Science.gov

Sample records for making energy transition

  1. Making energy efficiency happen

    NASA Astrophysics Data System (ADS)

    Hirst, E.

    1991-04-01

    Improving energy efficiency is the least expensive and most effective way to address simultaneously several national issues. Improving efficiency saves money for consumers, increases economic productivity and international competitiveness, enhances national security by lowering oil imports, and reduces the adverse environmental effects of energy production. This paper discusses some of the many opportunities to improve efficiency, emphasizing the roles of government and utilities.

  2. Making Sense of Energy

    ERIC Educational Resources Information Center

    Boohan, Richard

    2014-01-01

    This article describes an approach to teaching about the energy concept that aims to be accessible to students starting in early secondary school, while being scientifically rigorous and forming the foundation for later work. It discusses how exploring thermal processes is a good starting point for a more general consideration of the ways that…

  3. Planning and Decision Making for Care Transitions

    PubMed Central

    Sörensen, Silvia; Mak, Wingyun; Pinquart, Martin

    2015-01-01

    The need to plan for future health care and residential adjustments increases with age, growing frailty, and restrictions in coverage of long-term care and will continue to grow with population aging. Older adults’ lack of financial preparation for health care costs, insufficient knowledge about available options, and inadequate communication about care-related values has become an increasing public health challenge. This chapter describes a model of Preparation for Future Care (PFC), which encompasses different levels and domains of planning. Research about the extent to which planning is helpful in navigating care transitions is reviewed, and barriers and facilitators of planning including individual, familial, cultural, and national long-term care policy factors are discussed. Planning in the context of dementia and practical approaches that can be taken to enhance PFC is addressed, as well as recommendations for future research in the area of planning and decision making in the context of care transitions. PMID:26207079

  4. School to Work: Making the Transition.

    ERIC Educational Resources Information Center

    Academy for Educational Development, Washington, DC. National Inst. for Work and Learning.

    This publication describes the Academy for Educational Development's (AED's) vision and work in school-to-work transition and related areas. School-to-work transition is defined, and components of a successful school-to-work transition system are listed. The National Institute for Work and Learning (NIWL) is currently conducting an extensive study…

  5. Altitude transitions in energy climbs

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Cliff, E. M.; Kelley, H. J.

    1982-01-01

    The aircraft energy-climb trajectory for configurations with a sharp transonic drag rise is well known to possess two branches in the altitude/Mach-number plane. Transition in altitude between the two branches occurs instantaneously, a 'corner' in the minimum-time solution obtained with the energy-state model. If the initial and final values of altitude do not lie on the energy-climb trajectory, then additional jumps (crude approximations to dives and zooms) are required at the initial and terminal points. With a singular-perturbation approach, a 'boundary-layer' correction is obtained for each altitude jump, the transonic jump being a so-called 'internal' boundary layer, different in character from the initial and terminal layers. The determination of this internal boundary layer is examined and some computational results for an example presented.

  6. Making use of renewable energy

    SciTech Connect

    Johnston, J.C.

    1984-01-01

    This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source, small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.

  7. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  8. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  9. Making `Internal Thermal Energy' Visible

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    2004-09-01

    In a 1992 paper published in this journal, Uri Ganiel described a pair of model carts used to demonstrate elastic and inelastic collisions. The wooden carts had low-friction wheels and a steel-strip bumper on one end. On one of the carts, a number of brass washers were rigidly mounted in vertical stacks to a wooden framework. The other cart was similar except that the washers were tied to rubber bands that were stretched horizontally and diagonally across the framework. When the first cart was rolled into a wall it bounced off with only a small reduction in speed ("elastic" collision). The second cart, on the other hand, was found to come nearly to a complete stop upon colliding with the wall ("inelastic" collision). Following the instructions given in Ganiel's paper, I built a pair of carts and demonstrated them to introductory-level physics students at a large public university. It was interesting to find that many students were distracted by the different-looking structures of the two model carts.2 They thought the different distributions of washers between the carts resulted in the rubber-band cart bouncing back a significantly shorter distance than the rigid-rod one after they both collided with a wall at the same initial speed. Apparently, the students had difficulties in understanding the collisions and used surface features to reason about them. To avoid this superficial distraction and to help students visualize easily "where the kinetic energy goes in an inelastic collision," I modified the rigid-rod cart to have washers fixed on hollow aluminum rods mounted at four different levels horizontally and diagonally (see Fig. 1). The new pair of the model carts look very similar to each other: They have the same bumpers, same wheels, same distributions of washers, and same masses.

  10. Energy Transition Initiative: Islands Playbook (Book)

    SciTech Connect

    Not Available

    2015-01-01

    The Island Energy Playbook (the Playbook) provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

  11. An Institutional Approach to Understanding Energy Transitions

    NASA Astrophysics Data System (ADS)

    Koster, Auriane Magdalena

    Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will

  12. X-Ray Transition Energies Database

    National Institute of Standards and Technology Data Gateway

    SRD 128 X-Ray Transition Energies Database (Web, free access)   This X-ray transition table provides the energies and wavelengths for the K and L transitions connecting energy levels having principal quantum numbers n = 1, 2, 3, and 4. The elements covered include Z = 10, neon to Z = 100, fermium. There are two unique features of this data base: (1) a serious attempt to have all experimental values on a scale consistent with the International System of measurement (the SI) and (2) inclusion of accurate theoretical estimates for all transitions.

  13. Household energy management strategies in Bulgaria's transitioning energy sector

    NASA Astrophysics Data System (ADS)

    Carper, Mark Daniel Lynn

    Recent transition literature of post-socialist states has addressed the shortcomings of a rapid blanket implementation of neo-liberal policies and practices placed upon a landscape barren of the needed institutions and experiences. Included in these observations are the policy-making oversight of spatial socioeconomic variations and their individual and diverse methods of coping with their individual challenges. Of such literature addressing the case of Bulgaria, a good portion deals with the spatial consequences of restructuring as well as with embedded disputes over access to and control of resources. With few exceptions, studies of Bulgaria's changing energy sector have largely been at the state level and have not been placed within the context of spatial disparities of socioeconomic response. By exploring the variations of household energy management strategies across space, my dissertation places this resource within such a theoretical context and offers analysis based on respective levels of economic and human development, inherited material infrastructures, the organization and activities of institutions, and fuel and technological availability. A closed survey was distributed to explore six investigational themes across four geographic realms. The investigational themes include materials of housing construction, methods of household heating, use of electrical appliances, energy conservation strategies, awareness and use of energy conservation technologies, and attitudes toward the transitioning energy sector. The geographic realms include countrywide results, the urban-rural divide, regional variations, and urban divisions of the capital city, Sofia. Results conclude that, indeed, energy management strategies at the household level have been shaped by multiple variables, many of which differ across space. These variables include price sensitivity, degree of dependence on remnant technologies, fuel and substitute availability, and level of human and

  14. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  15. Energy management during the space shuttle transition.

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1972-01-01

    An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the 'jump' to the 'front-side of the L/D curve' need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real-time trajectory control are discussed.

  16. Energy management during the space shuttle transition

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.

    1972-01-01

    An approach to calculating optimal, gliding flight paths of the type associated with the space shuttle's transition from entry to cruising flight is presented. Kinetic energy and total energy (per unit weight) replace velocity and time in the dynamic equations, reducing the dimension and complexity of the problem. The capability for treating integral and terminal penalties (as well as Mach number effects) is retained in the numerical optimization; hence, stability and control boundaries can be observed as trajectories to the desired final energy, flight path angle, and range are determined. Numerical results show that the jump to the front-side of the L/D curve need not be made until the end of the transition and that the dynamic model provides a conservative range estimate. Alternatives for real time trajectory control are discussed.

  17. Aspects of energy transitions: History and determinants

    NASA Astrophysics Data System (ADS)

    O'Connor, Peter A.

    Energy intensity in the U.S. from 1780 to 2010 shows a declining trend when traditional energy is included, in contrast to the "inverted U-curve" seen when only commercial energy is considered. The analysis quantifies use of human and animal muscle power, wind and water power, biomass, harvested ice, fossil fuels, and nuclear power. Historical prices are provided for many energy resources. The analysis reaffirms the importance of innovation in conversion technologies in energy transitions. An increase in energy intensity in the early 20th century is explained by diminishing returns to pre-electric manufacturing systems, which produced a transformation in manufacturing. In comparison to similar studies for other countries, the U.S. has generally higher energy intensity. A population-weighted series of heating degree days and cooling degree days partially explains differences in energy intensity. Series are developed for 231 countries and territories with multiple reference temperatures, with a "wet-bulb" series accounting for the effects of humidity. Other variables considered include energy prices, income per capita, and governance indices. A panel regression of thirty-two countries from 1995 to 2010 establishes GDP per capita and share of primary energy as determinants of energy intensity, but fails to establish statistical significance of the climate variables. A group mean regression finds average heating and cooling degree days to be significant predictors of average energy intensity over the study period, increasing energy intensity by roughly 1.5 kJ per 2005 international dollar for each annual degree day. Group mean regression results explain differences in countries' average energy intensity, but not changes within a country over time. Energy Return on Investment (EROI) influences the economic competitiveness and environmental impacts of an energy resource and is one driver of energy transitions. The EROI of U.S. petroleum production has declined since 1972

  18. Making an Energy Conservation Program Work.

    ERIC Educational Resources Information Center

    Rump, Erwin E.; Hunter, James L.

    The first step of an energy conservation program is to monitor energy consumption. A system is explained that, in order to determine which buildings are energy efficient (considering all types of energy that a building might use), monitors total energy consumption. All such consumptions can be reduced to a common denominator: Barrels of Energy…

  19. Vibrational energy transfer dynamics in ruthenium polypyridine transition metal complexes.

    PubMed

    Fedoseeva, Marina; Delor, Milan; Parker, Simon C; Sazanovich, Igor V; Towrie, Michael; Parker, Anthony W; Weinstein, Julia A

    2015-01-21

    Understanding the dynamics of the initial stages of vibrational energy transfer in transition metal complexes is a challenging fundamental question which is also of crucial importance for many applications, such as improving the performance of solar devices or photocatalysis. The present study investigates vibrational energy transport in the ground and the electronic excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2, a close relative of the efficient "N3" dye used in dye-sensitized solar cells. Using the emerging technique of ultrafast two-dimensional infrared spectroscopy, we show that, similarly to other transition-metal complexes, the central Ru heavy atom acts as a "bottleneck" making the energy transfer from small ligands with high energy vibrational stretching frequencies less favorable and thereby affecting the efficiency of vibrational energy flow in the complex. Comparison of the vibrational relaxation times in the electronic ground and excited state of Ru(4,4'-(COOEt)2-2,2-bpy)2(NCS)2 shows that it is dramatically faster in the latter. We propose to explain this observation by the intramolecular electrostatic interactions between the thiocyanate group and partially oxidised Ru metal center, which increase the degree of vibrational coupling between CN and Ru-N modes in the excited state thus reducing structural and thermodynamic barriers that slow down vibrational relaxation and energy transport in the electronic ground state. As a very similar behavior was earlier observed in another transition-metal complex, Re(4,4'-(COOEt)2-2,2'-bpy)(CO)3Cl, we suggest that this effect in vibrational energy dynamics might be common for transition-metal complexes with heavy central atoms.

  20. Making the Transition from Geoscience Geek to Policy Wonk

    NASA Astrophysics Data System (ADS)

    Rowan, L.

    2013-12-01

    Geoscientists are often drawn into policymaking, willingly or otherwise, because mapping a course of action for a specific outcome benefits from geoscientific expertise. Policy development, such as legislation or regulation regarding energy, water, minerals, soils, hazards, land use, and other Earth-based processes, is informed by the geosciences. Some geoscientists have moved fully into policymaking as full time policymakers for congressional offices, government agencies, think tanks, non-profits, foundations, industry, and other places. Geoscientists turned policymakers need good communication skills, patience, persistence, strategic forethought, agility, timing, an understanding of competing interests, and the courage to advance geoscientifically sound policy with the right people at the right time. Transitioning from the geeky world of geoscience to the wonky world of policy for a brief time or full time is possible, can be fulfilling as well as frustrating, and ultimately can have a profound impact on how society adapts to living with a dynamic Earth.

  1. Save Money and the Planet: Make Your School Energy Efficient.

    ERIC Educational Resources Information Center

    Lewis, Eleanor J.; Weltman, Eric

    1993-01-01

    Examines ways in which schools can cut their energy costs. Suggestions are provided for making school lighting more efficient, conducting a life-cycle cost analysis to facilitate energy efficiency, and developing funding for implementing energy-efficient projects. (GLR)

  2. Making the transition to large scale ethanol use in the US Transportation Sector

    SciTech Connect

    McNutt, B.; Bergeron, P.; Singh, M.; Stork, K.

    1996-04-01

    A recent US Department of Energy study indicates that under current conditions (e.g., taxes) cellulosic ethanol could be one of the key fuels used to achieve the 30% replacement fuel goals of the US Energy Policy Act, as well as significant reductions in greenhouse gas emissions from transportation. However, the study also concludes that transition costs and issues could be significant and need to be evaluated. This paper examines (a) the costs and issues associated with ethanol use in various submarkets and how these costs will affect market penetration and (b) the costs and issues resulting from ethanol production from alternative feedstocks and their effect on the likely penetration of various feedstocks. The paper concludes that: technical opportunities exist to make major transitions in ethanol end-use and production; the end use transition has few and relatively small hurdles; the transition in feedstocks and production faces more significant technological and investment hurdles; but continued low gasoline prices are such that policy stimuli will be needed to start the transition to large scale ethanol use and may be required to maintain a growing market.

  3. Noise induced transitions in rugged energy landscapes

    NASA Astrophysics Data System (ADS)

    Pradas, Marc; Duncan, Andrew; Kalliadasis, Serafim; Pavliotis, Greg

    2016-11-01

    External or internal random fluctuations are ubiquitous in many physical and technological systems and can play a key role in their dynamics often inducing a wide variety of complex spatiotemporal phenomena, including noise-induced spatial patterns and noise-induced phase transitions. Many of these phenomena can be modelled by noisy multiscale systems characterized by the presence of a wide range of different time- and lengthscales interacting nontrivially with each other. Here we analyse the effects of additive noise on systems that are described in terms of a rugged energy landscape, modelled as a slowly-varying multiscale potential perturbed by periodic multiscale fluctuations. Some examples of this problem include the dynamics of sessile droplets on heterogeneous substrates, crystallization and the evolution of protein folding. We demonstrate that the interplay between noise and the small scale fluctuations in the potential can give rise to a dramatically different bifurcation structure and dynamical behaviour compared to that of the original, unperturbed model. For instance, we observe several nontrivial and largely unexpected dynamic-state transitions controlled by the noise intensity. We characterize these transitions in terms of critical exponents.

  4. Divacancy binding energy, formation energy and surface energy of BCC transition metals using MEAM potentials

    NASA Astrophysics Data System (ADS)

    Uniyal, Shweta; Chand, Manesh; Joshi, Subodh; Semalty, P. D.

    2016-05-01

    The modified embedded atom method (MEAM) potential parameters have been employed to calculate the unrelaxed divacancy formation energy, binding energy and surface energies for low index planes in bcc transition metals. The calculated results of divacancy binding energy and vacancy formation energy compare well with experimental and other available calculated results.

  5. Energy Policy: A Decision-Making Simulation.

    ERIC Educational Resources Information Center

    Curow, Fred C., Jr.

    1985-01-01

    This simulation can be used to help secondary students examine the national and global energy issue. Students role-play various groups, including the Departments of Energy and Transportation, the U.S. Automobile Manufacturer's Association, oil lobby groups, conservation groups, citizen groups, a solar lobbying organization, and a nuclear power…

  6. Get Started: Energy Efficiency Makes More Sense Than Ever.

    ERIC Educational Resources Information Center

    Alban, Josh; Drabick, J. R.

    2003-01-01

    Describes the benefits of making school building more energy efficient. Provides examples of physical retrofits and behavioral changes to save energy costs. Describes four-step process to create an energy efficiency plan. Includes resources and information such as U.S. Department of Energy's Energy STAR program (www.energystar.gov). (PKP)

  7. Making More Light with Less Energy

    SciTech Connect

    Kuritzky, Leah; Jewell, Jason

    2013-07-18

    Representing the Center for Energy Efficient Materials (CEEM), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEEM is to discover and develop materials that control the interactions among light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.

  8. Making the Most of Waste Energy

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Thermo-Mechanical Systems Branch at NASA s Glenn Research Center is responsible for planning and conducting research efforts to advance thermal systems for space, aerospace, and non-aerospace applications. Technological areas pertain to solar and thermal energy conversion. For example, thermo-mechanical systems researchers work with gas (Stirling) and liquid/vapor (Rankine) systems that convert thermal energy to electrical power, as well as solar dynamic power systems that concentrate sunlight to electrical power. The branch s development of new solar and thermal energy technologies is propelling NASA s missions deep into unfamiliar territories of space. Solar dynamic power systems are actively improving the health of orbiting satellites, giving them longer life and a stronger radiation tolerance, thus, creating less need for on-orbit maintenance. For future missions, NASA may probe even deeper into the mysterious cosmos, with the adoption of highly efficient thermal energy converters that have the potential to serve as the source of onboard electrical power for satellites and spacecraft. Research indicates that these thermal converters can deliver up to 5 times as much power as radioisotope thermoelectric generators in use today, for the same amount of radioisotope. On Earth, energy-converting technologies associated with NASA s Thermo-Mechanical Systems Branch are being used to recover and transform low-temperature waste heat into usable electric power, with a helping hand from NASA.

  9. Using Left Overs to Make Energy

    SciTech Connect

    Steuterman, Sally; Czarnecki, Alicia; Hurley, Paul; Peruski, Kathryn; Cartagena-Sierra, Alejandra; Evans, Isaac; Guzman, Alexis

    2013-07-18

    Representing the Material Science Antinides (MSA), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of MSA is to conduct transformative research in the actinide sciences with full integration of experimental and computational approaches, and an emphasis on research questions that are important to the energy future of the nation.

  10. Parallel Transitions in IT Outsourcing: Making It Happen

    NASA Astrophysics Data System (ADS)

    Beulen, Erik; Tiwari, Vinay

    Global sourcing of IT services is growing consistently over the last decades. Along with this rapid growth, instances of failures, sore relationships or unsatisfactory performances during IT outsourcing engagements are prevalent and require management attention. Over two-thirds of the problems in these unsuccessful engagements arise due to failed or poor transition. Transition is immediately followed by contract signing and precedes service delivery phase. It sets the tone for the entire relationship and involves handover of outsourced services from either the client's internal IT department or the incumbent service provider. Recently second and third generation outsourcing engagements are coming into existence, with offshoring and multi-sourcing as an integral component of these engagements. Multi-sourcing deals, involving several service providers are emerging and require transition to be implemented in parallel. These developments exacerbate the complexity of transitions due to the presence of multiple service providers and several distributed or offshore locations, thereby further enhancing its bearing on the success of an engagement. What are the Critical Success Factors for parallel transitions? We conducted an initial Delphi study to explore success factors for parallel transitions. The findings highlight the importance of understanding the contractual agreement including transition exit criteria. Also the implementation of a joint steering committee contributes to transition success. All the stakeholders, including representatives of the incumbent service provider(s), should be represented in the steering committee to act responsive. Finally, the findings emphasis the need to manage dependencies between the transitions not limited to time lines and availability of critical resources for knowledge transfer and balancing between business continuity and timely and effective knowledge transfer.

  11. Local energy governance in vermont: an analysis of energy system transition strategies and actor capacity

    NASA Astrophysics Data System (ADS)

    Rowse, Tarah

    While global, national, and regional efforts to address climate and energy challenges remain essential, local governments and community groups are playing an increasingly stronger and vital role. As an active state in energy system policy, planning and innovation, Vermont offers a testing ground for research into energy governance at the local level. A baseline understanding of the energy planning and energy organizing activities initiated at the local level can support efforts to foster a transition to a sustainable energy system in Vermont. Following an inductive, applied and participatory approach, and grounded in the fields of sustainability transitions, energy planning, and community energy, this research project identifies conditions for change, including opportunities and challenges, within Vermont energy system decision-making and governance at the local level. The following questions are posed: What are the main opportunities and challenges for sustainable energy development at the town level? How are towns approaching energy planning? What are the triggers that will facilitate a faster transition to alternative energy systems, energy efficiency initiatives, and localized approaches? In an effort to answer these questions two studies were conducted: 1) an analysis of municipal energy plans, and 2) a survey of local energy actors. Study 1 examined Vermont energy planning at the state and local level through a review and comparison of 40 municipal plan energy chapters with the state 2011 Comprehensive Energy Plan. On average, municipal plans mentioned just over half of the 24 high-level strategies identified in the Comprehensive Energy Plan. Areas of strong and weak agreement were examined. Increased state and regional interaction with municipal energy planners would support more holistic and coordinated energy planning. The study concludes that while municipalities are keenly aware of the importance of education and partnerships, stronger policy mechanisms

  12. Energy-economy study methods and transit cases. Final report

    SciTech Connect

    Henderson, C.; Ellis, H.T.

    1981-07-01

    The purpose of this report is to describe energy economy study methods that are now available for practical use. The report discusses methods of estimating energy demands in Chapter II. Three heavy rail transit systems and two bus systems (Chapters III to VII) are described in terms of their development history, physical characteristics, operations, service, and energy demands. Estimates are made for the direct and indirect energy demands for the systems and energy economy studies of hypothetical alternatives for operations, equipment, or facilities are presented for the following systems: PATH (Port Authority Trans-Hudson) rail system; BART (Bay Area Rapid Transit District) rail system; AC Transit (Alameda-Contra Costa Transit District) bus system; Washington Metropolitan Area Transit Authority (WMATA) Metrobus and Metrorail systems. Chapter VIII discusses a number of opportunities to conduct energy economy studies, and presents quantitative data for three comparisons of hypothetical alternatives. Some infomation from actual settings was used. (MCW)

  13. Making the Transition to Middle Level Schools. Practitioner's Monograph #10.

    ERIC Educational Resources Information Center

    Lake, Sara

    A middle-grade restructuring effort implemented by the Monterey Peninsula Unified School District is described in this report. A literature review and interviews with four educators experienced in restructuring explore issues in middle-school transition at the school and district levels. Topics related to the implementation process include needs…

  14. Making the Transition to Hospice: Exploring Hospice Professionals' Perspectives

    ERIC Educational Resources Information Center

    Waldrop, Deborah P.; Rinfrette, Elaine S.

    2009-01-01

    Hospice care is available for 6 months before death but the length of use varies widely, suggesting that there are different perspectives on the appropriate timing for this transition. This qualitative study explored hospice professionals' views on the appropriate timing for and communication about hospice. Ethnography of team meetings informed…

  15. Making the Transition from Middle Level to High School.

    ERIC Educational Resources Information Center

    Hertzog, C. Jay; Morgan, P. Lena

    1999-01-01

    A survey of 97 Florida and Georgia middle schools and their receiving high schools revealed that schools with two or fewer transition practices had significantly higher attrition and dropout rates than schools implementing three or more practices. Sample programs include the ninth-grade house, parent nights, advisory/mentoring programs, and…

  16. Making the Transition from Classical to Quantum Physics

    ERIC Educational Resources Information Center

    Dutt, Amit

    2011-01-01

    This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…

  17. Near-optimal energy transitions for energy-state trajectories of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Bowles, J. V.; Terjesen, E. J.; Whittaker, T.

    1992-01-01

    A problem of the instantaneous energy transition that occurs in energy-state approximation is considered. The transitions are modeled as a sequence of two load-factor bounded paths (either climb-dive or dive-climb). The boundary-layer equations associated with the energy-state dynamic model are analyzed to determine the precise location of the transition.

  18. Make Energy at the Bay Area Maker Faire

    SciTech Connect

    2016-06-17

    Think. Make. Innovate. A festival of invention, creativity and resourcefulness that gathers makers of all kinds. Scientists are seeking to find innovative solutions to the energy challenges in the world.

  19. Make Energy at the Bay Area Maker Faire

    ScienceCinema

    None

    2016-07-12

    Think. Make. Innovate. A festival of invention, creativity and resourcefulness that gathers makers of all kinds. Scientists are seeking to find innovative solutions to the energy challenges in the world.

  20. Optimal strategies for electric energy contract decision making

    NASA Astrophysics Data System (ADS)

    Song, Haili

    2000-10-01

    The power industry restructuring in various countries in recent years has created an environment where trading of electric energy is conducted in a market environment. In such an environment, electric power companies compete for the market share through spot and bilateral markets. Being profit driven, electric power companies need to make decisions on spot market bidding, contract evaluation, and risk management. New methods and software tools are required to meet these upcoming needs. In this research, bidding strategy and contract pricing are studied from a market participant's viewpoint; new methods are developed to guide a market participant in spot and bilateral market operation. A supplier's spot market bidding decision is studied. Stochastic optimization is formulated to calculate a supplier's optimal bids in a single time period. This decision making problem is also formulated as a Markov Decision Process. All the competitors are represented by their bidding parameters with corresponding probabilities. A systematic method is developed to calculate transition probabilities and rewards. The optimal strategy is calculated to maximize the expected reward over a planning horizon. Besides the spot market, a power producer can also trade in the bilateral markets. Bidding strategies in a bilateral market are studied with game theory techniques. Necessary and sufficient conditions of Nash Equilibrium (NE) bidding strategy are derived based on the generators' cost and the loads' willingness to pay. The study shows that in any NE, market efficiency is achieved. Furthermore, all Nash equilibria are revenue equivalent for the generators. The pricing of "Flexible" contracts, which allow delivery flexibility over a period of time with a fixed total amount of electricity to be delivered, is analyzed based on the no-arbitrage pricing principle. The proposed algorithm calculates the price based on the optimality condition of the stochastic optimization formulation

  1. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  2. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  3. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  4. Hybrid radical energy storage device and method of making

    DOEpatents

    Gennett, Thomas; Ginley, David S; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2015-01-27

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  5. Energy and Society: Investigations in Decision Making. [Student Manual].

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study, Boulder, CO.

    This publication is the student handbook for a BSCS energy education module designed for high school, college, and adult students. It is designed to provide students with information about energy that will help them make decisions as citizens. Basically, this document is a text to supplement the activities and lesson plans in the teacher's guide.…

  6. DOE-HUD Initiative: Making Housing Affordable Through Energy Efficiency

    SciTech Connect

    Not Available

    1991-10-01

    A new collaborative program of the U.S. Department of Energy (DOE) and the U.S. Department of Housing and Urban Development (HUD) is a significant step toward making HUD-aided housing more comfortable and affordable through greater energy efficiency. The initiative on Energy Efficiency in Housing combines DOE's technical capabilities and HUD's experience in housing assistance. Over the next decade, the energy savings potential of this initiative is estimated to be 150 trillion Btu (0.15 quad) per year, or nearly $1.5 billion in annual energy costs.

  7. Transitions from Temporary to Permanent Work in Canada: Who Makes the Transition and Why?

    ERIC Educational Resources Information Center

    Fang, Tony; MacPhail, Fiona

    2008-01-01

    The focus of this paper is on a microeconomic analysis of the annual transition rate from temporary to permanent work of individual workers in Canada for the period 1999-2004. Given that a large proportion of temporary employment is involuntary, an understanding of the factors associated with the transition to permanent work may inform public…

  8. Substituent effect on electronic transition energy of dichlorobenzyl radicals

    NASA Astrophysics Data System (ADS)

    Yoon, Young Wook; Chae, Sang Youl; Lee, Sang Kuk

    2016-01-01

    Ring-substituted benzyl radicals exhibit electronic energies of the D1 ⿿ D0 transition being shifted to red region with respect to the benzyl radical. The red-shifts of disubstituted benzyl radicals are highly dependent on the substitution positions irrespective of substituents. By analyzing the red-shifts of dichlorobenzyl radicals observed, we found that the substituent effect on electronic transition energy is attributed to the molecular plane shape of delocalized Ͽ electrons. We will discuss the influences of locations of Cl substituents on the D1 ⿿ D0 transition energies of dichlorobenzyl radicals using Hückel's molecular orbital theory.

  9. [Relationships between settlement morphology transition and residents commuting energy consumption].

    PubMed

    Zhou, Jian; Xiao, Rong-Bo; Sun, Xiang

    2013-07-01

    Settlement morphology transition is triggered by rapid urbanization and urban expansion, but its relationships with residents commuting energy consumption remains ambiguous. It is of significance to understand the controlling mechanisms of sustainable public management policies on the energy consumption and greenhouse gases emission during the process of urban settlement morphology transition. Taking the Xiamen City of East China as a case, and by using the integrated land use and transportation modeling system TRANUS, a scenario analysis was made to study the effects of urban settlement morphology transition on the urban spatial distribution of population, jobs, and land use, and on the residents commuting energy consumption and greenhouse gasses emission under different scenarios. The results showed that under the Business As Usual (BAU) scenario, the energy consumption of the residents at the morning peak travel time was 54.35 tce, and the CO2 emission was 119.12 t. As compared with those under BAU scenario, both the energy consumption and the CO2 emission under the Transition of Settlement Morphology (TSM) scenario increased by 12%, and, with the implementation of the appropriate policies such as land use, transportation, and economy, the energy consumption and CO2 emission under the Transition of Settlement Morphology with Policies (TSMP) scenario reduced by 7%, indicating that urban public management policies could effectively control the growth of residents commuting energy consumption and greenhouse gases emission during the period of urban settlement morphology transition.

  10. Energy Released During the H-L Back Transition

    NASA Astrophysics Data System (ADS)

    Eldon, D.; Kolemen, E.; Gohil, P.; McKee, G. R.; Yan, Z.; Schmitz, L.

    2015-11-01

    Prompt energy loss (ΔW) at the H-L transition, as a fraction of total stored energy before the transition, is about 30 % and is insensitive to density in ITER-similar DIII-D plasmas. Occasionally, some ELMs will appear before the transition and reduce total energy, thus reducing ΔW across the following transition. Other results (not in the ITER-similar shape) have shown that ELMs can be triggered in low powered H-modes, prior to H-L transitions, when the plasma is stable to ideal P-B modes (these are not typical type-I ELMs, despite superficial similarities) and E × B shear is strong. These are indeed ELMs occurring in H-mode and not part of a dithering transition. Finally, ELM ΔW is sensitive to edge toroidal rotation and becomes smaller than uncertainty (< 5 kJ) at low rotation (ωtor < 5 krad/s). These results point to a strategy where ΔW for the H-L transition may be reduced by the presence of (not type-I) ELMs before the transition, and ΔW for the ELMs may be reduced by controlling rotation. Work supported by the US Department of Energy under DE-AC02-09CH11466 and DE-FC02-04ER54698.

  11. Energy Exchange Dynamics across L-H transitions in NSTX

    NASA Astrophysics Data System (ADS)

    Diallo, A.; Banerjee, S.; Zweben, S.; Stoltzfus-Dueck, T.

    2016-10-01

    This work is motivated by the need to test L-H transition paradigms (e.g., predator-prey, and ExB flow suppression) and explore possible new L-H transition dynamics. We present analysis of the L-H transition on three sets (NBI, RF, and Ohmic) of NSTX discharges using the gas-puff-imaging diagnostics for high temporal and spatial resolutions. The analysis studies the edge velocities and energy dynamics across the L-H transition using an implementation of the orthogonal decomposition programming for high temporal resolution velocity fields. In the database NSTX discharges, the production term (computed 1 cm inside the separatrix) is negative, pointing to transfer from the DC flows to the fluctuations, even immediately before the L-H transition. This suggests that depletion of turbulent fluctuation energy via transfer to the mean flow may not play a key role in the L-H transition. The thermal free energy is consistently much larger than the kinetic energy produced by the mean poloidal flow across the L-H transitions. These observations are inconsistent with the predator-prey model. The paper will describe the analysis including error estimations. Furthermore, analysis of the radial correlation dynamics across the L-H transition will be discussed. Work supported by U.S. DoE contract #DE-AC02-09CH11466.

  12. Trends in Ionization Energy of Transition-Metal Elements

    ERIC Educational Resources Information Center

    Matsumoto, Paul S.

    2005-01-01

    A rationale for the difference in the periodic trends in the ionization energy of the transition-metal elements versus the main-group elements is presented. The difference is that in the transition-metal elements, the electrons enter an inner-shell electron orbital, while in the main-group elements, the electrons enter an outer-shell electron…

  13. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  14. Making Heat Visible: Promoting Energy Conservation Behaviors Through Thermal Imaging.

    PubMed

    Goodhew, Julie; Pahl, Sabine; Auburn, Tim; Goodhew, Steve

    2015-12-01

    Householders play a role in energy conservation through the decisions they make about purchases and installations such as insulation, and through their habitual behavior. The present U.K. study investigated the effect of thermal imaging technology on energy conservation, by measuring the behavioral effect after householders viewed images of heat escaping from or cold air entering their homes. In Study 1 (n = 43), householders who received a thermal image reduced their energy use at a 1-year follow-up, whereas householders who received a carbon footprint audit and a non-intervention control demonstrated no change. In Study 2 (n = 87), householders were nearly 5 times more likely to install draught proofing measures after seeing a thermal image. The effect was especially pronounced for actions that addressed an issue visible in the images. Findings indicate that using thermal imaging to make heat loss visible can promote energy conservation.

  15. Adolescents with and without LD make the transition to middle school.

    PubMed

    Forgan, J W; Vaughn, S

    2000-01-01

    The purpose of this 2-year study was to describe how Hispanic students with and without learning disabilities fared academically and socially during the transition from elementary school to middle school. Participants were 14 Hispanic students who were instructed in a sixth-grade consultation/collaboration, inclusive elementary classroom before making the transition to middle school. Examination of social, academic, and student perception data revealed that, on the whole, the students with learning disabilities and those without experienced the transition similarly and fared well during the elementary-to-middle-school transition.

  16. Understanding the human dimensions of a sustainable energy transition

    PubMed Central

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people’s perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes. PMID:26136705

  17. Understanding the human dimensions of a sustainable energy transition.

    PubMed

    Steg, Linda; Perlaviciute, Goda; van der Werff, Ellen

    2015-01-01

    Global climate change threatens the health, economic prospects, and basic food and water sources of people. A wide range of changes in household energy behavior is needed to realize a sustainable energy transition. We propose a general framework to understand and encourage sustainable energy behaviors, comprising four key issues. First, we need to identify which behaviors need to be changed. A sustainable energy transition involves changes in a wide range of energy behaviors, including the adoption of sustainable energy sources and energy-efficient technology, investments in energy efficiency measures in buildings, and changes in direct and indirect energy use behavior. Second, we need to understand which factors underlie these different types of sustainable energy behaviors. We discuss three main factors that influence sustainable energy behaviors: knowledge, motivations, and contextual factors. Third, we need to test the effects of interventions aimed to promote sustainable energy behaviors. Interventions can be aimed at changing the actual costs and benefits of behavior, or at changing people's perceptions and evaluations of different costs and benefits of behavioral options. Fourth, it is important to understand which factors affect the acceptability of energy policies and energy systems changes. We discuss important findings from psychological studies on these four topics, and propose a research agenda to further explore these topics. We emphasize the need of an integrated approach in studying the human dimensions of a sustainable energy transition that increases our understanding of which general factors affect a wide range of energy behaviors as well as the acceptability of different energy policies and energy system changes.

  18. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed Central

    Wallstrom, T C

    1995-01-01

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion. Images Fig. 2 PMID:11607590

  19. Turbulent diffusion phase transition is due to singular energy spectrum.

    PubMed

    Wallstrom, T C

    1995-11-21

    The phase transition for turbulent diffusion, reported by Avellaneda and Majda [Avellaneda, M. & Majda, A. J. (1994) Philos. Trans. R. Soc. London A 346, 205-233, and several earlier papers], is traced to a modeling assumption in which the energy spectrum of the turbulent fluid is singularly dependent on the viscosity in the inertial range. Phenomenological models of turbulence and intermittency, by contrast, require that the energy spectrum be independent of the viscosity in the inertial range. When the energy spectrum is assumed to be consistent with the phenomenological models, there is no phase transition for turbulent diffusion.

  20. The carbon-consuming home: residential markets and energy transitions.

    PubMed

    Jones, Christopher

    2011-01-01

    Home heating and lighting markets have played crucial and underappreciated roles in driving energy transitions. When historians have studied the adoption of fossil fuels, they have often privileged industrial actors, markets, and technologies. My analysis of the factors that stimulated the adoption of anthracite coal and petroleum during the nineteenth century reveals that homes shaped how, when, and why Americans began to use fossil fuel energy. Moreover, a brief survey of other fossil fuel transitions shows that heating and lighting markets have been critical drivers in other times and places. Reassessing the historical patterns of energy transitions offers a revised understanding of the past for historians and suggests a new set of options for policymakers seeking to encourage the use of renewable energy in the future.

  1. The energy balance of the solar transition region

    NASA Technical Reports Server (NTRS)

    Jordan, C.

    1980-01-01

    It is shown how the observed distribution of the emission measure with temperature can be used to limit the range of energy deposition functions suitable for heating the solar transition region and inner corona. The minimum energy loss solution is considered in view of the work by Hearn (1975) in order to establish further scaling laws between the transition region pressure, the maximum coronal temperature and the parameter giving the absolute value of the emission measure. Also discussed is the absence of a static energy balance at the base of the transition region in terms of measurable atmospheric parameters, and the condition for a static energy balance is given. In addition, the possible role of the emission from He II in stabilizing the atmosphere by providing enhanced radiation loss is considered.

  2. Transition path time distribution and the transition path free energy barrier.

    PubMed

    Pollak, Eli

    2016-10-19

    The recent experimental measurement of the transition path time distributions of proteins presents several challenges to theory. Firstly, why do the fits of the experimental data to a theoretical expression lead to barrier heights which are much lower than the free energies of activation of the observed transitions? Secondly, there is the theoretical question of determining the transition path time distribution, without invoking the Smoluchowski limit. In this paper, we derive an exact expression for a transition path time distribution which is valid for arbitrary memory friction using the normal mode transformation which underlies Kramers' rate theory. We then recall that for low barriers, there is a noticeable difference between the transition path time distribution obtained with absorbing boundary conditions and free boundary conditions. For the former, the transition times are shorter, since recrossings of the boundaries are disallowed. As a result, if one uses the distribution based on absorbing boundary conditions to fit the experimental data, one will find that the transition path barrier will be larger than the values found based on a theory with free boundary conditions. We then introduce the paradigm of a transition path barrier height, and show that one should always expect it to be much smaller than the activation energy.

  3. Probing neutrino flavor transition mechanism with ultrahigh energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Lai, Kwang-Chang; Lin, Guey-Lin; Liu, Tsung-Che

    2014-02-01

    Observation of ultrahigh energy astrophysical neutrinos and identification of their flavors have been proposed for future neutrino telescopes. The flavor ratio of astrophysical neutrinos observed on the Earth depends on both the initial flavor ratio at the source and flavor transitions taking place during propagations of these neutrinos. The flavor transition mechanisms are well classified with our model-independent parametrization. We find that a new parameter R ≡ϕe/(ϕμ+ϕτ) can probe directly the flavor transition in the framework of our model-independent parametrization, without the assumption of the νμ-ντ symmetry. A few flavor-transition models are employed to test our parametrization with this new observable. The observational constraints on flavor transition mechanisms by the new observable are discussed through our model-independent parametrization.

  4. Exchange and relaxation effects in low-energy radiationless transitions

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Aoyagi, M.; Mark, H.

    1978-01-01

    The effect on low-energy atomic inner-shell Coster-Kronig and super Coster-Kronig transitions that is produced by relaxation and by exchange between the continuum electron and bound electrons was examined and illustrated by specific calculations for transitions that deexcite the 3p vacancy state of Zn. Taking exchange and relaxation into account is found to reduce, but not to eliminate, the discrepancies between theoretical rates and measurements.

  5. Error threshold transition in the random-energy model

    NASA Astrophysics Data System (ADS)

    Campos, Paulo R.

    2002-12-01

    We perform a statistical analysis of the error threshold transition in quasispecies evolution on a random-energy fitness landscape. We obtain a precise description of the genealogical properties of the population through extensive numerical simulations. We find a clear phase transition and can distinguish two regimes of evolution: The first, for low mutation rates, is characterized by strong selection, and the second, for high mutation rates, is characterized by quasineutral evolution.

  6. Carbon budgets and energy transition pathways

    NASA Astrophysics Data System (ADS)

    van Vuuren, Detlef P.; van Soest, Heleen; Riahi, Keywan; Clarke, Leon; Krey, Volker; Kriegler, Elmar; Rogelj, Joeri; Schaeffer, Michiel; Tavoni, Massimo

    2016-07-01

    Scenarios from integrated assessment models can provide insights into how carbon budgets relate to other policy-relevant indicators by including information on how fast and by how much emissions can be reduced. Such indicators include the peak year of global emissions, the decarbonisation rate and the deployment of low-carbon technology. Here, we show typical values for these indicators for different carbon budgets, using the recently compiled IPCC scenario database, and discuss how these vary as a function of non-CO2 forcing, energy use and policy delay. For carbon budgets of 2000 GtCO2 and less over the 2010-2100 period, supply of low carbon technologies needs to be scaled up massively from today’s levels, unless energy use is relatively low. For the subgroup of scenarios with a budget below 1000 GtCO2 (consistent with >66% chance of limiting global warming to below 2 °C relative to preindustrial levels), the 2050 contribution of low-carbon technologies is generally around 50%-75%, compared to less than 20% today (range refers to the 10-90th interval of available data).

  7. Native proteins trap high-energy transit conformations.

    PubMed

    Brereton, Andrew E; Karplus, P Andrew

    2015-10-01

    During protein folding and as part of some conformational changes that regulate protein function, the polypeptide chain must traverse high-energy barriers that separate the commonly adopted low-energy conformations. How distortions in peptide geometry allow these barrier-crossing transitions is a fundamental open question. One such important transition involves the movement of a non-glycine residue between the left side of the Ramachandran plot (that is, ϕ < 0°) and the right side (that is, ϕ > 0°). We report that high-energy conformations with ϕ ~ 0°, normally expected to occur only as fleeting transition states, are stably trapped in certain highly resolved native protein structures and that an analysis of these residues provides a detailed, experimentally derived map of the bond angle distortions taking place along the transition path. This unanticipated information lays to rest any uncertainty about whether such transitions are possible and how they occur, and in doing so lays a firm foundation for theoretical studies to better understand the transitions between basins that have been little studied but are integrally involved in protein folding and function. Also, the context of one such residue shows that even a designed highly stable protein can harbor substantial unfavorable interactions.

  8. Energy Transition Initiative, Island Energy Snapshot - Grenada (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of Grenada - a small island nation consisting of the island of Grenada and six smaller islands in the southeastern Caribbean Sea - three of which are inhabited: Grenada, Carriacou, and Petite Martinique.

  9. Energy Transition Initiative: Island Energy Snapshot - St. Lucia (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    This profile provides a snapshot of the electricity generation or reduction technologies, including solar hot water heating, available to Saint Lucia, one of six Caribbean countries that make up the Windward Islands - the southern arc of the Lesser Antilles chain - at the eastern end of the Caribbean Sea. Heating and transportation fuels are not addressed.

  10. A novel scheme for making cheap electricity with nuclear energy

    SciTech Connect

    Pettibone, J.S.

    1991-04-01

    Nuclear fuels should produce cheaper electricity than coal, considering their high specific energy and low cost. To exploit these properties, the scheme proposed here replaces the expensive reactor/steam-turbine system with an engine in which the expansion of a gas heated by a nuclear explosion raises a mass of liquid, thereby producing stored hydraulic energy. This energy could be converted to electricity by hydroelectric generation with water as the working fluid or by magnetohydrodynamic (MHD) generation with molten metal. A rough cost analysis suggests the hydroelectric system could reduce the present cost of electricity by two-thirds, and the MHD system by even more. Such cheap power would make feasible large-scale electrolysis to produce hydrogen and other fuels and chemical raw materials. 2 refs., 1 fig.

  11. Smart Building: Decision Making Architecture for Thermal Energy Management.

    PubMed

    Uribe, Oscar Hernández; Martin, Juan Pablo San; Garcia-Alegre, María C; Santos, Matilde; Guinea, Domingo

    2015-10-30

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction.

  12. Smart Building: Decision Making Architecture for Thermal Energy Management

    PubMed Central

    Hernández Uribe, Oscar; San Martin, Juan Pablo; Garcia-Alegre, María C.; Santos, Matilde; Guinea, Domingo

    2015-01-01

    Smart applications of the Internet of Things are improving the performance of buildings, reducing energy demand. Local and smart networks, soft computing methodologies, machine intelligence algorithms and pervasive sensors are some of the basics of energy optimization strategies developed for the benefit of environmental sustainability and user comfort. This work presents a distributed sensor-processor-communication decision-making architecture to improve the acquisition, storage and transfer of thermal energy in buildings. The developed system is implemented in a near Zero-Energy Building (nZEB) prototype equipped with a built-in thermal solar collector, where optical properties are analysed; a low enthalpy geothermal accumulation system, segmented in different temperature zones; and an envelope that includes a dynamic thermal barrier. An intelligent control of this dynamic thermal barrier is applied to reduce the thermal energy demand (heating and cooling) caused by daily and seasonal weather variations. Simulations and experimental results are presented to highlight the nZEB thermal energy reduction. PMID:26528978

  13. Resonance transition energies and oscillator strengths in lutetium and lawrencium.

    PubMed

    Zou, Yu; Fischer, C Froese

    2002-05-06

    The transition energies and oscillator strengths for nd (2)D(3/2)-(n+1)p (2)P(o)(1/2,3/2) transitions in Lu ( n = 5, Z = 71) and Lr ( n = 6, Z = 103) were calculated with the multiconfiguration Dirac-Hartree-Fock method. The present study confirmed that the ground state of atomic Lr is [Rn]5f(14)7s(2)7p (2)P(o)(1/2). The calculation for Lr required wave function expansions of more than 330 000 configuration states. In Lu, the transition energies, with Breit and QED corrections included, agree with experiment to within 126 cm(-1). In lighter elements, core correlation is usually neglected but was found to be of extreme importance for these heavy elements, affecting the oscillator strengths by a factor of 3 and 2 in Lu and Lr, respectively.

  14. The HVAC Control Technology Making Energy Saving Compatible with Comfort

    NASA Astrophysics Data System (ADS)

    Takagi, Yasuo; Yonezawa, Kenzo; Murayama, Dai; Nishimura, Nobutaka; Hanada, Yuuichi; Yamazaki, Kenichi

    The new air-conditioning control technology for the energy saving for buildings is proposed. The method is mainly focused on the compatibility of energy savings and comfort. The energy saving is achieved through the next generation air handling unit that controls room humidity without energy loss and the optimal operation of HVAC (Heating, Ventilating and air-conditioning) system, manipulating the supplying airflow temperature to the rooms, room temperature and the humidity. The comfort is kept by the index (PMV: Predicted Mean Vote) that calculated with room temperature, humidity, radiation temperature, wind velocity and so on. In order to find the HVAC system operation conditions that satisfy the comfort and energy saving at the same time, very large-scale nonlinear programming with nonlinear constraints must be solved on real time basis. To make the programming of the system practical, the driving function loaded onto a control computer is introduced. The function is made by the spline interpolation to achieve calculation stable and to adapt to various HVAC operation modes. The effectiveness of the HVAC control technology is proved through a building HVAC data and the simulations using the data.

  15. ENERGY AND CARBON BUDGETS IN TRANSITIONAL CROPPING SYSTEMS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and carbon budgets were constructed for a wide range of cropping systems during the transition from conventional cropping practices. Cropping system treatments included factorial combinations of: conventional and organic systems (CNV and ORG), conventional tillage and strip tillage (CT and ST...

  16. Multi objective decision making in hybrid energy system design

    NASA Astrophysics Data System (ADS)

    Merino, Gabriel Guillermo

    The design of grid-connected photovoltaic wind generator system supplying a farmstead in Nebraska has been undertaken in this dissertation. The design process took into account competing criteria that motivate the use of different sources of energy for electric generation. The criteria considered were 'Financial', 'Environmental', and 'User/System compatibility'. A distance based multi-objective decision making methodology was developed to rank design alternatives. The method is based upon a precedence order imposed upon the design objectives and a distance metric describing the performance of each alternative. This methodology advances previous work by combining ambiguous information about the alternatives with a decision-maker imposed precedence order in the objectives. Design alternatives, defined by the photovoltaic array and wind generator installed capacities, were analyzed using the multi-objective decision making approach. The performance of the design alternatives was determined by simulating the system using hourly data for an electric load for a farmstead and hourly averages of solar irradiation, temperature and wind speed from eight wind-solar energy monitoring sites in Nebraska. The spatial variability of the solar energy resource within the region was assessed by determining semivariogram models to krige hourly and daily solar radiation data. No significant difference was found in the predicted performance of the system when using kriged solar radiation data, with the models generated vs. using actual data. The spatial variability of the combined wind and solar energy resources was included in the design analysis by using fuzzy numbers and arithmetic. The best alternative was dependent upon the precedence order assumed for the main criteria. Alternatives with no PV array or wind generator dominated when the 'Financial' criteria preceded the others. In contrast, alternatives with a nil component of PV array but a high wind generator component

  17. Minimum action transition paths connecting minima on an energy surface

    NASA Astrophysics Data System (ADS)

    Koehl, Patrice

    2016-11-01

    Dynamics is essential to the biological functions of many bio-molecules, yet our knowledge of dynamics remains fragmented. Experimental techniques for studying bio-molecules either provide high resolution information on static conformations of the molecule or provide low-resolution, ensemble information that does not shed light on single molecule dynamics. In parallel, bio-molecular dynamics occur at time scale that are not yet attainable through detailed simulation methods. These limitations are especially noticeable when studying transition paths. To address this issue, we report in this paper two methods that derive meaningful trajectories for proteins between two of their conformations. The first method, MinActionPath, uses approximations of the potential energy surface for the molecule to derive an analytical solution of the equations of motion related to the concept of minimum action path. The second method, RelaxPath, follows the same principle of minimum action path but implements a more sophisticated potential, including a mixed elastic potential and a collision term to alleviate steric clashes. Using this new potential, the equations of motion cannot be solved analytically. We have introduced a relaxation method for solving those equations. We describe both the theories behind the two methods and their implementations, focusing on the specific techniques we have used that make those implementations amenable to study large molecular systems. We have illustrated the performance of RelaxPath on simple 2D systems. We have also compared MinActionPath and RelaxPath to other methods for generating transition paths on a well suited test set of large proteins, for which the end points of the trajectories as well as an intermediate conformation between those end points are known. We have shown that RelaxPath outperforms those other methods, including MinActionPath, in its ability to generate trajectories that get close to the known intermediates. We have also shown

  18. Minimum action transition paths connecting minima on an energy surface.

    PubMed

    Koehl, Patrice

    2016-11-14

    Dynamics is essential to the biological functions of many bio-molecules, yet our knowledge of dynamics remains fragmented. Experimental techniques for studying bio-molecules either provide high resolution information on static conformations of the molecule or provide low-resolution, ensemble information that does not shed light on single molecule dynamics. In parallel, bio-molecular dynamics occur at time scale that are not yet attainable through detailed simulation methods. These limitations are especially noticeable when studying transition paths. To address this issue, we report in this paper two methods that derive meaningful trajectories for proteins between two of their conformations. The first method, MinActionPath, uses approximations of the potential energy surface for the molecule to derive an analytical solution of the equations of motion related to the concept of minimum action path. The second method, RelaxPath, follows the same principle of minimum action path but implements a more sophisticated potential, including a mixed elastic potential and a collision term to alleviate steric clashes. Using this new potential, the equations of motion cannot be solved analytically. We have introduced a relaxation method for solving those equations. We describe both the theories behind the two methods and their implementations, focusing on the specific techniques we have used that make those implementations amenable to study large molecular systems. We have illustrated the performance of RelaxPath on simple 2D systems. We have also compared MinActionPath and RelaxPath to other methods for generating transition paths on a well suited test set of large proteins, for which the end points of the trajectories as well as an intermediate conformation between those end points are known. We have shown that RelaxPath outperforms those other methods, including MinActionPath, in its ability to generate trajectories that get close to the known intermediates. We have also shown

  19. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities.

  20. Multifragmentation around the transition energy in intermediate-energy heavy-ion collisions

    SciTech Connect

    Vinayak, Karan Singh; Kumar, Suneel

    2011-03-15

    Fragmentation of light charged particles is studied for various systems at different incident energies between 50 and 1000 MeV/nucleon. We analyze fragment production at the incident energies below, at, and above the transition energies using the isospin-dependent quantum molecular dynamics model. The trends observed for the fragment production and rapidity distributions depend upon the incident energy, size of the fragments, and composite mass of the reacting system, as well as on the impact parameter of the reaction. The free nucleons and light charged particles show continuous homogeneous changes, irrespective of the transition energies, indicating that there is no relation between the transition energy and production of the free as well as light charged particles.

  1. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  2. Large cross sections for transitions with a small energy difference

    NASA Astrophysics Data System (ADS)

    McGuire, J. H.; Shakov, Kh. Kh.

    2009-05-01

    Cross sections for transitions between states with small differences in energy can be quite large. An example is the 1s-2p transition in atomic hydrogen caused by the impact of a fast charged particle [1] or a photon [3]. In such cases the actual cross section may become much larger than the simple geometric cross section. Such transitions are often difficult to observe in the laboratory. However, they can be evaluated numerically. This effect can be significant in analysis of astrophysical data, as pointed out by T. Nandi [2]. I discuss a few examples of calculations and give a physical explanation for this effect. [4pt] [1] J.H. McGuire, D. J. Land, J. G. Brennan and G. Basbas, Phys. Rev. A19, 2180 (1979).[0pt] [2] Kh.Kh. Shakov and J.H. McGuire, Phys. Rev. A67 033405 (2003). [0pt] [3] T. Nandi, private communication, 2008.

  3. Public Discourse in Energy Policy Decision-Making: Final Report

    SciTech Connect

    Idaho Citizen; Eileen DeShazo; John Freemuth; Tina Giannini; Troy Hall; Ann Hunter; Jeffrey C. Joe; Michael Louis; Carole Nemnich; Jennie Newman; Steven J. Piet; Stephen Sorensen; Paulina Starkey; Kendelle Vogt; Patrick Wilson

    2010-08-01

    The ground is littered with projects that failed because of strong public opposition, including natural gas and coal power plants proposed in Idaho over the past several years. This joint project , of the Idaho National Laboratory, Boise State University, Idaho State University and University of Idaho has aimed to add to the tool box to reduce project risk through encouraging the public to engage in more critical thought and be more actively involved in public or social issues. Early in a project, project managers and decision-makers can talk with no one, pro and con stakeholder groups, or members of the public. Experience has shown that talking with no one outside of the project incurs high risk because opposition stakeholders have many means to stop most (if not all) energy projects. Talking with organized stakeholder groups provides some risk reduction from mutual learning, but organized groups tend not to change positions except under conditions of a negotiated settlement. Achieving a negotiated settlement may be impossible. Furthermore, opposition often arises outside pre-existing groups. Standard public polling provides some information but does not reveal underlying motivations, intensity of attitudes, etc. Improved methods are needed that probe deeper into stakeholder (organized groups and members of the public) values and beliefs/heuristics to increase the potential for change of opinions and/or out-of-box solutions. The term “heuristics” refers to the mental short-cuts, underlying beliefs, and paradigms that everyone uses to filter and interpret information, to interpret what is around us, and to guide our actions and decisions. This document is the final report of a 3-year effort to test different public discourse methods in the subject area of energy policy decision-making. We analyzed 504 mail-in surveys and 80 participants in groups on the Boise State University campus for their preference, financial support, and evaluations of eight attributes

  4. The roles of users in shaping transitions to new energy systems

    NASA Astrophysics Data System (ADS)

    Schot, Johan; Kanger, Laur; Verbong, Geert

    2016-05-01

    Current government information policies and market-based instruments aimed at influencing the energy choices of consumers often ignore the fact that consumer behaviour is not fully reducible to individuals making rational conscious decisions all the time. The decisions of consumers are largely configured by shared routines embedded in socio-technical systems. To achieve a transition towards a decarbonized and energy-efficient system, an approach that goes beyond individual consumer choice and puts shared routines and system change at its centre is needed. Here, adopting a transitions perspective, we argue that consumers should be reconceptualized as users who are important stakeholders in the innovation process shaping new routines and enacting system change. We review the role of users in shifts to new decarbonized and energy-efficient systems and provide a typology of user roles.

  5. The quality of life of single mothers making the transition from welfare to work.

    PubMed

    Cook, Kay; Davis, Elise; Smyth, Paul; McKenzie, Hayley

    2009-09-01

    This study examined the quality of life of single mothers making the mandatory transition from welfare to work. The Australian government purported that the benefits of making this transition would include higher incomes, better social participation, and improved wellbeing. It is currently unknown, however, how single mothers currently engaged in welfare to work programs evaluate their quality of life. Quality of life scores for 334 single mothers engaged in welfare to work in Australia were compared with normative data. Participants reported significantly lower quality of life scores than the general population for all quality of life domains, highlighting the need to carefully examine welfare to work policies to ensure they promote participants' quality of life.

  6. Urban decision making for transportation investments: Portland's light-rail transit system. Final report

    SciTech Connect

    Edner, S.M.; Arrington, G.B.

    1985-03-01

    This report is a detailed case study of the various decisions which led to the investment in Portland, Oregon's light-rail transit system. The study reviews the alternatives that were considered, the factors that led to the choices made, and the impacts and secondary effects the choices triggered. Topics discussed include the withdrawal of the Mount Hood Freeway, the substitution of transit and the options considered, the changing political infrastructure that affected decision making, citizen participation in the process, financing of the system, involvement of the private sector downtown, and the actual building of the light-rail line. The report should be of special interest to staffs of local officials involved in making major transportation investment decisions.

  7. Summer Center for Climate, Energy, and Environmental Decision Making (SUCCEED)

    NASA Astrophysics Data System (ADS)

    Klima, K.; Hoss, F.; Welle, P.; Larkin, S.

    2013-12-01

    Science, Technology, and Math (STEM) fields are responsible for more than half of our sustained economic expansion, and over the past 25 years the science and engineering workforce has remained at over 5% of all U.S. jobs. However, America lags behind other nations when it comes to STEM education; globally, American students rank 23th in math and 31st in science. While our youngest students show an interest in STEM subjects, roughly 40% of college students planning to major in STEM switch to other subjects. Women and minorities, 50% and 43% of school-age children, are disproportionally underrepresented in STEM fields (25% and 15%, respectively). Studies show that improved teacher curriculum combined with annual student-centered learning summer programs can promote and sustain student interest in STEM fields. Many STEM fields appear superficially simple, and yet can be truly complex and controversial topics. Carnegie Mellon University's Center for Climate and Energy Decision Making focuses on two such STEM fields: climate and energy. In 2011, we created SUCCEED: the Summer Center for Climate, Energy, and Environmental Decision Making. SUCCEED consisted of two pilot programs: a 2-day workshop for K-12 teacher professional development and a free 5-day summer school targeted at an age gap in the university's outreach, students entering 10th grade. In addition to teaching lessons climate, energy, and environment, the program aimed to highlight different STEM careers so students could better understand the breadth of choices available. SUCCEED, repeated in 2012, was wildly successful. A pre/post test demonstrated a significant increase in understanding of STEM topics. Furthermore, SUCCEED raised excitement for STEM; teachers were enthusiastic about accurate student-centered learning plans and students wanted to know more. To grow these efforts, an additional component has been added to the SUCCEED 2013 effort: online publicly available curricula. Using the curricula form

  8. Energy transitions in the early 21st Century

    SciTech Connect

    Paul Meakin

    2013-01-01

    We are in the early stages of a long and complex transition from a global economy based on fossil energy to an economy based on low carbon renewable energy. However, fossil fuel resources are abundant and widely distributed, and they will remain the dominant source of primary energy for at least the next quarter century. In the United States, displacement of coal by natural gas for electric power generation has done more to reduce CO2 emissions than all new renewables combined, and this may occur globally for the next decade or two, even if the European Union does not take advantage of its large unconventional natural gas resources. Greater energy efficiency (not including the efficiencies associated with displacement of coal by gas) will also be more important than new renewables. Cost/benefit ratios are important for sustainability of the transition, and some energy efficiency technologies and displacement of coal by natural gas have lower cost/benefit ratios than wind power, solar power or biofuels. Money spent on the large scale deployment of wind, solar and especially biofuels would be better spent on research, development and demonstration of a broader suite of technologies that would support the energy transition, with a focus on improving the cost benefit ratios of already deployed technologies and developing alternatives. Advanced nuclear reactors, engineered geothermal systems, fossil fuel recovery coupled with CO2 sequestration and pre-combustion or post-combustion decarbonation of fossil fuels with geological CO2 sequestration are among the technologies that might be more cost effective than wind, solar or biofuels, and biofuels have serious adverse societal and environment consequences.

  9. Three essays on decision-making in energy policy

    NASA Astrophysics Data System (ADS)

    Wendling, Zachary Ann

    This dissertation examines three issues surrounding decision-making in energy policy. Over the past decade, technological advances in horizontal drilling and hydraulic fracturing have allowed the economical extraction of natural gas and petroleum from shale basins. Thus far, natural gas has been produced from shale at a commercial scale only in certain American States and Canadian Provinces, though potential shale plays exist elsewhere in North America and the world. Whether, how, and to what extent SGD diffuses to new shale basins and jurisdictions will depend on several questions about energy policy. The first chapter examines the potential for SGD in the European Union. Among EU institutions, the European Parliament has been the strongest proponent for regulation of SGD, preferring a balance between environmental protection and opportunities for economic development, energy security, and climate mitigation. Analysis of roll call voting on SGD in the Seventh European Parliament shows that ideological preferences are the primary explanation of voting behavior, followed by national interests in decarbonization. Prospects for further regulatory action are discussed. ? The second chapter takes a closer look at the potential of shale gas to facilitate decarbonization in the electricity sector. Proponents of SGD have claimed that high carbon fossil fuels can be immediately phased out and replaced in the short term by power plants that burn cheap, abundant natural gas, which emits half the greenhouse gasses over a well-to-wire life cycle. A value of information analysis examines the conditions under which this may be so and quantifies how valuable it would be to have perfect information about uncertain parameters in a cost function characterizing the global electricity sector. The third chapter is describes a new tool of policy analysis, the Indiana Scalable Energy-Economy Model (IN-SEEM). State and local governments have played an increasing role in energy and climate

  10. Energy and population: transitional issues and eventual limits.

    PubMed

    Werbos, P J

    1990-08-01

    The implication of population size for US energy requirements is explored in this essay. The basic argument is that the present supply of fuels and energy technologies is not sustainable in the long run, that a wide range of choices is possible when a complete transition is made to sustainable technologies, and that the growth of population and the composition of this growth during the next 30 years are the most serious problems impacting on the achievement of sustainable technology. The importance and future of fuel oil is discussed as well as the transition to sustainable energy supplies: conservation, renewables, nuclear and coal. Dependency on oil can only be changed through time and the infusion of money, but even with these givens, the transition is also dependent on the political and budgetary climate. The race is between crisis and cure. It is argued that the soft energy systems (biomass, solar water heater, wind, hydro, and geothermal energy) along with conservation will increase easily and naturally, but the total potential from these sources amounts to only 10% of the present US energy supply. Conservation offers greater hope because 80% of end-use fossil fuel is used in transportation and industry. Further growth of the population in the US would create a demand to desalinate water, which would increase the demand for energy. A totally soft energy economy is probably not feasible without a drastic reduction in US population. The expected direction is in the increased use of coal, and then nuclear energy. Unfortunately, coal contributes to greenhouse warming, and the supply is limited to 60-100 years. Nuclear proliferation and terrorism is connected to the widespread use of nuclear energy. Some breakthrough technology with cold fusion may offer a safer alternative. High technology renewables such as solar cells can be competitive with nuclear energy, if prices can be kept down. on earth or in space, are being investigated. Exploring a variety of advanced

  11. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    PubMed

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  12. Phase/Shape Transitions and the Two Neutron Separation Energies

    SciTech Connect

    Zamfir, N. V.; Anghel, Sabina; Cata-Danil, G.

    2008-11-11

    We investigated the evolution of experimental two-neutron separation energies (S{sub 2n}) along the isotopic chains for the even-even nuclei. In order to enhance the sensitivity of our search, differential variation of the S{sub 2n} has been investigated. The emphasis is on finding nonmonotonic behaviors which can be correlated with phase/shape transition. Correlations of the ground state S{sub 2n} values with the excited states energies R{sub 4/2} ratio are also discussed.

  13. Biomolecular Dynamics: Order-Disorder Transitions and Energy Landscapes

    PubMed Central

    Whitford, Paul C.; Sanbonmatsu, Karissa Y.; Onuchic, José N.

    2013-01-01

    While the energy landscape theory of protein folding is now a widely accepted view for understanding how relatively-weak molecular interactions lead to rapid and cooperative protein folding, such a framework must be extended to describe the large-scale functional motions observed in molecular machines. In this review, we discuss 1) the development of the energy landscape theory of biomolecular folding, 2) recent advances towards establishing a consistent understanding of folding and function, and 3) emerging themes in the functional motions of enzymes, biomolecular motors, and other biomolecular machines. Recent theoretical, computational, and experimental lines of investigation are providing a very dynamic picture of biomolecular motion. In contrast to earlier ideas, where molecular machines were thought to function similarly to macroscopic machines, with rigid components that move along a few degrees of freedom in a deterministic fashion, biomolecular complexes are only marginally stable. Since the stabilizing contribution of each atomic interaction is on the order of the thermal fluctuations in solution, the rigid body description of molecular function must be revisited. An emerging theme is that functional motions encompass order-disorder transitions and structural flexibility provide significant contributions to the free-energy. In this review, we describe the biological importance of order-disorder transitions and discuss the statistical-mechanical foundation of theoretical approaches that can characterize such transitions. PMID:22790780

  14. Energy Efficienct Processes for Making Tackifier Dispersions used to make Pressure Sensitive Adhesives

    SciTech Connect

    Rakesh Gupta

    2006-07-26

    The primary objective of this project was to develop an energy efficient, environmentally friendly and low cost process (compared to the current process) for making tackifier dispersions that are used to make pressure-sensitive adhesives. These adhesives are employed in applications such as self-adhesive postage stamps and disposable diapers and are made by combining the tackifier dispersion with a natural or synthetic rubber latex. The current process for tackifier dispersion manufacture begins by melting a (plastic) resin and adding water to it in order to form a water-in-oil emulsion. This is then converted to an oil-in-water emulsion by phase inversion in the presence of continuous stirring. The resulting emulsion is the tackifier dispersion, but it is not concentrated and the remaining excess water has to be transported and removed. The main barrier that has to be overcome in the development of commercial quality tackifier dispersions is the inability to directly emulsify resin in water due to the very low viscosity of water as compared to the viscosity of the molten resin. In the present research, a number of solutions were proposed to overcome this barrier, and these included use of different mixer types to directly form the emulsion from the molten resin but without going through a phase inversion, the idea of forming a solid resin-in-water suspension having the correct size and size distribution but without melting of the resin, and the development of techniques of making a colloidal powder of the resin that could be dispersed in water just prior to use. Progress was made on each of these approaches, and each was found to be feasible. The most appealing solution, though, is the last one, since it does not require melting of the resin. Also, the powder can be shipped in dry form and then mixed with water in any proportion depending on the needs of the process. This research was conducted at Argonne National Laboratory, and it was determined the new process

  15. Low-energy lunar transfers using spatial transit orbits

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Shan, Jinjun

    2014-03-01

    This paper is concerned with natural and artificial low-energy lunar transfers in three-dimensional space. The main contribution of this paper is that the limitations of the planar manifold assumption, which is adopted in previous low-energy orbit design methods, are avoided by describing the transfer orbits with more realistic spatial transit and non-transit orbits. To start, the limitations of the previous design methods for the low-energy trajectories are highlighted, and the boundaries of the spatial transit orbits, which can enter into or escape from the potential well near the Moon through the L1 or L2 bottleneck regions of the zero velocity surface, are defined on a Poincaré section by using the necessary and sufficient condition of transition. Next, by considering the dominant gravity bodies in different orbit segments the motion near the Moon is analyzed in the Earth-Moon circular restricted three-body problem (CR3BP). For natural celestial bodies, the statistical characteristics of the lunar collision trajectories are studied. For the artificial celestial bodies, the investigation is focused on the achievable range of inclination and height of the low lunar orbit (LLO). Then, the motion between the Earth and the Moon is studied in the Earth-Moon based Sun-perturbed bicircular four-body problem (B4BP). For natural and artificial celestial bodies, the Earth-origin trajectories and the trajectories from the low Earth orbits are analyzed. Compared to the current planar manifold based design methods, the technique introduced in this paper can evaluate the lunar transfer orbits more accurately. Also, some lunar transfer trajectories which do not exist in the manifold based models can be found, and the heights and inclinations of the parking orbits around the Earth and the Moon can also be analyzed.

  16. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2016-01-04

    The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale.

  17. Nanostructured transition metal oxides for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Qiang

    Lithium-ion batteries, supercapacitors and photovoltaic devices have been widely considered as the three major promising alternatives of fossil fuels facing upcoming depletion to power the 21th century. The conventional film configuration of electrochemical electrodes hardly fulfills the high energy and efficiency requirements because heavy electroactive material deposition restricts ion diffusion path, and lowers power density and fault tolerance. In this thesis, I demonstrate that novel nanoarchitectured transition metal oxides (TMOs), e.g. MnO2, V2O 5, and ZnO, and their relevant nanocomposites were designed, fabricated and assembled into devices to deliver superior electrochemical performances such as high energy and power densities, and rate capacity. These improvements could be attributed to the significant enhancement of surface area, shortened ion diffusion distances and facile penetration of electrolyte solution into open structures of networks as well as to the pseudocapacitance domination. The utilization of ForcespinningRTM, a newly developed nanofiber processing technology, for large-scale energy storage and conversion applications is emphasized. This process simplifies the tedious multi-step hybridization synthesis and facilitates the contradiction between the micro-batch production and the ease of large-scale manufacturing. Key Words: Transition metal oxides, energy storage and conversion, ForcespinningRTM, pseudocapacitance domination, high rate capacity

  18. City-Level Energy Decision Making. Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-08

    The Cities-LEAP technical report, City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities, explores how a sample of cities incorporates data into making energy-related decisions. This report provides the foundation for forthcoming components of the Cities-LEAP project that will help cities improve energy decision making by mapping specific city energy or climate policies and actions to measurable impacts and results.

  19. Energy efficient engine: Turbine transition duct model technology report

    NASA Technical Reports Server (NTRS)

    Leach, K.; Thurlin, R.

    1982-01-01

    The Low-Pressure Turbine Transition Duct Model Technology Program was directed toward substantiating the aerodynamic definition of a turbine transition duct for the Energy Efficient Engine. This effort was successful in demonstrating an aerodynamically viable compact duct geometry and the performance benefits associated with a low camber low-pressure turbine inlet guide vane. The transition duct design for the flight propulsion system was tested and the pressure loss goal of 0.7 percent was verified. Also, strut fairing pressure distributions, as well as wall pressure coefficients, were in close agreement with analytical predictions. Duct modifications for the integrated core/low spool were also evaluated. The total pressure loss was 1.59 percent. Although the increase in exit area in this design produced higher wall loadings, reflecting a more aggressive aerodynamic design, pressure profiles showed no evidence of flow separation. Overall, the results acquired have provided pertinent design and diagnostic information for the design of a turbine transition duct for both the flight propulsion system and the integrated core/low spool.

  20. Control of MR to RR Transition by Pulsed Energy Deposition

    NASA Astrophysics Data System (ADS)

    Yan, Hong; Adelgren, Russell; Elliott, Gregory; Knight, Doyle

    2003-11-01

    This paper presents a study of the effect of a single laser energy pulse on the transition from a Mach Reflection (MR) to a Regular Reflection (RR) in the Dual Solution Domain (DSD). The freestream Mach number is 3.45 and two oblique shock waves are formed by two symmetric 22 degree wedges. These conditions correspond to a point midway within the DSD. A steady MR was first obtained experimentally and numerically, then a single laser pulse was deposited above the horizontal center plane. For the steady MR, the simulation showed the variation of Mach stem height along the span due to side effects. The predicted spanwise averaged Mach stem height was 1.96 mm within 2 percent of the experimental value of 2 mm. The experiment showed that the Mach stem height decreased to 30 percent of its original height due to the interaction with the laser spot and then returned to its original height by 300 microsec. That the Mach stem returned to its original height was most likely due to freestream turbulence in the wind tunnel. The numerical simulation successfully predicted the reverse transition from a stable MR to a stable RR and the stable RR persisted across the span. This study showed the capability of a laser energy pulse to control the reverse transition of MR -> RR within the Dual Solution Domain.

  1. Many-body energy localization transition in periodically driven systems

    SciTech Connect

    D’Alessio, Luca; Polkovnikov, Anatoli

    2013-06-15

    According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (Fermi–Ulam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: •A dynamical localization transition in periodically driven ergodic systems is found. •This phenomenon is reminiscent of many-body localization in energy space. •Our results are valid for classical and quantum systems in the thermodynamic limit. •At critical frequency, the short time expansion for the evolution operator breaks down. •The transition is associated to a divergent time scale.

  2. Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences.

    PubMed

    Latty, Tanya; Beekman, Madeleine

    2011-01-22

    Most models of animal foraging and consumer choice assume that individuals make choices based on the absolute value of items and are therefore 'economically rational'. However, frequent violations of rationality by animals, including humans, suggest that animals use comparative valuation rules. Are comparative valuation strategies a consequence of the way brains process information, or are they an intrinsic feature of biological decision-making? Here, we examine the principles of rationality in an organism with radically different information-processing mechanisms: the brainless, unicellular, slime mould Physarum polycephalum. We offered P. polycephalum amoebas a choice between food options that varied in food quality and light exposure (P. polycephalum is photophobic). The use of an absolute valuation rule will lead to two properties: transitivity and independence of irrelevant alternatives (IIA). Transitivity is satisfied if preferences have a consistent, linear ordering, while IIA states that a decision maker's preference for an item should not change if the choice set is expanded. A violation of either of these principles suggests the use of comparative rather than absolute valuation rules. Physarum polycephalum satisfied transitivity by having linear preference rankings. However, P. polycephalum's preference for a focal alternative increased when a third, inferior quality option was added to the choice set, thus violating IIA and suggesting the use of a comparative valuation process. The discovery of comparative valuation rules in a unicellular organism suggests that comparative valuation rules are ubiquitous, if not universal, among biological decision makers.

  3. Irrational decision-making in an amoeboid organism: transitivity and context-dependent preferences

    PubMed Central

    Latty, Tanya; Beekman, Madeleine

    2011-01-01

    Most models of animal foraging and consumer choice assume that individuals make choices based on the absolute value of items and are therefore ‘economically rational’. However, frequent violations of rationality by animals, including humans, suggest that animals use comparative valuation rules. Are comparative valuation strategies a consequence of the way brains process information, or are they an intrinsic feature of biological decision-making? Here, we examine the principles of rationality in an organism with radically different information-processing mechanisms: the brainless, unicellular, slime mould Physarum polycephalum. We offered P. polycephalum amoebas a choice between food options that varied in food quality and light exposure (P. polycephalum is photophobic). The use of an absolute valuation rule will lead to two properties: transitivity and independence of irrelevant alternatives (IIA). Transitivity is satisfied if preferences have a consistent, linear ordering, while IIA states that a decision maker's preference for an item should not change if the choice set is expanded. A violation of either of these principles suggests the use of comparative rather than absolute valuation rules. Physarum polycephalum satisfied transitivity by having linear preference rankings. However, P. polycephalum's preference for a focal alternative increased when a third, inferior quality option was added to the choice set, thus violating IIA and suggesting the use of a comparative valuation process. The discovery of comparative valuation rules in a unicellular organism suggests that comparative valuation rules are ubiquitous, if not universal, among biological decision makers. PMID:20702460

  4. A Framework for Supporting Organizational Transition Processes Towards Sustainable Energy Systems

    NASA Astrophysics Data System (ADS)

    Buch, Rajesh

    Economic development over the last century has driven a tripling of the world's population, a twenty-fold increase in fossil fuel consumption, and a tripling of traditional biomass consumption. The associated broad income and wealth inequities are retaining over 2 billion people in poverty. Adding to this, fossil fuel combustion is impacting the environment across spatial and temporal scales and the cost of energy is outpacing all other variable costs for most industries. With 60% of world energy delivered in 2008 consumed by the commercial and industrial sector, the fragmented and disparate energy-related decision making within organizations are largely responsible for the inefficient and impacting use of energy resources. The global transition towards sustainable development will require the collective efforts of national, regional, and local governments, institutions, the private sector, and a well-informed public. The leadership role in this transition could be provided by private and public sector organizations, by way of sustainability-oriented organizations, cultures, and infrastructure. The diversity in literature exemplifies the developing nature of sustainability science, with most sustainability assessment approaches and frameworks lacking transformational characteristics, tending to focus on analytical methods. In general, some shortfalls in sustainability assessment processes include lack of: · thorough stakeholder participation in systems and stakeholder mapping, · participatory envisioning of future sustainable states, · normative aggregation of results to provide an overall measure of sustainability, and · influence within strategic decision-making processes. Specific to energy sustainability assessments, while some authors aggregate results to provide overall sustainability scores, assessments have focused solely on energy supply scenarios, while including the deficits discussed above. This paper presents a framework for supporting

  5. Transition of energy transfer from MHD turbulence to kinetic plasma

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Matthaeus, William; Parashar, Tulasi; Shi, Yipeng; Wan, Minping; Chen, Shiyi

    2016-11-01

    The classical energy cascade scenario is of great importance in explaining the heating of corona and solar wind. One can envision that energy residing in large-scale fluctuations is transported to smaller scales where dissipation occurs and finally drives kinetic processes that absorb the energy flux and energize charged particles. Here we inquire how the cascade operates in a compressible plasma, and how the characteristics of energy transfer vary going from MHD to kinetic scales. When filtering MHD equations, we can get an apparent inertial range over which the conservative energy cascade occurs and the scale locality of energy transfer is similar to the cases of incompressible MHD turbulence. Pervasive shocks not only make a significant difference on energy cascade and magnetic amplification, but can also introduce considerable pressure dilation, a complement of viscous and ohmic dissipation that can trigger an alternative channel of the conversion between kinetic and internal energy. The procedure can also be applied to the Vlasov equation and kinetic simulation, in comparison with MHD turbulence, and is a good candidate to investigate the energy cascade process and the analogous role of the (tensor) pressure dilation in collisionless plasma.

  6. Vertical transition energies vs. absorption maxima: illustration with the UV absorption spectrum of ethylene.

    PubMed

    Lasorne, Benjamin; Jornet-Somoza, Joaquim; Meyer, Hans-Dieter; Lauvergnat, David; Robb, Michael A; Gatti, Fabien

    2014-02-05

    We revisit the validity of making a direct comparison between measured absorption maxima and computed vertical transition energies within 0.1 eV to calibrate an excited-state level of theory. This is illustrated on the UV absorption spectrum of ethylene for which the usual experimental values of 7.66 eV (V←N) and 7.11 eV (R(3s)←N) cannot be compared directly to the results of electronic structure calculations for two very different reasons. After validation of our level of theory against experimental data, a new experimental reference of 7.28 eV is suggested for benchmarking the Rydberg state, and the often-cited average transition energy (7.80 eV) is confirmed as a safer estimate for the valence state.

  7. Moving from situational awareness to decisions during disaster response: transition to decision making.

    PubMed

    Glick, Jeffrey A; Barbara, Joseph A

    2013-01-01

    During major disasters, at what point in the decisional process do senior government officials transition from developing necessary situational awareness to perform decision making? This "transition to decision making" (TDM) concept was analyzed through a structured interview survey of 25 current and former US Federal Coordinating Officers (FCOs) and focused on their decision-making process during the initial response period in a Presidentially declared Stafford Act disaster. This analysis suggests that the TDM for these emergency leaders is influenced by the following five factors: 1) Analogue Factor: the decision maker's previous knowledge and experience from analogous disaster situations; 2) New Paradigm Factor: the degree to which the disaster situation is very atypical to the decision maker due to hazard type and or situation severity, 3) Data Capture Factor: the quality, amount, and speed of disaster situation data conveyed to the decision maker; 4) Data Integration Factor: the decision maker's ability to integrate situational data elements into a mental framework picture; and 5) Time Urgency Factor: the decision maker's perception as to time available before a decision has to be made. The article describes the factors and graphs that how these may influence the timing of the TDM in four types of emergency situations faced by FCOs: 1) an analogue disaster, 2) a disaster situation that presents a new paradigm, 3) an intuitive disaster situation, and 4) a disaster requiring an urgent response.

  8. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of

  9. Energy Transition Initiative, Island Energy Snapshot - British Virgin Islands (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of the British Virgin Islands (BVI), one of three sets of the Virgin Island territories in an archipelago making up the northern portion of the Lesser Antilles.

  10. How We Make Energy Work: Grades 4, 5, 6 Science.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Washington, DC.

    This packet of units is designed to focus on the technological aspects of energy. Four units are presented, with from 1-4 lessons included in each unit. Units include: (1) basic concepts and applications of energy; (2) steps and processes of energy production and transmission; (3) fuel acquisition; and (4) energy futures and application of…

  11. Steering quantum transitions between three crossing energy levels

    SciTech Connect

    Ivanov, S. S.; Vitanov, N. V.

    2008-02-15

    We calculate the propagator and the transition probabilities for a coherently driven three-state quantum system. The energies of the three states change linearly in time, whereas the interactions between them are pulse shaped. We derive a highly accurate analytic approximation by assuming independent pairwise Landau-Zener transitions occurring instantly at the relevant avoided crossings, and adiabatic evolution elsewhere. Quantum interferences are identified, which occur due to different possible evolution paths in Hilbert space between an initial and a final state. A detailed comparison with numerical results for Gaussian-shaped pulses demonstrates a remarkable accuracy of the analytic approximation. We use the analytic results to derive estimates for the half-width of the excitation profile, and for the parameters required for creation of a maximally coherent superposition of the three states. These results are of potential interest in ladder climbing in alkali-metal atoms by chirped laser pulses, in quantum rotors, in transitions between Zeeman sublevels of a J=1 level in a magnetic field, and in control of entanglement of a pair of spin-1/2 particles. The results for the three-state system can be generalized, without essential difficulties, to higher dimensions.

  12. Transition Metal Carbides and Nitrides in Energy Storage and Conversion.

    PubMed

    Zhong, Yu; Xia, Xinhui; Shi, Fan; Zhan, Jiye; Tu, Jiangping; Fan, Hong Jin

    2016-05-01

    High-performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li-ion and Na-ion batteries as well as in supercapacitors, and electrocatalytic reactions (oxygen evolution and reduction reactions, and hydrogen evolution reaction) are discussed in association with their crystal structure/morphology/composition. Advantages and benefits of nanostructuring (e.g., 2D MXenes) are highlighted. Prospects of future research trends in rational design of high-performance TMCs and TMNs electrodes are provided at the end.

  13. Transition Metal Carbides and Nitrides in Energy Storage and Conversion

    PubMed Central

    Zhong, Yu; Shi, Fan; Zhan, Jiye; Tu, Jiangping

    2016-01-01

    High‐performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li‐ion and Na‐ion batteries as well as in supercapacitors, and electrocatalytic reactions (oxygen evolution and reduction reactions, and hydrogen evolution reaction) are discussed in association with their crystal structure/morphology/composition. Advantages and benefits of nanostructuring (e.g., 2D MXenes) are highlighted. Prospects of future research trends in rational design of high‐performance TMCs and TMNs electrodes are provided at the end. PMID:27812464

  14. Reducing fatigue damage for ships in transit through structured decision making

    USGS Publications Warehouse

    Nichols, J.M.; Fackler, P.L.; Pacifici, K.; Murphy, K.D.; Nichols, J.D.

    2014-01-01

    Research in structural monitoring has focused primarily on drawing inference about the health of a structure from the structure’s response to ambient or applied excitation. Knowledge of the current state can then be used to predict structural integrity at a future time and, in principle, allows one to take action to improve safety, minimize ownership costs, and/or increase the operating envelope. While much time and effort has been devoted toward data collection and system identification, research to-date has largely avoided the question of how to choose an optimal maintenance plan. This work describes a structured decision making (SDM) process for taking available information (loading data, model output, etc.) and producing a plan of action for maintaining the structure. SDM allows the practitioner to specify his/her objectives and then solves for the decision that is optimal in the sense that it maximizes those objectives. To demonstrate, we consider the problem of a Naval vessel transiting a fixed distance in varying sea-state conditions. The physics of this problem are such that minimizing transit time increases the probability of fatigue failure in the structural supports. It is shown how SDM produces the optimal trip plan in the sense that it minimizes both transit time and probability of failure in the manner of our choosing (i.e., through a user-defined cost function). The example illustrates the benefit of SDM over heuristic approaches to maintaining the vessel.

  15. Dynamics of Cortical Neuronal Ensembles Transit from Decision Making to Storage for Later Report

    PubMed Central

    Ponce-Alvarez, Adrián; Nácher, Verónica; Luna, Rogelio; Riehle, Alexa

    2012-01-01

    Decisions based on sensory evaluation during single trials may depend on the collective activity of neurons distributed across brain circuits. Previous studies have deepened our understanding of how the activity of individual neurons relates to the formation of a decision and its storage for later report. However, little is known about how decision-making and decision maintenance processes evolve in single trials. We addressed this problem by studying the activity of simultaneously recorded neurons from different somatosensory and frontal lobe cortices of monkeys performing a vibrotactile discrimination task. We used the hidden Markov model to describe the spatiotemporal pattern of activity in single trials as a sequence of firing rate states. We show that the animal's decision was reliably maintained in frontal lobe activity through a selective state sequence, initiated by an abrupt state transition, during which many neurons changed their activity in a concomitant way, and for which both latency and variability depended on task difficulty. Indeed, transitions were more delayed and more variable for difficult trials compared with easy trials. In contrast, state sequences in somatosensory cortices were weakly decision related, had less variable transitions, and were not affected by the difficulty of the task. In summary, our results suggest that the decision process and its subsequent maintenance are dynamically linked by a cascade of transient events in frontal lobe cortices. PMID:22933781

  16. Dynamics of cortical neuronal ensembles transit from decision making to storage for later report.

    PubMed

    Ponce-Alvarez, Adrián; Nácher, Verónica; Luna, Rogelio; Riehle, Alexa; Romo, Ranulfo

    2012-08-29

    Decisions based on sensory evaluation during single trials may depend on the collective activity of neurons distributed across brain circuits. Previous studies have deepened our understanding of how the activity of individual neurons relates to the formation of a decision and its storage for later report. However, little is known about how decision-making and decision maintenance processes evolve in single trials. We addressed this problem by studying the activity of simultaneously recorded neurons from different somatosensory and frontal lobe cortices of monkeys performing a vibrotactile discrimination task. We used the hidden Markov model to describe the spatiotemporal pattern of activity in single trials as a sequence of firing rate states. We show that the animal's decision was reliably maintained in frontal lobe activity through a selective state sequence, initiated by an abrupt state transition, during which many neurons changed their activity in a concomitant way, and for which both latency and variability depended on task difficulty. Indeed, transitions were more delayed and more variable for difficult trials compared with easy trials. In contrast, state sequences in somatosensory cortices were weakly decision related, had less variable transitions, and were not affected by the difficulty of the task. In summary, our results suggest that the decision process and its subsequent maintenance are dynamically linked by a cascade of transient events in frontal lobe cortices.

  17. A Model for Education: Energy-Water Consumption Decision Making.

    ERIC Educational Resources Information Center

    Bontrager, Ralph L.; Hubbard, Charles W.

    Public schools are in a position to convince society-at-large of the national energy problem. There is a direct relationship between energy costs to the schools and the type of educational programs they can provide. While waiting for a national energy policy with a section devoted to schools, districts can calculate the amount and cost of energy…

  18. Meaning-Making Dynamics of Emancipated Foster Care Youth Transitioning into Higher Education: A Constructivist-Grounded Theory

    ERIC Educational Resources Information Center

    Okumu, Jacob O.

    2014-01-01

    This study explored college transition meaning-making dynamics of emancipated foster care youth and the role campus environments play in that process. It adds to the college student development theoretical base by acknowledging the needs, goals, and values of disenfranchised college students transitioning into higher education. Emancipated foster…

  19. Toward the renewables - A natural gas/solar energy transition strategy

    NASA Technical Reports Server (NTRS)

    Hanson, J. A.; Escher, W. J. D.

    1979-01-01

    The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.

  20. The Developmental Transition from Living with to Dying From Cancer: Hospice Decision-making

    PubMed Central

    Waldrop, Deborah; Meeker, Mary Ann; Kutner, Jean S.

    2016-01-01

    Despite increasing utilization of hospice care, older adults with cancer enroll in hospice for shorter periods of time than those with other life-limiting illnesses. How older adults with cancer and their family members consider hospice is unknown. The purpose of this study was to compare decision-making in late-stage cancer in people who enrolled in hospice with those who declined. Concepts from the Carroll and Johnson (1990) decision-making framework guided the development of a hospice decision-making model. The study design was exploratory-descriptive, cross-sectional and used a 2-group comparison. Qualitative and quantitative data were collected in the same interview. Open-ended questions were used to explore the illness trajectory and decision-making process. The interrelationships between functional ability, quality of life and social support with hospice decision-making were assessed using the Katz, QLQ-30 and Lubben Social Network Scales. Study participants included 42 older adults with cancer who had been offered hospice enrollment (24 non-hospice and 18 hospice) and 38 caregivers (15 non-hospice and 23 hospice); N=80. The decisional model illustrates that the Recognition of Advanced Cancer and Information and Communication Needs were experienced similarly by both groups. There was interaction between the decisional stages: Formulation of Awareness and Generation of Alternatives that informed the Evaluation of Hospice but these stages were different in the hospice and non-hospice groups. The hospice enrollment decision represents a critical developmental juncture which is accompanied by a transformed identity and substantive cognitive shift. Increased attention to the psychosocial and emotional issues that accompany this transition are important for quality end-of-life care. PMID:26176303

  1. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes

    SciTech Connect

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-01-09

    The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP. In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.

  2. Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes

    DOE PAGES

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2015-01-09

    The nudged-elastic band (NEB) method is modified with concomitant two climbing images (C2-NEB) to find a transition state (TS) in complex energy landscapes, such as those with a serpentine minimal energy path (MEP). If a single climbing image (C1-NEB) successfully finds the TS, then C2-NEB finds it too. Improved stability of C2-NEB makes it suitable for more complex cases, where C1-NEB misses the TS because the MEP and NEB directions near the saddle point are different. Generally, C2-NEB not only finds the TS, but guarantees, by construction, that the climbing images approach it from the opposite sides along the MEP.more » In addition, C2-NEB provides an accuracy estimate from the three images: the highest-energy one and its climbing neighbors. C2-NEB is suitable for fixed-cell NEB and the generalized solid-state NEB.« less

  3. Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis

    NASA Astrophysics Data System (ADS)

    Chen, Y. X.; Lavacchi, A.; Miller, H. A.; Bevilacqua, M.; Filippi, J.; Innocenti, M.; Marchionni, A.; Oberhauser, W.; Wang, L.; Vizza, F.

    2014-06-01

    The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg-1H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg-1H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis.

  4. Energy at the Frontier: Low Carbon Energy System Transitions and Innovation in Four Prime Mover Countries

    NASA Astrophysics Data System (ADS)

    Araujo, Kathleen M.

    All too often, discussion about the imperative to change national energy pathways revolves around long timescales and least cost economics of near-term energy alternatives. While both elements certainly matter, they don't fully reflect what can drive such development trajectories. This study explores national energy transitions by examining ways in which four prime mover countries of low carbon energy technology shifted away from fossil fuels, following the first global oil crisis of 1973. The research analyzes the role of readiness, sectoral contributions and adaptive policy in the scale-up and innovations of advanced, alternative energy technologies. Cases of Brazilian biofuels, Danish wind power, French nuclear power and Icelandic geothermal energy are analyzed for a period of four decades. Fundamentally, the research finds that significant change can occur in under 15 years; that technology complexity need not necessarily impede change; and that countries of different governance approaches and consumption levels can effectuate such transitions. This research also underscores that low carbon energy technologies may be adopted before they are competitive and then become competitive in the process. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  5. Sustainable Schools: Making Energy Efficiency a Lifestyle Priority

    ERIC Educational Resources Information Center

    Purnell, Ken; Sinclair, Mark; Gralton, Anna

    2004-01-01

    Promoting efficient energy use in schools that consequently reduces greenhouse gas emissions is the purpose of a residential Energy Efficiency in Schools (EEIS) program reported on in this paper. Research on this program aligns with one of the "key "overarching" sustainability issues", set out in the "Learning for…

  6. Household Energy Consumption: Community Context and the Fuelwood Transition*

    PubMed Central

    Link, Cynthia F.; Axinn, William G.; Ghimire, Dirgha J.

    2012-01-01

    We examine the influence of community context on change over time in households’ use of non-wood fuels. Our theoretical framework builds on sociological concepts in order to study energy consumption at the micro-level. The framework emphasizes the importance of nonfamily organizations and services in the local community as determinants of the transition from use of fuelwood to use of alternative fuels. We use multilevel longitudinal data on household fuel choice and community context from rural Nepal to provide empirical tests of our theoretical model. Results reveal that increased exposure to nonfamily organizations in the local community increases the use of alternative fuels. The findings illustrate key features of human impacts on the local environment and motivate greater incorporation of social organization into research on environmental change. PMID:23017795

  7. Controlling Light to Make the Most Energy From the Sun

    SciTech Connect

    Callahan, Dennis; Corcoran, Chris; Eisler, Carissa; Flowers, Cris; Goodman, Matt; Hofmann, Carrie; Sadtler, Bryce

    2013-07-18

    Representing the Light-Material Interactions in Energy Conversion (LMI), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE energy. The mission of LMI to tailor the morphology, complex dielectric structure, and electronic properties of matter so as to sculpt the flow of sunlight and heat, enabling light conversion to electrical and chemical energy with unprecedented efficiency.

  8. Energy Policy Decision-Making: The Need for Balanced Input

    ERIC Educational Resources Information Center

    DeVolpi, A.

    1974-01-01

    Indicates that the credibility of environmentalists and nuclear advocates has been damaged by misinformed alarmist positions. Advocates the public's right of equal standing on advisory councils in the areas of energy development, environmental protection, and public safety. (GS)

  9. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    PubMed

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases.

  10. Mothers' Transition Back to Work and Infants' Transition to Child Care: Does Work-Based Child Care Make a Difference?

    ERIC Educational Resources Information Center

    Skouteris, Helen; McCaught, Simone; Dissanayake, Cheryl

    2007-01-01

    The overall aim in this study was twofold: to compare the use of work-based (WB) and non-work-based (NWB) child care on the transition back to the workplace for women after a period of maternity leave, and on the transition into child care for the infants of these women. Thirty-five mothers with infants in WB centres and 44 mothers with infants in…

  11. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect

    Eudy, L.; Chandler, K.

    2008-05-01

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA).

  12. Energy Transition Initiative: Island Energy Snapshot - U.S. Virgin Islands (Fact Sheet)

    SciTech Connect

    Not Available

    2015-03-01

    This profile provides a snapshot of the energy landscape of the U.S. Virgin Islands (USVI) - St. Thomas, St. John, and St. Croix. The Virgin Islands archipelago makes up the northern portion of the Lesser Antilles and the western island group of the Leeward Islands, forming the border between the Atlantic Ocean and the Caribbean Sea.

  13. Coal exports may make Australia's energy sector among least sustainable

    SciTech Connect

    2009-11-15

    Plentiful coal and cheap energy prices have resulted in an unusually heavy carbon footprint. Clearly, Australia has to rethink how much coal it will use to feed its own growing economy while becoming more conscious of its significant carbon export problem. For a country long used to digging the coal out of the ground and shipping it overseas, climate change will be a game changer.

  14. Energy balance in the solar transition region. II - Effects of pressure and energy input on hydrostatic models

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1991-01-01

    The radiation of energy by hydrogen lines and continua in hydrostatic energy-balance models of the transition region between the solar chromosphere and corona is studied using models which assume that mechanical or magnetic energy is dissipated in the hot corona and is then transported toward the chromosphere down the steep temperature gradient of the transition region. These models explain the average quiet sun and also the entire range of variability of the Ly-alpha lines. The relations between the downward energy flux, the pressure of the transition region, and the different hydrogen emission are described.

  15. Emittance and Energy Measurements of Low-Energy Electron Beam Using Optical Transition Radiation Techniques

    NASA Astrophysics Data System (ADS)

    Sakamoto, Fumito; Iijima, Hokuto; Dobashi, Katsuhiro; Imai, Takayuki; Ueda, Toru; Watanabe, Takahiro; Uesaka, Mitsuru

    2005-03-01

    Emittance and energy of an electron beam in the range of 8 to 22 MeV were measured via optical transition radiation (OTR) techniques. The beam divergence effect on observations of the far-field OTR image at low energies was studied by means of numerical analysis. The numerical analysis indicates that if the beam divergence is under 1.5 mrad, a simultaneous single-shot measurement of emittance and energy is possible. The results of the single-shot experiment agree with independent measurements conducted using the quadrupole scan method and an electron spectrometer. The experiments were performed with an S-band linac at the Nuclear Engineering Research Laboratory, The University of Tokyo (UTNL).

  16. Transportation energy-contingency planning: a guide for transit operators

    SciTech Connect

    Not Available

    1982-04-01

    This guide is designed to help transit operators assemble workable and effective contingency plans. Although it is written primarily for the operator who is developing a plan for the first time, it also provides practical guidance for refining or updating an existing plan. In addition to this introduction, the guide consists of two chapters that present practical guidelines to help plan for and manage a crisis under two different sets of circumstances. A step-by-step approach for developing a plan in advance of a crisis is outlined. In this best of all worlds, when ample time and resources are available for looking ahead to an energy shortage, Chapter II will help an operator develop a comprehensive plan for meeting the demands of a crisis situation. On the other hand, Chapter III is designed to help an operator cope with a planner's worst nightmare: A crisis has developed overnight and the operator is caught unawares with no plan for dealing with it. This chapter presents a bare-bones approach to crisis management and will be useful to those operators who have been unable to prepare a plan in advance.

  17. Equilibrium free-energy differences at different temperatures from a single set of nonequilibrium transitions

    NASA Astrophysics Data System (ADS)

    Patra, Puneet Kumar; Bhattacharya, Baidurya

    2016-10-01

    Crook's fluctuation theorem (CFT) and Jarzynski equality (JE) are effective tools for obtaining free-energy difference Δ F (λA→λB,T0) through a set of finite-time protocol driven nonequilibrium transitions between two equilibrium states A and B [parametrized by the time-varying protocol λ (t ) ] at the same temperature T0. Using the generalized dimensionless work function Δ WG , we extend CFT to transitions between two nonequilibrium steady states (NESSs) created by a thermal gradient. We show that it is possible, provided the period over which the transitions occur is sufficiently long, to obtain Δ F (λA→λB,T0) for different values of T0, using the same set of finite-time transitions between these two NESSs. Our approach thus completely eliminates the need to make new samples for each new T0. The generalized form of JE arises naturally as the average of the exponentiated Δ WG . The results are demonstrated on two test cases: (i) a single particle quartic oscillator having a known closed form Δ F , and (ii) a one-dimensional ϕ4 chain. Each system is sampled from the canonical distribution at an arbitrary T' with λ =λA , then subjected to a temperature gradient between its ends, and after steady state is reached, the protocol change λA→λB is effected in time τ , following which Δ WG is computed. The reverse path likewise initiates in equilibrium at T' with λ =λB and the protocol is time reversed leading to λ =λA and the reverse Δ WG . Our method is found to be more efficient than either JE or CFT when free-energy differences at multiple T0's are required for the same system.

  18. Heterogeneous preferences, decision-making capacity, and phase transitions in a complex adaptive system.

    PubMed

    Wang, Wei; Chen, Yu; Huang, Jiping

    2009-05-26

    There has been a belief that with the directing power of the market, the efficient state of a resource-allocating system can eventually be reached even in a case where the resource is distributed in a biased way. To mimic the realistic huge system for the resource allocation, we designed and conducted a series of economic experiments. From the experiments we found that efficient allocation can be realized despite a lack of communications among the participants or any instructions to them. To explain the underlying mechanism, an extended minority game model called the market-directed resource allocation game (MDRAG) is constructed by introducing heterogeneous preferences into the strategy-building procedures. MDRAG can produce results in good agreement with the experiments. We investigated the influence of agents' decision-making capacity on the system behavior and the phase structure of the MDRAG model as well. A number of phase transitions are identified in the system. In the critical region, we found that the overall system will behave in an efficient, stable, and unpredictable mode in which the market's invisible hand can fully play its role.

  19. Energy surface and minimum energy paths for Fréedericksz transitions in bistable cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Ivanov, A. V.; Bessarab, P. F.; Aksenova, E. V.; Romanov, V. P.; Uzdin, V. M.

    2016-04-01

    The multidimensional energy surface of a cholesteric liquid crystal in a planar cell is investigated as a function of spherical coordinates determining the director orientation. Minima on the energy surface correspond to the stable states with particular director distribution. External electric and magnetic fields deform the energy surface and positions of minima. It can lead to the transitions between states, known as the Fréedericksz effect. Transitions can be continuous or discontinuous depending on parameters of the liquid crystal which determine an energy surface. In a case of discontinuous transition when a barrier between stable states is comparable with the thermal energy, the activation transitions may occur, and it leads to the modification of characteristics of the Fréedericksz effect with temperature without explicit temperature dependencies of liquid crystal parameters. A minimum energy path between stable states on the energy surface for the Fréedericksz transition is found using the geodesic nudged elastic band method. Knowledge of this path, which has maximal statistical weight among all other paths, gives the information about a barrier between stable states and configuration of director orientation during the transition. It also allows one to estimate the stability of states with respect to the thermal fluctuations and their lifetime when the system is close to the Fréedericksz transition.

  20. Energy Transition Initiative: Island Energy Snapshot - Puerto Rico (Fact Sheet); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of Puerto Rico - a U.S. territory located about 60 miles east of the Dominican Republic and directly west of the U.S. Virgin Islands.

  1. Consolidation of hydrophobic transition criteria by using an approximate energy minimization approach.

    PubMed

    Patankar, Neelesh A

    2010-06-01

    Recent experimental work has successfully revealed pressure induced transition from Cassie to Wenzel state on rough hydrophobic substrates. Formulas, based on geometric considerations and imposed pressure, have been developed as transition criteria. In the past, transition has also been considered as a process of overcoming the energy barrier between the Cassie and Wenzel states. A unified understanding of the various considerations of transition has not been apparent. To address this issue, in this work, we consolidate the transition criteria with a homogenized energy minimization approach. This approach decouples the problem of minimizing the energy to wet the rough substrate, from the energy of the macroscopic drop. It is seen that the transition from Cassie to Wenzel state, due to depinning of the liquid-air interface, emerges from the approximate energy minimization approach if the pressure-volume energy associated with the impaled liquid in the roughness is included. This transition can be viewed as a process in which the work done by the pressure force is greater than the barrier due to the surface energy associated with wetting the roughness. It is argued that another transition mechanism, due to a sagging liquid-air interface that touches the bottom of the roughness grooves, is not typically relevant if the substrate roughness is designed such that the Cassie state is at lower energy compared to the Wenzel state.

  2. The calculated free energy effects of 5-methyl cytosine on the B to Z transition in DNA.

    PubMed

    Pearlman, D A; Kollman, P A

    We have examined the free energy effects of 5-methylation of cytosine on the B in equilibrium Z conformational equilibrium in DNA. Free energy differences were calculated using the free energy perturbation approach, which uses an easily derived equation from classical statistical mechanics to relate the free energy difference between two states to the ensemble average of the potential energy difference between the states. Calculations were carried both in explicit solvent and (for comparison) in vacuo. The free energy values obtained for the explicit solvent systems are total free energies, with contributions from all parts of the system (solvent + solute), and so are relevant to the B in equilibrium Z transitions observed under real (physiological) conditions. We calculate that in solution, methylation makes the B in equilibrium Z transition more favorable by about -0.4 kcal/mole base pair (bp) in free energy. This value compares well with approximate experimentally derived values of about -0.3 kcal/mole-bp. We also discuss a method for determining the free energy difference between conformational states poorly maintained by a potential energy model. Finally, the effects of methylation on the melting temperature of DNA are examined.

  3. Specific Barriers and Drivers in Different Stages of Decision-Making about Energy Efficiency Upgrades in Private Homes.

    PubMed

    Klöckner, Christian A; Nayum, Alim

    2016-01-01

    Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) "not being in a decision mode," (2) "deciding what to do," (3) "deciding how to do it," and (4) "planning implementation." Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and-again-a feeling that the right point in time has

  4. Specific Barriers and Drivers in Different Stages of Decision-Making about Energy Efficiency Upgrades in Private Homes

    PubMed Central

    Klöckner, Christian A.; Nayum, Alim

    2016-01-01

    Energy efficiency upgrades of privately owned homes like adding to the insulation layers in the walls, roof or floor, or replacing windows with more efficiently insulated versions can contribute significantly to reducing the energy impact of the building sector and thus also the CO2 footprint of a household. However, even in countries like Norway that have a rather high rate of renovation, energy upgrades are not always integrated into such a refurbishment project. This study tests which structural and internal psychological barriers hinder and which drivers foster decision-making to implement such measures, once a renovation project is planned. With a theoretical background in stage-based models of decision-making 24 barriers and drivers were tested for their specific effect in the stages of decision-making. The four stages of decision-making assumed in this study were (1) “not being in a decision mode,” (2) “deciding what to do,” (3) “deciding how to do it,” and (4) “planning implementation.” Based on an online survey of 3787 Norwegian households, it was found that the most important barriers toward deciding to implement energy efficiency upgrades were not owning the dwelling and feeling the right time had not come yet. The most important drivers of starting to decide were higher expected comfort levels, better expected living conditions, and an expected reduction of energy costs. For the transition from deciding what to do to how to do it, not managing to make a decision and feeling the right point in time has not come yet were the strongest barriers, easily accessible information and an expected reduction of energy costs were the most important drivers. The final transition from deciding how to do the upgrades to planning implementation was driven by expecting a payoff within a reasonable time frame and higher expected comfort levels; the most important barriers were time demands for supervising contractors and—again—a feeling that the right

  5. Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change

    NASA Astrophysics Data System (ADS)

    Kahrl, Fredrich James

    support further improvements in efficiency and scale up renewable generation at an acceptable level of cost and reliability. Chapter 6 examines energy use and GHG emissions from nitrogen fertilizer use, arguing that energy use and GHG emissions from nitrogen fertilizer use in China are high relative to other countries because of China's historical support for small and medium-sized enterprises using domestic technology; its continued provision of energy subsidies to fertilizer producers; and its lack of a well-functioning agricultural extension system. The case studies illustrate the limits of energy and climate policy in China without institutional reform. China's leaders have historically relied on economic growth to defer the difficult changes in political economy that accompany economic and social transition. However, many of the challenges of energy and climate policy require political decisions that reallocate resources among stakeholders. For instance, restructuring the Chinese economy away from heavy industrial investment and toward a higher GDP share of consumption will require financial sector reforms, such as interest rate liberalization or higher dividend payments for state-owned enterprises, that reallocate income from the industrial sector to households. Increasing power system flexibility will require price reforms that reallocate revenues and costs among generators, between generators and the grid companies, between producers and ratepayers, among ratepayer classes, and between and among provinces. Strong public interest institutions are needed to make these changes, which suggests that China's energy and GHG emissions trajectories will be determined, to a large extent, by the politics of institutional reform.

  6. Method for making an aluminum or copper substrate panel for selective absorption of solar energy

    NASA Technical Reports Server (NTRS)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1978-01-01

    A panel is described for selectively absorbing solar energy comprising an aluminum substrate. A zinc layer was covered by a layer of nickel and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a nickel layer. A layer of solar energy absorbing nickel oxide distal from the copper substrate was included. A method for making these panels is disclosed.

  7. Critical behavior in the inverse to forward energy transition in two-dimensional magnetohydrodynamic flow.

    PubMed

    Seshasayanan, Kannabiran; Alexakis, Alexandros

    2016-01-01

    We investigate the critical transition from an inverse cascade of energy to a forward energy cascade in a two-dimensional magnetohydrodynamic flow as the ratio of magnetic to mechanical forcing amplitude is varied. It is found that the critical transition is the result of two competing processes. The first process is due to hydrodynamic interactions and cascades the energy to the large scales. The second process couples small-scale magnetic fields to large-scale flows, transferring the energy back to the small scales via a nonlocal mechanism. At marginality the two cascades are both present and cancel each other. The phase space diagram of the transition is sketched.

  8. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  9. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  10. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  11. From Initial Education to Working Life: Making Transitions Work. Education and Skills.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    The Organisation for Economic Cooperation and Development (OECD) conducted a thematic review to identify changes in young people's transition to working life during the 1990s and to identify those policies and programs that are effective in delivering successful transition outcomes for young people. The review focused on 14 countries with widely…

  12. "Ready for Big School": Making the Transition to Primary School--A Jamaican Perspective

    ERIC Educational Resources Information Center

    Kinkead-Clark, Zoyah

    2015-01-01

    The aim of this small-scale, qualitative study is to understand the perspective of varying stakeholders responsible for student transitions from pre-primary to primary school in the Jamaican context. The questions that guided the research are: What factors affect student transitions to primary school? What skills do children need in order to…

  13. Making a Drama out of Transition: Challenges and Opportunities at Times of Change

    ERIC Educational Resources Information Center

    Hammond, Nick

    2016-01-01

    This case study explored how teachers and children perceive challenges and opportunities at transition. Using Forum Theatre (FT), an interactive drama approach, children were able to show aspects of transitions they perceived as challenging and how these barriers may be overcome. FT offered a tangible reference point for children to discuss their…

  14. Energy landscape and phase transitions in the self-gravitating ring model.

    PubMed

    Nardini, Cesare; Casetti, Lapo

    2009-12-01

    We apply a recently proposed criterion for the existence of phase transitions, which is based on the properties of the saddles of the energy landscape, to a simplified model of a system with gravitational interactions referred to as the self-gravitating ring model. We show analytically that the criterion correctly singles out the phase transition between a homogeneous and a clustered phase and also suggests the presence of another phase transition not previously known. On the basis of the properties of the energy landscape we conjecture on the nature of the latter transition.

  15. SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)

    SciTech Connect

    Not Available

    2013-10-01

    Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

  16. Ultra-high energy physics and standard basic principles. Do Planck units really make sense?

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2014-04-01

    It has not yet been elucidated whether the observed flux suppression for ultra-high energy cosmic rays (UHECR) at energies above ≃ 4 x 1019 eV is a signature of the Greisen-Zatsepin-Kuzmin (GZK) cutoff or a consequence of other phenomena. In both cases, violations of the standard fundamental principles of Physics can be present and play a significant role. They can in particular modify cosmic-ray interactions, propagation or acceleration at very high energy. Thus, in a long-term program, UHECR data can hopefully be used to test relativity, quantum mechanics, energy and momentum conservation, vacuum properties... as well as the elementariness of standard particles. Data on cosmic rays at energies ≃ 1020 eV may also be sensitive to new physics generated well beyond Planck scale. A typical example is provided by the search for possible signatures of a Lorentz symmetry violation (LSV) associated to a privileged local reference frame (the "vacuum rest frame", VRF). If a VRF exists, the internal structure of standard particles at ultra-high energy can undergo substantial modifications. Similarly, the conventional particle symmetries may cease to be valid at such energies instead of heading to a grand unification and the structure of vacuum may no longer be governed by standard quantum field theory. Then, the question whether the notion of Planck scale still makes sense clearly becomes relevant and the very grounds of Cosmology can undergo essential modifications. UHECR studies naturally interact with the interpretation of WMAP and Planck observations. Recent Planck data analyses tend to confirm the possible existence of a privileged space direction. If the observed phenomenon turns out to be a signature of the spinorial space-time (SST) we suggested in 1996-97, then conventional Particle Physics may correspond to the local properties of standard matter at low enough energy and large enough distances. This would clearly strengthen the cosmological relevance of UHECR

  17. Making the transition to middle schooling: A case study of experienced science teachers coping with change

    NASA Astrophysics Data System (ADS)

    Strong, Donna Dorough

    The increasing popularity of the middle school movement necessitates a need for more interpretive research in middle level education. The purpose of this qualitative case study was to explore science teachers' perceptions of the transition to a new middle school and the meanings they attached to this new experience. The participants were three eighth grade science teachers, each with 20 plus years of teaching experience. The primary data for analysis was a series of five interviews with each participant. Data collection also included weekly participant observation of team meetings. Findings revealed that the science teachers all had positive feelings attached to the ability to keep track of students' academic progress and behavior problems as a result of teaming. The changes associated with the first year were very stressful for all three, primarily the loss of the traditional junior high departmentalized structure. The two participants who transferred directly from the junior high school were very skeptical of any benefits from an interdisciplinary curriculum, the appropriateness of the middle school philosophy for eighth grade students, and the move to heterogeneously grouped science classes. In contrast, the former junior high teacher who had spent the past ten years teaching sixth grade at the elementary school had positive beliefs about the potential benefits of an interdisciplinary curriculum and heterogeneous grouping. Teacher stress associated with a change in the school setting and the science teachers' constraints to actualizing a meaningful middle schooling experience are illuminated. Teachers' lack of ownership in the reform decision making process, loss of time with their science teacher peers, diminished compliments from high school counterparts, and need for more empirical evidence supporting proposed changes all served as barriers to embracing the reform initiatives. The participants found taking a very slow approach to be their most useful means of

  18. Lustration: Transitional Justice in Poland and Its Continuous Struggle to Make Means With the Past

    DTIC Science & Technology

    2008-06-01

    9 A. POLSKA RZECZPOSPOLITA LUDOWA................................................12 B. CESKOSLOVENSKO...is essential when evaluating their process of transitional justice and will be reviewed in the following pages. A. POLSKA RZECZPOSPOLITA

  19. Transitivity vs. intransitivity in decision making process - an example in quantum game theory

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin

    2009-06-01

    We compare two different ways of quantum modification in a simple sequential game called Cat's Dilemma in the context of the debate on intransitive and transitive preferences. This kind of analysis can have essential meaning for research on artificial intelligence (some possibilities are discussed). Nature has both transitive and intransitive properties and perhaps quantum models will be more able to capture this dualism than the classical models. We also present an electoral interpretation of the game.

  20. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    PubMed

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  1. Making Sustainable Energy Choices: Insights on the Energy/Water/Land Nexus

    SciTech Connect

    Not Available

    2014-10-01

    This periodic publication summarizes insights from the body of NREL analysis work. In this issue of Analysis Insights, we examine the implications of our energy choices on water, land use, climate, developmental goals, and other factors. Collectively, NREL's work helps policymakers and investors understand and evaluate energy choices within the complex web of connections, or nexus, between energy, water, and land.

  2. Power lines: Urban space, energy development and the making of the modern Southwest

    NASA Astrophysics Data System (ADS)

    Needham, Todd Andrew

    "Power Lines: Urban Space, Energy Development, and the Making of the Modern Southwest" explores the social and environmental transformation of the postwar Southwest and the resulting disputes between urban boosters, federal officials, Native Americans, and environmental activists. The dissertation focuses on the infrastructure built to provide the burgeoning populations of Phoenix, Los Angeles, and other Southwestern cities with electricity. This infrastructure allowed metropolitan boosters in the Southwest to attract Cold War defense manufacturing and to build a new suburban landscape even as industrialization on Indian lands provided electricity for those landscapes. Tracing the transition of electrical generation from a dispersed geography relying on local resources to a centralized geography utilizing primarily coal from Navajo land, "Power Lines" demonstrates the increasing centrality of Indian lands and labor to the metropolitan Southwest. Paying close attention to these networks reveals the far-reaching changes caused by postwar metropolitan growth. "Power Lines" challenges understandings of urban space that neglect the material resources that allow cities to "live." As the nation's cities and suburbs became increasingly energy-intensive, electrical utilities reached deep into the metropolitan periphery, transforming landscapes hundreds of miles from city centers into urban space. The construction of the new "geography of power" in the Southwest also reflects the impact of growth liberalism on postwar growth, as federal money funded suburban, manufacturing, and infrastructure developments. This pursuit of growth produced new political struggles, both as the development of energy resources conflicted with emerging environmentalist sensibilities and as American Indians increasingly resented the industrialization of their land for the benefit of others. By the 1970s, the simultaneous pursuit and criticism of growth came to define the modern Southwest. The

  3. Requirements for supercomputing in energy research: The transition to massively parallel computing

    SciTech Connect

    Not Available

    1993-02-01

    This report discusses: The emergence of a practical path to TeraFlop computing and beyond; requirements of energy research programs at DOE; implementation: supercomputer production computing environment on massively parallel computers; and implementation: user transition to massively parallel computing.

  4. How to make energy conservation pay for itself: creative financing for energy-efficency improvements

    SciTech Connect

    Klepper, M.

    1982-01-01

    This book is based on a report prepared under contract for the US Department of Housing and Urban Development to identify and evaluate alternative techniques for financing energy-efficiency improvements recommended by energy audits of 37 industrial facilities in Brooklyn. Part I describes the financing techniques available for energy conservation measures in industrial, commercial, nonprofit, municipal, single-family, and multifamily residential buildings. Part II describes the experience in applying alternative financing techniques to 37 industrial buildings. Part III outlines actions that can encourage private-sector financing of energy-efficiency measures. 70 references.

  5. Gravitational waves from the first order phase transition of the Higgs field at high energy scales

    NASA Astrophysics Data System (ADS)

    Jinno, Ryusuke; Nakayama, Kazunori; Takimoto, Masahiro

    2016-02-01

    In a wide class of new physics models, there exist scalar fields that obtain vacuum expectation values of high energy scales. We study the possibility that the standard model Higgs field has experienced first order phase transition at the high energy scale due to the couplings with these scalar fields. We estimate the amount of gravitational waves produced by the phase transition, and discuss observational consequences.

  6. Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice

    SciTech Connect

    McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

    2009-08-01

    Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

  7. The energy profiles of atomic conformational transition intermediates of adenylate kinase.

    PubMed

    Feng, Yaping; Yang, Lei; Kloczkowski, Andrzej; Jernigan, Robert L

    2009-11-15

    The elastic network interpolation (ENI) (Kim et al., Biophys J 2002;83:1620-1630) is a computationally efficient and physically realistic method to generate conformational transition intermediates between two forms of a given protein. However it can be asked whether these calculated conformations provide good representatives for these intermediates. In this study, we use ENI to generate conformational transition intermediates between the open form and the closed form of adenylate kinase (AK). Based on C(alpha)-only intermediates, we construct atomic intermediates by grafting all the atoms of known AK structures onto the C(alpha) atoms and then perform CHARMM energy minimization to remove steric conflicts and optimize these intermediate structures. We compare the energy profiles for all intermediates from both the CHARMM force-field and from knowledge-based energy functions. We find that the CHARMM energies can successfully capture the two energy minima representing the open AK and closed AK forms, while the energies computed from the knowledge-based energy functions can detect the local energy minimum representing the closed AK form and show some general features of the transition pathway with a somewhat similar energy profile as the CHARMM energies. The combinatorial extension structural alignment (Shindyalov et al., 1998;11:739-747) and the k-means clustering algorithm are then used to show that known PDB structures closely resemble computed intermediates along the transition pathway.

  8. Activation energy for a model ferrous-ferric half reaction from transition path sampling.

    PubMed

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-21

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004)]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  9. The Work Experiences of Transgender Individuals: Negotiating the Transition and Career Decision-Making Processes

    ERIC Educational Resources Information Center

    Budge, Stephanie L.; Tebbe, Esther N.; Howard, Kimberly A. S.

    2010-01-01

    This study explored the work experiences of individuals who have started transitioning from their biological sex to a different gender expression through 18 interviews of transgender-identified individuals. Thirteen of the participants identified as male-to-female transsexuals, 2 participants identified as female-to-male transsexuals, 2…

  10. Can I Make It? A Transition Program for College Bound Learning Disabled Students and Their Parents.

    ERIC Educational Resources Information Center

    Arnold, Ellen; Czamanske, Jackie

    The metaphor of a family road trip is used to describe a 10-week seminar program at the Rochester Institute of Technology (New York) for learning disabled high school students and their parents in preparation for student transition to college. The small group format (maximum eight families) allows for both whole group and separate (parents and…

  11. From Home to the Office: How Mothers Can Make the Transition Easier

    ERIC Educational Resources Information Center

    Lamkin, Mark

    2008-01-01

    How does a mother of a child with special needs, who has devoted the past 20 years of more of her life to constant caretaking of her exceptional family, go about re-entering the work force after all those years? In this article, the author offers several tips for mothers who are considering a transition from parent to professional.

  12. Students with Traumatic Brain Injury: Making the Transition from Hospital to School.

    ERIC Educational Resources Information Center

    Mira, Mary P.; Tyler, Janet Siantz

    1991-01-01

    This paper uses a case study of a 16-year-old girl with traumatic brain injury (TBI) to present information on the demographics of head injury, neuropathology, recovery patterns, acute rehabilitation, educationally significant effects, behavioral sequelae, the school as a vehicle for rehabilitation, a transition model, school reentry, and…

  13. School-to-Work Transitions in the OECD: Do Education Systems Make a Difference?

    ERIC Educational Resources Information Center

    Karmel, Tom

    2017-01-01

    High unemployment among the young is a concern in many OECD countries. A key issue for policy makers is whether the education system has a role to play in assisting the transition from education to work or whether economic issues dominate. This paper uses OECD country-level data to see whether the structure of countries' education systems,…

  14. The Post-School Outcomes Transition Survey: A Tool for Effective Decision Making?

    ERIC Educational Resources Information Center

    Eaves, Ronald C.; Rabren, Karen; Hall, George

    2012-01-01

    This study investigated the validity of the "Post-School Outcomes Transition Survey" (PSOTS). The PSOTS was designed to ascertain whether individuals who received special education services in secondary school have obtained postschool employment or have enrolled in postsecondary education or training within 1 to 2 years of exiting high school. The…

  15. Rocking & Rolling: Supporting Infants, Toddlers, and Their Families. Helping Babies Make Transitions

    ERIC Educational Resources Information Center

    Merrill, Sarah; Britt, Donna

    2008-01-01

    The authors discuss three steps to helping babies with transitions: observe, ask, and respond (OAR). They advise teachers about how to ask a family questions about their baby and how to give the family suggestions to alleviate the baby's stress, without offending family members. This column includes a list of recommended resources. (Contains 7…

  16. Bridging Troubled Waters: Helping Students Make the Transition from High School to University

    ERIC Educational Resources Information Center

    Pancer, S. Mark; Pratt, Michael; Hunsberger, Bruce; Alisat, Susan

    2004-01-01

    This article discusses recent programs and procedures based at Wilfrid Laurier University in Waterloo, Ontario, designed to help students' transition from high school to university. Students are poorly prepared for university, and the meagre assistance they get from pre-university orientations, or even from longer-term programs such as University…

  17. Transition report, United States Department of Energy: A report to the President-Elect. Volume 2

    SciTech Connect

    Not Available

    1988-11-01

    This report is a description of the Department of Energy transition issues. The topics of the report include: Congressional, Intergovernmental and Public Affairs; Conservation and Renewable Energy; Defense Programs; New Production Reactors; Economic Regulatory Administration; Energy Information Administration; energy research; environment, safety and health; fossil energy; General Counsel; hearings and appeals, Inspector General, international affairs and energy emergencies; management and administration, minority economic impact; nuclear energy; policy, planning and analysis, radioactive waste management; and power marketing administrations: Bonneville Power Administration, Western Area Power Administration, Alaska Power Administration, Southeastern Power Administration, and Southwestern Power Administration.

  18. Analytical expressions for partial wave two-body Coulomb transition matrices at ground-state energy

    NASA Astrophysics Data System (ADS)

    Kharchenko, V. F.

    2016-11-01

    Leaning upon the Fock method of the stereographic projection of the three-dimensional momentum space onto the four-dimensional unit sphere the possibility of the analytical solving of the Lippmann-Schwinger integral equation for the partial wave two-body Coulomb transition matrix at the ground bound state energy has been studied. In this case new expressions for the partial p-, d- and f-wave two-body Coulomb transition matrices have been obtained in the simple analytical form. The developed approach can also be extended to determine analytically the partial wave Coulomb transition matrices at the energies of excited bound states.

  19. Treatment of Electronic Energy Level Transition and Ionization Following the Particle-Based Chemistry Model

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Lewis, Mark

    2010-01-01

    A new method of treating electronic energy level transitions as well as linking ionization to electronic energy levels is proposed following the particle-based chemistry model of Bird. Although the use of electronic energy levels and ionization reactions in DSMC are not new ideas, the current method of selecting what level to transition to, how to reproduce transition rates, and the linking of the electronic energy levels to ionization are, to the author s knowledge, novel concepts. The resulting equilibrium temperatures are shown to remain constant, and the electronic energy level distributions are shown to reproduce the Boltzmann distribution. The electronic energy level transition rates and ionization rates due to electron impacts are shown to reproduce theoretical and measured rates. The rates due to heavy particle impacts, while not as favorable as the electron impact rates, compare favorably to values from the literature. Thus, these new extensions to the particle-based chemistry model of Bird provide an accurate method for predicting electronic energy level transition and ionization rates in gases.

  20. Energy harvesting from localized dynamic transitions in post-buckled elastic beams under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Borchani, Wassim

    The deployability of structural health monitoring self-powered sensors relies on their capability to harvest energy from signals being monitored. Many of the signals required to assess the structure condition are quasi-static events which limits the levels of power that can be extracted. Several vibration-based techniques have been proposed to increase the transferred level of power and broaden the harvester operating bandwidth. However, these techniques require vibration input excitations at frequencies higher than dominant structural response frequencies which makes them inefficient and not suitable for ambient quasi-static excitations. This research proposes a novel sensing and energy harvesting technique at low frequencies using mechanical energy concentrators and triggers. These mechanisms consist of axially-loaded bilaterally-constrained beams with attached piezoelectric energy harvesters. When the quasi-static axial load reaches a certain mechanical threshold, a sudden snap-through mode-switching occurs. These transitions excite the attached piezoelectric scavengers with high-rate input accelerations, generating then electric power. The main objectives are to understand and model the post-buckling behavior of bilaterally-constrained beams, control it by tailoring geometry and material properties of the buckled elements or stacking them into system assemblies, and finally characterize the energy harvesting and sensing capability of the system under quasi-static excitations. The fundamental principle relies on the following concept. Under axial load, a straight slender beam buckles in the first buckling mode. The increased transverse deformations from a buckled shape lead to contact interaction with the lateral boundaries. The contact interaction generates transverse forces that induce the development of higher order buckling configurations. Transitions between the buckled configurations occur not only during loading, but also unloading. In this work, the post

  1. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, Carlos E.

    1992-01-01

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH.sub.3. The products exhibit the same morphology as the starting material.

  2. Process for making whiskers, fibers and flakes of transition metal compounds

    DOEpatents

    Bamberger, C.E.

    1992-06-02

    A process for making titanium and chromium nitrides of known morphology by reacting potassium titanate and chromium oxide in the gas phase with NH[sub 3]. The products exhibit the same morphology as the starting material.

  3. The Role of Grain Boundary Energy on Grain Boundary Complexion Transitions

    SciTech Connect

    Bojarski, Stephanie A.; Rohrer, Gregory S.

    2014-09-01

    Grain boundary complexions are distinct equilibrium structures and compositions of a grain boundary and complexion transformations are transition from a metastable to an equilibrium complexion at a specific thermodynamic and geometric conditions. Previous work indicates that, in the case of doped alumina, a complexion transition that increased the mobility of transformed boundaries and resulted in abnormal grain growth also caused a decrease in the mean relative grain boundary energy as well as an increase in the anisotropy of the grain boundary character distribution (GBCD). The current work will investigate the hypothesis that the rates of complexion transitions that result in abnormal grain growth (AGG) depend on grain boundary character and energy. Furthermore, the current work expands upon this understanding and tests the hypothesis that it is possible to control when and where a complexion transition occurs by controlling the local grain boundary energy distribution.

  4. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes

    SciTech Connect

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O{sub 2} adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N{sub 4} chelation, as well as the molecular and electronic structures for the O{sub 2} adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O{sub 2} on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d{sub z{sup 2}}, d{sub xy}, d{sub xz}, and d{sub yz}) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O{sub 2} adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  5. Correlation between oxygen adsorption energy and electronic structure of transition metal macrocyclic complexes.

    PubMed

    Liu, Kexi; Lei, Yinkai; Wang, Guofeng

    2013-11-28

    Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.

  6. Making change easy: A peer-to-peer guide on transitioning to new hand hygiene products.

    PubMed

    Amirov, Chingiz M; Candon, Heather L; Jacob, Latha

    2017-01-01

    This report summarizes our experiences planning and implementing the transition to a new commercial line of hand hygiene products and their dispensing systems in a large academic health care facility in Toronto, Canada. Our lessons learned are organized into a practical guide made available in 2 different formats: this article and an illustrated peer-to-peer guide (http://www.baycrest.org/wp-content/uploads/HCE-PROG-HH_HighQuality.pdf).

  7. Making the transition to the third era of natural resources management

    USGS Publications Warehouse

    Stephenson, Nathan L.

    2015-01-01

    We are entering the third era of National Park Service (NPS) natural resources management— an era defined by rapid and unprecedented global changes. This third era promises to overturn not only some of our most fundamental assumptions about parks and protected areas, but also many of the ideals we currently hold dear. A common initial reaction to the diverse challenges of this transition is to feel overwhelmed and adrift; I have certainly had such feelings myself. But these feelings carry the risk of reducing our effectiveness as resource stewards right when we can least afford to be less effective: during a transition that is demanding us to be particularly clear-headed and far-seeing. Here I briefly examine some of the challenges of this new era, focusing on those that can most often elicit feelings of discouragement. When we examine the challenges individually, they begin to lose some of their ability to cast gloom—especially when we consider them in the light of lessons from an earlier fundamental transition in NPS natural resources management, beginning a half-century ago. My perspective is shaped by my 35 years as a place-based scientist stationed in a large national park (Sequoia and Kings Canyon), and by my passion for national parks in general. While the discussion that follows is most relevant to large national parks set aside primarily for their natural features, several of the ideas are also relevant to other park units.

  8. IBS and possible luminosity improvement for RHIC operation below transition energy

    SciTech Connect

    Fedotov,A.V.

    2009-05-04

    There is a strong interest in low-energy RHIC collisions in the energy range below present RHIC transition energy. These collisions win help to answer one of the key questions in the field of QCD about the existence and location of a critical point on the QCD phase diagram. For such low-energy RHIC operation, particle losses from the RF bucket are of particular concern since the longitudinal beam size is comparable to the existing RF bucket at low energies. In this paper, we explore an Intrabeam Scattering (IBS) feature below transition energy that drives the transverse and longitudinal beam temperatures towards equilibrium to see whether we can minimize longitudinal diffusion due to IBS and predict some luminosity improvement for the low-energy RHIC project.

  9. A new US energy agenda: US leadership in transition

    SciTech Connect

    Not Available

    1992-11-20

    For the first time since the Carter Administration at the end of 1980, the US is embarked upon energy management beyond laissez faire' free market determination. The election of Bill Clinton to the Presidency could mean the release of years-old pressures to greatly increase efficiency, dramatically reduce hydrocarbon dependency, and curtail pollution to unheard of degrees. Doubtlessly, it will also unleash debates about how to do this without imposing protectionism or further slowing the domestic economy. In this issue a veteran energy analyst, J. Lange Winckler, assesses the changes to be expected. ED supplements the text with graphics that illustrate four scenarios of energy growth and utilization over the next 40 years. This issue also includes the following: (1) the ED Refining Netback Data for the US Gulf and West Coasts, Rotterdam and Singapore as of November 6, 1992; and (2) the ED Fuel Price/Tax Series for countries of the Western Hemisphere, November 1992 Edition.

  10. Energy Transition Initiative: Island Energy Snapshot - Belize; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of Belize, a Central American country bordering Mexico to the north, Guatemala to the west and south, and the Caribbean Sea to the east. Although not an island nation, Belize is included in this energy snapshot series because it is a member of the Caribbean Community (CARICOM), an alliance of 15 Caribbean nations in the region.

  11. X-ray energies of circular transitions and electron screening in kaonic atoms

    SciTech Connect

    Santos, J.P.; Parente, F.; Boucard, S.; Indelicato, P.; Desclaux, J.P.

    2005-03-01

    The QED contribution to the energies of the circular (n,l=n-1), 2{<=}n{<=}13, transitions have been calculated for several kaonic atoms throughout the periodic table, using the current world-average kaon mass. Calculations were done in the framework of the Klein-Gordon equation, with finite nuclear size, finite particle size, and all-order Uelhing vacuum polarization corrections, as well as Kaellen and Sabry and Wichmann and Kroll corrections. These energy level values are compared with other computed values. The circular transition energies are compared with available measured and theoretical transition energies. Electron screening is evaluated using a Dirac-Fock model for the electronic part of the wave function. The effect of electronic wave-function correlation is evaluated.

  12. Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect

    Eudy, L.; Chandler, K.

    2010-11-01

    This document describes the fuel cell transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA). This document provides a description of the demonstration sites, funding sources, and data collection activities for fuel cell transit bus evaluations currently planned from FY10 through FY12.

  13. Astronomy in Sustainable Energy: A New Approach to Make It Matter

    NASA Astrophysics Data System (ADS)

    Ruzhitskaya, Lanika; Speck, A.

    2012-01-01

    We present a study of a new approach to teaching non-science students concepts of sustainable energy using astronomy, real life and fictional scenarios. Teaching non-science majors about energy is important because of the challenge that scientific (il)literacy poses for tangible and political problems like energy. We have established a course in which students are involved in critical thinking and the process of scientific reasoning while discovering the nature of energy and its role in our lives and its presentation in the fiction genre. In the course, students construct and apply their knowledge of transformation of energy to understanding of the concepts of the formation of the sun and the planets. Along with these concepts, students learn about ways of harnessing energy for sustaining life on Earth. During the course students transform their "Why do I care?” to "What can I do?” We are achieving this change by starting with a broad introduction of the concepts and physical laws involved in understanding of the Solar Nebular hypothesis during which we discuss the role of different forms of energy involved in the process. In the next step we narrow down the discussion to importance and use of energy on Earth and then we discuss the role of different forms of energy in maintaining our individual lives. Thus students go from intangible notions about energy to making informed decisions on what type of sustainable energy makes sense to use in their houses and how many burgers they want to eat per day. Moving towards sustainable energy technologies requires a public who understands the science behind the issues. The work presented here is aimed at providing a mechanism for increase literacy regarding these issues and testing this mechanism's success.

  14. Study of Early Transition Metal Carbides for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Dall'Agnese, Yohan

    An increase in energy and power density is needed to match the growing energy storage demands linked with the development of renewable energy production, and portable electronics. Several energy storage technologies exist including lithium-ion batteries, sodium-ion batteries, fuel cells and supercapacitors. These systems are mutually complementary. For example, supercapacitors can deliver high power densities whereas batteries can be used for high energy density applications. The first objective of this work was to investigate the electrochemical performances of a new family of 2-D materials called MXenes by cyclic voltammetry and galvanostatic charge-discharge measurements and to propose new solutions to tackle the energy storage concern. To achieve this goal, several directions have been explored. The first part of the research focused on Ti3C 2-based MXenes behavior as electrode materials for supercapacitors in aqueous electrolytes. The charge storage mechanisms in basic and neutral aqueous electrolytes, investigated by X-ray diffraction, were demonstrated to be attributed to cations intercalation between Ti3C2 layers. X-ray photoelectron spectroscopy highlighted the contribution of oxygenated functional groups on surface redox reactions in sulfuric acid. High capacitances were achieved, up to 520 F/cm3 and 325 F/g. Then the electrochemical behaviors of MXenes in sodium-based organic electrolytes were explored. A new hybrid system of sodium-ion capacitor was proposed. It was demonstrated that V2C-based MXene electrodes were suitable to be used as positive electrodes with an operating potential from 1 V to 3.5 V vs. Na+/Na. Continuous intercalation and de-intercalation of sodium ions between the V2C layers during sodiation and desodiation were showed by X-ray diffraction. An asymmetric sodium-ion capacitor full cell was assembled using hard carbon as negative electrode and showed promising results, with a capacity of 50 mAh/g. The last part was focused on the

  15. Who Makes It to Secondary School? Determinants of Transition to Secondary Schools in Rural India

    ERIC Educational Resources Information Center

    Siddhu, Gaurav

    2011-01-01

    Despite considerable progress made, a significant proportion of children continue to drop out before reaching secondary school in India. This study investigates factors influencing parental decision-making with regard to children's secondary schooling in the context of a rural area of Uttar Pradesh. The study finds that cost, distance to the…

  16. What Makes a "Good" Teacher "Good:" Women in Transition from Prison to Community Reflect

    ERIC Educational Resources Information Center

    Mageehon, Alexandria

    2006-01-01

    Nine women, representing a range of ages, ethnic identities, and educational levels, who were completing detention sentences in a halfway house setting in the Midwest were interviewed to gain insight into their perceptions of education. The researcher found that the women consistently spoke about what makes a teacher "good". Some of the…

  17. Energy and environmental policy in a period of transition

    SciTech Connect

    Stalon, C.G.

    1995-12-31

    This paper discusses governance aspects of electric industry restructuring. The creation and preservation of a governance system to ensure reliable and efficient trades within interconnected and independent trading areas is the main topic. The closely related issue of defining and imposing responsibilities on non-utility generators is also discussed in detail. It is recommended that the Federal Energy Regulatory Commission promote private governance of interconnections. 1 tab.

  18. Cohesive Energies of Transition Metal Silicides and Phosphides.

    DTIC Science & Technology

    1987-09-30

    of electrons. 4 INTRODUCT ION Models serve two related functions in physical science: development of fundamental insight and prediction of properties ...parameters. One of the least satisfactorily treated properties of solids is cohesive energy. There is a need for models which may be used by...experimentalists for purposes of interpreting data, predicting properties of interest, and providing a framework for choosing systems and properties for

  19. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  20. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  1. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  2. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  3. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  4. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  5. Atomic radiative transition probabilities using negative-energy orbitals in fully variational wave functions

    NASA Astrophysics Data System (ADS)

    Jitrik, Oliverio; Bunge, Carlos F.

    2005-07-01

    Transition probabilities have been computed using a variational many-electron theory [R. Jáuregui, C.F. Bunge, E. Ley-Koo, Phys. Rev. A 55 (1997) 1781] incorporating positive-energy and negative-energy orbitals without ambiguities, and absolutely free from variational collapse. The results agree with experiment and with other calculations based on the no-pair Hamiltonian where ad hoc negative-energy orbitals occur in first-order corrections to the wave functions.

  6. Modeling and control of distributed energy systems during transition between grid connected and standalone modes

    NASA Astrophysics Data System (ADS)

    Arafat, Md Nayeem

    Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different

  7. Learning from photosynthesis: how to use solar energy to make fuels.

    PubMed

    Cogdell, Richard J; Gardiner, Alastair T; Cronin, Leroy

    2012-08-13

    This short review describes how the basic reactions of photosynthesis can be broken down into four distinct steps. The current understanding of the molecular mechanisms of these steps, within light-harvesting complexes and reaction centres, in this process is discussed as a framework for the construction of artificial systems capable of using solar energy to make fuels.

  8. Basic JCL for the CRAY-1 operating system (COS) with emphasis on making the transition from CDC 7600/SCOPE

    NASA Technical Reports Server (NTRS)

    Howe, G.; Saunders, D.

    1983-01-01

    Users of the CDC 7600 at Ames are assisted in making the transition to the CRAY-1. Similarities and differences in the basic JCL are summarized, and a dozen or so examples of typical batch jobs for the two systems are shown in parallel. Some changes to look for in FORTRAN programs and in the use of UPDATE are also indicated. No attempt is made to cover magnetic tape handling. The material here should not be considered a substitute for reading the more conventional manuals or the User's Guide for the Advanced Computational Facility, available from the Computer Information Center.

  9. Energy spectrum and optical transitions in C80 fullerene isomers

    NASA Astrophysics Data System (ADS)

    Lobanov, B. V.; Murzashev, A. I.

    2013-04-01

    The energy spectra of all isomers of the C80 fullerene have been calculated in terms of the Schubin-Wonsowskii-Hubbard model. On this basis, their optical absorption spectra have also been calculated. The optical absorption spectra calculated for the endohedral Ca@C80, Ba@C80, and Sr@C80 fullerenes with the I h symmetry agree well with the experimental data. This circumstance allows us to conclude that the optical absorption spectra of other isomers (for which experimental data are unavailable) obtained in this work can be used for their identification.

  10. Wind Power: A Renewable Energy Source for Mars Transit Vehicle

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kohout, Lisa; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Martian environment presents significant design challenges for the development of power generation systems. Nuclear-based systems may not be available due to political and safety concerns. The output of photovoltaics are limited by a solar intensity of 580 W/sqm as compared to 1353 W/sqm on Earth. The presence of dust particles in the Mars atmosphere will further reduce the photovoltaic output. Also, energy storage for a 12-hour night period must be provided. In this challenging environment, wind power generation capabilities may provide a viable option as a Martian power generation system. This paper provides an analysis of the feasibility of such a system.

  11. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  12. Making sense of the transition from the Detroit streets to drug treatment.

    PubMed

    Draus, Paul; Roddy, Juliette; Asabigi, Kanzoni

    2015-02-01

    In this article we consider the process of adjustment from active street sex work to life in structured substance abuse treatment among Detroit-area women who participated in a semicoercive program administered through a drug court. We examine this transition in terms of changes in daily routines and social networks, drawing on extensive qualitative data to illuminate the ways in which women defined their own situations. Using concepts from Bourdieu and Latour as analytical aids, we analyze the role of daily routines, environments, and networks in producing the shifts in identity that those who embraced the goals of recovery demonstrated. We conclude with a discussion of how the restrictive environments and redundant situations experienced by women in treatment could be paradoxically embraced as a means to achieve expanded opportunity and enhanced individual responsibility because women effectively reassembled their social networks and identities to align with the goals of recovery.

  13. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    DTIC Science & Technology

    1979-08-27

    narrow- 37 line excitation F. Optical transitions of Sm3+ in oxide glasses 41 G. Energy transfer from U i+ to Sm3+ in phosphate glass 45 H. Transition...probabilities of europium(III) in zirconium 50 and beryllium fluoride glasses, phosphate glass and pentaphosphate crystals I. Multiphonon relaxation in...in phosphate , borate, germa- nate and tellurite glasses. The level fluorescent lifetime was derived from these rates and from the calculated radiative

  14. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  15. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed.

  16. Activation energy of the low-load NaCl transition from nanoindentation loading curves.

    PubMed

    Kaupp, Gerd

    2014-01-01

    Access to activation energies E(a) of phase transitions is opened by unprecedented analyses of temperature dependent nanoindentation loading curves. It is based on kinks in linearized loading curves, with additional support by coincidence of kink and electrical conductivity of silicon loading curves. Physical properties of B1, B2, NaCl and further phases are discussed. The normalized low-load transition energy of NaCl (Wtrans/µN) increases with temperature and slightly decreases with load. Its semi-logarithmic plot versus T obtains activation energy E(a)/µN for calculation of the transition work for all interesting temperatures and pressures. Arrhenius-type activation energy (kJ/mol) is unavailable for indentation phase transitions. The E(a) per load normalization proves insensitive to creep-on-load, which excludes normalization to depth or volume for large temperature ranges. Such phase transition E(a)/µN is unprecedented material's property and will be of practical importance for the compatibility of composite materials under impact and further shearing interactions at elevated temperatures.

  17. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  18. Relativistic M-subshell radiationless transition probabilities and energies for Zn, Cd and Hg

    SciTech Connect

    Sampaio, J.M.; Parente, F.; Indelicato, P.; Marques, J.P.

    2014-09-15

    Theoretical calculations of radiationless transition probabilities and energies for M-subshell vacancies in Zn, Cd, and Hg are tabulated using the Dirac–Fock method. Transition probabilities between an initial vacancy state and a final two-vacancies state are presented for each initial and final atomic angular momentum quantum number. Calculations were performed in the single configuration approach with the Breit interaction, self-energy and (Uehling) vacuum polarization corrections included in the self-consistent method. Higher-order retardation corrections and QED effects were also included as perturbations.

  19. Intensity transitions in Cyg XR-1 observed at high energies from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1977-01-01

    The observed transitions at energies above 20 keV show that the spectrum of Cyg XR-1 exhibits the pivoting effect during intensity transitions expected from two-temperature accretion disk models of the X-ray emitting region. Cyg XR-1 was observed with the high-energy X-ray spectrometer on board the OSO-8 satellite from November 11-19, 1975 and from October 27 to November 15, 1976 (excluding the period from November 1 to November 7, 1976).

  20. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  1. Relevance of behavioral and social models to the study of consumer energy decision making and behavior

    SciTech Connect

    Burns, B.A.

    1980-11-01

    This report reviews social and behavioral science models and techniques for their possible use in understanding and predicting consumer energy decision making and behaviors. A number of models and techniques have been developed that address different aspects of the decision process, use different theoretical bases and approaches, and have been aimed at different audiences. Three major areas of discussion were selected: (1) models of adaptation to social change, (2) decision making and choice, and (3) diffusion of innovation. Within these three areas, the contributions of psychologists, sociologists, economists, marketing researchers, and others were reviewed. Five primary components of the models were identified and compared. The components are: (1) situational characteristics, (2) product characteristics, (3) individual characteristics, (4) social influences, and (5) the interaction or decision rules. The explicit use of behavioral and social science models in energy decision-making and behavior studies has been limited. Examples are given of a small number of energy studies which applied and tested existing models in studying the adoption of energy conservation behaviors and technologies, and solar technology.

  2. Using Constant Time Delay to Teach Braille and the Nemeth Code for Mathematics and Science Notation to Students Making the Transition from Print to Braille

    ERIC Educational Resources Information Center

    Ivy, Sarah E.; Hooper, Jonathan D.

    2015-01-01

    Introduction: Many students with adventitious vision loss or progressive vision loss need to transition from print to braille as a primary literacy medium. It is important that this transition is handled efficiently so that the student can have continued access to a literacy medium and make progress in the core curriculum. For this study, we used…

  3. Spin symmetry transitions make DNA strands separate. New insight into the mechanism of transcription

    NASA Astrophysics Data System (ADS)

    Tulub, Alexander A.; Stefanov, Vassily E.

    2015-12-01

    The DFT:B3LYP (6-31G** basis set) method, including the hyperfine and spin-orbit couplings (HFC and SOC, respectively), is used to study the separation of two complementary trinucleotide sequences, (dC-dG-dA)-(dG-dC-dT), upon the action of two Mg(2+) cofactors (a simplified model). The computations reveal a crossing of the singlet (S) potential energy surface by the triplet (T) surface at two distinct points. Within the crossing region the T curve lies below the S curve. Adhering to the concept of the minimal energy path, one can assume that the T path is more favorable compared to that of the S path. The T path is not simple; it consists of two, T+ and T-, curves initially separated by the HFC and SOC. On reaching the second crossing point, both curves merge into the T0 state, which facilitates the T → S transfer. Totally, the process of the two trinucleotide separation (the first step of transcription) appears as the S → T → S symmetry conversion.

  4. Spectroscopic elucidation of uncoupled transition energies in the major photosynthetic light-harvesting complex, LHCII

    PubMed Central

    Schlau-Cohen, Gabriela S.; Calhoun, Tessa R.; Ginsberg, Naomi S.; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2010-01-01

    Electrostatic couplings between chromophores in photosynthetic pigment–protein complexes, and interactions of pigments with the surrounding protein environment, produce a complicated energy landscape of delocalized excited states. The resultant electronic structure absorbs light and gives rise to energy transfer steps that direct the excitation toward a site of charge separation with near unity quantum efficiency. Knowledge of the transition energies of the uncoupled chromophores is required to describe how the wave functions of the individual pigments combine to form this manifold of delocalized excited states that effectively harvests light energy. In an investigation of the major light-harvesting complex of photosystem II (LHCII), we develop a method based on polarized 2D electronic spectroscopy to experimentally access the energies of the S0–S1 transitions in the chromophore site basis. Rotating the linear polarization of the incident laser pulses reveals previously hidden off-diagonal features. We exploit the polarization dependence of energy transfer peaks to find the angles between the excited state transition dipole moments. We show that these angles provide a spectroscopic method to directly inform on the relationship between the delocalized excitons and the individual chlorophylls through the site energies of the uncoupled chromophores. PMID:20622154

  5. Precise Determination of the Lyman-1 Transition Energy in Hydrogen-like Gold Ions with Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Kraft-Bermuth, S.; Andrianov, V.; Bleile, A.; Echler, A.; Egelhof, P.; Grabitz, P.; Kilbourne, C.; Kiselev, O.; McCammon, D.; Scholz, P.

    2014-09-01

    The precise determination of the transition energy of the Lyman-1 line in hydrogen-like heavy ions provides a sensitive test of quantum electrodynamics in very strong Coulomb fields. We report the determination of the Lyman-1 transition energy of gold ions (Au) with microcalorimeters at the experimental storage ring at GSI. X-rays produced by the interaction of 125 MeV/u Au ions with an internal argon gas-jet target were detected. The detector array consisted of 14 pixels with silicon thermistors and Sn absorbers, for which an energy resolution of 50 eV for an X-ray energy of 59.5 keV was obtained in the laboratory. The Lyman-1 transition energy was determined for each pixel in the laboratory frame, then transformed into the emitter frame and averaged. A Dy-159 source was used for energy calibration. The absolute positions of the detector pixels, which are needed for an accurate correction of the Doppler shift, were determined by topographic measurements and by scanning a collimated Am-241 source across the cryostat window. The energy of the Lyman-1 line in the emitter frame is eV, in good agreement with theoretical predictions. The systematic error is dominated by the uncertainty in the position of the cryostat relative to the interaction region of beam and target.

  6. N(+)-N and O(+)-O interaction energies, dipole transition moments, and transport cross sections

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Stallcop, J. R.

    1986-01-01

    Complete sets of ion-atom interaction energies have been computed for nitrogen and oxygen with accurate large scale structure calculations. The computed energies agree well with the accurate potential curves available from spectroscopic measurement. The state functions from the nitrogen calculations have been applied to determine the transition moment for all allowed dipole transitions. These results can be combined to compute a detailed radiation spectrum such as that required to define the highly nonequilibrium environment of aeroassisted orbital transfer vehicle (AOTV). The long-range interaction energies have been used to determine the ion-atom resonance charge exchange cross sections that are important for transport processes such as diffusion. A calculation to determine reliable transport properties for energies that include the AOTV temperature range from these computed properties is described.

  7. Geometry of the energy landscape and folding transition in a simple model of a protein.

    PubMed

    Mazzoni, Lorenzo N; Casetti, Lapo

    2008-05-01

    A geometric analysis of the global properties of the energy landscape of a minimalistic model of a polypeptide is presented, which is based on the relation between dynamical trajectories and geodesics of a suitable manifold, whose metric is completely determined by the potential energy. We consider different sequences, some with a definite proteinlike behavior, a unique native state and a folding transition, and others undergoing a hydrophobic collapse with no tendency to a unique native state. The global geometry of the energy landscape appears to contain relevant information on the behavior of the various sequences: in particular, the fluctuations of the curvature of the energy landscape, measured by means of numerical simulations, clearly mark the folding transition and allow the proteinlike sequences to be distinguished from the others.

  8. The sower’s way: quantifying the narrowing net-energy pathways to a global energy transition

    NASA Astrophysics Data System (ADS)

    Sgouridis, Sgouris; Csala, Denes; Bardi, Ugo

    2016-09-01

    Planning the appropriate renewable energy (RE) installation rate should balance two partially contradictory objectives: substituting fossil fuels fast enough to stave-off the worst consequences of climate change while maintaining a sufficient net energy flow to support the world’s economy. The upfront energy invested in constructing a RE infrastructure subtracts from the net energy available for societal energy needs, a fact typically neglected in energy projections. Modeling feasible energy transition pathways to provide different net energy levels we find that they are critically dependent on the fossil fuel emissions cap and phase-out profile and on the characteristic energy return on energy invested of the RE technologies. The easiest pathway requires installation of RE plants to accelerate from 0.12 TWp yr-1 in 2013 to peak between 7.3 and 11.6 TWp yr-1 in the late 2030s, for an early or a late fossil-fuel phase-out respectively in order for emissions to stay within the recommended CO2 budget.

  9. Absolute measurement of the relativistic magnetic dipole transition energy in heliumlike argon.

    PubMed

    Amaro, Pedro; Schlesser, Sophie; Guerra, Mauro; Le Bigot, Eric-Olivier; Isac, Jean-Michel; Travers, Pascal; Santos, José Paulo; Szabo, Csilla I; Gumberidze, Alexandre; Indelicato, Paul

    2012-07-27

    The 1s2s (3)S(1)→1s(2) (1)S(0) relativistic magnetic dipole transition in heliumlike argon, emitted by the plasma of an electron-cyclotron resonance ion source, has been measured using a double-flat crystal x-ray spectrometer. Such a spectrometer, used for the first time on a highly charged ion transition, provides absolute (reference-free) measurements in the x-ray domain. We find a transition energy of 3104.1605(77) eV (2.5 ppm accuracy). This value is the most accurate, reference-free measurement done for such a transition and is in good agreement with recent QED predictions.

  10. Energy star product specification development framework: Using data and analysis to make program decisions

    SciTech Connect

    McWhinney, Marla; Fanara, Andrew; Clark, Robin; Hershberg, Craig; Schmeltz, Rachel; Roberson, Judy

    2003-09-12

    The Product Development Team (PD) in the US Environmental Protection Agency's ENERGY STAR Labeling Program fuels the long-term market transformation process by delivering new specifications. PD's goal is to expand the reach and visibility of ENERGY STAR as well as the market for new energy-efficient products. Since 2000, PD has launched nine new ENERGY STAR specifications and continues to evaluate new program opportunities. To evaluate the ENERGY STAR carbon savings potential for a diverse group of products, PD prepared a framework for developing new and updating existing specifications that rationalizes new product opportunities and draws upon the expertise and resources of other stakeholders, including manufacturers, utilities, environmental groups and other government agencies. By systematically reviewing the potential of proposed product areas, PD makes informed decisions as to whether or not to proceed with developing a specification. In support of this strategy, PD ensures that new product specifications are consistent with the ENERGY STAR guidelines and that these guidelines are effectively communicated to stakeholders during the product development process. To date, the framework has been successful in providing consistent guidance on collecting the necessary information on which to base sound program decisions. Through the application of this framework, PD increasingly recognizes that each industry has unique market and product characteristics that can require reconciliation with the ENERGY STAR guidelines. The new framework allows PD to identify where reconciliation is needed to justify program decisions.

  11. Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition

    DTIC Science & Technology

    2010-01-01

    homepage: www.e lsev ier .com/ locate /msea Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced...Keywords: Polyurea Computational analysis Glass transition Blast/impact energy absorption coating a b s t r a c t A number of experimental investigations...reported in the open literature have indicated that the applica- tion of polyurea coatings can substantially improve blast and ballistic impact

  12. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].

    PubMed

    Xiao, Jing-Lin

    2009-03-01

    In an asymmetry quantum dot, the properties of the electron, which is strongly coupled with phonon, were investigated. The variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were studied by using a linear combination operator and the unitary transformation methods. Numerical calculations for the variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were performed and the results show that the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will strongly increase with decreasing the transverse and longitudinal effective confinement length. The first internal excited state energy of the electron which is strongly coupled with phonon in an asymmetry quantum dot will decrease with increasing the electron-phonon coupling strength. The excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will increase with increasing the electron-phonon coupling strength.

  13. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  14. Hanford Site cleanup and transition: Risk data needs for decision making (Hanford risk data gap analysis decision guide)

    SciTech Connect

    Gajewski, S.; Glantz, C.; Harper, B.; Bilyard, G.; Miller, P.

    1995-10-01

    Given the broad array of environmental problems, technical alternatives, and outcomes desired by different stakeholders at Hanford, DOE will have to make difficult resource allocations over the next few decades. Although some of these allocations will be driven purely by legal requirements, almost all of the major objectives of the cleanup and economic transition missions involve choices among alternative pathways. This study examined the following questions: what risk information is needed to make good decisions at Hanford; how do those data needs compare to the set(s) of risk data that will be generated by regulatory compliance activities and various non-compliance studies that are also concerned with risk? This analysis examined the Hanford Site missions, the Hanford Strategic Plan, known stakeholder values, and the most important decisions that have to be made at Hanford to determine a minimum domain of risk information required to make good decisions that will withstand legal, political, and technical scrutiny. The primary risk categories include (1) public health, (2) occupational health and safety, (3) ecological integrity, (4) cultural-religious welfare, and (5) socio-economic welfare.

  15. Development regulation changes local elected leaders can make to promote energy conservation

    SciTech Connect

    Kron, Jr, N F

    1980-07-01

    This report lists actions that local officials can make to change their community's development regulations and thereby lessen the effects of local energy problems. The term development regulations, as used here, is a general reference to local or state controls over land use and development that affect design, orientation, placement, location, and related characteristics of buildings and infrastructure. The regulations include items such as zoning, subdivision controls, setbacks, yard and height requirements, and solar-access ordinances.

  16. Large conversion of energy in dielectric elastomers by electromechanical phase transition

    NASA Astrophysics Data System (ADS)

    Lu, Tong-Qing; Suo, Zhi-Gang

    2012-08-01

    When air is pumped in, a tubular balloon initially inflates slightly and homogeneously. A short section of the balloon then forms a bulge, which coexists with the unbulged section of the balloon. As more air is pumped in, the bulged section elongates at the expense of the unbulged section, until the entire balloon is bulged. The phenomenon is analogous to the liquid-to-vapor phase transition. Here we study the bulging transition in a dielectric elastomer tube as air is pumped into the balloon and a voltage is applied through the thickness of the membrane. We formulate the condition for coexistent budged and unbulged sections, and identify allowable states set by electrical breakdown and mechanical rupture. We find that the bulging transition dramatically amplifies electromechanical energy conversion. Energy converted in an electromechanical cycle consisting of unbulged and bulged states is thousands of times that in an electromechanical cycle consisting of only unbulged states.

  17. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  18. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect

    Aggarwal, Sunny Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  19. Determination of electron bunch shape using transition radiation and phase-energy measurements

    SciTech Connect

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  20. When does a functional correctly describe both the structure and the energy of the transition state?

    PubMed

    Su, Neil Qiang; Pernot, Pascal; Xu, Xin; Savin, Andreas

    2017-02-01

    Requiring that several properties are well reproduced is a severe test on density functional approximations. This can be assessed through the estimation of joint and conditional success probabilities. An example is provided for a small set of molecules, for properties characterizing the transition states (geometries and energies).

  1. Computer Series 41: Potential-Energy Surfaces and Transition-State Theory.

    ERIC Educational Resources Information Center

    Moss, S. J.; Coady, C. J.

    1983-01-01

    Describes computer programs involving the London-Eyring-Polany-Sato method (LEPS). The programs provide a valuable means of introducing students to potential energy surfaces and to the foundations of transition state theory. Program listings (with copies of student scripts) or programs on DOS 3.3 disc are available from authors. (JN)

  2. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  3. Energies of Maxima and Oscillator Strengths of CaO Elementary Transition Bands Over a Wide Energy Range

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Merzlyakov, D. A.; Sobolev, V. Val.

    2016-09-01

    Integral spectra of the imaginary parts of the dielectric permittivity ɛ2(E) and characteristic volume (-Im ɛ-1) and surface [-Im (1 + ɛ)-1] energy losses of calcium oxide were deconvoluted into elementary components in the range 6-40 eV. The main component parameters including the energies of maxima and oscillator strengths were determined using an improved non-parametric method of united Argand diagrams and the method of the effective number of valence electrons participating in the transitions. A total of 41 components with oscillator strengths in the range 0.001-0.22 were identified instead of the 14 maxima and shoulders of the integral spectra. They were caused by transverse and longitudinal exciton and interband transitions.

  4. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  5. Calculation of Coster-Kronig energies and transition probabilities by linear interpolation method

    NASA Astrophysics Data System (ADS)

    Trivedi, R. K.; Shrivastava, Uma; Hinge, V. K.; Shrivastava, B. D.

    2016-10-01

    The X-ray emission spectrum consists of two types of spectral lines heaving different origins. The diagram lines originate because of transitions in singly ionized atom, while the nondiagram lines or satellites originate due to transitions in doubly or multiply ionized atom. The X- ray satellite energy is the difference between the energies of initial and final states which are both doubly or multiply ionized. Thus, the satellite has a different energy than the energy of the X-ray diagram line. Once the singly ionized state has been created, it is the probability of a particular subsequent process that will lead to the formation of two-hole state. The single hole may get converted through a Coster-Kronig transition to a double hole state. The probability of formation of double hole state via this process is written as σ.σ', where σ is the probability of creation of single hole state and σ' is the probability of the Coster-Kronig transition. The value of σ' can be taken from the tables of Chen et al. [1], who have presented the calculated values of σ' for almost all possible Coster-Kronig transitions in some elements. The energies of the satellites can be calculated by using the tables of Parente et al. [2]. Both of these tables do not give values for all the elements. The aim of the present work is to show that the values for other elements, for which values are not listed by Chen et al. and Parente et al., can be calculated by linear interpolation method.

  6. The energy cost for the step-to-step transition in amputee walking.

    PubMed

    Houdijk, Han; Pollmann, Eveline; Groenewold, Marlies; Wiggerts, Han; Polomski, Wojtek

    2009-07-01

    The purpose of this study was to investigate whether the increased energy cost of amputee gait could be accounted for by an increase in the mechanical work dissipated during the step-to-step transition in walking. Eleven transtibial amputees (AMP) and 11 age-matched controls (CO) walked at both comfortable (CWS) and fixed (FWS, 1.3m/s) walking speed, while external mechanical work of each separate leg and metabolic energy consumption were measured. At FWS the metabolic energy consumption (E(met)) was significantly higher in AMP compared to CO (3.34 Jkg(-1)s(-1) vs. 2.73 Jkg(-1)s(-1)). At CWS, no difference in energy consumption was found (3.56 Jkg(-1)s(-1) vs. 3.58 Jkg(-1)s(-1)) but CWS was significantly lower in AMP compared to CO (1.35 ms(-1) vs. 1.52 ms(-1)). In conjunction with the higher E(met) at FWS, the negative work generated by the intact leading leg for the step-to-step transition in double support was significantly higher for AMP than CO at FWS. A moderate though significant correlation was found between negative mechanical power generated during the step-to-step transition and metabolic power (CWS: r=-0.56, p=0.007; FWS: r=-0.50, p=0.019). Despite the difference in negative work during the step-to-step transition, the total absolute mechanical work over a stride did not differ between groups. This could possibly be attributed to exchange of internal positive and negative work during single support, which remains unnoticed in the external work calculations. It was concluded that the increased mechanical work for the step-to-step transition from prosthetic to intact limb contributes to the increased metabolic energy cost of amputee walking.

  7. Activation energy for a model ferrous-ferric half reaction from transition path sampling

    NASA Astrophysics Data System (ADS)

    Drechsel-Grau, Christof; Sprik, Michiel

    2012-01-01

    Activation parameters for the model oxidation half reaction of the classical aqueous ferrous ion are compared for different molecular simulation techniques. In particular, activation free energies are obtained from umbrella integration and Marcus theory based thermodynamic integration, which rely on the diabatic gap as the reaction coordinate. The latter method also assumes linear response, and both methods obtain the activation entropy and the activation energy from the temperature dependence of the activation free energy. In contrast, transition path sampling does not require knowledge of the reaction coordinate and directly yields the activation energy [C. Dellago and P. G. Bolhuis, Mol. Simul. 30, 795 (2004), 10.1080/08927020412331294869]. Benchmark activation energies from transition path sampling agree within statistical uncertainty with activation energies obtained from standard techniques requiring knowledge of the reaction coordinate. In addition, it is found that the activation energy for this model system is significantly smaller than the activation free energy for the Marcus model, approximately half the value, implying an equally large entropy contribution.

  8. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion

    PubMed Central

    Ryham, Rolf J.; Klotz, Thomas S.; Yao, Lihan; Cohen, Fredric S.

    2016-01-01

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm. PMID:26958888

  9. Calculating Transition Energy Barriers and Characterizing Activation States for Steps of Fusion.

    PubMed

    Ryham, Rolf J; Klotz, Thomas S; Yao, Lihan; Cohen, Fredric S

    2016-03-08

    We use continuum mechanics to calculate an entire least energy pathway of membrane fusion, from stalk formation, to pore creation, and through fusion pore enlargement. The model assumes that each structure in the pathway is axially symmetric. The static continuum stalk structure agrees quantitatively with experimental stalk architecture. Calculations show that in a stalk, the distal monolayer is stretched and the stored stretching energy is significantly less than the tilt energy of an unstretched distal monolayer. The string method is used to determine the energy of the transition barriers that separate intermediate states and the dynamics of two bilayers as they pass through them. Hemifusion requires a small amount of energy independently of lipid composition, while direct transition from a stalk to a fusion pore without a hemifusion intermediate is highly improbable. Hemifusion diaphragm expansion is spontaneous for distal monolayers containing at least two lipid components, given sufficiently negative diaphragm spontaneous curvature. Conversely, diaphragms formed from single-component distal monolayers do not expand without the continual injection of energy. We identify a diaphragm radius, below which central pore expansion is spontaneous. For larger diaphragms, prior studies have shown that pore expansion is not axisymmetric, and here our calculations supply an upper bound for the energy of the barrier against pore formation. The major energy-requiring deformations in the steps of fusion are: widening of a hydrophobic fissure in bilayers for stalk formation, splay within the expanding hemifusion diaphragm, and fissure widening initiating pore formation in a hemifusion diaphragm.

  10. Examining Longitudinal Relationships between Dysfunctional Career Thoughts and Career Decision-Making Self-Efficacy in School-to-Work Transition

    ERIC Educational Resources Information Center

    Kim, Boyoung; Lee, Bo Hyun; Ha, Gyuyoung; Lee, Hong Kwon; Lee, Sang Min

    2015-01-01

    This study examines the role of dysfunctional career thoughts between two-wave longitudinal data (Time 1 and Time 2) in career decision-making self-efficacy during school-to-work transition periods. Career decision-making self-efficacy was measured before (Time 1) and after college graduation (Time 2). The results indicated that the growth of…

  11. Improving energy efficiency: Strategies for supporting sustained market evolution in developing and transitioning countries

    SciTech Connect

    Meyers, S.

    1998-02-01

    This report presents a framework for considering market-oriented strategies for improving energy efficiency that recognize the conditions of developing and transitioning countries, and the need to strengthen the effectiveness of market forces in delivering greater energy efficiency. It discusses policies that build markets in general, such as economic and energy pricing reforms that encourage competition and increase incentives for market actors to improve the efficiency of their energy use, and measures that reduce the barriers to energy efficiency in specific markets such that improvement evolves in a dynamic, lasting manner. The report emphasizes how different policies and measures support one another and can create a synergy in which the whole is greater than the sum of the parts. In addressing this topic, it draws on the experience with market transformation energy efficiency programs in the US and other industrialized countries.

  12. Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels.

    PubMed

    Huang, Bolong; Sun, Mingzi

    2017-04-05

    An energy conversion model has been established for the intrinsic persistent luminescence in solids related to the native point defect levels, formations, and transitions. In this study, we showed how the recombination of charge carriers between different defect levels along the zero phonon line (ZPL) can lead to energy conversions supporting the intrinsic persistent phosphorescence in solids. This suggests that the key driving force for this optical phenomenon is the pair of electrons hopping between different charged defects with negative-Ueff. Such a negative correlation energy will provide a sustainable energy source for electron-holes to further recombine in a new cycle with a specific quantum yield. This will help us to understand the intrinsic persistent luminescence with respect to native point defect levels as well as the correlations of electronics and energetics.

  13. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  14. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  15. Laser energy dependence of valley polarization in transition-metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tatsumi, Yuki; Ghalamkari, Kazu; Saito, Riichiro

    2016-12-01

    Photoabsorption spectra by circular polarized light in transition-metal dichalcogenides are calculated as a function of laser excitation energy. Although the 100% valley polarization occurs at the K point of the Brillouin zone, the difference of the absorption intensity for left-handed and right-handed circular polarized light becomes maximum at about 1 eV higher energy than the direct energy band gap. The maximum intensity difference corresponds to the so-called Λ valley in the Brillouin zone. In order to understand valley polarization, analytic formula of optical absorption is given by tight-binding method.

  16. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    PubMed

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  17. QED Corrections to the 4p - 4d Transition Energies of Copperlike Heavy Ions

    SciTech Connect

    Chen, M H; Cheng, K T; Johnson, W R; Sapirstein, J

    2006-08-21

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copper-like ions with Z = 70-92 are calculated non-perturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p{sub 1/2}-4d{sub 3/2} transition in copperlike bismuth, thorium and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap (EBIT) measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high angular momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiment on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations.

  18. QED corrections to the 4p-4d transition energies of copperlike heavy ions

    SciTech Connect

    Chen, M. H.; Cheng, K. T.; Johnson, W. R.; Sapirstein, J.

    2006-10-15

    Quantum electrodynamic (QED) corrections to 4p-4d transition energies of several copperlike ions with Z=70-92 are calculated nonperturbatively in strong external fields to all orders in binding corrections. Dirac-Kohn-Sham potentials are used to account for screening and core-relaxation effects. For the 4p{sub 1/2}-4d{sub 3/2} transition in copperlike bismuth, thorium, and uranium, results are in good agreement with empirical QED corrections deduced from differences between transition energies obtained from recent high-precision electron-beam ion-trap measurements and those calculated with the relativistic many-body perturbation theory (RMBPT). These comparisons provide sensitive tests of QED corrections for high-angular-momentum states in many-electron heavy ions and illustrate the importance of core-relaxation corrections. Comparisons are also made with other theories and with experiments on the 4s-4p transition energies of high-Z Cu-like ions as accuracy checks of the present RMBPT and QED calculations.

  19. Transition through co-optation: Harnessing carbon democracy for clean energy

    NASA Astrophysics Data System (ADS)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  20. Energies, Wavelengths, and Transition Rates for Ga-Like Ions (Nd XXX-Tb XXXV)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Fatma; Attia, S. M.

    2016-03-01

    Energies, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for 4s24p-4s4p2 and 4s24p-4s24d transitions in gallium-like ions from Z = 60 to 65, for Nd XXX, Pm XXXI, Sm XXXII, Eu XXXIII, Gd XXXIV, and Tb XXXV using the fully relativistic multiconfi guration Dirac-Fock method. The correlation with the n = 4 complex and the quantum electrodynamic effects have been considered in the calculations. The obtained results have been compared with the available experimental and other theoretical results.

  1. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  2. Transition model for ricin-aptamer interactions with multiple pathways and energy barriers

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Xu, Bingqian

    2014-02-01

    We develop a transition model to interpret single-molecule ricin-aptamer interactions with multiple unbinding pathways and energy barriers measured by atomic force microscopy dynamic force spectroscopy. Molecular simulations establish the relationship between binding conformations and the corresponding unbinding pathways. Each unbinding pathway follows a Bell-Evans multiple-barrier model. Markov-type transition matrices are developed to analyze the redistribution of unbinding events among the pathways under different loading rates. Our study provides detailed information about complex behaviors in ricin-aptamer unbinding events.

  3. Specific Energy as an Index to Identify the Critical Failure Mode Transition Depth in Rock Cutting

    NASA Astrophysics Data System (ADS)

    He, Xianqun; Xu, Chaoshui

    2016-04-01

    Rock cutting typically involves driving a rigid cutter across the rock surface at certain depth of cut and is used to remove rock material in various engineering applications. It has been established that there exist two distinct failure modes in rock cutting, i.e. ductile mode and brittle mode. The ductile mode takes precedence when the cut is shallow and the increase in the depth of cut leads to rock failure gradually shifted to brittle-dominant mode. The threshold depth or the critical transition depth, at which rock failure under cutting changes from the ductile to the brittle mode, is associated with not only the rock properties but also the cutting operational parameters and the understanding of this threshold is important to optimise the tool design and operational parameters. In this study, a new method termed the specific cutting energy transition model is proposed from an energy perspective which is demonstrated to be much more effective in identifying the critical transition depth compared with existing approaches. In the ductile failure cutting mode, the specific cutting energy is found to be independent of the depth of cut; but in the brittle failure cutting mode, the specific cutting energy is found to be dependent on the depth of cut following a power-law relationship. The critical transition depth is identified as the intersection point between these two relationships. Experimental tests on two types of rocks with different combinations of cutting velocity, depth of cut and back rake angle are conducted and the application of the proposed model on these cutting datasets has demonstrated that the model can provide a very effective tool to analyse the cutting mechanism and to identify the critical transition depth.

  4. Minimum free energy path of ligand-induced transition in adenylate kinase.

    PubMed

    Matsunaga, Yasuhiro; Fujisaki, Hiroshi; Terada, Tohru; Furuta, Tadaomi; Moritsugu, Kei; Kidera, Akinori

    2012-01-01

    Large-scale conformational changes in proteins involve barrier-crossing transitions on the complex free energy surfaces of high-dimensional space. Such rare events cannot be efficiently captured by conventional molecular dynamics simulations. Here we show that, by combining the on-the-fly string method and the multi-state Bennett acceptance ratio (MBAR) method, the free energy profile of a conformational transition pathway in Escherichia coli adenylate kinase can be characterized in a high-dimensional space. The minimum free energy paths of the conformational transitions in adenylate kinase were explored by the on-the-fly string method in 20-dimensional space spanned by the 20 largest-amplitude principal modes, and the free energy and various kinds of average physical quantities along the pathways were successfully evaluated by the MBAR method. The influence of ligand binding on the pathways was characterized in terms of rigid-body motions of the lid-shaped ATP-binding domain (LID) and the AMP-binding (AMPbd) domains. It was found that the LID domain was able to partially close without the ligand, while the closure of the AMPbd domain required the ligand binding. The transition state ensemble of the ligand bound form was identified as those structures characterized by highly specific binding of the ligand to the AMPbd domain, and was validated by unrestrained MD simulations. It was also found that complete closure of the LID domain required the dehydration of solvents around the P-loop. These findings suggest that the interplay of the two different types of domain motion is an essential feature in the conformational transition of the enzyme.

  5. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  6. Making Homes Part of the Climate Solution: Policy Options To Promote Energy Efficiency

    SciTech Connect

    Brown, Dr. Marilyn Ann; Chandler, Jess; Lapsa, Melissa Voss; Ally, Moonis

    2009-06-01

    In the area of energy efficiency, advanced technologies combined with best practices appear to afford not only large, but also cost-effective options to conserve energy and reduce greenhouse gas emissions (McKinsey & Company, 2007). In practice, however, the realization of this potential has often proven difficult. Progress appears to require large numbers of individuals to act knowledgeably, and each individual must often act with enabling assistance from others. Even when consumer education is effective and social norms are supportive, the actions of individuals and businesses can be impeded by a broad range of barriers, many of which are non-technical in nature. Title XVI of the Energy Policy Act of 2005 included a mandate to examine barriers to progress and make recommendations in this regard. A detailed report on barriers as well as the National strategy for overcoming barriers met this requirement (Brown et al, 2008; CCCSTI, 2009). Following up on this mandate, the U.S. Climate Change Technology Program (CCTP) chose to focus next on the development of policy options to improve energy efficiency in residential buildings, with supporting analysis of pros and cons, informed in part by behavioral research. While this work is sponsored by CCTP, it has been undertaken in coordination with DOE's Building Technologies Program and Office of Electricity Delivery and Energy Reliability.

  7. Transition in Education: Policy Making and the Key Educational Policy Areas in the Central-European and Baltic Countries.

    ERIC Educational Resources Information Center

    Rado, Peter

    This report examines transition in educational systems and identifies key policy areas in Central-Eastern European countries. It summarizes policy implications of the transition process within the educational context of these countries. Chapter 1, "Transition and Education," outlines key characteristics of the transition process and…

  8. Improving the iterative Linear Interaction Energy approach using automated recognition of configurational transitions.

    PubMed

    Vosmeer, C Ruben; Kooi, Derk P; Capoferri, Luigi; Terpstra, Margreet M; Vermeulen, Nico P E; Geerke, Daan P

    2016-01-01

    Recently an iterative method was proposed to enhance the accuracy and efficiency of ligand-protein binding affinity prediction through linear interaction energy (LIE) theory. For ligand binding to flexible Cytochrome P450s (CYPs), this method was shown to decrease the root-mean-square error and standard deviation of error prediction by combining interaction energies of simulations starting from different conformations. Thereby, different parts of protein-ligand conformational space are sampled in parallel simulations. The iterative LIE framework relies on the assumption that separate simulations explore different local parts of phase space, and do not show transitions to other parts of configurational space that are already covered in parallel simulations. In this work, a method is proposed to (automatically) detect such transitions during the simulations that are performed to construct LIE models and to predict binding affinities. Using noise-canceling techniques and splines to fit time series of the raw data for the interaction energies, transitions during simulation between different parts of phase space are identified. Boolean selection criteria are then applied to determine which parts of the interaction energy trajectories are to be used as input for the LIE calculations. Here we show that this filtering approach benefits the predictive quality of our previous CYP 2D6-aryloxypropanolamine LIE model. In addition, an analysis is performed of the gain in computational efficiency that can be obtained from monitoring simulations using the proposed filtering method and by prematurely terminating simulations accordingly.

  9. Energy and environmental policy in a period of transition. Proceedings of the twenty-third annual Illinois energy conference

    SciTech Connect

    1995-12-31

    The Twenty-Third Annual Illinois Energy Conference entitled, ``Energy and Environmental Policy in a Period of Transition`` was held in Chicago, Illinois on November 20--21, 1995. The conference program explored how federal policy in energy and environment is changing and how these shifts will impact the economy of the Midwest. The conference was divided in four plenary sessions. Session 1 focused on the national policy scene where speakers discussed proposed legislation to change federal energy and environmental policy. Session 2 looked at the future structure of the energy industry, projecting the roles of natural gas, the electric utility industry, and independent power producers in the overall energy system of the 21st century. Session 3 examined current federal policy in research and development as a baseline for discussing the future role of government and industry in supporting research and development. In particular, it looked at the relationship between energy research and development and global competitiveness. Finally, Session 4 attempted to tie these issues together and consider the impact of national policy change on Illinois and the Midwest.

  10. Stability in bcc transition metals: Madelung and band-energy effects due to alloying.

    PubMed

    Landa, A; Söderlind, P; Ruban, A V; Peil, O E; Vitos, L

    2009-12-04

    The phase stability of group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the body-centered-cubic phase relative to low-symmetry rhombohedral phases. We show that band-structure effects determine phase stability when a particular group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons destabilize and stabilize bcc, respectively. When alloying with neighbors of higher d-transition series, electrostatic Madelung energy dominates and stabilizes the body-centered-cubic phase. This surprising prediction invalidates current understanding of simple d-electron bonding that dictates high-symmetry cubic and hexagonal phases.

  11. Probing Critical Point Energies of Transition Metal Dichalcogenides: Surprising Indirect Gap of Single Layer WSe2.

    PubMed

    Zhang, Chendong; Chen, Yuxuan; Johnson, Amber; Li, Ming-Yang; Li, Lain-Jong; Mende, Patrick C; Feenstra, Randall M; Shih, Chih-Kang

    2015-10-14

    By using a comprehensive form of scanning tunneling spectroscopy, we have revealed detailed quasi-particle electronic structures in transition metal dichalcogenides, including the quasi-particle gaps, critical point energy locations, and their origins in the Brillouin zones. We show that single layer WSe2 surprisingly has an indirect quasi-particle gap with the conduction band minimum located at the Q-point (instead of K), albeit the two states are nearly degenerate. We have further observed rich quasi-particle electronic structures of transition metal dichalcogenides as a function of atomic structures and spin-orbit couplings. Such a local probe for detailed electronic structures in conduction and valence bands will be ideal to investigate how electronic structures of transition metal dichalcogenides are influenced by variations of local environment.

  12. On the transition from strombolian to fountaining activity: a thermal energy-based driver

    NASA Astrophysics Data System (ADS)

    Bombrun, Maxime; Spampinato, Letizia; Harris, Andrew; Barra, Vincent; Caltabiano, Tommaso

    2016-02-01

    Since 1999, Mount Etna's (Italy) South-East crater system has been characterised by episodic lava fountaining. Each episode is characterised by initial strombolian activity followed by transition to sustained fountaining to feed high-effusion rate lava flow. Here, we use thermal infrared data recorded by a permanent radiometer station to characterise the transition to sustained fountaining fed by the New South-East crater that developed on the eastern flank of the South-East crater starting from January 2011. We cover eight fountaining episodes that occurred between 2012 and 2013. We first developed a routine to characterise event waveforms apparent in the precursory, strombolian phase. This allowed extraction of a database for thermal energy and waveform shape for 1934 events. We detected between 66 and 650 events per episode, with event durations being between 4 and 55 s. In total, 1508 (78 %) of the events had short waxing phases and dominant waning phases. Event frequency increased as climax was approached. Events had energies of between 3.0 × 106 and 5.8 × 109 J, with rank order analysis indicating the highest possible event energy of 8.1 × 109 J. To visualise the temporal evolution of retrieved parameters during the precursory phase, we applied a dimensionality reduction technique. Results show that weaker events occur during an onset period that forms a low-energy "sink". The transition towards fountaining occurs at 107 J, where subsequent events have a temporal trend towards the highest energies, and where sustained fountaining occurs when energies exceed 109 J. Such an energy-based framework allows researchers to track the evolution of fountaining episodes and to predict the time at which sustained fountaining will begin.

  13. CFB`s make waste-to-energy, recycling `perfect together`

    SciTech Connect

    Makansi, J.

    1997-05-01

    Proponents of circulating fluidized-bed boilers have long thought that the technology could align the objectives of recycling and waste-to-energy (WTC) enthusiasts. More than seven years in the making, the Robbins (III) Resource Recovery facility is the proof. Its success could invigorate a moribund market for WTE in North America, but the design is already being applied overseas. Robbins, located just south of Chicago, is not only the first large-scale application of CFB technology for waste combustion in North America, it is the largest facility of its type worldwide, though the concept has been applied commercially in other countries, such as Japan.

  14. Energy Transition Initiative: Island Energy Snapshot - Saint Martin/Sint Maarten

    SciTech Connect

    2015-09-01

    This profile provides a snapshot of the energy landscape of the northeast Caribbean island Saint Martin. The island is divided between two nations, France in the north (Saint-Martin) and the Netherlands in the south (Sint Maarten).

  15. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.

    PubMed

    Wang, Huan; Yue, Bailing; Xie, Zengqi; Gao, Bingrong; Xu, Yuanxiang; Liu, Linlin; Sun, Hongbo; Ma, Yuguang

    2013-03-14

    The orientation factor κ(2) ranging from 0 to 4, which depends on the relative orientation of the transition dipoles of the energy donor (D) and the energy acceptor (A) in space, is one of the pivotal factors deciding the efficiency and directionality of resonance energy transfer (RET) in a D-A molecular system. In this work, tetracene (Tc) and pentacene (Pc) are successfully doped in a trans-1,4-distyrylbenzene (DSB) crystalline lattice to form definite D-A mutually perpendicular transition dipole orientations. The cross D-A dipole arrangement results in an extremely small orientation factor, which is about two orders smaller than that in the disordered films. The energy transfer properties from the host (DSB) to the guest (Tc/Pc) were investigated in detail by steady-state as well as time-resolved fluorescence spectroscopy. Our experimental research results show that the small value of κ(2) allows less or partial energy transfer from the host (DSB) to the guest (Tc) in a wide range of guest concentration, with the Förster distance of around 1.5 nm. By controlling the doping concentrations in the Tc and Pc doubly doped DSB crystals, we demonstrate, as an example, for the first time the application of the restricted energy transfer by D-A cross transition dipole arrangement for preparation of a large-size, white-emissive organic crystal with the CIE coordinates of (0.36, 0.37) approaching an ideal white light. In contrast, Tc is also doped in an anthracene crystalline lattice to form head-to-tail D-A transition dipole alignment, which is proved to be highly effective to promote the intermolecular energy transfer. In this doped system, the orientation factor is relatively large and the Förster distance is around 7 nm.

  16. Energy calibration of superconducting transition edge sensors for x-ray detection using pulse analysis

    SciTech Connect

    Hollerith, C.; Simmnacher, B.; Weiland, R.; Feilitzsch, F. v.; Isaila, C.; Jochum, J.; Potzel, W.; Hoehne, J.; Phelan, K.; Wernicke, D.; May, T.

    2006-05-15

    Transition edge sensors (TESs) have been developed to be used as high-resolution x-ray detectors. They show excellent energy resolution and can be used in many applications. TESs are a special kind of calorimeters that can determine small temperature changes after x-ray absorption. Such a temperature change causes a strong resistance change (superconducting to normal-conducting phase transition) that can be measured. The energy calibration of a TES based spectrometer is problematic due to the nonlinear behavior of the detector response. In this article, a method is introduced to calibrate the energy scale of TES spectra. This is accomplished by calculating the energy dependence of the response of the detector operated in electrothermal feedback mode. Using this method a calibration accuracy of a few eV for an x-ray energy of 6 keV can be achieved. Examples of energy dispersive x-ray spectroscopy (EDS) measurements demonstrate the high quality of this method for everyday use of TES EDS detectors in material analysis. However, because the method relies only on a few very general assumptions, it should also be useful for other kinds of TES detectors.

  17. Nutrition transition and dietary energy availability in Eastern Europe after the collapse of communism.

    PubMed

    Ulijaszek, Stanley J; Koziel, Slawomir

    2007-12-01

    After the economic transition of the late 1980s and early 1990s there was a rapid increase in overweight and obesity in many countries of Eastern Europe. This article describes changing availability of dietary energy from major dietary components since the transition to free-market economic systems among Eastern European nations, using food balance data obtained at national level for the years 1990-92 and 2005 from the FAOSTAT-Nutrition database. Dietary energy available to the East European nations satellite to the former Soviet Union (henceforth, Eastern Europe) was greater than in the nations of the former Soviet Union. Among the latter, the Western nations of the former Soviet Union had greater dietary energy availability than the Eastern and Southern nations of the former Soviet Union. The higher energy availability in Eastern Europe relative to the nations of the former Soviet Union consists mostly of high-protein foods. There has been no significant change in overall dietary energy availability to any category of East European nation between 1990-1992 and 2005, indicating that, at the macro-level, increasing rates of obesity in Eastern European countries cannot be attributed to increased dietary energy availability. The most plausible macro-level explanations for the obesity patterns observed in East European nations are declines in physical activity, increased real income, and increased consumption of goods that contribute to physical activity decline: cars, televisions and computers.

  18. A cautionary approach in transitioning to 'green' energy technologies and practices is required.

    PubMed

    Matatiele, Puleng; Gulumian, Mary

    2016-06-01

    Renewable energy technologies (wind turbines, solar cells, biofuels, etc.) are often referred to as 'clean' or 'green' energy sources, while jobs linked to the field of environmental protection and energy efficiency are referred to as 'green' jobs. The energy efficiency of clean technologies, which is likely to reduce and/or eliminate reliance on fossil fuels, is acknowledged. However, the potential contribution of green technologies and associated practices to ill health and environmental pollution resulting from consumption of energy and raw materials, generation of waste, and the negative impacts related to some life cycle phases of these technologies are discussed. Similarly, a point is made that the green jobs theme is mistakenly oversold because the employment opportunities generated by transitioning to green technologies are not necessarily safe and healthy jobs. Emphasis is put on identifying the hazards associated with these green designs, assessing the risks to the environment and worker health and safety, and either eliminating the hazards or minimizing the risks as essential elements to the design, construction, operation, and maintenance of green technologies. The perception that it is not always economically possible to consider all risk factors associated with renewable energy technologies at the beginning without hampering their implementation, especially in the poor developing countries, is dismissed. Instead, poor countries are encouraged to start implementing environmentally sound practices while transitioning to green technologies in line with their technological development and overall economic growth.

  19. Students' Energy Concepts at the Transition Between Primary and Secondary School

    NASA Astrophysics Data System (ADS)

    Opitz, Sebastian T.; Harms, Ute; Neumann, Knut; Kowalzik, Kristin; Frank, Arne

    2015-10-01

    Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students' progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3-6 ( N = 540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.

  20. Energy levels and radiative rates for transitions in Fe V, Co VI and Ni VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2017-03-01

    Energy levels, Landé g-factors and radiative lifetimes are reported for the lowest 182 levels of the 3d4, 3d34s and 3d34p configurations of Fe V, Co VI and Ni VII. Additionally, radiative rates (A-values) have been calculated for the E1, E2 and M1 transitions among these levels. The calculations have been performed in a quasi-relativistic approach (QR) with a very large configuration interaction (CI) wavefunction expansion, which has been found to be necessary for these ions. Our calculated energies for all ions are in excellent agreement with the available measurements, for most levels. Discrepancies among various calculations for the radiative rates of E1 transitions in Fe V are up to a factor of two for stronger transitions (f ≥ 0.1), and larger (over an order of magnitude) for weaker ones. The reasons for these discrepancies have been discussed and mainly are due to the differing amount of CI and methodologies adopted. However, there are no appreciable discrepancies in similar data for M1 and E2 transitions, or the g-factors for the levels of Fe V, the only ion for which comparisons are feasible.

  1. Low-Energy Asteroid and Comet Transit Analysis using Isolating Blocks

    NASA Astrophysics Data System (ADS)

    Anderson, Rodney L.; Chodas, Paul; Easton, Robert W.; Lo, Martin W.

    2016-05-01

    It is well known that asteroids and comets typically capture or transit near a planet by traveling through the L1 and L2 libration point gateways. These regions are therefore key to understanding the mechanism by which these captures, transits, and potential impacts occur. Recently, Anderson, Easton, and Lo (2015) explored the L2 region in the Earth-Moon system using isolating blocks in the circular restricted three-body problem (CRTBP). Isolating blocks provide a theoretically rigorous method for computing the invariant manifolds of libration point periodic orbits and all possible transit trajectories at a particular Jacobi constant in the CRTBP. Using isolating block methods allows us to directly compute and study the transit trajectories used by comets and asteroids in the low-energy regimes common for these types of bodies. In this study, both L1 and L2 isolating blocks are computed for the Sun-Earth and Sun-Jupiter CRTBP systems to compute trajectories transiting near the Earth and Jupiter. Statistics based on transit time, periapse passages, and exit location are first computed. Then individual trajectory solutions corresponding to different trajectory types are analyzed. The transit trajectories are also characterized using their orbital elements and compared to known comets and asteroids. These results show that the invariant manifolds of the orbits in the isolating block control and guide the dynamics of comets and asteroids as they temporarily capture between the L1 and L2 region of a planet or satellite.Reference: Anderson, R. L., R. W. Easton, M. W. Lo (2015), AAS/AIAA Astrodynamics Conf., AAS 15-615.

  2. Landau-Zener transitions mediated by an environment: population transfer and energy dissipation.

    PubMed

    Dodin, Amro; Garmon, Savannah; Simine, Lena; Segal, Dvira

    2014-03-28

    We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.

  3. Landau-Zener transitions mediated by an environment: Population transfer and energy dissipation

    SciTech Connect

    Dodin, Amro; Simine, Lena; Segal, Dvira; Garmon, Savannah

    2014-03-28

    We study Landau-Zener transitions between two states with the addition of a shared discretized continuum. The continuum allows for population decay from the initial state as well as indirect transitions between the two states. The probability of nonadiabatic transition in this multichannel model preserves the standard Landau-Zener functional form except for a shift in the usual exponential factor, reflecting population transfer into the continuum. We provide an intuitive explanation for this behavior assuming individual, independent transitions between pairs of states. In contrast, the ground state survival probability at long time shows a novel, non-monotonic, functional form with an oscillatory behavior in the sweep rate at low sweep rate values. We contrast the behavior of this open-multistate model to other generalized Landau-Zener models incorporating an environment: the stochastic Landau-Zener model and the dissipative case, where energy dissipation and thermal excitations affect the adiabatic region. Finally, we present evidence that the continuum of states may act to shield the two-state Landau-Zener transition probability from the effect of noise.

  4. Non-resonant electromechanical energy harvesting using inter-ferroelectric phase transitions

    SciTech Connect

    Pérez Moyet, Richard; Rossetti, George A.; Stace, Joseph; Amin, Ahmed; Finkel, Peter

    2015-10-26

    Non-resonant electromechanical energy harvesting is demonstrated under low frequency excitation (<50 Hz) using [110]{sub C}-poled lead indium niobate-lead magnesium niobate-lead titanate relaxor ferroelectric single crystals with compositions near the morphotropic phase boundary. The efficiency of power generation at the stress-induced phase transition between domain-engineered rhombohedral and orthorhombic ferroelectric states is as much as four times greater than is obtained in the linear piezoelectric regime under identical measurement conditions but during loading below the coercive stress of the phase change. The phase transition mode of electromechanical transduction holds potential for non-resonant energy harvesting from low-frequency vibrations and does not require mechanical frequency up-conversion.

  5. Correlation, Breit and Quantum Electrodynamics effects on energy level and transition properties of W54+ ion

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong

    2017-03-01

    The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3 s 23 p 63 d 2 and first excited states [Ne]3 s 23 p 53 d 3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3 s and 3 p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion.

  6. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  7. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation

    NASA Astrophysics Data System (ADS)

    del Corro, Elena; Peña-Alvarez, Miriam; Sato, Kentaro; Morales-Garcia, Angel; Bousa, Milan; Mračko, Michal; Kolman, Radek; Pacakova, Barbara; Kavan, Ladislav; Kalbac, Martin; Frank, Otakar

    2017-02-01

    Twisted bilayer graphene (tBLG) represents a family of unique materials with optoelectronic properties tuned by the rotation angle between the two layers. The presented work shows an additional way of tweaking the electronic structure of tBLG by modifying the interlayer distance, for example by a small uniaxial out-of-plane compression. We have focused on the optical transition energy, which shows a clear dependence on the interlayer distance, both experimentally and theoretically.

  8. Energy transfer process between exciton and surface plasmon: Complete transition from Forster to surface energy transfer

    NASA Astrophysics Data System (ADS)

    Kumar, Arunandan; Tyagi, Priyanka; Srivastava, Ritu; Mehta, D. S.; Kamalasanan, M. N.

    2013-05-01

    The energy transfer process between surface plasmons and excitons was studied by varying the filling fraction of gold (Au) nano-clusters (NCs) and by placing a spacer of different thickness between Au NC and organic semiconductor layer. The intensity enhancement has occurred for 10%-50% filling fractions and 4-14 nm spacer thicknesses. Energy transfer mechanism was found to switch from Forster type to surface type by increase in filling fraction. Transverse electric field for Au NCs was simulated and we observed that for filling fraction <30%, Au NCs behave like 1-dimensional dipole and for >60%, they behave like 2-dimensional dipoles.

  9. Modified thiol-ene networks: Tuning the glass transition temperature and energy damping capabilities

    NASA Astrophysics Data System (ADS)

    Sun, Ning; Rafailovich, Miriam; Gersappe, Dilip

    2013-03-01

    Utilizing thiol-ene `click' reactions, it is possible to produce thermoset networks that are highly homogeneous and thus exhibit enhanced energy damping capabilities. This talk will present recent results in the characterization and impact testing of modified thiol-ene networks with tunable physical properties. In particular, we synthesize ternary networks containing (1) bulky side-chain substituents, (2) isocyanate functionality, or (3) dual thiol components to improve control over the glass transition temperature and strain at break. In addition, we present results in the high-impact compression testing to demonstrate the energy damping capabilities of these materials.

  10. Transition state determination of enzyme reaction on free energy surface: Application to chorismate mutase

    NASA Astrophysics Data System (ADS)

    Higashi, Masahiro; Hayashi, Shigehiko; Kato, Shigeki

    2007-04-01

    The transition state on the free energy surface for Claisen rearrangement of chorismate in Bacillus subtilis chorismate mutase is calculated with a method based on a linear response theory. The calculated activation free energy is 16.9 kcal/mol, which is in good agreement with the experimental one. The catalytic ability of the enzyme is examined by comparing the activation barrier with that in aqueous solution and found to be mainly attributed to the conformational restriction of the substrate. We also calculate the kinetic isotope effects, which are in accord with the experimental estimates.

  11. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  12. Europe's battery: The making of the Alpine energy landscape, 1870-1955

    NASA Astrophysics Data System (ADS)

    Landry, Marc D., II

    iconic landscapes. It sheds light on the hydroelectric energy transition and shows the environmental impacts of electrification. Finally the history of Europe's Battery illuminates an alternative regional history of energy development and industrialization in Europe, one based on water and electricity and not coal.

  13. Strain controlled ferromagnetic-ferrimagnetic transition and vacancy formation energy of defective graphene.

    PubMed

    Zhang, Yajun; Sahoo, Mpk; Wang, Jie

    2016-09-23

    Single vacancy (SV)-induced magnetism in graphene has attracted much attention motivated by its potential in achieving new functionalities. However, a much higher vacancy formation energy limits its direct application in electronic devices and the dependency of spin interaction on the strain is unclear. Here, through first-principles density-functional theory calculations, we investigate the possibility of strain engineering towards lowering vacancy formation energy and inducing new magnetic states in defective graphene. It is found that the SV-graphene undergoes a phase transition from an initial ferromagnetic state to a ferrimagnetic state under a biaxial tensile strain. At the same time, the biaxial tensile strain significantly lowers the vacancy formation energy. The charge density, density of states and band theory successfully identify the origin and underlying physics of the transition. The predicted magnetic phase transition is attributed to the strain driven spin flipping at the C-atoms nearest to the SV-site. The magnetic semiconducting graphene induced by defect and strain engineering suggests an effective way to modulate both spin and electronic degrees of freedom in future spintronic devices.

  14. Test and Evaluation Metrics of Crew Decision-Making And Aircraft Attitude and Energy State Awareness

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Ellis, Kyle K. E.; Stephens, Chad L.

    2013-01-01

    NASA has established a technical challenge, under the Aviation Safety Program, Vehicle Systems Safety Technologies project, to improve crew decision-making and response in complex situations. The specific objective of this challenge is to develop data and technologies which may increase a pilot's (crew's) ability to avoid, detect, and recover from adverse events that could otherwise result in accidents/incidents. Within this technical challenge, a cooperative industry-government research program has been established to develop innovative flight deck-based counter-measures that can improve the crew's ability to avoid, detect, mitigate, and recover from unsafe loss-of-aircraft state awareness - specifically, the loss of attitude awareness (i.e., Spatial Disorientation, SD) or the loss-of-energy state awareness (LESA). A critical component of this research is to develop specific and quantifiable metrics which identify decision-making and the decision-making influences during simulation and flight testing. This paper reviews existing metrics and methods for SD testing and criteria for establishing visual dominance. The development of Crew State Monitoring technologies - eye tracking and other psychophysiological - are also discussed as well as emerging new metrics for identifying channelized attention and excessive pilot workload, both of which have been shown to contribute to SD/LESA accidents or incidents.

  15. Energy band gap and optical transition of metal ion modified double crossover DNA lattices.

    PubMed

    Dugasani, Sreekantha Reddy; Ha, Taewoo; Gnapareddy, Bramaramba; Choi, Kyujin; Lee, Junwye; Kim, Byeonghoon; Kim, Jae Hoon; Park, Sung Ha

    2014-10-22

    We report on the energy band gap and optical transition of a series of divalent metal ion (Cu(2+), Ni(2+), Zn(2+), and Co(2+)) modified DNA (M-DNA) double crossover (DX) lattices fabricated on fused silica by the substrate-assisted growth (SAG) method. We demonstrate how the degree of coverage of the DX lattices is influenced by the DX monomer concentration and also analyze the band gaps of the M-DNA lattices. The energy band gap of the M-DNA, between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO), ranges from 4.67 to 4.98 eV as judged by optical transitions. Relative to the band gap of a pristine DNA molecule (4.69 eV), the band gap of the M-DNA lattices increases with metal ion doping up to a critical concentration and then decreases with further doping. Interestingly, except for the case of Ni(2+), the onset of the second absorption band shifts to a lower energy until a critical concentration and then shifts to a higher energy with further increasing the metal ion concentration, which is consistent with the evolution of electrical transport characteristics. Our results show that controllable metal ion doping is an effective method to tune the band gap energy of DNA-based nanostructures.

  16. The energy balance and pressure in the solar transition zone for network and active region features

    NASA Technical Reports Server (NTRS)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  17. Band gap energy and optical transitions in polyenes formed by thermal decomposition of polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Kulak, A. I.; Bondarava, G. V.; Shchurevich, O. A.

    2013-07-01

    The band gap of the ensemble of oligoene clusters formed by thermocatalytic decomposition of polyvinyl alcohol is parametrized using optical absorption spectra. A band gap energy of E gm =1.53 ± 0.02 eV at the end of an infinite polyene chain is found by extrapolating the energies of π → π* transitions in clusters with a number of double bonds varying from 4 to 12. This value is close to the band gap of trans-polyacetylene and the lower bound for the Tauc energy E gT =1.50 eV, which characterizes the minimum interband transition energy. E gT is essentially independent of the concentration of oligoene clusters, which is determined by the concentration of the AlCl3 thermal decomposition catalyst. The Urbach energy determined from the long wavelength edge of the spectrum falls from 2.21 to 0.66 eV as the AlCl3 concentration is raised from 11.1 to 41.7 mmol per mol of polyvinyl alcohol structural units.

  18. The energy transition and the macroeconomy: A framework for policy analysis

    NASA Astrophysics Data System (ADS)

    Sterman, J. D.

    1981-12-01

    An integrating framework designed to evaluate the effects of depletion and rising energy prices on economic growth, inflation, and other key economic and energy indicators over the time frame 1980 to 2050 is discussed. The framework provides a general disequilibrium representation of the major linkages between the energy sector and the economy. Gross national product, consumption, investment, wages and prices, and other major energy and economic aggregates are determined endogenously. Though the framework generates the macroeconomic dynamics of the economy, it is based on an explicity behavioral theory of economic decision-making at the microeconomic level of individuals and firms. Results show a substantial potential for the first-order effects of depletion (rising capital requirements for energy production, rising real energy prices) to be amplified by feedback mechanisms in the economy, worsening economic performance.

  19. Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas

    NASA Astrophysics Data System (ADS)

    Hailin, ZHAO; Tao, LAN; Adi, LIU; Defeng, KONG; Huagang, SHEN; Jie, WU; Wandong, LIU; Changxuan, YU; Wei, ZHANG; Guosheng, XU; Baonian, WAN

    2017-03-01

    The essential role of zonal flow in the L-H transition and the suppression of turbulence have been studied with a long range correlation technique using Langmuir probe arrays in EAST tokamak. Two toroidally localized probe arrays are used to measure the zonal flow during L-H transition and H-L back transition. The energy ratio of the low frequency zonal flow to the total drift wave turbulence is calculated. During ELM-free H mode, the energy ratio is higher than that in L mode, which reveals the important role of zonal flows in regulating turbulence amplitude in L-H transition.

  20. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  1. Atomic transition energies and the variation of the fine-structure constant {alpha}

    SciTech Connect

    Borschevsky, Anastasia; Eliav, Ephraim; Ishikawa, Yasuyuki; Kaldor, Uzi

    2006-12-15

    Relativistic energy shifts of atomic excitation energies, showing the dependence of these energies on the value of the fine-structure constant {alpha}, are needed to extract past changes in {alpha} from spectra of distant quasars. These shifts are calculated by the Fock-space coupled cluster method and its extrapolated intermediate Hamiltonian extension, which allow high-accuracy treatment of electron correlation. The accuracy of the method is tested by comparing 33 transition energies in heavy atoms (obtained with the laboratory {alpha}) with experiment; the average error is 258 cm{sup -1}, and the largest error is 711 cm{sup -1}. This may be compared with an average error of 432 cm{sup -1} and a maximum error of 2150 cm{sup -1} in the work of Dzuba et al., who reported most of the available energy shift calculations. The enhanced accuracy is due to more extensive inclusion of electron correlation. To obtain the energy shifts, we repeated the calculations with different values of {alpha} (within 0.1% of the current value). Our shifts differ by up to 30% from the values given by Dzuba et al., with an average difference of 9%. Based on the better quality of the present-day excitation energies, we believe the energy shifts reported here are more accurate than earlier work.

  2. Blue to Green: How Past Energy Transitions Inform the Department of Defense’s Energy Strategy

    DTIC Science & Technology

    2012-06-01

    required the constant employment of reactor coolant pumps and reduction gears to maintain the reactor and reduce the speed of the turbine shaft.169 This...regularity, speed , and 3 The DOD and the Department of Energy are currently analyzing a myriad of new...However, the essence of submersible boat propulsion changed very little until challenged by nuclear technology. As the historical case studies will

  3. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives

    NASA Astrophysics Data System (ADS)

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-01

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L = cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF = N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu3 + in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu3 + ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of 5D0 and triplet state contracts.

  4. Spectra, energy levels, and energy transition of lanthanide complexes with cinnamic acid and its derivatives.

    PubMed

    Zhou, Kaining; Feng, Zhongshan; Shen, Jun; Wu, Bing; Luo, Xiaobing; Jiang, Sha; Li, Li; Zhou, Xianju

    2016-04-05

    High resolution spectra and luminescent lifetimes of 6 europium(III)-cinnamic acid complex {[Eu2L6(DMF)(H2O)]·nDMF·H2O}m (L=cinnamic acid I, 4-methyl-cinnamic acid II, 4-chloro-cinnamic acid III, 4-methoxy-cinnamic acid IV, 4-hydroxy-cinnamic acid V, 4-nitro-cinnamic acid VI; DMF=N, N-dimethylformamide, C3H7NO) were recorded from 8 K to room temperature. The energy levels of Eu(3+) in these 6 complexes are obtained from the spectra analysis. It is found that the energy levels of the central Eu(3+) ions are influenced by the nephelauxetic effect, while the triplet state of ligand is lowered by the p-π conjugation effect of the para-substituted functional groups. The best energy matching between the ligand triplet state and the central ion excited state is found in complex I. While the other complexes show poorer matching because the gap of (5)D0 and triplet state contracts.

  5. Analytic model for low energy excitation states and phase transitions in spin-ice systems

    NASA Astrophysics Data System (ADS)

    López-Bara, F. I.; López-Aguilar, F.

    2017-04-01

    Low energy excitation states in magnetic structures of the so-called spin-ices are produced via spin flips among contiguous tetrahedra of their crystal structure. These spin flips generate entities which mimic magnetic dipoles in every two tetrahedra according to the dumbbell model. When the temperature increases, the spin-flip processes are transmitted in the lattice, generating so-called Dirac strings, which constitute structural entities that can present mimetic behavior similar to that of magnetic monopoles. In recent studies of both specific heat and ac magnetic susceptibility, two (even possibly three) phases have been shown to vary the temperature. The first of these phases presents a sharp peak in the specific heat and another phase transition occurs for increasing temperature whose peak is broader than that of the former phase. The sharp peak occurs when there are no free individual magnetic charges and temperature of the second phase transition coincides with the maximum proliferation of free deconfined magnetic charges. In the present paper, we propose a model for analyzing the low energy excitation many-body states of these spin-ice systems. We give analytical formulas for the internal energy, specific heat, entropy and their temperature evolution. We study the description of the possible global states via the nature and structure of their one-body components by means of the thermodynamic functions. Below 0.37 K, the Coulomb-like magnetic charge interaction can generate a phase transition to a condensation of pole–antipole pairs, possibly having Bose–Einstein structure which is responsible for the sharp peak of the first phase transition. When there are sufficient free positive and negative charges, the system tends to behave as a magnetic plasma, which implies the broader peak in the specific heat appearing at higher temperature than the sharper experimental peak.

  6. Earth-to-Moon low energy transfers targeting L1 hyperbolic transit orbits.

    PubMed

    Topputo, Francesco; Vasile, Massimiliano; Bernelli-Zazzera, Franco

    2005-12-01

    In the frame of the lunar exploration, numerous future space missions will require maximization of payload mass, and simultaneously achieving reasonable transfer times. To fulfill this request, low energy non-Keplerian orbits could be used to reach the Moon instead of high energetic transfers. The low energy solutions can be separated into two main categories depending on the nature of the trajectory approaching the Moon: low energy transit orbits that approach the Moon from the interior equilibrium point L(1) and weak stability boundary transfers that reach the Moon after passing through L(2). This paper proposes an alternative way to exploit the opportunities offered by L(1) transit orbits for the design of Earth-Moon transfers. First, in a neighborhood of the L(1) point, the three-body dynamics is linearized and written in normal form; then the entire family of nonlinear transit orbits is obtained by selecting the appropriate nontrivial amplitudes associated with the hyperbolic part. The L(1)-Earth arc is close to a 5:2 resonant orbit with the Moon, whose perturbations cause the apogee to rise. In a second step, two selected low altitude parking orbits around the Earth and the Moon are linked with the transit orbit by means of two three-body Lambert arcs, solutions of two two-point boundary value problems. The resulting Earth-to-Moon trajectories prove to be very efficient in the Moon captured arc and save approximately 100 m/sec in Deltav cost when compared to the Hohmann transfer. Furthermore, such solutions demonstrate that Moon capture could be obtained in the frame of the Earth-Moon R3BP neglecting the presence of the Sun.

  7. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  8. Phase Transitions as a Novel Mechanism for High-Speed Energy Storage

    NASA Astrophysics Data System (ADS)

    Bernholc, Jerry

    2013-03-01

    In many energy applications there is an urgent need to store and quickly discharge large amounts of electrical energy. Since capacitors can be discharged far quicker than batteries and fuel cells, they have much higher power densities. At present, highly insulating polymers with large breakdown fields, such as polypropylene, are the dielectrics of choice in high-power capacitors. However, their energy densities are quite low because of small dielectric constants. Ferroelectric polymers from the PVDF family have significantly larger dielectric constants, yet their energy densities are still rather low. This can be traced to early saturation of their displacement fields with the applied electric field, and to somewhat lower breakdown fields. However, an admixture of a small amount of another polymer, such as CTFE, results in a dramatic increase in the stored energy. We show that this highly non-linear increase in the energy density is due to the formation of disordered nanodomains with different copolymer concentrations, which undergo first-order non-polar to polar phase transitions with an increase of the applied field. The resulting energy density profile reproduces well the experimental data, while its variation with co-polymer concentration and distribution suggest avenues for additional substantial improvements in the stored energy. Most recently, we have identified a low-activation-energy pathway for these successive phase transformations. It provides further confirmation of the viability of the suggested energy storage mechanism and also enables fine-tuning of the kinetics of energy release by informed choices of suitable co-polymers. In collaboration with V. Ranjan, L. Yu, M. Buongiorno Nardelli and R. Dong.

  9. Highly correlated systems. Excitation energies of first row transition metals Sc-Cu

    NASA Astrophysics Data System (ADS)

    Raghavachari, Krishnan; Trucks, Gary W.

    1989-07-01

    The low-lying dns2→dn+1s1 excitation energies of the first row transition metal atoms Sc-Cu are calculated using fourth-order M≂ller-Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large spd and spdf basis sets. The MP4 method performs well for Sc-Mn but fails dramatically for Fe-Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. f functions contribute 0.1-0.4 eV to the excitation energies for these systems. The highly correlated d10 state of the Ni atom is also considered in detail. The QCI technique obtains the d9s1→d10 splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree-Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  10. Elucidation of the physicomechanical and ab initio quantum energy transitions of a crosslinked PLGA scaffold.

    PubMed

    Sibambo, Sibongile R; Pillay, Viness; Choonara, Yahya E; Khan, Riaz A; Sweet, Joe L

    2007-09-01

    This study elucidated the in vitro physicomechanical transitions of a crosslinked polylactic-co-glycolic acid (PLGA) scaffold, utilizing quantum mechanics to compute the ab initio energy requirements of a salted-out and subsequently crosslinked PLGA scaffold interacting with simulated physiological fluid, phosphate buffered saline (PBS) (pH 7.4, 37 degrees C) at a molecular level. Twenty-six salted-out PLGA scaffolds were formulated using a four factor, two centerpoint quadratic Face-Centered Central Composite Design (FCCD). PLGA molecular mass, PLGA concentration, water volume and salting-out reaction time were the dependant formulation variables. Subsequent to PLGA solubilization in dimethyl formamide (DMF), protonated water was added to induce salting-out of PLGA into a scaffolds that were immersed in PBS, oscillated at 100 rpm, and analyzed at pre-determined time intervals for their physicomechanical and ab initio quantum energy transitions. Results indicated that the matrix resilience (MR) decreased with longer incubation periods (MR=35-45%) at day 30. Scaffolds salted-out using higher PLGA concentrations exhibited minimal changes in MR and the matrix ability to absorb energy was found to closely correlate with the scaffold residence time in PBS. Spartan-based ab initio quantum energy predictions elucidated the potential scaffold stability from a molecular viewpoint and its suitability for use in rate-modulated drug delivery.

  11. Roles of Energy Dissipation in a Liquid-Solid Transition of Out-of-Equilibrium Systems

    NASA Astrophysics Data System (ADS)

    Komatsu, Yuta; Tanaka, Hajime

    2015-07-01

    Self-organization of active matter as well as driven granular matter in nonequilibrium dynamical states has attracted considerable attention not only from the fundamental and application viewpoints but also as a model to understand the occurrence of such phenomena in nature. These systems share common features originating from their intrinsically out-of-equilibrium nature, and how energy dissipation affects the state selection in such nonequilibrium states remains elusive. As a simple model system, we consider a nonequilibrium stationary state maintained by continuous energy input, relevant to industrial processing of granular materials by vibration and/or flow. More specifically, we experimentally study roles of dissipation in self-organization of a driven granular particle monolayer. We find that the introduction of strong inelasticity entirely changes the nature of the liquid-solid transition from two-step (nearly) continuous transitions (liquid-hexatic-solid) to a strongly discontinuous first-order-like one (liquid-solid), where the two phases with different effective temperatures can coexist, unlike thermal systems, under a balance between energy input and dissipation. Our finding indicates a pivotal role of energy dissipation and suggests a novel principle in the self-organization of systems far from equilibrium. A similar principle may apply to active matter, which is another important class of out-of-equilibrium systems. On noting that interaction forces in active matter, and particularly in living systems, are often nonconservative and dissipative, our finding may also shed new light on the state selection in these systems.

  12. Highly correlated systems. Excitation energies of first row transition metals Sc--Cu

    SciTech Connect

    Raghavachari, K.; Trucks, G. W.

    1989-07-15

    The low-lying /ital d//sup /ital n/s//sup 2//r arrow//ital d//sup /ital n/+1//ital s//sup 1/ excitation energies of the first row transition metal atoms Sc--Cu are calculated using fourth-order M/congruent/ller--Plesset perturbation theory (MP4) as well as quadratic configuration interaction (QCI) techniques with large /ital spd/ and /ital spdf/ basis sets. The MP4 method performs well for Sc--Mn but fails dramatically for Fe--Cu. In contrast, the QCI technique performs uniformly for all excitation energies with a mean deviation from experiment of only 0.14 eV after including relativistic corrections. /ital f/ functions contribute 0.1--0.4 eV to the excitation energies for these systems. The highly correlated /ital d//sup 10/ state of the Ni atom is also considered in detail. The QCI technique obtains the /ital d//sup 9//ital s1//r arrow//ital d10/ splitting of the Ni atom with an error of only 0.13 eV. The results show that single-configuration Hartree--Fock based methods can be successful in calculating excitation energies of transition metal atoms.

  13. State-to-State Mode Specificity: Energy Sequestration and Flow Gated by Transition State.

    PubMed

    Zhao, Bin; Sun, Zhigang; Guo, Hua

    2015-12-23

    Energy flow and sequestration at the state-to-state level are investigated for a prototypical four-atom reaction, H2 + OH → H + H2O, using a transition-state wave packet (TSWP) method. The product state distribution is found to depend strongly on the reactant vibrational excitation, indicating mode specificity at the state-to-state level. From a local-mode perspective, it is shown that the vibrational excitation of the H2O product derives from two different sources, one attributable to the energy flow along the reaction coordinate into the newly formed OH bond and the other due to the sequestration of the vibrational energy in the OH spectator moiety during the reaction. The analysis provided a unified interpretation of some seemingly contradicting experimental observations. It is further shown that the transfer of vibrational energy from the OH reactant to H2O product is gated by the transition state, accomplished coherently by multiple TSWPs with the corresponding OH vibrational excitation.

  14. Cohesion and promotion energies in the transition metals: Implications of the local-density approximation

    NASA Astrophysics Data System (ADS)

    Watson, R. E.; Fernando, G. W.; Weinert, M.; Wang, Y. J.; Davenport, J. W.

    1991-04-01

    The accuracy of the local-density (LDA) or local-spin-density (LSDA) approximations when applied to transition metals is of great concern. Estimates of the cohesive energy compare the total energy of the solid with that of the free atom. This involves chosing the reference state of the free atom which, as a rule, will not be the free atom's ground state in LDA or LSDA. Comparing one reference state versus another, e.g., the dn-1s vs dn-2s2 for a transition metal, corresponds to calculating an s-d promotion energy Δ, which may be compared with experiment. Gunnarsson and Jones (GJ) [Phys. Rev. B 31, 7588 (1985)] found for the 3d row that the calculated Δ displayed systematic errors which they attributed to a difference in error within the LSDA in the treatment of the coupling of the outer-core electrons with the d versus non-d valence electrons. This study has been extended to relativistic calculations for the 3d, 4d, and 5d rows and for other promotions. The situation is more complicated than suggested by GJ, and its implications for cohesive energy estimates will be discussed.

  15. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators

    NASA Astrophysics Data System (ADS)

    Silva, T. F.; Bonini, A. L.; Lima, R. R.; Maidana, N. L.; Malafronte, A. A.; Pascholati, P. R.; Vanin, V. R.; Martins, M. N.

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  16. Optical transition radiation used in the diagnostic of low energy and low current electron beams in particle accelerators.

    PubMed

    Silva, T F; Bonini, A L; Lima, R R; Maidana, N L; Malafronte, A A; Pascholati, P R; Vanin, V R; Martins, M N

    2012-09-01

    Optical transition radiation (OTR) plays an important role in beam diagnostics for high energy particle accelerators. Its linear intensity with beam current is a great advantage as compared to fluorescent screens, which are subject to saturation. Moreover, the measurement of the angular distribution of the emitted radiation enables the determination of many beam parameters in a single observation point. However, few works deals with the application of OTR to monitor low energy beams. In this work we describe the design of an OTR based beam monitor used to measure the transverse beam charge distribution of the 1.9-MeV electron beam of the linac injector of the IFUSP microtron using a standard vision machine camera. The average beam current in pulsed operation mode is of the order of tens of nano-Amps. Low energy and low beam current make OTR observation difficult. To improve sensitivity, the beam incidence angle on the target was chosen to maximize the photon flux in the camera field-of-view. Measurements that assess OTR observation (linearity with beam current, polarization, and spectrum shape) are presented, as well as a typical 1.9-MeV electron beam charge distribution obtained from OTR. Some aspects of emittance measurement using this device are also discussed.

  17. Energy balance in the solar transition region. I - Hydrostatic thermal models with ambipolar diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1990-01-01

    The energy balance in the lower transition region is analyzed by constructing theoretical models which satisfy the energy balance constraint. The energy balance is achieved by balancing the radiative losses and the energy flowing downward from the corona. This energy flow is mainly in two forms: conductive heat flow and hydrogen ionization energy flow due to ambipolar diffusion. Hydrostatic equilibrium is assumed, and, in a first calculation, local mechanical heating and Joule heating are ignored. In a second model, some mechanical heating compatible with chromospheric energy-balance calculations is introduced. The models are computed for a partial non-LTE approach in which radiation departs strongly from LTE but particles depart from Maxwellian distributions only to first order. The results, which apply to cases where the magnetic field is either absent, or uniform and vertical, are compared with the observed Lyman lines and continuum from the average quiet sun. The approximate agreement suggests that this type of model can roughly explain the observed intensities in a physically meaningful way, assuming only a few free parameters specified as chromospheric boundary conditions.

  18. Accurate nonrelativistic ground-state energies of 3d transition metal atoms

    SciTech Connect

    Scemama, A.; Applencourt, T.; Giner, E.; Caffarel, M.

    2014-12-28

    We present accurate nonrelativistic ground-state energies of the transition metal atoms of the 3d series calculated with Fixed-Node Diffusion Monte Carlo (FN-DMC). Selected multi-determinantal expansions obtained with the CIPSI (Configuration Interaction using a Perturbative Selection made Iteratively) method and including the most prominent determinants of the full configuration interaction expansion are used as trial wavefunctions. Using a maximum of a few tens of thousands determinants, fixed-node errors on total DMC energies are found to be greatly reduced for some atoms with respect to those obtained with Hartree-Fock nodes. To the best of our knowledge, the FN-DMC/(CIPSI nodes) ground-state energies presented here are the lowest variational total energies reported so far. They differ from the recently recommended non-variational values of McCarthy and Thakkar [J. Chem. Phys. 136, 054107 (2012)] only by a few percents of the correlation energy. Thanks to the variational property of FN-DMC total energies, our results provide exact lower bounds for the absolute value of all-electron correlation energies, |E{sub c}|.

  19. Energy-management guidelines for rail-transit systems. Executive summary. Final report, 9 July 1984-30 October 1986

    SciTech Connect

    Uher, R.A.; Sharma, O.N.

    1986-09-01

    The cost of electricity is a significant portion of the operating costs of rail-transit systems. The impact of increasing energy costs is felt by those systems presently in operation and will be felt by those in the planning or construction phases. Concerned by rising energy costs, managers of several rail-transit authorities have established energy-management programs. The objectives of these programs are energy cost reduction and improved energy efficiency. Both goals enhance rail-transit productivity. As a rule, energy management can foster its largest payoff when it is initiated during the design and construction phase of a rail-transit system. The high dollar savings occur because low-energy-cost technology and operating practices can be engineered into the system at the outset. However, changes in technology and operations of present transit systems can also reduce the electric bill. Reduction of energy cost can be achieved through energy conservation, load management, and power-rate intervention. These guidelines describe the tools and methodologies for assessing energy-conservation strategies and power-rate-structure modifications.

  20. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments.

    PubMed

    Jagau, Thomas-C; Krylov, Anna I

    2016-02-07

    The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

  1. Characterizing metastable states beyond energies and lifetimes: Dyson orbitals and transition dipole moments

    SciTech Connect

    Jagau, Thomas-C.; Krylov, Anna I.

    2016-02-07

    The theoretical description of electronic resonances is extended beyond calculations of energies and lifetimes. We present the formalism for calculating Dyson orbitals and transition dipole moments within the equation-of-motion coupled-cluster singles and doubles method for electron-attached states augmented by a complex absorbing potential (CAP-EOM-EA-CCSD). The capabilities of the new methodology are illustrated by calculations of Dyson orbitals of various transient anions. We also present calculations of transition dipole moments between transient and stable anionic states as well as between different transient states. Dyson orbitals characterize the differences between the initial neutral and final electron-attached states without invoking the mean-field approximation. By extending the molecular-orbital description to correlated many-electron wave functions, they deliver qualitative insights into the character of resonance states. Dyson orbitals and transition moments are also needed for calculating experimental observables such as spectra and cross sections. Physically meaningful results for those quantities are obtained only in the framework of non-Hermitian quantum mechanics, e.g., in the presence of a complex absorbing potential (CAP), when studying resonances. We investigate the dependence of Dyson orbitals and transition moments on the CAP strength and illustrate how Dyson orbitals help understand the properties of metastable species and how they are affected by replacing the usual scalar product by the so-called c-product.

  2. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.

    PubMed

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-07

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort.

  3. Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

    SciTech Connect

    Safronova, U. I.; Johnson, W. R.; Safronova, M. S.

    2007-10-15

    Relativistic many-body perturbation theory is applied to study properties of ions of the francium isoelectronic sequence. Specifically, energies of the 7s, 7p, 6d, and 5f states of Fr-like ions with nuclear charges Z=87-100 are calculated through third order; reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for 7s-7p, 7p-6d, and 6d-5f electric-dipole transitions; and 7s-6d, 7s-5f, and 5f{sub 5/2}-5f{sub 7/2} multipole matrix elements are evaluated to obtain the lifetimes of low-lying excited states. Moreover, for the ions Z=87-92 calculations are also carried out using the relativistic all-order single-double method, in which single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. With the aid of the single-double wave functions, we obtain accurate values of energies, transition rates, oscillator strengths, and the lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra II, Ac III, and Th IV are calculated using relativistic third-order and all-order methods. Ground state scalar polarizabilities for other Fr-like ions are calculated using a relativistic second-order method. These calculations provide a theoretical benchmark for comparison with experiment and theory.

  4. Energy levels, radiative rates, and lifetimes for transitions in W XL

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s{sup 2}4p{sup 5},4s{sup 2}4p{sup 4}4d,4s{sup 2}4p{sup 4}4f,4s4p{sup 6},4p{sup 6}4d,4s4p{sup 5}4d,4s{sup 2}4p{sup 3}4d{sup 2}, and 4s{sup 2}4p{sup 3}4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  5. Variational Calculations of Ro-Vibrational Energy Levels and Transition Intensities for Tetratomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    A description is given of an algorithm for computing ro-vibrational energy levels for tetratomic molecules. The expressions required for evaluating transition intensities are also given. The variational principle is used to determine the energy levels and the kinetic energy operator is simple and evaluated exactly. The computational procedure is split up into the determination of one dimensional radial basis functions, the computation of a contracted rotational-bending basis, followed by a final variational step coupling all degrees of freedom. An angular basis is proposed whereby the rotational-bending contraction takes place in three steps. Angular matrix elements of the potential are evaluated by expansion in terms of a suitable basis and the angular integrals are given in a factorized form which simplifies their evaluation. The basis functions in the final variational step have the full permutation symmetries of the identical particles. Sample results are given for HCCH and BH3.

  6. IBS and Potential Luminosity Improvement for RHIC Operation Below Transition Energy

    SciTech Connect

    Fedotov,A.

    2009-01-02

    There is a strong interest in low-energy RHIC operations in the single-beam total energy range of 2.5-25 GeV/nucleon [1-3]. Collisions in this energy range, much of which is below nominal RHIC injection energy, will help to answer one of the key questions in the field of QeD about the existence and location of a critical point on the QCD phase diagram [4]. There have been several short test runs during 2006-2008 RHIC operations to evaluate RHIC operational challenges at these low energies [5]. Beam lifetimes observed during the test runs were limited by machine nonlinearities. This performance limit can be improved with sufficient machine tuning. The next luminosity limitation comes from transverse and longitudinal Intra-beam Scattering (IBS), and ultimately from the space-charge limit. Detailed discussion of limiting beam dynamics effects and possible luminosity improvement with electron cooling can be found in Refs. [6-8]. For low-energy RHIC operation, particle losses from the RF bucket are of particular concern since the longitudinal beam size is comparable to the existing RF bucket at low energies. However, operation below transition energy allows us to exploit an Intra-beam Scattering (IBS) feature that drives the transverse and longitudinal beam temperatures towards equilibrium by minimizing the longitudinal diffusion rate using a high RF voltage. Simulation studies were performed with the goal to understand whether one can use this feature of IBS to improve luminosity of RHIC collider at low-energies. This Note presents results of simulations which show that additional luminosity improvement for low-energy RHIC project may be possible with high RF voltage from a 56 MHz superconducting RF cavity that is presently under development for RHIC.

  7. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes

    PubMed Central

    Ramakrishnan, N.; Tourdot, Richard W.

    2016-01-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods. PMID:27616867

  8. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.

    PubMed

    Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi

    2016-06-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods.

  9. Beyond the Chinese Dream: How Women Executives Working in Multinational Corporations in the People's Republic of China Describe and Make Meaning of Midlife Transition

    ERIC Educational Resources Information Center

    Woo, Marjorie J.

    2012-01-01

    The purpose of this study is to gain understanding of Chinese women executives going beyond the Chinese dream, to learn how they describe and make meaning of their midlife transition experience. A narrative inquiry and holistic content and form approach was used to explore two-stage life stories: narratives of self-actualization of women…

  10. Transition metal d -band occupancy in skutterudites studied by electron energy-loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Prytz, Ø.; Taftø, J.; Ahn, C. C.; Fultz, B.

    2007-03-01

    The transition-metal 3d occupancy of a series of thermoelectric skutterudites is investigated using electron energy-loss spectroscopy. We find that bonding causes an emptying of the 3d states in the binary skutterudites CoP3 , CoAs3 , CoSb3 , and NiP3 , while compared to the pure Fe the 3d occupancy in LaFe4P12 is significantly increased, consistent with the idea that each interstitial La atom (rattler) donates three electrons to compensate for missing valence electron of Fe as compared to Co. These experimental results are in agreement with previous models suggesting a predominantly covalent bonding between transition metal and pnictogen atoms in skutterudites, and provide evidence of charge transfer from La to the Fe-P complex in LaFe4P12 .

  11. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect

    Puig, Rita; Fullana-i-Palmer, Pere; Bala, Alba

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  12. Surface energy exchanges along a tundra-forest transition and feedbacks to climate

    USGS Publications Warehouse

    Beringer, J.; Chapin, F. S.; Thompson, Catharine Copass; McGuire, A.D.

    2005-01-01

    Surface energy exchanges were measured in a sequence of five sites representing the major vegetation types in the transition from arctic tundra to forest. This is the major transition in vegetation structure in northern high latitudes. We examined the influence of vegetation structure on the rates of sensible heating and evapotranspiration to assess the potential feedbacks to climate if high-latitude warming were to change the distribution of these vegetation types. Measurements were made at Council on the Seward Peninsula, Alaska, at representative tundra, low shrub, tall shrub, woodland (treeline), and boreal forest sites. Structural differences across the transition from tundra to forest included an increase in the leaf area index (LAI) from 0.52 to 2.76, an increase in canopy height from 0.1 to 6.1 m, and a general increase in canopy complexity. These changes in vegetation structure resulted in a decrease in albedo from 0.19 to 0.10 as well as changes to the partitioning of energy at the surface. Bulk surface resistance to water vapor flux remained virtually constant across sites, apparently because the combined soil and moss evaporation decreased while transpiration increased along the transect from tundra to forest. In general, sites became relatively warmer and drier along the transect with the convective fluxes being increasingly dominated by sensible heating, as evident by an increasing Bowen ratio from 0.94 to 1.22. The difference in growing season average daily sensible heating between tundra and forest was 21 W m-2. Fluxes changed non-linearly along the transition, with both shrubs and trees substantially enhancing heat transfer to the atmosphere. These changes in vegetation structure that increase sensible heating could feed back to enhance warming at local to regional scales. The magnitude of these vegetation effects on potential high-latitude warming is two to three times greater than suggested by previous modeling studies. ?? 2005 Elsevier B.V. All

  13. ENERGY CONVERSION FOR THE TRANSITION FROM Al TO γ-Al2O3 NANOPARTICLES

    NASA Astrophysics Data System (ADS)

    Wang, Shulin; Li, Shengjuan; Xu, Bo; Jian, Dunliang; Zhu, Yufang

    2013-07-01

    We have successfully converted large volume Al particles into γ-Al2O3 nanostructures by vibration milling at room temperature and successive treatment. We show that there exist special relationships among stacking fault energy (SFE), strain energy (SRE), and surface energy (SE) of the materials, including interdependence, intercompetition, and interconversion during the phase transition. SFE and SRE perform the same changing tendency, while SE just does the opposite. However, it is not the particle size but the energy state that determines the reactivity of the materials. And it is the SE that can directly determine the physical chemical reaction and the conversion into the end product rather than SFE and SRE. When SE goes up, the material reactivity and the product yield will be enhanced; and when SE goes down, the reaction and the product yield will decay. However, the state of SE depends closely on the change tendency of the SFE and SRE. That is, when SFE and SRE goes up, SE will goes down; if SFE and SRE goes down, SE will goes up. It seems that energy conservation law may be followed in a sense in the particle system if the external input keeps constant. The work may be significant for energy conversion in nano-scale and mechanosynthesis of oxide nanoparticles.

  14. Conformational transition free energy profiles of an adsorbed, lattice model protein by multicanonical Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Castells, Victoria; Van Tassel, Paul R.

    2005-02-01

    Proteins often undergo changes in internal conformation upon interacting with a surface. We investigate the thermodynamics of surface induced conformational change in a lattice model protein using a multicanonical Monte Carlo method. The protein is a linear heteropolymer of 27 segments (of types A and B) confined to a cubic lattice. The segmental order and nearest neighbor contact energies are chosen to yield, in the absence of an adsorbing surface, a unique 3×3×3 folded structure. The surface is a plane of sites interacting either equally with A and B segments (equal affinity surface) or more strongly with the A segments (A affinity surface). We use a multicanonical Monte Carlo algorithm, with configuration bias and jump walking moves, featuring an iteratively updated sampling function that converges to the reciprocal of the density of states 1/Ω(E), E being the potential energy. We find inflection points in the configurational entropy, S(E)=klnΩ(E), for all but a strongly adsorbing equal affinity surface, indicating the presence of free energy barriers to transition. When protein-surface interactions are weak, the free energy profiles F(E)=E-TS(E) qualitatively resemble those of a protein in the absence of a surface: a free energy barrier separates a folded, lowest energy state from globular, higher energy states. The surface acts in this case to stabilize the globular states relative to the folded state. When the protein surface interactions are stronger, the situation differs markedly: the folded state no longer occurs at the lowest energy and free energy barriers may be absent altogether.

  15. Extensive and accurate energy levels and transition rates for Al-like Zn XVIII

    NASA Astrophysics Data System (ADS)

    Si, R.; Zhang, C. Y.; Liu, Y. W.; Chen, Z. B.; Guo, X. L.; Li, S.; Yan, J.; Chen, C. Y.; Wang, K.

    2017-03-01

    Energy levels and transition rates for electric-dipole (E1), electric-quadrupole (E2), magnetic-dipole (M1), and magnetic-quadrupole (M2) transitions of the lowest 393 levels arising from the 3l3 (0 ≤ l ⩽ 2), 3s2 4 l (0 ≤ l ⩽ 3), 3 s 3 p 4 l (0 ≤ l ⩽ 3), 3p2 4 l (0 ≤ l ⩽ 2), 3 s 3 d 4 l (0 ≤ l ⩽ 1), and 3s2 5 l (0 ≤ l ⩽ 4) configurations in Al-like Zn are calculated through the multi-configuration Dirac-Hartree-Fock (MCDHF) method and second-order many-body perturbation theory (MBPT). In the MCDHF calculation, valence-valence and core-valence correlations with the 2 p and 2 s electrons are taken into account. The effect of Breit interaction and quantum electrodynamics corrections on excitation level energies and level lifetimes are assessed though the MCDHF and MBPT calculations. The two sets of level energies are in excellent agreement of better than 0.1%, while the level lifetimes mostly agree to within 2%. Comparisons are also made with experimental measurements and other theoretical results to assess the accuracy of our calculations.

  16. Negotiating Northern Resource Development Frontiers: People, Energy, and Decision-Making in Yamal

    NASA Astrophysics Data System (ADS)

    Osipov, Igor A.

    This dissertation examines contemporary models of co-existence and partnerships negotiated between local communities, government, and resource corporations in the Russian District of Purovsky (Arctic Yamal), with a particular focus on the relations of these partnerships to Russia's wider socio-cultural and political contexts and, more broadly, the circumpolar world. Yamal has Eurasia's richest oil and gas reserves, and is an important crossroads region where various geopolitical and financial interests intersect. With the opening up of new gas and oil fields, and construction of roads and pipelines, Yamal is experiencing rapid changes; and is being challenged to reshape its many 'frontiers' in which people, energy, and decisions are closely linked to one another. Since the late 1970s, resource development projects have had significant impacts on the lives of the local people in the Purovsky tundra. Along with experiencing negative consequences, such as water and soil contamination, impacts on land, wildlife, and local communities have also nurtured creative ways of adaptation, decision-making, and self-organization. Since 1998, a number of unique models of co-existence and participatory dialogue, involving public project reviews, and sound participation of local indigenous activist groups have been developed and implemented in Yamal. Furthermore, during the past decade the Purovsky District has served as a unique decision-making polygon for the Northeastern Urals. Several joint community-industry-government political and economic cooperation models have been tested and their elements have subsequently been implemented in other Arctic Russian localities. From 2006-2008 this project was focused on documenting these important developments by investigating and explicating the on-the-ground models of agreement-making in the context that these models have been developing since the 1970s. This project, as such, strives to benefit the areas of anthropology, political

  17. Theoretical study on K, L, and M X-ray transition energies and rates of neptunium and its ions

    NASA Astrophysics Data System (ADS)

    Ismail Abdalla, Saber; Dong, Chen-Zhong; Wang, Xiang-Li; Zhou, Wei-Dong; Wu, Zhong-Wen

    2014-02-01

    The transition energies and electric dipole (E1) transition rates of the K, L, and M lines in neutral Np have been theoretically determined from the MultiConfiguration Dirac—Fock (MCDF) method. In the calculations, the contributions from Breit interaction and quantum electrodynamics (QED) effects (vacuum polarization and self-energy), as well as nuclear finite mass and volume effects, are taken into account. The calculated transition energies and rates are found to be in good agreement with other experimental and theoretical results. The accuracy of the results is estimated and discussed. Furthermore, we calculated the transition energies of the same lines radiating from the decaying transitions of the K-, L-, and M-shell hole states of Np ions with the charge states Np1+ to Np6+ for the first time. We found that for a specific line, the corresponding transition energies relating to all the Np ions are almost the same; it means the outermost electrons have a very small influence on the inner-shell transition processes.

  18. Europe in the energy transition: the case for a smaller population.

    PubMed

    Grant, L

    1988-07-01

    Europe has not yet reached a sustainable society, that is, like the rest of the world, its people cannot live comfortably within its resources, but, it has achieved stabilizing population growth, a control on a potentially dangerous dependency on imported food, an adjustment to the transition from the colonial era, and a position conducive to deal with the energy transition. Europe is the most densely population region of the world, except for Japan. Concern about depopulation in western Europe is misplaced because European populations are on a plateau not a decline, and a lower population is a benefit when confronting resource and environmental constraints. World oil production is expected to peak and then to decline depending on demand, prices, and technology. European oil production will decline, and the United Kingdom will become a net importer in the mid-1990s. The environmental transition is described as more complex than finding a substitute for oil, in part because Europe, unlike the US, has limited fossil fuel resources which are also less accessible. Biomass as the alternative to fossil fuels must be produced on lands currently in food or forestry production. Also corn and bagasse production is not suited to for growing the European climate. Nuclear energy, with its safety and disposal problems, is only an interim solution. Hydropower development is expensive, and solar power is unsuitable because of the continual cloud cover. Wind power is possible but expensive at low wind levels, and the whole of western Europe is relatively unsuitable. Capital creates wealth, and unemployment is Europe's present problem. Large populations in the current technological revolution do not create greater wealth or military security. Europe and Japan have arrived at the population/energy/environment problem first, and many questions remain as to how to manage the age structure, how to maintain innovation and creativity, and how to maintain a prosperous steady state economy.

  19. The Life Course in the Making: Gender and the Development of Adolescents' Expected Timing of Adult Role Transitions

    ERIC Educational Resources Information Center

    Crockett, Lisa J.; Beal, Sarah J.

    2012-01-01

    Adolescents' expectations about the timing of adult role transitions have the potential to shape their actual transitions, setting the stage for their adult lives. Although expectations about timing emerge by early adolescence, little is known about how these expectations develop across adolescence. This longitudinal study examined developmental…

  20. X-alpha calculation of transition energies in multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Ringers, D. A.; Chen, M. H.

    1974-01-01

    It is shown that the accuracy of calculations can be improved if appropriate (different) values of alpha are used for each configuration. Alternatively, the Slater Transition state can be used, wherein a total energy difference is related to a difference in single electron eigenvalues. By a series expansion, the value of alpha for an excited configuration can be related to its value for the ground state configuration. The terms Delta alpha (delta Epsilon/delta alpha) exhibit a similar dependence on atomic number as the ground state values of alpha. Results of sample calculations are reported and compared with experiment.

  1. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    SciTech Connect

    Colon, C.; Alonso-Medina, A.; Zanon, A.; Albeniz, J.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  2. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows.

    PubMed

    Mann, S; Leal Yepes, F A; Duplessis, M; Wakshlag, J J; Overton, T R; Cummings, B P; Nydam, D V

    2016-01-01

    Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n=28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n=28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n=28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and

  3. Energy Transition Initiative: Island Energy Snapshot - San Andres and Providencia (Fact Sheet); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    2015-03-01

    This profile provides a snapshot of the energy landscape of the Archipelago of San Andres, Providencia, and Santa Catalina (unpopulated), also known as San Andres and Providencia, which is equidistant between Costa Rica and Jamaica and 775 kilometers northwest of Colombia. The archipelago is part of Colombia, though Nicaragua has also laid claim to it.

  4. Graphene and graphene-like layered transition metal dichalcogenides in energy conversion and storage.

    PubMed

    Wang, Hua; Feng, Hongbin; Li, Jinghong

    2014-06-12

    Being confronted with the energy crisis and environmental problems, the exploration of clean and renewable energy materials as well as their devices are urgently demanded. Two-dimensional (2D) atomically-thick materials, graphene and grpahene-like layered transition metal dichalcogenides (TMDs), have showed vast potential as novel energy materials due to their unique physicochemical properties. In this Review, we outline the typical application of graphene and grpahene-like TMDs in energy conversion and storage fields, and hope to promote the development of 2D TMDs in this field through the analysis and comparisons with the relatively natural graphene. First, a brief introduction of electronic structures and basic properties of graphene and TMDs are presented. Then, we summarize the exciting progress of these materials made in both energy conversion and storage field including solar cells, electrocatalysis, supercapacitors and lithium ions batteries. Finally, the prospects and further developments in these exciting fields of graphene and graphene-like TMDs materials are also suggested.

  5. Jahn-Teller effects in transition-metal compounds with small charge-transfer energy

    NASA Astrophysics Data System (ADS)

    Mizokawa, Takashi

    2013-04-01

    We have studied Jahn-Teller effects in Cs2Au2Br6, ACu3Co4O12(A=Ca or Y), and IrTe2 in which the ligand p-to-transition-metal d charge-transfer energy is small or negative. The Au+/Au3+ charge disproportionation of Cs2Au2Br6 manifests in Au 4f photoemission spectra. In Cs2Au2Br6 with negative Δ and intermediate U, the charge disproportionation can be described using effective d orbitals constructed from the Au 5d and Br 4p orbitals and is stabilized by the Jahn-Teller distortion of the Au3+ site with low-spin d8 configuration. In ACu3Co4O12, Δs for Cu3+ and Co4+ are negative and Us are very large. The Zhang-Rice picture is valid to describe the electronic state, and the valence change from Cu2+/Co4+ to Cu3+/Co3+ can be viewed as the O 2p hole transfer from Co to Cu or d9 + d6L → d9L + d6. In IrTe2, both Δ and U are small and the Ir 5d and Te 5p electrons are itinerant to form the multi-band Fermi surfaces. The ideas of band Jahn-Teller transition and Peierls transition are useful to describe the structural instabilities.

  6. Dynamics of driven transitions between minima of a complex energy landscapes

    NASA Astrophysics Data System (ADS)

    Pusuluri, Sai Teja; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    We recently modeled cellular interconvertion dynamics by using an epigenetic landscape model inspired by neural network models. Given an arbitrary set of patterns, the model can be used to construct an energy landscape in which those patterns are the global minima. Here we study the transitions between stable states of the landscapes thus constructed, under the effect of an external driving force. We consider three different cases: i) choosing the patterns to be random and independendently distributed ii) choosing a set of patterns directly derived from the experimental cellular transcription factor expression data for a representative set of cell types in an organism and iii) choosing randomly generated trees of hierarchically correlated patterns, inspired by biology. For each of the three cases, we study the stability of the global minima against thermal fluctuations and external driving forces, and the dynamics of the driven transitions away from global minima. We compare the results obtained in the three cases defined above, and in particular we explore to what degree the correlations between patterns affect the transition dynamics.

  7. Periodic inversion and phase transition of finite energy Airy beams in a medium with parabolic potential.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zhang, Lei; Zhong, Weiping; Zhu, Dayu; Wang, Ruimin; Zhang, Yanpeng

    2015-04-20

    We study periodic inversion and phase transition of normal, displaced, and chirped finite energy Airy beams propagating in a parabolic potential. This propagation leads to an unusual oscillation: for half of the oscillation period the Airy beam accelerates in one transverse direction, with the main Airy beam lobe leading the train of pulses, whereas in the other half of the period it accelerates in the opposite direction, with the main lobe still leading - but now the whole beam is inverted. The inversion happens at a critical point, at which the beam profile changes from an Airy profile to a Gaussian one. Thus, there are two distinct phases in the propagation of an Airy beam in the parabolic potential - the normal Airy and the single-peak Gaussian phase. The length of the single-peak phase is determined by the size of the decay parameter: the smaller the decay, the smaller the length. A linear chirp introduces a transverse displacement of the beam at the phase transition point, but does not change the location of the point. A quadratic chirp moves the phase transition point, but does not affect the beam profile. The two-dimensional case is discussed briefly, being equivalent to a product of two one-dimensional cases.

  8. Exclusive Measurements of the b to s gamma Transition Rate and Photon Energy Spectrum

    SciTech Connect

    Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; Khan, A.; Blinov, V.E.; Buzykaev, A.R.; /more authors..

    2012-08-30

    We use 429 fb{sup -1} of e{sup +}e{sup -} collision data collected at the {Upsilon}(4S) resonance with the BABAR detector to measure the radiative transition rate of b {yields} s{gamma} with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be {Beta}({bar B} {yields} Xs{gamma}) = (3.29 {+-} 0.19 {+-} 0.48) x 10{sup -4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, m{sub b} and {mu}{sub {pi}}{sup 2}, in the kinetic and shape function models.

  9. Bound-Free Transitions to GeV Energy via Optical Tunneling

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel

    2015-11-01

    Many laser plasmas are created through the mechanism of tunneling ionization. For weakly to moderately relativistic laser amplitudes (a = eA / mc ~ 1), the photoelectron spectrum can extend to the MeV range, with the electron gaining approximately the ponderomotive potential at the position where the bound-free transition occurred. When a ~ 100 , a new regime of acceleration appears, in which ultrarelativistic energy is obtained in a fraction of an optical cycle. We compute photoelectron characteristics based on relativistic tunneling ionization rates, and advanced particle tracking simulations, utilizing state-of-the art computer hardware. It is found that using near-term multi-petawatt lasers, free space acceleration from rest to GeV energy is possible. The effect of radiation reaction is also examined.

  10. Density functional calculation of core-electron binding energies of transition metal carbonyl and nitrosyl complexes

    NASA Astrophysics Data System (ADS)

    Hu, Ching-Han; Chong, Delano P.

    1996-11-01

    Our recent procedure of the unrestricted generalized transition state (uGTS) model for density functional calculations of core-electron binding energies has been applied to seven carbonyl and nitrosyl inorganic complexes: Fe(CO) 5, Ni(CO) 4, Mn(CO) 4NO, Co(CO) 3NO, Fe(CO) 2(NO) 2, Mn(NO) 3CO and Cr(NO) 4. The exchange-correlation potential is based on a combined functional of Becke's exchange (B88) and Perdew's correlation (P86). The cc-pVTZ basis set was used for the calculation of neutral molecules, while for the partial cation created in the uGTS approach we scaled the cc-pVTZ basis set using a procedure based on Clementi and Raimondi's rules for atomic screening. The average absolute deviation of the calculated core-electron binding energy from experiment is 0.28 eV.

  11. Calculation of energy levels and transition amplitudes for barium and radium.

    SciTech Connect

    Dzuba, V. A.; Flambaum, V. V.; Physics; Univ. of New South Wales

    2007-01-01

    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium are insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s, 7p and 6d single-electron states as well as the states of the 7s8s, 7s8p and 7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d{sup 2}, 7s8s, 7p{sup 2} and 6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.

  12. Transition energy and half-life determinations of photonuclear reaction products of erbium nuclei

    NASA Astrophysics Data System (ADS)

    Bayram, Tuncay; Akkoyun, Serkan; Uruk, Serhat; Dapo, Haris; Dulger, Fatih; Boztosun, Ismail

    Photon induced reactions are called as photonuclear reactions and used in many research fields of nuclear science and nuclear physics. The photonuclear data are used in many nuclear applications such as radiation shielding and protection, radiation transport analyses, reactor core design, activation analysis and nuclear waste transmutation. In the past, many studies had been devoted to extract photonuclear data covering the isotopic chart. However, there is still lack of existing data. In the present study, we have performed photonuclear reactions on erbium (Er) target by using clinical electron linear accelerators (cLINAC). By using measured residual activity of photonuclear reaction products of Er nuclei, we have determined the half-life of 161Er nucleus and transition energies of 161Ho nucleus. Also, new measurements on gamma-ray energies of the products have been determined accurately. Furthermore, this study shows that repurposed cLINAC with limited budget can contribute to the global nuclear science knowledge.

  13. Energy Levels and Oscillator Strengths for Allowed Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1995-01-01

    We have calculated energy levels and oscillator strengths for dipole-allowed transitions between the terms belonging to the 3s(sup 2)3p(sup 2), 3s3p(sup 3), 3S(sup 2)3p3d, 3S(sup 2)3p4s, 3S(sup 2)3p4p and 3s(sup 2)3p4d configurations of S iii in the LS-coupling scheme. We used flexible radial functions and included a large number of configurations in the configuration-interaction expansions to ensure convergence. The calculated energy levels are in close agreement with the recent laboratory measurement. The present oscillator strengths are compared with other calculations and experiments and most of the existing discrepancies between the available calculations are resolved.

  14. First-order chiral phase transition in high-energy collisions: Can nucleation prevent spinodal decomposition?

    SciTech Connect

    Scavenius, O.; Dumitru, A.; Fraga, E. S.; Lenaghan, J. T.; Jackson, A. D.

    2001-06-01

    We discuss homogeneous nucleation in a first-order chiral phase transition within an effective field theory approach to low-energy QCD. Exact decay rates and bubble profiles are obtained numerically and compared to analytic results obtained with the thin-wall approximation. The thin-wall approximation overestimates the nucleation rate for any degree of supercooling. The time scale for critical thermal fluctuations is calculated and compared to typical expansion times for high-energy hadronic or heavy-ion collisions. We find that significant supercooling is possible, and the relevant mechanism for phase conversion might be that of spinodal decomposition. Some potential experimental signatures of supercooling, such as an increase in the correlation length of the scalar condensate, are also discussed.

  15. Mixed transition-metal oxides: design, synthesis, and energy-related applications.

    PubMed

    Yuan, Changzhou; Wu, Hao Bin; Xie, Yi; Lou, Xiong Wen David

    2014-02-03

    A promising family of mixed transition-metal oxides (MTMOs) (designated as Ax B3-x O4 ; A, B=Co, Ni, Zn, Mn, Fe, etc.) with stoichiometric or even non-stoichiometric compositions, typically in a spinel structure, has recently attracted increasing research interest worldwide. Benefiting from their remarkable electrochemical properties, these MTMOs will play significant roles for low-cost and environmentally friendly energy storage/conversion technologies. In this Review, we summarize recent research advances in the rational design and efficient synthesis of MTMOs with controlled shapes, sizes, compositions, and micro-/nanostructures, along with their applications as electrode materials for lithium-ion batteries and electrochemical capacitors, and efficient electrocatalysts for the oxygen reduction reaction in metal-air batteries and fuel cells. Some future trends and prospects to further develop advanced MTMOs for next-generation electrochemical energy storage/conversion systems are also presented.

  16. MACHETE: A transit imaging atmospheric Cherenkov telescope to survey half of the very high energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    Cortina, J.; López-Coto, R.; Moralejo, A.

    2016-01-01

    Current imaging atmospheric Cherenkov telescopes for very high energy γ-ray astrophysics are pointing instruments with a field of view up to a few tens of sq deg. We propose to build an array of two non-steerable (drift) telescopes. Each of the telescopes would have a camera with a FOV of 5 × 60 sq deg oriented along the meridian. About half of the sky drifts through this FOV in a year. We have performed a Monte Carlo simulation to estimate the performance of this instrument. We expect it to survey this half of the sky with an integral flux sensitivity of ˜0.77% of the steady flux of the Crab Nebula in 5 years, an analysis energy threshold of ˜150 GeV and an angular resolution of ˜0.1°. For astronomical objects that transit over the telescope for a specific night, we can achieve an integral sensitivity of 12% of the Crab Nebula flux in a night, making it a very powerful tool to trigger further observations of variable sources using steerable IACTs or instruments at other wavelengths.

  17. Calculation of energy levels, {ital E}1 transition amplitudes, and parity violation in francium

    SciTech Connect

    Dzuba, V.A.; Flambaum, V.V.; Sushkov, O.P.

    1995-05-01

    Many-body perturbation theory in the screened Coulomb interaction was used to calculate energy levels, {ital E}1 trransition amplitudes, and the parity-nonconserving (PNC) {ital E}1 amplitude of the 7{ital s}-8{ital s} transition in francium. The method takes into account the core-polarization effect, the second-order correlations, and the three dominating sequences of higher-order correlation diagrams: screening of the electron-electron interaction, particle-hole interaction, and the iterations of the self-energy operator. The result for the PNC amplitude for {sup 223}Fr is {ital E}1(7{ital s}-8{ital s})=(1.59{plus_minus}{similar_to}1%){times}10{sup {minus}10}{ital iea}{sub {ital B}}({minus}{ital Q}{sub {ital W}}/{ital N}), where {ital Q}{sub {ital W}} is the weak charge of the nucleus, {ital N}=136 is the number of neutrons, {ital e}={vert_bar}{ital e}{vert_bar} is the elementary charge, and {ital a}{sub {ital B}} is the Bohr radius. Our prediction for the position of the 8{ital s} energy level of Fr, which has not been measured yet, is 13 110 cm{sup {minus}1} below the limit of the continuous spectrum. The accuracy of the calculations was controlled by comparison with available experimental data and analogous calculations for cesium. It is estimated to be {similar_to}0.1% for the energy levels and {similar_to}1% for the transition amplitudes.

  18. A cavitation transition in the energy landscape of simple cohesive liquids and glasses

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-12-01

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.

  19. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.; Sinha, Chandana

    2009-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  20. Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Sinha, Chandana

    2010-01-01

    We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.

  1. Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212

    SciTech Connect

    Hussain, Zahid; Lee, W.S.; Vishik, I.M.; Tanaka, K.; Lu, D.H.; Sasagawa, T.; Nagaosa, N.; Devereaux, T.P.; Hussain, Z.; Shen, Z.-X.

    2007-05-26

    he superconducting gap--an energy scale tied to the superconducting phenomena--opens on the Fermi surface at the superconducting transition temperature (Tc) in conventional BCS superconductors. In underdoped high-Tc superconducting copper oxides, a pseudogap (whose relation to the superconducting gap remains a mystery) develops well above Tc (refs 1, 2). Whether the pseudogap is a distinct phenomenon or the incoherent continuation of the superconducting gap above Tc is one of the central questions in high-Tc research3, 4, 5, 6, 7, 8. Although some experimental evidence suggests that the two gaps are distinct9, 10, 11, 12, 13, 14, 15, 16, 17, 18, this issue is still under intense debate. A crucial piece of evidence to firmly establish this two-gap picture is still missing: a direct and unambiguous observation of a single-particle gap tied to the superconducting transition as function of temperature. Here we report the discovery of such an energy gap in underdoped Bi2Sr2CaCu2O8+delta in the momentum space region overlooked in previous measurements. Near the diagonal of Cu?O bond direction (nodal direction), we found a gap that opens at Tc and has a canonical (BCS-like) temperature dependence accompanied by the appearance of the so-called Bogoliubov quasi-particles, a classical signature of superconductivity. This is in sharp contrast to the pseudogap near the Cu?O bond direction (antinodal region) measured in earlier experiments19, 20, 21.

  2. A cumulative energy demand indicator (CED), life cycle based, for industrial waste management decision making.

    PubMed

    Puig, Rita; Fullana-I-Palmer, Pere; Baquero, Grau; Riba, Jordi-Roger; Bala, Alba

    2013-12-01

    Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  3. Making the most of missing transverse energy: Mass reconstruction from collimated decays

    NASA Astrophysics Data System (ADS)

    Spannowsky, Michael; Wymant, Chris

    2013-04-01

    At hadron colliders invisible particles χ can be inferred only through observation of the transverse component of the vectorial sum of their momenta—missing ET or missing transverse energy (MET)—preventing reconstruction of the masses of their mother particles. Here we outline situations where prior prejudice about the event kinematics allows one to make the most of MET by decomposing it into its expected sum of transverse contributions, each of which may be promoted to a full four-momentum approximating the associated χ. Such prejudice arises when all χ in the event are expected to be light and (anti-)parallel to a visible object, due to spin correlations, back-to-back decays or boosted decays. We focus on the last of these, with boosted semi-invisibly decaying neutralinos widely motivated in supersymmetry (in the presence of light gravitinos, singlinos, photini or pseudo-Goldstini), and demonstrate our simple method’s ability to reconstruct sharp mass peaks from the MET decomposition.

  4. Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.

    PubMed

    Ramachandran, Rahul; Nosonovsky, Michael

    2015-10-14

    We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings.

  5. Transition of surface energy budget in the Gobi Desert between spring and summer seasons

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Reiter, Elmar R.; Gao, Youxi

    1986-01-01

    The surface energetics of the southwest Gobi Desert, including the temporal variations and diurnally averaged properties of the surface energy budget components, was investigated. The field program was conducted during the spring and summer of 1984, with the measurement system designed to monitor radiative exchange, heat/moisture storage in the soil, and sensible and latent heat exhange between the ground and the atmosphere. Results of the analysis reveal a seasonal transition feature not expected of a midlatitude desert. Namely, the differences in both surface radiation exchange and the distibution of sensible and latent heat transfer arise within a radiatively forced environment that barely deviates from spring to summer in terms of available solar energy at the surface. Both similarities and differences in the spring and summer surface energy budgets arise from differences imparted to the system by an increase in the summertime atmospheric moisture content. Changes in the near-surface mixing ratio are shown to alter the effectiveness of the desert surface in absorbing radiative energy and redistibuting it to the lower atmosphere through sensible and latent heat exchange.

  6. Relative edge energy in the stability of transition metal nanoclusters of different motifs.

    PubMed

    Zhao, X J; Xue, X L; Guo, Z X; Li, S F

    2016-07-07

    When a structure is reduced to a nanometer scale, the proportion of the edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the motifs of these nanostructures. In principle, establishing an effective method valid for determining the absolute value of the surface energy and particularly the edge energy for a given nanostructure is expected to resolve such a problem. However, hitherto, it is difficult to obtain the absolute edge energy of transition metal clusters, particularly when their sizes approach the nanometer regime. In this paper, taking Ru nanoclusters as a prototypical example, our first-principles calculations introduce the concept of relative edge energy (REE), reflecting the net edge atom effect over the surface (facet) atom effect, which is fairly powerful to quasi-quantitatively estimate the critical size at which the crossover occurs between different configurations of a given motif, such as from an icosahedron to an fcc nanocrystal. By contrast, the bulk effect should be re-considered to rationalize the power of the REE in predicting the relative stability of larger nanostructures between different motifs, such as fcc-like and hcp-like nanocrystals.

  7. Energies, radiative and Auger transitions of the core-excited states for the boron atom

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Sun, Yan; Cong Gou, Bing

    2014-09-01

    Energies, radiative and Auger transitions of the 1s vacancy resonances 1s2s22p2, 1s2s22p3p, 1s2s2p3, 1s2p4, and 1s2p33p, 4L (L=S, P, D) for the neutral boron atom are calculated using the saddle-point variation and saddle-point complex-rotation methods. Large-scale wave functions are used to obtain reliable results. Relativistic and mass polarization corrections are included by the first-order perturbation theory. The calculated term energies, x-ray wavelengths, and Auger electron energies for these core-excited states are compared with available theoretical and experimental results. Auger electron energies and branching ratios are used to identify high-resolution B Auger spectrum produced in 300 keV B+ on CH4 collision experiment. It is found that the Auger decay of core-excited states of the boron atom gives significant contributions to Auger spectrum in the range of 165-210 eV, and many previously unknown line identifications are presented.

  8. SUBMILLIMETER ARRAY OBSERVATIONS OF THE RX J1633.9-2442 TRANSITION DISK: EVIDENCE FOR MULTIPLE PLANETS IN THE MAKING

    SciTech Connect

    Cieza, Lucas A.; Mathews, Geoffrey S.; Williams, Jonathan P.; Kraus, Adam L.; Menard, Francois C.; Schreiber, Matthias R.; Romero, Gisela A.; Orellana, Mariana; Ireland, Michael J.

    2012-06-10

    We present continuum high-resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 {mu}m) with the SMA in its most extended configuration, resulting in an angular resolution of 0.''3 (35 AU at the distance of the target). We find that the disk is highly inclined (i {approx} 50 Degree-Sign ) and has an inner cavity {approx}25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity {approx}25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 {mu}m. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at {approx}10 AU or an optically thin region extending from {approx}7 AU to {approx}25 AU. The inner disk (r {approx}< 5 AU) is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.

  9. Enhancing Decision Making in the Energy Sector Using Space-Based Earth Observations: A GEO and CEOS Perspective

    NASA Astrophysics Data System (ADS)

    Eckman, R. S.; Stackhouse, P. W.

    2009-12-01

    Earth observations from space are playing an increasing role in informing decision making in the energy sector. In renewable energy applications, spaceborne observations now routinely augment sparse ground-based observations to improve solar energy resource assessment globally. As one of the nine Global Earth Observing System of Systems (GEOSS) societal benefit areas, the enhancement of policy and management decision making in the energy sector employing Earth observations and related models is being conducted by the Committee on Earth Observation Satellites (CEOS). CEOS supports the space-based activities of the Group on Earth Observations (GEO), contributing directly to GEO work plan tasks supporting the energy societal benefit area. We describe several projects being conducted by CEOS member agencies, including NASA, to engage and partner with end-user energy decision makers to enhance their decision support systems using space-based observations. These prototype projects have been pursued through the GEO Energy Community of Practice and, more recently, in collaboration with the CEOS Energy societal benefit area. Several case studies exhibiting the utility of Earth observations to enhance renewable energy resource assessment, improve the forecast of space-weather impacts on the power grid, and augment integrated assessment modeling studies for energy technology scenario evaluation are discussed. In addition, ongoing activities to engage stakeholders in other Federal agencies, industry, and academia are described.

  10. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.

    PubMed

    Goel, Satyender; Masunov, Artëm E

    2008-12-07

    We investigate gas-phase neutral and cationic hydrides formed by 3d transition metals from Sc to Cu with density functional theory (DFT) methods. The performance of two exchange-correlation functionals, Boese-Martin for kinetics (BMK) and Tao-Perdew-Staroverov-Scuseria (TPSS), in predicting bond lengths and energetics, electronic structures, dipole moments, and ionization potentials is evaluated in comparison with available experimental data. To ensure a unique self-consistent field (SCF) solution, we use stability analysis, Fermi smearing, and continuity analysis of the potential energy curves. Broken-symmetry approach was adapted in order to get the qualitatively correct description of the bond dissociation. We found that on average BMK predicted values of dissociation energies and ionization potentials are closer to experiment than those obtained with high level wave function theory methods. This agreement deteriorates quickly when the fraction of the Hartree-Fock exchange in DFT functional is decreased. Natural bond orbital (NBO) population analysis was used to describe the details of chemical bonding in the systems studied. The multireference character in the wave function description of the hydrides is reproduced in broken-symmetry DFT description, as evidenced by NBO analysis. We also propose a new scheme to correct for spin contamination arising in broken-symmetry DFT approach. Unlike conventional schemes, our spin correction is introduced for each spin-polarized electron pair individually and therefore is expected to yield more accurate energy values. We derive an expression to extract the energy of the pure singlet state from the energy of the broken-symmetry DFT description of the low spin state and the energies of the high spin states (pentuplet and two spin-contaminated triplets in the case of two spin-polarized electron pairs). The high spin states are build with canonical natural orbitals and do not require SCF convergence.

  11. City-Level Energy Decision Making: Data Use in Energy Planning, Implementation, and Evaluation in U.S. Cities

    SciTech Connect

    Aznar, Alexandra; Day, Megan; Doris, Elizabeth; Mathur, Shivani; Donohoo-Vallett, Paul

    2015-07-01

    The report analyzes and presents information learned from a sample of 20 cities across the United States, from New York City to Park City, Utah, including a diverse sample of population size, utility type, region, annual greenhouse gas reduction targets, vehicle use, and median household income. The report compares climate, sustainability, and energy plans to better understand where cities are taking energy-related actions and how they are measuring impacts. Some common energy-related goals focus on reducing city-wide carbon emissions, improving energy efficiency across sectors, increasing renewable energy, and increasing biking and walking.

  12. Investigation of the energy-averaged double transition density of isoscalar monopole excitations in medium-heavy mass spherical nuclei

    NASA Astrophysics Data System (ADS)

    Gorelik, M. L.; Shlomo, S.; Tulupov, B. A.; Urin, M. H.

    2016-11-01

    The particle-hole dispersive optical model, developed recently, is applied to study properties of high-energy isoscalar monopole excitations in medium-heavy mass spherical nuclei. The energy-averaged strength functions of the isoscalar giant monopole resonance and its overtone in 208Pb are analyzed. In particular, we analyze the energy-averaged isoscalar monopole double transition density, the key quantity in the description of the hadron-nucleus inelastic scattering, and studied the validity of the factorization approximation using semi classical and microscopic one body transition densities, respectively, in calculating the cross sections for the excitation of isoscalar giant resonances by inelastic alpha scattering.

  13. Interband optical transition energy and oscillator strength in a lead based CdSe quantum dot quantum well heterostructure

    SciTech Connect

    Saravanamoorthy, S. N.; Peter, A. John

    2015-06-24

    Binding energies of the exciton and the interband optical transition energies are studied in a CdSe/Pb{sub 1-x}Cd{sub x}Se/CdSe spherical quantum dot-quantum well nanostructure taking into account the geometrical confinement effect. The core and shell are taken as the same material. The initial and final states of energy and the overlap integrals of electron and hole wave functions are determined by the oscillator strength. The oscillator strength and the radiative transition life time with the dot radius are investigated for various Cd alloy content in the core and shell materials.

  14. Risk perception & strategic decision making :general insights, a framework, and specific application to electricity generation using nuclear energy.

    SciTech Connect

    Brewer, Jeffrey D.

    2005-11-01

    The objective of this report is to promote increased understanding of decision making processes and hopefully to enable improved decision making regarding high-consequence, highly sophisticated technological systems. This report brings together insights regarding risk perception and decision making across domains ranging from nuclear power technology safety, cognitive psychology, economics, science education, public policy, and neural science (to name a few). It forms them into a unique, coherent, concise framework, and list of strategies to aid in decision making. It is suggested that all decision makers, whether ordinary citizens, academics, or political leaders, ought to cultivate their abilities to separate the wheat from the chaff in these types of decision making instances. The wheat includes proper data sources and helpful human decision making heuristics; these should be sought. The chaff includes ''unhelpful biases'' that hinder proper interpretation of available data and lead people unwittingly toward inappropriate decision making ''strategies''; obviously, these should be avoided. It is further proposed that successfully accomplishing the wheat vs. chaff separation is very difficult, yet tenable. This report hopes to expose and facilitate navigation away from decision-making traps which often ensnare the unwary. Furthermore, it is emphasized that one's personal decision making biases can be examined, and tools can be provided allowing better means to generate, evaluate, and select among decision options. Many examples in this report are tailored to the energy domain (esp. nuclear power for electricity generation). The decision making framework and approach presented here are applicable to any high-consequence, highly sophisticated technological system.

  15. Energy release from hadron-quark phase transition in neutron stars and the axial w mode of gravitational waves

    SciTech Connect

    Lin Weikang; Li Baoan; Xu Jun; Ko Cheming; Wen Dehua

    2011-04-15

    Describing the hyperonic and quark phases of neutron stars with an isospin- and momentum-dependent effective interaction for the baryon octet and the MIT bag model, respectively, and using the Gibbs conditions to construct the mixed phase, we study the energy release from a neutron star owing to the hadron-quark phase transition. Moreover, the frequency and damping time of the first axial w mode of gravitational waves are studied for both hyperonic and hybrid stars. We find that the energy release is much more sensitive to the bag constant than the density dependence of the nuclear symmetry energy. Also, the frequency of the w mode is found to be significantly different with or without the hadron-quark phase transition and depends strongly on the value of the bag constant. Effects of the density dependence of the nuclear symmetry energy become, however, important for large values of the bag constant that lead to higher hadron-quark transition densities.

  16. Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua

    NASA Astrophysics Data System (ADS)

    Barido, Diego Ponce de Leon; Johnston, Josiah; Moncada, Maria V.; Callaway, Duncan; Kammen, Daniel M.

    2015-10-01

    The global carbon emissions budget over the next decades depends critically on the choices made by fast-growing emerging economies. Few studies exist, however, that develop country-specific energy system integration insights that can inform emerging economies in this decision-making process. High spatial- and temporal-resolution power system planning is central to evaluating decarbonization scenarios, but obtaining the required data and models can be cost prohibitive, especially for researchers in low, lower-middle income economies. Here, we use Nicaragua as a case study to highlight the importance of high-resolution open access data and modeling platforms to evaluate fuel-switching strategies and their resulting cost of power under realistic technology, policy, and cost scenarios (2014-2030). Our results suggest that Nicaragua could cost-effectively achieve a low-carbon grid (≥80%, based on non-large hydro renewable energy generation) by 2030 while also pursuing multiple development objectives. Regional cooperation (balancing) enables the highest wind and solar generation (18% and 3% by 2030, respectively), at the least cost (US127 MWh-1). Potentially risky resources (geothermal and hydropower) raise system costs but do not significantly hinder decarbonization. Oil price sensitivity scenarios suggest renewable energy to be a more cost-effective long-term investment than fuel oil, even under the assumption of prevailing cheap oil prices. Nicaragua’s options illustrate the opportunities and challenges of power system decarbonization for emerging economies, and the key role that open access data and modeling platforms can play in helping develop low-carbon transition pathways.

  17. A platelet-to-pyramid shape transition under the influence of the adsorbate substrate interfacial energy

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Hsiao; Tsai, Yan-Chr

    2002-07-01

    Within the Tersoff approximation, we obtain an analytic expression for the elastic self-energy of a truncated hut which is more general than that of a truncated pyramid [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73]. A pyramidal cluster studied previously can be treated as a square-based hut within the present formalism. The previous results [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996; Phys. Rep. 324 (2000) 271] were obtained on the assumptions of neglecting the adsorbate-substrate interfacial energy and the equilibrium cluster forming with a square base. They predicted that when the volume of a cluster is above some critical value, it preferably forms as a pyramid rather than a platelet in the absence of other strained clusters. Instead, in this paper, we take the interfacial energy into account, based on the work by Korutcheva et al. [I. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth Epitaxy, World Scientific, Singapore, 1995; Phys. Rev. B 61 (2000) 16890]. Besides, we start with the consideration of a hut cluster probably forming with a rectangular base instead of a square one [C. Duport, C. Priester, J. Villain, in: Morphological Organization in Epitaxial Growth and Removal, World Scientific Series on Directions in Condensed Matter Physics, 1997, p. 73; C. Duport, Université de Grenoble, Juin 1996]. By employing the derived analytic expression of the surface and elastic energies, we find that the two- to three- dimensional (2D-3D) transition with the inclusion of the adsorbate-substrate interfacial energy is quantitatively modified. It should provide more accurate predicted values of the critical volume in 2D-3D

  18. Surface structure and Li-ion energy storage of two-dimensional ``MXene'' transition metal carbides

    NASA Astrophysics Data System (ADS)

    Kent, Paul; Xie, Yu; Naguib, Michael; Gogotsi, Yury

    2014-03-01

    Recently, a new class of two-dimensional early transition metal carbides and carbonitrides, the so-called MXenes, has been synthesized by extracting the ``A'' element from MAX phases. The as synthesized MXene surface is terminated by O, OH and/or F. Experiments have demonstrated that MXenes (Ti2C, V2C, Nb2C, Ti3C2...) are promising anode materials for lithium ion batteries and well as supercapacitors, delivering high storage capacity and good rate performance. However, the mechanism of Li-ion storage on MXene surfaces is not clear. In this work, we have investigated the role of surface structure on Li-ion storage of MXenes by extensive density functional calculations. The Li capacity of MXenes is strongly dependent on the type of surface functional group, where O termination has the highest theoretical Li capacity. We discuss how these surfaces can be produced, and propose a mechanism to explain the highest measured Li capacities. Supported by the Fluid Interface Reactions, Structures and Transport Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences

  19. Relation between ligand design and transition energy for the praseodymium ion in crystals.

    PubMed

    Zhou, Xianju; Tanner, Peter A

    2015-01-08

    Ten substituted benzoate complexes of Pr(3+) of the type [Pr(XC6H4COO)3(H2O)n(DMF)m]p·(DMF)q (X = OCH3, NO2, OH, F, Cl, NH2) have been synthesized, and for eight of these crystallographic data are available. The electronic absorption and emission spectra of the complexes have been recorded and interpreted at temperatures down to 10 K for transitions involving the (3)P0 and (1)D2 J-multiplet terms. Generally, the electron-withdrawing groups X in the benzoate moiety lead to higher (3)P0 energy than electron-donating groups. Empirical relations have been found between the energies of the (3)P0 and (1)D2(1) levels and the Hammett sigma constants for substituents and the unit cell volume per Pr(3+) ion. The latter relationship is indicative of a correlation between the electronic state energy and the ligand dipole polarizability. This has been confirmed by reference to literature data for the LaX3:Pr(3+) systems, so that the ligand dipole polarizability is a key factor in determining the nephelauxetic shifts of 4f(N) ions in crystals.

  20. Total energy magnetic anisotropy calculations for free-standing transition-metal monolayers.

    NASA Astrophysics Data System (ADS)

    Shick, A. B.; Blügel, S.

    1997-03-01

    A self-consistent relativistic spin-polarized version of the full potential linearized augmented planewave (FLAPW) method (E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, Phys. Rev. B 24), 864 (1981). is developed on the basis of a second variation treatment of the spin-orbit (SOC) interaction. The method is applied to the study of the magnetic anisotropy energy (MAE) of free-standing transition-metal monolayers (Fe, Rh, Ir). The total energy results are compared with different theoretical models used to calculate the MAE, e.g. those based on the "local force" theorem for SOC interaction or rotation of the magnetization direction. The anisotropy of the orbital magnetic moment is calculated to be in qualitative agreement with previous theoretical predictions. For Fe and Rh monolayers, the self-consistently determined MAE and the results based on the "local force" theorem are in good agreement, but the approaches fail to agree for the case of Ir. On the basis of self-consistent total energy calculations we show that an Ir monolayer shows a large in-plane magnetic anisotropy and a large anisotropy for the spin and orbital magnetic moments.

  1. Career Decision Making for Male Students with Attention Deficit Hyperactivity Disorder: A Model of Critical Factors Aiding in Transitional Efforts

    ERIC Educational Resources Information Center

    Gray, Gregory B.

    2009-01-01

    This study is intended to reveal helpful information that will guide high school practitioners in serving students with attention deficit hyperactivity disorder (ADHD) more effectively. ADHD is neurological in origin, making it invisible. This disorder makes people susceptible to distractibility, impulsivity, disorganization, frustration, anxiety,…

  2. Transition-metal-nitride-based thin films as novel energy harvesting materials

    PubMed Central

    Kerdsongpanya, Sit; Alling, Björn

    2016-01-01

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN- and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical–experimental approaches. PMID:27358737

  3. Transition-metal-nitride-based thin films as novel energy harvesting materials.

    PubMed

    Eklund, Per; Kerdsongpanya, Sit; Alling, Björn

    2016-05-14

    The last few years have seen a rise in the interest in early transition-metal and rare-earth nitrides, primarily based on ScN and CrN, for energy harvesting by thermoelectricity and piezoelectricity. This is because of a number of important advances, among those the discoveries of exceptionally high piezoelectric coupling coefficient in (Sc,Al)N alloys and of high thermoelectric power factors of ScN-based and CrN-based thin films. These materials also constitute well-defined model systems for investigating thermodynamics of mixing for alloying and nanostructural design for optimization of phase stability and band structure. These features have implications for and can be used for tailoring of thermoelectric and piezoelectric properties. In this highlight article, we review the ScN- and CrN-based transition-metal nitrides for thermoelectrics, and drawing parallels with piezoelectricity. We further discuss these materials as a models systems for general strategies for tailoring of thermoelectric properties by integrated theoretical-experimental approaches.

  4. Interactions of melatonin with mammalian mitochondria. Reducer of energy capacity and amplifier of permeability transition.

    PubMed

    Martinis, P; Zago, L; Maritati, M; Battaglia, V; Grancara, S; Rizzoli, V; Agostinelli, E; Bragadin, M; Toninello, A

    2012-05-01

    Melatonin, a metabolic product of the amino acid tryptophan, induces a dose-dependent energy drop correlated with a decrease in the oxidative phosphorylation process in isolated rat liver mitochondria. This effect involves a gradual decrease in the respiratory control index and significant alterations in the state 4/state 3 transition of membrane potential (ΔΨ). Melatonin, alone, does not affect the insulating properties of the inner membrane but, in the presence of supraphysiological Ca2+, induces a ΔΨ drop and colloid-osmotic mitochondrial swelling. These events are sensitive to cyclosporin A and the inhibitors of Ca2+ transport, indicative of the induction or amplification of the mitochondrial permeability transition. This phenomenon is triggered by oxidative stress induced by melatonin and Ca2+, with the generation of hydrogen peroxide and the consequent oxidation of sulfydryl groups, glutathione and pyridine nucleotides. In addition, melatonin, again in the presence of Ca2+, can also induce substantial release of cytochrome C and AIF (apoptosis-inducing factor), thus revealing its potential as a pro-apoptotic agent.

  5. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    PubMed Central

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase. PMID:28102313

  6. Cultivation and energy efficient harvesting of microalgae using thermoreversible sol-gel transition

    NASA Astrophysics Data System (ADS)

    Estime, Bendy; Ren, Dacheng; Sureshkumar, Radhakrishna

    2017-01-01

    Microalgae represent a promising source of renewable biomass for the production of biofuels and valuable chemicals. However, energy efficient cultivation and harvesting technologies are necessary to improve economic viability. A Tris-Acetate-Phosphate-Pluronic (TAPP) medium that undergoes a thermoreversible sol-gel transition is developed to efficiently culture and harvest microalgae without affecting the productivity as compared to that in traditional culture in a well-mixed suspension. After seeding microalgae in the TAPP medium in a solution phase at 15 °C, the temperature is increased by 7 °C to induce gelation. Within the gel, microalgae are observed to grow in large clusters rather than as isolated cells. The settling velocity of the microalgal clusters is approximately ten times larger than that of individual cells cultured in typical solution media. Such clusters are easily harvested gravimetrically by decreasing the temperature to bring the medium to a solution phase.

  7. Energy dissipation in heavy systems: the transition from quasi-elastic to deep-inelastic scattering

    SciTech Connect

    Rehm, K.E.; van den Berg, A.; Kolata, J.J.; Kovar, D.G.; Kutschera, W.; Rosner, G.; Stephans, G.S.F.; Yntema, J.L.; Lee, L.L.

    1984-01-01

    The interaction of medium mass projectiles (A = 28 - 64) with /sup 208/Pb has been studied using a split-pole spectrograph which allows single mass and charge identification. The reaction process in all systems studied so far is dominated by quasi-elastic neutron transfer reactions, especially at incident energies in the vicinity of the Coulomb barrier. In addition to the quasi-elastic component deep inelastic contributions are present in all reaction channels. The good mass and charge separation allows to generate Wilczynski plots for individual channels; for the system /sup 48/Ti + /sup 208/Pb we observe that the transition between the quasi-elastic and deep-inelastic reactions occurs around Q = -(30 to 35) MeV.

  8. Polynomial potentials determined from the energy spectrum and transition dipole moments that give the largest hyperpolarizabilities

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Kuzyk, Mark G.

    2016-12-01

    We attempt to get a polynomial solution to the inverse problem, that is, to determine the form of the mechanical Hamiltonian when given the energy spectrum and transition dipole moment matrix. Our approach is to determine the potential in the form of a polynomial by finding an approximate solution to the inverse problem, then to determine the hyperpolarizability for that system's Hamiltonian. We find that the largest hyperpolarizabilities approach the apparent limit of previous potential optimization studies, but we do not find real potentials for the parameter values necessary to exceed this apparent limit. We also explore half potentials with positive exponent, which cannot be expressed as a polynomial except for integer powers. This yields a simple closed potential with only one parameter that scans nearly the full range of the intrinsic hyperpolarizability. The limiting case of vanishing exponent yields the largest intrinsic hyperpolarizability.

  9. What Can Be Learned from the Roller Coaster Journeys of Young People Making Ultimately Successful Transitions beyond School?

    ERIC Educational Resources Information Center

    Bryce, Jennifer; Anderson, Michelle

    2008-01-01

    This project investigated the interrelationships between family expectations and young people's post-school plans. All of the participants were from financially disadvantaged families. The research used interviews to understand these young people's perspectives of their transition experiences: the ways in which young people's school experiences…

  10. Seamless Transitions: Collaborations That Benefit Children and Their Families Making the Move from Preschool to Early Elementary.

    ERIC Educational Resources Information Center

    Velazquez, Sheila Roman, Ed.

    This report summarizes the proceedings of two clinics on early childhood clinics and provides descriptions of successful preschool-to-elementary transition programs. The two clinics brought together Head Start representatives, public and private day care personnel, elementary school teachers and administrators, state department of education staff,…

  11. Making the Most of What You've Got? Resources, Values and Inequalities in Young Women's Transitions to Adulthood.

    ERIC Educational Resources Information Center

    Thomson, Rachel; Henderson, Sheila; Holland, Janet

    2003-01-01

    Three biographical interviews over 3 years were conducted with 100 young adults. Cases of three disadvantaged females in transition from compulsory schooling illustrate that material and individual resources are distributed very unequally. The rhetoric of individual success is tempered by gender- and class-based obligations, and success for these…

  12. Helping Children on the Autism Spectrum Make a Successful Transition from Middle School to High School and Beyond

    ERIC Educational Resources Information Center

    Connell, Diane; Hutnick, Marilyn; Glover, Sandi; Glover, Curtis

    2012-01-01

    Transitioning from middle school to high school is a tremendous change for all students; it is especially important for learners on the Autism Spectrum. In this article, the authors discuss the move to high school and give seven tips for successfully navigating these years. We draw upon the experiences of Mrs. Sandi Glover and her 21-year-old son…

  13. Helping Students Make the Transition into High School: The Effect of Ninth Grade Academies on Students' Academic and Behavioral Outcomes

    ERIC Educational Resources Information Center

    Somers, Marie-Andrée; Garcia, Ivonne

    2016-01-01

    Ninth Grade Academies (NGAs)--also called Freshman Academies--have attracted national attention as a particularly intensive and promising approach for supporting a successful transition for high school freshmen. An NGA is a self-contained learning community for ninth-graders that operates as a school within a school. NGAs have four core structural…

  14. Sexual Communication, Sexual Goals, and Students' Transition to College: Implications for Sexual Assault, Decision-Making, and Risky Behaviors

    ERIC Educational Resources Information Center

    Lindgren, Kristen P.; Schacht, Rebecca L.; Pantalone, David W.; Blayney, Jessica A.; George, William H.

    2009-01-01

    A qualitative study was conducted to understand college students' experiences and perceptions of sexual communication and sexual goals, and how they were affected by the transition from high school to college. Participants were heterosexual college students (N = 29). Single-sex focus groups were conducted and analyzed for themes. Major themes…

  15. Helping Low-Income Urban Youth Make the Transition to Early Adulthood: A Retrospective Study of the YMCA Youth Institute

    ERIC Educational Resources Information Center

    O'Donnell, Julie; Kirkner, Sandra L.

    2016-01-01

    Low-income urban youth of color often face challenges in their transition to early adulthood. High school out-of-school time (OST) programs that promote positive youth development may help youth to better negotiate this period. However, little research exists on the long-term impact of such programs on young adults. The authors conducted a pilot…

  16. Austin's Home Performance with Energy Star Program: Making a Compelling Offer to a Financial Institution Partner

    SciTech Connect

    Zimring, Mark

    2011-03-18

    Launched in 2006, over 8,700 residential energy upgrades have been completed through Austin Energy's Home Performance with Energy Star (HPwES) program. The program's lending partner, Velocity Credit Union (VCU) has originated almost 1,800 loans, totaling approximately $12.5 million. Residential energy efficiency loans are typically small, and expensive to originate and service relative to larger financing products. National lenders have been hesitant to deliver attractive loan products to this small, but growing, residential market. In response, energy efficiency programs have found ways to partner with local and regional banks, credit unions, community development finance institutions (CDFIs) and co-ops to deliver energy efficiency financing to homeowners. VCU's experience with the Austin Energy HPwES program highlights the potential benefits of energy efficiency programs to a lending partner.

  17. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII - Cu XXV

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L. B.; du Rietz, R.; Gaigalas, G.; Godefroid, M. R.; Froese Fischer, C.

    2013-11-01

    Relativistic configuration interaction (RCI) calculations are performed for 291 states belonging to the configurations 1s22s22p, 1s22s2p2, 1s22p3, 1s22s23l, 1s22s2p3l, 1s22p23l, 1s22s24l', 1s22s2p4l', and 1s22p24l' (l = 0,1,2 and l' = 0,1,2,3) in boron-like ions Si X and Ti XVIII to Cu XXV. Electron correlation effects are represented in the wave functions by large configuration state function (CSF) expansions. States are transformed from jj-coupling to LS-coupling, and the LS-percentage compositions are used for labeling the levels. Radiative electric dipole transition rates are given for all ions, leading to massive data sets. Calculated energy levels are compared with other theoretical predictions and crosschecked against the Chianti database, NIST recommended values, and other observations. The accuracy of the calculations are high enough to facilitate the identification of observed spectral lines. Research supported in part by the Swedish Research council and the Swedish Institute. Part of this work was supported by the Communauté française of Belgium, the Belgian National Fund for Scientific Research (FRFC/IISN Convention) and by the IUAP-Belgian State Science Policy (BriX network P7/12).Tables of energy levels and transition rates (Tables 3-19) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A100

  18. Metal ferrite spinel energy storage devices and methods for making and using same

    DOEpatents

    Weimer, Alan W.; Perkins, Christopher; Scheffe, Jonathan; George, Steven M.; Lichty, Paul

    2013-03-19

    1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.

  19. Metal ferrite spinel energy storage devices and methods for making and using same

    DOEpatents

    Weimer, Alan W [Niwot, CO; Perkins, Christopher [Boulder, CO; Scheffe, Jonathan [Westminster, CO; George, Steven M [Boulder, CO; Lichty, Paul [Westminster, CO

    2012-05-29

    1-100 nm metal ferrite spinel coatings are provided on substrates, preferably by using an atomic layer deposition process. The coatings are able to store energy such as solar energy, and to release that stored energy, via a redox reaction. The coating is first thermally or chemically reduced. The reduced coating is then oxidized in a second step to release energy and/or hydrogen, carbon monoxide or other reduced species.

  20. Flambeau River Papers Makes a Comeback with a Revised Energy Strategy

    SciTech Connect

    2010-03-10

    After the closure of the Flambeau River Papers mill in 2006, a new energy management approach has resulted in $2.6 million in annual energy savings and increased the facility's production by 11.9%. Read about Flambeau's successful energy management approach.

  1. SunShot: Making Solar Energy Cost-Competitive Throughout the United States (Fact Sheet)

    SciTech Connect

    Not Available

    2013-02-01

    The U.S. Department of Energy SunShot Initiative is designed to re-establish American technological leadership, strengthen U.S. economic competitiveness in the global clean energy race, and help America obtain a secure energy future. This fact sheet highlights the achievements of the initiative since 2010.

  2. Difference in variation of glass transition activation energy between 1,2-propanediamine and 1,2-propanediol

    NASA Astrophysics Data System (ADS)

    Terashima, Yukio

    2016-05-01

    Variations of the effective activation energy (Eα) throughout the glass transition were determined for 1,2-propanediamine (12PDA) and 1,2-propanediol (12PDO) by applying an isoconversional method to differential scanning calorimetry (DSC) data. Eα was found to markedly decrease throughout the glass transition of 12PDA, whereas such drastic change in Eα was not observed for 12PDO. Although the two simple liquids are similar in molecular structure and size, their trends in Eα and fragility m throughout the glass transition can be quite different. The significant disparity in the kinetic parameters can be caused by differences in hydrogen-bonding structure between 12PDA and 12PDO.

  3. Free Volume, Energy, and Entropy at the Polymer Glass Transition: New Results and Connections with Widely Used Treatments

    NASA Astrophysics Data System (ADS)

    White, Ronald; Lipson, Jane

    Free volume has a storied history in polymer physics. To introduce our own results, we consider how free volume has been defined in the past, e.g. in the works of Fox and Flory, Doolittle, and the equation of Williams, Landel, and Ferry. We contrast these perspectives with our own analysis using our Locally Correlated Lattice (LCL) model where we have found a striking connection between polymer free volume (analyzed using PVT data) and the polymer's corresponding glass transition temperature, Tg. The pattern, covering over 50 different polymers, is robust enough to be reasonably predictive based on melt properties alone; when a melt hits this T-dependent boundary of critical minimum free volume it becomes glassy. We will present a broad selection of results from our thermodynamic analysis, and make connections with historical treatments. We will discuss patterns that have emerged across the polymers in the energy and entropy when quantified as ''per LCL theoretical segment''. Finally we will relate the latter trend to the point of view popularized in the theory of Adam and Gibbs. The authors gratefully acknowledge support from NSF DMR-1403757.

  4. Some behavioral aspects of energy descent: how a biophysical psychology might help people transition through the lean times ahead.

    PubMed

    De Young, Raymond

    2014-01-01

    We may soon face biophysical limits to perpetual growth. Energy supplies may tighten and then begin a long slow descent while defensive expenditures rise to address problems caused by past resource consumption. The outcome may be significant changes in daily routines at the individual and community level. It is difficult to know when this scenario might begin to unfold but it clearly would constitute a new behavioral context, one that the behavioral sciences least attends to. Even if one posits a less dramatic scenario, people may still need to make many urgent and perhaps unsettling transitions. And while a robust response would be needed, it is not at all clear what should be the details of that response. Since it is likely that no single response will fix things everywhere, for all people or for all time, it would be useful to conduct many social experiments. Indeed, a culture of small experiments should be fostered which, at the individual and small group level, can be described as behavioral entrepreneurship. This may have begun, hidden in plain sight, but more social experiments are needed. To be of help, it may be useful to both package behavioral insights in a way that is practitioner-oriented and grounded in biophysical trends and to propose a few key questions that need attention. This paper begins the process of developing a biophysical psychology, incomplete as it is at this early stage.

  5. Some behavioral aspects of energy descent: how a biophysical psychology might help people transition through the lean times ahead

    PubMed Central

    De Young, Raymond

    2014-01-01

    We may soon face biophysical limits to perpetual growth. Energy supplies may tighten and then begin a long slow descent while defensive expenditures rise to address problems caused by past resource consumption. The outcome may be significant changes in daily routines at the individual and community level. It is difficult to know when this scenario might begin to unfold but it clearly would constitute a new behavioral context, one that the behavioral sciences least attends to. Even if one posits a less dramatic scenario, people may still need to make many urgent and perhaps unsettling transitions. And while a robust response would be needed, it is not at all clear what should be the details of that response. Since it is likely that no single response will fix things everywhere, for all people or for all time, it would be useful to conduct many social experiments. Indeed, a culture of small experiments should be fostered which, at the individual and small group level, can be described as behavioral entrepreneurship. This may have begun, hidden in plain sight, but more social experiments are needed. To be of help, it may be useful to both package behavioral insights in a way that is practitioner-oriented and grounded in biophysical trends and to propose a few key questions that need attention. This paper begins the process of developing a biophysical psychology, incomplete as it is at this early stage. PMID:25404926

  6. MACHETE: A transit Imaging Atmospheric Cherenkov Telescope to survey half of the Very High Energy γ-ray sky

    NASA Astrophysics Data System (ADS)

    López-Coto, Rubén; Cortina, Juan; Moralejo, Abelardo

    2016-10-01

    Current Cherenkov Telescopes for VHE gamma ray astrophysics are pointing instruments with a field of view up to a few tens of deg2. We propose to build an array of two non-steerable telescopes with a FoV of 5×60 deg2 oriented along the meridian. Roughly half of the sky drifts through this FoV in a year. We have performed a MC simulation to estimate the performance of this instrument, which we dub MACHETE. The sensitivity that MACHETE would achieve after 5 years of operation for every source in this half of the sky is comparable to the sensitivity that a current IACT achieves for a specific source after a 50 h devoted observation. The analysis energy threshold would be 150 GeV and the angular resolution 0.1 deg. For astronomical objects that transit over MACHETE for a specific night, it would achieve an integral sensitivity of 12% of Crab in a night. This makes MACHETE a powerful tool to trigger observations of variable sources at VHE or any other wavelengths.

  7. Energy budget increases reduce mean streamflow more than snow-rain transitions: using integrated modeling to isolate climate change impacts on Rocky Mountain hydrology

    NASA Astrophysics Data System (ADS)

    Foster, Lauren M.; Bearup, Lindsay A.; Molotch, Noah P.; Brooks, Paul D.; Maxwell, Reed M.

    2016-04-01

    In snow-dominated mountain regions, a warming climate is expected to alter two drivers of hydrology: (1) decrease the fraction of precipitation falling as snow; and (2) increase surface energy available to drive evapotranspiration. This study uses a novel integrated modeling approach to explicitly separate energy budget increases via warming from precipitation phase transitions from snow to rain in two mountain headwaters transects of the central Rocky Mountains. Both phase transitions and energy increases had significant, though unique, impacts on semi-arid mountain hydrology in our simulations. A complete shift in precipitation from snow to rain reduced streamflow between 11% and 18%, while 4 °C of uniform warming reduced streamflow between 19% and 23%, suggesting that changes in energy-driven evaporative loss, between 27% and 29% for these uniform warming scenarios, may be the dominant driver of annual mean streamflow in a warming climate. Phase changes induced a flashier system, making water availability more susceptible to precipitation variability and eliminating the runoff signature characteristic of snowmelt-dominated systems. The impact of a phase change on mean streamflow was reduced as aridity increased from west to east of the continental divide.

  8. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry.

    PubMed

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-04-04

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red-green-blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications.

  9. Few-photon color imaging using energy-dispersive superconducting transition-edge sensor spectrometry

    PubMed Central

    Niwa, Kazuki; Numata, Takayuki; Hattori, Kaori; Fukuda, Daiji

    2017-01-01

    Highly sensitive spectral imaging is increasingly being demanded in bioanalysis research and industry to obtain the maximum information possible from molecules of different colors. We introduce an application of the superconducting transition-edge sensor (TES) technique to highly sensitive spectral imaging. A TES is an energy-dispersive photodetector that can distinguish the wavelength of each incident photon. Its effective spectral range is from the visible to the infrared (IR), up to 2800 nm, which is beyond the capabilities of other photodetectors. TES was employed in this study in a fiber-coupled optical scanning microscopy system, and a test sample of a three-color ink pattern was observed. A red–green–blue (RGB) image and a near-IR image were successfully obtained in the few-incident-photon regime, whereas only a black and white image could be obtained using a photomultiplier tube. Spectral data were also obtained from a selected focal area out of the entire image. The results of this study show that TES is feasible for use as an energy-dispersive photon-counting detector in spectral imaging applications. PMID:28374801

  10. Energies and transition rates in Ge-like ions between In XVIII and Ce XXVII

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Wang, Kai

    2017-03-01

    The energy levels, wavelengths, oscillator strengths, and radiative electric dipole (E1), magnetic quadrupole (M2) transition probabilities for Ge-like ions (49 ≤ Z ≤ 58) among the lowest 88 fine-structure levels belonging to the ([Ar] 3d10)4s24p2, ([Ar] 3d10)4s24p4d, ([Ar] 3d10)4s4p3, ([Ar] 3d10)4s4p24d, ([Ar] 3d10)4s24d2, and ([Ar] 3d10)4p4 configurations are calculated using the fully relativistic multiconfiguration Dirac-Fock (MCDF) approach including the correlations within the n = 7 complex, Breit interaction (BI) and quantum electrodynamics (QED) effects. For comparison, an independent calculation using the many-body perturbation theory (MBPT) method is also carried out to confirm the present energy levels accuracy, taking Xe XXIII as an example. The present results are compared with available experimental and theoretical results and good agreement is obtained. These accurate theoretical data are useful for controlled thermonuclear fusion research, plasma physics, and astrophysical applications.

  11. MARKAL-MACRO: A methodology for informed energy, economy and environmental decision making. Informal report

    SciTech Connect

    Goldstein, G.A.

    1995-05-16

    Since the mid-1970`s, energy system analysts have been using models to represent the complexities of interactions in energy systems to help shape policy. Since the mid-1980`s, heightened awareness has made it necessary also to consider the environmental impacts of energy policies. MARKAL is a cost-minimizing energy-environment system planning model used to explore mid- to long-term responses to different technological futures, emissions limitations, and policy scenarios. MARKAL-MACRO is an extension of MARKAL that integrates these capabilities directly with a neoclassical macroeconomic growth model. By combining bottom-up engineering and top-down macroeconomic approaches in a single modeling framework, MARKAL-MACR is able to capture the interplay between the energy system, the economy and the environment, allowing the affects on demands of endogenously determined energy prices to be explored.

  12. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    NASA Astrophysics Data System (ADS)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  13. Making the Connection: Beneficial Collaboration Between Army Installations and Energy Utility Companies

    DTIC Science & Technology

    2011-01-01

    Constructed in the 1960s, the Fort Knox Disney Barracks Area consists of 38 build- ings with more than 800,000 square feet. After 40 years, the buildings...long-term supply are increasing in the United States and with them the demand for ways to reduce energy consumption and to get more energy from...Installation Management, RAND Arroyo Center researched ways that the Army could improve collaboration with utility companies to reduce energy consumption and

  14. Making It Count: Understanding the Value of Energy Efficiency Financing Programs Funded by Utility Customers

    SciTech Connect

    Kramer, Chris; Fadrhonc, Emily Martin; Goldman, Charles; Schiller, Steve; Schwartz, Lisa

    2015-12-01

    Utility customer-supported financing programs are receiving increased attention as a strategy for achieving energy saving goals. Rationales for using utility customer funds to support financing initiatives

  15. Effects of low-energy excitations on spectral properties at higher binding energy: the metal-insulator transition of VO(2).

    PubMed

    Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia

    2015-03-20

    The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the GW approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.

  16. Characteristic energies, transition temperatures, and switching effects in clean S|N|S graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Halterman, Klaus; Valls, Oriol T.; Alidoust, Mohammad

    2011-08-01

    We study proximity effects in clean nanoscale superconductor-normal-metal-superconductor (S∣N∣S) graphene heterostructures using a self-consistent numerical solution to the continuum Dirac Bogoliubov-de Gennes (DBdG) equations. We obtain results for the pair amplitude and the local density of states (DOS) as a function of doping and of the geometrical parameters determining the width of the structures. The superconducting correlations are found to penetrate the normal graphene layers even when there is extreme mismatch in the normal and superconducting doping levels, where specular Andreev reflection dominates. The local DOS exhibits peculiar features, which we discuss, arising from the Dirac cone dispersion relation and from the interplay between the superconducting and Thouless energy scales. The corresponding characteristic energies emerge in the form of resonant peaks in the local DOS, which depend strongly on the doping level, as does the energy gap, which declines sharply as the relative difference in doping between the S and N regions is reduced. We also linearize the DBdG equations and develop an essentially analytical method that determines the critical temperature Tc of a S∣N∣S nanostructure self-consistently. We find that for S regions that occupy a fraction of the coherence length, Tc can undergo substantial variations as a function of the relative doping. At finite temperatures and by manipulating the doping levels, the self-consistent pair amplitudes reveal dramatic transitions between a superconducting and resistive normal state of the structure. Such behavior suggests the possibility of using the proposed system as a carbon-based superconducting switch, turning superconductivity on or off by tuning the relative doping levels.

  17. Trap the Energy of the Sun. What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.

    Filipino scientists and inventors have tried many ways of using solar energy. One simple device, made of wood and ordinary plastic sheets, traps solar energy to dry palay grains and other agricultural products. In this module, information and activities are provided to help students: (1) learn the advantages of using a solar crop dryer over direct…

  18. Interactive computer simulation of dairy farm systems as a method for making energy management decisions

    SciTech Connect

    Hewett, E.J. III

    1983-01-01

    To facilitate management decisions an analytical model was developed to predict energy and labor requirements and costs for milking and feed handling systems. The Dairy Farm Simulation Model was based on detailed time and motion studies, and energy audits of 21 dairy farms in Michigan. Data included labor hours and energy consumption per month for each operation required for milking and feed handling and charges based on Detroit Edison electrical rate schedules. The result of optimizing the electrical rate charges for simulated milking systems is indicated by the Time-of-Day Rate Schedule which provides the lowest cost to farm operators willing to adjust milking times. Simulation of mobile and stationary feeding systems for six herd sizes includes calculations of capital investment and operating costs in addition to labor and energy cost. Results indicate that mobile systems required a lower investment cost while stationary systems realize lower energy costs. Labor requirements per cow decreased as herd size increased for mobile systems, but remained the same for stationary systems regardless of herd size. The energy required to operate each system, based on the number of oil barrel equivalents, indicates the stationary system required less energy for herd sizes up to and including 150 cows, while mobile systems indicate a lower energy requirement for herd sizes greater than 150 cows. In general, no single system emerged as the best, rather it depended on the operator's personal preference.

  19. Scaled free energies, power-law potentials, strain pseudospins, and quasiuniversality for first-order structural transitions

    SciTech Connect

    Shenoy, S. R.; Lookman, T.; Saxena, A.

    2010-10-01

    We consider ferroelastic first-order phase transitions with N{sub OP} order-parameter strains entering Landau free energies as invariant polynomials that have N{sub V} structural-variant Landau minima. The total free energy includes (seemingly innocuous) harmonic terms, in the n=6-N{sub OP} nonorder-parameter strains. Four three-dimensional (3D) transitions are considered, tetragonal/orthorhombic, cubic/tetragonal, cubic/trigonal, and cubic/orthorhombic unit-cell distortions, with, respectively, N{sub OP}=1, 2, 3, and 2; and N{sub V}=2, 3, 4, and 6. Five two-dimensional (2D) transitions are also considered, as simpler examples. Following Barsch and Krumhansl, we scale the free energy to absorb most material-dependent elastic coefficients into an overall prefactor, by scaling in an overall elastic energy density; a dimensionless temperature variable; and the spontaneous-strain magnitude at transition {lambda}<<1. To leading order in {lambda} the scaled Landau minima become material independent, in a kind of ''quasiuniversality.'' The scaled minima in N{sub OP}-dimensional order-parameter space, fall at the center and at the N{sub V} corners, of a transition-specific polyhedron inscribed in a sphere, whose radius is unity at transition. The ''polyhedra'' for the four 3D transitions are, respectively, a line, a triangle, a tetrahedron, and a hexagon. We minimize the n terms harmonic in the nonorder-parameter strains, by substituting solutions of the ''no dislocation'' St Venant compatibility constraints, and explicitly obtain power-law anisotropic, order-parameter interactions, for all transitions. In a reduced discrete-variable description, the competing minima of the Landau free energies induce unit-magnitude pseudospin vectors, with N{sub V}+1 values, pointing to the polyhedra corners and the (zero-value) center. The total scaled free energies then become Z{sub N{sub V+1}} clocklike pseudospin Hamiltonians, with temperature-dependent local Landau terms, nearest

  20. Relativistic Many-body Moller-Plesset Perturbation Theory Calculations of the Energy Levels and Transition Probabilities in Na- to P-like Xe Ions

    SciTech Connect

    Vilkas, M J; Ishikawa, Y; Trabert, E

    2007-03-27

    Relativistic multireference many-body perturbation theory calculations have been performed on Xe{sup 43+}-Xe{sup 39+} ions, resulting in energy levels, electric dipole transition probabilities, and level lifetimes. The second-order many-body perturbation theory calculation of energy levels included mass shifts, frequency-dependent Breit correction and Lamb shifts. The calculated transition energies and E1 transition rates are used to present synthetic spectra in the extreme ultraviolet range for some of the Xe ions.

  1. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    PubMed

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  2. Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making

    PubMed Central

    Vázquez-Rowe, Ian

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting. PMID:25654136

  3. The Activation of c-Src Tyrosine Kinase: Conformational Transition Pathway and Free Energy Landscape.

    PubMed

    Fajer, Mikolai; Meng, Yilin; Roux, Benoît

    2016-10-28

    Tyrosine kinases are important cellular signaling allosteric enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Their activity must be tightly controlled, and malfunction can lead to a variety of diseases, particularly cancer. The nonreceptor tyrosine kinase c-Src, a prototypical model system and a representative member of the Src-family, functions as complex multidomain allosteric molecular switches comprising SH2 and SH3 domains modulating the activity of the catalytic domain. The broad picture of self-inhibition of c-Src via the SH2 and SH3 regulatory domains is well characterized from a structural point of view, but a detailed molecular mechanism understanding is nonetheless still lacking. Here, we use advanced computational methods based on all-atom molecular dynamics simulations with explicit solvent to advance our understanding of kinase activation. To elucidate the mechanism of regulation and self-inhibition, we have computed the pathway and the free energy landscapes for the "inactive-to-active" conformational transition of c-Src for different configurations of the SH2 and SH3 domains. Using the isolated c-Src catalytic domain as a baseline for comparison, it is observed that the SH2 and SH3 domains, depending upon their bound orientation, promote either the inactive or active state of the catalytic domain. The regulatory structural information from the SH2-SH3 tandem is allosterically transmitted via the N-terminal linker of the catalytic domain. Analysis of the conformational transition pathways also illustrates the importance of the conserved tryptophan 260 in activating c-Src, and reveals a series of concerted events during the activation process.

  4. "Energy is...life": Meaning making through dialogue in a tribal college physics course

    NASA Astrophysics Data System (ADS)

    Antonellis, Jessica Christel

    This research is an exploration of students' meaning making around physical concepts through connections to students' funds of knowledge. This qualitative case study, influenced by Indigenous methodologies, focused on two Native students in a tribal college introductory physics course, exploring the personal, cultural, and philosophical connections that were voiced in dialogic interactions among the students and instructor. The data were collected through audio recordings of class sessions and reflective journaling by the instructor/researcher. Analysis identified dialogues in which meaning making took place, and the funds of knowledge that students brought to bear on these dialogues. The results of the analysis of these meaning-making occasions are presented by physical concept. For both students, the cultural connections they brought in were ways for them to incorporate their out-of-class identities and to consider their cultures from a scientific perspective. The influence of the students' personal connections was just as important as that of the cultural connections; the shared classroom context was also a valuable resource in the for collaborative meaning making. Both students both enjoyed examining the philosophical and spiritual implications of physical ideas; these dialogues provided windows into students' thinking that would not have been accessible in other ways. The students also made meanings about the nature of science that meshed with their identities and created a space for them to identify as scientists, and both came to view science as part of their cultural heritage. Allowing students free reign to make connections and empowering them to make decisions about their own learning were means of encouraging students to develop meaningful conceptual understanding. By investigating the meanings students made around physical content, we can learn about what motivates them, what is important to them, and potentially how to structure curricula that will

  5. Phase transition between A and B forms of DNA: a free-energy perspective.

    PubMed

    Sanyal, Devashish

    2010-03-01

    We study the structural transition from B form of DNA to A form of DNA using group theoretic methods. The transition is not of the order-disorder type and hence to construct a Landau kind of theory for the transition we define a higher symmetry and relevant order parameters. We also discuss the issue of all the conformations, observed experimentally during the course of transition, being fundamentally different or not.

  6. Anomalous Thouless energy and critical statistics on the metallic side of the many-body localization transition

    NASA Astrophysics Data System (ADS)

    Bertrand, Corentin L.; García-García, Antonio M.

    2016-10-01

    We study a one-dimensional XXZ spin chain in a random field on the metallic side of the many-body localization transition by level statistics. For a fixed interaction, and intermediate disorder below the many-body localization transition, we find that, asymptotically, the number variance grows faster than linear with a disorder-dependent exponent. This is consistent with the existence of an anomalous Thouless energy in the spectrum. In noninteracting disordered metals, this is an energy scale related to the typical time for a particle to diffuse across the sample. In the interacting case, it seems related to a more intricate anomalous diffusion process. This interpretation is not fully consistent with recent claims that for intermediate disorder, level statistics are described by a plasma model with power-law decaying interactions whose number variance grows slower than linear. As disorder is further increased, still on the metallic side, the Thouless energy is gradually washed out. In the range of sizes we can explore, level statistics are scale invariant and approach Poisson statistics at the many-body localization transition. Slightly below the many-body localization transition, spectral correlations, well described by critical statistics, are quantitatively similar to those of a high-dimensional, noninteracting, disordered conductor at the Anderson transition.

  7. Free energy of conformational transition paths in biomolecules: The string method and its application to myosin VI

    PubMed Central

    Ovchinnikov, Victor; Karplus, Martin; Vanden-Eijnden, Eric

    2011-01-01

    A set of techniques developed under the umbrella of the string method is used in combination with all-atom molecular dynamics simulations to analyze the conformation change between the prepowerstroke (PPS) and rigor (R) structures of the converter domain of myosin VI. The challenges specific to the application of these techniques to such a large and complex biomolecule are addressed in detail. These challenges include (i) identifying a proper set of collective variables to apply the string method, (ii) finding a suitable initial string, (iii) obtaining converged profiles of the free energy along the transition path, (iv) validating and interpreting the free energy profiles, and (v) computing the mean first passage time of the transition. A detailed description of the PPS↔R transition in the converter domain of myosin VI is obtained, including the transition path, the free energy along the path, and the rates of interconversion. The methodology developed here is expected to be useful more generally in studies of conformational transitions in complex biomolecules. PMID:21361558

  8. Energy levels, wavelengths, and transition rates of multipole transitions (E1, E2, M1, M2) in Au{sup 67+} and Au{sup 66+} ions

    SciTech Connect

    Hamasha, Safeia

    2013-11-15

    The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are considered by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.

  9. Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales.

    PubMed

    Harel, Roi; Duriez, Olivier; Spiegel, Orr; Fluhr, Julie; Horvitz, Nir; Getz, Wayne M; Bouten, Willem; Sarrazin, François; Hatzofe, Ohad; Nathan, Ran

    2016-09-26

    Natural selection theory suggests that mobile animals trade off time, energy and risk costs with food, safety and other pay-offs obtained by movement. We examined how birds make movement decisions by integrating aspects of flight biomechanics, movement ecology and behaviour in a hierarchical framework investigating flight track variation across several spatio-temporal scales. Using extensive global positioning system and accelerometer data from Eurasian griffon vultures (Gyps fulvus) in Israel and France, we examined soaring-gliding decision-making by comparing inbound versus outbound flights (to or from a central roost, respectively), and these (and other) home-range foraging movements (up to 300 km) versus long-range movements (longer than 300 km). We found that long-range movements and inbound flights have similar features compared with their counterparts: individuals reduced journey time by performing more efficient soaring-gliding flight, reduced energy expenditure by flapping less and were more risk-prone by gliding more steeply between thermals. Age, breeding status, wind conditions and flight altitude (but not sex) affected time and energy prioritization during flights. We therefore suggest that individuals facing time, energy and risk trade-offs during movements make similar decisions across a broad range of ecological contexts and spatial scales, presumably owing to similarity in the uncertainty about movement outcomes.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  10. The DeStress for Success Program: effects of a stress education program on cortisol levels and depressive symptomatology in adolescents making the transition to high school.

    PubMed

    Lupien, S J; Ouellet-Morin, I; Trépanier, L; Juster, R P; Marin, M F; Francois, N; Sindi, S; Wan, N; Findlay, H; Durand, N; Cooper, L; Schramek, T; Andrews, J; Corbo, V; Dedovic, K; Lai, B; Plusquellec, P

    2013-09-26

    Various studies have shown that increased activity of the hypothalamic-pituitary-adrenal (HPA) axis can predict the onset of adolescent depressive symptomatology. We have previously shown that adolescents making the transition to high school present a significant increase in cortisol levels, the main product of HPA axis activation. In the present study, we evaluated whether a school-based education program developed according to the current state of knowledge on stress in psychoneuroendocrinology decreases cortisol levels and/or depressive symptoms in adolescents making the transition to high school. Participants were 504 Year 7 high school students from two private schools in the Montreal area. Adolescents of one school were exposed to the DeStress for Success Program while adolescents from the other school served as controls. Salivary cortisol levels and depressive symptomatology were measured before, immediately after as well as 3 months after exposure to the program. Measures of negative mood were obtained at baseline in order to determine whether adolescents starting high school with specific negative moods were differentially responsive to the program. The results show that only adolescents starting high school with high levels of anger responded to the intervention with a significant decrease in cortisol levels. Moreover, we found that adolescents who took part in the intervention and showed decreasing cortisol levels following the intervention (responders) were 2.45 times less at risk to suffer from clinical and subclinical depressive states three months post-intervention in comparison to adolescents who showed increasing cortisol levels following the intervention (nonresponders). This study provides the first evidence that a school-based program on stress is effective at decreasing cortisol levels and depressive symptomatology in adolescents making the transition to high school and it helps explain which adolescents are sensitive to the program and what

  11. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  12. Low energy E0 transitions in odd-mass nuclei of the neutron deficient 180 < A < 200 region

    SciTech Connect

    Zganjar, E.F.; Kortelahti, M.O.; Wood, J.L.; Papanicolopulos, C.D.

    1987-01-01

    The region of neutron-deficient nuclei near Z = 82 and N = 104 provides the most extensive example of low-energy shape coexistence anywhere on the mass surface. It is shown that E0 and E0 admixed transitions may be used as a fingerprint to identify shape coexistence in odd-mass nuclei. It is also shown that all the known cases of low energy E0 and E0 admixed transitions in odd-mass nuclei occur where equally low-lying O/sup +/ states occur in neighboring even-even nuclei. A discussion of these and other relevant data as well as suggestions for new studies which may help to clarify and, more importantly, quantify the connection between E0 transitions and shape coexistence are presented. 60 refs., 7 figs., 4 tabs.

  13. Building Student Awareness of Societal Decision-Making Challenges about Energy through the Study of Earth System Data and Innovations in Energy-Related Materials Research

    NASA Astrophysics Data System (ADS)

    Zalles, D. R.; Acker, J. G.; Berding, M.

    2014-12-01

    Energy literacy requires knowledge about the trade-offs inherent in energy alternatives, about how humans use energy and have choices in how much energy to use, and about what changes to the Earth system are occurring from energy uses. It also requires collaborative decision-making skills coupled with awareness about what values we bring to the table as we negotiate solutions that serve both personal needs and the common good. Coming up with a notion of the common good requires delineating how environmental crises occurring in other parts of the world compare to our own. We also need to understand criteria for judging what might be viable solutions. This presentation describes work that SRI International is carrying out to meet these awareness-building needs. SRI educational researchers created a curriculum that immerses students in studying regional climate change data about California in comparison to global climate change. Students ponder solution energy-related strategies and impact analyses. The curriculum will be described, as will a collaboration between SRI educational researchers and materials scientists. The scientists are designing and testing technologies for producing biofuels and solar power, and for sequestering carbon from coal fired power plants. As they apply principles of science and engineering to test materials intended to meet these energy challenges, they understand that even if the tests prove successful, if there is not economic feasibility or environmental advantage, the technology may not stand as a viable solution. This educator-scientist team is using the Essential Energy Principles and Next Generation Science Standards to articulate milestones along a trajectory of energy learning. The trajectory starts with simple understandings of what energy is and what constitute our energy challenges. It ends with more the types of more sophisticated understandings needed for designing and testing energy technology solutions.

  14. Using all of the Energy from the Sun to Make Power

    SciTech Connect

    Dapkus, P. Daniel; Povinelli, Michelle

    2013-07-18

    Representing the Center for Energy Nanoscience (CEN), this document is one of the entries in the Ten Hundred and One Word Challenge and was awarded "Overall Winner Runner-up." As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CEN is to explore the light absorption and emission in organic and nanostructure materials and their hybrids for solar energy conversion and solid state lighting.

  15. Energy and the environment - Application of geosciences to decision-making

    USGS Publications Warehouse

    Carter, Lorna M.

    1995-01-01

    This volume contains 67 extended abstracts that summarize some of the oral and poster presentations of the tenth annual V. E. McKelvey forum on mineral and energy resources, held in Washington, D.C., Feb. 13-17, 1995. The focus is on our energy resources and the environment, new research techniques, and cooperative efforts between the USGS and industry, State and Federal agencies, universities, and other countries.

  16. Considerations for Solar Energy Technologies to Make Progress Towards Grid Price Parity

    SciTech Connect

    Woodhouse, Michael; Fu, Ran; Chung, Donald; Horowitz, Kelsey; Remo, Timothy; Feldman, David; Margolis, Robert

    2015-11-07

    In this seminar the component costs for solar photovoltaics module and system prices will be highlighted. As a basis for comparison to other renewable and traditional energy options, the metric of focus will be total lifecycle cost-of-energy (LCOE). Several innovations to traditional photovoltaics technologies (including crystalline silicon, CdTe, and CIGS) and developing technologies (including organics and perovskites) that may close the gaps in LCOE will be discussed.

  17. Critical high-dimensional state transitions in cell populations or why cancers follow the principle ``What does not kill me makes me stronger''

    NASA Astrophysics Data System (ADS)

    Huang, Sui

    Transitions between high-dimensional attractor states in the quasi-potential landscape of the gene regulatory network, induced by environmental perturbations and/or facilitated by mutational rewiring of the network, underlie cell phenotype switching in development as well as in cancer progression, including acquisition of drug-resistant phenotypes. Considering heterogeneous cell populations as statistical ensembles of cells, and single-cell resolution gene expression profiling of cell populations undergoing a cell phenotype shift allow us now to map the topography of the landscape and its distortion. From snapshots of single-cell expression patterns of a cell population measured during major transitions we compute a quantity that identifies symmetry-breaking destabilization of attractors (bifurcation) and concomitant dimension-reduction of the state space manifold (landscape distortion) which precede critical transitions to new attractor states. The model predicts, and we show experimentally, the almost inevitable generation of aberrant cells associated with such critical transitions in multi-attractor landscapes: therapeutic perturbations which seek to push cancer cells to the apoptotic state, almost always produce ``rebellious'' cells which move in the ``opposite direction'': instead of dying they become more stem-cell-like and malignant. We show experimentally that the inadvertent generation of more malignant cancer cells by therapy indeed results from transition of surviving (but stressed) cells into unforeseen attractor states and not simply from selection of inherently more resistant cells. Thus, cancer cells follow not so much Darwin, as generally thought (survival of the fittest), but rather Nietzsche (What does not kill me makes me stronger). Supported by NIH (NCI, NIGMS), Alberta Innovates.

  18. Quantum dynamics of rovibrational transitions in H2-H2 collisions: internal energy and rotational angular momentum conservation effects.

    PubMed

    Fonseca dos Santos, S; Balakrishnan, N; Lepp, S; Quéméner, G; Forrey, R C; Hinde, R J; Stancil, P C

    2011-06-07

    We present a full dimensional quantum mechanical treatment of collisions between two H(2) molecules over a wide range of energies. Elastic and state-to-state inelastic cross sections for ortho-H(2) + para-H(2) and ortho-H(2) + ortho-H(2) collisions have been computed for different initial rovibrational levels of the molecules. For rovibrationally excited molecules, it has been found that state-to-state transitions are highly specific. Inelastic collisions that conserve the total rotational angular momentum of the diatoms and that involve small changes in the internal energy are found to be highly efficient. The effectiveness of these quasiresonant processes increases with decreasing collision energy and they become highly state-selective at ultracold temperatures. They are found to be more dominant for rotational energy exchange than for vibrational transitions. For non-reactive collisions between ortho- and para-H(2) molecules for which rotational energy exchange is forbidden, the quasiresonant mechanism involves a purely vibrational energy transfer albeit with less efficiency. When inelastic collisions are dominated by a quasiresonant transition calculations using a reduced basis set involving only the quasiresonant channels yield nearly identical results as the full basis set calculation leading to dramatic savings in computational cost.

  19. Dependence of energy levels and optical transitions on layer thicknesses in InSe/GaSe superlattices

    NASA Astrophysics Data System (ADS)

    Erkoç, Şakir; Katırcıoğlu, Şenay

    1998-01-01

    We have investigated the dependence of energy levels and optical transition matrix elements in InSe/GaSe superlattices on well and/or barrier widths. Self-consistent-field calculations have been performed within the effective-mass theory approximation.

  20. Assessment of New Approaches in Geothermal Exploration Decision Making; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Akar, S.; Young, K. R.

    2015-05-11

    This poster describes the findings in a related paper and information gleaned from the project. The aim of the project is to develop a methodology for more objective geothermal decision making, including more solid go/no-go decisions at specific points in the process, and to reduce subjectivity and increase reproducibility in the future.

  1. "Energy Is...life": Meaning Making through Dialogue in a Tribal College Physics Course

    ERIC Educational Resources Information Center

    Antonellis, Jessica Christel

    2013-01-01

    This research is an exploration of students' meaning making around physical concepts through connections to students' funds of knowledge. This qualitative case study, influenced by Indigenous methodologies, focused on two Native students in a tribal college introductory physics course, exploring the personal, cultural, and philosophical…

  2. Transition energies of ytterbium, lutetium, and lawrencium by the relativistic coupled-cluster method

    SciTech Connect

    Eliav, E.; Kaldor, U.; Ishikawa, Y.

    1995-07-01

    The relativistic Fock-space coupled-cluster method was applied to the Yb, Lu, and Lr atoms, and to several of their ions. A large number of transition energies was calculated for these systems. Starting from an all-electron Dirac-Fock or Dirac-Fock-Breit function, many electrons (30--40) were correlated to account for core-valence polarization. High-{ital l} virtual orbitals were included (up to {ital l}=5) to describe dynamic correlation. Comparison with experiment (when available) shows agreement within a few hundred wave numbers in most cases. Fine-structure splittings are even more accurate, within 30 cm{sup {minus}1} of experiment. Average errors are at least three times smaller than for previous calculations. Two bound states of Lu{sup {minus}} are predicted, 6{ital p}5{ital d} {sup 1}{ital D}{sub 2} and 6{ital p}{sup 2} {sup 3}{ital P}{sub 0}, with binding energies of about 2100 and 750 cm{sup {minus}1}, respectively. The ground state of lawrencium is {sup 2}{ital P}{sub 1/2}, relativistically stabilized relative to {sup 2}{ital D}{sub 3/2}, the ground state of Lu. Two states of the Lr{sup {minus}} anion are bound, 7{ital p}{sup 2} {sup 3}{ital P}{sub 0} (by 2500 cm{sup {minus}1}) and 7{ital p}6{ital d} {sup 1}{ital D}{sub 2} (by 1300 cm{sup {minus}1}).

  3. Risk for arrest: the role of social bonds in protecting foster youth making the transition to adulthood.

    PubMed

    Cusick, Gretchen Ruth; Havlicek, Judy R; Courtney, Mark E

    2012-01-01

    This study examines a sample of foster youth at the onset of the transition to adulthood and explores how social bonds are related to the risk of arrest during adulthood. Drawing from official arrest records, event history models are used to examine the time to arrest. Because individuals may be at risk for different types of crime, competing risk regression models are used to distinguish among arrests for drug-related, nonviolent, or violent crimes. Between the ages of 17-18 and 24, 46% of former foster youth experience an arrest. Arrests were evenly distributed across drug, nonviolent, and violent crimes columns. Although findings fail to support the significance of social bonds to interpersonal domains, bonds to employment and education are associated with a lower risk for arrest. Child welfare policy and practice implications for building connections and protections around foster youth are discussed.

  4. Risk for Arrest: The Role of Social Bonds in Protecting Foster Youth Making the Transition to Adulthood

    PubMed Central

    Cusick, Gretchen Ruth; Havlicek, Judy R.; Courtney, Mark E.

    2012-01-01

    This study examines a sample of foster youth at the onset of the transition to adulthood and explores how social bonds are related to the risk of arrest during adulthood. Drawing from official arrest records, event history models are used to examine the time to arrest. Because individuals may be at risk for different types of crime, competing risk regression models are used to distinguish among arrests for drug-related, nonviolent, or violent crimes. Between the ages of 17–18 and 24, 46% of former foster youth experience an arrest. Arrests were evenly distributed across drug, nonviolent, and violent crimes columns. Although findings fail to support the significance of social bonds to interpersonal domains, bonds to employment and education are associated with a lower risk for arrest. Child welfare policy and practice implications for building connections and protections around foster youth are discussed. PMID:22239390

  5. Phase restructuring in transition metal dichalcogenides for highly stable energy storage

    DOE PAGES

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; ...

    2016-09-16

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-LixMoS2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS2. Transmission electron microscopy studies reveal that the interconnected MoS2 nanocrystals created during the phasemore » change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. Finally, these studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.« less

  6. Zero energy modes in a superconductor with ferromagnetic adatom chains and quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Čadež, Tilen; Sacramento, Pedro D.

    2016-12-01

    We study Majorana zero energy modes (MZEM) that occur in an s-wave superconducting surface, at the ends of a ferromagnetic (FM) chain of adatoms, in the presence of Rashba spin-orbit interaction (SOI) considering both non self-consistent and self-consistent superconducting order. We find that in the self-consistent solution, the average superconducting gap function over the adatom sites has a discontinuous drop with increasing exchange interaction at the same critical value where the topological phase transition occurs. We also study the MZEM for both treatments of superconducting order and find that the decay length is a linear function of the exchange coupling strength, chemical potential and superconducting order. For wider FM chains the MZEM occur at smaller exchange couplings and the slope of the decay length as a function of exchange coupling grows with chain width. Thus we suggest experimental detection of different delocalization of MZEM in chains of varying widths. We discuss similarities and differences between the MZEM for the two treatments of the superconducting order.

  7. Highly correlated systems. Ionization energies of first row transition metals Sc--Zn

    SciTech Connect

    Raghavachari, K.; Trucks, G. W.

    1989-08-15

    The low-lying ionization potentials of the first row transition metal atoms Sc--Zn are calculated using fourth-order Moller--Plesset perturbation theory (MP4) and quadratic configuration interaction (QCI) techniques with large /ital spd/ and /ital spdf/ basis sets. Two ionic states have been considered for each atom yielding a total of 20 different ionization processes which we have included in this study. For Sc/sup +/--Cu/sup +/, the ionic states considered have /ital d//sup /ital n/s//sup 1/ and /ital d//sup /ital n/+1/ orbital occupations and for Zn/sup +/, the /ital d//sup 10//ital s1/ and /ital d//sup 9//ital s2/ states were studied. The MP4 method accurately reproduces the ionization potentials of Sc--Fe, but is found to be inadequate for Co--Zn. In contrast, the QCI technique performs uniformly for all ionization energies with a mean deviation from experiment of only 0.13 eV (with the /ital spdf/ basis set) after inclusion of relativistic corrections.

  8. Phase Restructuring in Transition Metal Dichalcogenides for Highly Stable Energy Storage.

    PubMed

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping

    2016-09-28

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-LixMoS2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS2. Transmission electron microscopy studies reveal that the interconnected MoS2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. These studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.

  9. Phase restructuring in transition metal dichalcogenides for highly stable energy storage

    SciTech Connect

    Leng, Kai; Chen, Zhongxin; Zhao, Xiaoxu; Tang, Wei; Tian, Bingbing; Nai, Chang Tai; Zhou, Wu; Loh, Kian Ping

    2016-09-16

    Achieving homogeneous phase transition and uniform charge distribution is essential for good cycle stability and high capacity when phase conversion materials are used as electrodes. Herein, we show that chemical lithiation of bulk 2H-MoS2 distorts its crystalline domains in three primary directions to produce mosaic-like 1T' nanocrystalline domains, which improve phase and charge uniformity during subsequent electrochemical phase conversion. 1T'-LixMoS2, a macroscopic dense material with interconnected nanoscale grains, shows excellent cycle stability and rate capability in a lithium rechargeable battery compared to bulk or exfoliated-restacked MoS2. Transmission electron microscopy studies reveal that the interconnected MoS2 nanocrystals created during the phase change process are reformable even after multiple cycles of galvanostatic charging/discharging, which allows them to play important roles in the long term cycling performance of the chemically intercalated TMD materials. Finally, these studies shed light on how bulk TMDs can be processed into quasi-2D nanophase material for stable energy storage.

  10. Correlation functions in liquids and crystals: free-energy functional and liquid-to-crystal transition.

    PubMed

    Bharadwaj, Atul S; Singh, Swarn L; Singh, Yashwant

    2013-08-01

    A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions. The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending powers of the order parameters and which contains three- and higher-body direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including the structure of the frozen phase for fluids interacting via the inverse power potential u(r)=ε(σ/r)(n) for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n>6.5 the fluid freezes into a face-centered cubic (fcc) structure while for n≤6 the body-centered cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n=0.158, which is in good agreement with simulation result.

  11. Energy and nutrient intakes of disabled children: do feeding problems make a difference?

    PubMed

    Thommessen, M; Riis, G; Kase, B F; Larsen, S; Heiberg, A

    1991-12-01

    We examined the effect of feeding problems and alternative feeding practices on the energy and nutrient intakes of disabled children. Subjects were 221 disabled children aged 1 to 16 years from seven diagnostic groups: a 4-day food record was obtained for 166 children. The children's energy and nutrient intakes were examined in relation to the presence or absence of four feeding problems (gross motor/self-feeding impairment, oral-motor dysfunction, lack of appetite, food aversions) and two alternate feeding practices (prolonged assisted feeding and use of pureed foods). Cross-sectional analyses showed that children with feeding problems or alternative feeding practices had lower energy and nutrient intakes than did children without these factors. The presence of oral-motor dysfunction or prolonged assisted feeding significantly reduced relative energy intake. In general, differences in energy and nutrient intakes between children with and without other feeding problems or practices were small, and few statistically significant differences were found. The findings indicate that some feeding problems may reduce food intake in disabled children, although this effect is lessened by the conscientious efforts of parents. Parents and families of disabled children should receive dietary counseling to prevent deteriorative effects on the physical growth and health of children with long-standing feeding problems.

  12. From the lab to the marketplace: Making America`s buildings more energy efficient

    SciTech Connect

    1995-01-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for energy-efficiency studies of advanced building technologies. That investment has helped spawn a $2.4-billion US market for key products -- energy-efficient lighting and advanced window coatings -- and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 the authors estimate that the products of that investment will save consumers $16 billion annually. But LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. They analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. They develop planning and demand-management methodologies for electric and gas utilities. They identify technologies and analytical methods for improving human comfort and the quality of indoor air. They contribute to the information superhighway. They focus on the special problems and opportunities presented by energy use in the public sector. And they do all these things at the local, national, and international levels. At LBL, they are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. They also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  13. From the lab to the marketplace: Making America`s buildings more energy efficient

    SciTech Connect

    1995-06-01

    Since the mid 1970s, DOE has invested some $70 million in research and development at Lawrence Berkeley Laboratory (LBL) for development of advanced energy-efficient building technologies, software, and standards. That investment has helped spawn a $2.4-billion U.S. market for key products-energy-efficient lighting and advanced window coatings-and efficiency standards for residential equipment and computerized tools for more efficient building design. By 1993 DOE`s initial investment had reduced consumers` energy bills by an estimated $5 billion ($1.3 billion in 1993 alone). By 2015 we estimate that the products of that investment will save consumers $16 billion annually. LBL research partnerships address a host of other building technology issues as well-building technology issues whose economic benefits are less easy to quantify but whose overall worth is equally important. We analyze public policy issues such as the role of efficiency options as a mitigation strategy for global climate change. We develop planning and demand-management methodologies for electric and gas utilities. We identify technologies and analytical methods for improving human comfort and the quality of indoor air. We contribute to the information superhighway. We focus on the special problems and opportunities presented by energy use in the public sector. And we do all these things at the local, national, and international levels. At LBL, we are part of the multi-laboratory, interdisciplinary approach to building technology research supported by DOE`s Office of Energy Efficiency and Renewable Energy. We also participate in buildings-related research supported by DOE`s Office of Health and Environmental Research, other federal agencies, and industry. This document describes LBL`s role within this wider effort.

  14. Leveraging the water-energy-food nexus for a sustainability transition: Institutional and policy design choices in a fragmented world (Invited)

    NASA Astrophysics Data System (ADS)

    Aggarwal, R.

    2013-12-01

    Given the critical - but often subtle - feedbacks between water, energy, and food security, a nexus approach that integrates management and governance across sectors and scales is increasingly being advocated in research and policy circles. As a first step, such an approach calls for an integrated multi-disciplinary assessment of the externalities across sectors and tradeoffs involved in enhancing security in one sector on the other sectors. Recent research efforts have focused on understanding these tradeoffs, say, through estimating the energy costs of expanding irrigation for greater food security; or estimating the embodied land and water costs in increased energy production. While such efforts have increased awareness about the inter-connectedness of such issues, the fundamental question of how such an understanding influences decision-making and how it can lead to coordinated action towards a transition to more sustainable pathways still remains largely unanswered. The long legacy of sectoral organization of political and bureaucratic structures has led to a fragmentary policy and institutional landscape, on which cross-sectoral public action and coordination poses several challenges. Moreover, poorly defined property rights, imperfect or absent markets, and uncertainty about resource dynamics imply that economic signals about relative scarcity in one sector are not necessarily clear to decision makers in the other sectors. In this study, we examine these issues related to water-energy food nexus in the context of semi-arid groundwater irrigated regions of western and southern India. Using a social-ecological systems framework, we begin by characterizing some of the key inter-dependencies among food, water, and energy at the farm household, village and state level. We then examine the factors that influence decision-making at these levels, and the extent to which these decisions internalize the externalities. Specifically, we examine the role of energy

  15. Land use impacts of low-carbon energy system transition - the case of UK bioenergy deployment under the Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Lupton, R.; Skelton, S.

    2015-12-01

    The UK Department of Energy and Climate Change has developed four low-carbon energy transition pathways - the Carbon Plan - towards achieving the legally binding 80% territorial greenhouse gas emissions reduction, stipulated in the 2008 Climate Change Act by 2050. All the pathways require increase in bioenergy deployment, of which a significant amount could be indigenously sourced from crops. But will increased domestic production of energy crops conflict with other land use and ecosystem priorities? To address this question, a coupled analysis of the four energy transition pathways and land use has been developed using an integrated resource accounting platform called ForeseerTM. The two systems are connected by the bioenergy component, and are projected forward in time to 2050, under different scenarios of energy crop composition and yield, and accounting for various constraints on land use for agriculture and ecosystem services. The results show between 7 and 61% of UK agricultural land could be required to meet bioenergy deployment projections under different combinations of crop yield and compositions for the transition pathways. This could result in competition for land for food production and other socio-economic and ecological land uses. Consequently, the potential role of bioenergy in achieving UK emissions reduction targets may face significant deployment challenges.

  16. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  17. A computational framework for supporting environmental-climate-energy decision-making

    EPA Science Inventory

    GLIMPSE is a effort in which the U.S. EPA Office of Research and Development is developing tools to support long-term, coordinated environmental, climate, and energy planning. The purpose of this presentation is to discuss the underlying science questions; provide an overview of ...

  18. Use of modern information technologies for making budgetary sectors of the economy more energy-efficient

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Bobryakov, A. V.

    2010-12-01

    A strategy of administrative management and technological control of heat consumption and energy conservation processes in budgetary sectors of the economy is described together with a system of integrated indicators for estimating the efficiency of these processes and the main results obtained from putting the strategy in use in the system of the Russian Federal Agency for Education are presented.

  19. Becoming allies: Combining social science and technological perspectives to improve energy research and policy making

    SciTech Connect

    Diamond, Rick; Moezzi, Mithra

    2002-07-01

    Within the energy research community, social sciences tends to be viewed fairly narrowly, often as simply a marketing tool to change the behavior of consumers and decision makers, and to ''attack market barriers''. As we see it, social sciences, which draws on sociology, psychology, political science, business administration, and other academic disciplines, is capable of far more. A social science perspective can re-align questions in ways that can lead to the development of technologies and technology policy that are much stronger and potentially more successful than they would be otherwise. In most energy policies governing commercial buildings, the prevailing R and D directives are firmly rooted in a technology framework, one that is generally more quantitative and evaluative than that fostered by the social sciences. To illustrate how social science thinking would approach the goal of achieving high energy performance in the commercial building sector, they focus on the US Department of Energy's Roadmap for commercial buildings (DOE 2000) as a starting point. By ''deconstructing'' the four strategies provided by the Roadmap, they set the stage for proposing a closer partnership between advocates of technology-based and social science-based approaches.

  20. Making the Most of Your Energy Dollars in Home Heating & Cooling. NBS Consumer Information Series 8.

    ERIC Educational Resources Information Center

    Jacobs, Madeleine; Petersen, Stephen R.

    This pamphlet is a homeowner's guide to home weatherization. It provides a step-by-step energy audit that anyone can use to help determine the insulation needs of their home. This is not a "how-to-do-it" booklet, but is a guide by which homeowners can determine the best combination of improvements for their house, climate, and fuel…

  1. A Critical Compilation of Energy Levels, Spectral Lines, and Transition Probabilities of Singly Ionized Silver, Ag II.

    PubMed

    Kramida, Alexander

    2013-01-01

    All available experimental measurements of the spectrum of the Ag(+) ion are critically reviewed. Systematic shifts are removed from the measured wavelengths. The compiled list of critically evaluated wavelengths is used to derive a comprehensive list of energy levels with well-defined uncertainties. Eigenvector compositions and level designations are found in two alternate coupling schemes. Some of the older work is found to be incorrect. A revised value of the ionization energy, 173283(7) cm(-1), equivalent to 21.4844(8) eV, is derived from the new energy levels. A set of critically evaluated transition probabilities is given.

  2. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    SciTech Connect

    Akar, S.; Young, K.

    2015-01-01

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location, including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was determined

  3. Helping Students make the transition from novice learner of ground-water concepts to expert using the Plume Busters software

    USGS Publications Warehouse

    Macfarlane, P.A.; Bohling, G.; Thompson, K.W.; Townsend, M.

    2006-01-01

    Environmental and earth science students are novice learners and lack the experience needed to rise to the level of expert. To address this problem we have developed the prototype Plume Busters?? software as a capstone educational experience, in which students take on the role of an environmental consultant. Following a pipeline spill, the environmental consultant is hired by the pipeline owner to locate the resulting plume created by spill and remediate the contaminated aquifer at minimum monetary and time cost. The contamination must be removed from the aquifer before it reaches the river and eventually a downstream public water supply. The software consists of an interactive Java application and accompanying HTML linked pages. The application simulates movement of a plume from a pipeline break throug h a shallow alluvial aquifer towards the river. The accompanying web pages establish the simulated contamination scenario and provide students with background material on ground-water flow and transport principles. To make the role-play more realistic, the student must consider cost and time when making decisions about siting observation wells and wells for the pump-and-treat remediation system.

  4. Alternative fuel transit buses

    SciTech Connect

    Motta, R.; Norton, P.; Kelly, K.

    1996-10-01

    The National Renewable Energy Laboratory (NREL) is a U.S. Department of Energy (DOE) national laboratory; this project was funded by DOE. One of NREL`s missions is to objectively evaluate the performance, emissions, and operating costs of alternative fuel vehicles so fleet managers can make informed decisions when purchasing them. Alternative fuels have made greater inroads into the transit bus market than into any other. Each year, the American Public Transit Association (APTA) surveys its members on their inventory and buying plans. The latest APTA data show that about 4% of the 50,000 transit buses in its survey run on an alternative fuel. Furthermore, 1 in 5 of the new transit buses that members have on order are alternative fuel buses. This program was designed to comprehensively and objectively evaluate the alternative fuels in use in the industry.

  5. Free energy perturbation simulation on transition states and high-activity mutants of human butyrylcholinesterase for (-)-cocaine hydrolysis.

    PubMed

    Yang, Wenchao; Pan, Yongmei; Fang, Lei; Gao, Daquan; Zheng, Fang; Zhan, Chang-Guo

    2010-08-26

    A unified computational approach based on free energy perturbation (FEP) simulations of transition states has been employed to calculate the mutation-caused shifts of the free energy change from the free enzyme to the rate-determining transition state for (-)-cocaine hydrolysis catalyzed by the currently most promising series of mutants of human butyrylcholinesterase (BChE) that contain the A199S/A328W/Y332G mutations. The FEP simulations were followed by Michaelis-Menten kinetics analysis determining the individual k(cat) and K(M) values missing for the A199S/F227A/A328W/Y332G mutant in this series. The calculated mutation-caused shifts of the free energy change from the free enzyme to the rate-determining transition state are in good agreement with the experimental kinetic data, demonstrating that the unified computational approach based on the FEP simulations of the transition states may be valuable for future computational design of new BChE mutants with a further improved catalytic efficiency against (-)-cocaine.

  6. Energy landscape analysis of native folding of the prion protein yields the diffusion constant, transition path time, and rates.

    PubMed

    Yu, Hao; Gupta, Amar Nath; Liu, Xia; Neupane, Krishna; Brigley, Angela M; Sosova, Iveta; Woodside, Michael T

    2012-09-04

    Protein folding is described conceptually in terms of diffusion over a configurational free-energy landscape, typically reduced to a one-dimensional profile along a reaction coordinate. In principle, kinetic properties can be predicted directly from the landscape profile using Kramers theory for diffusive barrier crossing, including the folding rates and the transition time for crossing the barrier. Landscape theory has been widely applied to interpret the time scales for protein conformational dynamics, but protein folding rates and transition times have not been calculated directly from experimentally measured free-energy profiles. We characterized the energy landscape for native folding of the prion protein using force spectroscopy, measuring the change in extension of a single protein molecule at high resolution as it unfolded/refolded under tension. Key parameters describing the landscape profile were first recovered from the distributions of unfolding and refolding forces, allowing the diffusion constant for barrier crossing and the transition path time across the barrier to be calculated. The full landscape profile was then reconstructed from force-extension curves, revealing a double-well potential with an extended, partially unfolded transition state. The barrier height and position were consistent with the previous results. Finally, Kramers theory was used to predict the folding rates from the landscape profile, recovering the values observed experimentally both under tension and at zero force in ensemble experiments. These results demonstrate how advances in single-molecule theory and experiment are harnessing the power of landscape formalisms to describe quantitatively the mechanics of folding.

  7. The Effect of Disorder on the Free-Energy for the Random Walk Pinning Model: Smoothing of the Phase Transition and Low Temperature Asymptotics

    NASA Astrophysics Data System (ADS)

    Berger, Quentin; Lacoin, Hubert

    2011-01-01

    We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in (Berger and Toninelli (Electron. J. Probab., to appear) and Birkner and Sun (Ann. Inst. Henri Poincaré Probab. Stat. 46:414-441, 2010; arXiv:0912.1663). Given a fixed realization of a random walk Y on ℤ d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on ℤ d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time Lt(X,Y)=int0t {1}_{Xs=Ys} {d}s: the weight of the path under the new measure is exp ( βL t ( X, Y)), β∈ℝ. As β increases, the system exhibits a delocalization/localization transition: there is a critical value β c , such that if β> β c the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.

  8. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Transition radiation: scientific implications and applications in high-energy physics

    NASA Astrophysics Data System (ADS)

    Denisov, Sergei P.

    2007-04-01

    In their pioneering work on transition radiation, Ginzburg and Frank showed for the first time that a charge may radiate electromagnetic waves not only because of its accelerated motion but also because of time variation of the phase velocity of electromagnetic waves in the ambient medium. This result is of very general importance for physics. For example, a charge at rest can radiate in a nonstationary medium. Transition radiation is widely used in high-energy particle detectors, mainly for identification of ultrarelativistic electrons in accelerator and collider experiments.

  9. Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo

    DOE PAGES

    Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.; ...

    2015-10-09

    Ground-state diffusion Monte Carlo is used to investigate the binding energies and intercarrier radial probability distributions of excitons, trions, and biexcitons in a variety of two-dimensional transition-metal dichalcogenide materials. We compare these results to approximate variational calculations, as well as to analogous Monte Carlo calculations performed with simplified carrier interaction potentials. Our results highlight the successes and failures of approximate approaches as well as the physical features that determine the stability of small carrier complexes in monolayer transition-metal dichalcogenide materials. In conclusion, we discuss points of agreement and disagreement with recent experiments.

  10. Temperature-Dependent Energy Gap Shift and Thermally Activated Transition in Multilayer CdTe/ZnTe Quantum Dots.

    PubMed

    Man, Minh Tan; Lee, Hong Seok

    2015-10-01

    We investigated the influence of growth conditions on carrier dynamics in multilayer CdTe/ZnTe quantum dots (QDs) by monitoring the temperature dependence of the photoluminescence emission energy. The results were analyzed using the empirical Varshni and O'Donnell relations for temperature variation of the energy gap shift. Best fit values showed that the thermally activated transition between two different states occurs due to band low-temperature quenching with values separated by 5.0-6.5 meV. The addition of stack periods in multilayer CdTe/ZnTe QDs plays an important role in the energy gap shift, where the exciton binding energy is enhanced, and, conversely, the exciton-phonon coupling strength is suppressed with an average energy of 19.3-19.8 meV.

  11. Spectroscopic analysis of transition state energy levels - Bending-rotational spectrum and lifetime analysis of H3 quasibound states

    NASA Technical Reports Server (NTRS)

    Zhao, Meishan; Mladenovic, Mirjana; Truhlar, Donald G.; Schwenke, David W.; Sharafeddin, Omar

    1989-01-01

    Converged quantum mechanical calculations of scattering matrices and transition probabilities are reported for the reaction of H with H2 with total angular momentum 0, 1, and 4 as functions of total energy in the range 0.85-1.15 eV on an accurate potential energy surface. The resonance structure is illustrated with Argand diagrams. State-to-state reactive collision delay times and lifetimes are presented. For J = 0, 1, and 4, the lowest-energy H3 resonance is at total energies of 0.983, 0.985, and 1.01 eV, respectively, with lifetimes of about 16-17 fs. For J = 1 and 4 there is a higher-energy resonance at 1.10-1.11 eV. For J = 1 the lifetime is about 4 fs and for J = 4 it is about 1 fs.

  12. E1, M1, E2 transition energies and probabilities of W54+ ions

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-bin; Sun, Rui; Liu, Jia-xin; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chen-zhong

    2017-02-01

    A comprehensive theoretical study of the E1, M1, E2 transitions of a Ca-like tungsten ion is presented. Using the multi-configuration Dirac–Fock (MCDF) method with a restricted active space treatment, the wavelengths and probabilities of the M1 and E2 transitions between the multiplets of the ground state configuration ([Ne]3s23p63d2) and of the E1 transitions between [Ne]3s23p53d3 and [Ne]3s23p63d2 have been calculated. The results are in reasonable agreement with available experimental data. The present E1 and M1 calculations are compared with previous theoretical values. For E2 transitions, the importance of electron correlation from 3s and 3p orbitals is pointed out. Several strong E1 transitions are predicted, which have potential advantages for plasma diagnostics.

  13. Effect of monensin and essential oils on performance and energy metabolism of transition dairy cows.

    PubMed

    Drong, C; Meyer, U; von Soosten, D; Frahm, J; Rehage, J; Breves, G; Dänicke, S

    2016-06-01

    This work examined preventive effects of a dietary and a medical intervention measure on postpartum (p.p.) ketogenesis in dairy cows overconditioned in late pregnancy. Sixty German Holstein cows were allocated 6 weeks antepartum (a.p.) to three high body condition score (BCS) groups (BCS 3.95 ± 0.08) and one low BCS group (LC, BCS 2.77 ± 0.14). Concentrate proportion in diet a.p. was higher (60% vs. 20%) and increase in proportion p.p. from 30% up to 50% decelerated (3 vs. 2 weeks) in high BCS groups. High BCS cows received a monensin controlled-release capsule (CRC) (HC/MO), a blend of essential oils (HC/EO) or formed a control group (HC). Performance parameters and energy status were evaluated in three periods [day (d) -42 until calving, one until 14 days in milk (DIM), 15 until 56 DIM]. Feed efficiency was 65% and 53% higher in HC/MO than in LC (p < 0.001) and HC groups (p = 0.002) in the second period. Milk fat content was higher in HC/EO (5.60 vs. 4.82%; p = 0.012) and milk urea higher in HC/MO (135 mg/kg) than in LC cows (107 mg/kg; p < 0.001). Increased p.p. levels of non-esterified fatty acids in serum were found in HC (p = 0.003), HC/MO (p = 0.068) and HC/EO (p = 0.002) in comparison with LC cows. Prevalence of subclinical and clinical ketosis was 54% and 46%, respectively, in HC group. Monensin decreased the prevalence to 50% and 7% respectively. Ruminal fermentation pattern showed higher proportions of propionate (23.43 mol % and 17.75 mol %, respectively; p < 0.008) and lower acetate:propionate ratio (2.66 vs. 3.76; p < 0.001) in HC/MO than HC group. Results suggest that a monensin CRC improved energy status and feed efficiency of transition dairy cows while essential oils failed to elicit any effect.

  14. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  15. Impact of dietary plane of energy during the dry period on lipoprotein parameters in the transition period in dairy cattle.

    PubMed

    Newman, A; Mann, S; Nydam, D V; Overton, T R; Behling-Kelly, E

    2016-02-01

    The high energy demands of dairy cows during the transition period from late gestation into early lactation can place them at an increased risk for the development of metabolic and infectious diseases. Modification of the dry period diet has been investigated as a preventive means to minimize the detrimental aspects of metabolic shifts during the transition period. Studies investigating the impact of dry period diet on lipid parameters during the transition period have largely focused on markers of lipolysis and ketogenesis. Total cholesterol declines during the periparturient period and increases in early lactation. The impact total energy in the dry period diet has on the ability of the cow to maintain total serum cholesterol, as well as its natural high-density lipoprotein-rich status, during this metabolically challenging window is not clear. The impact of lipoproteins on inflammation and immune function may have a clinical impact on the cow's ability to ward off production-related diseases. In this study, we hypothesized that the provision of adequate, but not excessive, total metabolizable energy, would better allow the cow to maintain total cholesterol and a higher relative proportion of HDL throughout the transition period. Cows were allocated to one of three dry period dietary treatment groups following a randomized block design. Total serum triglycerides, cholesterol and lipoprotein fractions were measured on a weekly basis from approximately 7 weeks pre-calving to 6 weeks post-calving. The cows on the high energy diet maintained total serum cholesterol as compared to the cows provided a lower energy diet, but there was no significant increase in the LDL fraction of lipoproteins between diet treatment groups.

  16. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    DOEpatents

    Fritz, Gregory M.; Weihs, Timothy P.; Grzyb, Justin A.

    2016-07-05

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  17. Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same

    SciTech Connect

    Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

    2013-04-30

    An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

  18. Making Energy-Efficiency and Productivity Investments in Commercial Buildings: Choice of Investment Models

    SciTech Connect

    Jones, D.W.

    2002-05-16

    This study examines the decision to invest in buildings and the types of investment decision rules that may be employed to inform the ''go--no go'' decision. There is a range of decision making tools available to help in investment choices, which range from simple rules of thumb such as payback periods, to life-cycle analysis, to decision theoretic approaches. Payback period analysis tends to point toward lower first costs, whereas life-cycle analysis tends to minimize uncertainties over future events that can affect profitability. We conclude that investment models that integrate uncertainty offer better explanations for the behavior that is observed, i.e., people tend to delay investments in technologies that life-cycle analysis finds cost-effective, and these models also lead to an alternative set of policies targeted at reducing of managing uncertainty.

  19. Ab initio transition dipole moments and potential energy curves for the low-lying electronic states of CaH

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan

    2017-01-01

    Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.

  20. [Decisions around the end of life on Intensive Care: making the transition from curative to palliative treatment].

    PubMed

    van der Werf, T S; Zijlstra, J G; Ligtenberg, J J M; Tulleken, J E

    2005-04-02

    The decision to move from curative treatment to palliative care in the intensive-care situation is less related to morals and ethics than it is to the assessment of medical issues, professionalism, communication and orchestration. Treatment should be considered medically pointless if, in the view of the treating physicians, it does not offer realistic chance to return to a meaningful life. Continuing futile care can be seen as disrespectful, both to the patient, his partner and the family, as well as to the members of the ICU team. Intensivists are responsible for withholding or withdrawing life support to patients in whom further life support is considered futile and who are unable to express their wishes due to critical illness and sedation. The intensivist typically makes this type of decision after a period in which medical and other information has been collected and after intensive discussions with other medical professionals as well as the partner and family. This is based on the trust that is built up through their skill, attitude and behaviour and that is perpetuated in a continuing process of intensive communication. Conflicts should be prevented, or at least recognised early and discussed. Ifa conflict is ongoing then it should be tackled by planning a number of consecutive consultations.

  1. High energy product permanent magnet having improved intrinsic coercivity and method of making same

    DOEpatents

    Ramesh, Ramamoorthy; Thomas, Gareth

    1990-01-01

    A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

  2. NASA Earth Observations Informing Renewable Energy Management and Policy Decision Making

    NASA Technical Reports Server (NTRS)

    Eckman, Richard S.; Stackhouse, Paul W., Jr.

    2008-01-01

    The NASA Applied Sciences Program partners with domestic and international governmental organizations, universities, and private entities to improve their decisions and assessments. These improvements are enabled by using the knowledge generated from research resulting from spacecraft observations and model predictions conducted by NASA and providing these as inputs to the decision support and scenario assessment tools used by partner organizations. The Program is divided into eight societal benefit areas, aligned in general with the Global Earth Observation System of Systems (GEOSS) themes. The Climate Application of the Applied Sciences Program has as one of its focuses, efforts to provide for improved decisions and assessments in the areas of renewable energy technologies, energy efficiency, and climate change impacts. The goals of the Applied Sciences Program are aligned with national initiatives such as the U.S. Climate Change Science and Technology Programs and with those of international organizations including the Group on Earth Observations (GEO) and the Committee on Earth Observation Satellites (CEOS). Activities within the Program are funded principally through proposals submitted in response to annual solicitations and reviewed by peers.

  3. NREL's Water Power Software Makes a Splash; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    WEC-Sim is a DOE-funded software tool being jointly developed by NREL and SNL. WEC-Sim computationally models wave energy converters (WEC), devices that generate electricity using movement of water systems such as oceans, rivers, etc. There is great potential for WECs to generate electricity, but as of yet, the industry has yet to establish a commercially viable concept. Modeling, design, and simulations tools are essential to the successful development of WECs. Commercial WEC modeling software tools can't be modified by the user. In contrast, WEC-Sim is a free, open-source, and flexible enough to be modified to meet the rapidly evolving needs of the WEC industry. By modeling the power generation performance and dynamic loads of WEC designs, WEC-Sim can help support the development of new WEC devices by optimizing designs for cost of energy and competitiveness. By being easily accessible, WEC-Sim promises to help level the playing field in the WEC industry. Importantly, WEC-Sim is also excellent at its job! In 2014, WEC-Sim was used in conjunction with NREL’s FAST modeling software to win a hydrodynamic modeling competition. WEC-Sim and FAST performed very well at predicting the motion of a test device in comparison to other modeling tools. The most recent version of WEC-Sim (v1.1) was released in April 2015.

  4. Confining interparticle potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems

    NASA Astrophysics Data System (ADS)

    Kosevich, Yuriy A.; Savin, Alexander V.

    2016-10-01

    We provide molecular dynamics simulation of heat transport and energy diffusion in one-dimensional molecular chains with different interparticle pair potentials at zero and non-zero temperature. We model the thermal conductivity (TC) and energy diffusion (ED) in the chain of coupled rotators and in the Lennard-Jones chain either without or with the confining parabolic interparticle potential. The considered chains without the confining potential have normal TC and ED at non-zero temperature, while the corresponding chains with the confining potential are characterized by anomalous (diverging with the system length) TC and superdiffusion of energy. Similar effect is produced by the anharmonic quartic confining pair potential. We confirm in such a way that, surprisingly, the confining pair potential makes both heat transport and energy diffusion anomalous in one-dimensional phononic systems. We show that the normal TC is always accompanied by the normal ED in the thermalized anharmonic chains, while the superdiffusion of energy occurs in the thermalized chains with only anomalous heat transport.

  5. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  6. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  7. Free energy landscape and transition pathways from Watson-Crick to Hoogsteen base pairing in free duplex DNA.

    PubMed

    Yang, Changwon; Kim, Eunae; Pak, Youngshang

    2015-09-18

    Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson-Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine-thymine (A-T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.

  8. Blue and red shifts of interband transition energy in supported Au nanoclusters on SiO2 and HOPG investigated by reflection electron energy-loss spectroscopy.

    PubMed

    Borisyuk, P V; Troyan, V I; Pushkin, M A; Borman, V D; Tronin, V N

    2012-11-01

    Gold nanoclusters supported on SiO2 and HOPG are experimentally investigated by the reflection electron energy-loss spectroscopy. Two different trends in the size-dependence of the position of the energy-loss peak corresponding to the interband Au 5d --> 6s6p transition is observed: a blue shift for Au clusters on SiO2 and a red shift for Au clusters on HOPG. The different behaviors are qualitatively explained by the influence of the substrate on the spectrum of electronic states in Au nanoclusters.

  9. First-principles calculations of the twin boundary energies and adhesion energies of interfaces for cubic face-centered transition-metal nitrides and carbides

    NASA Astrophysics Data System (ADS)

    Li, Tengfei; Liu, Tianmo; Wei, Hongmei; Hussain, Shahid; Wang, Jinxing; Zeng, Wen; Peng, Xianghe; Wang, Zhongchang

    2015-11-01

    The twin boundary energies of TiN, ZrN, HfN, TiC, ZrC, HfC, VC, NbC and TaC and the adhesion energies of twin interfaces and interfaces of TiN/ZrN, VC/TiC and TiN/TiC were calculated using first-principles methods. A new route in the preparation of mechanically superhard films has been proposed by introducing twin into the multilayer of transition-metal nitrides and carbides.

  10. Making solar laws work: a study of state solar energy incentives

    SciTech Connect

    Roessner, J.D.

    1980-11-01

    The results of a research investigation of solar financial and research, demonstration, and development (RD and D) incentive programs in 18 states are summarized. The investigation focuses upon implementation - the organization and administrative processes required to convert a law into a viable program. Eleven financial and 12 RD and D programs were investigated. Results indicate that four conditions are common to successful implementation of both types of incentive programs: the opportunity to use solar energy as a heating source; characteristics of the agency selected to complement the law; involvement of outside groups in program implementation; and the specificity of guidance given to those responsible for implementation. Other conditions specific to the implementation of each type of program are discussed as well as the implications of these findings for state and federal policy makers.

  11. Making solar laws work. A study of state solar energy incentives

    SciTech Connect

    Roessner, J.D.

    1980-11-01

    The results of a research investigation of solar financial and research, demonstration, and development R D and D) incentive programs in 18 states are summarized. The investigation focuses upon implementation - the organization and administrative processes required to convert a law into a viable program. Eleven financial and 12 RD and D programs were investigated. Results indicate that four conditions are common to successful implementation of both types of incentive programs: the opportunity to use solar energy as a heating source; characteristics of the agency selected to complement the law; involvement of outside groups in program implementation; and the specificity of guidance given to those responsible for implementation. Other conditions specific to the implementation of each type of program are discussed as well as the implications of these findings for state and federal policy makers.

  12. X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions.

    PubMed

    Rudolph, J K; Bernitt, S; Epp, S W; Steinbrügge, R; Beilmann, C; Brown, G V; Eberle, S; Graf, A; Harman, Z; Hell, N; Leutenegger, M; Müller, A; Schlage, K; Wille, H-C; Yavaş, H; Ullrich, J; Crespo López-Urrutia, J R

    2013-09-06

    Photoabsorption by and fluorescence of the Kα transitions in highly charged iron ions are essential mechanisms for x-ray radiation transfer in astrophysical environments. We study photoabsorption due to the main Kα transitions in highly charged iron ions from heliumlike to fluorinelike (Fe24+ to Fe17+) using monochromatic x rays around 6.6 keV at the PETRA III synchrotron photon source. Natural linewidths were determined with hitherto unattained accuracy. The observed transitions are of particular interest for the understanding of photoexcited plasmas found in x-ray binary stars and active galactic nuclei.

  13. Identifying and tracing potential energy surfaces of electronic excitations with specific character via their transition origins: application to oxirane.

    PubMed

    Li, Jian-Hao; Zuehlsdorff, T J; Payne, M C; Hine, N D M

    2015-05-14

    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a wide range of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.

  14. Energy balance in the solar transition region. III - Helium emission in hydrostatic, constant-abundance models with diffusion

    NASA Technical Reports Server (NTRS)

    Fontenla, J. M.; Avrett, E. H.; Loeser, R.

    1993-01-01

    In our previous papers we described the mathematical formalism and the computed results for energy-balance hydrostatic models of the solar transition region. In this paper we discuss in some detail the limitations of the hydrostatic and one-dimensional assumptions used. Then we analyze the determination of helium emission when diffusion is included. We use transport coefficients estimated from kinetic theory to determine the helium departures from local ionization balance. We calculate the helium spectra for each of our models and evaluate the role of helium in the energy transport. Also, we investigate the effects of coronal illumination on the structure of the transition region and upper chromosphere, and show how coronal illumination affects various EUV lines and the He I 10830 A line. Comparing with both absolute intensities and detailed line profiles, we show that our models are consistent not only with the observed hydrogen spectra but also with the available helium spectra.

  15. Eliminating pre-lithiation step for making high energy density hybrid Li-ion capacitor

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng S.

    2017-03-01

    Pre-lithiation is an indispensable step for making hybrid lithium-ion capacitors (LICs), its high cost and process complexity have greatly hindered the commercialization of LICs. Aiming to eliminate the pre-lithiation step, we propose an in-situ lithiation concept by introducing a Li+ ion source material into the positive electrode to enable the lithiation to be completed in the formation cycle. In this paper we start with the fundamental principle of LICs to discuss the requirements for Li+ ion source materials and demonstrate this concept by employing Li-rich Li2CuO2 as the Li+ ion source material, natural graphite and activated carbon (AC) as the negative and positive electrode materials. It is shown that the LICs made such behave as a pure capacitor with ability to deliver the same level of specific capacity and specific capacitance, i.e., 56 mAh g-1 and 143 F g-1 vs. the mass of AC in the voltage range between 2.8 V and 4.2 V, as those obtained from the counterpart Li/AC half-cell. The present concept is also applicable to other LICs with the negative electrode required to be pre-lithiated.

  16. Relativistic configuration-interaction calculations of the n=3-3 transition energies in highly charged tungsten ions

    SciTech Connect

    Chen, M. H.; Cheng, K. T.

    2011-07-15

    A large-scale relativistic configuration-interaction calculation of the n=3-3 transition energies for Ne- to Ar-like tungsten is carried out. The calculation is based on the relativistic no-pair Hamiltonian and uses finite B-spline orbitals in a cavity as basis functions. Quantum electrodynamic and mass polarization corrections are also included. Results are compared with other theories and with experiment, and are generally found to be more reliable than previous theoretical predictions.

  17. Histomorphological features of resected bladder tumors: Do energy source makes any difference

    PubMed Central

    Saini, Ashish Kumar; Ahuja, Arvind; Seth, Amlesh; Dogra, Prem Nath; Kumar, Rajeev; Singh, Prabhjot; Gupta, Siddhartha Dutta

    2015-01-01

    Context: The recent advent of bipolar energy in bladder tumor resection has raised many questions regarding density of current and its effect on histopathology of the resected transurethral resection of bladder tumor (TURBT) chips. Aims: The aim of this study is to evaluate the histomorphological features in resected bladder tumors comparing bipolar versus conventional (monopolar) energy. Settings and Design: Inclusion criteria were patients with primary presentation of carcinoma urinary bladder undergoing TURBT. The patients with prior resections were excluded as these could jeopardize the results of cautery artifacts. Materials and Methods: From February 2010 to December 2011, 61 patients with primary carcinoma bladder and meeting our inclusion criteria were compared. Group 1 (n = 31) underwent bipolar-TURBT (B-TURBT) and Group 2 (n = 30) monopolar-TURBT (M-TURBT). Two pathologists, who were blinded to the form of electrocautery used, examined the resected tissue. The degree of cautery artifact in each specimen was recorded. The severity of the cautery artifact was graded as absent, mild, moderate, or severe. The mean age, tumor size, and resection time were recorded in both groups. Statistical Analysis Used: Data were analyzed using SPSS 16. Data were compared in between groups using paired t-test and Pearson's Chi-square test. The significance level was set at 0.05. Results: The mean age, tumor size, and resection time were similar in between the two groups. The pathologists had no obscurity in reaching a correct diagnosis in all cases. The cautery artifacts were graded as absent in 10 (32.2%) and 8 (26.67%), mild in 12 (38.7%) and 11 (36.67%), moderate in 5 (16.1%) and 7 (23.33%) and severe in 4 (12.9%) and 5 (16.66%) cases, respectively in Group 1 and 2. There was no statistically significant histomorphogical dissimilarity between specimens according to the type of cautery used. Conclusions: Bladder tissue obtained from B-TURBT is of equivalent

  18. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals

    NASA Astrophysics Data System (ADS)

    Wellendorff, Jess; Silbaugh, Trent L.; Garcia-Pintos, Delfina; Nørskov, Jens K.; Bligaard, Thomas; Studt, Felix; Campbell, Charles T.

    2015-10-01

    We present a literature collection of experimental adsorption energies over late transition metal surfaces for systems where we believe the energy measurements are particularly accurate, and the atomic-scale adsorption geometries are particularly well established. We propose that this could become useful for benchmarking theoretical methods for calculating adsorption processes. We compare the experimental results to six commonly used electron density functionals, including some (RPBE, BEEF-vdW) which were specifically developed to treat adsorption processes. The comparison shows that there is ample room for improvements in the theoretical descriptions.

  19. To make people save energy tell them what others do but also who they are: a preliminary study.

    PubMed

    Graffeo, Michele; Ritov, Ilana; Bonini, Nicolao; Hadjichristidis, Constantinos

    2015-01-01

    A way to make people save energy is by informing them that "comparable others" save more. We investigated whether, one can further improve this nudge by manipulating Who the "comparable others" are. We asked participants to imagine receiving feedback stating that their energy consumption exceeded that of "comparable others" by 10%. We varied Who the "comparable others" were in a 2 × 2 design: they were a household that was located either in the same neighborhood as themselves or in a different neighborhood, and its members were either identified (by names and a photograph) or unidentified. We also included two control conditions: one where no feedback was provided, and one where only statistical feedback was provided (feedback about an average household). We found that it matters Who the "comparable others" are. The most effective feedback was when the referent household was from the same neighborhood as the individual's and its members were not identified.

  20. Behavioral Perspectives on Home Energy Audits: The Role of Auditors, Labels, Reports, and Audit Tools on Homeowner Decision Making

    SciTech Connect

    Ingle, Aaron; Moezzi, Mithra; Lutzhenhiser, Loren; Hathaway, Zac; Lutzenhiser, Susan; Clock, Joe Van; Peters, Jane; Smith, Rebecca; Heslam, David; Diamond, Richard C.

    2012-07-31

    Our study focused on the perspective of homeowner decision-­making in response to home energy audits, combined with attention to the quality of the recommendations that homeowners receive, as well as the perspectives of some key industry actors on auditing and home energy labels. Unlike a program evaluation, the research was not designed to answer detailed questions about program effectiveness in terms of costs, savings, or process, nor was it designed to provide direct answers to questions of how to get people to do more audits or more retrofits. Rather it “steps back” toward a better understanding of more basic questions about what audits provide and what homeowners seem to want, for the case of one particular program that we expect has parallels to many others.