. Both winter storm and Mono winds were considered as causes of winter blowdown. All evidence, e.g., direction of tree-fall and occurrence of high wind events, point to Mono wind events as the cause of blowdown. Only 12...

  8. Loran-C monitor correlation over a 92-mile baseline in Ohio

    NASA Technical Reports Server (NTRS)

    Lilley, Robert W.; Edwards, Jamie S.

    1988-01-01

    Two Loran C monitors, at Galion and Athens, Ohio, were operated over a one-year period, measuring chain 9960 Time Delay (TD) and Signal to Noise Ratio (SNR). Analysis of data concentrated on correlation of short term TD variations during the winter months of 1985 to 86, over the 92 nm baseline. Excellent correlation was found, with slight additional improvement possible if local temperature is also included in the analysis. Although SNR and TD effects were suspected during the presence of thunderstorms near the monitors, the scope of the study did not permit storm by storm analysis. A computer tape data base of all measurements was produced, with measurements at both sites included. Data recording and analysis concentrated on the fall and winter months of September 1985 to February 1986.

  9. Modelling economic losses of historic and present-day high-impact winter storms in Switzerland

    NASA Astrophysics Data System (ADS)

    Welker, Christoph; Martius, Olivia; Stucki, Peter; Bresch, David; Dierer, Silke; Brönnimann, Stefan

    2015-04-01

    Windstorms can cause significant financial damage and they rank among the most hazardous meteorological hazards in Switzerland. Risk associated with windstorms involves the combination of hazardous weather conditions, such as high wind gust speeds, and socio-economic factors, such as the distribution of assets as well as their susceptibilities to damage. A sophisticated risk assessment is important in a wide range of areas and has benefits for e.g. the insurance industry. However, a sophisticated risk assessment needs a large sample of storm events for which high-resolution, quantitative meteorological and/or loss data are available. Latter is typically an aggravating factor. For present-day windstorms in Switzerland, the data basis is generally sufficient to describe the meteorological development and wind forces as well as the associated impacts. In contrast, historic windstorms are usually described by graphical depictions of the event and/or by weather and loss reports. The information on historic weather events is overall sparse and the available historic weather and loss reports mostly do not provide quantitative information. It has primarily been the field of activity of environmental historians to study historic weather extremes and their impacts. Furthermore, the scarce availability of atmospheric datasets reaching back sufficiently in time has so far limited the analysis of historic weather events. The Twentieth Century Reanalysis (20CR) ensemble dataset, a global atmospheric reanalysis currently spanning 1871 to 2012, offers potentially a very valuable resource for the analysis of historic weather events. However, the 2°×2° latitude-longitude grid of the 20CR is too coarse to realistically represent the complex orography of Switzerland, which has considerable ramifications for the representation of smaller-scale features of the surface wind field influenced by the local orography. Using the 20CR as a starting point, this study illustrates a method to simulate the wind field and related economic impact of both historic and present-day high-impact winter storms in Switzerland since end of the 19th century. Our technique involves the dynamical downscaling of the 20CR to 3 km horizontal resolution using the numerical Weather Research and Forecasting model and the subsequent loss simulation using an open-source impact model. This impact model estimates, for modern economic and social conditions, storm-related economic losses at municipality level, and thus allows a numerical simulation of the impact from both historic and present-day severe winter storms in Switzerland on a relatively fine spatial scale. In this study, we apply the modelling chain to a storm sample of almost 90 high-impact winter storms in Switzerland since 1871, and we are thus able to make a statement of the typical wind and loss patterns of hazardous windstorms in Switzerland. To evaluate our modelling chain, we compare simulated storm losses with insurance loss data for the present-day windstorms "Lothar" and "Joachim" in December 1999 and December 2011, respectively. Our study further includes a range of sensitivity experiments and a discussion of the main sources of uncertainty.

  10. Classification and Feature Selection Algorithms for Modeling Ice Storm Climatology

    NASA Astrophysics Data System (ADS)

    Swaminathan, R.; Sridharan, M.; Hayhoe, K.; Dobbie, G.

    2015-12-01

    Ice storms account for billions of dollars of winter storm loss across the continental US and Canada. In the future, increasing concentration of human populations in areas vulnerable to ice storms such as the northeastern US will only exacerbate the impacts of these extreme events on infrastructure and society. Quantifying the potential impacts of global climate change on ice storm prevalence and frequency is challenging, as ice storm climatology is driven by complex and incompletely defined atmospheric processes, processes that are in turn influenced by a changing climate. This makes the underlying atmospheric and computational modeling of ice storm climatology a formidable task. We propose a novel computational framework that uses sophisticated stochastic classification and feature selection algorithms to model ice storm climatology and quantify storm occurrences from both reanalysis and global climate model outputs. The framework is based on an objective identification of ice storm events by key variables derived from vertical profiles of temperature, humidity and geopotential height. Historical ice storm records are used to identify days with synoptic-scale upper air and surface conditions associated with ice storms. Evaluation using NARR reanalysis and historical ice storm records corresponding to the northeastern US demonstrates that an objective computational model with standard performance measures, with a relatively high degree of accuracy, identify ice storm events based on upper-air circulation patterns and provide insights into the relationships between key climate variables associated with ice storms.

  11. Effects of sudden air pressure changes on hospital admissions for cardiovascular diseases in Prague

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2013-04-01

    Sudden weather changes have long been supposed to be associated with negative impacts on human health. However, relatively few studies attempted to quantify these relationships. In this study, we use large 6-hour changes of atmospheric sea level pressure as proxy for sudden weather changes, and evaluate their association with hospital admissions for cardiovascular diseases. Winter and summer seasons and positive and negative pressure changes are analyzed separately, using data for the city of Prague (population of 1.2 million) over 16-year period (1994-2009). We find that sudden pressure drops in winter are associated with significant increases in the number of hospital admissions. Increases in morbidity are not observed for pressure drops in summer, nor pressure increases in any season. Analysis of synoptic weather maps shows that the large pressure drops in winter are associated with strong zonal (westerly) flow and rapidly moving low pressure systems with centres over Northern Europe and atmospheric fronts affecting the area of Western and Central Europe. Several of the largest pressure decreases were associated with infamous winter storms (such as Lothar on December 25, 1999 and Kyrill on January 18, 2007). Analysis of links between passages of strong atmospheric fronts and hospital admissions shows that the links are much weaker if weather changes are characterized by frontal passages. Since climate models project strengthening of the zonal circulation in winter and increased frequency of winter storms, the negative effects of such weather phenomena and their possible changes in a warmer climate of the 21st century need to be better understood, particularly as their importance in inducing excess morbidity and mortality in winter may increase compared to cold spells.

  12. 75 FR 17178 - Nebraska Disaster Number NE-00033

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... (FEMA-1878-DR), dated 02/25/2010 . Incident: Severe Winter Storms and Snowstorm. Incident Period: 12/22..., Frontier, Furnas, Gosper, Greeley, Harlan, Holt, Howard, Knox, Loup, Merrick, Nuckolls, Pierce, Platte...

  13. Seasonal geomorphic processes and rates of sand movement at Mount Baldy dune in Indiana, USA

    NASA Astrophysics Data System (ADS)

    Kilibarda, Zoran; Kilibarda, Vesna

    2016-12-01

    Winds are very strong, frequent, and have high energy (annual DP ∼800 VU) along the southern shores of Lake Michigan, allowing the coexistence of fixed and active dunes. Six years (2007-13) of monitoring Mount Baldy in the Indiana Dunes National Lakeshore reveals that this is the most active coastal dune in the Great Lakes region. This paper documents aeolian processes and changes in the dune's morphology that occur temporarily, following storms, or seasonally, due to weather (climate) variations. Most of the sand transport in this area takes place during strong storms with gale force (>17.5 m/s) winds, which occur in the autumn and winter months. A single storm, such as the October 28-31, 2013 event, can contribute 25% of the annual sand transport and dune movement inland. In its most active year (June 1, 2011 through May 31, 2012), Mount Baldy moved inland on average 4.34 m, with a maximum of 6.52 m along the blowout's axis (155° azimuth). During this particularly active season, there were six storms with sustained gale force winds, winter air temperatures were warmer than average, and shelf ice on Lake Michigan lasted only one day. The dune is least active during the summer season, when the winds are weakest. The late fall and winter winds are the strongest. But in a typical year, most of the dune's advance inland takes place during the spring thaw when sand is released from over-steepened and lumpy slip face, allowing it to avalanche to the toe of the slip face. However, with a warming air temperatures, a reduction in the duration of winter shelf ice, and rising Lake Michigan levels, the annual rates of sand transport and dune movement may increase. The recent Mount Baldy management strategy, which includes planting vegetation and installing wind barriers on the dune's stoss side in an effort to fix the dune and stop its further movement inland, may potentially cause the destruction of the mobile sand, open dune habitat, resulting in the extinction of rare plants, insects, lizards, birds, and mammals.

  14. Early Carboniferous (Tournasian-early Visean) global paleogeography, Paleostorm tracts, and the distribution of Waulsortian and Waulsortian-like carbonate mud mounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, D.T. Jr.

    1990-05-01

    Tournasian-early Visean mud mounds (i.e., Waulsortian and Waulsortian-like mounds) are unlike other carbonate buildups in the stratigraphic record because they lack an identifiable frame-building organism. Waulsortian mounds are comprised mainly of carbonate mud; Waulsortian-like mounds are mud-rich and contain a significant percent of skeletal grains, especially crinoids and bryozoa. This study has revealed that all of the reported Waulsortian and Waulsortian-like mounds developed in low paleolatitudes either on the southern shelf margin of the Laurussian paleocontinent or in the Laurussian interior seaway. Waulsortian and Waulsortian-like mounds are specifically not present in low-latitude regions of other paleocontinents. As Tournasian-early Visean carbonatemore » deposition was widespread in the range of 30{degree}N to 10{degree}S, the very restricted paleogeographic distribution of Waulsortian and Waulsortian-like mound locations suggests a mechanism or set of conditions that effectively limited the distribution of mud mounds. Considering the Tournasian-early Visean distribution of paleocontinents and the principles that govern the movement of modern hurricanes, tropical storms, and winter storms, the tracts of hurricanes, tropical storms, and winter storms probably crossed all main submerged paleocontinental areas except the southern Laurussian shelf margin and the Laurussian interior seaway, the two areas where mud mounds developed. The lack of storm energy in these two large areas of Laurussia provided long-term stability and thus enhanced the growth prospects of the frame-deficient Waulsortian and Waulsortian-like mud mounds. Lack of extensive periodic wave reworking and other storm-induced devastation helps to account for enigmatic features such as general mound symmetry, great size, high depositional relief (as much as 220 m), and side steepness (as steep as 50{degree}).« less

  15. Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region

    DTIC Science & Technology

    2012-03-01

    low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean

  16. Flight Awareness Collaboration Tool Development

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation covering airline operations center (AOC) research. It reviews a dispatcher decision support tool called the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. FACT should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations.

  17. Chicago, Illinois, USA

    NASA Image and Video Library

    1990-03-04

    In this late winter scene of Chicago, Illinois, USA (41.5N, 87.0W) the light dusting of snow has actually enhanced the determination of the cities street pattern, parks and other cultural features. Sited at the south end of Lake Michigan, Chicago has long served as an industrial, transportation and communications center for the midwest. The obvious snowline on the ground enables meteorologists to trace the regional groundtracks of winter storms.

  18. Winter Storms and Extreme Cold

    MedlinePlus

    ... your home to keep out the cold with insulation, caulking, and weather stripping. Learn how to keep ... and grills outdoors and away from windows. Never heat your home with a gas stovetop or oven. ...

  19. A 13,500 Year Record of Holocene Climate, Fire and Vegetation from Swan Lake, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Wahl, D.; Anderson, L.; Miller, D. M.; Rosario, J. J.; Starratt, S.; McGeehin, J. P.; Bright, J. E.

    2015-12-01

    Modern climate dynamics in the western US are largely determined by a combination of two factors: 1) the strength and position of midlatitude pressure systems, which, in turn, are responsible for the generation and trajectory of winter storms, and 2) the strength of the North America Monsoon (NAM) which brings summer precipitation northward in response to northern hemisphere warming. Paleoclimate records from the Great Basin of the western US suggest some coherence in the timing of major climatic shifts during the Holocene. However, knowledge of the timing and magnitude of these changes at local scales, which can help explain the relative contribution of midlatitude winter storms vs. NAM, is lacking in many places. Here we present new data that constrain the timing and magnitude of late glacial and Holocene climate variability in the northeastern Great Basin, provide insight into past spatial variability of precipitation patterns in the western US, and improve our understanding of regional scale influences on Great Basin climate. In 2011, a 7.65 m sediment core was raised from Swan Lake, a small wetland located in southeastern Idaho that was formed in the spillway channel created by the catastrophic flooding of Lake Bonneville ~18 ka BP. Pollen, charcoal, clumped isotope, diatom, ostracod, and sedimentological data are used to reconstruct vegetation, fire history, and lake level/groundwater flux over the last 13,500 years. Age control is provided by 19 AMS radiocarbon determinations, which are reported as thousands of calibrated years before present (ka BP). This effort builds on earlier work by Bright (1966) who reported on pollen, macrofossils, and sediment type from Swan Lake. Our data suggest cool and wet conditions prevailed until around 12.3 ka BP, after which a drying trend begins. The early Holocene was marked by a warmer, drier climate, which persisted until around 6.2 ka BP. Moister conditions after 6.2 ka BP likely resulted from a combination of enhanced NAM and increased winter storm activity. The period from 4.6-1.1 ka BP is characterized by increased variability, although it appears to have been relatively dry compared to the preceding two millennia. Data suggest that climate in the area was relatively wet from 1.1 ka BP to the present.

  20. Nutrient Uptake and Cycles of Change: the Ventura River in Southern California

    NASA Astrophysics Data System (ADS)

    Leydecker, A.; Simpson, J.; Grabowski, L.

    2003-12-01

    Watersheds in Mediterranean climates are characterized by extreme seasonal and inter-annual rainfall variability. This variability engenders cycles of sediment deposition and removal, algal growth, and the advance and retreat of riparian and aquatic vegetation. In turn, these changes dramatically alter the appearance and biological functioning of rivers and streams, regulating the uptake of nutrients. The Ventura River drains 580 sq. km of mountainous coastal watershed 100 km northwest of Los Angles, Ca. More than 90 % of the average annual rainfall of 500 mm falls between December and March with most of the annual runoff occurring within a few days. Since 1930, annual runoff has varied from 0.01 to 70 cm/ha, with a mean of 12 and median of 4 cm. We have been measuring dissolved nutrient concentrations at four locations on the lower 9 kilometers of the river for the past 3 years (annual runoff of 19, 0.6 and 14 cm, respectively) and quantifying the relative abundance of plants and algae during 2003. A subsequent decrease in nutrient concentrations below a treated sewage outfall at km 8 provides estimates of nutrient uptake under changing conditions. Nitrate concentrations on the river peak in early winter, presumably from mineralization and mobilization after the advent of the rainy season, and decrease to a minimum by late summer. Phosphate, controlled by dry-season treatment plant outflows, has an opposite pattern. The seasonal variation in both is considerable (0 to 380 microM for nitrate, 0 to 35 microM for phosphate). Major winter storms, such as occur during severe El Nino years (peak flows > 1000 cms), begin a transformational cycle by completely scouring the channel of vegetation and fine sediment; this occurs, on average, once every 10 to 12 years (the interval has varied from 3 to 30 years). The scoured channel, with warmer water temperatures, the absence of shade and a nutrient rich environment, becomes dominated by filamentous algae (principally Cladophora, Rhizoclonium, Enteromorpha and Spirogyra spp.). In contrast, drought years occasion exuberant plant growth and the competitive replacement of algae by aquatic vegetation. Absent scouring winter flows, perennial aquatic plants become established, trapping fine sediment and narrowing the wetted channel; the rapid growth of riparian vegetation (Arundo donax and Salix spp.) provides increased shade to the narrowed waterway. These processes increasingly stabilize the channel and elevate the threshold flow of a scouring storm; the major storm of 2003, following the 2002 drought year (peak flow of 5 cms), produced appreciably less channel transformation than a similarly-sized storm in 2001 (peak flow of 500 cms). During the 2002 drought year, dry-season nitrate concentrations at the river mouth were reduced to near zero, likely due to reduced flows, extensive vascular plant growth supporting high rates of denitrification and vegetative uptake, and enhanced sediment processes from increased fine sediment entrapment. Higher nitrate concentrations at the same location in 2003 (circa 60 microM) exhibited a 3-fold increase compared with 2001, an algal dominated year with a similar flow regime, and N uptake below the treatment plant appears to be substantially decreased.

  1. Communicating Uncertainties in Weather and Climate Information: Results of a National Academies Workshop

    NASA Astrophysics Data System (ADS)

    Friday, E.; Barron, E. J.; Elfring, C.; Geller, L.

    2002-12-01

    When a major East Coast snowstorm was forecast during the winter of 2001, people began preparing - both the public and the decision-makers responsible for public services. There was an air of urgency, heightened because just the previous year the region had been hit hard by a storm of unpredicted strength. But this time, the storm never materialized and people were left wondering what went "wrong" with the forecast. Did something go wrong or did forecasters just fail to communicate their information in an effective way? Did they convey a sense of the likelihood of the event and keep people up to date as information changed? In the summer of 2001, the National Academies' Board on Atmospheric Sciences and Climate hosted a workshop designed to explore the communication of uncertainty in weather and climate information. Workshop participants examined five case studies that were chosen to illustrate a range of forecast timescales and certainty levels. The cases were: Red River Flood, Grand Forks, April 1997; East Coast Winter Storm, March 2001; Oklahoma-Kansas Tornado Outbreak, May 3, 1999; El Nino 1997-1998, and Climate Change Science, a report issued in 2001. In each of these cases, participants examined who said what, when, to whom, how, and with what effect. The last two cases specifically address climate-related topics. This paper summarizes the final workshop report (Communicating Uncertainties in Weather and Climate Information: Summary of a Workshop, NRC 2002), including an overview of the five cases and lessons learned about communicating uncertainties in weather and climate forecasts. Among other findings, the report stresses that communication and appropriate dissemination of information, including information about uncertainty in the forecasts and the forecaster's confidence in the product, should be an integral, ongoing part of the forecasting process, not an afterthought. Explaining uncertainty should be an integral part of what weather and climate forecasters do and is essential to delivering accurate and useful information.

  2. Climate Driven Life Histories: The Case of the Mediterranean Storm Petrel

    PubMed Central

    Soldatini, Cecilia; Albores-Barajas, Yuri Vladimir; Massa, Bruno; Gimenez, Olivier

    2014-01-01

    Seabirds are affected by changes in the marine ecosystem. The influence of climatic factors on marine food webs can be reflected in long-term seabird population changes. We modelled the survival and recruitment of the Mediterranean storm petrel (Hydrobates pelagicus melitensis) using a 21-year mark-recapture dataset involving almost 5000 birds. We demonstrated a strong influence of prebreeding climatic conditions on recruitment age and of rainfall and breeding period conditions on juvenile survival. The results suggest that the juvenile survival rate of the Mediterranean subspecies may not be negatively affected by the predicted features of climate change, i.e., warmer summers and lower rainfall. Based on considerations of winter conditions in different parts of the Mediterranean, we were able to draw inferences about the wintering areas of the species for the first time. PMID:24728099

  3. Drivers of Complexity in Humanitarian Operations

    DTIC Science & Technology

    2013-12-04

    catastrophe (including any hurricane, tornado, storm, high water, wind-driven water, tidal wave, tsunami, earthquake, volcanic eruption , landslide, mudslide...shaking) Volcano Volcanic eruption General Flood Flash flood Mass movement wet Landslide Mudslide Extratropical cyclone (winter storm) Local storm Blizzard...24 1 Tornado 25 57 Volcanic   Eruption 26 0 Earthquake (Seismic Activity) 27 4 ^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã= dê~Çì~íÉ=pÅÜççä=çÑ=_ìëáåÉëë=C=mìÄäáÅ=mçäáÅó

  4. Stochastic Modeling of Empirical Storm Loss in Germany

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  5. Satellite Views Powerful Winter Storm Battering Mid-Atlantic and New England

    NASA Image and Video Library

    2014-02-13

    The monster winter storm that brought icing to the U.S. southeast moved northward along the Eastern Seaboard and brought snow, sleet and rain from the Mid-Atlantic to New England on February 13. A new image from NOAA's GOES satellite showed clouds associated with the massive winter storm stretch from the U.S. southeast to the northeast. Data from NOAA's GOES-East satellite taken on Feb. 13 at 1455 UTC/9:45 a.m. EST were made into an image by NASA/NOAA's GOES Project at NASA's Goddard Space Flight Center in Greenbelt, Md. The clouds and fallen snow data from NOAA's GOES-East satellite were overlaid on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Aqua and Terra satellites.The image showed that the clouds associated with the storm were blanketing much of the U.S. East Coast. At 3:11 a.m. EST, a surface map issued by the National Weather Service or NWS showed the storm's low pressure area was centered over eastern North Carolina. Since then, the low has continued to track north along the eastern seaboard. By 11 a.m. EST, precipitation from the storm was falling from South Carolina to Maine, according to National Weather Service radar. By 11 a.m. EST, the Washington, D.C. region snow and sleet totals ranged from 3" in far eastern Maryland to over 18" in the northern and western suburbs in Maryland and Virginia. NWS reported that snow, sleet and rain were still falling and more snow is expected as the back side of the low moves into the region. The New York City region remained under an NWS Winter Storm Warning until 6 a.m. on Friday, February 14 and the National Weather Service expects minor coastal impacts Thursday into Friday afternoon. New England was also being battered by the storm. At 10:56 a.m. EST, Barnstable, Mass. on Cape Cod was experiencing rain and winds gusting to 28 mph. An NWS wind advisory is in effect for Cape Cod until 7 p.m. EST. Further north, Portland, Maine was experiencing heavy snow with winds from the northeast at 6 mph. The National Weather Service in Gray, Maine noted "Significant snowfall is likely for much of western Maine and New Hampshire as this storm passes by. There will be a mix or changeover to sleet and freezing rain over southern and coastal sections tonight...before all areas end as a period of snow Friday (Feb. 14) morning." On February 13 at 10 a.m. EST, NOAA's National Weather Service noted "An abundance of Atlantic moisture getting wrapped into the storm will continue to fuel widespread precipitation...which should lift through the Mid-Atlantic States and Northeast Thursday into Friday. A wide swath of heavy snow accumulations are expected with this storm...but air [moving] off the warmer ocean water should change snow over to rain along the coastal areas. Also...a narrow axis of sleet and freezing rain will be possible within the transition zone...which is expected to set up near the I-95 corridor." For updates on local forecasts, watches and warnings, visit NOAA's www.weather.gov webpage. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's WPC website: www.hpc.ncep.noaa.gov/ For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Return periods of losses associated with European windstorm series in a changing climate

    NASA Astrophysics Data System (ADS)

    Karremann, Melanie K.; Pinto, Joaquim G.; Reyers, Mark; Klawa, Matthias

    2015-04-01

    During the last decades, several windstorm series hit Europe leading to large aggregated losses. Such storm series are examples of serial clustering of extreme cyclones, presenting a considerable risk for the insurance industry. Clustering of events and return periods of storm series affecting Europe are quantified based on potential losses using empirical models. Moreover, possible future changes of clustering and return periods of European storm series with high potential losses are quantified. Historical storm series are identified using 40 winters of NCEP reanalysis data (1973/1974 - 2012/2013). Time series of top events (1, 2 or 5 year return levels) are used to assess return periods of storm series both empirically and theoretically. Return periods of historical storm series are estimated based on the Poisson and the negative binomial distributions. Additionally, 800 winters of ECHAM5/MPI-OM1 general circulation model simulations for present (SRES scenario 20C: years 1960- 2000) and future (SRES scenario A1B: years 2060- 2100) climate conditions are investigated. Clustering is identified for most countries in Europe, and estimated return periods are similar for reanalysis and present day simulations. Future changes of return periods are estimated for fixed return levels and fixed loss index thresholds. For the former, shorter return periods are found for Western Europe, but changes are small and spatially heterogeneous. For the latter, which combines the effects of clustering and event ranking shifts, shorter return periods are found everywhere except for Mediterranean countries. These changes are generally not statistically significant between recent and future climate. However, the return periods for the fixed loss index approach are mostly beyond the range of preindustrial natural climate variability. This is not true for fixed return levels. The quantification of losses associated with storm series permits a more adequate windstorm risk assessment in a changing climate.

  7. Investigating added value of regional climate modeling in North American winter storm track simulations

    NASA Astrophysics Data System (ADS)

    Poan, E. D.; Gachon, P.; Laprise, R.; Aider, R.; Dueymes, G.

    2018-03-01

    Extratropical Cyclone (EC) characteristics depend on a combination of large-scale factors and regional processes. However, the latter are considered to be poorly represented in global climate models (GCMs), partly because their resolution is too coarse. This paper describes a framework using possibilities given by regional climate models (RCMs) to gain insight into storm activity during winter over North America (NA). Recent past climate period (1981-2005) is considered to assess EC activity over NA using the NCEP regional reanalysis (NARR) as a reference, along with the European reanalysis ERA-Interim (ERAI) and two CMIP5 GCMs used to drive the Canadian Regional Climate Model—version 5 (CRCM5) and the corresponding regional-scale simulations. While ERAI and GCM simulations show basic agreement with NARR in terms of climatological storm track patterns, detailed bias analyses show that, on the one hand, ERAI presents statistically significant positive biases in terms of EC genesis and therefore occurrence while capturing their intensity fairly well. On the other hand, GCMs present large negative intensity biases in the overall NA domain and particularly over NA eastern coast. In addition, storm occurrence over the northwestern topographic regions is highly overestimated. When the CRCM5 is driven by ERAI, no significant skill deterioration arises and, more importantly, all storm characteristics near areas with marked relief and over regions with large water masses are significantly improved with respect to ERAI. Conversely, in GCM-driven simulations, the added value contributed by CRCM5 is less prominent and systematic, except over western NA areas with high topography and over the Western Atlantic coastlines where the most frequent and intense ECs are located. Despite this significant added-value on seasonal-mean characteristics, a caveat is raised on the RCM ability to handle storm temporal `seriality', as a measure of their temporal variability at a given location. In fact, the driving models induce some significant footprints on the RCM skill to reproduce the intra-seasonal pattern of storm activity.

  8. Changes in the Winter-Time Storminess over the North Atlantic, Associated with the 1.5°C and 2°C Levels of Global Warming.

    NASA Astrophysics Data System (ADS)

    Barcikowska, M. J.; Weaver, S. J.; Feser, F.; Schenk, F.

    2017-12-01

    This study investigates the changes in extreme winter-time weather conditions over the NH midlatitudes. These conditions are to a large degree caused by extratropical storms, often associated with very intense and hazardous precipitation and wind. Although the skill of CMIP5 models in capturing these extremes is improved when compared to the previous generations, the spatial and temporal resolution of the models still remains a primary reason for the deficiencies. Therefore, many features of the storms projected for the future remain inconsistent. Here we are using the high-res horizontal (0.25° lat x lon) and temporal (3hr) output of the HAPPI experiment. This output facilitates not only an implicit extraction of storm tracks but also an analysis of the storm intensity, in terms of their maximum wind and rainfall, at subdaily time-scales. The analysis of simulated present climate shows an improved spatial pattern of large-scale circulation over North America and Europe, as compared to the CMIP5-generation models, and consequently a reduced zonal bias in storm tracks pattern. The information provided at subdaily time scale provides much more realistic representation of the magnitude of the extremes. These advances significantly contribute to our understanding of differential climate impacts between 1.5°C and 2°C levels of global warming. The spatial pattern of the north-eastward shift of storm tracks, derived from the recent CMIP5 future projections, is remarkably refined here. For example, increasing storminess expands towards Scandinavia, and not towards the north-central Europe. Derived spatial features of the storm intensity, e.g. increase in wind and precipitation on the west coasts of both the British Isles and Scandinavia underlines the relevancy of the results for the local communities and potential climate change adaptation initiatives.

  9. Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Alexeev, Vladimir A.; Walsh, John E.; Ivanov, Vladimir V.; Semenov, Vladimir A.; Smirnov, Alexander V.

    2017-08-01

    Arctic sea ice over the last few decades has experienced a significant decline in coverage both in summer and winter. The currently warming Atlantic Water layer has a pronounced impact on sea ice in the Nordic Seas (including the Barents Sea). More open water combined with the prevailing atmospheric pattern of airflow from the southeast, and persistent North Atlantic storms such as the recent extremely strong Storm Frank in December 2015, lead to increased energy transport to the high Arctic. Each of these storms brings sizeable anomalies of heat to the high Arctic, resulting in significant warming and slowing down of sea ice growth or even melting. Our analysis indicates that the recently observed sea ice decline in the Nordic Seas during the cold season around Svalbard, Franz Joseph Land and Novaya Zemlya, and the associated heat release from open water into the atmosphere, contributed significantly to the increase in the downward longwave radiation throughout the entire Arctic. Added to other changes in the surface energy budget, this increase since the 1960s to the present is estimated to be at least 10 W m-2, which can result in thinner (up to at least 15-20 cm) Arctic ice at the end of the winter. This change in the surface budget is an important contributing factor accelerating the thinning of Arctic sea ice.

  10. Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain research watershed (Georgia, USA)

    USGS Publications Warehouse

    Burns, Douglas A.; McDonnell, Jeffery J.; Hooper, R.P.; Peters, N.E.; Freer, J.E.; Kendall, C.; Beven, K.

    2001-01-01

    The geographic sources and hydrologic flow paths of stormflow in small catchments are not well understood because of limitations in sampling methods and insufficient resolution of potential end members. To address these limitations, an extensive hydrologic dataset was collected at a 10 ha catchment at Panola Mountain research watershed near Atlanta, GA, to quantify the contribution of three geographic sources of stormflow. Samples of stream water, runoff from an outcrop, and hillslope subsurface stormflow were collected during two rainstorms in the winter of 1996, and an end-member mixing analysis model that included five solutes was developed. Runoff from the outcrop, which occupies about one-third of the catchment area, contributed 50-55% of the peak streamflow during the 2 February rainstorm, and 80-85% of the peak streamflow during the 6-7 March rainstorm; it also contributed about 50% to total streamflow during the dry winter conditions that preceded the 6-7 March storm. Riparian groundwater runoff was the largest component of stream runoff (80-100%) early during rising streamflow and throughout stream recession, and contributed about 50% to total stream runoff during the 2 February storm, which was preceded by wet winter conditions. Hillslope runoff contributed 25-30% to peak stream runoff and 15-18% to total stream runoff during both storms. The temporal response of the three runoff components showed general agreement with hydrologic measurements from the catchment during each storm. Estimates of recharge from the outcrop to the riparian aquifer that were independent of model calculations indicated that storage in the riparian aquifer could account for the volume of rain that fell on the outcrop but did not contribute to stream runoff. The results of this study generally indicate that improvements in the ability of mixing models to describe the hydrologic response accurately in forested catchments may depend on better identification, and detailed spatial and temporal characterization of the mobile waters from the principal hydrologic source areas that contribute to stream runoff. Copyright ?? 2001 John Wiley & Sons, Ltd.

  11. Climate scenarios for California

    USGS Publications Warehouse

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    In all of the simulations, most precipitation continues to occur in winter, with virtually all derived from North Pacific winter storms. Relatively little change in overall precipitation is projected. Climate warming has a profound influence in diminishing snow accumulations, because there is more rain and less snow, and earlier snowmelt. These snow losses increase as the warming increases, so that they are most severe under climate changes projected by the more sensitive model with the higher GHG emissions.

  12. A Climatological Oil Spill Planning Guide. Number 2. Gulf of Maine/Georges Bank,

    DTIC Science & Technology

    1981-06-01

    95 73 Shellfish Distribution: Surf clams and soft clams . . . . . 97 74 Shellfish Distribution: Ocean Quahogs and hard clams . . . . 98 75...have been included in the analysis. - 96 - 716 709 69’ No’ 670 No’ ILI Surf Clam Distribution ..... 45’ * Soft Clam Majo Concontraitln45 44 44’ N..w...18 7 Prevailing winter and summer pressure patterns in the North Atlantic . . . . . . .. .. . . . . . . . . . . . . . . 24 8 Storm tracks, winter

  13. Dissolved Pesticide and Organic Carbon Concentrations Detected in Surface Waters, Northern Central Valley, California, 2001-2002

    USGS Publications Warehouse

    Orlando, James L.; Jacobson, Lisa A.; Kuivila, Kathryn

    2004-01-01

    Field and laboratory studies were conducted to determine the effects of pesticide mixtures on Chinook salmon under various environmental conditions in surface waters of the northern Central Valley of California. This project was a collaborative effort between the U.S. Geological Survey (USGS) and the University of California. The project focused on understanding the environmental factors that influence the toxicity of pesticides to juvenile salmon and their prey. During the periods January through March 2001 and January through May 2002, water samples were collected at eight surface water sites in the northern Central Valley of California and analyzed by the USGS for dissolved pesticide and dissolved organic carbon concentrations. Water samples were also collected by the USGS at the same sites for aquatic toxicity testing by the Aquatic Toxicity Laboratory at the University of California Davis; however, presentation of the results of these toxicity tests is beyond the scope of this report. Samples were collected to characterize dissolved pesticide and dissolved organic carbon concentrations, and aquatic toxicity, associated with winter storm runoff concurrent with winter run Chinook salmon out-migration. Sites were selected that represented the primary habitat of juvenile Chinook salmon and included major tributaries within the Sacramento and San Joaquin River Basins and the Sacramento?San Joaquin Delta. Water samples were collected daily for a period of seven days during two winter storm events in each year. Additional samples were collected weekly during January through April or May in both years. Concentrations of 31 currently used pesticides were measured in filtered water samples using solid-phase extraction and gas chromatography-mass spectrometry at the U.S. Geological Survey's organic chemistry laboratory in Sacramento, California. Dissolved organic carbon concentrations were analyzed in filtered water samples using a Shimadzu TOC-5000A total organic carbon analyzer.

  14. Pathogen and nutrient pulsing and attenuation in "accidental" urban wetland networks along the Salt River in Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Palta, M. M.; Grimm, N. B.

    2013-12-01

    Increases in available nutrients and bacteria in urban streams are at the forefront of research concerns within the ecological and medical communities, and both pollutants are expected to become more problematic under projected changes in climate. Season, discharge, instream conditions (oxygen, water velocity), and weather conditions (antecedent moisture) all may influence loading rates to and the retention capabilities of wetlands fed by urban runoff and storm flow. The aim of this research was to examine the effect of these variables on nutrient (nitrogen, phosphorus) and Escherichia coli (E. coli) loading and attenuation along flow paths in urban wetland networks along the Salt River in Phoenix, AZ. Samples were collected for one year along flowpaths through wetlands that formed below six perennially flowing outfalls. Collection took place monthly during baseflow (dry season) conditions, and before and immediately following storm events, in the summer monsoon and winter rainy seasons. Water quality was assessed at the following points: immediately downstream of the outfall, mid-wetland, and downstream of the wetland. For determination of E. coli counts, samples were plated on coliform-selective media (Chromocult) and incubated for 24 hours. Plates were then used to enumerate E. coli. For determination of nutrient concentrations, samples were filtered and frozen until they could be analyzed by ion chromatography and automated wet chemistry. During both summer and winter, total discharge into the wetlands increased during storm events. Concentrations of PO43+, NH4+, and E. coli were significantly higher following storm events than during baseflow conditions, and post-storm peaks in concentration ('pulses') were higher during the summer monsoon than in winter storms. Pulses of pollutants during storms were highest when preceded by hot, dry conditions. NO3- was high in both base and stormflow. E. coli counts and nutrient concentrations dropped along flowpaths through the wetlands, indicating high attenuation capability even during storms. Attenuation of nutrients during baseflow appeared to be a function of microbial processing, while during stormflow, when water retention time in the wetlands was reduced, attenuation was likely explained by other factors, such as sediment adsorption. Potential tradeoffs emerged between removal of NO3- (highest under low dissolved oxygen) and E. coli (highest under high dissolved oxygen) during baseflow. Climate change models project increases in severe droughts and extreme precipitation events for the southwestern United States, which can lead to more sewage leakages and increases in contaminated runoff from impervious surfaces in urban areas. Wetlands are constructed or restored to mitigate microbial contamination of wastewater. Our research indicates that even "accidental" urban wetlands can serve to reduce downstream transport of nutrients and pathogens in storm and wastewater. However, wetland restoration or design targeting increased water retention time may increase the capability of accidental wetlands in this urban desert river channel to remove nutrients and pathogens from stormwater.

  15. Using large scale surveys to investigate seasonal variations in seabird distribution and abundance. Part I: The North Western Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Pettex, Emeline; David, Léa; Authier, Matthieu; Blanck, Aurélie; Dorémus, Ghislain; Falchetto, Hélène; Laran, Sophie; Monestiez, Pascal; Van Canneyt, Olivier; Virgili, Auriane; Ridoux, Vincent

    2017-07-01

    Scientific investigation in offshore areas are logistically challenging and expensive, therefore the available knowledge on seabird at sea distribution and abundance, as well as their seasonal variations, remains limited. To investigate the seasonal variability in seabird distribution and abundance in the North-Western Mediterranean Sea (NWMS), we conducted two large-scale aerial surveys in winter 2011-12 and summer 2012, covering a 181,400 km2 area. Following a strip-transect method, observers recorded a total of 4141 seabird sightings in winter and 2334 in summer, along 32,213 km. Using geostatistical methods, we generated sightings density maps for both seasons, as well as estimates of density and abundance. Most taxa showed seasonal variations in their density and distribution patterns, as they used the area either for wintering or for breeding. Highest densities of seabirds were recorded during winter, although large-sized shearwaters, storm petrels and terns were more abundant during summer. Consequently, with nearly 170,000 seabirds estimated in winter, the total abundance was twice higher in winter. Coastal waters of the continental shelf were generally more exploited by seabirds, even though some species, such as Mediterranean gulls, black-headed gulls, little gulls and storm petrels were found at high densities in highly offshore waters. Our results revealed areas highly exploited by the seabird community in the NWMS, such as the Gulf of Lion, the Tuscan region, and the area between Corsica and Sardinia. In addition, these large-scale surveys provide a baseline for the monitoring of seabird at sea distribution, and could inform the EU Marine Strategy Framework Directive.

  16. Interannual variability of global dust storms on Mars.

    PubMed

    Haberle, R M

    1986-10-24

    Global dust storms on Mars occur in some years but not in others. If the four Mars years of Viking data are representative, some distinguishing characteristics can be inferred. In years with global dust storms, dust is raised in the southern hemisphere and spread over much of the planet by an intensified Hadley circulation. In years without global dust storms, dust is raised in the northern hemisphere by relatively active mid-latitude storm systems but does not spread globally. In both cases the dusty season is winter in the north. Assuming that the cross-equatorial Hadley circulation plays a key role in the onset of global dust storms, it is shown from numerical simulations that a northen hemisphere dust haze weakens its intensity and, hence, its contribution to the surface stress in the southern hemisphere. This, in turn, reduces the possibility of global dust storm development. The interannual variability is therefore the result either of a competition between circulations in opposite hemispheres, in which case the variability has a random component, or it is the result of the cycling of dust between hemispheres, in which case the variability is related to the characteristics of global dust storms themselves.

  17. Snow in Time for the Solstice

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In mid-December, the weather in eastern North America cooperated with the calendar, and a wintry blast from the Arctic delivered freezing cold air, blustery winds, and snow just in time for the Winter Solstice on December 21' the Northern Hemisphere's longest night of the year and the official start of winter. This image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on December 20, 2004, the day after an Arctic storm dove down into the United States, bringing snow to New England (upper right of top image); the coastal mid-Atlantic, including Washington, D.C.; and the southern Appalachian Mountains in Tennessee and North Carolina. Over the Atlantic Ocean (image right), the fierce Arctic winds were raking the clouds into rows, like a gardener getting ready to plant the seeds of winter. The detailed close-up at the bottom of this image pair shows the cloud and snow patterns around Lake Ontario, illustrating the occurrence of 'lake-effect snow.' Areas in western upstate New York often get as much as fifteen feet or more of snow each year as cold air from Canada and the Arctic sweeps down over the relatively warm waters of Lakes Ontario and Erie. Cold air plus moisture from the lakes equals heavy snow. Since the wind generally blows from west to east, it is the 'downwind' cities like Buffalo and Rochester that receive the heaping helpings of snowfall, while cities on the upwind side of the lake, such as Toronto, receive much less. Unlike storms that begin with specific low-pressure systems in the Pacific Ocean and march eastward across the Pacific Northwest, the Rockies, the Great Plains, and sometimes the East, the lake-effect snows aren't tied to a specific atmospheric disturbance. They are more a function of geography, which means that the lakes can keep fueling snow storms for as long as they remain ice-free in early winter, as well as when they begin to thaw in late winter and early spring. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE.

  18. Iowa's cooperative snow fence program.

    DOT National Transportation Integrated Search

    2005-06-01

    While we cant keep it from blowing, there are ways to influence the wind that carries tons : of blowing and drifting snow. Periodically, severe winter storms will create large snow : drifts that close roads and driveways, isolate farmsteads and in...

  19. Development of chloride reduction training.

    DOT National Transportation Integrated Search

    2015-04-01

    The purpose of this project was to create a training program that could be used for Illinois Department of : Transportation (IDOT) personnel who operated snow plows and spread road salt during winter storms. : The training message was built around th...

  20. U.S. Navy Regional Climatic Study of the Barents Sea and Adjacent Waters

    DTIC Science & Technology

    1990-09-01

    westerlies associated with migratory extratropical cyclones originating west of the Area and moving through the Area along the Arctic front. Continental...long continuous storms . Fgge.3 shows the mean sea-level pressure distribution in January and July for the area 30-80N, 20W-9OE. vii Vk Vr b z b 1...extends in a northeasterly direction from the deep semi-permanent Icelandic tow south of Iceland across the Barents Sea and beyond. Winter storms

  1. Winter Storm Continues Across Central U.S.

    NASA Image and Video Library

    2013-12-06

    The powerful winter storm that has been affecting much of the central and western U.S. continues to intensify as it moves into Canada. Snow is tapering off across the Upper Midwest, but heavy snow is possible on Thursday from the Ohio Valley to the mid-Mississippi Valley, with heavy rain possible from the central Appalachians to the lower Mississippi Valley. Freezing rain is possible from Texas to the Ohio Valley. This image was taken by GOES East at 1745Z on December 5, 2013. Credit: NOAA/NASA GOES Project Caption: NOAA NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. ERICA plans for winter storms field study

    NASA Astrophysics Data System (ADS)

    Hadlock, Ron

    The Experiment on Rapidly Intensifying Cyclones over the Atlantic (ERICA) field study will be conducted between December 1, 1988, and February 28, 1989. The oceanic area that is approximately bounded by t he Gulf Stream and North America, from coastal Carolina to just east of Newfoundland, will be the region for special observations obtained by recently developed measurement systems, including high-resolution and safe Loran-C dropwindsondes, CLASS rawinsondes, an array of drifting data buoys, and multiple airborne Doppler radars. The special observations will be acquired within a framework of all conventional operational data available for the eastern United States and Canada, including that from the National Weather Service's land sites (plus supplemental rawinsonde observations), ocean platforms, U.S. Air Force WC-130 National Winter Storms Operations Plan reconnaissance flights, and civilian and military weather satellites. Satellite imagery and soundings willl be available in real time and archived through facilities of NOAA and the military.

  3. Rippled scour depressions on the inner continental shelf off central California

    USGS Publications Warehouse

    Cacchione, David A.; Drake, David E.; Grant, William D.; Tate, George B.

    1984-01-01

    Side-scan sonar records taken during the recent Coastal Ocean Dynamics Experiment (CODE) show elongate, shore-normal tippled depressions of low relief on the inner continental shelf off central California between Bodega Bay and Point Arena. These features extend up to 2 kin from the coast into water depths of up to 65 m. The proposed mechanism for their generation is storm- generated bottom currents associated with coastal downwelling during the late fall and winter which scour the surficial fine-sand sediment and expose the coarser-sand substrate in the depressions. The zones of most intense erosion and the irregular spacing of the features may be controlled by submerged rock ledges and other prominent coastal features. The large straight-crested ripples within the depres- sions (heights to 40 cm; wavelengths to 1.7 m) are probably formed by large-amplitude, long-period surface waves generated by winter storms.

  4. Large Enhancements in the O/N2 Ratio in the Evening Sector of the Winter Hemisphere During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we have looked for enhancements of the O/N2 ratio in data measured by the Dynamics Explorer 2 (DE 2) satellite in the middle latitudes of the winter hemisphere, based on a prediction that was made by the National Center for Atmospheric Research thermosphere/tonosphere general circulation model (NCAR-TIGCM) that such increases occur. The NCAR-TIGCM predicts that these enhancements should be seen throughout the low latitude region and in many middle latitude locations, but that the enhancements in O/N2 are particularly strong in the middle-latitude, evening-to-midnight sector of the winter hemisphere. When this prediction was used to look for these effects in DE 2 NACS (neutral atmosphere composition spectrometer) data, large enhancements in the O/N2 ratio (approx. 50 to 90%) were seen. These enhancements were observed during the main phase of a storm that occurred on November 24, 1982, and were seen in the same region of the winter hemisphere predicted by the NCAR-TIGCM. They are partially the result of the depletion of N2 and, as electron loss is dependent on dissociative recombination at F(sub 2) altitudes, they have implications for electron densities in this area. Parcel trajectories, which have been followed through the NCAR-TIGCM history file for this event, show that large O/N2 enhancements occur in this limited region in the winter hemisphere for two reasons. First, these parcels of air are decelerated by the antisunward edge of the ion convection pattern; individual parcels converge and subsidence occurs. Thus molecular-nitrogen-poor air is brought from higher to lower heights. Because neutral parcels that are found a little poleward of the equatorial edge of the eveningside convection pattern are swept inward toward the center of the auroral oval, the enhancements occur only in a very limited range of latitudes. Second, nitrogen-poor air is transported from regions close to the magnetic pole in the winter hemisphere. During geomagnetic storms, enhanced meridional winds are driven by the increased pressure-gradient force that is associated with intensified Joule heating in the auroral oval. These pressure-driven winds decrease rapidly on the dayside beyond the auroral oval where the parcels originate, limiting the region into which the parcels can be transported. Thus these two processes drive values of O/N2 in a limited region of the winter hemisphere, and reinforce only in the evening sector, causing large changes in this region.

  5. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  6. Arctic Storms and Their Influence on Surface Climate in the Chukchi-Beaufort Seas

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Rinke, A.; Zhang, J.

    2017-12-01

    Increases in the frequency and intensity of Arctic storms and resulting weather hazards may endanger the offshore environment, coastal community, and energy infrastructure in the Arctic as sea ice retreats. Advancing ability to identify fine-scale variations in surface climate produced by progressively stronger storm would be extremely helpful to resources management and sustainable development for coastal community. In this study, we analyzed the storms and their impacts on surface climate over the Beaufort-Chukchi seas by employing the date sets from both the hindcast simulations of the coupled Arctic regional climate model HIRHAM-NAOSIM and the recently developed Chukchi-Beaufort High-resolution Atmospheric Reanalysis (CBHAR). Based on the characteristics of spatial pattern and temporal variability of the Arctic storm activity, we categorized storms to three groups with their different origins: the East Siberia Sea, Alaska and the central Arctic Ocean. The storms originating from the central Arctic Ocean have the strongest intensity in winter with relatively less storm number. Storms traveling from Alaska to the Beaufort Sea most frequently occurred in autumn with weaker intensity. A large portion of storms originated from the East Siberia Sea region in summer. Further statistical analysis suggests that increase in surface air temperature and wind speed could be attributed to the increased frequency of storm occurrence in autumn (September to November) along the continental shelf in the Beaufort Sea.

  7. CalWater 2015 — Atmospheric Rivers and Aerosol Impacts on Precipitation

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D.; DeMott, P. J.; Dettinger, M. D.; Doyle, J. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2015-12-01

    The CalWater 2015 field experiment was conducted between January and March and consisted of more than fifty science flights, a major research cruise, and continuous ground-based observations coordinated to study phenomena driving the incidence of extreme precipitation events and the variability of water supply along the West Coast of the United States. CalWater 2015 examined key processes linked to (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major winter storms, and (2) aerosols, originating from local sources as well as from remote continents, within and between storms and their modulating effects on precipitation on the U.S. West Coast. As part of a large interagency field effort including NOAA, DOE, NASA, NSF, and the Naval Research Laboratory, four research aircraft from three government agencies were deployed in coordination with the oceangoing NOAA Ronald H. Brown and were equipped with meteorological and chemical observing systems in near-shore regions of California and the eastern Pacific. At the same time, ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network on the U.S. West Coast and a major NSF-supported observing site for aerosols and microphysics at Bodega Bay, California provided continuous near surface-level meteorological and chemical observations, respectively, during CalWater 2015. The DOE-sponsored ARM Cloud Aerosol and Precipitation Experiment (ACAPEX) was executed in close coordination with NOAA and NASA facilities and deployed airborne and ship-based observing systems. This presentation summarizes the objectives, implementation strategy, data acquisitions, and some preliminary results from CalWater 2015 addressing science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. CalWater 2015 is part of a broad, five-year interagency vision called CalWater 2 (http://esrl.noaa.gov/psd/calwater) that includes proposed West Coast observations for multiple winter seasons to address these science gaps.

  8. Application of Geostationary GNSS and SBAS Satellites for Studying Ionospheric TEC Disturbances of Geomagnetic and Meteorological Origin

    NASA Astrophysics Data System (ADS)

    Padokhin, A. M.; Kurbatov, G. A.; Yasyukevich, Y.; Yasyukevich, A.

    2017-12-01

    With the development of GNSS and SBAS constellations, the coherent multi-frequency L band transmissions are now available from a number of geostationary satellites. These signals can be used for ionospheric TEC estimations in the same way as widely used GPS/GLONASS signals. In this work, we compare noise patterns in TEC estimations based on different geostationary satellites data: augmentation systems (Indian GAGAN, European EGNOS and American WAAS), and Chinese COMPASS/Beidou navigation system. We show that noise level in geostationary COMPASS/Beidou TEC estimations is times smaller than noise in SBAS TEC estimation and corresponds to those of GPS/GLONASS at the same elevation angles. We discuss the capabilities of geostationary TEC data for studying ionospheric variability driven by space weather and meteorological sources at different time scales. Analyzing data from IGS/MGEX receivers we present geostationary TEC response on X-class Solar flares of current cycle, moderate and strong geomagnetic storms, including G4 St. Patrick's day Storm 2015 and recent G3 storm of the end of May 2017. We also discuss geostationary TEC disturbances in near equatorial ionosphere caused by two SSW events (minor and major final warming of 2015-2016 winter season) as well as geostationary TEC response on typhoons activity near Taiwan in autumn 2016. Our results show large potential of geostationary TEC estimations with GNSS and SBAS signals for continuous ionospheric monitoring.

  9. Experimental modelling of wave amplification over irregular bathymetry for investigations of boulder transport by extreme wave events.

    NASA Astrophysics Data System (ADS)

    O'Boyle, Louise; Whittaker, Trevor; Cox, Ronadh; Elsäßer, Björn

    2017-04-01

    During the winter of 2013-2014 the west coast of Ireland was exposed to 6 storms over a period of 8 weeks with wind speeds equating to hurricane categories 3 and 4. During this period, the largest significant wave height recorded at the Marine Institute M6 wave buoy, approximately 300km from the site, was 13.6m (on 26th January 2014). However, this may not be the largest sea state of that winter, because the buoy stopped logging on 30th January and therefore failed to capture the full winter period. During the February 12th 2014 "Darwin" storm, the Kinsale Energy Gas Platform off Ireland's south coast measured a wave height of 25 m, which remains the highest wave measured off Ireland's coasts[1]. Following these storms, significant dislocation and transportation of boulders and megagravel was observed on the Aran Islands, Co. Galway at elevations of up to 25m above the high water mark and distances up to 220 m inland including numerous clasts with masses >50t, and at least one megagravel block weighing >500t [2]. Clast movements of this magnitude would not have been predicted from the measured wave heights. This highlights a significant gap in our understanding of the relationships between storms and the coastal environment: how are storm waves amplified and modified by interactions with bathymetry? To gain further understanding of wave amplification, especially over steep and irregular bathymetry, we have designed Froude-scaled wave tank experiments using the 3D coastal wave basin facility at Queen's University Belfast. The basin is 18m long by 16m wide with wave generation by means of a 12m wide bank of 24 top hinged, force feedback, sector carrier wave paddles at one end. The basin is equipped with gravel beaches to dissipate wave energy on the remaining three sides, capable of absorbing up to 99% of the incident wave energy, to prevent unwanted reflections. Representative bathymetry for the Aran Islands is modelled in the basin based on a high resolution nearshore multibeam sonar survey. Water surface elevation is recorded using twin-wire resistance type wave probes along a shore-normal bathymetry transect as the waves shoal. Variations in significant wave height and maximum elevation are presented for both regular and irregular bathymetry and for a number of typical North Atlantic sea states. These results are significant for calibration of numerical wave propagation models over irregular bathymetry and for those seeking to understand the magnitude of nearshore extreme wave events. References [1] Met Éireann, 2014, Winter 2013/2014: Monthly Weather Bulletin, December issue, p. 1-5. http://www.met.ie/climate-ireland/weather-events/winterstorms13_14.pdf. [2] Cox, R. et. al., 2016, Movement of boulders and megagravel by storm waves Vol. 18, EGU2016-10535, 2016 EGU General Assembly 2016

  10. UK Environmental Prediction - integration and evaluation at the convective scale

    NASA Astrophysics Data System (ADS)

    Lewis, Huw; Brunet, Gilbert; Harris, Chris; Best, Martin; Saulter, Andrew; Holt, Jason; Bricheno, Lucy; Brerton, Ashley; Reynard, Nick; Blyth, Eleanor; Martinez de la Torre, Alberto

    2015-04-01

    It has long been understood that accurate prediction and warning of the impacts of severe weather requires an integrated approach to forecasting. This was well demonstrated in the UK throughout winter 2013/14 when an exceptional run of severe winter storms, often with damaging high winds and intense rainfall led to significant damage from the large waves and storm surge along coastlines, and from saturated soils, high river flows and significant flooding inland. The substantial impacts on individuals, businesses and infrastructure indicate a pressing need to understand better the value that might be delivered through more integrated environmental prediction. To address this need, the Met Office, Centre for Ecology & Hydrology and National Oceanography Centre have begun to develop the foundations of a coupled high resolution probabilistic forecast system for the UK at km-scale. This links together existing model components of the atmosphere, coastal ocean, land surface and hydrology. Our initial focus on a 2-year Prototype project will demonstrate the UK coupled prediction concept in research mode, including an analysis of the winter 2013/14 storms and its impacts. By linking science development to operational collaborations such as the UK Natural Hazards Partnership, we can ensure that science priorities are rooted in user requirements. This presentation will provide an overview of UK environmental prediction activities and an update on progress during the first year of the Prototype project. We will present initial results from the coupled model development and discuss the challenges to realise the potential of integrated regional coupled forecasting for improving predictions and applications.

  11. High-resolution monitoring of stormwater quality in an urbanising catchment in the United Kingdom during the 2013/2014 winter storms

    NASA Astrophysics Data System (ADS)

    McGrane, S. J.; Hutchins, M. G.; Kjeldsen, T. R.; Miller, J. D.; Bussi, G.; Loewenthal, M.

    2015-12-01

    Urban areas are widely recognised as a key source of contaminants entering our freshwater systems, yet in spite of this, our understanding of stormwater quality dynamics remains limited. The development of in-situ, high-resolution monitoring equipment has revolutionised our capability to capture flow and water quality data at a sub-hourly resolution, enabling us to potentially enhance our understanding of hydrochemical variations from contrasting landscapes during storm events. During the winter of 2013/2014, the United Kingdom experienced a succession of intense storm events, where the south of the country experienced 200% of the average rainfall, resulting in widespread flooding across the Thames basin. We applied high-frequency (15 minute resolution) water quality monitoring across ten contrasting subcatchments (including rural, urban and mixed land-use catchments), seeking to classify the disparity in water quality conditions both within- and between events. Rural catchments increasingly behave like "urban" catchments as soils wet up and become increasingly responsive to subsequent events, however water quality response during the winter months remains limited. By contrast, increasingly urban catchments yield greater contaminant loads during events, and pre-event baseline chemistry highlights a resupply source in dense urban catchments. Wastewater treatment plants were shown to dominate baseline chemistry during low-flow events but also yield a considerable impact on stormwater outputs during peak-flow events, as hydraulic push results in the outflow of untreated solid wastes into the river system. Results are discussed in the context of water quality policy; urban growth scenarios and BMP for stormwater runoff in contrasting landscapes.

  12. Characteristics of storms that contribute to extreme precipitation events over the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo; Ramos, Alexandre M.; Ordoñez, Paulina; Liberato, Margarida L. R.; Trigo, Isabel F.

    2014-05-01

    Floods correspond to one of the most deadly natural disasters in the Iberian Peninsula during the last century. Quite often these floods are associated to intense low pressure systems with an Atlantic origin. In recent years a number of episodes have been evaluated on a case-by-case approach, with a clear focus on extreme events, thus lacking a systematic assessment. In this study we focus on the characteristics of storms for the extended winter season (October to March) that are responsible for the most extreme rainfall events over large areas of the Iberian Peninsula. An objective method for ranking daily precipitation events during the extended winter is used based on the most comprehensive database of high resolution (0.2º latitude by 0.2º longitude) gridded daily precipitation dataset available for the Iberian Peninsula. The magnitude of an event is obtained after considering the total area affected as well as its intensity in every grid point (taking into account the daily normalised departure from climatology). Different precipitation rankings are studied considering the entire Iberian Peninsula, Portugal and also the six largest river basins in the Iberian Peninsula (Duero, Ebro, Tagus, Minho, Guadiana and Guadalquivir). Using an objective cyclone detecting and tracking scheme [Trigo, 2006] the storm track and characteristics of the cyclones were obtained using the ERA-Interim reanalyses for the 1979-2008 period. The spatial distribution of extratropical cyclone positions when the precipitation extremes occur will be analysed over the considered sub-domains (Iberia, Portugal, major river basins). In addition, we distinguish the different cyclone characteristics (lifetime, direction, minimum pressure, position, velocity, vorticity and radius) with significant impacts in precipitation over the different domains in the Iberian Peninsula. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010). A. M. Ramos was also supported by a FCT postdoctoral Grant (FCT/DFRH/SFRH/BPD/84328/2012). Trigo I. F. (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: A comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn., 26, 127-143.

  13. Regional and climatic controls on seasonal dust deposition in the southwestern U.S.

    USGS Publications Warehouse

    Reheis, M.C.; Urban, F.E.

    2011-01-01

    Vertical dust deposition rates (dust flux) are a complex response to the interaction of seasonal precipitation, wind, changes in plant cover and land use, dust source type, and local vs. distant dust emission in the southwestern U.S. Seasonal dust flux in the Mojave-southern Great Basin (MSGB) deserts, measured from 1999 to 2008, is similar in summer-fall and winter-spring, and antecedent precipitation tends to suppress dust flux in winter-spring. In contrast, dust flux in the eastern Colorado Plateau (ECP) region is much larger in summer-fall than in winter-spring, and twice as large as in the MSGB. ECP dust is related to wind speed, and in the winter-spring to antecedent moisture. Higher summer dust flux in the ECP is likely due to gustier winds and runoff during monsoonal storms when temperature is also higher. Source types in the MSGB and land use in the ECP have important effects on seasonal dust flux. In the MSGB, wet playas produce salt-rich dust during wetter seasons, whereas antecedent and current moisture suppress dust emission from alluvial and dry-playa sources during winter-spring. In the ECP under drought conditions, dust flux at a grazed-and-plowed site increased greatly, and also increased at three annualized, previously grazed sites. Dust fluxes remained relatively consistent at ungrazed and currently grazed sites that have maintained perennial vegetation cover. Under predicted scenarios of future climate change, these results suggest that an increase in summer storms may increase dust flux in both areas, but resultant effects will depend on source type, land use, and vegetation cover. ?? 2011.

  14. Geomagnetic Storm Effects in the Low- to Middle-Latitude Upper Thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Deng, W.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we use data from the Dynamics Explorer 2 (DE 2) satellite and a theoretical simulation made by using the National Center for Atmospheric Research thermosphere/ionosphere general circulation model (NCAR-TIGCM) to study storm-induced changes in the structure of the upper thermosphere in the low- to middle-latitude (20 deg-40 deg N) region of the winter hemisphere. Our principal results are as follows: (1) The winds associated with the diurnal tide weaken during geomagnetic storms, causing primarily zonally oriented changes in the evening sector, few changes in the middle of the afternoon, a combination of zonal and meridional changes in the late morning region, and mainly meridional changes early in the morning; (2) Decreases in the magnitudes of the horizontal winds associated with the diurnal tide lead to a net downward tendency in the vertical winds blowing through a constant pressure surface; (3) Because of these changes in the vertical wind, there is an increase in compressional heating (or a decrease in cooling through expansion), and thus temperatures in the low- to middle-latitudes of the winter hemisphere increase; (4) Densities of all neutral species increase on a constant height surface, but the pattern of changes in the O/N2 ratio is not well ordered on these surfaces; (5) The pattern of changes in the O/N2 ratio is better ordered on constant pressure surfaces. The increases in this ratio on constant pressure surfaces in the low- to middle-latitude, winter hemisphere are caused by a more downward tendency in the vertical winds that blow through the constant pressure surfaces. Nitrogen-poor air is then advected downward through the pressure surface, increasing the O/N2 ratio; (6) The daytime geographical distribution of the modeled increases in the O/N2 ratio on a constant pressure surface in the low- to middle-latitudes of the winter hemisphere correspond very closely with those of increases in the modeled electron densities at the F2 peak.

  15. Flood of January 1982 in the San Francisco Bay area, California

    USGS Publications Warehouse

    Blodgett, J.C.; Chin, E.H.

    1989-01-01

    A major winter storm originating over the Pacific Ocean moved through central California in early January 1982. As much as 16 inches of rain fell in Marin County and 25 inches in the mountains bordering Santa Cruz County. The storm of January 3-5, 1982 had a stable atmospheric structure, and the layer of moist maritime air was confined to altitudes between 50 and 700 ft; this phenomenon caused the rain to fall most heavily along the lower slopes of the coastal mountains. As a result of antecedent rainfall, streamflow in the San Francisco Bay area exceeded normal from the end of October to the end of December 1981. For most streams, the January 1982 flood was the largest since the flood of December 1955, but it was not significantly large in comparison with historic peak-flow data. Damages associated with the storm were substantial, but flooding from stream runoff was not the major problem. Greater than normal antecedent rainfall, together with the prolonged heavy rain, liquified the supersaturated soil cover and caused numerous slope failures and debris flows on steep, unstable slopes. The median recurrence interval of the 1982 peak for 66 streamflow-gaging stations in the San Francisco Bay area is 10 years; for the 1955 flood, the median recurrence interval for 16 stations is 11 years. Streams with highest unit peak runoff were in the Santa Cruz Mountains and North Bay subareas. Median recurrence intervals of flood volumes for durations of 1, 3, and 8 consecutive days during the January 1982 flood are 18, 11, and 8; these recurrence intervals are comparable to those of the December 1955 flood, which are 13 , 16, and 14 years. (USGS)

  16. A SIMPLE HYDROLOGICAL MODEL FOR WATERSHED CHARACTERIZATION

    EPA Science Inventory

    Catchment behavior is characterized with a variety of metrics - discharge, chemical export, biological activity, to name a few. Catchments have complex temporal behavior, e.g., summer and winter storm recessions and nutrient export may look nothing alike. Further, catchment res...

  17. Winter Storm Jupiter of January 2017: Meteorological Drivers, Synoptic Evolution, and Climate Change Considerations in Portland, Oregon

    NASA Astrophysics Data System (ADS)

    Dean, S.; Loikith, P. C.

    2017-12-01

    Although the Pacific Northwest has some of the highest wintertime precipitation in the United States, most urban areas receive little in the way of snow. While 37 inches of wintertime rain fall in Portland on average annually, the city only receives four inches of snow on average. Although wintertime extreme snowstorm events are rare in Portland, in the last century they have occurred about once every ten years. On January 10-12th, 2017, winter storm Jupiter brought 11 inches of snow to downtown Portland within a 12-hour period, making it the largest snowstorm for the city in twenty years. The city declared a state of emergency, over 30,000 citizens lost power, and thousands of businesses were forced to shut down. The anomalously cold air and high amounts of snowfall in a short amount of time made the storm different from others in recent years. This study aims to discover the meteorological drivers behind the January 2017 snowstorm in Portland, Oregon. We also aim to understand how this storm compared with other local storms in the past, and assess the likelihood of a similar event occurring in the future. To do this, reanalysis data were used to display the synoptic evolution of the January 2017 storm. We compared this storm with two other extreme snowfall events from December 2008 and January 1980, assessing meteorological similarities and differences between storms. Results show that the 2017 event was associated with a slow moving, strong low-pressure system accompanied by a 500 hPa trough. These large-scale features helped drive slow moving, locally heavy snow bands over the city of Portland. At the same time, an unusually strong Arctic high-pressure system moved into the interior Pacific Northwest allowing for strong cold air advection west through the Cascade Mountain Range and Columbia River Gorge. Temperature trends show warming of 1-2 °C in the Pacific Northwest since the middle of the last century. Because of this, uncertainty associated with occurrence and magnitude of extreme snowfall events with respect to climate change must also be assessed. Understanding essential questions about the synoptic evolution of extreme snowfall events will better equip meteorologists and city planners to understand how this event occurred, and what to look for to better prepare Pacific Northwest cities for future storms.

  18. Lower survival probabilities for adult Florida manatees in years with intense coastal storms

    USGS Publications Warehouse

    Langtimm, C.A.; Beck, C.A.

    2003-01-01

    The endangered Florida manatee (Trichechus manatus latirostris) inhabits the subtropical waters of the southeastern United States, where hurricanes are a regular occurrence. Using mark-resighting statistical models, we analyzed 19 years of photo-identification data and detected significant annual variation in adult survival for a subpopulation in northwest Florida where human impact is low. That variation coincided with years when intense hurricanes (Category 3 or greater on the Saffir-Simpson Hurricane Scale) and a major winter storm occurred in the northern Gulf of Mexico. Mean survival probability during years with no or low intensity storms was 0.972 (approximate 95% confidence interval = 0.961-0.980) but dropped to 0.936 (0.864-0.971) in 1985 with Hurricanes Elena, Kate, and Juan; to 0.909 (0.837-0.951) in 1993 with the March "Storm of the Century"; and to 0.817 (0.735-0.878) in 1995 with Hurricanes Opal, Erin, and Allison. These drops in survival probability were not catastrophic in magnitude and were detected because of the use of state-of-the-art statistical techniques and the quality of the data. Because individuals of this small population range extensively along the north Gulf coast of Florida, it was possible to resolve storm effects on a regional scale rather than the site-specific local scale common to studies of more sedentary species. This is the first empirical evidence in support of storm effects on manatee survival and suggests a cause-effect relationship. The decreases in survival could be due to direct mortality, indirect mortality, and/or emigration from the region as a consequence of storms. Future impacts to the population by a single catastrophic hurricane, or series of smaller hurricanes, could increase the probability of extinction. With the advent in 1995 of a new 25- to 50-yr cycle of greater hurricane activity, and longer term change possible with global climate change, it becomes all the more important to reduce mortality and injury from boats and other human causes and control the loss of foraging habitat to coastal development.

  19. Links Between the Madden-Julian Oscillation and Severe Convective Storms in the U.S.

    NASA Astrophysics Data System (ADS)

    Barrett, B.

    2015-12-01

    Recent research has shown a tendency for severe convective storms to vary intraseasonally, including by phase of the Madden-Julian Oscillation (MJO). The MJO is the leading mode of atmospheric intraseasonal variability and is characterized by large regions (1000-5000 km) of anomalous convective activity that generally propagate eastward along the equator. Anomalous upper-troposphere heating associated with this convection generates poleward-propagating Rossby waves that interact with the preexisting extratropical circulation. The projection of this interaction onto the synoptic scale - via the favoring of troughs and ridges at certain positions - is the hypothesized mechanism by which the MJO modulates severe convection. However, one unexplored aspect of this modulation is the extent to which severe convection in winter and early-spring months, especially Jan-Mar, may be influenced by different phases of the MJO. While climatologically rarer than events later in spring, severe thunderstorms in winter and early spring still have potential to be high-impact weather events, especially as they often occur in populated areas of the southeast U.S. that have shown more vulnerability than other regions such as the southern or central plains. Results from other studies (not necessarily focused on the question of severe convective storms) have indicated statistically significant modulation of upper- and mid-tropospheric circulation (from 200 hPa to 700 hPa), surface temperature, and sea level pressure. Thus, it is possible that the MJO's influence also extends to severe storms, as these are ingredients known to affect the likelihood of convective activity in the U.S. Using a methodology similar to other recent MJO studies, the impacts of the MJO on tornado, hail, and wind activity from Jan-Mar will be tested as part of this larger project to understand intraseasonal variability of severe storms.

  20. Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events

    NASA Astrophysics Data System (ADS)

    Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin

    2017-04-01

    Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.

  1. Anticipating environmental and environmental-health implications of extreme storms: ARkStorm scenario

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.

    2016-01-01

    The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.

  2. Mesoscale Coastal Behavior of a Deltaic Barrier Island: Storm-Driven Evolution and Morphodynamic Feedbacks

    NASA Astrophysics Data System (ADS)

    Vespremeanu-Stroe, Alfred; Zăinescu, Florin; Tătui, Florin; Preoteasa, Luminişa

    2017-04-01

    Barrier islands and spits are among the most dynamic and vulnerable coastal features. Sacalin formed at the southernmost Danube mouth (Sfântu Gheorghe arm), representing the youngest downdrift island/spit of the Sfântu Gheorghe deltaic lobe, which previously formed several similar downdrift barrier islands during its cyclic pattern of long-term development (1400 BP - present). In this study, we document a 120 yr record of coastal changes that occurred since the emergence of Sacalin Island (1897), following a major flood, occasioned by its development through constant elongation (towards south) and backwards migration. The barrier island/spit is frequently breached in the central part (narrow inlets) and it experiences episodes of large elongation and retreat rates (up to 300 m/year and 60 m/year). Using successive georeferenced maps, satellite images and field measurements, we derived several morphodynamic indices which were analysed in correspondence with the storm climate. The coastal storms temporal variability shows four active intervals (1962-1972, 1975-1977, 1995-1998, 2002-2004) with highly intensive erosional and accretional processes, and three calm periods (1989-1994, 1999-2001, 2005-2015), with a decrease of 40-70 % of the shoreline migration rates. On the other hand, the successive barrier configurations show a distinct evolutionary pattern of its central sector, controlled by the (subaerial) barrier widths. Thus, following an extraordinary high storm (or storm season), the narrower barrier sectors will benefit from a new generation of breach deposition and washover fans. They will further contribute to the reconfiguration of the barrier on a backward position, where it attains significantly larger widths (250-500 m for the subaerial part) which for a while will inhibit the new large overwash formation able to expand the barrier into the lagoon. After such a "widening episode", the time intervals of barrier backline stability (i.e. unaffected by overwash) are of 10-30 years, depending on the storm climate. Therefore, the multi-decadal transformations of the central Sacalin depend on the interplay between storm regime and barrier widths, which points to a major influence of the morphodynamic feedbacks in modulating the storm morphological impact and imposing a rhythmic evolution of the barrier, with the narrow sectors becoming wide and vice-versa. Nevertheless, large oscillations in storm regime may induce unusual barrier morphodynamics. It was the case of the last calm interval (2005-2015), in fact an exceptional negative anomaly, when the storm frequency decreased to half of the multi-decadal average. As a consequence, the formation of washover fans was inhibited and restricted to only a few small-size fans, contributing to the unprecedented central barrier narrowing. In these conditions, during 2012-2013 winter, an atypical southern storm (December 2012), very short but intense, produced a high storm surge which caused massive overtopping in the central part of the spit, favoured by the small width of the island in this sector, creating an exceptional large breach (of ca. 2 km). In the next two months, even low storms enlarged the breach, transforming it into the biggest breaching (3.5 km wide) ever recorded in more than 100 yr of Sacalin evolution. This case documents how a prolonged low storminess interval may trigger barrier island destabilisation or even destruction.

  3. (abstract) Using GPS Measurements to Identify Global Ionospheric Storms in Near Real-Time

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. J.; Lindqwister, U. J.; Rao, A. M.; Pi, X.; Wilson, B. D.; Yuan, D. N.; Reyes, M.

    1996-01-01

    The solar wind interacts with the Earth's magnetosphere, eventually dissipating energy into the ionosphere and atmosphere. As a terminator, the ionosphere responds to magnetic storms, which is very important in understanding the energy coupling process between the Sun and the Earth and in forecasting space weather changes.The worldwide GPS network, for the first time, makes near real-time global ionospheric TEC measurements a possibility. Based on these measurements, global ionospheric TEC maps are generated with time resolution of from 5 minutes to hours. Using these maps, we can analyze the global evolution of ionospheric storms on temporal and spatial scales, which have been dificult to study before. We find that for certain types of storms (such as TID-driven), it is possible to identify them near onset and issue warning signals during the early stages. Main attention has been paid on northern hemispheric winter storms. Their common features and physical mechanisms are being investigated.

  4. DSD Characteristics of a Mid-Winter Tornadic Storm Using C-Band Polarimetric Radar and Two 2D-Video Disdrometers

    NASA Technical Reports Server (NTRS)

    Thurai, M.; Petersen, W. A.; Carey, L. A.

    2010-01-01

    Drop size distributions in an evolving tornadic storm are examined using C-band polarimetric radar observations and two 2D-video disdrometers. The E-F2 storm occurred in mid-winter (21 January 2010) in northern Alabama, USA, and caused widespread damage. The evolution of the storm occurred within the C-band radar coverage and moreover, several minutes prior to touch down, the storm passed over a site where several disdrometers including two 2D video disdrometers (2DVD) had been installed. One of the 2DVDs is a low profile unit and the other is a new next generation compact unit currently undergoing performance evaluation. Analyses of the radar data indicate that the main region of precipitation should be treated as a "big-drop" regime case. Even the measured differential reflectivity values (i.e. without attenuation correction) were as high as 6-7 dB within regions of high reflectivity. Standard attenuation-correction methods using differential propagation phase have been "fine tuned" to be applicable to the "big drop" regime. The corrected reflectivity and differential reflectivity data are combined with the co-polar correlation coefficient and specific differential phase to determine the mass-weighted mean diameter, Dm, and the width of the mass spectrum, (sigma)M, as well as the intercept parameter , Nw. Significant areas of high Dm (3-4 mm) were retrieved within the main precipitation areas of the tornadic storm. The "big drop" regime assumption is substantiated by the two sets of 2DVD measurements. The Dm values calculated from 1-minute drop size distributions reached nearly 4 mm, whilst the maximum drop diameters were over 6 mm. The fall velocity measurements from the 2DVD indicate almost all hydrometeors to be fully melted at ground level. Drop shapes for this event are also being investigated from the 2DVD camera data.

  5. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-10-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/14 winter caused extensive coastal flooding and damage. Coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. This paper provides these levels for the winter storms, and discusses their application to the given data sets for two UK case study sites: Sefton, northwest England, and Suffolk, east England. Tide gauge records and wave buoy data were used to compare the 2013/14 storms with return periods from a national data set, and also joint probabilities of sea level and wave heights were generated, incorporating the recent events. The 2013/14 high waters and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a high return period at both case study sites. The national-scale impact of this event was due to its coincidence with spring high tide at multiple locations. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment could in the future be recorded alongside defence performance and upgrade. Ideally other variables (e.g. river levels at estuarine locations) would also be included, and with appropriate offsetting for local trends (e.g. mean sea-level rise) so that the storm-driven component of coastal flood events can be determined. This could allow long-term comparison of storm severity, and an assessment of how sea-level rise influences return levels over time, which is important for consideration of coastal resilience in strategic management plans.

  6. NASA Airline Operations Research Center

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.

    2016-01-01

    This is a PowerPoint presentation NASA airline operations center (AOC) research. It includes information on using IBM Watson in the AOC. It also reviews a dispatcher decision support tool call the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. It should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations with the same title.

  7. 77 FR 23791 - Oregon Disaster #OR-00042

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 13060 and 13061] Oregon Disaster OR-00042... Administrative declaration of a disaster for the State of OREGON dated 04/02/2012. Incident: Severe Winter Storm... the disaster: Primary Counties: Marion. Contiguous Counties: Oregon: Clackamas, Jefferson, Linn, Polk...

  8. Microscopic analysis of traffic flow in inclement weather.

    DOT National Transportation Integrated Search

    2009-11-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, hurricanes...

  9. NASA AIRS Instrument Captures Data on Monster Winter Storm Affecting 30 States

    NASA Image and Video Library

    2011-02-02

    This visible image from NASA Aqua satellite Jan. 31 shows thickening clouds along a developing intense front in the plains and Midwestern states that will produce excessive snow, freezing rain, sleet, and wind in those areas.

  10. Treatment performance of a constructed wetland during storm and non-storm events in Korea.

    PubMed

    Maniquiz, M C; Lee, S Y; Choi, J Y; Jeong, S M; Kim, L H

    2012-01-01

    The efficiency of a free water surface flow constructed wetland (CW) in treating agricultural discharges from stream was investigated during storm and non-storm events between April and December, 2009. Physico-chemical and water quality constituents were monitored at five sampling locations along the flow path of the CW. The greatest reduction in pollutant concentration was observed after passing the sedimentation zone at approximately 4% fractional distance from the inflow. The inflow hydraulic loading, flow rates and pollutant concentrations were significantly higher and variable during storm events than non-storm (baseflow) condition (p <0.001) that resulted to an increase in the average pollutant removal efficiencies by 10 to 35%. The highest removal percentages were attained for phosphate (51 ± 22%), ammonium (44 ± 21%) and phosphorus (38 ± 19%) while nitrate was least effectively retained by the system with only 25 ± 17% removal during non-storm events. The efficiency of the system was most favorable when the temperature was above 15 °C (i.e., almost year-round except the winter months) and during storm events. Overall, the outflow water quality was better than the inflow water quality signifying the potential of the constructed wetland as a treatment system and capability of improving the stream water quality.

  11. Role of antecedent conditions on nitrogen and phosphorus mobilisation observed in a lowland arable catchment in eastern England: insights from high-frequency monitoring

    NASA Astrophysics Data System (ADS)

    Outram, Faye; Hiscock, Kevin; Dugdale, Stephen; Lovett, Andrew

    2015-04-01

    In order to reduce annual riverine loadings of nutrients which are responsible for degradation of ecosystems downstream and in near coastal areas, it is important to first understand the mobilisation and pathways responsible for transporting them from source to river and how these pathways vary in space and time. The Blackwater tributary of the River Wensum in Norfolk, England, has been equipped with a sensor network as part of the Demonstration Test Catchments project, which has the aim of reducing pollution from agriculture to river systems whilst maintaining food security by the trial of mitigation measures on working farms at the sub-catchment level. The River Wensum is a lowland chalk catchment with intensive arable agriculture and high occurrence of tile drainage on heavier soils. Three hydrological years of high-frequency data have been gathered in the Blackwater since October 2011, including rainfall, half hourly measurements of discharge and groundwater level coupled with hydrochemical parameters including nitrate, total phosphorus (TP) and total reactive phosphorus (TRP). In the three years of data collection, there were distinct departures from long-term rainfall averages as the winter of 2011-12 was extremely dry following a drought from the previous hydrological year, followed by a summer which was unseasonably wet, which continued into the following winter. The relationship between rainfall, storage and discharge was found to be complex, which in turn had an impact on the dominant controls transporting nutrients from the landscape to the river network. Thirty three storms occurred throughout the three year period which have been analysed in the context of the range of hydrometeorological conditions observed throughout the dataset. Discharge-concentration hysteretic responses of nitrogen, TP and TRP have been used alongside statistical analysis of storm characteristics including antecedent hydrological conditions. The nitrate storm response showed distinct seasonal patterns which were greatly impacted by the activation of tile drain flow throughout the winter period and during the fertiliser application window between March-May, with the dry winter in 2011-12 standing apart from the more 'typical' years. Four different storm response categories were identified for nitrate according to dominant flow pathways. The phosphorus response was far less uniform throughout the study period, showing patterns of exhaustion with successive events. Both nitrate and phosphorus loads were disproportionate to flow volume in storm events which occurred after significant dry periods. The data show the importance of antecedent conditions in the storage, mobilisation and transport of nitrogen and phosphorus in agricultural catchments which has important implications for the conceptual understanding of catchment functioning and environmental management.

  12. The Martian Dust Cycle: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.

    2013-01-01

    The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in these models: wind-stress lifting (i.e., saltation) and dust devil lifting. Although the predicted patterns of dust lifting and atmospheric dust loading from these simulations capture some aspects of the observed dust cycle, there are many notable differences between the simulated and observed dust cycles. For example, it is common for models to predict one peak in global dust loading near northern winter solstice due to excessive dust lifting in the Hellas basin at this season. Additionally, it is difficult for models to realistically capture the observed interannual variability in global dust storms. New avenues of dust cycle modeling research include exploring the effects of finite surface dust reservoirs and the effects of coupling the dust and water cycles on the predicted dust cycle.

  13. Relations Between Rainfall and Postfire Debris-Flow and Flood Magnitudes for Emergency-Response Planning, San Gabriel Mountains, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Boldt, Eric M.; Kean, Jason W.; Laber, Jayme; Staley, Dennis M.

    2010-01-01

    Following wildfires, emergency-response and public-safety agencies are faced often with making evacuation decisions and deploying resources both well in advance of each coming winter storm and during storms themselves. Information critical to this process is provided for recently burned areas in the San Gabriel Mountains of southern California. The National Weather Service (NWS) issues Quantitative Precipitation Forecasts (QPFs) for the San Gabriel Mountains twice a day, at approximately 4 a.m. and 4 p.m., along with unscheduled updates when conditions change. QPFs provide estimates of rainfall totals in 3-hour increments for the first 12-hour period and in 6-hour increments for the second 12-hour period. Estimates of one-hour rainfall intensities can be provided in the forecast narrative, along with probable peak intensities and timing, although with less confidence than rainfall totals. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands was used to develop a system for classifying the magnitude of the postfire hydrologic response. The four-class system is based on a combination of the reported volume of individual debris flows, the consequences of these events in an urban setting, and the spatial extent of the response to the triggering storm. Threshold rainfall conditions associated with debris flow and floods of different magnitude classes are defined by integrating local rainfall data with debris-flow and flood magnitude information. The within-storm rainfall accumulations (A) and durations (D) above which magnitude I events are expected are defined by A=0.3D0.6. The function A=0.5D0.6 defines the within-storm rainfall accumulations and durations above which a magnitude III event will occur in response to a regional-scale storm, and a magnitude II event will occur if the storm affects only a few drainage basins. The function A=1.0D0.5defines the rainfall conditions above which magnitude III events can be expected. Rainfall trigger-magnitude relations are linked with potential emergency-response actions in the form of an emergency-response decision chart. The chart leads a user through steps to determine potential event magnitudes, and identify possible evacuation and resource-deployment levels as a function of either individual storm forecasts or measured precipitation during storms. The ability to use this information in the planning and response decision-making process may result in significant financial savings and increased safety for both the public and emergency responders.

  14. A Numerical Simulation (Study) of a Strong West Coast December 2014 Winter Storm

    NASA Astrophysics Data System (ADS)

    Smelser, I.; Xu, L.; Amerault, C. M.; Baker, N. L.; Satterfield, E.; Chua, B.

    2016-12-01

    From December 10 through December 13, 2014, a powerful winter storm swept across the western US coastal states bringing widespread power outages, numerous downed trees and power lines, heavy rains, flooding and even a tornado in the Los Angeles basin. This windstorm was the strongest since October 2009, and was similar to classic wind storms such as the 1962 Columbus Day Storm (Read, 2015).The storm started developing over the Pacific Ocean north of Hawaii on Nov. 30, and formed an atmospheric river that eventually stretched from Hawaii to the west coast. The storm initially hit the Pacific Northwest on Dec. 9th and then split. The highest precipitation amounts started in British Colombia and moved south along the coast. By the Dec. 11th, the highest precipitation amounts were near San Francisco (CA). The peak wind gust (14.4 ms-1) for Monterey (CA) occurred at 1116Z on Dec. 11th while the heaviest 6-hr precipitation (42.9 mm) occurred between 18Z on Dec. 11th to 00Z on Dec. 12th. By Dec. 12th, the storm was centered over Southern California.This storm was poorly forecast by many operational NWP models even 2-3 days in advance (Mass, 2014). The NCEP Global Forecast System (GFS) showed considerably variability between successive model runs, and significant differences existed between Environment Canada, UK Met Office and ECMWF model forecasts. To study this extreme weather event, we used the Navy global (NAVGEM) and mesoscale (COAMPS®) NWP models, and compared the resulting forecasts to observations, satellite imagery and ECMWF (TIGGE) forecasts. NAVGEM, with Hybrid 4DVar, was run with a resolution of 31 km, and generated the boundary conditions for COAMPS® 4DVar and forecasts, that were run with triple-nested grids of 27, 9, and 3 km. The MesoWest data from the University of Utah were used for forecast verification, and to locate the times of highest precipitation and wind speed for different points along the coast. Both the online API and the python module were used to access and pull information from the data base. Overall, both NAVGEM and COAMPS® predicted the storm well. NAVGEM predicted the storm to be slower and more powerful than the analyses. The NAVGEM analysis and corresponding 5-day forecast accumulated 6-hr precipitation (Fig. 1) for Dec. 12th at 00Z agree well with the observed precipitation (4.29 cm) for Monterey (KMRY).

  15. Lightning Activity Relative to the Microphysical and Kinematic Structure of Storms during a Thunder-Snow Episode on 29-30 November 2006

    NASA Astrophysics Data System (ADS)

    Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.

    2007-12-01

    We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.

  16. Research on the impacts of past and future hurricanes on the endangered Florida manatee: Chapter 6J in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Langtimm, Catherine A.; Krohn, M. Dennis; Stith, Bradley M.; Reid, James P.; Beck, C.A.; Butler, Susan M.

    2007-01-01

    U.S. Geological Survey (USGS) research on Florida manatees (Trichechus manatus latirostris) from 1982 through 1998 identified lower apparent survival rates for adult manatees during years when Hurricane Elena (1985), the March "Storm of the Century"(1993), and Hurricane Opal (1995) hit the northern coast of the Gulf of Mexico. Although our analysis showed that a significant number of our monitored individual manatees failed to return to their winter homes after these storms, their actual fate remains unknown. With the aid of new satellite technology to track manatees during storms and new statistical techniques to determine survival and emigration rates, researchers are working to understand how hurricanes impact the endangered species by studying manatees caught in the path of the destructive hurricanes of 2004 and 2005.

  17. Severe Storms Branch research report (April 1984 April 1985)

    NASA Technical Reports Server (NTRS)

    Dubach, L. (Editor)

    1985-01-01

    The Mesoscale Atmospheric Processes Research Program is a program of integrated studies which are to achieve an improved understanding of the basic behavior of the atmosphere through the use of remotely sensed data and space technology. The program consist of four elements: (1) special observations and analysis of mesoscale systems; (20 the development of quanitative algorithms to use remotely sensed observations; (3) the development of new observing systems; and (4) numerical modeling. The Severe Storms Branch objectives are the improvement of the understanding, diagnosis, and prediction of a wide range of atmospheric storms, which includes severe thunderstorms, tornadoes, flash floods, tropical cyclones, and winter snowstorms. The research often shed light upon various aspects of local weather, such as fog, sea breezes, air pollution, showers, and other products of nonsevere cumulus cloud clusters. The part of the program devoted to boundary layer processes, gust front interactions, and soil moisture detection from satellites gives insights into storm growth and behavior.

  18. Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    NASA Astrophysics Data System (ADS)

    Sheridan, William Michael

    Winter can bring significant snow storm systems or nor'easters to New England. Understanding each factor which can affect nor'easters will allow forecasters to better predict the subsequent weather conditions. One important parameter is the sea surface temperature (SST) of the Atlantic Ocean, where many of these systems strengthen and gain much of their structure. The Weather Research and Forecasting (WRF) model was used to simulate four different nor'easters (Mar 2007, Dec 2007, Jan 2008, Dec 2010) using both observed and warmed SSTs. For the wanner SST simulations, the SSTs over the model domain were increased by 1°C. This change increased the total surface heat fluxes in all of the storms, and the resulting simulated storms were all more intense. The influence on the amount of snowfall over land was highly variable, depending on how close to the coastline the storms were and temperatures across the region.

  19. Phosphorus export during storm events from a human perturbed watershed, southeast China: Implications for coastal ecology

    NASA Astrophysics Data System (ADS)

    Chen, Nengwang; Wu, Yinqi; Chen, Zhuhong; Hong, Huasheng

    2015-12-01

    Understanding how major storms impact riverine nutrient export to estuaries and the coastal region is crucial in the context of increasing anthropogenic climate and environmental perturbation. In this study, the effects of major storms on river phosphorus (P) were investigated in an agricultural river (SE China), through continuous sampling of dissolved and particulate P during the three largest storm events (A-C) in 2013. There was a major increase in the total P load (3.4-16 fold compared with baseflow). The event mean concentration of storm A was the highest likely due to the first flush effect mobilizing accumulated waste. The flux of DOP and DRP was controlled by discharge as DOP in storm B and DRP in storm C with a relatively simple hysteresis effect with higher fluxes on the rising limb being diluted by rainfall on the falling limb. DOP in storm B remained relatively constant due to delay in DOP flushed from upstream areas balancing dilution by rainfall down stream. DRP in storm C also remained relatively constant caused by successive release of soil DRP to the river from previous unsaturated surface layers. TPP export was greatest towards the early to high stages of the storm events suggesting that most of the eroded sediment and resuspended sediment-bound P are exported during the early stages of the storm. The total flux of P is elevated in watersheds with high levels of human perturbation while climate change is predicted to increase the frequency of major storms. The results of this study are important in predicting the ecosystem response of estuarine and coastal regions to major storms in the riverine catchment area.

  20. Wildfire and MAMS data from STORMFEST

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Carlson, G. S.

    1993-01-01

    Early in 1992, NASA participated in an inter-agency field program called STORMFEST. The STORM-Fronts Experiment Systems Test (STORMFEST) was designed to test various systems critical to the success of STORM 1 in a very focused experiment. The field effort focused on winter storms in order to investigate the structure and evolution of fronts and associated mesoscale phenomena in the central United States. This document describes the data collected from two instruments onboard a NASA ER2 aircraft which was deployed out of Ellington Field in Houston, Texas from February 13 through March 15, 1992, in support of this experiment. The two instruments were the Wildfire (a.k.a. the moderate resolution imaging spectrometer-nadir (MODIS-N) Airborne Simulation (MAS)) and the Multispectral Atmospheric Mapping Sensor (MAMS).

  1. Preparing for Emergencies: A Checklist for People with Neuromuscular Diseases

    MedlinePlus

    TORNADO • FLASH FLOOD • EARTHQUAKE • WINTER STORM • HURRICANE • FIRE • HAZARDOUS MATERIALS SPILL Preparing for Emergencies A Checklist for ... head for a basement when there is a tornado warning, but most basements aren’t wheelchair-accessible. ...

  2. Braving the Elements: Protecting Schools against Weather-Related Disasters.

    ERIC Educational Resources Information Center

    Breighner, Mary

    1997-01-01

    Discusses common weather-related hazards (floods, windstorms, and winter storms) and provides some steps administrators can take to protect their schools. Suggests administrators periodically assess their school's commitment to loss control, housekeeping, suitable building construction and reinforcement, sprinkler systems, water supply,…

  3. Mobility and safety impacts of winter storm events in a freeway environment.

    DOT National Transportation Integrated Search

    2000-02-01

    Several factors influence a driver's decision to travel, choice of vehicle speed, and the safety of a particular trip. These factors include, among others, the trip purpose, time of day, traffic volumes, weather and roadway conditions, and the range ...

  4. Impacts of using salt and salt brine for roadway deicing.

    DOT National Transportation Integrated Search

    2014-06-01

    Idaho Transportation Department (ITD) uses a variety of methods to help ensure safe travel on the state highway system : following winter storm events. These methods include plowing, use of sand to improve traction, and use of salt and chemical : com...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Arthur; Cayan, Daniel; Pierce, David

    This project addressed the ability of the Community Climate System Model (CCSM3 and CCSM4), the Community Earth System Model (CESM), and other models to simulate the processes involved in controlling winter storms affecting the U.S. West Coast as well as other precipitation processes in the climate system.

  6. Data mining and gap analysis for weather responsive traffic management studies.

    DOT National Transportation Integrated Search

    2010-12-01

    Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the : delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, : hurric...

  7. On the role of sea-state in bubble-mediated air-sea gas flux during a winter storm

    NASA Astrophysics Data System (ADS)

    Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.

    2017-04-01

    Oceanic bubbles play an important role in the air-sea exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.

  8. The role of volcanic aerosols and relativistic electrons in modulating winter storm vorticity

    NASA Astrophysics Data System (ADS)

    Tinsley, Brian A.; Zhou, Limin; Liu, Weiping

    2012-09-01

    Small changes in the vorticity of winter storms, responding to solar wind variations, are found in winters from 1957 to 2011, and are greater for winters with higher levels of stratospheric volcanic aerosols. Using 1993-2011 data, the response of the vorticity area index (VAI) is shown to be of larger amplitude when the days of minima in the relativistic electron flux (REF) precipitating from the radiation belts are used, instead of heliospheric current sheet (HCS) crossings, as key days in superposed epoch analyses. The HCS crossings mostly occur within a few days of the REF minima. The VAI is an objective measure of the area of high cyclonic vorticity, and for the present work is derived from ERA-40 and ERA-Interim reanalyses of global meteorological data. The VAI dependencies on the stratospheric aerosol content (SAC) and the REF are consistent with a model in which the ionosphere-earth current density (Jz) affects cloud microphysics. One of the ways in which Jz is modulated is by changes in stratospheric column resistance (S), which is increased by stratospheric aerosols. Because S is in series with the tropospheric column resistance (T), Jz modulation by REF requires that S be not negligible with respect to T. So the Jz modulation and the VAI response appear when the SAC is very high, or the REF reductions (which also increase S) are very deep, and when the product of the SAC and the reciprocal of the REF exceeds a threshold value dependent on T.

  9. Assessment and comparison of extreme sea levels and waves during the 2013/2014 storm season in two UK coastal regions

    NASA Astrophysics Data System (ADS)

    Wadey, M. P.; Brown, J. M.; Haigh, I. D.; Dolphin, T.; Wisse, P.

    2015-04-01

    The extreme sea levels and waves experienced around the UK's coast during the 2013/2014 winter caused extensive coastal flooding and damage. In such circumstances, coastal managers seek to place such extremes in relation to the anticipated standards of flood protection, and the long-term recovery of the natural system. In this context, return periods are often used as a form of guidance. We therefore provide these levels for the winter storms, as well as discussing their application to the given data sets and case studies (two UK case study sites: Sefton, northwest England; and Suffolk, east England). We use tide gauge records and wave buoy data to compare the 2013/2014 storms with return periods from a national dataset, and also generate joint probabilities of sea level and waves, incorporating the recent events. The UK was hit at a national scale by the 2013/2014 storms, although the return periods differ with location. We also note that the 2013/2014 high water and waves were extreme due to the number of events, as well as the extremity of the 5 December 2013 "Xaver" storm, which had a very high return period at both case study sites. Our return period analysis shows that the national scale impact of this event is due to its coincidence with spring high tide at multiple locations as the tide and storm propagated across the continental shelf. Given that this event is such an outlier in the joint probability analyses of these observed data sets, and that the season saw several events in close succession, coastal defences appear to have provided a good level of protection. This type of assessment should be recorded alongside details of defence performance and upgrade, with other variables (e.g. river levels at estuarine locations) included and appropriate offsetting for linear trends (e.g. mean sea level rise) so that the storm-driven component of coastal flood events can be determined. Local offsetting of the mean trends in sea level allows long-term comparison of storm severity and also enables an assessment of how sea level rise is influencing return levels over time, which is important when considering long-term coastal resilience in strategic management plans.

  10. Post-storm evolution a high-energy remote sandy beach backed by a high and wide coastal dune

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Bujan, Stéphane; Ferreira, Sophie

    2016-04-01

    During the winter 2013/2014, the high-energy meso-macrotidal remote beach of Truc Vert (SW France) was exposed to the most energetic wave conditions over at least the last 65 years with, for instance, the 2-month averaged significant wave height at the coast exceeding 3.6 m. Unprecedented beach and dune erosion was observed with the notable presence of a 700-m long localized megacusp embayment with the erosion scarp height exceeding 6 m in its centre where the dune retreat reached 30 m. Both the beach and the coastal dune eroded by about 90 m3/m within 3 months of severe storm activity, that is, a total beach-dune system sediment loss reaching 180m3/m. Beach and dune evolution after the winter 2013/2014 was inspected from March 2014 to November 2015 using bimonthly topographic surveys covering 1500+ m alongshore. 1.5 years after the winter 2014/2015, the beach-dune system did not fully recover to its pre-winter 2014/2015 level. The dune accreted by only a few m3/m while the beach accreted by an impressive amount of approximately 150m3/m, to reach a total volume that was only exceeded in 2012 within our full 10-year time series. Despite little volumetric changes, the dune showed significant morphological change through slumping and onshore wave- and wind-driven sediment transport. Seasonal natural revegetation was observed with large dune grass growth into the summer berm and within the erosion scarp with slumped clots of dune grass re-establishing their growth during the winter 2014/2015. In late 2015, the onset of morphological foredune development was observed. It is anticipated that, if Truc Vert is not exposed to a cluster of severe storms during the winter 2015/2016, the coastal dune will increase in volume within 2016 at a much higher rate than during 2015. Last but not least, starting in late 2015, the coastal dune of Truc Vert is now intensively monitored through regular 4-km long UAV photogrammetric surveys. Given that, nowadays, some scientists advocate that dunes maintained as dynamic systems retaining diversity and complexity not only provide more ecosystem services but can even be more resistant to marine erosion and more resilient than actively managed dunes, it is the objective to test different dune management strategies at Truc Vert, including no dune maintenance.

  11. Seasonality of major aerosol species and their transformations in Cairo megacity

    NASA Astrophysics Data System (ADS)

    Favez, Olivier; Cachier, Hélène; Sciare, Jean; Alfaro, Stéphane C.; El-Araby, Tarek M.; Harhash, Maha A.; Abdelwahab, Magdy M.

    Bulk aerosols sampled on a weekly basis at two Cairo (Egypt) urban sites from January 2003 to May 2006 were analysed for their chemical composition of major aerosol species (elemental carbon, water soluble/insoluble organic carbon, nitrate, sulphate, ammonium, chloride, sodium and calcium). Data subsequently obtained constitute one of the longest and more detailed dataset related to Cairo aerosols, and offer the opportunity to investigate seasonal trends. Dust aerosols (derived from calcium measurements) displayed maximum concentrations in spring and winter, due to frequent dust storms, but also high background concentration levels (˜50 μg m -3) all year long. Within these particles, about 40% on average of Ca 2+ was found to be associated with SO 42-, NO 3- and/or Cl -, pointing out "dust anthropization" processes and their subsequent climatic impact on a regional scale. Seasonal variations of non-dust aerosols, equally distributed between carbonaceous aerosols and ions, were also observed, with concentrations of the order of 100 μg m -3 in autumn and winter, and of 60 μg m -3 in spring and summer. High concentration levels of non-sea-salt chloride (up to 15 μg m -3 on a monthly basis), likely of industrial origin, were observed in autumn and winter. During the autumn "Black Cloud" event, biomass burning aerosols originating from rice straw burning in the Nile Delta have shown to account for 12%, 35% and 50% of Cairo EC, WIOC and WSOC mass concentrations, respectively. Finally, relatively low WSOC/OC ratios (˜1/3) were obtained all the year long, calling for more investigation on the water-solubility of organic aerosols originating from the burning of agricultural waste, and on that of secondary organic aerosols formed in dry urban atmospheres.

  12. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment specific geomorphologic features that determine subsurface flow convergence zones. The three case-studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.

  13. Atmospheric Science: It's More than Meteorology.

    ERIC Educational Resources Information Center

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  14. Children and Natural Disasters: A Primer for School Psychologists

    ERIC Educational Resources Information Center

    Evans, Linda; Oehler-Stinnett, Judy

    2006-01-01

    Worldwide children are impacted by natural disasters, including hurricanes, floods, tornadoes, earthquakes, wildfires, landslides and sandstorms, winter and severe storms, heat waves, volcanoes and tsunamis. School psychologists should understand natural disaster effects, such as economic loss, relocation and health concerns and mental health…

  15. 75 FR 44994 - Pennsylvania Disaster Number PA-00031

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-30

    ... SMALL BUSINESS ADMINISTRATION [Disaster Declaration 12121 and 12122] Pennsylvania Disaster Number... PENNSYLVANIA (FEMA--1898--DR), dated 04/16/2010. Incident: Severe Winter Storms and Snowstorms. Incident Period... Non-Profit organizations in the State of PENNSYLVANIA, dated 04/16/2010, is hereby amended to include...

  16. Climate Change Impacts on Runoff Generation for the Design of Sustainable Stormwater Infrastructure

    DOT National Transportation Integrated Search

    2011-06-01

    Climate change over the Pacific Northwest is expected to alter the hydrological cycle, such as an increase in winter flooding potential due to more precipitation falling as snow and more frequent rain on snow events. Existing infrastructure for storm...

  17. Assessment of the Barren Ground Caribou Die-off During Winter 2015-2016 Using Passive Microwave Observations

    NASA Astrophysics Data System (ADS)

    Dolant, C.; Montpetit, B.; Langlois, A.; Brucker, L.; Zolina, O.; Johnson, C. A.; Royer, A.; Smith, P.

    2018-05-01

    In summer 2016, more than 50 Arctic Barren Ground caribous were found dead on Prince Charles Island (Nunavut, Canada), a species recently classified as threatened. Neither predator nor sign of diseases was observed and reported. The main hypothesis is that caribous were not able to access food due to a very dense snow surface, created by a strong storm system in spring. Using satellite microwave data, a significant increase in brightness temperature polarization ratio at 19 and 37 GHz was observed in spring 2016 (60% higher than previous two winter seasons). Based on microwave radiative transfer simulations, such anomaly can be explained with a very dense snow surface. This is consistent with the succession of storms and strong winds highlighted in ERA-Interim over Prince Charles Island in spring 2016. Using several sources of data, this study shows that changes in snow conditions explain the caribou die-off due to restricted foraging.

  18. Assessment of suspended solids concentration in highway runoff and its treatment implication.

    PubMed

    Hallberg, M; Renman, G

    2006-09-01

    It is understood that the major pollution from storm water is related to the content of particulate matter. One treatment practice is based on the first flush, i.e. detention of the initial part of the runoff that is considered to contain the highest concentrations of pollutants. This study has evaluated the concentration of total suspended solids in 30 consecutive runoff events during the winter season for an area of 6.7 hectares. A six-lane highway (E4) that has an annual average daily traffic load of 120,000 dominates the area and road de-icing salt (NaCl) and studded tires were in regular use during the studied period. The effluent standard for wastewater of 60 mg TSS per litre applied in EU was used to assess the treatment requirement of storm water. In only two of the events the event mean concentration was below 60 mg 1(-1). In four runoff events a partial event mean concentration below 60 mg 1(-1) was found, in 26 %, 12 %, 11 %, and 2 % respectively of the runoff volume. This would suggest that a capture of the initial part of the runoff for subsequent treatment is less applicable in this type of urban watershed.

  19. The value of Doppler LiDAR systems to monitor turbulence intensity during storm events in order to enhance aviation safety in Iceland

    NASA Astrophysics Data System (ADS)

    Yang, Shu; Nína Petersen, Guðrún; Finger, David C.

    2017-04-01

    Turbulence and wind shear are a major natural hazards for aviation safety in Iceland. The temporal and spatial scale of atmospheric turbulence is very dynamic, requiring an adequate method to detect and monitor turbulence with high resolution. The Doppler Light Detection and Ranging (LiDAR) system can provide continuous information about the wind field using the Doppler effect form emitted light signals. In this study, we use a Leosphere Windcube 200s LiDAR systems stationed near Reykjavik city Airport and at Keflavik International Airport, Iceland, to evaluate turbulence intensity by estimating eddy dissipation rate (EDR). For this purpose, we retrieved radial wind velocity observations from Velocity Azimuth Display (VAD) scans (360°scans at 15° and 75° elevation angle) to compute EDR. The method was used to monitor and characterize storm events in fall 2016 and the following winter. The preliminary result reveal that the LiDAR observations can detect and quantify atmospheric turbulence with high spatial and temporal resolution. This finding is an important step towards enhanced aviation safety in subpolar climate characterized by sever wind turbulence.

  20. Public-policy issues associated with the SAFRR Tsunami Scenario: Chapter M in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario

    USGS Publications Warehouse

    Johnson, Laurie; Real, Chuck

    2013-01-01

    The SAFRR (Science Application for Risk Reduction) tsunami scenario simulates a tsunami generated by a hypothetical magnitude 9.1 earthquake that occurs offshore of the Alaska Peninsula (Kirby and others, 2013). In addition to the work performed by the authors on public-policy issues associated with the SAFRR tsunami scenario, this section of the scenario also reflects the policy discussions of the State of California’s Tsunami Policy Work Group, a voluntary advisory body formed in October 2011, which operates under the California Natural Resources Agency (CNRA), Department of Conservation, and is charged with identifying, evaluating, and making recommendations to resolve issues that are preventing full and effective implementation of tsunami hazard mitigation and risk reduction throughout California’s coastal communities. It also presents the analyses of plans and hazard policies of California’s coastal counties, incorporated cities, and major ports performed by the staff of the California Geological Survey (CGS) and Lauren Prehoda, Office of Environmental and Government Affairs, California Department of Conservation. It also draws on the policy framework and assessment prepared for the ARkStorm Pacific Coast winter storm and catastrophic flooding (Topping and others, 2010).

  1. Storm surge along the Pacific coast of North America

    NASA Astrophysics Data System (ADS)

    Bromirski, Peter D.; Flick, Reinhard E.; Miller, Arthur J.

    2017-01-01

    Storm surge is an important factor that contributes to coastal flooding and erosion. Storm surge magnitude along eastern North Pacific coasts results primarily from low sea level pressure (SLP). Thus, coastal regions where high surge occurs identify the dominant locations where intense storms make landfall, controlled by storm track across the North Pacific. Here storm surge variability along the Pacific coast of North America is characterized by positive nontide residuals at a network of tide gauge stations from southern California to Alaska. The magnitudes of mean and extreme storm surge generally increase from south to north, with typically high amplitude surge north of Cape Mendocino and lower surge to the south. Correlation of mode 1 nontide principal component (PC1) during winter months (December-February) with anomalous SLP over the northeast Pacific indicates that the dominant storm landfall region is along the Cascadia/British Columbia coast. Although empirical orthogonal function spatial patterns show substantial interannual variability, similar correlation patterns of nontide PC1 over the 1948-1975 and 1983-2014 epochs with anomalous SLP suggest that, when considering decadal-scale time periods, storm surge and associated tracks have generally not changed appreciably since 1948. Nontide PC1 is well correlated with PC1 of both anomalous SLP and modeled wave height near the tide gauge stations, reflecting the interrelationship between storms, surge, and waves. Weaker surge south of Cape Mendocino during the 2015-2016 El Niño compared with 1982-1983 may result from changes in Hadley circulation. Importantly from a coastal impacts perspective, extreme storm surge events are often accompanied by high waves.

  2. North Atlantic storm track variability and its association to the North Atlantic oscillation and climate variability of northern Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, J.C.

    The primary mode of North Atlantic track variability is identified using rotated principal component analysis (RPCA) on monthly fields of root-mean-squares of daily high-pass filtered (2-8-day periods) sea level pressures (SLP) for winters (December-February) 1900-92. It is examined in terms of its association with (1) monthly mean SLP fields, (2) regional low-frequency teleconnections, and (3) the seesaw in winter temperatures between Greenland and northern Europe. 32 refs., 9 figs.

  3. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-07-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/2014 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper-beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number of the storms. This model application provides inter-survey information about morphological response to repeated storm impact. This will inform local managers of the potential beach response and dune vulnerability to variable storm configurations.

  4. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK

    NASA Astrophysics Data System (ADS)

    Dissanayake, P.; Brown, J.; Karunarathna, H.

    2015-04-01

    Impacts of storm chronology within a storm cluster on beach/dune erosion are investigated by applying the state-of-the-art numerical model XBeach to the Sefton coast, northwest England. Six temporal storm clusters of different storm chronologies were formulated using three storms observed during the 2013/14 winter. The storm power values of these three events nearly halve from the first to second event and from the second to third event. Cross-shore profile evolution was simulated in response to the tide, surge and wave forcing during these storms. The model was first calibrated against the available post-storm survey profiles. Cumulative impacts of beach/dune erosion during each storm cluster were simulated by using the post-storm profile of an event as the pre-storm profile for each subsequent event. For the largest event the water levels caused noticeable retreat of the dune toe due to the high water elevation. For the other events the greatest evolution occurs over the bar formations (erosion) and within the corresponding troughs (deposition) of the upper beach profile. The sequence of events impacting the size of this ridge-runnel feature is important as it consequently changes the resilience of the system to the most extreme event that causes dune retreat. The highest erosion during each single storm event was always observed when that storm initialised the storm cluster. The most severe storm always resulted in the most erosion during each cluster, no matter when it occurred within the chronology, although the erosion volume due to this storm was reduced when it was not the primary event. The greatest cumulative cluster erosion occurred with increasing storm severity; however, the variability in cumulative cluster impact over a beach/dune cross-section due to storm chronology is minimal. Initial storm impact can act to enhance or reduce the system resilience to subsequent impact, but overall the cumulative impact is controlled by the magnitude and number of the storms. This model application provides inter-survey information about morphological response to repeated storm impact. This will inform local managers of the potential beach response and dune vulnerability to variable storm configurations.

  5. A socioeconomic assessment of climate change-enhanced coastal storm hazards in the U.S. Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Baron, H. M.; Ruggiero, P.; Harris, E.

    2010-12-01

    Every winter, coastal communities in the U.S. Pacific Northwest are at risk to coastal change hazards caused by extreme storm events. These storms have the potential to erode large portions of the primary foredune that may be a community’s only barrier from the ocean. Furthermore, the frequency and magnitude of significant erosion events appears to be increasing, likely due to climate-related processes such as sea level rise and increases in storm wave heights. To reduce risks posed by winter storms, it is not only important to determine the impending physical impacts but it is also necessary to explore the vulnerability of the social-ecological system in the context of these hazards. Here we assess the exposure to both annually occurring and extreme storm events at various planning timelines using a methodology that incorporates the effect of a variable and changing climate on future total water levels. To do this, we have developed a suite of climate change scenarios involving a range of projections for the wave climate, global sea level rise, and the occurrence of El Niño events through 2100. Simple geometric models are then used to conservatively determine the extent of erosion that may occur for a given combination of these climatic factors. We integrate the physical hazards with socioeconomic data using a geographic information system (GIS) in order to quantify societal vulnerability, characterized by the exposure and sensitivity of a community, which is based on the distribution of people, property, and resources. Here we focus on a 14 km stretch of dune-backed coast in northwest Oregon, from Cascade Head to Cape Kiwanda—the location of two communities that, historically, have experienced problematic storm-induced coastal change, Pacific City and Neskowin. Although both of these communities have similar exposure to coastal change hazards at the present, Neskowin is more than twice as sensitive to erosion because almost all of its residents and community assets are located within ~230 m of a narrow beach behind a rip rap revetment. Clearly, any significant losses sustained during an extreme storm could be devastating to the community, and these impacts will likely be amplified in the future. This information is being used to inform land-use planners as well as coastal community residents and visitors about potential coastal change hazards in order to make communities more resistant to future extreme storm events as they are influenced by a changing climate.

  6. Solar power satellite offshore rectenna study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Offshore rectennas are feasible and cost competitive with land rectennas but the type of rectenna suitable for offshore use is quite different from that specified in the present reference system. A nonground plane design minimizes the weight and greatly reduces the number of costly support towers. This perferred design is an antenna array consisting of individually encapsulated dipoles with reflectors or tagis supported on feed wires. Such a 5 GW rectenna could be built at a 50 m water depth site to withstand hurricane, winter storm, and icing conditions for a one time cost of $5.7 billion. Subsequent units would be about 1.3 less expensive. More benign and more shallow water sites would result in substantially lower costs. The major advantage of an offshore rectenna is the removal of microwave radiation from populated areas.

  7. JPSS Data Product Applications for Monitoring Severe Weather and Environmental Hazards

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhou, L.; Divakarla, M. G.; Atkins, T.

    2016-12-01

    The Joint Polar Satellite System (JPSS) is the National Oceanic and Atmospheric Administration's (NOAA's) next-generation polar-orbiting operational environmental satellite system. The Suomi National Polar-orbiting Partnership (S-NPP) is the first satellite in the JPSS series. One of the JPSS supported key mission areas is to reduce the loss of life from high-impact weather events while improving efficient economies through environmental information. Combining with the sensors on other polar and geostationary satellite platforms, JPSS observations provided much enhanced capabilities for the Nation's essential products and services, including forecasting severe weather like hurricanes, potential tornadic outbreaks, and blizzards days in advance, and assessing environmental hazards such as droughts, floods, forest fires, poor air quality and harmful coastal waters. Sensor and Environmental Data Records (SDRs/EDRs) derived from S-NPP and follow-on JPSS satellites provide critical data for environmental assessments, forecasts and warnings. This paper demonstrates the use of S-NPP science data products towards analysis events of severe weather and environmental hazards, such as Paraguay Flooding, Hurricane Iselle, the record-breaking winter storm system that impacted the US East Coast area early this year, and Fort McMurray wildfire. A brief description of these examples and a detailed discussion of the winter storm event are presented in this paper. VIIRS (Visible Infrared Imaging Radiometer Suite) and ATMS (Advanced Technology Microwave Sounder) SDR/EDR products collected from multiple days of S-NPP observations are analyzed to study the progression of the winter storm and illustrate how JPSS products captured the storm system. The products used for this study included VIIRS day/night band (DNB) and true color images, ocean turbidity images, snow cover fraction, and the multi-sensor snowfall rates. Quantitative evaluation of the ATMS derived snowfall rates with the radar estimates revealed good agreement. Use of STAR JPSS product monitoring and visualization tools to evaluate these events, and applications of these tools for anomaly detection, mitigation, and science maintenance of the long-term stability of the data products is also presented in this paper.

  8. Relationships between Hg Air-surface exchange, Soil Moisture and Precipitation at a Background Vegetated Site in South-Eastern Australia.

    NASA Astrophysics Data System (ADS)

    Macsween, K.; Edwards, G. C.

    2017-12-01

    Despite many decades of research, the controlling mechanisms of mercury (Hg) air-surface exhange are still poorly understood. Particularly in Australian ecosystems where there are few anthropogenic inputs. A clear understanding of these mechanisms is vital for accurate representation in the global Hg models, particularly regarding re-emission. Water is known to have a considerable influence on Hg exchange within a terrestrial ecosystem. Precipitation has been found to cause spikes is Hg emissions during the initial stages of rain event. While, Soil moisture content is known to enhance fluxes between 15 and 30% Volumetric soil water (VSW), above which fluxes become suppressed. Few field experiments exist to verify these dominantly laboratory or controlled experiments. Here we present work looking at Hg fluxes over an 8-month period at a vegetated background site. The aim of this study is to identify how changes to precipitation intensity and duration, coupled with variable soil moisture content may influence Hg flux across seasons. As well as the influence of other meteorological variables. Experimentation was undertaken using aerodynamic gradient micrometeorological flux method, avoiding disruption to the surface, soil moisture probes and rain gauge measurements to monitor alterations to substrate conditions. Meteorological and air chemistry variables were also measured concurrently throughout the duration of the study. During the study period, South-Eastern Australia experienced several intense east coast low storm systems during the Autumn and Spring months and an unusually dry winter. VSW rarely reached above 30% even following the intense rainfall experienced during the east coast lows. The generally dry conditions throughout winter resulted in an initial spike in Hg emissions when rainfall occurred. Fluxes decreased shortly after the rain began but remained slightly elevated. Given the reduced net radiation and cooler temperatures experienced during the winter months soils took several days to dry out, resulting in slightly enhanced fluxes for the days preceding rainfall. It is thought that seasonality of rainfall has a significant impact of Hg air-surface exchange trends, both through increased recovery times once rain has past and through the increased occurrence of major storm events.

  9. Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region?

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.

    2017-12-01

    During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.

  10. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mace, J; Matrosov, S; Shupe, M

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phasemore » will begin nominally on 1 November 2010 and extend to approximately early April 2011.« less

  11. Precipitation Cluster Distributions: Current Climate Storm Statistics and Projected Changes Under Global Warming

    NASA Astrophysics Data System (ADS)

    Quinn, Kevin Martin

    The total amount of precipitation integrated across a precipitation cluster (contiguous precipitating grid cells exceeding a minimum rain rate) is a useful measure of the aggregate size of the disturbance, expressed as the rate of water mass lost or latent heat released, i.e. the power of the disturbance. Probability distributions of cluster power are examined during boreal summer (May-September) and winter (January-March) using satellite-retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) 3B42 and Special Sensor Microwave Imager and Sounder (SSM/I and SSMIS) programs, model output from the High Resolution Atmospheric Model (HIRAM, roughly 0.25-0.5 0 resolution), seven 1-2° resolution members of the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, and National Center for Atmospheric Research Large Ensemble (NCAR LENS). Spatial distributions of precipitation-weighted centroids are also investigated in observations (TRMM-3B42) and climate models during winter as a metric for changes in mid-latitude storm tracks. Observed probability distributions for both seasons are scale-free from the smallest clusters up to a cutoff scale at high cluster power, after which the probability density drops rapidly. When low rain rates are excluded by choosing a minimum rain rate threshold in defining clusters, the models accurately reproduce observed cluster power statistics and winter storm tracks. Changes in behavior in the tail of the distribution, above the cutoff, are important for impacts since these quantify the frequency of the most powerful storms. End-of-century cluster power distributions and storm track locations are investigated in these models under a "business as usual" global warming scenario. The probability of high cluster power events increases by end-of-century across all models, by up to an order of magnitude for the highest-power events for which statistics can be computed. For the three models in the suite with continuous time series of high resolution output, there is substantial variability on when these probability increases for the most powerful precipitation clusters become detectable, ranging from detectable within the observational period to statistically significant trends emerging only after 2050. A similar analysis of National Centers for Environmental Prediction (NCEP) Reanalysis 2 and SSM/I-SSMIS rain rate retrievals in the recent observational record does not yield reliable evidence of trends in high-power cluster probabilities at this time. Large impacts to mid-latitude storm tracks are projected over the West Coast and eastern North America, with no less than 8 of the 9 models examined showing large increases by end-of-century in the probability density of the most powerful storms, ranging up to a factor of 6.5 in the highest range bin for which historical statistics are computed. However, within these regional domains, there is considerable variation among models in pinpointing exactly where the largest increases will occur.

  12. Evaluation of Mixed-Phase Microphysics Within Winter Storms using Field Data and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Yu, Ruyi; Molthan, Andrew L.; Nesbitt, Stephen

    2014-01-01

    It is hypothesized that microphysical predictions have greater uncertainties/errors when there are complex interactions that result from mixedphased processes like riming. Use Global Precipitation Measurement (GPM) Mission ground validation studies in Ontario, Canada to verify and improve parameterizations

  13. Coping with historic drought in California rangelands

    USDA-ARS?s Scientific Manuscript database

    The current drought in California is of historic proportion, both in its intensity and its effect on agriculture. Although storms of the 2015-16 winter rainfall season have provided modest drought relief, their effects on alleviating the multi-year drought are unknown. Short- and mid-term forecasts...

  14. Microbial Communities in Sediments across the Louisiana Continental Shelf

    EPA Science Inventory

    The Louisiana continental Shelf (LCS) is a dynamic system that receives discharges from two large rivers. It has a stratified water column that is mixed by winter storms, hypoxic bottom water from spring to fall, and a muddy seafloor with highly mixed surficial sediments. Spatia...

  15. Snow Bank Detectives

    ERIC Educational Resources Information Center

    Olson, Eric A.; Rule, Audrey C.; Dehm, Janet

    2005-01-01

    In the city where the authors live, located on the shore of Lake Ontario, children have ample opportunity to interact with snow. Water vapor rising from the relatively warm lake surface produces tremendous "lake effect" snowfalls when frigid winter winds blow. Snow piles along roadways after each passing storm, creating impressive snow…

  16. 75 FR 8414 - California Disaster # CA-00150

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Administrative declaration of a disaster for the State of California dated 02/16/2010. Incident: Severe Winter Storms, Heavy Snow, Flooding, Debris Flows and Mudslides. Incident Period: 01/17/2010 and continuing... injury is 12039 0. The States which received an EIDL Declaration are California. (Catalog of Federal...

  17. Historic Storminess Changes in North Atlantic Region

    NASA Astrophysics Data System (ADS)

    Dawson, A. G.; Elliott, L.; Noone, S.; Hickey, K.; Foster, I.; Wadhams, P.; Mayewski, P.

    2001-05-01

    Reconstructed patterns of historic storminess (1870-1990 AD) for North Atlantic region as indicated by measurements from selected stations in Iceland, Faeroes, Scotland and Ireland show clear links with the climate "seesaw" winters first described by Van Loon and Rogers. The stormiest winters appear to have occurred during periods when measured Greenland air temperatures at Jacobshavn and reconstructed air temperatures from the Summit ice core site have been exceptionally low and when air temperature across northern Europe have been well above average. Maxima and minima of recorded winter storms for the various stations are also in agreement with the Sodium chronology from GISP2 that points to increased sea salt precipitation on Greenland ice at Summit during Greenland "below" periods of the climate seesaw.

  18. Riding the storm--landslide danger in the San Francisco Bay Area

    USGS Publications Warehouse

    Adams, Karen

    2007-01-01

    Movie Synopsis: --A catastrophic 1982 rainstorm triggered 18,000 landslides in the Bay Area, claiming 25 lives and causing $66 million in property damage. --The combination of steep slopes, weak rocks, and intense winter storms make Bay Area uplands an ideal setting for landslides. --Landslides include both swift, potentially deadly debris flows and slower, but destructive deepseated slides. --Learn what USGS scientists have discovered about landslide dynamics and which slopes are most susceptible to sliding. --Hear the devastating stories of Bay Area residents affected by landslides and learn to recognize the danger signs.

  19. Problems and Prospects of SWAT Model Application on an Arid/Semi-Arid Watershed in Arizona

    EPA Science Inventory

    In arid/semi-arid regions, precipitation mainly occurs during two periods: long-duration, low-intensity rainfall in winter; and short-duration, high-intensity rainfall in summer. Watersheds in arid/semi-arid regions often release water almost immediately after a storm due to spa...

  20. Rising synchrony controls western North American ecosystems

    Treesearch

    Bryan A. Black; Peter van der Sleen; Emanuele Di Lorenzo; Daniel Griffin; William J. Sydeman; Jason B. Dunham; Ryan R. Rykaczewski; Marisol García-Reyes; Mohammad Safeeq; Ivan Arismendi; Steven J. Bograd

    2018-01-01

    Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we...

  1. What Happens during a Thunderstorm?

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    2004-01-01

    A thunderstorm is a localized storm accompanied by lightning and thunder. It may also have gusty winds and often brings heavy rain. Some thunderstorms can also bring tornadoes and/or hail. During winter, localized heavy snow showers may also have thunder and lightning. And, in the western United States in summer, thunderstorms may be…

  2. 76 FR 7622 - California Disaster #CA-00162

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... Administrative declaration of a disaster for the State of California dated 02/02/2011. Incident: Severe Winter Storms, Flooding, and Debris and Mud Flows. Incident Period: 12/17/2010 through 01/04/2011. Effective... is 12460 0. The States which received an EIDL Declaration are California, Arizona, Nevada. (Catalog...

  3. 76 FR 11553 - New York Disaster #NY-00102

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    .../18/2011. Incident: Severe Winter Storm and Snowstorm. Incident Period: 12/26/2010 through 12/27/2010. Effective Date: 02/18/2011. Physical Loan Application Deadline Date: 04/19/2011. Economic Injury (EIDL) Loan Application Deadline Date: 11/18/2011. ADDRESSES: Submit completed loan applications to: U.S. Small Business...

  4. TEMPORAL VARIABILITY IN PHYSICAL SPECIATION OF METALS DURING A WINTER RAIN-ON-SNOW EVENT

    EPA Science Inventory

    Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events and is difficult to characterize. In this study, the physical speciation of trace metals and organic carbon in an urban river and upstream headwaters site in To...

  5. Storm-tracks interannual variability and large-scale climate modes

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.

    2013-04-01

    In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern hemisphere. Trigo IF., TD Davies, GR Bigg (1999) Objective climatology of cyclones in the Mediterranean region. J. Climate 12: 1685-1696. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 26: 127-143.

  6. [Dust storms trend in the Capital Circle of China over the past 50 years and its correlation with temperature, precipitation and wind].

    PubMed

    Chen, Yu-fu; Tang, Hai-ping

    2005-01-01

    The trends of number of dust storm days of the selected 11 meteorological stations from their established year to 2000 as well as their correlations with temperature, precipitation and wind are revealed. The number of dust storm days of the Capital Circle of China is distinctly variable in space and time. The numbers of dust storm days of the western area are far more than those of the eastern area. The interannual variability of number of dust storm days is remarkable. The number of dust storm days of the following 7 stations, Erlianhaote, Abaga, Xilinhaote, Fengning, Zhangjiakou, Huailai and Beijing, declined along the past decades, but those of the other four stations had no significant upward or downward trends. There is a marked seasonality of the number of dust storm days, and the maximum was in April. The correlation between number of dust storm days and number of days of mean wind velocity > 5 m/s, which is critical wind velocity to entrain sand into the air, was strongest among the three climatic factor. There were significant positive correlations between the number of dust storm days and number of days of mean wind velocity > 5 m/s in 6 stations. The second strongest climatic factor correlated with the number of dust storm days is temperature. There are significant negative correlations between the number of dust storm days and mean annual temperature, mean winter temperature, mean spring temperature in 3 or 4 stations. The correlation between the number of dust storm days and precipitation is weakest. Only one station, Zhurihe, showes significant negative correlation between the number of dust storm days and spring rainfall. There are 4 stations whose number of dust storm days don't significantly correlate with the climate. In the end, the spatial-temporal variability of dust storms and its relation with climate in the Capital Circle of China were discussed thoroughly.

  7. Ambient particulate matter and carbon monoxide at an urban site of India: Influence of anthropogenic emissions and dust storms.

    PubMed

    Yadav, Ravi; Sahu, L K; Beig, G; Tripathi, Nidhi; Jaaffrey, S N A

    2017-06-01

    Continuous measurements of PM 2.5 , PM 10 and CO were conducted at an urban site of Udaipur in India from April 2011 to March 2012. The annual mean concentrations of PM 2.5, PM 10 and CO were 42 ± 17 μg m -3 , 114 ± 31 μg m -3 and 343 ± 136 ppbv, respectively. Concentrations of both particulate and CO showed high values during winter/pre-monsoon (dry) period and lowest in the monsoon season (wet). Local anthropogenic emission and long-range transport from open biomass burning sources along with favourable synoptic meteorology led to elevated levels of pollutants in the dry season. However, higher values of PM 10 /PM 2.5 ratio during pre-monsoon season were caused by the episodes of dust storm. In the monsoon season, flow of cleaner air, rainfall and negligible emissions from biomass burning resulted in the lowest levels of pollutants. The concentrations of PM 2.5 , PM 10 and CO showed highest values during morning and evening rush hours, while lowest in the afternoon hours. In winter season, reductions of PM 2.5, CO and PM 10 during weekends were highest of 15%, 13% and 9%, respectively. In each season, the highest PM 2.5 /PM 10 ratio coincided with the highest concentrations of pollutants (CO and NO X ) indicating predominant emissions from anthropogenic sources. Exceptionally high concentrations of PM 10 during the episode of dust storm were due to transport from the Arabian Peninsula and Thar Desert. Up to ∼32% enhancements of PM 10 were observed during strong dust storms. Relatively low levels of O 3 and NO x during the storm periods indicate the role of heterogeneous removal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter, Justin R; May, Peter T; Potts, Rodney J

    Statistics of radar-retrievals of precipitation are presented. A K-means clustering algorithm is applied to an historical record of radiosonde measurements which identified three major synoptic regimes; a dry, stable regime with mainly westerly winds prevalent during winter, a moist south easterly trade wind regime and a moist northerly regime both prevalent during summer. These are referred to as westerly, trade wind and northerly regimes, respectively. Cell statistics are calculated using an objective cell identification and tracking methodology on data obtained from a nearby S-band radar. Cell statistics are investigated for the entire radar observational period and also during sub-periods correspondingmore » to the three major synoptic regimes. The statistics investigated are cell initiation location, area, rainrate, volume, height, height of the maximum reflectivity, volume greater than 40 dBZ and storm speed and direction. Cells are found predominantly along the elevated topography. The cell statistics reveal that storms which form in the dry, stable westerly regime are of comparable size to the deep cells which form in the northerly regime, larger than those in the trade regime and, furthermore, have the largest rainrate. However, they occur less frequently and have shorter lifetimes than cells in the other regimes. Diurnal statistics of precipitation area and rainrate exhibit early morning and mid afternoon peaks, although the areal coverage lags the rainrate by several hours indicative of a transition from convective to stratiform precipitation. The probability distributions of cell area, rainrate, volume, height and height of the maximum re ectivity are found to follow lognormal distributions.« less

  9. Storm surge evolution and its relationship to climate oscillations at Duck, NC

    NASA Astrophysics Data System (ADS)

    Munroe, Robert; Curtis, Scott

    2017-07-01

    Coastal communities experience increased vulnerability during storm surge events through the risk of damage to coastal infrastructure, erosion/deposition, and the endangerment of human life. Policy and planning measures attempt to avoid or mitigate storm surge consequences through building codes and setbacks, beach stabilization, insurance rates, and coastal zoning. The coastal emergency management community and public react and respond on shorter time scales, through temporary protection, emergency stockpiling, and evacuation. This study utilizes time series analysis, the Kolmogorov-Smirnov (K-S) test, Pearson's correlation, and the generalized extreme value (GEV) theorem to make the connection between climate oscillation indices and storm surge characteristics intra-seasonally to inter-annually. Results indicate that an El Niño (+ENSO), negative phase of the NAO, and positive phase of the PNA pattern all support longer duration and hence more powerful surge events, especially in winter. Increased surge duration increases the likelihood of extensive erosion, inland inundation, among other undesirable effects of the surge hazard.

  10. Influence of El Niño–Southern Oscillation (ENSO) events on the evolution of central California's shoreline

    USGS Publications Warehouse

    Storlazzi, Curt D.; Griggs, Gary B.

    2000-01-01

    Significant sea-cliff erosion and storm damage occurred along the central coast of California during the 1982–1983 and 1997–1998 El Niño winters. This generated interest among scientists and land-use planners in how historic El Niño–Southern Oscillation (ENSO) winters have affected the coastal climate of central California. A relative ENSO intensity index based on oceanographic and meteorologic data defines the timing and magnitude of ENSO events over the past century. The index suggests that five higher intensity (relative values 4–6) and 17 lower intensity (relative values 1–3) ENSO events took place between 1910 and 1995. The ENSO intensity index correlates with fluctuations in the time series of cyclone activity, precipitation, detrended sea level, wave height, sea-surface temperature, and sea-level barometric pressure. Wave height, sea level, and precipitation, which are the primary external forcing parameters in sea-cliff erosion, increase nonlinearly with increasing relative ENSO event intensity. The number of storms that caused coastal erosion or storm damage and the historic occurrence of large-scale sea-cliff erosion along the central coast also increase nonlinearly with increasing relative event intensity. These correlations and the frequency distribution of relative ENSO event intensities indicate that moderate- to high-intensity ENSO events cause the most sea-cliff erosion and shoreline recession over the course of a century.

  11. Extreme Storms. Chapter 9

    NASA Technical Reports Server (NTRS)

    Kossin, J. P.; Hall, T.; Knutson, T.; Kunkel, K. E.; Trapp, R. J.; Waliser, D. E.; Wehner, M. F.

    2017-01-01

    Key Findings: 1. Human activities have contributed substantially to observed ocean-atmosphere variability in the Atlantic Ocean (medium confidence), and these changes have contributed to the observed upward trend in North Atlantic hurricane activity since the 1970s (medium confidence). 2. Both theory and numerical modeling simulations generally indicate an increase in tropical cyclone (TC) intensity in a warmer world, and the models generally show an increase in the number of very intense TCs. For Atlantic and eastern North Pacific hurricanes and western North Pacific typhoons, increases are projected in precipitation rates (high confidence) and intensity (medium confidence). The frequency of the most intense of these storms is projected to increase in the Atlantic and western North Pacific (low confidence) and in the eastern North Pacific (medium confidence). 3. Tornado activity in the United States has become more variable, particularly over the 2000s, with a decrease in the number of days per year with tornadoes and an increase in the number of tornadoes on these days (medium confidence). Confidence in past trends for hail and severe thunderstorm winds, however, is low. Climate models consistently project environmental changes that would putatively support an increase in the frequency and intensity of severe thunderstorms (a category that combines tornadoes, hail, and winds), especially over regions that are currently prone to these hazards, but confidence in the details of this projected increase is low. 4. There has been a trend toward earlier snowmelt and a decrease in snowstorm frequency on the southern margins of climatologically snowy areas (medium confidence). Winter storm tracks have shifted northward since 1950 over the Northern Hemisphere (medium confidence). Projections of winter storm frequency and intensity over the United States vary from increasing to decreasing depending on region, but model agreement is poor and confidence is low. Potential linkages between the frequency and intensity of severe winter storms in the United States and accelerated warming in the Arctic have been postulated, but they are complex, and, to some extent, contested, and confidence in the connection is currently low. 5. The frequency and severity of landfalling "atmospheric rivers" on the U.S. West Coast (narrow streams of moisture that account for 30 percent to 40 percent of the typical snowpack and annual precipitation in the region and are associated with severe flooding events) will increase as a result of increasing evaporation and resulting higher atmospheric water vapor that occurs with increasing temperature. (Medium confidence)

  12. Assessing storm events for energy meteorology: using media and scientific reports to track a North Sea autumn storm.

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2016-04-01

    Important issues for energy meteorology are to assess meteorological conditions for normal operating conditions and extreme events for the ultimate limit state of engineering structures. For the offshore environment in northwest Europe, energy meteorology encompasses weather conditions relevant for petroleum production infrastructure and also the new field of offshore wind energy production. Autumn and winter storms are an important issue for offshore operations in the North Sea. The weather in this region is considered as challenging for extreme meteorological events as the Gulf of Mexico with its attendant hurricane risk. The rise of the Internet and proliferation of digital recording devices has placed a much greater amount of information in the public domain than was available to national meteorological agencies even 20 years ago. This contribution looks at reports of meteorology and infrastructure damage from a storm in the autumn of 2006 to trace the spatial and temporal record of meteorological events. Media reports give key information to assess the events of the storm. The storm passed over northern Europe between Oct.31-Nov. 2, 2006, and press reports from the time indicate that its most important feature was a high surge that inundated coastal areas. Sections of the Dutch and German North Sea coast were affected, and there was record flooding in Denmark and East Germany in the southern Baltic Sea. Extreme wind gusts were also reported that were strong enough to damage roofs and trees, and there was even tornado recorded near the Dutch-German border. Offshore, there were a series of damage reports from ship and platforms that were linked with sea state, and reports of rogue waves were explicitly mentioned. Many regional government authorities published summaries of geophysical information related to the storm, and these form part of a regular series of online winter storm reports that started as a public service about 15 years ago. Depending on the issuing authority, these reports include wind speed and atmospheric pressure for a number of stations. However, there is also important ancillary information that includes satellite images, weather radar pictures, sea state recordings, tide gauge records, and coastal surveys. When collated together, the literature survey gives good view of events related to the autumn storm. The key information from media reports is backed up by quantitative numbers from the scientific literature. For energy meteorology in the offshore environment, there is an outline of extreme wave events that may be important to help define the ultimate limit state of engineering structures and the return periods of extreme waves. While this contribution focusses on events from an old storm in the autumn of 2006, more severe regional storms have occurred since then, and the scientific literature indicates that these may be linked with climate warming. Literature surveys may help to fully define extreme meteorological conditions offshore and benefit different branches of the energy industry in Europe.

  13. Shifting Pacific storm tracks as stressors to ecosystems of western North America.

    PubMed

    Dannenberg, Matthew P; Wise, Erika K

    2017-11-01

    Much of the precipitation delivered to western North America arrives during the cool season via midlatitude Pacific storm tracks, which may experience future shifts in response to climate change. Here, we assess the sensitivity of the hydroclimate and ecosystems of western North America to the latitudinal position of cool-season Pacific storm tracks. We calculated correlations between storm track variability and three hydroclimatic variables: gridded cool-season standardized precipitation-evapotranspiration index, April snow water equivalent, and water year streamflow from a network of USGS stream gauges. To assess how historical storm track variability affected ecosystem processes, we derived forest growth estimates from a large network of tree-ring widths and land surface phenology and wildfire estimates from remote sensing. From 1980 to 2014, cool-season storm tracks entered western North America between approximately 41°N and 53°N. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. Ecosystems of the western United States were greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern United States were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. These results suggest that projected shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern United States, where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks. © 2017 John Wiley & Sons Ltd.

  14. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban sources, and the main source of transport for the other pesticides could not be determined because of concentrations less than the method detection limit.

  15. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  16. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    PubMed

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  17. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses

    PubMed Central

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth. PMID:26300564

  18. Development of TEC fluctuations in northern and southern hemispheres on the base of GPS observations

    NASA Astrophysics Data System (ADS)

    Shagimuratov, Irk; Krankowski, Andrzej; Sieradzki, Rafal; Ephishov, I. I.

    GPS technique is widely used to study the global structure and dynamics of the ionosphere. In this paper GPS observations carried out at Arctic and Antarctic stations belonging to the IGS network were used to study TEC fluctuations in the high-latitude ionosphere during the ionospheric storms. Dual-frequency GPS phase measurements along individual satellite passes served as raw data. It was shown that ionospheric irregularities of a different scale were devel-oped in the auroral and polar ionosphere. It is a common phenomenon caused phase fluctuations of GPS signals. In November 2009, West Department of IZMIRAN in Kaliningrad (Russia) and University of Warmia and Mazury in Olsztyn (Poland) established computer server for automatic monitoring of these irregularities. The rate of TEC index (ROTI) expressed in TECU/min was used as a measure of TEC fluctuations. During its operation TEC variations related to ionospheric structures of a spatial scale more than 200-300 km were detected. Large-scale ionospheric structures cause an increase in horizontal gradients and difficulties with the carrier phase ambiguity resolution in GPS positioning. In turn, the phase fluctuations can cause cycle-slip effects. At the polar stations, ionospheric structures with TEC enhanced by a factor of 3-5 relative to the background were detected, whereas TEC increased to 5-8 TECU in about 10-15 min. These structures were observed during a storm, as well as during a moderate geomagnetic activity. It can be probably attributed to the polar cap patches. In this study are presented the extended and more detailed analyses of TEC fluctuations in both the northern and southern hemispheres and compare the winter and summer events (November and July 2004 storms). A special attention is given to the features related to TEC fluctuations occur-rence in both hemispheres for conjugated GPS stations. The temporal development of both storms was rather similar. During storms the intensity of irregularities essentially increases and its location expands to equator. Maximal activity of TEC fluctuations took place when IMF Bz component was negative. Storm-time development of TEC fluctuations caused by ionospheric irregularities was controlled by UT. At polar stations TEC fluctuations were more expressed at southern (winter) hemisphere. Over auroral stations the difference of TEC fluctuations oc-currence was less expressed. During storm the strong TEC fluctuations can be registered at subauroral ionosphere (on latitudes lower than 55 CGL). The seasonal effect in this area also took place. Differences and similarities of these storms occurrence of TEC fluctuations with dependence on season are discussed.

  19. Atmospheric inputs of organic matter to a forested watershed: Variations from storm to storm over the seasons

    NASA Astrophysics Data System (ADS)

    Iavorivska, Lidiia; Boyer, Elizabeth W.; Miller, Matthew P.; Brown, Michael G.; Vasilopoulos, Terrie; Fuentes, Jose D.; Duffy, Christopher J.

    2016-12-01

    The objectives of this study were to determine the quantity and chemical composition of precipitation inputs of dissolved organic carbon (DOC) to a forested watershed; and to characterize the associated temporal variability. We sampled most precipitation that occurred from May 2012 through August 2013 at the Susquehanna Shale Hills Critical Zone Observatory (Pennsylvania, USA). Sub-event precipitation samples (159) were collected sequentially during 90 events; covering various types of synoptic meteorological conditions in all climatic seasons. Precipitation DOC concentrations and rates of wet atmospheric DOC deposition were highly variable from storm to storm, ranging from 0.3 to 5.6 mg C L-1 and from 0.5 to 32.8 mg C m-2 h-1, respectively. Seasonally, storms in spring and summer had higher concentrations of DOC and more optically active organic matter than in winter. Higher DOC concentrations resulted from weather types that favor air advection, where cold frontal systems, on average, delivered more than warm/stationary fronts and northeasters. A mixed modeling statistical approach revealed that factors related to storm properties, emission sources, and to the chemical composition of the atmosphere could explain more than 60% of the storm to storm variability in DOC concentrations. This study provided observations on changes in dissolved organic matter that can be useful in modeling of atmospheric oxidative chemistry, exploring relationships between organics and other elements of precipitation chemistry, and in considering temporal changes in ecosystem nutrient balances and microbial activity.

  20. Major coastal impact induced by a 1000-year storm event

    PubMed Central

    Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten

    2013-01-01

    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8 m and 5 m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.

  1. Satellite Shows Developing U.S. Nor'easter

    NASA Image and Video Library

    2017-12-08

    National Weather Service forecasters have been tracking a low pressure area that moved from the Midwest into the Atlantic Ocean today, and is expected to become a strong nor'easter that will bring blizzard conditions to the northeastern U.S. The path of the system was captured in a NASA movie of NOAA's GOES-East satellite imagery. An animation of visible and infrared imagery from NOAA's Geostationary Operational Environmental or GOES satellite captured over the period of January 24 through 26 showed the progression of the developing nor'easter. The satellite animation began on Jan. 24 when clouds associated with a cold front preceding the low, pushed off the U.S. East coast. The front was followed by a low pressure area that moved from the Midwest to the southeast. That low moved over the Carolinas and exited into the Atlantic Ocean on Jan. 26. NOAA's National Weather Service forecast calls for the low to intensify along the Eastern Seaboard and bring blizzard conditions to the northeastern U.S. on Monday night, January 26 and Tuesday, January 27. On Monday, January 26, 2015, the National Weather Service noted: A storm system off the East Coast will continue to strengthen as it develops into a major nor'easter on Monday. As the storm moves up the coast, it is expected to bring snowfall of 1-3 feet or more to many parts of the Northeast through Tuesday evening, including New York City and Boston. Strong, gusty winds will combine with the snow to create blizzard conditions along and near the coast. Winter storm warnings are in effect for the panhandles of West Virginia and Maryland, much of interior New England down to the northern Mid-Atlantic as well as for Nantucket Island, Massachusetts. Winter weather advisories are in effect for portions of the Ohio Valley, Mid-Atlantic and the southern Appalachians as well as a narrow area across interior New England. To create the video and imagery, NASA/NOAA's GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Maryland overlays the cloud data from NOAA's GOES-East satellite on a true-color image of land and ocean created by data from the Moderate Resolution Imaging Spectroradiometer, or MODIS, instrument that flies aboard NASA's Aqua and Terra satellites. Together, these data create the entire animation of the storm and show its movement. GOES satellites provide the kind of continuous monitoring necessary for intensive data analysis. Geostationary describes an orbit in which a satellite is always in the same position with respect to the rotating Earth. This allows GOES to hover continuously over one position on Earth's surface, appearing stationary. As a result, GOES provide a constant vigil for the atmospheric "triggers" for severe weather conditions such as tornadoes, flash floods, hail storms and hurricanes. For updated information about the storm system, visit NOAA's NWS website: www.weather.gov For more information about GOES satellites, visit: www.goes.noaa.gov/ or goes.gsfc.nasa.gov/ Rob Gutro NASA's Goddard Space Flight Center

  2. Source characterization of fine and coarse particles at the East Mediterranean coast

    NASA Astrophysics Data System (ADS)

    Mamane, Yaacov; Perrino, Cinzia; Yossef, Osnat; Catrambone, Maria

    Fine and coarse atmospheric particles were collected in Ashdod—a midsize industrial city on the southeastern Mediterranean coast, and in Gedera—a rural site, to characterize ambient particles and to determine their long-range transport during two major seasons—winter and summer. Manual PM2.5 and PM10 samplers, dichotomous samplers, continuous automated PM10 samplers, and denuders were used to sample particulate and gaseous pollutants. Fine and coarse concentrations in Ashdod were 21.2 and 39.6 μg m -3, and 23.9 and 30.5 μg m -3 in the fall-winter and summer campaigns, respectively. Crustal material, as calcites or dolomites mixed with silicates, dominated the coarse fraction and also the fine fraction on dusty days. In the fall-winter, S, P, and Ni were coupled with minerals. Coarse Ni was associated with crustal material during dust storms, while P originated from shipping and deposition of phosphates in the urban area around. Sulfates dominated the fine fractions in the summer season averaging 12 μg m -3. Multivariate analysis indicated that S was associated with As and Se, V and Ni, both associated with heavy fuel combustion, and Zn and Pb. In winter, those mixed sources were local, but in summer they were part of long-range transport. In the fall-winter, Zn and Pb were strongly associated with Mn, Ga, and Cu—elements emitted from either traffic or metal processing plants. Although the influence of crustal material on both size fractions was significant, most heavy metals were associated with PM2.5. Higher concentrations were linked to a larger number of particles in this fraction, to a larger surface area available for biochemical reaction [Harrison, R., Shi, J., Xi, S., Khan, A., Mark, D., Kinnersley, R., Yin, J., Philos, T., 2000. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society 358, 2567-2579], and finally to a larger concern in regards to health effects.

  3. Studies of satellite support to weather modification in the western US region

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; Grant, L. O.; Vonderhaar, T. H.

    1978-01-01

    The applications of meteorological satellite data to both summer and winter weather modification programs are addressed. Appraisals of the capability of satellites to assess seedability, to provide real-time operational support, and to assist in the post-experiment analysis of a seeding experiment led to the incorporation of satellite observing systems as a major component in the Bureau of Reclamations weather modification activities. Satellite observations are an integral part of the South Park Area cumulus experiment (SPACE) which aims to formulate a quantitative hypothesis for enhancing precipitation from orographically induced summertime mesoscale convective systems (orogenic mesoscale systems). Progress is reported in using satellite observations to assist in classifying the important mesoscale systems, and in defining their frequency and coverage, and potential area of effect. Satellite studies of severe storms are also covered.

  4. Coastal Lake Record of Holocene Paleo-Storms from Northwest Florida

    NASA Astrophysics Data System (ADS)

    Donoghue, J. F.; Coor, J. L.; Wang, Y.; Das, O.; Kish, S.; Elsner, J.; Hu, X. B.; Niedoroda, A. W.; Ye, M.

    2009-12-01

    The northwest Florida coast of the Gulf of Mexico has an unusually active storm history. Climate records for a study area in the mid-region of the Florida panhandle coast show that 29 hurricanes have made landfall within a 100-km radius during historic time. These events included 9 major storms (category 3 or higher). A longer-term geologic record of major storm impacts is essential for better understanding storm climatology and refining morphodynamic models. The Florida panhandle region contains a series of unique coastal lakes which are long-lived and whose bottom sediments hold a long-term record of coastal storm occurrence. The lakes are normally isolated from the open Gulf, protected behind a near-continuous dune barrier. Lake water is normally fresh to brackish. Lake bottom sediments consist of organic-rich muds. During major storms the dunes are breached and the lakes are temporarily open to marine water and the possibility of sandy overwash. Both a sedimentologic and geochemical signature is imparted to the lake sediments by storm events. Bottom sediment cores have been collected from the lakes. The cores have been subsampled and subjected to sedimentologic, stable isotopic and geochronologic analyses. The result is a sediment history of the lakes, and a record of storm occurrence during the past few millennia. The outcome is a better understanding of the long-term risk of major storms. The findings are being incorporated into a larger model designed to make reliable predictions of the effects of near-future climate change on natural coastal systems and on coastal infrastructure, and to enable cost-effective mitigation and adaptation strategies.

  5. Tracking Dramatic Changes at Hawaii's Only Alpine Lake

    NASA Astrophysics Data System (ADS)

    Patrick, Matthew R.; Delparte, Donna

    2014-04-01

    Lake Waiau is a small lake (normally 100 meters in diameter) just below the summit of Mauna Kea Volcano (elevation of 4207 meters) on the island of Hawaii. The only alpine lake in the Hawaiian Islands, it is fed mainly by sporadic winter storms that drop snow in the otherwise arid summit region.

  6. Mesquite's Hull is lowered to its final resting place in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Mesquite's Hull is lowered to its final resting place in Lake Superior. The tender ran aground on rocks several months earlier and was battered by winter storms. The wrecked vessel became part of an underwater preserve and is regularly visited by recreational divers - U.S. Coast Guard Cutter MESQUITE, Charlevoix, Charlevoix County, MI

  7. Remembering the "S. S. Edmund Fitzgerald"

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Rarick, Richard A.

    2015-01-01

    November 10, 2015, marked the 40th anniversary of the sinking of the "S. S. Edmund Fitzgerald," a Great Lakes bulk cargo freighter that suddenly and mysteriously sank during a severe winter storm on Lake Superior. A year after the sinking, Canadian folksinger Gordon Lightfoot wrote and recorded the ballad "The Wreck of the 'Edmund…

  8. 76 FR 11307 - California Disaster #CA-00162

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Administrative declaration of a disaster for the State of California dated 02/02/2011. Incident: Severe Winter Storms, Flooding, and Debris and Mud Flows. Incident Period: 12/17/2010 through 01/04/2011. Effective... declaration for the State of California, dated 02/02/2011 is hereby amended to include the following areas as...

  9. Identifying Climate Model Teleconnection Mechanisms Between Arctic Sea Ice Loss and Mid-Latitude Winter Storms

    NASA Astrophysics Data System (ADS)

    Kravitz, B.; Mills, C.; Rasch, P. J.; Wang, H.; Yoon, J. H.

    2016-12-01

    The role of Arctic amplification, including observed decreases in sea ice concentration, thickness, and extent, with potential for exciting downstream atmospheric responses in the mid-latitudes, is a timely issue. We identify the role of the regionality of autumn sea ice loss on downstream mid-latitude responses using engineering methodologies adapted to climate modeling, which allow for multiple Arctic sea regions to be perturbed simultaneously. We evaluate downstream responses in various climate fields (e.g., temperature, precipitation, cloud cover) associated with perturbations in the Beaufort/Chukchi Seas and the Kara/Barents Seas. Simulations suggest that the United States response is primarily linked to sea ice changes in the Beaufort/Chukchi Seas, whereas Eurasian response is primarily due to Kara/Barents sea ice coverage changes. Downstream effects are most prominent approximately 6-10 weeks after the initial perturbation (sea ice loss). Our findings suggest that winter mid-latitude storms (connected to the so-called "Polar Vortex") are linked to sea ice loss in particular areas, implying that further sea ice loss associated with climate change will exacerbate these types of extreme events.

  10. Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates

    PubMed Central

    Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée

    2017-01-01

    Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618

  11. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes

    PubMed Central

    Lehmann, Jascha; Coumou, Dim

    2015-01-01

    Changes in mid-latitude circulation can strongly affect the number and intensity of extreme weather events. In particular, high-amplitude quasi-stationary planetary waves have been linked to prolonged weather extremes at the surface. In contrast, analyses of fast-traveling synoptic-scale waves and their direct influence on heat and cold extremes are scarce though changes in such waves have been detected and are projected for the 21st century. Here we apply regression analyses of synoptic activity with surface temperature and precipitation in monthly gridded observational data. We show that over large parts of mid-latitude continental regions, summer heat extremes are associated with low storm track activity. In winter, the occurrence of cold spells is related to low storm track activity over parts of eastern North America, Europe, and central- to eastern Asia. Storm tracks thus have a moderating effect on continental temperatures. Pronounced storm track activity favors monthly rainfall extremes throughout the year, whereas dry spells are associated with a lack thereof. Trend analyses reveal significant regional changes in recent decades favoring the occurrence of cold spells in the eastern US, droughts in California and heat extremes over Eurasia. PMID:26657163

  12. Recent developments in the understanding of equatorial ionization anomaly: A review

    NASA Astrophysics Data System (ADS)

    Balan, N.; Souza, J.; Bailey, G. J.

    2018-06-01

    A brief review of the recent developments in the understanding of the equatorial plasma fountain (EPF) and equatorial ionization anomaly (EIA) under quiet and active conditions is presented. It is clarified that (1) the EPF is not upward ExB plasma drift at the equator followed by downward plasma diffusion, but it is field perpendicular ExB plasma drift and field-aligned plasma diffusion acting together all along the field lines at all altitudes and plasma flowing in the direction of the resultant. (2) The EIA is formed not from the accumulation of plasma at the crests but mainly from the removal of plasma from around the equator by the upward ExB drift with small accumulations when the crests are within approximately ±20° magnetic latitude. The accumulations reduce with increasing latitude and become zero by approximately ±25°. (3) An asymmetric neutral wind makes EPF and EIA asymmetric with stronger fountain and stronger crest usually occurring in opposite hemispheres especially at equinoxes when winter anomaly is absent. (4) During the early stages of daytime main phase of major geomagnetic storms, the plasma fountain becomes a super fountain and the EIA becomes strong not due to the eastward prompt penetration electric field (PPEF) alone but due to the combined effect of eastward PPEF and storm-time equatorward winds (SEW). (5) During the later stages of the storms when EIA gets inhibited a peak sometimes occurs around the equator not due to westward electric fields but mainly due to the convergence of plasma from both hemispheres due to SEW.

  13. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust storm in a narrow zone parallel to the mountains before it expanded upscale. The thermally-forced meos-gamma scale adjustment processes, which occurred in the canyons/small valleys, resulted in the numerous dust streaks leading to the entry of the dust into the atmosphere due to the presence of significant vertical motion and the TKE generation. This indicates that there were meso-beta to meso-gamma scale adjustment processes at the lower levels after the imbalance within the exit region of the upper level jet streaks and these processes were responsible for causing the large scale dust storms. Most notably, the sub-tropical jet streak caused the dust storm nearer to the equatorial region after its interaction with the thermally perturbed air mass on the lee of the Tibesti Mountains in the Bodele case study, which is different than the two other cases where the polar jet streaks played this same role at higher latitudes. This represents an original finding. Additionally, a climatological analysis of 15 years (1997-2011) of dust events over the NASA Dryden Flight Research Center (DFRC) in the desert of Southern California was performed to evaluate how the extratropical systems influenced the cause of dust storms over this region. This study indicates that dust events were associated with the development of a deep convective boundary layer, turbulent kinetic energy ≥3 J/kg, a lapse rate between dry adiabatic and moist adiabatic, wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3m/s), above the surface the presence of a cold trough, and strong cyclonic jet. These processes are similar in many ways to the dynamics in the other subtropical case studies. This also indicated that the annual mean number of dust events, their mean duration, and the unit duration per number of event were positively correlated with each of the visibility ranges, when binned for <11.2km, <8km, <4.8km, <1.6km, and <1km. The percentage of the dust events by season show that most of the dust events occurred in autumn (44.7%), followed by spring (38.3%) and equally in summer and winter with these seasons each accounting for 8.5% of events.

  14. Teleconnections, Midlatitude Cyclones and Aegean Sea Turbulent Heat Flux Variability on Daily Through Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Romanski, Joy; Romanou, Anastasia; Bauer, Michael; Tselioudis, George

    2013-01-01

    We analyze daily wintertime cyclone variability in the central and eastern Mediterranean during 1958-2001, and identify four distinct cyclone states, corresponding to the presence or absence of cyclones in each basin. Each cyclone state is associated with wind flows that induce characteristic patterns of cooling via turbulent (sensible and latent) heat fluxes in the eastern Mediterranean basin and Aegean Sea. The relative frequency of occurrence of each state determines the heat loss from the Aegean Sea during that winter, with largest heat losses occurring when there is a storm in the eastern but not central Mediterranean (eNOTc), and the smallest occurring when there is a storm in the central but not eastern Mediterranean (cNOTe). Time series of daily cyclone states for each winter allow us to infer Aegean Sea cooling for winters prior to 1985, the earliest year for which we have daily heat flux observations. We show that cyclone states conducive to Aegean Sea convection occurred in 1991/1992 and 1992/1993, the winters during which deep water formation was observed in the Aegean Sea, and also during the mid-1970s and the winters of 1963/1964 and 1968/1969. We find that the eNOTc cyclone state is anticorrelated with the North Atlantic Oscillation (NAO) prior to 1977/1978. After 1977/1978, the cNOTe state is anticorrelated with both the NAO and the North Caspian Pattern (NCP), showing that the area of influence of large scale atmospheric teleconnections on regional cyclone activity shifted from the eastern to the central Mediterranean during the late 1970s. A trend toward more frequent occurrence of the positive phase of the NAO produced less frequent cNOTe states since the late 1970s, increasing the number of days with strong cooling of the Aegean Sea surface waters.

  15. Recent Responses of Western North American Forests and Hydroclimate to Pacific Storm Track Position and Intensity

    NASA Astrophysics Data System (ADS)

    Dannenberg, M. P.; Wise, E.

    2017-12-01

    Much of the precipitation delivered to western North America arrives during the October to March cool season via midlatitude Pacific storm tracks, which may shift in the future due to climate change. Using historical climate, tree-ring, and remote sensing data, we assessed the sensitivity of western North American hydroclimate and ecosystems to the position and intensity of cool-season Pacific storm tracks. From 1980-2014, mean annual cool-season storm tracks entered western North America between approximately 41°N to 53°N, with substantial interannual variability in both the position and intensity of the storm tracks. We examined relationships between storm tracks and two hydroclimatic variables: the cool-season standardized precipitation-evapotranspiration index and April snow water equivalent. We also assessed how historical storm track variability affected ecosystems using forest growth estimates from a large tree-ring network as well as land surface phenology and wildfire estimates from AVHRR and Landsat, respectively. Cool-season moisture supply and snowpack responded strongly to storm track position, with positive correlations to storm track latitude in eastern Alaska and northwestern Canada but negative correlations in the northwestern U.S. These hydroclimatic impacts were largely driven by the latitudinal position of storm tracks during the "shoulder" seasons (i.e., autumn and early spring). Ecosystems of the western U.S. tended to be greener and more productive following winters with south-shifted storm tracks, while Canadian ecosystems were greener in years when the cool-season storm track was shifted to the north. On average, larger areas of the northwestern U.S. were burned by moderate to high severity wildfires when storm tracks were displaced north, and the average burn area per fire also tended to be higher in years with north-shifted storm tracks. Assuming that these historical relationships continue to hold under future climate scenarios, our results suggest that projected long-term shifts of Pacific storm tracks over the 21st century would likely alter hydroclimatic and ecological regimes in western North America, particularly in the northwestern U.S., where moisture supply and ecosystem processes are highly sensitive to the position of cool-season storm tracks.

  16. Solar Wind Features Responsible for Magnetic Storms and Substorms During the Declining Phase of the Solar Cycle: 197

    NASA Technical Reports Server (NTRS)

    Tsurutani, B.; Arballo, J.

    1994-01-01

    We examine interplanetary data and geomagnetic activity indices during 1974 when two long-lasting solar wind corotating streams existed. We find that only 3 major storms occurred during 1974, and all were associated with coronal mass ejections. Each high speed stream was led by a shock, so the three storms had sudden commencements. Two of the 1974 major storms were associated with shock compression of preexisting southward fields and one was caused by southward fields within a magnetic cloud. Corotating streams were responsible for recurring moderate to weak magnetic storms.

  17. Origin and spatial-temporal distribution of faecal bacteria in a bay of Lake Geneva, Switzerland.

    PubMed

    Poté, John; Goldscheider, Nico; Haller, Laurence; Zopfi, Jakob; Khajehnouri, Fereidoun; Wildi, Walter

    2009-07-01

    The origin and distribution of microbial contamination in Lake Geneva's most polluted bay were assessed using faecal indicator bacteria (FIB). The lake is used as drinking water, for recreation and fishing. During 1 year, water samples were taken at 23 points in the bay and three contamination sources: a wastewater treatment plant (WWTP), a river and a storm water outlet. Analyses included Escherichia coli, enterococci (ENT), total coliforms (TC), and heterotrophic plate counts (HPC). E. coli input flux rates from the WWTP can reach 2.5 x 10(10) CFU/s; those from the river are one to three orders of magnitude lower. Different pathogenic Salmonella serotypes were identified in water from these sources. FIB levels in the bay are highly variable. Results demonstrate that (1) the WWTP outlet at 30 m depth impacts near-surface water quality during holomixis in winter; (2) when the lake is stratified, the effluent water is generally trapped below the thermocline; (3) during major floods, upwelling across the thermocline may occur; (4) the river permanently contributes to contamination, mainly near the river mouth and during floods, when the storm water outlet contributes additionally; (5) the lowest FIB levels in the near-surface water occur during low-flow periods in the bathing season.

  18. A new climate index controlling winter wave activity along the Atlantic coast of Europe: The West Europe Pressure Anomaly

    NASA Astrophysics Data System (ADS)

    Castelle, Bruno; Dodet, Guillaume; Masselink, Gerd; Scott, Tim

    2017-02-01

    A pioneering and replicable method based on a 66-year numerical weather and wave hindcast is developed to optimize a climate index based on the sea level pressure (SLP) that best explains winter wave height variability along the coast of western Europe, from Portugal to UK (36-52°N). The resulting so-called Western Europe Pressure Anomaly (WEPA) is based on the sea level pressure gradient between the stations Valentia (Ireland) and Santa Cruz de Tenerife (Canary Islands). The WEPA positive phase reflects an intensified and southward shifted SLP difference between the Icelandic low and the Azores high, driving severe storms that funnel high-energy waves toward western Europe southward of 52°N. WEPA outscores by 25-150% the other leading atmospheric modes in explaining winter-averaged significant wave height, and even by a largest amount the winter-averaged extreme wave heights. WEPA is also the only index capturing the 2013/2014 extreme winter that caused widespread coastal erosion and flooding in western Europe.

  19. [Geochemical characteristics and sources of atmospheric particulates in Shanghai during dust storm event].

    PubMed

    Qian, Peng; Zheng, Xiang-min; Zhou, Li-min

    2013-05-01

    Atmospheric particulates were sampled from three sampling sites of Putuo, Minhang and Qingpu Districts in Shanghai between Oct. , 2009 and Oct. , 2010. In addition, particulate samples were also collected from Nantong, Zhengzhou, Xi'an, and Beijing city where dust storm dust transported along during spring. Element compositions of atmospheric particulates were determined by XRF and ICP-MS. The concentrations of major and trace elements in atmospheric particulates from Putuo, Minhang and Qingpu Districts were similar, indicating their common source. The UCC standardization distribution map showed that the major element composition of dust storm samples was similar to that of loess in northwestern China, indicating that the dust storm dust was mainly derived from Western desert and partly from local area. The REE partition patterns of dust storm dusts among different cities along dust transport route were similar to each other, as well as to those of northern loess, which indicates that the dust storm samples may have the same material source as loess, which mainly comes from crust material. However, the REE partition patterns of non-dust storm particulates were different among the studied cities, and different from those of loess, which suggests that the non-dust storm samples may be mixed with non-crust source material, which is different from dust storm dust and loess. The major element composition and REE partition pattern are effective indicators for source tracing of dust storm dust.

  20. Assessment of beach and dune erosion and accretion using LiDAR: Impact of the stormy 2013-14 winter and longer term trends on the Sefton Coast, UK

    NASA Astrophysics Data System (ADS)

    Pye, Kenneth; Blott, Simon J.

    2016-08-01

    An important question for coastal management concerns the importance of individual storms and clusters of storms on longer term beach sediment budgets, beach and dune erosion, and coastal flood risk. Between October 2013 and March 2014 a series of deep Atlantic low pressure systems crossed the Northeast Atlantic, and strong winds, high waves and high water levels affected many coastal areas in the UK and other parts of western Europe. Net dune recession of up to 12.1 m occurred around Formby Point. On 5 December 2013 the highest water level ever recorded at Liverpool (6.22 m ODN) coincided with waves of Hs of 4.55 m and Tp of 9.3 s in Liverpool Bay. Wave trimming of the dune toe occurred along the entire length of the Sefton coast, but significant dune erosion occurred only where the upper beach (between the mean high water spring tide level and the dune toe) was < 25 m wide. Sediment budget calculations based on LiDAR surveys in October 2013 and May 2014 indicated a net loss of 127 × 103 m3 of sediment from the beach (above 0 m ODN) and a loss of 268 × 103 m3 from the frontal dune system, mostly at Formby Point. However, some parts of the beach to the south of Formby Point gained sediment, indicating net north to south transport over the winter. When considered in a longer term context, the 2013-14 winter represents only a small perturbation on the longer-term coast trend of erosion at Formby Point and progradation to the north and south. Analysis of LiDAR data over a longer time period 1999-2014 indicated upper beach and dune sediment loss of 780 × 103 m3 from the north-central part of Formby Point, with net gains of 806 × 103 m3 and 2116 × 103 m3 in areas to the north and south, respectively. This indicates a net onshore transport of 2142 × 103 m3 from Liverpool Bay towards the coast between Birkdale and Altcar, with a further net total of 210 × 103 m3 transported towards the shore between Altcar and Crosby. In view of the demonstrated value of airborne LiDAR surveys for the quantification of storm impacts and longer term coastal changes, it is recommended that such surveys should be undertaken before and after each winter storm period, covering the area between mean low water spring tide level and a line 200 m landward of the dune toe, of as a part of the regional coastal monitoring programme.

  1. Generation of a Catalogue of European Windstorms

    NASA Astrophysics Data System (ADS)

    Varino, Filipa; Baptiste Granier, Jean; Bordoy, Roger; Arbogast, Philippe; Joly, Bruno; Riviere, Gwendal; Fandeur, Marie-Laure; Bovy, Henry; Mitchell-Wallace, Kirsten; Souch, Claire

    2016-04-01

    The probability of multiple wind-storm events within a year is crucial to any (re)insurance company writing European wind business. Indeed, the volatility of losses is enhanced by the clustering of storms (cyclone families), as occurred in early 1990 (Daria, Vivian, Wiebke), December 1999 (Lothar, Martin) or December 2015 (Desmond, Eva, Frank), among others. In order to track winter extratropical cyclones, we use the maximum relative vorticity at 850 hPa of the new-released long-term ERA-20C reanalysis from the ECMWF since the beginning of the 20th Century until 2010. We develop an automatic procedure to define events. We then quantify the severity of each storm using loss and meteorological indices at country and Europe-wide level. Validation against market losses for the period 1970-2010 is undertaken before considering the severity and frequency of European windstorms for the 110 years period.

  2. A twenty-first century California observing network for monitoring extreme weather events

    USGS Publications Warehouse

    White, A.B.; Anderson, M.L.; Dettinger, M.D.; Ralph, F.M.; Hinojosa, A.; Cayan, D.R.; Hartman, R.K.; Reynolds, D.W.; Johnson, L.E.; Schneider, T.L.; Cifelli, R.; Toth, Z.; Gutman, S.I.; King, C.W.; Gehrke, F.; Johnston, P.E.; Walls, C.; Mann, Dorte; Gottas, D.J.; Coleman, T.

    2013-01-01

    During Northern Hemisphere winters, the West Coast of North America is battered by extratropical storms. The impact of these storms is of paramount concern to California, where aging water supply and flood protection infrastructures are challenged by increased standards for urban flood protection, an unusually variable weather regime, and projections of climate change. Additionally, there are inherent conflicts between releasing water to provide flood protection and storing water to meet requirements for water supply, water quality, hydropower generation, water temperature and flow for at-risk species, and recreation. In order to improve reservoir management and meet the increasing demands on water, improved forecasts of precipitation, especially during extreme events, is required. Here we describe how California is addressing their most important and costliest environmental issue – water management – in part, by installing a state-of-the-art observing system to better track the area’s most severe wintertime storms.

  3. Application of Nimbus-6 microwave data to problems in precipitation prediction for the Pacific west coast

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Shigeishi, H.; Chang, A. T. C.

    1979-01-01

    The preliminary results of a research study that emphasizes the analysis and interpretation of data related to total precipitable water and nonprecipitating cloud liquid water obtained from NIMBUS-6 SCAMS are reported. Sixteen cyclonic storm situations in the northeastern Pacific Ocean that resulted in significant rainfall along the west coast of the United States during the winter season October 1975 through February 1976 are analyzed in terms of their distributions and amounts of total water vapor and liquid water, as obtained from SCAMS data. The water-substance analyses for each storm case are related to the distribution and amount of coastal precipitation observed during the subsequent time period when the storm system crosses the coastline. Concomitant precipitation predictions from the LFM are also incorporated. Techniques by which satellite microwave data over the ocean can be used to improve precipitation prediction for the Pacific West Coast are emphasized.

  4. During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient

    NASA Astrophysics Data System (ADS)

    McGrane, Scott J.; Hutchins, Michael G.; Miller, James D.; Bussi, Gianbattista; Kjeldsen, Thomas R.; Loewenthal, Matt

    2017-02-01

    This paper presents the hydrological and water quality response from a series of extreme storm events that passed across the UK during the winter of 2013/2014, in an experimental catchment with a strong rural-urban gradient across four nested sub-catchment areas. The Ray catchment in the upper Thames basin, UK, was extensively monitored using in-situ, high-resolution (15 min) flow and water quality instrumentation. Dissolved oxygen, ammonium, turbidity and specific conductivity are used to characterise the water quality dynamics. The impact of the Swindon sewage treatment works (SSTW) on water chemistry at the catchment outlet is considerable. Hydrological and water-quality response varies considerably during the events, with the rural catchments exhibiting a much slower hydrological response compared to urban areas. A simple hydrological model (TETIS) was developed to provide insight into water sources in nested subcatchments, highlighting the disparity of the hydrological dynamics across contrasting land-uses during events. The variation in stormwater runoff sources impacts water quality signals with urban sites contributing to dilution dynamics in ammonium, whereas the more rural site experiences a peak in ammonium during the same event. Dissolved oxygen concentrations vary on a rural-urban gradient and experience a notable sag at the Water Eaton outlet (4.4 mg/l) during the events, that would have resulted in significant ecological harm had they occurred during the summer in warmer temperatures. The water-quality legacy of these storms in the wider context of the hydrological year is somewhat negligible, with markedly poorer water quality signals being observed during the summer months of 2014. Although ammonium concentrations during the events are elevated (above the 'good' status threshold under the WFD), higher values are observed during spring and summer months. The high flows actually appear to flush contaminants out of the Ray and its subcatchments, though the urban sites demonstrate a resupply dynamic during interim dry periods. Data suggest winter storms following dry spells in urban catchments cause some short-lived and spatially extensive deteriorations in water quality. More chronic effects, although prolonged, are only seen downstream of SSTW. These are indicative of capacity of infrastructure being reached, and from the data do not appear to be severe enough to cause ecological harm.

  5. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    NASA Astrophysics Data System (ADS)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (<100 km2) of the River Thames (southern UK) is described. Temperature, conductivity, turbidity, dissolved oxygen (DO) and ammonium (NH4) were measured at downstream locations where long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (< 8 mg L-1) as a response to pollutant first flushes was particularly apparent in urban streams but this was followed by a rapid recovery. Chronic effects lasting for three to four weeks were only seen downstream of a sewage treatment works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  6. Energy Infrastructure and Extreme Events (Invited)

    NASA Astrophysics Data System (ADS)

    Wakimoto, R. M.

    2013-12-01

    The country's energy infrastructure is sensitive to the environment, especially extreme events. Increasing global temperatures, intense storms, and space weather have the potential to disrupt energy production and transport. It can also provide new opportunities as illustrated by the opening of the Northwest Passage. The following provides an overview of some of the high impacts of major geophysical events on energy production and transport. Future predictions of hurricanes suggest that we can expect fewer storms but they will be associated with stronger winds and more precipitation. The winds and storm surge accompanying hurricane landfall along the Gulf States has had a major impact on the coastal energy infrastructure and the oil/natural gas platforms. The impact of these surges will increase with predicted sea level rise. Hurricane Katrina caused damage to crude oil pipelines and refineries that reduced oil production by 19% for the year. The disruption that can occur is not necessarily linked with the maximum winds of the tropical storm as recently shown by Hurricane Sandy which was classified as a ';post-tropical cyclone' during landfall. Another intense circulation, the tornado, can also cause power outages and network breaks from high winds that can topple power poles or damage power lines from fallen trees. Fortunately, the Moore tornado, rated EF5, did not have a major impact on the oil and gas infrastructure in Oklahoma. The impact of earthquakes and tsunamis on energy was illustrated in Japan in 2011 with the shutdown of the Fukushima Daiichi plant. Other studies have suggested that there are areas in the United States where the energy services are highly vulnerable to major earthquakes that would disrupt electrical and gas networks for extended periods of time. Seismic upgrades to the energy infrastructure would help mitigate the impact. In 1859, a coronal mass ejection triggered a geomagnetic storm that disrupted communication wires around the world. It has been suggested that this event would be associated with massive power outages if it occurred today. A similar storm would create strong electrical currents that would travel through power lines, oil pipelines and telecom cables. Transformers would fail and large sections of the electric grid would go down. The melting of the Artic ice has opened the Northwest Passage for increasing periods of time making it an attractive alternative route for tankers and commercial ships. In addition, there is a high potential for tapping into new oil and gas reserves. However, these new opportunities need to be balanced with an analysis of the environmental risks posed by exploration, drilling and increased traffic in a region that until recently was difficult to access. Increasing temperatures coupled with longer periods of drought has increased the wildfire risk to transmission lines. Studies are currently underway that quantify the probability that transmission lines would be impacted by fire. Not discussed in this overview are other impacts that have been well documented. Higher temperatures in the summer will increase the electricity demand for cooling but will also reduce energy demand for heating in the winter. Severe droughts limits the access to water that are needed to cool power plants. Precipitation variability and reduced snowpack limits the ability to generate power from hydroelectric plants.

  7. Atmospheric inputs of organic matter to a forested watershed: Variations from storm to storm over the seasons

    USGS Publications Warehouse

    Iavorivska , Lidiia; Boyer, Elizabeth W.; Miller, Matthew P.; Brown, Michael G.; Vasilopoulos , Terrie; Fuentes, Jose D.; Duffy, Christopher J.

    2016-01-01

    The objectives of this study were to determine the quantity and chemical composition of precipitation inputs of dissolved organic carbon (DOC) to a forested watershed; and to characterize the associated temporal variability. We sampled most precipitation that occurred from May 2012 through August 2013 at the Susquehanna Shale Hills Critical Zone Observatory (Pennsylvania, USA). Sub-event precipitation samples (159) were collected sequentially during 90 events; covering various types of synoptic meteorological conditions in all climatic seasons. Precipitation DOC concentrations and rates of wet atmospheric DOC deposition were highly variable from storm to storm, ranging from 0.3 to 5.6 mg C L−1 and from 0.5 to 32.8 mg C m−2 h−1, respectively. Seasonally, storms in spring and summer had higher concentrations of DOC and more optically active organic matter than in winter. Higher DOC concentrations resulted from weather types that favor air advection, where cold frontal systems, on average, delivered more than warm/stationary fronts and northeasters. A mixed modeling statistical approach revealed that factors related to storm properties, emission sources, and to the chemical composition of the atmosphere could explain more than 60% of the storm to storm variability in DOC concentrations. This study provided observations on changes in dissolved organic matter that can be useful in modeling of atmospheric oxidative chemistry, exploring relationships between organics and other elements of precipitation chemistry, and in considering temporal changes in ecosystem nutrient balances and microbial activity.

  8. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are strongly modulated by the topography and catchment-specific geomorphologic features that determine subsurface flow convergence zones. The three case studies demonstrate the value of coupled prediction of flood response and debris flow initiation potential in the context of developing a regional hazard warning system.

  9. Rising synchrony controls western North American ecosystems.

    PubMed

    Black, Bryan A; van der Sleen, Peter; Di Lorenzo, Emanuele; Griffin, Daniel; Sydeman, William J; Dunham, Jason B; Rykaczewski, Ryan R; García-Reyes, Marisol; Safeeq, Mohammad; Arismendi, Ivan; Bograd, Steven J

    2018-06-01

    Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries-long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on midlatitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems. © 2018 John Wiley & Sons Ltd.

  10. Rising synchrony controls western North American ecosystems

    USGS Publications Warehouse

    Black, Bryan A.; van der Sleen, Peter; Di Lorenzo, Emanuele; Griffin, Daniel; Sydeman, William J.; Dunham, Jason B.; Rykaczewski, Ryan R.; Garcia-Reyes, Marisol; Safeeq, Mohammad; Arismendi, Ivan; Bograd, Steven J.

    2018-01-01

    Along the western margin of North America, the winter expression of the North Pacific High (NPH) strongly influences interannual variability in coastal upwelling, storm track position, precipitation, and river discharge. Coherence among these factors induces covariance among physical and biological processes across adjacent marine and terrestrial ecosystems. Here, we show that over the past century the degree and spatial extent of this covariance (synchrony) has substantially increased, and is coincident with rising variance in the winter NPH. Furthermore, centuries‐long blue oak (Quercus douglasii) growth chronologies sensitive to the winter NPH provide robust evidence that modern levels of synchrony are among the highest observed in the context of the last 250 years. These trends may ultimately be linked to changing impacts of the El Niño Southern Oscillation on mid‐latitude ecosystems of North America. Such a rise in synchrony may destabilize ecosystems, expose populations to higher risks of extinction, and is thus a concern given the broad biological relevance of winter climate to biological systems.

  11. Study of Extreme Weather Hazards Using GRACE

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shum, C. K.; Shang, K.; Guo, J.; Schwartz, F. W.; Akyılmaz, O.; Feng, W.; Forootan, E.; LIU, G.; Zhong, M.

    2017-12-01

    Extreme weather events significantly affect humans and economics in the region. Synoptic and timely observations of these abrupt meteoro-hydrological hazards would benefit disaster management and improve storm forecasting. Contemporary processing of the Gravity Recovery and Climate Experiment (GRACE) twin-satellite data at monthly sampling would miss or under-sample abrupt events such as large ice storms with durations much shorter than a month. Here, we employ the energy balance approach processing GRACE Level 1 data, which is flexible to allow sub-monthly solutions at daily sampling covering the genesis and evolution of large winter storms. We studied the 2008 Southeast China snow and ice storm, which lasted from mid-January to mid-February, and affected 21 out of China's 34 provinces with heavy snows, ice and freezing rains, caused extensive damage and transportation disruption, displaced nearly 1.7 million people, and claimed 129 lives. We also investigated the devastating North America blizzard which occurred during late January through mid-February 2010. The massive accumulations of snow and ice in both storms slightly changed the gravity field of the Earth, and were sensitive to the GRACE satellite measurements, manifested as transient terrestrial water storage (TWS) change. We compared our solutions with other available high temporal frequency GRACE solutions. The GRACE observed total storage change for both storms are in good agreement with in situ precipitation measurements, and with GRACE observations clearly show the complex genesis, decline, strengthening and melting phases depicting the detailed evolution of these example large snow storms.

  12. Disseminating Landslide Hazard Information for California Local Government

    NASA Astrophysics Data System (ADS)

    Wills, C. J.

    2010-12-01

    Since 1969, the California Geological Survey has produced numerous maps showing landslide features and delineating potential slope-stability problem areas. These maps have been provided to local governments to encourage consideration of landslide hazards in planning and development decisions. Maps produced from 1986 through 1995 under the Landslide Hazard Mapping Act were advisory only, and their use by local government was never consistent. By contrast, maps of Zones of Required Investigation for seismically induced landslides produced under the Seismic Hazard Zoning Act since 1997 come with detailed guidelines and legal requirements. A legislative act that required landslide hazards be mapped and hazard maps disseminated to local government proved ineffective in landslide hazard mitigation. A later act with requirements that the hazard zone maps be used by local government proved more effective. Planning scenarios have proven to be an effective way of transmitting scientific information about natural hazards to emergency response professionals. Numerous earthquake planning scenarios have been prepared and used as the basis for emergency response exercises. An advantage of scenarios that include loss estimates is that the effects can be put in units of measure that everyone understands, principally deaths and dollars. HAZUS software available from FEMA allows calculation of losses for earthquake scenarios, but similar methods for landslides have not been developed. As part of the USGS Multi-Hazard Demonstration Project, we have estimated the landslide losses for a major west-coast winter storm scenario by developing a system based loosely on HAZUS. Data on landslide damage in past storms has been sparse and inconsistent, but a few data sets are available. The most detailed and complete available data on landslide damage was gathered by the City of Los Angeles following the 1978 storms. We extrapolate from that data to the entire state by first generalizing a landslide susceptibility map to give a single value of susceptibility for each census tract. We then calculated the loss ratio, the cost of landslide damage from the 1978 storms divided by the value of light wood frame structures in the census tract. The comparison suggests three general categories of damage: tracts with low landslide susceptibility have no landslide damage: tracts with moderate susceptibility have loss ratios of about 0.016%: and tracts with high susceptibility have loss ratios of 0.096%. Using these values, the susceptibility map becomes a landslide loss ratio map for the average storm intensity and landslide vulnerability of Los Angeles in 1978. Generalization to other storm intensities uses differences in storm intensity and landslide damage data from the 1982 storm in the Bay Area. In Santa Cruz County, that storm had a recurrence interval of over 100 years, and over 3 times the damage as our projection from the 1978 data. In Sonoma County, that storm had a recurrence interval of only 10 years and damage that was only 2% of our projection. If a relationship between storm intensity and the projections from the 1978 Los Angeles data can be developed, we may be able to estimate landslide losses for any projected storm intensity.

  13. The 10.7-cm microwave observations of AR 5395 and related terrestrial effects

    NASA Technical Reports Server (NTRS)

    Gaizauskas, V.; Hughes, T. J.; Tapping, K. F.

    1989-01-01

    The 10.7 cm flux patrols in Canada recorded 4 Great Bursts (peaks greater than 500 sfu) during the disk passage of AR 5395 in March 1989. The Great Bursts of 16 and 17 March were simple events of great amplitude and with half-life durations of only several minutes. Earlier Great Bursts, originating on 6 March towards the NE limb and on 10 March closer to the central meridian, belong to an entirely different category of event. Each started with a very strong impulsive event lasting just minutes. After an initial recovery, however, the emission climbed back to level as greater or greater than the initial impulsive burst. The events of 6 and 10 March stayed above the Great Burst threshold for at least 100 minutes. The second component of long duration in these cases is associated with Type 4 continuum emission and thus very likely with CMEs. Major geomagnetic disturbances did not occur as a result of the massive complex event of 6 March or the two simple but strong events of 16 and 17 March. But some 55 hours after the peak in the long-enduring burst of 10 March, a storm began which qualifies as the fourth strongest geomagnetic storm in Canada since 1932. The vertical component of the earth's field measured during the storm by a fluxgate magnetometer at a station in Manitoba is presented. Within a minute of the sudden commencement of this storm, a series of breakdowns began in the transmission system of Hydro-Quebec which resulted in a total loss of power, on a bitterly cold winter's day, for at least 10 hours. The loss of power provoked an enormous outcry from the public resulting in the power utilities being more receptive to the need to monitor solar as well as geomagnetic activity.

  14. Relation of precipitation quality to storm type, and deposition of dissolved chemical constituents from precipitation in Massachusetts, 1983-85

    USGS Publications Warehouse

    Gay, F.B.; Melching, C.S.

    1995-01-01

    Precipitation samples were collected for 83 storms at a rural inland site in Princeton, Mass., and 73 storms at a rural coastal site in Truro, Mass., to examine the quality of precipitation from storms and relate quality to three storm types (oceanic cyclone, continental cyclone, and cold front). At the inland site, Princeton, ranked-means of precipitation depth, storm duration, specific conductance, and concentrations and loads of hydrogen, sulfate, aluminum, bromide, and copper ions were affected by storm type. At the coastal site, Truro, ranked means of precipitation depth, storm duration, and concentrations and loads of calcium, chloride, magnesium, potassium, and sodium ions were affected by storm type. Precipitation chemistry at the coastal site was 85 percent oceanic in orgin, whereas precipitation 72 kilometers inland was 60 percent hydrogen, nitrate, and sulfate ions, reflecting fossil-fuel combustion. Concentrations and loads for specific conductance and 9 chemical constituents on an annual and seasonal basis were determined from National Atmospheric Deposition Program data for spring 1983 through winter 1985 at Quabbin (rural, inland), Waltham (suburban, inland) and Truro (rural, coastal), Massachusetts. Concentrations of magnesium, potassium, sodium, and chloride concentrations were highest at the coast and much lower inland, with very little difference between Waltham and Quabbin. Loads of ammonium, nitrate, sulfate, and hydrogen are highest at Quabbin and are about equal at Waltham and Truro. About twice as much nitrate and hydrogen and about 35 percent more sulfate is deposited at Quabbin than at Waltham or Truro; this pattern indicates that the interior of Massachusetts receives more acidic precipitation than do the eastern or the coastal areas of Massachusetts.

  15. Participation in the Mars Orbiting Laser Altimeter Experiment

    NASA Technical Reports Server (NTRS)

    Pettengil, Gordon H.; Ford, Peter

    2004-01-01

    The Mars Orbiting Laser Altimeter (MOLA) instrument [1,2] carried aboard the Mars Global Surveyor (MGS) spacecraft, has observed strong echoes from cloud tops at 1.064 microns on 61% of its orbital passes over the winter north pole (235deg L(sub S), < 315deg) and on 58% of the passes over the winter south pole (45deg < L(sub S), < 135deg). The clouds are unlikely to be composed of water ice since the vapor pressure of H2O is very low at the Martian nighttime polar temperatures measured by the Thermal Emission Spectrometer (TES) [3], and by an analysis of MGS radio occultations [4]. Dust clouds can also be ruled out since no correlation is seen between clouds and global dust storms. The virtually certain composition for the winter polar clouds is CO2 ice.

  16. Sediment Transport Modeling and Application for Ocean Beach and San Francisco Bight, CA

    DTIC Science & Technology

    2011-01-01

    NDBC, http://www.ndbc.noaa.gov) and Coastal Data Information Program ( CDIP , http://cdip.ucsd.edu), respectively (Figures 3). Figure 5 shows wave...data at NDBC 46013 and CDIP 142 in January 2010. With passages of winter storms from south and southwest in the study area, the peak wave height and

  17. NWS Turn Around Don't Drown Program, Signs and Resources

    Science.gov Websites

    Temperatures Records Astronomical Data WEATHER SAFETY Safety Campaigns Air Quality Cold Drought Floods Fog Heat Wind Safety Wildland Fires Winter Weather INFORMATION CENTER Weather-Ready Nation StormReady Centers Products and Services Contact Us Glossary flood navigation bar-top Flood Safety Flood Safety Flood

  18. Climate change impacts on northwestern and intermountain United States rangelands

    Treesearch

    Jeanne C. Chambers; Mike Pellant

    2008-01-01

    Our focus is on the Pacific Northwest and Intermountain Region including the Great Basin, Columbia Plateau, Colorado Plateau, and surrounding areas. The climate of this large, arid to semiarid region is defined by generally low and highly variable precipitation. Much of the yearly precipitation arrives as winter snow because most of the moisture comes as frontal storms...

  19. Fire, ice, and metabolism

    Treesearch

    Kevin T. Smith

    2015-01-01

    Evaluation of tree injury often begins with a loss assessment. For winter storm injury, percent crow loss or branch breakage is often estimated. For injury from fire or some mechanical source to the lower trunk, the height and width of the killed vascular cambium and resulting scar are often measured. Both crown breakage and stem wounds provide the opportunity for...

  20. Factors controlling mud accumulation in the Heuksan mud belt off southwestern Korea

    NASA Astrophysics Data System (ADS)

    Chang, Tae Soo; Ha, Hun Jun; Chun, Seung Soo

    2015-12-01

    The Heuksan mud belt (hereafter HMB) is 20~50 km wide, ~200 km long, and ~50 m thick, having accumulated in the course of the Holocene transgression on the tide-dominated epicontinental shelf southwest of Korea. The internal architecture of the HMB is characterized by offshore prograding clinoforms. Of particular interest are the depositional processes responsible for this anomalously thick mud accumulation within a relatively short period of time. Tidal currents are important in the dispersal of mud in the HMB, although these alone cannot explain such an enormous mud deposit. In order to understand the formative processes of the HMB, a detailed sedimentary facies analysis, including high-resolution grain-size measurements, has been conducted on more than 30 short cores and three long drill cores recovered from the mud belt. Five major mud facies were identified. Of these, mud sequences showing a thickening-thinning trend of alternating silt and clay laminae suggestive of a tidal origin occur dominantly at inner to mid shelf locations. By contrast, internally structureless muds with sharp bases and no bioturbation, which are interpreted of representing fluid-mud deposits, are widespread at mid to outer shelf locations. Wave-generated mud ripples and storm beds on the inner shelf suggest that storm waves in winter resuspend previously deposited mud to form near-bed fluid-mud suspensions with resulting gravity-driven mud transport across the low-gradient outer shelf. This previously not recognized process is probably a major factor controlling depositional processes on the giant mud belt, enabling rapid accumulation and offshore progradation even during transgression, i.e., at times of sea-level rise.

  1. Major Geomagnetic Storms (Dst less than or equal to -100 nT) Generated by Corotating Interaction Regions

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Webb, D. F.; Zhang, J.; Berdichevsky, B. D.; Biesecker, D. A.; Kasper, J. C.; Kataoka, R.; Steinberg, J. T.; Thompson, B. J.; Wu, C.-C.; hide

    2006-01-01

    Seventy-nine major geomagnetic storms (minimum Dst less than or equal to -100 nT) observed in 1996 to 2004 were the focus of a Living with a Star Coordinated Data-Analysis Workshop (CDAW) in March, 2005. In 9 cases, the storm driver appears to have been purely a corotating interaction region (CIR) without any contribution from coronal mass ejection-related material (interplanetary coronal mass ejections, ICMEs). These storms were generated by structures within CIRs located both before and/or after the stream interface that included persistently southward magnetic fields for intervals of several hours. We compare their geomagnetic effects with those of 159 CIRs observed during 1996 - 2005. The major storms form the extreme tail of a continuous distribution of CIR geoeffectiveness which peaks at Dst approx. -40 nT but is subject to a prominent seasonal variation of - 40 nT which is ordered by the spring and fall equinoxes and the solar wind magnetic field direction towards or away from the Sun. The O'Brien and McPherron [2000] equations, which estimate Dst by integrating the incident solar wind electric field and incorporating a ring current loss term, largely account for the variation in storm size. They tend to underestimate the size of the larger CIR-associated storms by Dst approx. 20 nT. This suggests that injection into the ring current may be more efficient than expected in such storms. Four of the nine major storms in 1996 - 2004 occurred during a period of less than three solar rotations in September - November, 2002, also the time of maximum mean IMF and solar magnetic field intensity during the current solar cycle. The maximum CIR-storm strength found in our sample of events, plus additional 23 probable CIR-associated Dst less than or equal to -100 nT storms in 1972 - 1995, is (Dst = -161 nT). This is consistent with the maximum storm strength (Dst approx. -180 nT) expected from the O'Brien and McPherron equations for the typical range of solar wind electric fields associated with CIRs. This suggests that CIRs alone are unlikely to generate geomagnetic storms that exceed these levels.

  2. Response of winter North Atlantic storm track to climate change in the CNRM-CM5 simulations

    NASA Astrophysics Data System (ADS)

    Chauvin, Fabrice; Oudar, Thomas; Sanchez-Gomez, Emilia; Terray, Laurent

    2016-04-01

    Climate variability in Europe in winter is largely controlled by North Atlantic storm tracks. These are associated with transport of energy, momentum, and water vapour, between the equator and mid latitudes. Extratropical cyclones have caused severe damages over some regions in north-western Europe, since they can combine extreme precipitation and strong winds. This is why it is relevant to study the impact of climate change on the extratropical cyclones, principally on their intensity, position or lifespan. Indeed, several recent studies have focused on this subject by using atmospheric reanalysis and general circulation models (GCMs). The main conclusions from the CMIP3 simulations showed a decreasing of the total number of cyclones and a poleward shift of their tracks in response to global warming. In the recent CMIP5 exercise, the consensus is not so clear, probably due to more complex feedbacks acting in the different models. Thus, the question of changes in North Atlantic storm-tracks with warming remains open. The main goal of this work is to explore the changes in the North Atlantic storm-tracks in the past and future decades and to analyze the contributions of the different external forcings (natural and anthropogenic) versus the internal variability. On this purpose, we use the Detection and Attribution (D&A) simulations performed with the coupled model CNRM-CM5. To characterize the extratropical cyclones and their tracks, a tracking scheme based on the detection of maximum of relative vorticity at 850 hPa is conducted. We show that the coupled model fairly well reproduces the storm genesis locations as well as the tracks pathways comparing to several atmospheric reanalysis products. In the recent historical period (1950-2005), the model shows a decrease in the number of storms in the southern North-Atlantic, when all the forcings (anthropogenic and natural) are prescribed. Even if the role of internal variability is important in the last decades (the inter-members spread is very large), and the signals rarely emerge from the noise, analysis based on the Eady Growth Rate parameter has lead to quantify the respective roles of baroclinicity and meridional temperature gradients. Finally, in the scenario (RCP8.5), the tendency seen in the all-forcings historical run is confirmed and reinforced.

  3. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North Carolina coast would rank amongst the all-time most costly natural disasters to have occurred in the United States, with up to 1 billion in losses in North Carolina alone.

  4. Occurrence and transport of diazinon in the Sacramento River, California, and selected tributaries during three winter storms, January-February 2000

    USGS Publications Warehouse

    Dileanis, Peter D.; Bennett, Kevin P.; Domagalski, Joseph L.

    2002-01-01

    The organophosphate pesticide diazinon is applied as a dormant orchard spray in the Sacramento Valley, California, during the winter when the area receives a majority of its annual rainfall. Dormant spray pesticides, thus, have the potential to wash off the areas of application and migrate with storm runoff to streams in the Sacramento River Basin. Previous monitoring studies have shown that rain and associated runoff from winter storms plays an important role in the transport of diazinon from point of application to the Sacramento River and tributaries. Between January 30 and February 25, 2000, diazinon concentrations in the Sacramento River and selected tributaries were monitored on 5 consecutive days during each of three winter storms that moved through the Sacramento Valley after diazinon had been applied to orchards in the basin. Water samples were collected at 17 sites chosen to represent the effect of upstream land use at local and regional scales. Most samples were analyzed using an enzyme-linked immunosorbent assay (ELISA). Analysis by gas chromatography with electron capture detector and thermionic specific detector (GC/ECD/TSD) and gas chromatography with mass spectrometry (GC/MS) was done on split replicates from over 30 percent of the samples to confirm ELISA results and to provide lower analytical reporting limits at selected sites [30 ng/L (nanogram per liter) for ELISA, 20 ng/L for GC/ECD/TSD, and 2 ng/L for GC/MS]. Concentrations determined from ELISA analyses were consistently higher than concentrations for split samples analyzed by gas chromatography methods. Because of bias between diazinon concentrations using ELISA and gas chromatography methods, results from ELISA analyses were not compared to water-quality criteria. Load calculations using the ELISA analyses are similarly biased. Because the bias was consistent, however, the ELISA data is useful in site-to-site comparisons used to rank the relative levels and contributions of diazinon from individual subbasins in the watershed. Concentrations of diazinon in 138 samples analyzed by gas chromatography methods ranged from below detection (2 ng/L) to 2,890 ng/L with a median of 44 ng/L. Thirty percent of the samples had concentrations greater than 80 ng/L, which is considered by California as the criterion maximum concentration for the protection of aquatic habitat. Concentrations were highest in small tributaries and canals draining subbasins with predominantly agricultural land use and in a channel draining the Yuba City urban area. Load estimates using concentrations derived from GC/MS analyses indicate that about 30 percent of the diazinon in the lower Sacramento River is from the Feather River Basin. Loads estimated using ELISA analyses show a similar, but slightly higher fraction of the total load coming from that basin. The source of over half the total load measured at Sacramento River at Alamar appears to have originated in the part of the drainage basin upstream of the city of Colusa. Of the diazinon reported applied to agricultural land in Sacramento Valley (about 42,500 pounds active ingredient) just before and during the monitoring period, about 0.4 percent appeared to be transported to the lower Sacramento River during the period of monitoring. A similar percent of applied diazinon was estimated to have entered the Feather River from upstream sources. Diazinon use in the study area during the 1999-2000 dormant spray season was unusually low, about 60 percent of the average of the previous 4 years. Therefore, diazinon loadings may be higher in subsequent years, should use increase and pesticide management practices remain the same. Although diazinon was the most frequently detected pesticide and the pesticide detected at the highest concentrations, 10 other pesticides were detected in the samples collected. These included the insecticides methidathion and chlorpyrifos, and the herbicides simazine, molinate and thiobencarb.

  5. Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse.

    PubMed

    Ghosh, Prosenjit; Prasanna, K; Banerjee, Yogaraj; Williams, Ian S; Gagan, Michael K; Chaudhuri, Atanu; Suwas, Satyam

    2018-05-31

    The Cretaceous greenhouse climate was accompanied by major changes in Earth's hydrological cycle, but seasonally resolved hydroclimatic reconstructions for this anomalously warm period are rare. We measured the δ 18 O and CO 2 clumped isotope Δ 47 of the seasonal growth bands in carbonate shells of the mollusc Villorita cyprinoides (Black Clam) growing in the Cochin estuary, in southern India. These tandem records accurately reconstruct seasonal changes in sea surface temperature (SST) and seawater δ 18 O, allowing us to document freshwater discharge into the estuary, and make inferences about rainfall amount. The same analytical approach was applied to well-preserved fossil remains of the Cretaceous (Early Maastrichtian) mollusc Phygraea (Phygraea) vesicularis from the nearby Kallankuruchchi Formation in the Cauvery Basin of southern India. The palaeoenvironmental record shows that, unlike present-day India, where summer rainfall predominates, most rainfall in Cretaceous India occurred in winter. During the Early Maastrichtian, the Indian plate was positioned at ~30°S latitude, where present-day rainfall and storm activity is also concentrated in winter. The good match of the Cretaceous climate and present-day climate at ~30°S suggests that the large-scale atmospheric circulation and seasonal hydroclimate patterns were similar to, although probably more intense than, those at present.

  6. The 1973 dust storm on Mars: Maps from hourly photographs

    NASA Technical Reports Server (NTRS)

    Martin, L. J.

    1975-01-01

    The hourly progress of the 1973 major Martian storm was mapped using photographic images from the International Planetary Patrol. Two series of 20 daily maps show the semi-hourly positions of the storm brightenings in red light and blue light. The maps indicate that the 1973 storm had many similarities to the 1971 storm.

  7. Teasing Apart the Effects of Atmospheric Nitrogen Deposition from Grazing and Drought in Vernal Pool Wetlands and Adjacent Grassland

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.; Araiza, D. N.; Nakamoto, B. J.; Vega, M. C.; Bradley, C. J.; Swarth, C. W.

    2014-12-01

    The remaining vernal pools flanking California's Central Valley may be protected from development, but they are not pristine environments. At UC Merced's Vernal Pools and Grassland Reserve, dairy cattle grazing is a fact of life, needed to keep non-native grasses from encroaching on and dominating these low lying, ephemeral pools. In addition to grazing, atmospheric deposition of nitrogen from adjacent agricultural farms and dairies has affected the biogeochemical cycling here, in particular because the area has never been ploughed and is essentially a terminal, interior catchment with almost no outputs. For the past two years, the region has been subjected to extreme drought resulting in altered patterns in vernal pool development and nutrient exchange. We are using stable nitrogen, carbon, and hydrogen isotopes in organic and inorganic reservoirs to understand which of the three stressors (e.g. N loading, grazing, or drought) affects the ecosystem functioning the most. Simple measurements of residual dry matter (the rancher's standard) coupled with soil analyses and plant distribution, isotopic composition, and productivity will be presented at a landscape scale. Atmospheric deposition, as rain in winter and early spring and as dust in summer and fall, delivers substantial ammonium and nitrate to the Reserve and could be traced back to nearby hotspots, as well as from major storm systems. Concentrations and compositions of N in precipitation were highly variable depending on when the last storm event had occurred. Ammonia/ammonium in rainwater ranged from δ15N= -24 to +7‰, probably explaining the large range in the δ15N of plant tissues collected in winter/spring (-4.3 to +10.9‰,) and that of extractable ammonium from surface soils (δ15N = -7 to +13‰). Interior grassland and vernal pool ecosystems, with substantial inputs and little to no outputs, host biogeochemical processes that amplify heterogeneity on relative small scales.

  8. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  9. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  10. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  11. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  12. 32 CFR Appendix A to Part 623 - Explanation of Terms

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., or other political subdivision of any State. Major disaster. Any hurricane, tornado, storm, flood.... Threatened major disaster. Any hurricane, tornado, storm, flood, high water, wind-driven water, tidal wave...

  13. Physical Mechanisms of Rapid Lake Warming

    NASA Astrophysics Data System (ADS)

    Lenters, J. D.

    2016-12-01

    Recent studies have shown significant warming of inland water bodies around the world. Many lakes are warming more rapidly than the ambient surface air temperature, and this is counter to what is often expected based on the lake surface energy balance. A host of reasons have been proposed to explain these discrepancies, including changes in the onset of summer stratification, significant loss of ice cover, and concomitant changes in winter air temperature and/or summer cloud cover. A review of the literature suggests that no single physical mechanism is primarily responsible for the majority of these changes, but rather that the large heterogeneity in regional climate trends and lake geomorphometry results in a host of potential physical drivers. In this study, we discuss the variety of mechanisms that have been proposed to explain rapid lake warming and offer an assessment of the physical plausibility for each potential contributor. Lake Superior is presented as a case study to illustrate the "perfect storm" of factors that can cause a deep, dimictic lake to warm at rate that exceeds the rate of global air temperature warming by nearly an order of magnitude. In particular, we use a simple mixed-layer model to show that spatially variable trends in Lake Superior surface water temperature are determined, to first order, by variations in bathymetry and winter air temperature. Summer atmospheric conditions are often of less significance, and winter ice cover may simply be a correlate. The results highlight the importance of considering the full range of factors that can lead to trends in lake surface temperature, and that conventional wisdom may often not be the best guide.

  14. Atmospheric forcing of the upper ocean transport in the Gulf of Mexico: From seasonal to diurnal scales

    NASA Astrophysics Data System (ADS)

    Judt, Falko; Chen, Shuyi S.; Curcic, Milan

    2016-06-01

    The 2010 Deepwater Horizon oil spill in the Gulf of Mexico (GoM) was an environmental disaster, which highlighted the urgent need to predict the transport and dispersion of hydrocarbon. Although the variability of the atmospheric forcing plays a major role in the upper ocean circulation and transport of the pollutants, the air-sea interaction on various time scales is not well understood. This study provides a comprehensive overview of the atmospheric forcing and upper ocean response in the GoM from seasonal to diurnal time scales, using climatologies derived from long-term observations, in situ observations from two field campaigns, and a coupled model. The atmospheric forcing in the GoM is characterized by striking seasonality. In the summer, the time-average large-scale forcing is weak, despite occasional extreme winds associated with hurricanes. In the winter, the atmospheric forcing is much stronger, and dominated by synoptic variability on time scales of 3-7 days associated with winter storms and cold air outbreaks. The diurnal cycle is more pronounced during the summer, when sea breeze circulations affect the coastal regions and nighttime wind maxima occur over the offshore waters. Realtime predictions from a high-resolution atmosphere-wave-ocean coupled model were evaluated for both summer and winter conditions during the Grand LAgrangian Deployment (GLAD) in July-August 2012 and the Surfzone Coastal Oil Pathways Experiment (SCOPE) in November-December 2013. The model generally captured the variability of atmospheric forcing on all scales, but suffered from some systematic errors.

  15. Hydrography of the Gulf of Maine and Massachusetts Bay, data report for R/V OCEANUS cruise 181, 5-15 February 1987

    USGS Publications Warehouse

    Moody, John A.; Butman, Bradford; Shoukimas, Polly; Donoghue, Terence G.

    1990-01-01

    During Cruise 181, a total of 95 hydrographic profiles were obtained by means of a conductivity-temperature-depth (CTD) profiler. Stations are numbered sequentially and station information is tabulated in table 1. The stations were arranged in ten transects (figure 1). Section 1 was across the Great South Channel and section 7 was across the Northeast Channel--the two main oceanic entrances and exits of the Gulf of Maine. Section 2 was along a saddle (Rodgers Pass) separating Wilkinson Basin from Georges Basin. Sections 3,5, and 10 were across different regions of Wilkinson Basin and all intersected at the longterm mooring site W1 in the center of Wilkinson Basin; section 8 was a dog-leg section through the southern portion of Jordan Basin; and sections 6 (east-west) and 9 (north-south) were within Georges Basin. A severe winter storm (see table 2 and 3) occurred between February 9 and 10 and work was stopped while the OCEANUS rode out the storm in Cape Cod Bay and repaired storm damage. Section 4 across Massachusetts Bay and section 5 across Wilkinson Basin, were repeated twice, once before the storm (sections 4a and 5a) and once after the storm (sections 4b and 5b).

  16. Occurrence of pesticides in surface water and sediments from three central California coastal watersheds, 2008-2009

    USGS Publications Warehouse

    Smalling, Kelly L.; Orlando, James L.

    2011-01-01

    Water and sediment (bed and suspended) were collected from January 2008 through October 2009 from 12 sites in 3 of the largest watersheds along California's Central Coast (Pajaro, Salinas, and Santa Maria Rivers) and analyzed for a suite of pesticides by the U.S. Geological Survey. Water samples were collected in each watershed from the estuaries and major tributaries during 4 storm events and 11 dry season sampling events in 2008 and 2009. Bed sediments were collected from depositional zones at the tributary sampling sites three times over the course of the study. Suspended sediment samples were collected from the major tributaries during the four storm events and in the tributaries and estuaries during three dry season sampling events in 2009. Water samples were analyzed for 68 pesticides using gas chromatography/mass spectrometry. A total of 38 pesticides were detected in 144 water samples, and 13 pesticides were detected in more than half the samples collected over the course of the study. Dissolved pesticide concentrations ranged from below their method detection limits to 36,000 nanograms per liter (boscalid). The most frequently detected pesticides in water from all the watersheds were azoxystrobin, boscalid, chlorpyrifos, DCPA, diazinon, oxyfluorfen, prometryn, and propyzamide, which were found in more than 80 percent of the samples. On average, detection frequencies and concentrations were higher in samples collected during winter storm events compared to the summer dry season. With the exception of the fungicide, myclobutanil, the Santa Maria estuary watershed exhibited higher pesticide detection frequencies than the Pajaro and Salinas watersheds. Bed and suspended sediment samples were analyzed for 55 pesticides using accelerated solvent extraction, gel permeation chromatography for sulfur removal, and carbon/alumina stacked solid-phase extraction cartridges to remove interfering sediment matrices. In bed sediment samples, 17 pesticides were detected including pyrethroid and organophosphate (OP) insecticides, p,p'-DDT and its degradates, as well as several herbicides. The only pesticides detected more than half the time were p,p'-DDD, p,p'-DDE, and p,p'-DDT. Maximum pesticide concentrations ranged from less than their respective method detection limits to 234 micrograms per kilogram (p,p'-DDE). Four pyrethroids (bifenthrin, &# 955;-cyhalothrin, permethrin, and &# 964;-fluvalinate) were detected in bed sediment samples, though concentrations were relatively low (less than 10 microgram per kilogram). The greatest number of pesticides were detected in samples collected from Lower Orcutt Creek, the major tributary to the Santa Maria estuary. In suspended sediment samples, 19 pesticides were detected, and maximum concentrations ranged from less than the method detection limits to 549 micrograms per kilogram (chlorpyrifos). The most frequently detected pesticides were p,p'-DDE (49 percent), p,p'-DDT (38 percent), and chlorpyrifos (32 percent). During storm events, 19 pesticides were detected in suspended sediment samples compared to 10 detected during the dry season. Pesticide concentrations commonly were higher in suspended sediments during storm events than during the dry season, as well.

  17. The Influence of Global Climate Changes on Storm-Tracks of Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Martynova, Y.; Krupchatnikov, V. N.

    2012-12-01

    Non-stationary eddies in mid-latitude storm-tracks are an important mechanism of energy, moment and moisture transfer in climate system [1]. Baroclinic eddies bring heavy rains and other hazard weather phenomena in the middle latitudes, play an important role in the global energy and the hydrological cycle. Recently, the increase of a cyclones rate at high latitudes with their frequency decrease in the second half of the 20th century was discovered using reanalysis data [2,3]. However, there is still no common point of view about how storm-track's distribution and intensity will be changed under the climate change influence [4,5]. In our work we investigate a variation of transient eddies general propagation tracks as a result of the global climate change effect. Using global large-scale intermediate complexity model of climate system [6] the numerical experiment was provided for the time period from 850 to 3000 year with a scenario of greenhouse gases influence on climate. From 850 to 2005 this impact was set according to the protocol "Historical simulations" of CMIP5 [7]. For 21th century anthropogenic effects were set according to the most aggressive scenario RCP 8.5 [8]. For the period 22-23 centuries CO2 concentration was on the level of 2100 year, and for 24-30 centuries it returned to pre-industrial value linearly in time of 100 years. Using a filter [9] we defined three variation intervals: low-frequency, medium-frequency and high-frequency. In our work we paid attention to medium-scale waves (i.e. 2-8 days). Two seasons were chosen: winter and summer. For each season we considered average fields of parameters characterizing poleward heat flux at 700 mb and transient eddies variance at 250 mb. Besides of the sensitivity of storm-track dynamic we considered some other features of "warm" climate. The work is partially supported by The Ministry of Education and Science of the Russian Federation #(#07.514.11.4044), RFBR grants #10-07-00547, #11-05-01190, and SB RAS projects 4.31.1.5, 4.31.2.7 and 131. Reference: 1. Hoskins, B.J. and P.J. Valdes. On the existence of storm-tracks. J Atmos Sci, 47, pp. 1854-1864, 1990. 2. Lambert, S.J. and J.C. Fyfe. Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dynamics, 26:713-728, 2006. 3. Geng, Q. and M. Sugi. Variability of the North Atlantic cyclone activity in winter analyzed from NCEP-NCAR reanalysis data. J Climate, 14:3863-3873, 2001. 4. Bengtsson, L., K.I. Hodges, and N. Keenlyside. Will extratropical storms intensify in a warmer climate? J Climate, 22:2276-2301, 2009. 5. Brayshaw, D.J., B. Hoskins, and M. Blackburn. The basic ingredients of the North Atlantic storm track. part i: land-sea-contrast and orography. J Atmos Sci, 66 pp. 2539-2559, 2009. 6. Fraedrich K., Jansen H., et al. The Planet Simulator: Towards a user friendly model // Meteorologische Zeitschrift. 2005. Vol. 14, N. 3. P. 299-304. 7. http://climate.uvic.ca/EMICAR5 8. Meinshausen M., Smith S., et al. The RCP Greenhouse Gas Concentrations and their extension from 1765 to 2500 // Climatic Change.- 2011.- Special Issue on RCPs. 9. Blackmon M.L. A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere // J. Atmos. Sci.1976. V. 33, N. 8. P. 1607-1623.

  18. Earth Observations taken by the Expedition 39 Crew

    NASA Image and Video Library

    2014-03-29

    ISS039-E-005762 (29 March 2014) --- One of the Expedition 39 crew members aboard the International Space Station on March 29 used a 14mm lens on a digital still camera to photograph this pre-winter storm located just off the coast of southwestern Australia. A solar array panel on the orbital outpost is in the left side of the frame.

  19. How to sow mustard in burned watersheds of southern California

    Treesearch

    Clark H. Gleason

    1944-01-01

    After the chaparral cover of the mountain watersheds in southern California is burned, damage is usually done during winter storms by increased runoff and erosion debris from the denuded area. The damage is done not only to the works of man, but to the watershed itself. Improvements that most often suffer tangible damage include water storage and diversion structures;...

  20. Fatal Canine Intoxications Linked to the Presence of Saxitoxins in Stranded Marine Organisms Following Winter Storm Activity

    PubMed Central

    Turner, Andrew D.; Dhanji-Rapkova, Monika; Dean, Karl; Milligan, Steven; Hamilton, Mike; Thomas, Julie; Poole, Chris; Haycock, Jo; Spelman-Marriott, Jo; Watson, Alice; Hughes, Katherine; Marr, Bridget; Dixon, Alan; Coates, Lewis

    2018-01-01

    At the start of 2018, multiple incidents of dog illnesses were reported following consumption of marine species washed up onto the beaches of eastern England after winter storms. Over a two-week period, nine confirmed illnesses including two canine deaths were recorded. Symptoms in the affected dogs included sickness, loss of motor control, and muscle paralysis. Samples of flatfish, starfish, and crab from the beaches in the affected areas were analysed for a suite of naturally occurring marine neurotoxins of dinoflagellate origin. Toxins causing paralytic shellfish poisoning (PSP) were detected and quantified using two independent chemical testing methods in samples of all three marine types, with concentrations over 14,000 µg saxitoxin (STX) eq/kg found in one starfish sample. Further evidence for PSP intoxication of the dogs was obtained with the positive identification of PSP toxins in a vomited crab sample from one deceased dog and in gastrointestinal samples collected post mortem from a second affected dog. Together, this is the first report providing evidence of starfish being implicated in a PSP intoxication case and the first report of PSP in canines. PMID:29495385

  1. Changing climate shifts timing of European floods.

    PubMed

    Blöschl, Günter; Hall, Julia; Parajka, Juraj; Perdigão, Rui A P; Merz, Bruno; Arheimer, Berit; Aronica, Giuseppe T; Bilibashi, Ardian; Bonacci, Ognjen; Borga, Marco; Čanjevac, Ivan; Castellarin, Attilio; Chirico, Giovanni B; Claps, Pierluigi; Fiala, Károly; Frolova, Natalia; Gorbachova, Liudmyla; Gül, Ali; Hannaford, Jamie; Harrigan, Shaun; Kireeva, Maria; Kiss, Andrea; Kjeldsen, Thomas R; Kohnová, Silvia; Koskela, Jarkko J; Ledvinka, Ondrej; Macdonald, Neil; Mavrova-Guirguinova, Maria; Mediero, Luis; Merz, Ralf; Molnar, Peter; Montanari, Alberto; Murphy, Conor; Osuch, Marzena; Ovcharuk, Valeryia; Radevski, Ivan; Rogger, Magdalena; Salinas, José L; Sauquet, Eric; Šraj, Mojca; Szolgay, Jan; Viglione, Alberto; Volpi, Elena; Wilson, Donna; Zaimi, Klodian; Živković, Nenad

    2017-08-11

    A warming climate is expected to have an impact on the magnitude and timing of river floods; however, no consistent large-scale climate change signal in observed flood magnitudes has been identified so far. We analyzed the timing of river floods in Europe over the past five decades, using a pan-European database from 4262 observational hydrometric stations, and found clear patterns of change in flood timing. Warmer temperatures have led to earlier spring snowmelt floods throughout northeastern Europe; delayed winter storms associated with polar warming have led to later winter floods around the North Sea and some sectors of the Mediterranean coast; and earlier soil moisture maxima have led to earlier winter floods in western Europe. Our results highlight the existence of a clear climate signal in flood observations at the continental scale. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Water budgets, water quality, and analysis of nutrient loading of the Winter Park chain of lakes, central Florida, 1989-92

    USGS Publications Warehouse

    Phelps, G.G.; German, E.R.

    1995-01-01

    The Winter Park chain of lakes (Lakes Maitland, Virginia, Osceola, and Mizell) has a combined area of about 900 acres, an immediate drainage area of about 3,100 acres, and mean depths ranging from 11 to 15 feet. The lakes are an important recreational resource for the surrounding communities, but there is concern about the possible effects of stormwater runoff and seepage of nutrient-enriched ground water on the quality of water in the lakes. The lakes receive water from several sources: rainfall on lake surfaces, inflow from other surface-water bodies, stormflow that enters the lakes through storm drains or by direct runoff from land adjacent to the lakes and ground-water seepage. Water leaves the lakes by evaporation, surface outflow, and ground-water outflow. Of the three, only surface outflow can be measured directly. Rainfall, surface inflow and outflow, and lake-stage data were collected from October 1, 1989, to September 30, 1992. Stormflow, evaporation and ground-water inflow and outflow were estimated for the 3 years of the study. Ground-water outflow was calculated by evaluating the rate of lake-stage decline during dry periods. Estimated ground-water outflow was compared to downward leakage rates estimated by ground-water flow models. Lateral ground-water inflow from surficial sediments was calculated as the residual of the flow budget. Flow budgets were calculated for the 3 years of the study. In water year 1992 (a year with about average rainfall), inflow consisted of rainfall, 48 inches; stormflow, 15 inches; surface inflow, 67 inches; and ground water, 40 inches. The calculated outflows were evaporation, 47 inches; surface outflow, 90 inches; and ground water, 33 inches. Water-quality data also were used to calculate nutrient budgets for the lakes. Bimonthly water samples were collected from the lakes and at surface inflow and outflow sites, and were analyzed for physical characteristics, dissolved oxygen, pH, specific conductance, major ions, the nutrients nitrogen and phosphorus, and chlorophyll (collected at lake sites only). Specific conductance ranged from about 190 to 230 microsiemens per centimeter at 25 degrees Celsius in Lakes Maitland, Virginia and Osceola and from about 226 to 260 microsiemens per centimeter at 25 degrees Celsius in Lake Mizell. The median concentrations of total ammonia-plus-organic nitrogen in all the lakes ranged from 0.79 to 0.99 milligrams per liter. Median total phosphorus concentrations ranged from less than 0.02 to 0.20 milligrams per liter. Stormwater samples were collected for 17 storms at one storm-drain site and 16 storms at another storm-drain site on Lake Osceola. Median total nitrogen concentrations at the sites were 2.23 and 3.06 milligrams per liter and median total phosphorus concentrations were 0.34 and 0.40 milligrams per liter. The water quality in the Winter Park lakes generally is fair to good, based on a trophic-state index used by the Florida Department of Environmental Protection for assessing the tropic state of Florida lakes. This index was determined from median total nitrogen, total phosphorus, and chlorophyll-a concentrations, and median Secchi-disk transparency for all lakes for the period September 1989 to June 1992. Based on a one-time sampling of 20 sites around the lakes, surficial ground-water quality is highly variable. Nutrient concentrations were highly variable and could not be correlated to the proximity of septic tanks. Fertilizer probably is the primary source of nutrients in the surficial ground water. Nutrient budgets were calculated for the lakes for the 3 years of the study. The most variable source of nutrient loading to the lakes is stormwater. Nutrient-loading modeling indicates that reduction of nutrients in stormflow probably would improve lake-water quality. However, even with complete removal of nitrogen and phosphorus from stormwater, the lakes might still be mesotrophic with respect to both nutrients during periods of below ave

  3. Rainfall intensity-duration thresholds for postfire debris-flow emergency-response planning

    USGS Publications Warehouse

    Cannon, S.H.; Boldt, E.M.; Laber, J.L.; Kean, J.W.; Staley, D.M.

    2011-01-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is provided for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. The range of rainfall conditions associated with different magnitude classes is defined by integrating local rainfall data with the response magnitude information. Magnitude I events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall above the threshold A = 0.4D0.5 and below A = 0.5D0.6 for durations greater than 1 h. Magnitude II events will be generated in response to rainfall accumulations and durations between A = 0.4D0.5 and A = 0.9D0.5 for durations less than 1 h, and between A = 0.5D0.6 and A = 0.9D0.5 or durations greater than 1 h. Magnitude III events can be expected in response to rainfall conditions above the threshold A = 0.9D0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in planning and response decision-making process could result in increased safety for both the public and emergency responders. ?? 2011 US Government.

  4. Relationship between the trajectory of mid-latitude cyclones in the eastern Pacific Ocean and the isotopic composition of snowfall in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Vasquez, K. T.; Sickman, J. O.; Lucero, D. M.; Heard, A. M.

    2014-12-01

    Climate change has caused a change in the Sierra Nevada snowpack and the timing of its snowmelt, threatening a valuable water resource that provides for 25 million people and 5 million hectares of irrigated land. Understanding past and future variations in the snowpack is crucial in order to plan future water management. Of particular importance would be an archive of the variability of past snowfall, which can be recorded through the isotopic records found in local paleoproxies (e.g., diatoms). We propose to quantify the relationship between sources of atmospheric moisture in the Sierra Nevada and the isotopic composition of its snowpack to uncover whether isotopic variations recorded in paloearchives are a result of the isotopic composition of the precipitation, thereby showing whether these archives could serve as a reliable source of atmospheric moisture. Preliminary analysis conducted from December 2012 to March 2013 at Sequoia National Park resulted in statistically significant correlations between the isotopic composition of the winter snowfall and storm track trajectories. It was observed that storms originating from more northern latitudes had predominantly lighter isotopes (more negative δ 2H and δ18O) and sub-tropical/tropical Pacific storms showed more positive δ 2H and δ18O. This pattern reflects the isotopic gradient of the Pacific Ocean and can prove useful when interpreting the climatic significance of the δ2H and δ18O values in analyzed proxies. While our initial investigation was promising, the winter of 2012 -2013 was abnormally dry compared to long-term averages. Before directing our investigation to known paleoproxies, we aim to determine if the correlation between storm tracks and isotopic composition of precipitation holds in years with average and above average precipitation through analysis of archived samples from calendar years 2007 - 2011 from Giant Forest in Sequoia National Park (southern sierra) and Manzanita Lake in Lassen Volcanic National Park (northern sierra).

  5. Prediction of barrier island restoration response and its interactions with the natural environment

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Stockdon, H. F.; Flocks, J.; Sallenger, A. H.; Long, J. W.; Cormier, J. M.; Guy, K.; Thompson, D. M.

    2012-12-01

    A 2-meter high sand berm was constructed along Chandeleur Island, Louisiana, in an attempt to provide protection against the Deepwater Horizon oil spill. Berm construction started in June 2010 and ended in April 2011. Variations in both island morphology and construction of the 15-km long berm resulted in the development of four different morphologies: a berm built on a submerged island platform to the north of the existing island, a berm built seaward of the existing island, a berm built along the island shoreline, and portions of the island where no berm was constructed. These different morphologies provide a natural laboratory for testing the understanding of berm and barrier island response to storms. In particular, the ability to predict berm evolution using statistical modeling of the interactions between the island, berm, and oceanographic processes was tested. This particular test was part of a broader USGS research effort to understand processes that bridge the gap between short-term storm response and longer-term geologic and climate interactions that shape barrier-island systems. Berm construction and subsequent berm and island evolution were monitored using satellite and aerial remote sensing and topographic and bathymetric surveys. To date, significant berm evolution occurred in both the north (including terminal erosion, overwash, and a large breach), center (overwash and numerous breaches), and south (overwash). The response of the central portion of the berm to winter and tropical storms was significant such that none of the residual berm remained within its construction footprint. The evolution of the central portion of the berm was well predicted using a statistical modeling approach that used predicted and modeled wave conditions to identify the likelihood of overwash events. Comparison of different modeled evolution scenarios to the one that was observed showed that berm response was sensitive to the frequency and severity of winter and tropical storms. These findings demonstrate an observation and modeling approach that can be applied to understanding and managing other natural and restored barrier islands.

  6. Effect of Geomagnetic Storms on Ocean-Atmospheric Interactions over the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Reddy, S.; Karim, R.

    There is accumulated evidence from recent past literature to show the possible relation between solar and geomagnetic activity, and meteorological parameters (Pittock, 1978; Reddy et.al. 1979; Bhalme et.al. 1979; Reddy and Karim, 2003). Not many studies have been reported on the relationship between geomagnetic activity and terrestrial weather including ocean-atmospheric interactions that have significant impacts over the large-scale atmospheric circulations. Between the ocean surface and the atmosphere, there is an exchange of heat and moisture that depend in part, on temperature differences between water and air. In winter, when air-water temperature contrasts are greatest, there is a substantial transfer of sensible and latent heat from the ocean surface into the atmosphere. This energy helps to maintain the global airflow. Previous studies (Reddy and Miller, 1997; Reddy et.al. 1998, 1999) have established the relationship between ocean-atmospheric interactions and tropical cyclones/hurricanes over the Gulf of Mexico. In the present study, we investigate the relationship between Geomagnetic Storms and ocean-atmospheric interactions including heat, momentum and moisture fluxes over the Gulf of Mexico during the winter (December to February) for the period, 2001-2003.The data used in this study include, (i) Geomagnetic storms, and (ii) Buoy data (sea surface temperature, air temperature, sea level pressure and wind speed) obtained from National Data Buoy Center (NDBC). The fluxes were computed using standard bulk formulae. The statistical techniques used for data analysis include superposed epoch analysis and student test .The result of the study has pointed out a significant increase in the fluxes 1-3 days after the storm occurrence. The effect of these fluxes on Gulf coast weather is noticed. The study is important for further understanding the climate variability of large-scale circulations including ElNino/Southern Oscillation (ENSO). The results and the possible physical mechanisms for the observed relationships will be presented and discussed. NOAA/Howard University NCAS Grant supports the work

  7. Seasonal timing of first rain storms affects rare plant population dynamics

    USGS Publications Warehouse

    Levine, J.M.; McEachern, A.K.; Cowan, C.

    2011-01-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  8. Seasonal timing of first rain storms affects rare plant population dynamics.

    PubMed

    Levine, Jonathan M; McEachern, A Kathryn; Cowan, Clark

    2011-12-01

    A major challenge in forecasting the ecological consequences of climate change is understanding the relative importance of changes to mean conditions vs. changes to discrete climatic events, such as storms, frosts, or droughts. Here we show that the first major storm of the growing season strongly influences the population dynamics of three rare and endangered annual plant species in a coastal California (USA) ecosystem. In a field experiment we used moisture barriers and water addition to manipulate the timing and temperature associated with first major rains of the season. The three focal species showed two- to fivefold variation in per capita population growth rates between the different storm treatments, comparable to variation found in a prior experiment imposing eightfold differences in season-long precipitation. Variation in germination was a major demographic driver of how two of three species responded to the first rains. For one of these species, the timing of the storm was the most critical determinant of its germination, while the other showed enhanced germination with colder storm temperatures. The role of temperature was further supported by laboratory trials showing enhanced germination in cooler treatments. Our work suggests that, because of species-specific cues for demographic transitions such as germination, changes to discrete climate events may be as, if not more, important than changes to season-long variables.

  9. Quantification of storm-induced bathymetric change in a back-barrier estuary

    USGS Publications Warehouse

    Ganju, Neil K.; Suttles, Steven E.; Beudin, Alexis; Nowacki, Daniel J.; Miselis, Jennifer L.; Andrews, Brian D.

    2017-01-01

    Geomorphology is a fundamental control on ecological and economic function of estuaries. However, relative to open coasts, there has been little quantification of storm-induced bathymetric change in back-barrier estuaries. Vessel-based and airborne bathymetric mapping can cover large areas quickly, but change detection is difficult because measurement errors can be larger than the actual changes over the storm timescale. We quantified storm-induced bathymetric changes at several locations in Chincoteague Bay, Maryland/Virginia, over the August 2014 to July 2015 period using fixed, downward-looking altimeters and numerical modeling. At sand-dominated shoal sites, measurements showed storm-induced changes on the order of 5 cm, with variability related to stress magnitude and wind direction. Numerical modeling indicates that the predominantly northeasterly wind direction in the fall and winter promotes southwest-directed sediment transport, causing erosion of the northern face of sandy shoals; southwesterly winds in the spring and summer lead to the opposite trend. Our results suggest that storm-induced estuarine bathymetric change magnitudes are often smaller than those detectable with methods such as LiDAR. More precise fixed-sensor methods have the ability to elucidate the geomorphic processes responsible for modulating estuarine bathymetry on the event and seasonal timescale, but are limited spatially. Numerical modeling enables interpretation of broad-scale geomorphic processes and can be used to infer the long-term trajectory of estuarine bathymetric change due to episodic events, when informed by fixed-sensor methods.

  10. Predicting geomorphic evolution through integration of numerical-model scenarios and topographic/bathymetric-survey updates

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Long, J.; Dalyander, S.; Thompson, D.; Miselis, J. L.

    2013-12-01

    Natural resource and hazard management of barrier islands requires an understanding of geomorphic changes associated with long-term processes and storms. Uncertainty exists in understanding how long-term processes interact with the geomorphic changes caused by storms and the resulting perturbations of the long-term evolution trajectories. We use high-resolution data sets to initialize and correct high-fidelity numerical simulations of oceanographic forcing and resulting barrier island evolution. We simulate two years of observed storms to determine the individual and cumulative impacts of these events. Results are separated into cross-shore and alongshore components of sediment transport and compared with observed topographic and bathymetric changes during these time periods. The discrete island change induced by these storms is integrated with previous knowledge of long-term net alongshore sediment transport to project island evolution. The approach has been developed and tested using data collected at the Chandeleur Island chain off the coast of Louisiana (USA). The simulation time period included impacts from tropical and winter storms, as well as a human-induced perturbation associated with construction of a sand berm along the island shoreline. The predictions and observations indicated that storm and long-term processes both contribute to the migration, lowering, and disintegration of the artificial berm and natural island. Further analysis will determine the relative importance of cross-shore and alongshore sediment transport processes and the dominant time scales that drive each of these processes and subsequent island morphologic response.

  11. Storm-Related Carbon Monoxide Poisoning: An Investigation of Target Audience Knowledge and Risk Behaviors.

    PubMed

    Damon, Scott A; Poehlman, Jon A; Rupert, Douglas J; Williams, Peyton N

    Carbon monoxide (CO) poisonings in the United States consistently occur when residents improperly use portable gasoline-powered generators and other tools following severe storms and power outages. However, protective behaviors-such as installing CO alarms and placing generators more than 20 feet away from indoor structures-can prevent these poisonings. This study identified knowledge, attitudes, and beliefs that lead consumers to adopt risk and protective behaviors for storm-related CO poisoning and post-storm generator use. Four focus groups (32 participants in total) were conducted with generator owners in winter and summer storm-prone areas to explore home safety, portable generator use, CO poisoning knowledge, and generator safety messages. Discussions were transcribed, and findings analyzed using an ordered meta-matrix approach. Although most generator owners were aware of CO poisoning, many were unsure what constitutes a safe location for generator operation and incorrectly stated that enclosed areas outside the home-such as attached garages, sheds, and covered porches-were safe. Convenience and access to appliances often dictated generator placement. Participants were receptive to installing CO alarms in their homes but were unsure where to place them. These findings suggest a deficit in understanding how to operate portable generators safely and a need to correct misconceptions around safe placement. In terms of behavioral price, the simple installation and maintenance of inexpensive CO alarms may be the most important strategy for ultimately protecting homes from both storm-related and other CO exposures.

  12. Storm-Related Carbon Monoxide Poisoning: An Investigation of Target Audience Knowledge and Risk Behaviors

    PubMed Central

    Damon, Scott A.; Poehlman, Jon A.; Rupert, Douglas J.; Williams, Peyton N.

    2015-01-01

    Carbon monoxide (CO) poisonings in the United States consistently occur when residents improperly use portable gasoline-powered generators and other tools following severe storms and power outages. However, protective behaviors—such as installing CO alarms and placing generators more than 20 feet away from indoor structures—can prevent these poisonings. This study identified knowledge, attitudes, and beliefs that lead consumers to adopt risk and protective behaviors for storm-related CO poisoning and post-storm generator use. Four focus groups (32 participants in total) were conducted with generator owners in winter and summer storm-prone areas to explore home safety, portable generator use, CO poisoning knowledge, and generator safety messages. Discussions were transcribed, and findings analyzed using an ordered meta-matrix approach. Although most generator owners were aware of CO poisoning, many were unsure what constitutes a safe location for generator operation and incorrectly stated that enclosed areas outside the home—such as attached garages, sheds, and covered porches—were safe. Convenience and access to appliances often dictated generator placement. Participants were receptive to installing CO alarms in their homes but were unsure where to place them. These findings suggest a deficit in understanding how to operate portable generators safely and a need to correct misconceptions around safe placement. In terms of behavioral price, the simple installation and maintenance of inexpensive CO alarms may be the most important strategy for ultimately protecting homes from both storm-related and other CO exposures. PMID:26345640

  13. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  14. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf.

    PubMed

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-07-28

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5-6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast.

  15. Observed Recent Trends in Tropical Cyclone Rainfall Over Major Ocean Basins

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Zhou, Y. P.

    2011-01-01

    In this study, we use Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Climatology Project (GPCP) rainfall data together with historical storm track records to examine the trend of tropical cyclone (TC) rainfall in major ocean basins during recent decades (1980-2007). We find that accumulated total rainfall along storm tracks for all tropical cyclones shows a weak positive trend over the whole tropics. However, total rainfall associated with weak storms, and intense storms (Category 4-5) both show significant positive trends, while total rainfall associated with intermediate storms (Category1-3) show a significant negative trend. Storm intensity defined as total rain produced per unit storm also shows increasing trend for all storm types. Basin-wide, from the first half (1980-1993) to the second half (1994-2007) of the data period, the North Atlantic shows the pronounced increase in TC number and TC rainfall while the Northeast Pacific shows a significant decrease in all storm types. Except for the Northeast Pacific, all other major basins (North Atlantic, Northwest Pacific, Southern Oceans, and Northern Indian Ocean) show a significant increase in total number and rainfall amount in Category 4-5 storms. Overall, trends in TC rainfall in different ocean basins are consistent with long-term changes in the ambient large-scale environment, including SST, vertical wind shear, sea level pressure, mid-tropospheric humidity, and Maximum Potential Intensity (MPI). Notably the pronounced positive (negative) trend of TC rainfall in the North Atlantic (Northeast Pacific) appears to be related to the most (least) rapid increase in SST and MPI, and the largest decrease (increase) in vertical wind shear in the region, relative to other ocean basins.

  16. Recent Atlantic Hurricanes, Pacific Super Typhoons, and Tropical Storm Awareness in Underdeveloped Island and Coastal Regions

    NASA Astrophysics Data System (ADS)

    Plondke, D. L.

    2017-12-01

    Hurricane Harvey was the first major hurricane to make landfall in the continental U.S. in 12 years. The next tropical storm in the 2017 Atlantic Hurricane Season was Hurricane Irma, a category 5 storm and the strongest storm to strike the U.S. mainland since Hurricane Wilma in 2005. These two storms were the third and fourth in a sequence of 10 consecutive storms to reach hurricane status in this season that ranks at least seventh among the most active seasons as measured by the Accumulate Cyclone Energy (ACE) index. Assessment of damage from Harvey may prove it to be the costliest storm in U.S. history, approaching $190 billion. Irma was the first category 5 hurricane to hit the Leeward Islands, devastating island environments including Puerto Rico, the Virgin Islands, Barbuda, Saint Barthelemy, and Anguilla with sustained winds reaching at times 185 mph. Together with the two super typhoons of the 2017 Pacific season, Noru and Lan, the two Atlantic hurricanes rank among the strongest, longest-lasting tropical cyclones on record. How many more billions of dollars will be expended in recovery and reconstruction efforts following future mega-disasters comparable to those of Hurricanes Harvey and Irma? Particularly on Caribbean and tropical Pacific islands with specialized and underdeveloped economies, aging and substandard infrastructure often cannot even partially mitigate against the impacts of major hurricanes. The most frequently used measurements of storm impact are insufficient to assess the economic impact. Analysis of the storm tracks and periods of greatest storm intensity of Hurricanes Harvey and Irma, and Super Typhoons Lan and Noru, in spatial relationship with island and coastal administrative regions, shows that rainfall totals, flooded area estimates, and property/infrastructure damage dollar estimates are all quantitative indicators of storm impact, but do not measure the costs that result from lack of storm preparedness and education of residents about the urgency of climate change mitigation. Lacking in most of the island and coastal environments where major storms occur and are likely to occur more frequently in the future are educational opportunities and public dissemination of information about climate change forecasts, storm impact mitigation, and emergency preparedness.

  17. Suomi NPP View of a Strong Midwest Cyclone

    NASA Image and Video Library

    2014-02-25

    A strong late-winter cyclone brought significant snows and blizzard conditions to the upper Great Lakes/northern Plains on 21 February 2014. In the warm sector of the storm, there were numerous reports of tornadoes, large hail, and damaging winds in the eastern US. Suomi NPP viewed the storm multiple times, including just before 1800 UTC on 21 February. Credit: NASA/Goddard/UWM/SSEC/CIMSS/Suomi NPP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved groundwater resource management, highway salt application practice, surface-water - ecosystem management, and decision making on highway drainage to ground. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A climatology of extratropical cyclones over East Asia during 1958-2001

    NASA Astrophysics Data System (ADS)

    Zhang, Yingxian; Ding, Yihui; Li, Qiaoping

    2012-06-01

    A climatology of extratropical cyclones (ECs) over East Asia (20°-75°N, 60°-160°E) is analyzed by applying an improved objective detection and tracking algorithm to the 4-time daily sea level pressure fields from the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis data. A total of 12914 EC processes for the period of 1958-2001 are identified, with an EC database integrated and EC activities reanalyzed using the objective algorithm. The results reveal that there are three major cyclogenesis regions: West Siberian Plain, Mongolia (to the south of Lake Baikal), and the coastal region of East China; whereas significant cyclolysis regions are observed in Siberia north of 60°N, Northeast China, and Okhotsk Sea-Northwest Pacific. It is found that the EC lifetime is largely 1-7 days while winter ECs have the shortest lifespan. The ECs are the weakest in summer among the four seasons. Strong ECs often appear in West Siberia, Northeast China, and Okhotsk Sea-Northwest Pacific. Statistical analysis based on k-means clustering has identified 6 dominating trajectories in the area south of 55°N and east of 80°E, among which 4 tracks have important impacts on weather/climate in China. ECs occurring in spring (summer) tend to travel the longest (shortest). They move the fastest in winter, and the slowest in summer. In winter, cyclones move fast in Northeast China, some areas of the Yangtze-Huaihe River region, and the south of Japan, with speed greater than 15 m s-1. Explosively-deepening cyclones are found to occur frequently along the east coast of China, Japan, and Northwest Pacific, but very few storms occur over the inland area. Bombs prefer to occur in winter, spring, and autumn. Their annual number and intensity in 1990 and 1992 in East Asia (EA) are smaller and weaker than their counterparts in North America.

  20. Millennial-scale records of North American Monsoon in time and space during the last glacial period: reconstructions from arid northern Mexico

    NASA Astrophysics Data System (ADS)

    Roy, P.; Quiroz-Jiménez, D.; Charles-Polo, M.; Lozano-Santacruz, R.

    2013-05-01

    The arid northern Mexico is part of the Sonora and Chihuahua Deserts and both the deserts belong to the North American Desert system. The North American Monsoon (NAM) or Mexican Monsoon refers to the system that brings summer precipitation to arid northern Mexico and southwestern USA. It contributes ca. 70-80% of total annual precipitation along the western slopes of the Sierra Madre Occidental (northern Mexico) and ca. 40-50% of total precipitation in Arizona and New Mexico (southwest USA). High-resolution geochemical data from lacustrine deposits located between 23°N and 31°N (paleolakes La Salada, Babicora and San Felipe) provide spatio-temporal and millennial-scale paleohydrological records related to the dynamics of summer precipitation as well as westerly winter storms over the last glacial period. The inverse relationship between proxy records of runoff into lacustrine basins of northern Mexico and winter precipitation over the southwestern USA indicate that the westerly winter storms had minimal influence south of 30°N and the paleohydrological changes are mainly summer precipitation controlled. The variation in summer season precipitation between 20 and 60 cal. kyr BP was driven by long term changes in summer insolation. During an interval of lower summer insolation (i.e. >60 cal. kyr BP), the higher summer precipitation could be related to the NAM expansion as a result of reduced north hemisphere ice sheets. On a millennial-scale, the region received more than average precipitation during the warm interstadials and vice versa.

  1. Effects of ENSO on weather-type frequencies and properties at New Orleans, Louisiana, USA

    USGS Publications Warehouse

    McCabe, G.J.; Muller, R.A.

    2002-01-01

    Examination of historical climate records indicates a significant relation between the El Nin??o/Southern Oscillation (ENSO) and seasonal temperature and precipitation in Louisiana. In this study, a 40 yr record of twice daily (06:00 and 15:00 h local time) weather types are used to study the effects of ENSO variability on the local climate at New Orleans, Louisiana. Tropical Pacific sea-surface temperatures (SSTs) for the NINO3.4 region are used to define ENSO events (i.e. El Nin??o and La Nin??a events), and daily precipitation and temperature data for New Orleans are used to define weather-type precipitation and temperature properties. Data for winters (December through February) 1962-2000 are analyzed. The 39 winters are divided into 3 categories; winters with NINO3.4 SST anomalies 1??C (El Nin??o events), and neutral conditions (all other years). For each category, weather-type frequencies and properties (i.e. precipitation and temperature) are determined and analyzed. Results indicate that El Nin??o events primarily affect precipitation characteristics of weather types at New Orleans, whereas the effects of La Nin??a events are most apparent in weather-type frequencies. During El Nin??o events, precipitation for some of the weather types is greater than during neutral and La Nin??a conditions and is related to increased water vapor transport from the Tropics to the Gulf of Mexico. The changes in weather-type frequencies during La Nin??a events are indicative of a northward shift in storm tracks and/or a decrease in storm frequency in southern Louisiana.

  2. The Role of Thermodynamic Processes in the Evolution of Single and Multi-banding within Winter Storms

    NASA Astrophysics Data System (ADS)

    Ganetis, Sara Anne

    Mesoscale precipitation bands within Northeast U.S. (NEUS) winter storms result in heterogeneous spatial and temporal snowfall. Several studies have provided analysis of snowbands focusing on larger, meso-beta scale bands with lengths (L) > 200 km known as single bands. NEUS winter storms can also exhibit multiple bands with meso-beta scale (L < 200 km) and similar spatial orientation and when ≥ 3 occur are termed multi-bands; however, the genesis and evolution of multi-bands is less well understood. Unlike single bands, there is no multi-bands climatological study. In addition, there has been little detailed thermodynamic analysis of snowbands. This dissertation utilizes radar observations, reanalyses, and high-resolution model simulations to explore the thermodynamic evolution of single and multi-bands. Bands are identified within 20 cool season (October-April) NEUS storms. The 110-case dataset was classified using a combination of automated and manual methods into: single band only (SINGLE), multi-bands only (MULTI), both single and multi-bands (BOTH), and non-banded (NONE). Multi-bands occur with the presence of a single band in 55.4% of times used in this study, without the presence of a single band 18.1% of the time, and precipitation exhibits no banded characteristics 23.8% of the time. Most MULTI events occur in the northeast quadrant of a developing cyclone poleward of weak-midlevel forcing along a warm front, whereas multi-bands associated with BOTH events mostly occur in the northwest quadrant of mature cyclones associated with strong mid-level frontogenesis and conditional symmetric instability. The non-banded precipitation associated with NONE events occur in the eastern quadrants of developing and mature cyclones lacking mid-level forcing to concentrate the precipitation into bands. A high-resolution mesoscale model is used to explore the evolution of single and multi-bands based on two case studies, one of a single band and one of multi-bands. The multi-bands form in response to intermittent mid-level frontogenetical forcing in a conditionally unstable environment. The bands within their genesis location southeast of the single band move northwest towards the single band by 700-hPa steering flow. This allows for the formation of new multi-bands within the genesis region, unlike the single band that remains fixed to a 700-hPa frontogenesis maximum. Latent heating within the band is shown to increase the intensity and duration of single and multi-bands through decreased geopotential height below the heating maximum that leads to increased convergence within the band.

  3. The disposition of snow caught by conifer crowns

    Treesearch

    Donald R. Satterlund; Harold F. Haupt

    1970-01-01

    Snow interception studies during the warm winters of 1966-1967 and 1967-1968 in northern Idaho revealed that Douglas fir and western white pine saplings caught about one third of the snow that fell in 22 storms. More than 80% of the snow initially caught in the crowns ultimately reached the ground being washed off by subsequent rain, falling by direct mass release, or...

  4. Ice on waterfowl markers

    USGS Publications Warehouse

    Greenwood, R.J.; Bair, W.C.

    1974-01-01

    Wild and captive giant Canada geese (Branta canadensis maxima) and captive mallards (Anas platyrhynchos) accumulated ice on neck collars and/or nasal saddles during winter storm periods in 1971 and 1972. Weather conditions associated with icing were documented, and characteristics of icing are discussed. Severe marker icing occurred during subfreezing weather when the windchill reached approximately -37 deg.C. Birds appeared able to de-ice nasal saddles in most instances.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Robert E.; Aster, Richard C.; Wiens, Douglas

    Seismographic coverage of Antarctica prior to 2007 consisted overwhelmingly of a handful of long running and sporadically deployed transient stations, many of which were principally collocated with scientific research stations. Thus, despite very cold temperatures, sunless winters, challenging logistics, and extreme storms, recent developments in polar instrumentation driven by new scientific objectives have opened up the entirety of Antarctica to year–round and continuous seismological observation (e.g., Nyblade et al., 2012).

  6. The effect of model resolution in predicting meteorological parameters used in fire danger rating.

    Treesearch

    Jeanne L. Hoadley; Ken Westrick; Sue A. Ferguson; Scott L. Goodrick; Larry Bradshaw; Paul Werth

    2004-01-01

    Previous studies of model performance at varying resolutions have focused on winter storms or isolated convective events. Little attention has been given to the static high pressure situations that may lead to severe wildfire outbreaks. This study focuses on such an event so as to evaluate the value of increased model resolution for prediction of fire danger. The...

  7. A toy climate model for Mars

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2014-11-01

    A "toy climate model" TCM was constructed for Mars. It returns the midday surface and near-surface air temperatures, given the orbital parameters, season (Ls), latitude, thermal inertia, albedo, surface pressure and dust visible optical depth (τ). The TCM is based on the surface energy balance with radiation terms calibrated against line-by-line calculations and surface heat flux terms against 1D model simulations. The TCM air temperatures match various lander observations reasonably well, e.g. the 3.4 martian years of recovered T1.6m from Viking Lander 1. The results demonstrate strong sensitivity of Ts and T1.6m to the dust load. All the VL1 years suggest major dust storms around Ls 270-300°, while τ appears only moderate in the simultaneous VL2 observations. The TCM was further extended to increased surface pressures, using moist 1D simulations. The greenhouse warming remained modest and the diurnal range was small in a thick CO2 atmosphere. As the CO2 condensation temperature Tc increases rapidly with pressure, the range of afternoon temperatures at various latitudes remains quite narrow in a thick atmosphere. The TCM can also deal with orbital parameter variations. A high-eccentricity, high-obliquity case was demonstrated for the present 7 mb (Tc 150 K) and a 1 bar CO2 atmosphere (Tc 195 K). High obliquity of 45° led to quite wide winter polar ice caps, which extended down to the subtropics. In the 1 bar case even the equatorial Ts was close to Tc at aphelion; a major dust storm at that time led to a tropical CO2 ice cover.

  8. [Diagnosis and treatment of thyroid storm].

    PubMed

    Akamizu, Takashi

    2012-11-01

    Thyrotoxic storm is a life-threatening condition requiring emergency treatment. Neither its epidemiological data nor diagnostic criteria have been fully established. We clarified the clinical and epidemiological characteristics of thyroid storm using nationwide surveys and then formulate diagnostic criteria for thyroid storm. To perform the nationwide survey on thyroid storm, we first developed tentative diagnostic criteria for thyroid storm, mainly based upon the literature (the first edition). We analyzed the relationship of the major features of thyroid storm to mortality and to certain other features. Finally, based upon the findings of these surveys, we revised the diagnostic criteria. Thyrotoxic storm is still a life-threatening disorder with over 10% mortality in Japan.

  9. Influence of storm characteristics on soil erosion and storm runoff

    Treesearch

    Johnny M. III Grace

    2008-01-01

    Unpaved forest roads can be major sources of sediment from forested watersheds. Storm runoff from forest roads are a concern due to their potential delivery of sediments and nutrients to stream systems resulting in degraded water quality. The volume and sediment concentrations of stormwater runoff emanating from forest roads can be greatly influenced by storm...

  10. The timing and location of spawning for the Euphausiid Thysanoessa spinifera off the Oregon coast, USA

    NASA Astrophysics Data System (ADS)

    Feinberg, Leah R.; Peterson, William T.; Tracy Shaw, C.

    2010-04-01

    Thysanoessa spinifera eggs were sampled biweekly from 1997-2005 along a transect extending off the coast of Newport, OR, USA. T. spinifera eggs were typically found in greatest abundance at NH05, our shallower mid-shelf station, and in lowest abundance at NH25, our offshore, deep-water station beyond the shelf break. In most years small peaks in density of T. spinifera eggs were found in late winter (February-March) and/or spring (April-May) along with large, prolonged peaks in summer, from July-September. However, it was more common to find egg densities of <1 m -3 or to find no eggs at all (58-91% of sampling dates per year had densities <1 m -3 at NH05). We found that egg densities were significantly positively correlated with chlorophyll a concentrations during the winter and spring ( r2=0.52 and 0.55 respectively, p<0.001), but not during summer. We did not find a significant correlation between egg densities and female densities. When winters were stormy, as in 1998, 1999 and 2000 the first eggs of Thysanoessa spinifera were not observed at any station until after upwelling was initiated later in the spring. However, in other years eggs were likely to be found earlier in the year if there were fewer storms, or winter or spring upwelling events that were not followed by a large storm. In most years, spawning continued until the upwelling season ended in the autumn, however this trend ceased in 2003-2005 and spawning was interrupted earlier in the season. Overall, we found that chlorophyll a peaks and egg peaks increased in magnitude in the later part of our study. We have concluded that T. spinifera is likely an intermittent spawner, whose ovaries are not constantly mature and prepared for spawning, despite the presence of ocean conditions that are suitable for spawning.

  11. Variations in sediment texture on the northern Monterey Bay National Marine Sanctuary continental shelf

    USGS Publications Warehouse

    Edwards, B.D.

    2002-01-01

    The storm-protected continental shelf of Monterey Bay, part of the Monterey Bay National Marine Sanctuary, north-central California, is subject to abundant, episodic sediment input from fluvial sources. North of Monterey Bay, conditions of reduced sediment supply combined with the exposed nature of the shelf provide an effective laboratory for studying the contrasting effects of storm- versus fluvial-dominated conditions on modern sedimentation. Textural analyses performed on surface sediment samples collected from more than 380 box cores and MultiCores??? document the existence of a clearly defined mud belt occupying the mid-shelf throughout the region. Inshore sands combined with these mid-shelf muds represent deposits from modern sedimentation processes. In Monterey Bay, where episodic fluvial input from winter storms dominates sedimentation, the mid-shelf mud belt extends across the shelf to the shelf break. North of Monterey Bay, where sediment loads are reduced and both oceanographic and storm processes dominate, the mid-shelf mud belt is bordered by relict sediments occupying the outer shelf. In the study area, mass accumulation rates established by radiochemical studies support the contention that storm-induced along-shelf processes result in northward transport of sediment within the mud belt. The continuity of transport, however, is interrupted by topographic highs which are barriers or inhibitors to sediment transport created by wrench-style tectonics associated with the San Andreas fault system.

  12. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  13. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    NASA Astrophysics Data System (ADS)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by comparing the spatial pattern of predicted wind stress lifting with a catalog of observed local storms. Better agreement is achieved in the radiatively active cloud case. These results suggest that wind stress lifting may contribute more to maintaining the background dust haze during NH spring and summer than what previous studies have shown.

  14. Hemispheric Asymmetries of Magnetosphere-Ionosphere-Thermosphere Dynamics

    NASA Astrophysics Data System (ADS)

    Perlongo, Nicholas James

    The geospace environment, comprised of the magnetosphere-ionosphere-thermosphere system, is a highly variable and non-linearly coupled region. The dynamics of the system are driven primarily by electromagnetic and particle radiation emanating from the Sun that occasionally intensify into what are known as solar storms. Understanding the interaction of these storms with the near Earth space environment is essential for predicting and mitigating the risks associated with space weather that can irreparably damage spacecraft, harm astronauts, disrupt radio and GPS communications, and even cause widespread power outages. The geo-effectiveness of solar storms has hemispheric, seasonal, local time, universal time, and latitudinal dependencies. This dissertation investigates those dependencies through a series of four concentrated modeling efforts. The first study focuses on how variations in the solar wind electric field impact the thermosphere at different times of the day. Idealized simulations using the Global Ionosphere Thermosphere Model (GITM) revealed that perturbations in thermospheric temperature and density were greater when the universal time of storm onset was such that the geomagnetic pole was pointed more towards the sun. This universal time effect was greater in the southern hemisphere where the offset of the geomagnetic pole is larger. The second study presents a model validation effort using GITM and the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIE-GCM) compared to GPS Total Electron Content (TEC) observations. The results were divided into seasonal, regional, and local time bins finding that the models performed best near the poles and on the dayside. Diffuse aurora created by electron loss in the inner magnetosphere is an important input to GITM that has primarily been modeled using empirical relationships. In the third study, this was addressed by developing the Hot Election Ion Drift Integrator (HEIDI) ring current model to include a self-consistent description of the aurora and electric field. The model was then coupled to GITM, allowing for a more physical aurora. Using this new configuration in the fourth study, the ill-constrained electron scattering rate was shown to have a large impact on auroral results. This model was applied to simulate a geomagnetic storm during each solstice. The hemispheric asymmetry and seasonal dependence of the storm-time TEC was investigated, finding that northern hemisphere winter storms are most geo-effective when the North American sector is on the dayside. Overall, the research presented in this thesis strives to accomplish two major goals. First, it describes an advancement of a numerical model of the ring current that can be further developed and used to improve our understanding of the interactions between the ionosphere and magnetosphere. Second, the time and spatial dependencies of the geospace response to solar forcing were discovered through a series of modeling efforts. Despite these advancements, there are still numerous open questions, which are also discussed.

  15. Estuarine response in northeastern Florida Bay to major hurricanes in 2005: Chapter 6I in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Woods, Jeff; Zucker, Mark

    2007-01-01

    Hurricanes and tropical storms are critical components of the south Florida hydrologic cycle. These storms cause dramatic and often rapid changes in water level of, salinity of, and discharge into northeastern Florida Bay as well as into adjacent marine estuaries. During 2005, two major hurricanes (Katrina and Wilma) crossed the southern estuaries of the Everglades and had substantial impacts on hydrologic conditions.

  16. CONTROLLING EXCESS STORM WATER RUNOFF WITH TRADABLE CREDITS

    EPA Science Inventory

    Development that increases the impervious surface in a watershed causes excess storm water runoff (SWR) that has been identified as a major contributor to stream and riparian habitat degradation. Reduction of storm water runoff can be achieved through establishment of a number of...

  17. Dissolved oxygen in the Tualatin River, Oregon, during winter flow conditions, 1991 and 1992

    USGS Publications Warehouse

    Kelly, V.J.

    1996-01-01

    Throughout the winter period, November through April, wastewater treatment plants in the Tualatin River Basin discharge from 10,000 to 15,000 pounds per day of biochemical oxygen demand to the river. These loads often increase substantially during storms when streamflow is high. During the early winter season, when streamflow is frequently less than the average winter flow, the treatment plants discharge about 2,000 pounds per day of ammonia. This study focused on the capacity of the Tualatin River to assimilat oxygen-demanding loads under winter streamflow conditions during the 1992 water year, with an emphasis on peak-flow conditions in the river, and winter-base-flow conditions during November 1992. Concentrations of dissolved oxygen throughout the main stem of the river during the winter remained generally high relative to the State standard for Oregon of 6 milligrams per liter. The most important factors controlling oxygen consumption during winter-low-flow conditions were carbonaceous biochemical oxygen demand and input of oxygen-depleted waters from tributaries. During peak-flow conditions, reduced travel time and increased dilution associated with the increased streamflow minimized the effect of increased oxygen-demanding loads. During the base-flow period in November 1992, concentrations of dissolved oxygen were consistently below 6 milligrams per liter. A hydrodynamic water-quality model was used to identify the processes depleting dissolved oxygen, including sediment oxygen demand, nitrification, and carbonaceous biochemical oxygen demand. Sediment oxygen demand was the most significant factor; nitrification was also important. Hypothetical scenarios were posed to evaluate the effect of different wastewater treatment plant loads during winter-base-flow conditions. Streamflow and temperature were significant factors governing concentrations of dissolved oxygen in the main-stem river.

  18. A statistical model of extreme storm rainfall

    NASA Astrophysics Data System (ADS)

    Smith, James A.; Karr, Alan F.

    1990-02-01

    A model of storm rainfall is developed for the central Appalachian region of the United States. The model represents the temporal occurrence of major storms and, for a given storm, the spatial distribution of storm rainfall. Spatial inhomogeneities of storm rainfall and temporal inhomogeneities of the storm occurrence process are explicitly represented. The model is used for estimating recurrence intervals of extreme storms. The parameter estimation procedure developed for the model is based on the substitution principle (method of moments) and requires data from a network of rain gages. The model is applied to a 5000 mi2 (12,950 km2) region in the Valley and Ridge Province of Virginia and West Virginia.

  19. Rainfall and Erosion Response Following a Southern California Wildfire

    NASA Astrophysics Data System (ADS)

    Wohlgemuth, P. M.; Robichaud, P. R.; Brown, R. E.

    2011-12-01

    Wildfire renders landscapes susceptible to flooding and accelerated surface erosion. Consumption of the vegetation canopy and the litter or duff layer removes resistances to the agents of erosion. Moreover, changes in soil properties can restrict infiltration, increasing the effectiveness of the driving forces of rainsplash and surface runoff. However, it is unclear whether surface erosion varies linearly with rainfall amounts and intensities or if thresholds exist beyond which erosion increases in a different trajectory. The Santiago Fire burned over 11000 ha in northeastern Orange County, California in October 2007. The burn area consists of a deeply dissected mountain block underlain by sedimentary and metamorphic rocks that produce erosive soils. Regional erosion and sediment transport is triggered by winter cyclonic storms. Recording raingages were deployed across a vertical gradient within the burned area and silt fences were constructed to monitor hillslope erosion. During the study period initial storms were characterized by moderate rainfall (amounts less than 25 mm with peak 10-minute intensities of less than 10 mm per hr). Surface erosion was concomitantly minor, less than 0.4 Mg per ha. However, an unusual thunderstorm in late May 2008 produced spatially variable rainfall and consequent surface erosion across the study area. The raingage at a lower elevation site measured 41.4 mm of rain for this storm with a peak 10-minute intensity of 81 mm per hr. The silt fences were overtopped, yielding a minimum value of 18.5 Mg per ha. In contrast, the raingage at an upper elevation site recorded 19.6 mm of rain with a peak 10-minute intensity of 50 mm per hr. Surface erosion in the higher elevation sites was negligible (0.1 Mg per ha). Subsequently, individual storms exceeded 100 mm of rainfall but peak 10-minute intensities never approached those of the May thunderstorm. Erosion was moderate (mostly less than 5 Mg per ha), albeit influenced by the presence of regrowing vegetation. We therefore believe that surface erosion in the immediate postfire environment is more related to storm intensity than rainfall amount. Even allowing for site-to-site differences and site changes over the first postfire winter season, it is clear that some threshold in erosion response was crossed at the lower elevation sites during the May 2008 thunderstorm. We suggest that this represents a threshold of peak 10-minute intensity of between 50 and 80 mm per hr.

  20. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease.

  1. Long-term variability in Northern Hemisphere snow cover and associations with warmer winters

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2010-01-01

    A monthly snow accumulation and melt model is used with gridded monthly temperature and precipitation data for the Northern Hemisphere to generate time series of March snow-covered area (SCA) for the period 1905 through 2002. The time series of estimated SCA for March is verified by comparison with previously published time series of SCA for the Northern Hemisphere. The time series of estimated Northern Hemisphere March SCA shows a substantial decrease since about 1970, and this decrease corresponds to an increase in mean winter Northern Hemisphere temperature. The increase in winter temperature has caused a decrease in the fraction of precipitation that occurs as snow and an increase in snowmelt for some parts of the Northern Hemisphere, particularly the mid-latitudes, thus reducing snow packs and March SCA. In addition, the increase in winter temperature and the decreases in SCA appear to be associated with a contraction of the circumpolar vortex and a poleward movement of storm tracks, resulting in decreased precipitation (and snow) in the low- to mid-latitudes and an increase in precipitation (and snow) in high latitudes. If Northern Hemisphere winter temperatures continue to warm as they have since the 1970s, then March SCA will likely continue to decrease. ?? 2009 Springer Science+Business Media B.V.

  2. Airborne laser study quantifies El Niño-induced coastal change

    USGS Publications Warehouse

    Sallenger, Asbury H.; Krabill, William; Brock, John H.; Swift, Robert; Jansen, Mark; Manizade, Serdar; Richmond, Bruce; Hampton, Monty; Eslinger, David

    1999-01-01

    Winter storms during the 1997–1998 El Niño caused extensive changes to the beaches and cliffs of the west coast of the United States, a NASA-NOAA-USGS investigation using a scanning airborne laser has found. For example, near Pacifica in central California, the cliff eroded locally as much as 10–13 m landward during the El Niño winter, at least 40 times the long term average erosion rate. However, only several hundred meters away the cliff was stable. This variability in cliff response may be related to differences in local beach changes where an accreting beach protected part of the cliff and an eroding beach exposed another part to attack by waves.

  3. Large-scale environmental influences on the benthic macroinfauna of the southern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Hernández-Arana, Hector A.; Rowden, Ashley A.; Attrill, Martin J.; Warwick, Richard M.; Gold-Bouchot, Gerardo

    2003-12-01

    The influence of large-scale natural disturbance from winter storms ('northers') and river runoff on the macrobenthic community structure of the southern Gulf of Mexico was investigated in both carbonate and transitional carbonate-terrigenous sedimentary environments. Samples of the infauna were obtained in three seasons from 13 stations from two 250 km transects along 80-170 and 20-50 m water depth. Samples after the northers season had the lowest total number of families and individuals, 114 and 2940, respectively, compared to the dry and rainy seasons with 129 and 132 families and 11580 and 15266 individuals, respectively. Spatial patterns of macroinfauna composition varied across and along the shelf as a response to sedimentary environments and depth. Coarser sediments from the carbonate area harboured the highest mean densities per station with 500-24,000 individuals m -2 and 108-122 families in total, compared to the transitional sediment with 500-8200 individuals m -2 and 56-74 families across the three seasons. Univariate and multivariate statistical techniques demonstrated that low densities and number of taxa were associated with winter storms, but storm influence was dependent on depth and sediment type. Multiple linear regression analysis and BIOENV analysis indicated that sediment mean grain size, percentage of clay and organic matter best explained the macroinfauna spatial patterns, although BIOENV indicated that depth has an overriding role. An increase in densities of opportunistic taxa (numerous polychaetes of small sizes) was observed four months after the 'northers' and this was more evident in the area of carbonate sediment. Additionally a combined disturbance from northers and river runoff is suspected to be responsible for a naturally impoverished macroinfauna community in the transitional sedimentary environment.

  4. Influence of Kuroshio Oceanic Eddies on North Pacific Weather Patterns

    NASA Astrophysics Data System (ADS)

    Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J. S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z.

    2016-02-01

    High-resolution satellite observations reveal energetic meso-scale ocean eddy activity and positive correlation between meso-scale sea surface temperature (SST) and surface wind along oceanic frontal zones, such as the Kuroshio and Gulf Stream, suggesting a potential role of meso-scale oceanic eddies in forcing the atmosphere. Using a 27 km horizontal resolution Weather Research Forecasting (WRF) model forced with observed daily SST at 0.09° spatial resolution during boreal winter season, two ensembles of 10 WRF simulations, in one of which meso-scale SST variability induced by ocean eddies was suppressed, were conducted in the North Pacific to study the local and remote influence of meso-scale oceanic eddies in the Kuroshio Extention Region (KER) on the atmosphere. Suppression of meso-scale oceanic eddies results in a deep tropospheric response along and downstream of the KER, including a significant decrease (increase) in winter season mean rainfall along the KER (west coast of US), a reduction of storm genesis in the KER, and a southward shift of the jet stream and North Pacific storm track in the eastern North Pacific. The simulated local and remote rainfall response to meso-scale oceanic eddies in the KER is also supported by observational analysis. A mechanism invoking moist baroclinic instability is proposed as a plausible explanation for the linkage between meso-scale oceanic eddies in the KER and large-scale atmospheric response in the North Pacific. It is argued that meso-scale oceanic eddies can have a rectified effect on planetary boundary layer moisture, the stability of the lower atmosphere and latent heat release, which in turn affect cyclogenesis. The accumulated effect of the altered storm development downstream further contributes to the equivalent barotropic mean flow change in the eastern North Pacific basin.

  5. Atmospheric chloride: Its implication for foliar uptake and damage

    NASA Astrophysics Data System (ADS)

    McWilliams, E. L.; Sealy, R. L.

    Atmospheric chloride is inversely related to distance from the Texas coast; r2 = 0.86. Levels of atmospheric chloride are higher in the early summer than in the winter because of salt storms. Leaf chloride l'evels of Tillandsia usneoides L. (Spanish moss) reflect the atmospheric chloride levels; r2 = 0.78. The importance of considering the effect of atmospheric chloride on leaf damage to horticultural crops is discussed.

  6. The seismic noise environment of Antarctica

    DOE PAGES

    Anthony, Robert E.; Aster, Richard C.; Wiens, Douglas; ...

    2014-11-26

    Seismographic coverage of Antarctica prior to 2007 consisted overwhelmingly of a handful of long running and sporadically deployed transient stations, many of which were principally collocated with scientific research stations. Thus, despite very cold temperatures, sunless winters, challenging logistics, and extreme storms, recent developments in polar instrumentation driven by new scientific objectives have opened up the entirety of Antarctica to year–round and continuous seismological observation (e.g., Nyblade et al., 2012).

  7. Teaching and learning in a winter wonderland.

    PubMed

    Tucker, Cheryl A; Bradshaw, Martha J; Ketcham, Nan

    2013-01-01

    During a record-breaking Texas ice storm, one school of nursing kept accelerated BSN students on schedule despite 5 days of school closure. The students were diverted from hazardous travels to the safety of warm homes with virtual classes and clinicals. The authors discuss their creation of a virtual experience that leveraged smartphones, laptops, eBooks, and Internet resources with existing university technology, allowing students to stay on track.

  8. Dissolved Organic Matter Compositional Change and Biolability During Two Storm Runoff Events in a Small Agricultural Watershed

    NASA Astrophysics Data System (ADS)

    Eckard, Robert S.; Pellerin, Brian A.; Bergamaschi, Brian A.; Bachand, Philip A. M.; Bachand, Sandra M.; Spencer, Robert G. M.; Hernes, Peter J.

    2017-10-01

    Agricultural watersheds are globally pervasive, supporting fundamentally different organic matter source, composition, and concentration profiles in comparison to natural systems. Similar to natural systems, agricultural storm runoff exports large amounts of organic carbon from agricultural land into waterways. But intense management of upper soil layers, waterway channelization, wetland and riparian habitat removal, and postharvest vegetation removal promise to uniquely drive organic matter release to waterways. During a winter first flush and a subsequent storm event, this study investigated the influence of a small agricultural watershed on dissolved organic matter (DOM) source, composition, and biolability. Storm water discharge released strongly terrestrial yet biolabile (23 to 32%) dissolved organic carbon (DOC). Following a 21 day bioassay, a parallel factor analysis identified an 80% reduction in a protein-like (phenylpropyl) component (C2) that was previously correlated to lignin phenol concentration, and a 10% reduction in a humic-like, terrestrially sourced component (C4). Storm-driven releases tripled DOC concentration (from 2.8 to 8.7 mg L-1) during the first flush event in comparison to base flow and were terrestrially sourced, with an eightfold increase in vascular plant derived lignin phenols (23.0 to 185 μg L-1). As inferred from system hydrology, lignin composition, and nitrate as a groundwater tracer, an initial pulse of dilute water from the upstream watershed caused a counterclockwise DOC hysteresis loop. DOC concentrations peaked after 3.5 days, with the delay between peak discharge and peak DOC attributed to storm water hydrology and a period of initial water repellency of agricultural soils, which delayed DOM leaching.

  9. Identifying long term empirical relationships between storm characteristics and episodic groundwater recharge

    USGS Publications Warehouse

    Tashie, Arik; Mirus, Benjamin B.; Pavelsky, Tamlin

    2016-01-01

    Shallow aquifers are an important source of water resources and provide base flow to streams; yet actual rates of groundwater recharge are difficult to estimate. While climate change is predicted to increase the frequency and magnitude of extreme precipitation events, the resulting impact on groundwater recharge remains poorly understood. We quantify empirical relations between precipitation characteristics and episodic groundwater recharge for a wide variety of geographic and land use types across North Carolina. We extract storm duration, magnitude, average rate, and hourly weighted intensity from long-term precipitation records over periods of 12–35 years at 10 locations. Using time series of water table fluctuations from nearby monitoring wells, we estimate relative recharge to precipitation ratios (RPR) to identify statistical trends. Increased RPR correlates with increased storm duration, whereas RPR decreases with increasing magnitude, average rate, and intensity of precipitation. Agricultural and urban areas exhibit the greatest decrease in RPR due to increasing storm magnitude, average rate, and intensity, while naturally vegetated areas exhibit a larger increase in RPR with increased storm duration. Though RPR is generally higher during the winter than the summer, this seasonal effect is magnified in the Appalachian and Piedmont regions. These statistical trends provide valuable insights into the likely consequences of climate and land use change for water resources in subtropical climates. If, as predicted, growing seasons lengthen and the intensity of storms increases with a warming climate, decreased recharge in Appalachia, the Piedmont, and rapidly growing urban areas of the American Southeast could further limit groundwater availability.

  10. Particulate Organic Matter Composition in Stream Runoff Following Large Storms: Role of POM Sources, Particle Size, and Event Characteristics

    NASA Astrophysics Data System (ADS)

    Johnson, Erin R.; Inamdar, Shreeram; Kan, Jinjun; Vargas, Rodrigo

    2018-02-01

    Large storm events possess significant erosive energy capable of mobilizing large amounts of sediment and particulate organic matter (POM) into fluvial systems. This study investigated how stream POM composition varied as a function of the watershed POM source, particle size, storm event magnitude, and seasonal timing. POM composition was characterized for multiple watershed sources and for stream POM following storms in a second-order forested stream. Carbon (C) and nitrogen (N) amount, C:N ratio and isotopic content (13C and 15N) were determined for solid phase POM, whereas dissolved organic C, total N concentrations, and fluorescence characteristics were determined for solution/extracted POM. Key findings from this study were the following: (1) Composition of POM varied greatly with watershed sources with forest floor litter being C and N rich and labile, while stream banks and bed were C and N poor and recalcitrant. (2) Summer storms mobilized more carbon and nitrogen-rich labile sources, while winter events mobilized more carbon- and nitrogen-poor refractory material from near-stream sources. (3) POM composition varied by size class, with the coarse POM showing more C and N rich and labile properties, while the fine POM displayed more degraded and refractory properties. If climate variability increases the magnitude and intensity of large storm events, our observations suggest that this will not only increase the inputs of POM to aquatic systems but also result in the delivery of coarser, C and N rich, and more bioavailable POM to the stream drainage network.

  11. Reducing microbial contamination in storm runoff from high use areas on California coastal dairies.

    PubMed

    Lewis, D J; Atwill, E R; Lennox, M S; Pereira, M D G; Miller, W A; Conrad, P A; Tate, K W

    2009-01-01

    High use areas are a fundamental part of California coastal dairies and grazing livestock ranches as feeding areas, nurseries, and sick pens. High stocking densities and daily use in these areas lead to soil surfaces devoid of vegetation and covered in manure, with high potential for manure transport during winter rains to receiving waters regulated for shellfish harvesting and recreation. We characterized the association between California's Mediterranean climate and a series of existing and proposed management practices on fecal coliform bacteria (FCB) transport from high use areas on dairies and ranches. Results from 351 storm runoff samples collected below 35 high-use areas indicate that removal of cattle during winter, locating high use areas on level ground, application of straw and seeding, and vegetative buffer strip implementation were significantly associated with FCB concentration and load reductions. These results complement our findings for reductions of specific pathogens in runoff from these areas. These findings have practical significance because they document surface water quality benefits that the studied management practices provide in application on working farms and ranches. This direction is critical and timely for on-farm management efforts seeking to reduce microbial pollution in runoff and comply with indicator bacteria water quality criteria.

  12. Stormwater input of pyrethroid insecticides to an urban river.

    PubMed

    Weston, Donald P; Lydy, Michael J

    2012-07-01

    The American River flows for nearly 50 km through highly urbanized lands surrounding Sacramento, California, USA. Twenty-three streams, drainage canals, or pumping stations discharge urban runoff to the river, with the cumulative effect of nearly doubling the river's flow during rain events. During winter storms, the water column in the most downstream 13-km reach of the river exhibited toxicity to the standard testing species, Hyalella azteca, in 52% of samples, likely because of the pyrethroid insecticide bifenthrin. The compound is heavily used by professional pest controllers, either as a liquid perimeter treatment around homes or as granules broadcast over landscaped areas. It was found in 11 of 12 runoff sources examined, at concentrations averaging five times the H. azteca 96-h EC50. Quantified inputs of bifenthrin should have been sufficient to attain peak concentrations in the river twice those actually observed, suggesting loss by sedimentation of particulates and pesticide adsorption to the substrate and/or vegetation. Nevertheless, observed bifenthrin concentrations in the river were sufficient to cause water column toxicity, demonstrated during six storms studied over three successive winters. Toxicity and bifenthrin concentrations were greatest when river flow was low (<23 m(3) /s) but persisted even at atypically high flows (585 m(3) /s). Copyright © 2012 SETAC.

  13. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, L. R.; Prather, K.; Ralph, R.

    The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the large precipitation variability and extremes in the western U.S. is a critical test for the ability of climate models to predict the regional water cycle, including floods and droughts. Two elements of significant importance in predicting precipitation variability in the western U.S. are atmospheric rivers and aerosols. Atmospheric rivers (ARs) are narrow bands of enhanced water vapor associatedmore » with the warm sector of extratropical cyclones over the Pacific and Atlantic oceans. Because of the large lower-tropospheric water vapor content, strong atmospheric winds and neutral moist static stability, some ARs can produce heavy precipitation by orographic enhancement during landfall on the U.S. West Coast. While ARs are responsible for a large fraction of heavy precipitation in that region during winter, much of the rest of the orographic precipitation occurs in post-frontal clouds, which are typically quite shallow, with tops just high enough to pass the mountain barrier. Such clouds are inherently quite susceptible to aerosol effects on both warm rain and ice precipitation-forming processes.« less

  14. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  15. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  16. 33 CFR 203.32 - Policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Prior to, during, or immediately following flood or coastal storm activity, emergency operations may be... waters recede below bankfull, absent a short term threat (e.g., a significant storm front expected to... Corps assistance. Corps assistance will be limited to major floods or coastal storm disasters resulting...

  17. Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf

    PubMed Central

    Mori, Nobuhito; Kato, Masaya; Kim, Sooyoul; Mase, Hajime; Shibutani, Yoko; Takemi, Tetsuya; Tsuboki, Kazuhisa; Yasuda, Tomohiro

    2014-01-01

    Typhoon Haiyan, which struck the Philippines in November 2013, was an extremely intense tropical cyclone that had a catastrophic impact. The minimum central pressure of Typhoon Haiyan was 895 hPa, making it the strongest typhoon to make landfall on a major island in the western North Pacific Ocean. The characteristics of Typhoon Haiyan and its related storm surge are estimated by numerical experiments using numerical weather prediction models and a storm surge model. Based on the analysis of best hindcast results, the storm surge level was 5–6 m and local amplification of water surface elevation due to seiche was found to be significant inside Leyte Gulf. The numerical experiments show the coherent structure of the storm surge profile due to the specific bathymetry of Leyte Gulf and the Philippines Trench as a major contributor to the disaster in Tacloban. The numerical results also indicated the sensitivity of storm surge forecast. PMID:25821268

  18. Long-term variability of dust optical depths on Mars during MY24-MY32 and their impact on subtropical lower ionosphere: Climatology, modeling, and observations

    NASA Astrophysics Data System (ADS)

    Sheel, Varun; Haider, S. A.

    2016-08-01

    Dust optical depths (τ) for nine Martian years (MY24-MY32) in the subtropical region (25-35°S) have been used to classify distinct dust scenarios. These data are based on observations at 9.3 µm from the Mars Global Surveyor and Mars Odyssey missions and encompass the regional dust storms which occur every year around solar longitude (Ls) ~ 220° and the two major dust storms of MY25 and MY28. Constrained by these observations and the Mars Climate Sounder observations of detached dust layers, we estimate altitude profiles of dust concentrations. We discuss the characteristics of dust aerosol particles of different size between 0.2 and 3.0 µm by assuming a modified gamma distribution. We then use a comprehensive ion-dust model to calculate ion densities and conductivities in the lower ionosphere of Mars in the absence of dust storm at τ = 0.1 and Ls = 150° and for three dust storm periods viz., (1) major dust storm at τ = 1.7 and Ls = 210°, (2) major dust storm at τ = 1.2 and Ls = 280°, and (3) regional dust storm at τ = 0.5 and Ls = 220°. The model with 12 neutral species considers galactic cosmic rays as a source of ionization. Results show that the density of the dominant hydrated cluster ions and the electrical conductivity are reduced by an order of magnitude near the surface for a few months until the dust storm settles down to its normal condition.

  19. Effect of urban stormwater runoff on ground water beneath recharge basins on Long Island, New York

    USGS Publications Warehouse

    Ku, H.F.; Simmons, D.L.

    1986-01-01

    Urban stormwater runoff was monitored during 1980-82 to investigate the source, type, quantity, and fate of contaminants routed to the more than 3,000 recharge basins on Long Island and to determine whether this runoff might be a significant source of contamination to the groundwater reservoir. Forty-six storms were monitored at five recharge basins in representative land use areas (strip commercial, shopping-mall parking lot, major highway, low-density residential, and medium-density residential). Runoff:precipitation ratios indicate that all storm runoff is derived from precipitation on impervious surfaces in the drainage area, except during storms of high intensity or long duration, when additional runoff can be derived from precipitation on permeable surfaces. Lead was present in highway runoff in concentrations up to 3300 micrograms/L, and chloride was found in parking lot runoff concentrations up to 1,100 mg/L during winter, when salt is used for deicing. In the five composite stormwater samples and nine groundwater grab samples that were analyzed for 113 EPA-designated ' priority pollutants, ' four constituents were detected in concentrations exceeding New York State guidelines of 50 micrograms/L for an individual organic compound in drinking water: p-chloro-m-cresol (79 micrograms/L); 2 ,4-dimethylphenol (96 micrograms/L); 4-nitrophenol (58 micrograms/L); and methylene chloride (230 micrograms/L in either groundwater or stormwater at the highway basin). One stormwater sample and two groundwater samples exceeded New York State guidelines for total organic compounds in drinking water (100 micrograms/L). The presence of these constituents is attributed to contamination from point sources rather than to the quality of runoff from urban areas. The median number of indicator bacteria in stormwater ranged from 0.1 to 10 billion MPN/100 ml. Fecal coliforms and fecal streptococci increased by 1 to 2 orders of magnitude during the warm season. The use of recharge basins to dispose of storm runoff does not appear to have significant adverse effects on groundwater quality in terms of the chemical and microbiological stormwater constituents studied. (Author 's abstract)

  20. Assessment of landscape change associated with tropical cyclone phenomena in Baja California Sur, Mexico, using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Martinez-Gutierrez, Genaro

    Baja California Sur (Mexico), as well as mainland Mexico, is affected by tropical cyclone storms, which originate in the eastern north Pacific. Historical records show that Baja has been damaged by intense summer storms. An arid to semiarid climate characterizes the study area, where precipitation mainly occurs during the summer and winter seasons. Natural and anthropogenic changes have impacted the landscape of southern Baja. The present research documents the effects of tropical storms over the southern region of Baja California for a period of approximately twenty-six years. The goal of the research is to demonstrate how remote sensing can be used to detect the important effects of tropical storms including: (a) evaluation of change detection algorithms, and (b) delineating changes to the landscape including coastal modification, fluvial erosion and deposition, vegetation change, river avulsion using change detection algorithms. Digital image processing methods with temporal Landsat satellite remotely sensed data from the North America Landscape Characterization archive (NALC), Thematic Mapper (TM), and Enhanced Thematic Mapper (ETM) images were used to document the landscape change. Two image processing methods were tested including Image differencing (ID), and Principal Component Analysis (PCA). Landscape changes identified with the NALC archive and TM images showed that the major changes included a rapid change of land use in the towns of San Jose del Cabo and Cabo San Lucas between 1973 and 1986. The features detected using the algorithms included flood deposits within the channels of active streams, erosion banks, and new channels caused by channel avulsion. Despite the 19 year period covered by the NALC data and approximately 10 year intervals between acquisition dates, there were changed features that could be identified in the images. The TM images showed that flooding from Hurricane Isis (1998) produced new large deposits within the stream channels. This research has shown that remote sensing based change detection can delineate the effects of flooding on the landscape at scales down to the nominal resolution of the sensor. These findings indicate that many other applications for change detection are both viable and important. These include disaster response, flood hazard planning, geomorphic studies, water supply management in deserts.

  1. Napa River Salt Marsh Restoration Project. Volume 2: Environmental Impact Statement Comments Letters and Response

    DTIC Science & Technology

    2004-06-01

    The SWMPs must include a program for implementing new development and construction site storm water quality controls. The objective of this...mitigate those impacts (see Storm Water Quality Control, below). The Regional Board has adopted U.S. EPA’s Clean Water Act Section 404(b)(1...impacts to wetlands or other Waters of the State. Storm Water Quality Control Storm water is the major source of fresh water to creeks and waterways. Storm

  2. Medicolegal aspects of tornadic storms in Kansas, U.S.A.

    PubMed

    Eckert, W G

    1991-12-01

    Kansas is known for its fierce whether, including tornados in the spring and fall and blizzards in the winter. A recent series of tornados cut a path of destruction a mile wide for greater than 40 miles (64 km), killed 20 people, and caused several hundred casualities on the evening of April 26, 1991, in Tornado Alley, which runs from the northern border of Oklahoma through southern Kansas past Wichita toward Emporium, Kansas. The wind velocity was greater than 200 mph. Twenty people were killed, 17 of these in Andover, Kansas, a small town east of Wichita. Injuries caused by the tornados and the excellent emergency response and care provided by medical, law-enforcement, and volunteer personnel in the wake of the storms are described here.

  3. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  4. Three Mars years: viking lander 1 imaging observations.

    PubMed

    Arvidson, R E; Guinness, E A; Moore, H J; Tillman, J; Wall, S D

    1983-11-04

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  5. Three Mars years - Viking Lander 1 imaging observations

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Guinness, E. A.; Moore, H. J.; Tillman, J.; Wall, S. D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3.3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohension of the undisturbed surface material.

  6. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.

  7. [Influence of the Weather on the Incidence of Fractures in the Elderly].

    PubMed

    Burget, F; Foltán, O; Kraus, J; Kudrna, K; Novák, M; Ulrych, J

    2016-01-01

    PURPOSE OF THE STUDY The incidence of geriatric fractures (proximal femur, distal radius, proximal humerus and thoracolumbar spine injuries) in the population increases with ageing. However, the role of weather conditions, such as icy and slippery winter, should not be overlooked. A deeper insight into this relationship may bring about a better understanding of the fracture aetiology and thus allow for improvement in the prevention of fractures in elderly people. MATERIAL AND METHODS This prospective study included 676 patients (469 women and 207 men) aged 65 and over. Relationships between the incidence of geriatric fractures in these patients and the season, weather phenomena (i.e., air temperature, atmospheric pressure, air humidity, wind speed, visibility, rain, snow, mist and storm) and global biometeorological data in the period from 1 January 2012 to 31 December 2013 were investigated. Patients with high velocity trauma or those with pathological fractures were excluded. Time (day/night), the place of injury (outdoor/indoor/home environment), comorbidities and chronicuse medication were also recorded. Weather forecast records with weather health loads (biotropic indices) were obtained from the commercial service Weather Underground and the Czech Hydrometeoro-logical Institute. The results were statistically analysed using the Statistika 12 programme. RESULTS The incidence of fractures was higher in winter months but there was no statistically significant correlation between the number of fractures and various weather characteristics (temperature, atmospheric pressure, air humidity, wind speed, visibility, rainfall, snow, mist or storm). On the other hand, a relationship between the incidence of geriatric fractures and the biometeorological data (biotropic index) for that day was significant (r = 0.65, p= 0.0401). The majority of fractures occurred during the daytime (83.7%) and in the indoor environment (83.1%); of the latter fractures, 85.2% were home injuries. The most frequent comorbidities included cardiovascular disease (36.2%), obesity (31.1%) and diabetes mellitus (25.4%). DISCUSSION Studies investigating seasonal patterns in relation to the incidence of geriatric fractures are contradictory. Sixteen previous studies have examined seasonal variations and the incidence of some types of geriatric fractures in different parts of the world. The majority of them have dealt with hip fractures, three with forearm injuries and one compared the incidence of hip, distal forearm, proximal humerus and ankle fractures in the four seasons of the year. Of 13 studies in geographic areas located north of 40°latitude, eight showed no seasonal variation in the incidence of fractures, four recorded an increase in the number of fractures in winter and two showed an increased number of fractures in summer. Three of them also studied the effect of daily temperature. Only one study paid attention to biometeorological data and related the biotropic index to the number of injuries treated at the emergency department. Three studies showed that fractures occurred most frequently in the home environment and during the daytime. CONCLUSIONS This study did not prove any statistically significant relationship between the incidence of geriatric fractures and different weather phenomena. Nevertheless, it showed a higher incidence of fractures in winter, from December to February. Most fractures occurred in indoor environments and during the day. A high value of the biotropic index was significantly related to the incidence of geriatric fractures. The most frequent comorbidities included cardiovascular disease, obesity and diabetes mellitus. Key words: geriatric fracture, season, weather, biometeorological forecast.

  8. Monitoring water phase dynamics in winter clouds

    NASA Astrophysics Data System (ADS)

    Campos, Edwin F.; Ware, Randolph; Joe, Paul; Hudak, David

    2014-10-01

    This work presents observations of water phase dynamics that demonstrate the theoretical Wegener-Bergeron-Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central High Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and nowcasting the evolution of supercooled droplets in winter clouds.

  9. Monitoring water phase dynamics in winter clouds

    DOE PAGES

    Campos, Edwin F.; Ware, Randolph; Joe, Paul; ...

    2014-10-01

    This work presents observations of water phase dynamics that demonstrate the theoretical Wegener–Bergeron–Findeisen concepts in mixed-phase winter storms. The work analyzes vertical profiles of air vapor pressure, and equilibrium vapor pressure over liquid water and ice. Based only on the magnitude ranking of these vapor pressures, we identified conditions where liquid droplets and ice particles grow or deplete simultaneously, as well as the conditions where droplets evaporate and ice particles grow by vapor diffusion. The method is applied to ground-based remote-sensing observations during two snowstorms, using two distinct microwave profiling radiometers operating in different climatic regions (North American Central Highmore » Plains and Great Lakes). The results are compared with independent microwave radiometer retrievals of vertically integrated liquid water, cloud-base estimates from a co-located ceilometer, reflectivity factor and Doppler velocity observations by nearby vertically pointing radars, and radiometer estimates of liquid water layers aloft. This work thus makes a positive contribution toward monitoring and now casting the evolution of supercooled droplets in winter clouds.« less

  10. Major storm periods and climate forcing in the Western Mediterranean during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Degeai, Jean-Philippe; Devillers, Benoît; Dezileau, Laurent; Oueslati, Hamza; Bony, Guénaëlle

    2015-12-01

    Big storm events represent a major risk for populations and infrastructures settled on coastal lowlands. In the Western Mediterranean, where human societies colonized and occupied the coastal areas since the Ancient times, the variability of storm activity for the past three millennia was investigated with a multi-proxy sedimentological and geochemical study from a lagoonal sequence. Mappings of the geochemistry and magnetic susceptibility of detrital sources in the watershed of the lagoon and from the coastal barriers were undertaken in order to track the terrestrial or coastal/marine origin of sediments deposited into the lagoon. The multi-proxy analysis shows that coarser material, low magnetic susceptibility, and high strontium content characterize the sedimentological signature of the paleostorm levels identified in the lagoonal sequence. A comparison with North Atlantic and Western Mediterranean paleoclimate proxies shows that the phases of high storm activity occurred during cold periods, suggesting a climatically-controlled mechanism for the occurrence of these storm periods. Besides, an in-phase storm activity pattern is found between the Western Mediterranean and Northern Europe. Spectral analyses performed on the Sr content revealed a new 270-year solar-driven pattern of storm cyclicity. For the last 3000 years, this 270-year cycle defines a succession of ten major storm periods (SP) with a mean duration of 96 ± 54 yr. Periods of higher storm activity are recorded from >680 to 560 cal yr BC (SP10, end of the Iron Age Cold Period), from 140 to 820 cal yr AD (SP7 to SP5) with a climax of storminess between 400 and 800 cal yr AD (Dark Ages Cold Period), and from 1230 to >1800 cal yr AD (SP3 to SP1, Little Ice Age). Periods of low storm activity occurred from 560 cal yr BC to 140 cal yr AD (SP9 and SP8, Roman Warm Period) and from 820 to 1230 cal yr AD (SP4, Medieval Warm Period).

  11. Solar and Interplanetary Sources of Major Geomagnetic Storms (Dst less than or equal to -100 nT) During 1996 - 2005

    NASA Technical Reports Server (NTRS)

    Zhang, J.; Richardson, I.; Webb, D. F.; Gopalswamy, N.; Huttunen, E.; Kasper, J.; Nitta, N.; Poomvises, W.; Thompson, B. J.; Wu, C.-C.; hide

    2007-01-01

    We present the results of an investigation of the sequence of events from the Sun to the Earth that ultimately led to the 88 major geomagnetic storms (defined by minimum Dst less than or equal to -100 nT) that occurred during 1996 - 2005. The results are achieved through cooperative efforts that originated at the Living with a Star (LWS) Coordinated Data- Analysis Workshop (CDAW) held at George Mason University in March 2005. Based on careful examination of the complete array of solar and in-situ solar wind observations, we have identified and characterized, for each major geomagnetic storm, the overall solar-interplanetary (solar-IP) source type, the time, velocity and angular width of the source coronal mass ejection (CME), the type and heliographic location of the solar source region, the structure of the transient solar wind flow with the storm-driving component specified, the arrival time of shock/disturbance, and the start and ending times of the corresponding IP CME (ICME). The storm-driving component, which possesses a prolonged and enhanced southward magnetic field (B(sub s)) may be an ICME, the sheath of shocked plasma (SH) upstream of an ICME, a corotating interaction region (CIR), or a combination of these structures. We classify the Solar-IP sources into three broad types: (1) S-type, in which the storm is associated with a single ICME and a single CME at the Sun; (2) M-type, in which the storm is associated with a complex solar wind flow produced by multiple interacting ICMEs arising from multiple halo CMEs launched from the Sun in a short period; (3) C-type, in which the storm is associated with a CIR formed at the leading edge of a high speed stream originating from a solar coronal hole (CH). For the 88 major storms, the S-type, M-type and C-type events number 53 (60%): 24 (27%) and 11 (13%), respectively. For the 85 events for which the surface source regions could be investigated, 54 (63%) of the storms originated in solar active regions, 10 (12%) in quiet Sun regions associated with quiescent filaments or filament channels, and 11 (13%) were associated with coronal holes. Remarkably, 10 (12%) CME-driven events showed no sign of eruptive features on the surface (e.g., no flare, no coronal dimming, and no loop arcade, etc), even though all the available solar observation in a suitable time period were carefully examined. Thus, while it is generally true that a major geomagnetic storm is more likely to be driven by a front-side fast halo CME associated with a major flare, our study indicates a broad distribution of source properties. The implications of the results for space weather forecasting are briefly discussed.

  12. Analog ensemble and Bayesian regression techniques to improve the wind speed prediction during extreme storms in the NE U.S.

    NASA Astrophysics Data System (ADS)

    Yang, J.; Astitha, M.; Delle Monache, L.; Alessandrini, S.

    2016-12-01

    Accuracy of weather forecasts in Northeast U.S. has become very important in recent years, given the serious and devastating effects of extreme weather events. Despite the use of evolved forecasting tools and techniques strengthened by increased super-computing resources, the weather forecasting systems still have their limitations in predicting extreme events. In this study, we examine the combination of analog ensemble and Bayesian regression techniques to improve the prediction of storms that have impacted NE U.S., mostly defined by the occurrence of high wind speeds (i.e. blizzards, winter storms, hurricanes and thunderstorms). The predicted wind speed, wind direction and temperature by two state-of-the-science atmospheric models (WRF and RAMS/ICLAMS) are combined using the mentioned techniques, exploring various ways that those variables influence the minimization of the prediction error (systematic and random). This study is focused on retrospective simulations of 146 storms that affected the NE U.S. in the period 2005-2016. In order to evaluate the techniques, leave-one-out cross validation procedure was implemented regarding 145 storms as the training dataset. The analog ensemble method selects a set of past observations that corresponded to the best analogs of the numerical weather prediction and provides a set of ensemble members of the selected observation dataset. The set of ensemble members can then be used in a deterministic or probabilistic way. In the Bayesian regression framework, optimal variances are estimated for the training partition by minimizing the root mean square error and are applied to the out-of-sample storm. The preliminary results indicate a significant improvement in the statistical metrics of 10-m wind speed for 146 storms using both techniques (20-30% bias and error reduction in all observation-model pairs). In this presentation, we discuss the various combinations of atmospheric predictors and techniques and illustrate how the long record of predicted storms is valuable in the improvement of wind speed prediction.

  13. Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California: a progress report

    USGS Publications Warehouse

    Harden, Deborah Reid; Janda, Richard J.; Nolan, K. Michael

    1978-01-01

    Numerous active landslides are clearly significant contributors to high sediment loads in the Redwood Creek basin. Field and aerial-photograph inspections indicate that large mass-movement features, such as earthflows and massive streamside debris slides, occur primarily in terrain underlain by unmetamorphosed or slightly metamorphosed sedimentary rocks. These features cannot account for stream sediment derived from schist. Observed lithologic heterogeneity of stream sediment therefore suggests that large-scale mass movement is only one part of a complex suite of processes supplying sediment to streams in this basin. Other significant sediment contributors include various forms of fluvial erosion and small-scale discrete mass failures, particularly on oversteepened hillslopes adjacent to perennial streams. Photo-interpretive studies of landslide and timber-harvest history adjacent to Redwood Creek, together with analysis of regional precipitation and runoff records for six flood-producing storms between 1953 and 1975, indicate that loci and times of significant streamside landsliding are influenced by both local storm intensity and streamside logging. Analysis of rainfall records and historic accounts indicates that the individual storms comprising a late-19th-century series of storms in northwestern California were similar in magnitude and spacing to those of the past 25 years. The recent storms apparently initiated more streamside landslides than comparable earlier storms, which occurred prior to extensive road construction and timber harvest. Field observations and repeated surveys of stake arrays at 10 sites in the basin indicate that earthflows are especially active during prolonged periods of moderate rainfall; but that during brief intense storms, fluvial processes are the dominant erosion mechanism. Stake movement occurs mostly during wet winter months. Spring and summer movement was detected at some moist streamside sites. Surveys of stake arrays in two recently logged areas did not indicate exceptionally rapid rates of movement in three years following timber harvest.

  14. Low-E Storm Windows Gain Acceptance as a Home Weatherization Measure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbride, Theresa L.; Cort, Katherine A.

    This article for Home Energy Magazine describes work by the U.S. Department of Energy to develop low-emissivity storm windows as an energy efficiency-retrofit option for existing homes. The article describes the low-emissivity invisible silver metal coatings on the glass, which reflect heat back into the home in winter or back outside in summer and the benefits of low-e storm windows including insulation, air sealing, noise blocking, protection of antique windows, etc. The article also describes Pacific Northwest National Laboratory's efforts on behalf of DOE to overcome market barriers to adoption of the technology, including performance validation studies in the PNNLmore » Lab Homes, cost effectiveness analysis, production of reports, brochures, how-to guides on low-e storm window installation for the Building America Solution Center, and a video posted on YouTube. PNNL's efforts were reviewed by the Pacific Northwest Regional Technical Forum (RTF), which serves as the advisory board to the Pacific Northwest Electric Power Planning Council and Bonneville Power Administration. In late July 2015, the RTF approved the low-e storm window measure’s savings and specifications, a critical step in integrating low-e storm windows into energy-efficiency planning and utility weatherization and incentive programs. PNNL estimates that more than 90 million homes in the United States with single-pane or low-performing double-pane windows would benefit from the technology. Low-e storm windows are suitable not only for private residences but also for small commercial buildings, historic properties, and facilities that house residents, such as nursing homes, dormitories, and in-patient facilities. To further assist in the market transformation of low-e storm windows and other high-efficiency window attachments, DOE helped found the window Attachment Energy Rating Council (AERC) in 2015. AERC is an independent, public interest, non-profit organization whose mission is to rate, label, and certify the performance of window attachments.« less

  15. Advances in using satellite altimetry to observe storm surge

    NASA Astrophysics Data System (ADS)

    Han, Guoqi

    2017-04-01

    Storm surges are the major cause for coastal flooding, resulting in catastrophic damage to properties and loss of life in coastal communities. Thus it is important to utilize new technology to enhance our capabilities of observing storm surges and ultimately to improve our capacity for forecasting storm surges and mitigating damage and loss. In this talk we first review traditional methods of monitoring storm surges. We then provide examples of storm surges observed by nadir satellite altimetry, during Hurricane Sandy and Igor, as well as typhoon and cyclone events. We further evaluate satellite results against tide-gauge data and explain storm surge features. Finally, we discuss the potential of a wide-swath altimetry mission, the Surface Water and Ocean Topography (SWOT), for observing storm surges.

  16. The influence of seagrass on shell layers and Florida Bay mudbanks

    USGS Publications Warehouse

    Prager, E.J.; Halley, R.B.

    1999-01-01

    Aerial photography indicates that sometime since the early 1970's, an emergent ridge of shell debris developed on a mudbank north of Calusa Key in Florida Bay. Coarse shell deposits on and within the Bay's shallow mudbanks are believed to be the product of transport during major storm events and subsequent winnowing. However, shell material from the ridge contains nuclear bomb 14C, supporting formation within the past 30 years and the last major hurricanes to influence Florida Bay were Donna and Betsy (1960 and 1965). Results from this study suggest that the Calusa ridge and other coarse shell deposits in Florida Bay can result from, 1) periodic seagrass mortality and wave-induced transport during frequent winter cold fronts and/or 2) mollusc blooms and subsequent burial. A survey of bottom types indicates that dense to intermediate beds of seagrass, mainly Thalassia testudinum (turtle grass), occur within the shallow basins of western Florida Bay and along the margins of Bay mudbanks. Wave measurements and modeling indicate that Thalassia along mudbank margins can reduce incoming wave-energy by over 80%. Seagrass beds also host particularly dense populations of molluscs from periodic 'blooms' and are believed to be the major source of coarse sediments in the Bay. Thus, if bank-edge seagrass dies, sediments, including shell debris, become exposed and subject to greatly increased wave energy. Modeling indicates that winds typical of winter cold fronts in South Florida can produce near-bottom velocities and shear stress at a grass-free bank edge which are sufficient to transport coarse carbonate grains. Shell layers found at depth in mudbank cores can also be explained by previous episodes of sediment accretion over mollusc-rich seagrass beds or grass bed mortality at the edge of a mudbank and shell transport during cold front passage. The latter implies that mortality of marginal seagrass beds has occurred throughout the history of Florida Bay and that the historical influence of hurricanes on sedimentation in the Bay may have been overestimated.

  17. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen

    NASA Astrophysics Data System (ADS)

    Vagle, Svein; McNeil, Craig; Steiner, Nadja

    2010-12-01

    Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50°N, 145°W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas fluxes were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated air-sea gas exchange. The direct bubble flux calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, air-sea transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced air injection flux, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed seas which occur during winter storms are more effective in exchanging gases between the atmosphere and ocean than younger less developed seas which occur during the rapid passage of a hurricane.

  18. Simulating Mars' Dust Cycle with a Mars General Circulation Model: Effects of Water Ice Cloud Formation on Dust Lifting Strength and Seasonality

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.; Haberle, Robert; Hollingsworth, Jeffery L.

    2012-01-01

    The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls200 degrees - 240 degrees), and after northern solstice (Ls305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.

  19. Forcing of Climate Variations by Mev-gev Particles

    NASA Technical Reports Server (NTRS)

    Tinsley, Brian A.

    1990-01-01

    Changes in ionization production in the lower stratosphere by a few percent during Forbush decreases have been shown to correlate well with changes in winter tropospheric dynamics by a similar relatively small amount. Changes in ionization production by tens of percent on the decadal time scale have been shown to be correlated with changes in winter storm frequencies by tens of percent in the western North Atlantic. Changes in total solar irradiance or solar UV do not have time variations to match the tropospheric variations on the day to day time scales discussed here. Forcing related to magnetic activity is not supported. Thus solar wind/MeV-GeV particle changes appear to be the only viable forcing function for these day to day variations. If solar wind/particle forcing of a few percent amplitude can produce short term weather responses, then observed changes by tens of percent on the decadal and centennial time scale could produce climate changes on these longer time scales. The changes in circulation involved would produce regional climate changes, as observed. At present the relations between stratospheric ionization, electric fields and chemistry and aerosol and cloud microphysics are as poorly known as the relations between the latter and storm feedback processes. However, the capability for investigating these relationships now exists and has recently been most successfully used for elucidating the stratospheric chemistry and cloud microphysics associated with the Antarctic ozone hole. The economic benefits of being able to predict winter severity on an interannual basis, and the extent to which climate change related to solar variability will add to or substract from the greenhouse effect, should be more than adequate to justify support for research in this area.

  20. Characteristics of storm runoff and sediment dispersal in the San Pedro Channel, southern California.

    PubMed

    Ahn, J H; Grant, S B

    2007-01-01

    In-site measurements of particle size spectra were obtained from three offshore cruises to evaluate the physical consequences of increased sediment transport and deposition offshore which was caused by episodic storm runoff water from the Santa Ana River watershed, a highly urbanised coastal watershed in southern California. Of the total annual runoff discharge to the coastal ocean, 89.2% occurred in the 2003/2004 winter season, and 0.22 Mt of sediment mass was transported during the storm events. The runoff plume at surface taken offshore by cross-shore currents progressed rapid aggregation and sedimentation, while the initially high concentration of suspended sediment discharged from the river outlet was dominated by small particles. Vertical profiles of particle size spectra revealed two separated plumes near the river outlet and turbidity plume along the bottom consisted of an abundance of very fine and dense particles. It would appear to support the theory that even if the storm runoff does not carry a high concentration of sediment being capable of generating negative buoyancy, sediment deposition on the shelf might mobilise in dense, fluid mud transported offshore by gravity. In a coastal pollution context, sediment particle size spectra information may offer potentially useful means of characterising particle-associated pollutants for purposes of source tracking and environmental interpretation.

  1. Improving the simulation of convective dust storms in regional-to-global models

    EPA Science Inventory

    Convective dust storms have significant impacts on atmospheric conditions and air quality and are a major source of dust uplift in summertime. However, regional-to-global models generally do not accurately simulate these storms, a limitation that can be attributed to (1) using a ...

  2. Simulation of ground-water flow of the coastal plain aquifers in parts of Maryland, Delaware, and the District of Columbia

    USGS Publications Warehouse

    Fleck, W.B.; Vroblesky, D.A.

    1996-01-01

    Geomorphic processes and the aquatic habitat of the Redwood Creek basin were studied extensively between 1973 and 1983. This volume contains 22 separate articles by 32 investigators who studied geology, major storms, timber harvesting and its role on accelerating erosion, mass movement, fluvial erosion, sediment transport and storage, stream channel response to storms and landuse, stream habitat, and stream chemistry. This research describes a rapidly eroding landscape that is sensitive to effects of both landuse and major storms.

  3. Blue storms depress growth of shortleaf pine in western Arkansas and eastern Oklahoma

    Treesearch

    Douglas J. Stevenson; Thomas B. Lynch; James M. Guldin

    2012-01-01

    Climate and weather, especially storms, have major effects on trees. Fast moving “Alberta Clippers,” or Blue Storms, that produce extreme cold and little precipitation happen each year on the Great Plains in association with Chinook winds in the Northern and Central Rockies. When these storms occur between February 13th and March 10th when shortleaf pines on the...

  4. Streamflow and water-quality data for Little Clearfield Creek basin, Clearfield County, Pennsylvania, December 1987 - November 1988

    USGS Publications Warehouse

    Kostelnik, K.M.; Durlin, R.R.

    1989-01-01

    Streamflow and water quality data were collected throughout the Little Clearfield Creek basin, Clearfield County, Pennsylvania, from December 1987 through November 1988, to determine the existing quality of surface water over a range of hydrologic conditions. This data will assist the Pennsylvania Department of Environmental Resources during its review of coal mine permit applications. A water quality station near the mouth of Little Clearfield Creek provided continuous record of stream stage, pH, specific conductance, and water temperature. Monthly water quality samples collected at this station were analyzed for total and dissolved metals, nutrients, major cations, and suspended sediment concentrations. Seventeen partial record sites, located throughout the basin, were similarly sampled four times during the study. Streamflow and water quality data obtained at these sites during a winter base flow, a spring storm event, a low summer base flow, and a more moderate summer base flow also are presented. (Author 's abstract)

  5. Application of regional climate models to the Indian winter monsoon over the western Himalayas.

    PubMed

    Dimri, A P; Yasunari, T; Wiltshire, A; Kumar, P; Mathison, C; Ridley, J; Jacob, D

    2013-12-01

    The Himalayan region is characterized by pronounced topographic heterogeneity and land use variability from west to east, with a large variation in regional climate patterns. Over the western part of the region, almost one-third of the annual precipitation is received in winter during cyclonic storms embedded in westerlies, known locally as the western disturbance. In the present paper, the regional winter climate over the western Himalayas is analyzed from simulations produced by two regional climate models (RCMs) forced with large-scale fields from ERA-Interim. The analysis was conducted by the composition of contrasting (wet and dry) winter precipitation years. The findings showed that RCMs could simulate the regional climate of the western Himalayas and represent the atmospheric circulation during extreme precipitation years in accordance with observations. The results suggest the important role of topography in moisture fluxes, transport and vertical flows. Dynamical downscaling with RCMs represented regional climates at the mountain or even event scale. However, uncertainties of precipitation scale and liquid-solid precipitation ratios within RCMs are still large for the purposes of hydrological and glaciological studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    NASA Astrophysics Data System (ADS)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  7. Seasonal Variation of Phytoplankton and Primary Production in the Thames River, Southeastern Connecticut

    NASA Astrophysics Data System (ADS)

    Wainright, S. C.

    2016-02-01

    A year-long study was performed to investigate seasonal changes in the phytoplankton biomass and primary production in the Thames River, a salt wedge estuary that empties into Long Island Sound in southeastern CT. Chlorophyll measurements were made on discrete filtered samples collected above and below the 1-3 m deep pycnocline at a 5-meter deep station. Surface chlorophyll concentrations, primarily from diatoms, averaged approx. 2 mg m-3, with maxima (up to 10 mg m-3) during summer months (Jun to Aug) and minima during October through March (as low as 0.3 mg m-3). The lower water layer had nearly the same annual average but a smaller range (0.7-3.3 mg m-3) and a winter/spring bloom (Jan-Apr) that was not seen in surface water. During most of the winter, chlorophyll concentrations were higher in the lower layer. Primary production, as measured by 13C uptake in bottle incubations, averaged 67 mgC m-3 h-1 in surface water [range 0.1 (Jan 2012) to 800 mgC m-3 h-1 (Aug 2011)], and 3 mgC m-3 h-1 [range 0.04 (Jan 2012) to 17 mgC m-3 h-1 (Aug 2011)] in the lower layer. On most occasions, deep water incubated near the surface had a higher primary production rate than surface water incubated at the surface; apparently the light-limited phytoplankton in the lower layer were released from light-limitation during these incubations. During the study period there were over a dozen heavy wind or heavy rain events, including Hurricane Irene in August and a freak Nor'easter snow storm in October 2011. Hurricane Irene was associated with a large decline in phytoplankton biomass and primary production. With significant storms as frequent as the rate of sampling, it is difficult to separate a "storm effect" from a background seasonal pattern. The study reveals that phytoplankton, especially those in the lower layer, are light-limited in the Thames River estuary, and that the effects of significant storm events are superimposed on significant seasonal variation.

  8. Biological response to coastal upwelling and dust deposition in the area off Northwest Africa

    NASA Astrophysics Data System (ADS)

    Ohde, T.; Siegel, H.

    2010-05-01

    Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll- a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll- a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll- a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll- a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll- a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll- a concentration of up to 2.4 mg m -3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.

  9. Atmospheric Rivers and Their Role in Extreme Precipitation in the Midwest U.S.

    DTIC Science & Technology

    2013-03-01

    located in the warm sector of extratropical cyclones (warm conveyor belt) and can be characterized by strong winds (low level jet) and large water...the associated synoptic-scale extratropical cyclone and subsequent frontal processes of each planetary wave, resulting in narrow regions of moisture...normal falls during AR storms during the winter on the West Coast. During the summer, precipitation enhancements were not as significant (mostly due

  10. Statistical analysis of vegetation and stormwater runoff in an urban watershed during summer and winter storms in Portland, Oregon, U.S

    Treesearch

    Geoffrey H. Donovan; David T. Butry; Megan Y. Mao

    2016-01-01

    Past research has examined the effect of urban trees, and other vegetation, on stormwater runoff using hydrological models or small-scale experiments. However, there has been no statistical analysis of the influence of vegetation on runoff in an intact urban watershed, and it is not clear how results from small-scale studies scale up to the city level. Researchers...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huggins, A.W.

    A field research effort was conducted in the vicinity of the Tushar Mountains of southern Utah as part of the Federal-State Program in Atmospheric Modification Research involving the National Oceanic and Atmospheric Administration and the State of Utah. The field study took place in February and March 1989 and emphasized the studies of supercooled liquid water evolution in winter storms and attempts to measure the effects of ground-based silver iodide cloud seeding. Results of the field effort are presented.

  12. Optical dating of late Holocene storm surges from Schokland (Noordoostpolder, the Netherlands)

    NASA Astrophysics Data System (ADS)

    van den Biggelaar, Don; Kluiving, Sjoerd; van Balen, Roland; Kasse, Cronelils; Troelstra, Simon; Prins, Maarten; Wallinga, Jakob; Versendaal, Alice

    2015-04-01

    Storm surges have a major impact on land use and human habitation in coastal regions. Our understanding of this impact can be improved by correlating long-term historical storm records with sedimentary evidence of storm surges, but so far few studies use such an approach. Here we present detailed geological and historical data on late Holocene storm surges from the former island Schokland, located in the northern part of Flevoland (central Netherlands). During the late Holocene, Schokland transformed from a peat area that gradually inundated (~1200 yr ago) via an island in a marine environment (~400 yr ago) to a land-locked island in the reclaimed Province of Flevoland (~70 yr ago). Deposits formed between 1200 and 70 year ago on lower parts of the island, consist of a stacked sequence of clay and sand layers, with the latter being deposited during storm surges. We dated the sandy laminae of late Holocene storm surges in the clay deposit on Schokland to improve the age model of the island's flooding history during the last 1200 years. Samples for dating were obtained from a mechanical core at Schokland. The top of the peat underlying the clay and sand deposits was dated using 14C accelerator mass spectrometry (AMS) of terrestrial plant and seed material. Sandy intervals of the flood deposits were dated using a series of ten quartz OSL ages, which were obtained using state-of-the-art methods to deal with incomplete resetting of the OSL signal. These new dates, together with laboratory analyses on the clay deposit (thermogravimetric analysis, grain-size analyses, foraminifera, bivalves and ostracods) and a literature study show that storm surges had a major impact on both the sedimentary and the anthropogenic history of Schokland. The results show that the stacked clay sequence is younger than expected, indicating either an increasing sedimentation rate or reworking of the clay by storm surges. Furthermore, the results indicate that a correlation can be made between the sedimentary remains of late Holocene storm surges and several major storm surges mentioned in the historical sources that eroded parts of Schokland.

  13. Extreme Windstorms and Related Impacts on Iberia

    NASA Astrophysics Data System (ADS)

    Liberato, Margarida L. R.; Ordóñez, Paulina; Pinto, Joaquim G.; Ramos, Alexandre M.; Karremann, Melanie K.; Trigo, Isabel F.

    2014-05-01

    Extreme windstorms are one of the major natural catastrophes in the mid latitudes, one of the most costly natural hazards in Europe and are responsible for substantial economic damages and even fatalities. During the recent winters, the Iberian Peninsula was hit by severe (wind) storms such as Klaus (January 2009), Xynthia (February 2010) and Gong (January 2013) which exhibited uncommon characteristics. They were all explosive extratropical cyclones formed over the mid-Atlantic, travelling then eastwards at lower latitudes than usual along the edge of the dominant North Atlantic storm track. In this work we present a windstorm catalogue for the Iberian Peninsula, where the characteristics of the potentially more destructive windstorms for the 1979-2012 period are identified. For this purpose, the potential impact of high winds over the Iberian Peninsula is assessed by using a daily damage index based on maximum wind speeds that exceeds the local 98th percentile threshold. Then, the characteristics of extratropical cyclones associated with these events are analyzed. Results indicate that these are fast moving, intense cyclones, typically located near the northwestern tip of the Iberian Peninsula. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010). A. M. Ramos was also supported by a FCT postdoctoral Grant (FCT/DFRH/SFRH/BPD/84328/2012).

  14. Climatic controls of the interannual to decadal variability in Saudi Arabian dust activity: Towards the development of a seasonal prediction tool

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.

    2013-12-01

    Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).

  15. Bel Marin Keys Unit V Expansion of the Hamilton Wetland Restoration Project. Volume 3. Responses to Comments, Final Supplemental Environmental Impact Report/Environmental Impact Statement

    DTIC Science & Technology

    2003-04-01

    include a program for implementing new development and construction site storm water quality controls. The objective of this component is to ensure...impacts (see Storm Water Quality Control, below). The Regional Board has adopted U.S. EPA’s Clean Water Act Section 404(b)(1) "Guidelines for...other Waters of the State. Storm Water Quality Control Storm water is the major source of fresh water to creeks and waterways. Storm water quality is

  16. Magnitude-Based Postfire Debris Flow Rainfall Accumulation-Duration Thresholds for Emergency-Response Planning

    NASA Astrophysics Data System (ADS)

    Cannon, S. H.; Boldt, E. M.; Laber, J. L.; Kean, J. W.; Staley, D. M.

    2011-12-01

    Following wildfires, emergency-response and public-safety agencies can be faced with evacuation and resource-deployment decisions well in advance of coming winter storms and during storms themselves. Information critical to these decisions is needed for recently burned areas in the San Gabriel Mountains of southern California. A compilation of information on the hydrologic response to winter storms from recently burned areas in southern California steeplands is used to develop a system for classifying magnitudes of hydrologic response in this setting. The four-class system describes combinations of reported volumes of individual debris flows, consequences of debris flows and floods in an urban setting, and spatial extents of the hydrologic response. Magnitude 0 events show a negligible response, while Magnitude I events are characterized by small (<1,000 m3) debris flows or low-discharge floods produced from one or two drainage basins. A few culverts and storm drains may be blocked, a few streets may be partially flooded or blocked by water and debris, and a few buildings near the mountain front may be damaged. Magnitude II events are characterized by two to five moderately-sized (1,000 to 10,000 m3) debris flows or one large (>10,000 m3) event. Several culverts or storm drains may be blocked or fail, several streets may be flooded or completely blocked by water and debris, and buildings, streets, and bridges may be damaged or destroyed. Magnitude III events consist of widespread and abundant debris flows of volumes >10,000 m3 and high discharge flooding causing significant impact to the built environment. Many streets, storm drains, and streets may be completely blocked by debris, making many streets unsafe for travel. Several large buildings, sections of infrastructure corridors and bridges may be damaged or destroyed. The range of rainfall conditions associated with different magnitude classes are defined by correlating local rainfall data with the response magnitude information. Magnitude 0 events can be expected when within-storm rainfall accumulations (A) of given durations (D) fall below the threshold A=0.4D0.5. Magnitude I events can be expected when storm rainfall conditions are above the threshold A=0.4D0.5 and below A=0.5D0.6 for durations greater than 1 hour. Magnitude II events will be generated in response to rainfall accumulations and durations between A=0.4D0.5 and A=0.9D0.5 for durations less than one hour, and between A=0.5D0.6 and A=0.9D0.5 for durations greater than one hour. Magnitude III events can be expected in response to rainfall conditions above the threshold A=0.9D 0.5. Rainfall threshold-magnitude relations are linked with potential emergency-response actions as an emergency-response decision chart, which leads a user through steps to determine potential event magnitudes and identify possible evacuation and resource-deployment levels. Use of this information in the planning and response decision-making process could result in increased safety for both the public and emergency responders.

  17. High-Resolution Rainfall From Radar Reflectivity and Terrestrial Rain Gages for use in Estimating Debris-Flow Susceptibility in the Day Fire, California

    NASA Astrophysics Data System (ADS)

    Hanshaw, M. N.; Schmidt, K. M.; Jorgensen, D. P.; Stock, J. D.

    2007-12-01

    Constraining the distribution of rainfall is essential to evaluating the post-fire mass-wasting response of steep soil-mantled landscapes. As part of a pilot early-warning project for flash floods and debris flows, NOAA deployed a portable truck-mounted Shared Mobile Atmospheric Research and Teaching Radar (SMART-R) to the 2006 Day fire in the Transverse Ranges of Southern California. In conjunction with a dense array of ground- based instruments, including 8 tipping-bucket rain gages located within an area of 170 km2, this C-band mobile Doppler radar provided 200-m grid cell estimates of precipitation data at fine temporal and spatial scales in burned steeplands at risk from hazardous flash floods and debris flows. To assess the utility of using this data in process models for flood and debris flow initiation, we converted grids of radar reflectivity to hourly time-steps of precipitation using an empirical relationship for convective storms, sampling the radar data at the locations of each rain gage as determined by GPS. The SMART-R was located 14 km from the farthest rain gage, but <10 km away from our intensive research area, where 5 gages are located within <1-2 km of each other. Analyses of the nine storms imaged by radar throughout the 2006/2007 winter produced similar cumulative rainfall totals between the gages and their SMART-R grid location over the entire season which correlate well on the high side, with gages recording the most precipitation agreeing to within 11% of the SMART-R. In contrast, on the low rainfall side, totals between the two recording systems are more variable, with a 62% variance between the minimums. In addition, at the scale of individual storms, a correlation between ground-based rainfall measurements and radar-based rainfall estimates is less evident, with storm totals between the gages and the SMART-R varying between 7 and 88%, a possible result of these being relatively small, fast-moving storms in an unusually dry winter. The SMART-R also recorded higher seasonal cumulative rainfall than the terrestrial gages, perhaps indicating that not all precipitation reached the ground. For one storm in particular, time-lapse photographs of the ground document snow. This could explain, in part, the discrepancy between storm-specific totals when the rain gages recorded significantly lower totals than the SMART-R. For example, during the storm where snow was observed, the SMART-R recorded a maximum of 66% higher rainfall than the maximum recorded by the gages. Unexpectedly, the highest elevation gage, located in a pre-fire coniferous vegetation community, consistently recorded the lowest precipitation, whereas gages in the lower elevation pre- fire chaparral community recorded the highest totals. The spatial locations of the maximum rainfall inferred by the SMART-R and the terrestrial gages are also offset by 1.6 km, with terrestrial values shifted easterly. The observation that the SMART-R images high rainfall intensities recorded by rain gages suggests that this technology has the ability to quantitatively estimate the spatial distribution over larger areas at a high resolution. Discrepancies on the storm scale, however, need to be investigated further, but we are optimistic that such high resolution data from the SMART-R and the terrestrial gages may lead to the effective application of a prototype debris-flow warning system where such processes put lives at risk.

  18. Mental health, life functioning and risk factors among people exposed to frequent natural disasters and chronic poverty in Vietnam.

    PubMed

    Pollack, Amie Alley; Weiss, Bahr; Trung, Lam Tu

    2016-06-01

    People living in low- and middle-income countries (LMIC) are at increased risk for exposure to major natural disasters, which places them at increased risk for mental health problems. Evidence is less clear, however, regarding the effects of less severe but more frequent natural disasters, which are likely to increase due to global climate change. To examine the mental health and life functioning, and their predictors, of people living in central coastal Vietnam, an area characterized by high risk for natural disasters and poverty. 1000 individuals were randomly selected from 5 provinces in central coastal Vietnam. Individuals were assessed cross-sectionally for exposure to major storms and other traumatic events (Post-traumatic Diagnostic Scale; PDS), financial stress (Chronic Financial Stress Scale), depression (PHQ-9), anxiety (GAD-7), PTSD (PDS), somatic syndrome (SCL-90-R), alcohol dependency (ICD-10), self-perceived general physical health (SF 36), and functional impairment (PDS life functioning section); caseness was determined using the various measures' algorithms. 22.7% percent of the sample ( n =227) met caseness criteria in one or more mental health domains, and 22.1% ( n =221) reported moderate to severe functional impairment. Lifetime exposure to typhoons and other major storms was 99% ( n =978), with 77% ( n =742) reporting traumatic major storm exposure. Moderate to high levels of financial stress were reported by 30% ( n =297). Frequency of exposure to major storms was not associated with increased risk for mental health problems but traumatic exposure to a major storm was. Overall, the strongest predictor of mental health problems was financial stress. Number of traumatic typhoons and other major storms in turn were significant predictors (r 2 = .03) of financial stress. The primary predictor of alcohol dependency was male gender, highlighting the importance of gender roles in development of alcohol abuse in countries like Vietnam. Individuals living in central coastal Vietnam have elevated rates of PTSD, somatic syndrome, and functional impairment but not depression or anxiety. Financial stress was the strongest predictor of mental health problems. Results suggest the importance of conducting broad assessments when providing mental health support for disaster-impacted communities. Study results suggest that one indirect consequence of predicted global climate change may be increased prevalence of mental health problems in communities such as that assessed in the present study, due to increased risk for traumatic storm-related exposure and through indirect effects on financial stress, but not through a general increased risk for major storms. Such results also indicate that when supporting LMIC communities that have experienced natural disasters, it will be important to consider the broader community context including poverty, in addition to the direct effects of the disaster.

  19. Snow in southwestern Europe

    NASA Image and Video Library

    2015-02-18

    In February 2015, New England was not alone in dealing with the wrath of Old Man Winter. Thick snow blanketed mountain ranges in southwestern Europe after a winter storm pushed through the region in early February. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the snow-covered peaks of the Cantabrian Mountains, the Pyrenees, the Alps, and Massif Central on February 9, 2015. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Optimal index related to the shoreline dynamics during a storm: the case of Jesolo beach

    NASA Astrophysics Data System (ADS)

    Archetti, Renata; Paci, Agnese; Carniel, Sandro; Bonaldo, Davide

    2016-05-01

    The paper presents an application of shoreline monitoring aimed at understanding the response of a beach to single storms and at identifying its typical behaviour, in order to be able to predict shoreline changes and to properly plan the defence of the shore zone. On the study area, in Jesolo beach (northern Adriatic Sea, Italy), a video monitoring station and an acoustic wave and current profiler were installed in spring 2013, recording, respectively, images and hydrodynamic data. The site lacks previous detailed hydrodynamic and morphodynamic data. Variations in the shoreline were quantified in combination with available near-shore wave conditions, making it possible to analyse the relationship between the shoreline displacement and the wave features. Results denote characteristic patterns of beach response to storm events, and highlight the importance of improving beach protection in this zone, notwithstanding the many interventions experimented in the last decades. A total of 31 independent storm events were selected during the period October 2013-October 2014, and for each of them synthetic indexes based on storm duration, energy and maximum wave height were developed and estimated. It was found that the net shoreline displacements during a storm are well correlated with the total wave energy associated to the considered storm by an empirical power law equation. A sub-selection of storms in the presence of an artificial dune protecting the beach (in the winter season) was examined in detail, allowing to conclude that the adoption of this coastal defence strategy in the study area can reduce shoreline retreat during a storm. This type of intervention can sometimes contribute to prolonging overall stability not only in the replenished zone but also in downdrift areas. The implemented methodology, which confirms to be economically attractive if compared to more traditional monitoring systems, proves to be a valuable system to monitor beach erosive processes and provide detailed indications on how to better plan beach-maintenance activities. The presented methodology and the proposed results can therefore be used as a basis for improving the collaboration between coastal scientists and managers to solve beach erosion problems, in locations where data are scattered and sporadic.

  1. A Brief 30-Year Review: Research Highlights from Lightning Mapping Systems 1970-2000

    NASA Astrophysics Data System (ADS)

    MacGorman, D. R.

    2016-12-01

    Modern lightning mapping began in the 1970s, the decade in which VHF mapping systems, acoustic mapping systems, and ground strike locating systems were introduced. Adding GPS synchronization of VHF systems in the late 1990s enabled real-time VHF mapping systems to be deployed more extensively. Data these systems provided by 2000 revolutionized our understanding of how storms produce lightning. Among key results: Electrostatics, not electrodynamics, governs where lightning is initiated and where it propagates, contrary to early expectations. Lightning is initiated in a region of large electric field magnitude, typically between a positive charge region and a negative charge region. The geometry of a storm's charge regions governs the spatial extent of each end of the flash. The flash initially propagates bidirectionally toward the two charge regions that initiated it, and once it reaches the charge regions and maximizes the ambient potential difference spanned by the flash structure, it extends through each charge region's ambient electric potential well until the total electric field magnitude at the ends of the flash drops below the threshold for continued propagation. The typical charge distribution producing a cloud-to-ground flash is a region of charge of the polarity being lowered to ground, above a lesser amount of charge of the opposite polarity; the lower region has too little charge to capture the downward propagating channel. Contrary to previous understanding, naturally occurring cloud-to-ground lightning often lowers positive charge to ground, instead of the usual negative charge, in several situations, including winter storms, stratiform precipitation regions, some severe storms, and storms on the High Plains of the United States. The reason cloud-to-ground activity in some storms is dominated by flashes that lower positive charge to ground is that the polarity of the main charge regions in those storms is inverted from the usual polarity, with the main mid-level charge being positive and the main upper-level charge being negative. This strongly implies that the dominant non-inductive electrification mechanism is inverted in those storms, probably because the liquid water content in the mixed phase region is larger than in most storms.

  2. Solute sources in stream water during consecutive fall storms in a northern hardwood forest watershed: A combined hydrological, chemical and isotopic approach

    USGS Publications Warehouse

    Mitchell, M.J.; Piatek, K.B.; Christopher, S.; Mayer, B.; Kendall, C.; McHale, P.

    2006-01-01

    Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3- (??15N and ??18O) and SO 42- (??34S and ??18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14-18, 18.5 mm; Storm 2: Sept. 21-24, 33 mm; Storm 3: Sept. 27-29, 42.9 mm; Storm 4: Oct. 16-21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3- , and SO 42- , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 42- and NO 3- . There was a strong inverse relationship between SO 42- concentrations and ??34S values suggesting the importance of S biogeochemical redox processes in contributing to SO 42- export. The isotopic composition of NO 3- in stream water indicated that this N had been microbially processed. Linkages between SO 42- and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3- suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change. ?? Springer 2006.

  3. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  4. Assessing the spatial variability of mountain precipitation in California's Sierra Nevada using the Airborne Snow Observatory

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Deems, J. S.; Painter, T. H.; Dozier, J.

    2016-12-01

    In California's Sierra Nevada, 10 or fewer winter storms are responsible for most of the annual precipitation, which falls mostly as snow. Presently, surface stations are used to measure the dynamics of mountain precipitation. However, even in places like the Sierra Nevada—one of the most gauged regions in the world—the paucity of surface stations can lead to large errors in precipitation thereby biasing both total water year and short-term streamflow forecasts. Remotely sensed snow depth and water equivalent, at a time scale that resolves storms, might provide a novel solution to the problems of: (1) quantifying the spatial variability of mountain precipitation; and (2) assessing gridded precipitation products that are mostly based on surface station interpolation. NASA's Airborne Snow Observatory (ASO), an imaging spectrometer and LiDAR system, has measured snow in the Tuolumne River Basin in California's Sierra Nevada for the past four years, 2013-2016; and, measurements will continue. Principally, ASO monitors the progression of melt for water supply forecasting, nonetheless, a number of flights bracketed storms allowing for estimates of snow accumulation. In this study we examine a few of the ASO recorded storms to determine both the basin and subbasin orographic effect as well as the spatial patterns in total precipitation. We then compare these results to a number of gridded climate products and weather models including: Daymet, the Parameter-elevation Regressions on Independent Slopes Model (PRISM), the North American Land Data Assimilation System (NLDAS-2), and the Weather Research and Forecasting (WRF) model. Finally, to put each ASO recorded storm into context, we use a climatology produced from snow pillows and the North American Regional Reanalysis (NARR) for 2014-2016 to examine key accumulation events, and classify storms based on their integrated water vapor flux.

  5. Variations in turbidity in streams of the Bull Run Watershed, Oregon 1989-90

    USGS Publications Warehouse

    LaHusen, Richard G.

    1994-01-01

    In this study, turbidity is used to help explain spatial and temporal patterns of erosion and sediment transport.Automated turbidity sampling in streams in the Bull Run watershed during water years 1989 and 1990, showed turbidity levels, in general, are remarkably low, with levels below 1 NTU (nephelometric turbidity unit) about 90 percent of the time. However, ephemeral increases in turbidity in streams of the Bull Run watershed occur in direct response to storms. Turbidity is caused by abundant organic particles as well as by materials eroded from unconsolidated geologic materials located along roads, stream channels, or stream banks. Seasonal and within-storm decreases in turbidity are attributed to depletion of accumulated particle supplies. During winter storms, erosion caused by rainfall intensities greater than 0.25 inches in 3 hours is sufficient to increase stream turbidities from less than 1 NTU to as much as 100 NTUs. Large-scale storms or floods cause persistent effects because mass erosion or scour of channel armor increases available sediment supply.Spatial variability in turbidity is evident only during storms when erosion and sediment-transport processes are active. Parts of the Rhododendron Formation are particularly prone to channel and mass erosion during large storms. Eroding glacial deposits in sections of Log Creek affected by a 1964 dam-break flood also cause high stream turbidity relative to other streams in the watershed.Analysis of characteristics of magnetic minerals in sediment sources and deposits was unproductive as a means to identify source areas of suspended sediment because high concentrations of magnetite in all samples of the volcanic rocks masked differences of less magnetic minerals in the samples.

  6. Seasonal Contribution of Mineral Dust and Otlher Major Components to Particulate Matter at Two Remote Sites in Central Asia

    EPA Science Inventory

    Dust storms are significant contributors to ambient levels of particulate matter (PM) in many areas of the world. Central Asia, an area that is relatively understudied in this regard, is anticipated to be affected by dust storms due to its proximity to several major deserts that ...

  7. Variability of Surface pollutants and aerosol concentration over Abu Dhabi, UAE - sources, transport and current levels

    NASA Astrophysics Data System (ADS)

    Phanikumar, Devulapalli V.; Basha, Ghouse; Ouarda, Taha B. M. J.

    2015-04-01

    In the view of recent economic, industrial, and rapid development, Abu Dhabi (24.4oN; 54.4oE; 27m msl) has become one of the most populated regions in the world despite of extreme heat, frequent dust storms, and with distinctive topography. The major sources of air pollution are from the dust and sand storms, greenhouse gas emissions, and to some extent from industrial pollution. In order to realize the accurate and comprehensive understanding of air quality and plausible sources over this region, we have made a detailed analysis of three years simultaneous measurements during 2011-13 of pollutants such as O3, SO2, NO2, CO, and PM10 concentrations. Diurnal variation of meteorological parameters such as temperature and wind speed/relative humidity clearly shows daytime maximum/minimum in summer followed by pre-monsoon, post-monsoon and winter. The prevailing winds over this region are mostly from northwesterly direction (Shamal wind). Diurnal wind pattern showed a clear contrast with the majority of the wind pattern during nighttime and early morning is from the westerly/northwesterly and daytime is from southwesterly/southeasterly directions. The diurnal pattern of O3 shows minimum during 08 LT and increases thereafter reaching maximum at 17 LT and decreases during nighttime. However, the diurnal pattern of SO2 and NO2 show a peak at ~ 08 LT and dip at ~ 14 LT during all the seasons with some variability in each season. On the other hand, the diurnal pattern of CO shows a peculiar picture of elevated levels during daytime peaking at ~ 10 LT (prominent in summer and post-monsoon) followed by a sharp decrease and minimum is ~14 LT. PM10 concentration has an early morning peak at ~ 02 LT and then decreases to a minimum value at ~11 LT and again increases in the afternoon hours (maximum at ~17 LT) depicting a forenoon-afternoon asymmetry. Monthly variation of PM10 shows maximum in pre-monsoon season and minimum in winter. Our observations show the diurnal pattern of pollutants are in contrast with the diurnal pattern of wind speed as evident from the previous observations. Wind rose diagram of pollutants reveal that the dominant source directions are scattered from northwesterly to southwesterly. Our results (2011-13) are compared with earlier observations from the same region (2007-08) and no alarming differences were observed in the pollutant levels. Our observations are discussed in the light of current understanding of pollutants sources over this region.

  8. Coliform contamination of a coastal embayment: Sources and transport pathways

    USGS Publications Warehouse

    Weiskel, P.K.; Howes, B.L.; Heufelder, G.R.

    1996-01-01

    Fecal bacterial contamination of nearshore waters has direct economic impacts to coastal communities through the loss of shellfisheries and restrictions of recreational uses. We conducted seasonal measurements of fecal coliform (FC) sources and transport pathways contributing to FC contamination of Buttermilk Bay, a shallow embayment adjacent to Buzzards Bay, MA. Typical of most coastal embayments, there were no direct sewage discharges (i.e., outfalls), and fecal bacteria from human, domestic animal, and wildlife pools entered open waters primarily through direct deposition or after transport through surface waters or groundwaters. Direct fecal coliform inputs to bay waters occurred primarily in winter (December-March) from waterfowl, ~33 x 1012 FC yr-1 or ~67% of the total annual loading. Effects of waterfowl inputs on bay FC densities were mitigated by their seasonality, wide distribution across the bay surface, and the apparent limited dispersal from fecal pellets. On-site disposal of sewage by septic systems was the single largest FC source in the watershed-embayment system, 460 x 1012 FC yr-1, but due to attenuation during subsurface transport only a minute fraction, < 0.006 x 1012 FC yr-1, reached bay waters (<0.01% of annual input to bay). Instead, surface water flows, via storm drains and natural streams under both wet- and dry-weather conditions, contributed the major terrestrial input, 12 x 1012 FC yr-1 (24% of annual input), all from animal sources. Since most of the surface water FC inputs were associated with periodic, short-duration rain events with discharge concentrated in nearshore zones, wet-weather flows were found to have a disproportionately high impact on nearshore FC levels. Elution of FC from shoreline deposits of decaying vegetation (wrack) comprised an additional coliform source. Both laboratory and field experiments suggest significant elution of bacteria from wrack, ~3 x 1012 FC yr-1 on a bay-wide basis (6% of annual input), primarily by periodic tidal flooding and possibly by major rain events. Release of coliforms during resuspension of subtidal sediments was estimated to be a minor source in this system (<1.5 x 1012 FC yr-1 or < 3% of annual input), primarily associated with large storm events in the fall and winter. Based upon the relative source strengths and the spatial and temporal patterns of FC input to Buttermilk Bay, it appears that management practices in similar settings should account for migratory waterfowl, but remediation efforts should focus on the redirection of stormwater runoff through the groundwater transport pathway.

  9. Southern California Beaches during the El Niño Winter of 2009/2010

    NASA Astrophysics Data System (ADS)

    Doria, A.; Guza, R. T.; Yates, M. L.; O'Reilly, W.

    2010-12-01

    Storms during the El Niño winter 2009/2010 produced prolonged periods of energetic waves, and severely eroded southern California beaches. Sand elevations were measured at several beaches over alongshore spans of a few km, for up to 5 years, on cross-shore transects extending from the back beach to about 8 meters depth, and spaced every 100 meters alongshore. Wave conditions were estimated using the CDIP network of directional wave buoys. At the Torrey Pines Outer Buoy, the median significant wave height for January 2010 was the largest for any month in the past 10 year record. Anomalous changes in beach sand level, characterized as the excess volume displaced relative to average-winter profiles, were extreme in both the amount of shoreline erosion and the amount of offshore accretion. Anomalous shoreline erosion volumes were almost twice as large as the second-most severe winter, with vertical deviations as large as -2.3m. Anomalous offshore accretion, in depths between 4-8m and as large as 1.5m vertical, was also exceptional. Beach widths, based on the cross-shore location of the Mean Sea Level (MSL) contour, were narrower than measured in previous winters. The accuracy of shoreline (MSL) location, predicted using an existing shoreline change equilibrium model driven with the estimated waves, will be assessed. Beach recovery, based on ongoing surveys, will also be discussed.

  10. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States

    USGS Publications Warehouse

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S.; Herbert, Timothy; Andreasen, Dyke

    2012-01-01

    The water cycle in the western U.S. changed dramatically over glacial cycles. In the last 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation is hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  11. Out of the tropics: the Pacific, Great Basin lakes, and late Pleistocene water cycle in the western United States.

    PubMed

    Lyle, Mitchell; Heusser, Linda; Ravelo, Christina; Yamamoto, Masanobu; Barron, John; Diffenbaugh, Noah S; Herbert, Timothy; Andreasen, Dyke

    2012-09-28

    The water cycle in the western United States changed dramatically over glacial cycles. In the past 20,000 years, higher precipitation caused desert lakes to form which have since dried out. Higher glacial precipitation has been hypothesized to result from a southward shift of Pacific winter storm tracks. We compared Pacific Ocean data to lake levels from the interior west and found that Great Basin lake high stands are older than coastal wet periods at the same latitude. Westerly storms were not the source of high precipitation. Instead, air masses from the tropical Pacific were transported northward, bringing more precipitation into the Great Basin when coastal California was still dry. The changing climate during the deglaciation altered precipitation source regions and strongly affected the regional water cycle.

  12. The light ion trough.

    NASA Technical Reports Server (NTRS)

    Taylor, H. A., Jr.

    1972-01-01

    A distinct feature of the ion composition results from the OGO-2, 4 and 6 satellites is the light ion trough, wherein the mid-latitude concentrations of H+ and He+ decrease sharply with latitude. In contrast to the 'main trough' in electron density observed primarily as a nightside phenomenon, the light ion trough persists during both day and night. For daytime winter hemisphere conditions and for all seasons during night, the mid-latitude light ion concentration decrease is a pronounced feature. In the dayside summer and equinox hemispheres, the rate of light ion decrease with latitude is comparatively gradual, and the trough boundary is less well defined, particularly for quiet magnetic conditions. In response to magnetic storms, the light ion trough minimum moves equatorward, and deepens, consistent with earlier evidence of the contraction of the plasmasphere in response to storm time enhancements in magnetospheric plasma convection.

  13. Clouds Near Mie Crater

    NASA Image and Video Library

    2003-12-13

    Mie Crater, a large basin formed by asteroid or comet impact in Utopia Planitia, lies at the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) red wide angle image. The crater is approximately 104 km (65 mi) across. To the east and southeast (toward the lower right) of Mie, in this 5 December 2003 view, are clouds of dust and water ice kicked up by local dust storm activity. It is mid-winter in the northern hemisphere of Mars, a time when passing storms are common on the northern plains of the red planet. Sunlight illuminates this image from the lower left; Mie Crater is located at 48.5°N, 220.3°W. Viking 2 landed west/southwest of Mie Crater, off the left edge of this image, in September 1976. http://photojournal.jpl.nasa.gov/catalog/PIA04930

  14. Quantifying Precipitation Undercatch in a Semi-arid Watershed in Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Demaria, E. M.; Keefer, T.; Goodrich, D. C.; Heilman, P.; Smith, J. R.; Radford, C. D.; Kautz, M. A.

    2017-12-01

    The observed difference in precipitation measured at above ground level (AGL) and ground-surface (PIT) rain gauges is referred to as wind-induced undercatch (U). Quantification of U is important to accurately assess the water balance and eco-hydrologic response of watersheds and for the modeling of precipitation driven processes. U is a well-known phenomenon having been documented for over one hundred years. Neff (1977), among many others, provides historical perspective on the "Jevons" effect, the increase in U with increasing height of the rain gauge above the earth's surface. U is primarily an effect of wind on precipitation whereby wind and precipitation particles interact such that U increases with increasing wind velocity and increases with smaller and lighter particles, liquid and solid. In recent decades much research on U has been undertaken in field, laboratory, and numeric modeling studies in the U.S. and Europe (e.g. Sieck et al. 2007). Much variability of U is exhibited by years, seasons and storm events. The Walnut Gulch Experimental Watershed and Long Term Agro-ecosystem Research (LTAR) site located in southeastern Arizona has been measuring precipitation at a AGL and PIT rain gauge, wind profiles, and drop size distribution for the period 2010-2015. Our results show that the cumulative precipitation difference between AGL and PIT average 6% for the six year period, but vary from 1% to 12% annually and more so seasonally. Although winter (Nov 1 - Mar 31) has greater U expressed as percentage, more than 2/3 of the total U amount occurs in summer (Jun 15-Oct 15), in the same proportion as seasonal precipitation. Regression estimated event U is greater than daily and cumulative, but may be much greater for individual storm events. The undercatch amount is linearly related to storm event intensity, increasing with increasing intensity, but the U percentage is non-linearly related and increases with decreasing intensity. In agreement with previous studies, U percentage is greater for shorter intervals, greater in winter during non-convective events than summer convective events at low intensities, and greater for faster wind speeds. Similar results are found for U amount for winter events and for wind speeds, but U amount is greater for longer intervals.

  15. Pacific Continental Shelf Environmental Assessment (PaCSEA): aerial seabird and marine mammal surveys off northern California, Oregon, and Washington, 2011-2012

    USGS Publications Warehouse

    Adams, Josh; Felis, Jonathan J.; Mason, John W.; Takekawa, John Y.

    2014-01-01

    Marine birds and mammals comprise an important community of meso- and upper-trophic-level predators within the northern California Current System (NCCS). The NCCS is located within one of the world’s four major eastern boundary currents and is characterized by an abundant and diverse marine ecosystem fuelled seasonally by wind-driven upwelling which supplies nutrient-rich water to abundant phytoplankton inhabiting the surface euphotic zone. The oceanographic conditions throughout the NCCS fluctuate according to well-described seasonal, inter-annual, and decadal cycles. Such oceanographic variability can influence patterns in the distribution, abundance, and habitat use among marine birds and mammals. Although there are an increasing number of studies documenting distributions and abundances among birds and mammals in various portions of the NCCS, there have been no comprehensive, large-scale, multi-seasonal surveys completed throughout this region since the early 1980s (off northern California; Briggs et al. 1987) and early 1990s (off Oregon and Washington; Bonnell et al. 1992, Briggs et al. 1992, Green et al. 1992). During 2011 and 2012, we completed the Pacific Continental Shelf Environmental Assessment (PaCSEA) which included replicated surveys over the continental shelfslope from shore to the 2000-meter (m) isobath along 32 broad-scale transects from Fort Bragg, California (39° N) through Grays Harbor, Washington (47° N). Additionally, surveys at a finer scale were conducted over the continental shelf within six designated Focal Areas: Fort Bragg, CA; Eureka, CA; Siltcoos Bank, OR; Newport, OR; Nehalem Bank, OR; and Grays Harbor, WA. We completed a total of 26,752 km of standardized, low-elevation aerial survey effort across three bathymetric domains: inner-shelf waters ( Overall, we recorded 15,403 sightings of 59,466 individual marine birds (12 families, 54 species). During winter, seven species groupings comprised >90% of the total number of birds counted (19,033) with Common Murres (Uria aalge) representing the majority of individuals counted (70.4% of total). The remaining six most abundant taxa included: Surf/White-winged Scoters (Melanitta perspicillata/M. fusca; 4.8% of total), Herring/Thayer’s Gulls (Larus argentatus/L. thayeri; 3.8% of total), Cassin’s Auklets (Ptychoramphus aleuticus; 3.8% of total), Glaucous-winged Gulls (Larus glaucescens; 3.7% of total), Black-legged Kittiwakes (Rissa tridactyla; 2.0% of total), and Western Gulls (Larus occidentalis; 1.9% of total). During summer, five species comprised >95% of the total number of birds counted (17,063) with the majority comprised of Common Murres (54.1% of total) and Sooty Shearwaters (Puffinus griseus; 34.4% of total). The remaining most abundant three taxa included: Fork-tailed Storm-Petrels (Oceanodroma furcata; 3.3% of total), Western Gulls (2.1% of total), and Leach’s Storm-Petrels (Oceanodroma leucorhoa; 1.1% of total). During fall, nine species comprised >85% of the total number of birds counted (23,376) with the majority comprised of Common Murres (50.0% of total) and Sooty Shearwaters (10.5% of total). The remaining seven taxa included Cassin’s Auklets (5.2% of total), Surf/White-winged Scoters (5.1% of total), Fork-tailed Storm-Petrels (3.8% of total), Red/Red-necked Phalaropes (Phalaropus fulicarius/P. lobatus; 3.2% of total), California Gulls (Larus californicus; 3.1% of total), Northern Fulmars (Fulmarus glacialis; 2.7% of total), and Sabine’s Gulls (Xema sabini; 2.2% of total). Throughout the entire PaCSEA survey area, average densities (± SE) at sea for all marine birds combined were similar between fall (23.7 ± 1.9 birds km-2) and winter (24.0 ± 1.9 birds km-2) and least during summer (16.3 ± 2.2 birds km-2). Marine bird densities at sea varied according to bathymetric domain and season. Throughout the entire PaCSEA study area average densities (± SE) for all marine birds combined were greatest over the inner-shelf domain (-2) and similar during winter (37.4 ± 4.6 birds km-2) and summer (37.5 ± 6.4 birds km-2). Within the outer-shelf domain (100 – 200-m depth), average densities for all marine birds combined were greatest during winter (34.6 ± 4.2 birds km-2), lesser during fall (16.2 ± 1.7 birds km-2), and least during summer (6.9 ± 1.1 birds km-2). Within the farthest offshore waters over the continental slope domain (200 – 2000-m depth) average densities for all marine birds combined were greatest during fall (10.0 ± 2.2 birds km-2) and winter (9.3 ± 1.5 birds km-2), and lesser during summer (6.2 ± 1.4 birds km-2). We observed 16 cetacean species and five pinniped species. Among the Mysticeti (baleen whales), humpback whales (Megaptera novaeangliae) were most frequently observed (114 sightings of 264 individuals) during summer and fall mostly over the outer-shelf and slope waters, however, individuals were also seen within the Siltcoos, Nehalem, Fort Bragg, and Eureka Focal Areas. We recorded 11 Odontoceti (toothed whale) species. Harbor porpoises (Phocoena phocoena) were the most frequently sighted (164 sightings of 270 individuals). Harbor porpoises were present year-round and most frequently sighted within the inner-shelf domain throughout the entire study area in all seasons. Harbor porpoises occurred in all six Focal Areas, with noteworthy aggregations within the Eureka, Siltcoos, and Grays Harbor Focal Areas. We recorded 246 sightings of 375 individual pinnipeds (5 species). California sea lions (Zalophus californianus) were the most frequently sighted and were present year-round with slightly more sightings recorded during the fall. California sea lions showed a decreasing frequency of sightings and relative abundance with distance from shore across the bathymetric domains surveyed, being most frequently observed over the inner-shelf. Northern elephant seals (Mirounga angustirostris), harbor seals (Phoca vitulina), and northern fur seals (Callorhinus ursinus) were observed occasionally during all seasons with harbor seals occurring nearshore (usually within 10 km of the coast) and northern fur seals almost exclusively beyond the shelf break (> 200-m depth), especially during winter off Oregon and Washington. Northern (Steller’s) sea lions (Eumetopias jubatus) were uncommonly sighted during winter and fall.

  16. Data requirements in support of the marine weather service program

    NASA Technical Reports Server (NTRS)

    Travers, J.; Mccaslin, R. W.; Mull, M.

    1972-01-01

    Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.

  17. Novel Stimulated Electromagnetic Emission Observations with Artificial Airglow Using RF Excitation with HAARP

    NASA Astrophysics Data System (ADS)

    Briczinski, S. J., Jr.; Bernhardt, P. A.; Siefring, C. L.; Michell, R.; Hampton, D. L.; Watkins, B. J.; Bristow, W. A.

    2014-12-01

    Neutral hydrogen plays an important role in determining the state of the plasmasphere and its response to forcing from geomagnetic storms. Hydrogen's solar cycle variation is counterintuitive: there is more hydrogen at solar minimum at 300 km that there is at solar maximum. Similarly there is more hydrogen in winter than in summer and hydrogen density maximizes in the morning. In this presentation we describe these variations and consider some possible causes for them.

  18. National Economic Development Procedures Manual. Coastal Storm Damage and Erosion

    DTIC Science & Technology

    1991-09-01

    study area is temperate with warm summers and moderate winters. The annual temperature averages approximately 53 degrees Fahrenheit (*F). On average ...January is the coolest month with a mean temperature of 32°F and July is the warmest month. The average annual precipitation is about 45 inches with...0704.0188 Public rooing burden for rhr$ LoIlecton of ,nformaton .s estma eO to average I hour oer resiorse including the time for resrewing inttuctiOn

  19. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  20. Timeslice experiments for understanding regional climate projections: applications to the tropical hydrological cycle and European winter circulation

    NASA Astrophysics Data System (ADS)

    Chadwick, Robin; Douville, Hervé; Skinner, Christopher B.

    2017-11-01

    A set of atmosphere-only timeslice experiments are described, designed to examine the processes that cause regional climate change and inter-model uncertainty in coupled climate model responses to CO_2 forcing. The timeslice experiments are able to reproduce the pattern of regional climate change in the coupled models, and are applied here to two cases where inter-model uncertainty in future projections is large: the tropical hydrological cycle, and European winter circulation. In tropical forest regions, the plant physiological effect is the largest cause of hydrological cycle change in the two models that represent this process. This suggests that the CMIP5 ensemble mean may be underestimating the magnitude of water cycle change in these regions, due to the inclusion of models without the plant effect. SST pattern change is the dominant cause of precipitation and circulation change over the tropical oceans, and also appears to contribute to inter-model uncertainty in precipitation change over tropical land regions. Over Europe and the North Atlantic, uniform SST increases drive a poleward shift of the storm-track. However this does not consistently translate into an overall polewards storm-track shift, due to large circulation responses to SST pattern change, which varies across the models. Coupled model SST biases influence regional rainfall projections in regions such as the Maritime Continent, and so projections in these regions should be treated with caution.

Top