Sample records for making ignition work

  1. Evaporation And Ignition Of Dense Fuel Sprays

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth G.

    1988-01-01

    Simple theoretical model makes useful predictions of trends. Pair of reports presents theoretical model of evaporation and ignition of sprayed liquid fuel. Developed as part of research in combustion of oil and liquid fuels derived from coal, tar sand, and shale in furnace. Work eventually contributes to increase efficiency of combustion and decrease pollution generated by burning of such fuels.

  2. 3-2-1 Ignition*: Making Science Creative, Accessible and Fun

    ERIC Educational Resources Information Center

    Reichardt, Oliver

    2013-01-01

    For over 250 years, the RSA (Royal Society for the Encouragement of Arts, Manufactures and Commerce) has been committed to finding practical solutions to today's social challenges. The Society's way of working consists of providing a platform for critical debate and new ideas; working with partners to translate knowledge and progressive thinking…

  3. Experimental determination of self-heating and self-ignition risks associated with the dusts of agricultural materials commonly stored in silos.

    PubMed

    Ramírez, Alvaro; García-Torrent, Javier; Tascón, Alberto

    2010-03-15

    Agricultural products stored in silos, and their dusts, can undergo oxidation and self-heating, increasing the risk of self-ignition and therefore of fires and explosions. The aim of the present work was to determine the thermal susceptibility (as reflected by the Maciejasz index, the temperature of the emission of flammable volatile substances and the combined information provided by the apparent activation energy and the oxidation temperature) of icing sugar, bread-making flour, maize, wheat, barley, alfalfa, and soybean dusts, using experimental methods for the characterisation of different types of coal (no standardised procedure exists for characterising the thermal susceptibility of either coal or agricultural products). In addition, the thermal stability of wheat, i.e., the risk of self-ignition determined as a function of sample volume, ignition temperature and storage time, was determined using the methods outlined in standard EN 15188:2007. The advantages and drawbacks of the different methods used are discussed. (c) 2009 Elsevier B.V. All rights reserved.

  4. Deuteron Beam Driven Fast Ignition of a Pre-Compressed Inertial Confinement Fusion (ICF) Fuel Capsule

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoling; Miley, George; Flippo, Kirk; Hora, Heinrich; Gaillard, Sandrine; Offermann, Dustin

    2012-10-01

    We proposed to utilize a new ``Deuterium Cluster'' type structure for the laser interaction foil to generate an energetic deuteron beam as the fast igniter to ignite inertial confinement fusion fuel capsule. The benefit of deuteron beam driven fast ignition is that its deposition in the target fuel will not only provide heating but also fuse with fuel as they slow down in the target. The preliminary results from recent laser-deuteron acceleration experiment at LANL were encouraging. Also, in most recent calculations, we found that a 12.73% extra energy gain from deuteron beam-target fusion could be achieved when quasi-Maxwellian deuteron beam was assumed, and when a ρrb = 4.5 g/cm2 was considered, where ρ is the fuel density, and rb is the ion beam focusing radius on the target. These results provide some insight into the contribution of the extra heat produced by deuteron beam-target fusion to the hot spot ignition process. If the physics works as anticipated, this novel type of interaction foil can efficiently generate energetic deuterons during intense laser pulses. The massive yield of deuterons should turn out to be the most efficient way of igniting the DT fuel, making the dream of near-term commercialization of FI fusion more achievable.

  5. Making the Connection

    ERIC Educational Resources Information Center

    Boyles, Peggy

    2010-01-01

    Works of art, whether modern or classical, can provide students with vehicles for communication. Whether a painting ignites a student's imagination while listening to a story or transports him into a cultural or historical situation portrayed by the artist, using art in educators' thematic units can double their chances of having students…

  6. Using transportation accident databases to investigate ignition and explosion probabilities of flammable spills.

    PubMed

    Ronza, A; Vílchez, J A; Casal, J

    2007-07-19

    Risk assessment of hazardous material spill scenarios, and quantitative risk assessment in particular, make use of event trees to account for the possible outcomes of hazardous releases. Using event trees entails the definition of probabilities of occurrence for events such as spill ignition and blast formation. This study comprises an extensive analysis of ignition and explosion probability data proposed in previous work. Subsequently, the results of the survey of two vast US federal spill databases (HMIRS, by the Department of Transportation, and MINMOD, by the US Coast Guard) are reported and commented on. Some tens of thousands of records of hydrocarbon spills were analysed. The general pattern of statistical ignition and explosion probabilities as a function of the amount and the substance spilled is discussed. Equations are proposed based on statistical data that predict the ignition probability of hydrocarbon spills as a function of the amount and the substance spilled. Explosion probabilities are put forth as well. Two sets of probability data are proposed: it is suggested that figures deduced from HMIRS be used in land transportation risk assessment, and MINMOD results with maritime scenarios assessment. Results are discussed and compared with previous technical literature.

  7. Laser ignition - Spark plug development and application in reciprocating engines

    NASA Astrophysics Data System (ADS)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged solutions for positioning of the laser spark plug, i.e. placing it apart from or directly on the engine, are introduced. The path taken from the first solution proposed, to build a compact laser suitable for ignition, to the practical realization of a laser spark plug is described. Results obtained by ignition of automobile test engines, with laser devices that resemble classical spark plugs, are specifically discussed. It is emphasized that technological advances have brought this method of laser ignition close to the application and installation in automobiles powered by gasoline engines. Achievements made in the laser ignition of natural gas engines are outlined, as well as the utilization of laser ignition in other applications. Scientific and technical advances have allowed realization of laser devices with multiple (up to four) beam outputs, but many other important aspects (such as integration, thermal endurance or vibration strength) are still to be solved. Recent results of multi-beam ignition of a single-cylinder engine in a test bench set-up are encouraging and have led to increased research interest in this direction. A fundamental understanding of the processes involved in laser ignition is crucial in order to exploit the technology's full potential. Therefore, several measurement techniques, primarily optical types, used to characterize the laser ignition process are reviewed in this work.

  8. Increase in the thermodynamic efficiency of the working process of spark-ignited engines on natural gas with the addition of hydrogen

    NASA Astrophysics Data System (ADS)

    Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas

    2018-02-01

    The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.

  9. The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor

    NASA Astrophysics Data System (ADS)

    Bao, Heng; Zhou, Jin; Pan, Yu

    2017-03-01

    The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.

  10. Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory

    DOE PAGES

    Winterberg, F.

    2009-01-01

    The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fissionmore » as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.« less

  11. Gain curves and hydrodynamic modeling for shock ignition

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Ribeyre, X.; Schurtz, G.

    2010-05-01

    Ignition of a precompressed thermonuclear fuel by means of a converging shock is now considered as a credible scheme to obtain high gains for inertial fusion energy. This work aims at modeling the successive stages of the fuel time history, from compression to final thermonuclear combustion, in order to provide the gain curves of shock ignition (SI). The leading physical mechanism at work in SI is pressure amplification, at first by spherical convergence, and by collision with the shock reflected at center during the stagnation process. These two effects are analyzed, and ignition conditions are provided as functions of the shock pressure and implosion velocity. Ignition conditions are obtained from a non-isobaric fuel assembly, for which we present a gain model. The corresponding gain curves exhibit a significantly lower ignition threshold and higher target gains than conventional central ignition.

  12. Mapping Wildfire Ignition Probability Using Sentinel 2 and LiDAR (Jerte Valley, Cáceres, Spain)

    PubMed Central

    Sánchez Sánchez, Yolanda; Mateos Picado, Marina

    2018-01-01

    Wildfire is a major threat to the environment, and this threat is aggravated by different climatic and socioeconomic factors. The availability of detailed, reliable mapping and periodic and immediate updates makes wildfire prevention and extinction work more effective. An analyst protocol has been generated that allows the precise updating of high-resolution thematic maps. For this protocol, images obtained through the Sentinel 2A satellite, with a return time of five days, have been merged with Light Detection and Ranging (LiDAR) data with a density of 0.5 points/m2 in order to obtain vegetation mapping with an accuracy of 88% (kappa = 0.86), which is then extrapolated to fuel model mapping through a decision tree. This process, which is fast and reliable, serves as a cartographic base for the later calculation of ignition-probability mapping. The generated cartography is a fundamental tool to be used in the decision making involved in the planning of preventive silvicultural treatments, extinguishing media distribution, infrastructure construction, etc. PMID:29522460

  13. Mapping Wildfire Ignition Probability Using Sentinel 2 and LiDAR (Jerte Valley, Cáceres, Spain).

    PubMed

    Sánchez Sánchez, Yolanda; Martínez-Graña, Antonio; Santos Francés, Fernando; Mateos Picado, Marina

    2018-03-09

    Wildfire is a major threat to the environment, and this threat is aggravated by different climatic and socioeconomic factors. The availability of detailed, reliable mapping and periodic and immediate updates makes wildfire prevention and extinction work more effective. An analyst protocol has been generated that allows the precise updating of high-resolution thematic maps. For this protocol, images obtained through the Sentinel 2A satellite, with a return time of five days, have been merged with Light Detection and Ranging (LiDAR) data with a density of 0.5 points/m² in order to obtain vegetation mapping with an accuracy of 88% (kappa = 0.86), which is then extrapolated to fuel model mapping through a decision tree. This process, which is fast and reliable, serves as a cartographic base for the later calculation of ignition-probability mapping. The generated cartography is a fundamental tool to be used in the decision making involved in the planning of preventive silvicultural treatments, extinguishing media distribution, infrastructure construction, etc.

  14. Auto-ignition of lubricating oil working at high pressures in a compressor for an air conditioner.

    PubMed

    Kim, Chul Jin; Choi, Hyo Hyun; Sohn, Chae Hoon

    2011-01-15

    Auto-ignition of lubricating oil working in a compressor for an air conditioner is studied experimentally. The adopted lubricating oil is an unknown mixture with multi-components and known to have flash point temperature of 170 °C. First, its auto-ignition temperature is measured 365 °C at atmospheric pressure. The lubricating oil works under high-pressure condition up to 30 atm and it is heated and cooled down repeatedly. Accordingly, auto-ignition temperatures or flammable limits of lubricating oil are required at high pressures with respect to fire safety. Because there is not a standard test method for the purpose, a new ignition-test method is proposed in this study and thereby, auto-ignition temperatures are measured over the pressure range below 30 atm. The measured temperatures range from 215 °C to 255 °C and they strongly depend on pressure of gas mixture consisting of oil vapor, nitrogen, and oxygen. They are close to flash point temperature and the lubricating oil can be hazardous when it works for high-pressure operating condition and abundant air flows into a compressor. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Ignition Delay of Combustible Materials in Normoxic Equivalent Environments

    NASA Technical Reports Server (NTRS)

    McAllister, Sara; Fernandez-Pello, Carlos; Ruff, Gary; Urban, David

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a combustible material to ignite after it has been exposed to an external heat flux. Previous work in the Forced Ignition and Spread Test (FIST) apparatus has shown that the ignition delay in the currently proposed space exploration atmosphere (approximately 58.6 kPa and32% oxygen concentration) is reduced by 27% compared to the standard atmosphere used in the Space Shuttle and Space Station. In order to determine whether there is a safer environment in terms of material flammability, a series of piloted ignition delay tests using polymethylmethacrylate (PMMA) was conducted in the FIST apparatus to extend the work over a range of possible exploration atmospheres. The exploration atmospheres considered were the normoxic equivalents, i.e. reduced pressure conditions with a constant partial pressure of oxygen. The ignition delay time was seen to decrease as the pressure was reduced along the normoxic curve. The minimum ignition delay observed in the normoxic equivalent environments was nearly 30% lower than in standard atmospheric conditions. The ignition delay in the proposed exploration atmosphere is only slightly larger than this minimum. Interms of material flammability, normoxic environments with a higher pressure relative to the proposed pressure would be desired.

  16. Impact Ignition of Low Density Mechanically Activated and Multilayer Foil Ni/Al

    NASA Astrophysics Data System (ADS)

    Beason, Matthew; Mason, B.; Son, Steven; Groven, Lori

    2013-06-01

    Mechanical activation (MA) via milling of reactive materials provides a means of lowering the ignition threshold of shock initiated reactions. This treatment provides a finely mixed microstructure with wide variation in the resulting scales of the intraparticle microstructure that makes model validation difficult. In this work we consider nanofoils produced through vapor deposition with well defined periodicity and a similar degree of fine scale mixing. This allows experiments that may be easier to compare with computational models. To achieve this, both equimolar Ni/Al powder that has undergone MA using high energy ball milling and nanofoils milled into a powder using low energy ball milling were used. The Asay Shear impact experiment was conducted on both MA Ni/Al and Ni/Al nanofoil-based powders at low densities (<60%) to examine their impact response and reaction behavior. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to verify the microstructure of the materials. The materials' mechanical properties were evaluated using nano-indentation. Onset temperatures were evaluated using differential thermal analysis/differential scanning calorimetry. Impact ignition thresholds, burning rates, temperature field, and ignition delays are reported. Funding from the Defense Threat Reduction Agency (DTRA) Grant Number HDTRA1-10-1-0119. Counter-WMD basic research program, Dr. Suhithi M. Peiris, program director is gratefully acknowledged.

  17. The Application for a Prediction of the Coal Spontaneous Ignition - Predisam

    NASA Astrophysics Data System (ADS)

    Moni, Vlastimil; Klouda, Petr; Blata, Jan; Helebrant, František

    2017-06-01

    The article follows the research of the project number TA01020351 called "The research of possibilities when predicting steam origin and consequent spontaneous ignition of brown coal fuels" which was researched with the support of the Technological Agency in the Czech Republic in 2011-2014 in the connection with a realized technical research. Therefore, it gives a summary information about the evaluation of the risk degree for the origin of spontaneous ignitions of the brown coal. The presented way of evaluation is based on a numeric expression of a value for MHU criteria - the point load of particular indicators is added together with other results gained from this research project. Then, more information is taken from companies running the dumps of brown coal products - both for suppliers (mining companies) and big consumers (power engineering). The complex knowledge about prediction of the origin of the spontaneous ignition enables to make an early response to eliminate a threat of mining fire in open pit mines or on the dumps of coal products. Consequently, it reduces the risk of fire and breakdowns of transportation means DPD, heavy machines and preparation plants. The working injuries are reduced as well - burns by coal in fire or inhalation of gas products from imperfect combustion.

  18. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis.

    PubMed

    Lopatka, Martin; Sigman, Michael E; Sjerps, Marjan J; Williams, Mary R; Vivó-Truyols, Gabriel

    2015-07-01

    Forensic chemical analysis of fire debris addresses the question of whether ignitable liquid residue is present in a sample and, if so, what type. Evidence evaluation regarding this question is complicated by interference from pyrolysis products of the substrate materials present in a fire. A method is developed to derive a set of class-conditional features for the evaluation of such complex samples. The use of a forensic reference collection allows characterization of the variation in complex mixtures of substrate materials and ignitable liquids even when the dominant feature is not specific to an ignitable liquid. Making use of a novel method for data imputation under complex mixing conditions, a distribution is modeled for the variation between pairs of samples containing similar ignitable liquid residues. Examining the covariance of variables within the different classes allows different weights to be placed on features more important in discerning the presence of a particular ignitable liquid residue. Performance of the method is evaluated using a database of total ion spectrum (TIS) measurements of ignitable liquid and fire debris samples. These measurements include 119 nominal masses measured by GC-MS and averaged across a chromatographic profile. Ignitable liquids are labeled using the American Society for Testing and Materials (ASTM) E1618 standard class definitions. Statistical analysis is performed in the class-conditional feature space wherein new forensic traces are represented based on their likeness to known samples contained in a forensic reference collection. The demonstrated method uses forensic reference data as the basis of probabilistic statements concerning the likelihood of the obtained analytical results given the presence of ignitable liquid residue of each of the ASTM classes (including a substrate only class). When prior probabilities of these classes can be assumed, these likelihoods can be connected to class probabilities. In order to compare the performance of this method to previous work, a uniform prior was assumed, resulting in an 81% accuracy for an independent test of 129 real burn samples. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  20. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries.

    PubMed

    Ramírez, Alvaro; García-Torrent, Javier; Aguado, Pedro J

    2009-08-30

    There are always risks associated with silos when the stored material has been characterized as prone to self-ignition or explosion. Further research focused on the characterization of agricultural materials stored in silos is needed due to the lack of data found in the literature. The aim of this study was to determine the ignitability and explosive parameters of several agricultural products commonly stored in silos in order to assess the risk of ignition and dust explosion. Minimum Ignition Temperature, with dust forming a cloud and deposited in a layer, Lower Explosive Limit, Minimum Ignition Energy, Maximum Explosion Pressure and Maximum Explosion Pressure Rise were determined for seven agricultural materials: icing sugar, maize, wheat and barley grain dust, alfalfa, bread-making wheat and soybean dust. Following characterization, these were found to be prone to producing self-ignition when stored in silos under certain conditions.

  1. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion stages of the metal specimen. This paper summarizes the results obtained to date from experiments conducted under normal and high-gravity conditions.

  2. Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept (LIFE) by the Lawrence Livermore National Laboratory.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2009-05-01

    The recently proposed Super Marx pure deuterium micro-detonation ignition concept [1] is compared to the Lawrence Livermore National Ignition Facility (NIF) laser DT fusion-fission hybrid concept (LIFE) [2]. A typical example of the LIFE concept is a fusion gain 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation gains of the same magnitude can in theory be reached. If the theoretical prediction can be supported by more elaborate calculations, the Super Marx approach is likely to make lasers obsolete as a means for the ignition of thermonuclear micro-explosions. [1] ``Ignition of a Deuterium Micro-Detonation with a Gigavolt Super Marx Generator,'' Winterberg, F., Journal of Fusion Energy, Springer, 2008. http://www.springerlink.com/content/r2j046177j331241/fulltext.pdf. [2] ``LIFE: Clean Energy from Nuclear Waste,'' https://lasers.llnl.gov/missions/energy&_slash;for&_slash;the&_slash;future/life/

  3. Flame ignition studies of conventional and alternative jet fuels and surrogate components

    NASA Astrophysics Data System (ADS)

    Liu, Ning

    Practical jet fuels are widely used in air-breathing propulsion, but the chemical mechanisms that control their combustion are not yet understood. Thousands of components are contained in conventional and alternative jet fuels, making thus any effort to model their combustion behavior a daunting task. That has been the motivation behind the development of surrogate fuels that contain typically a small number of neat components, whose physical properties and combustion behavior mimic those of the real jet fuel, and whose kinetics could be modeled with increased degree of confidence. Towards that end, a large number of experimental data are required both for the real fuels and the attendant surrogate components that could be used to develop and validate detailed kinetic models. Those kinetic models could be used then upon reduction to model a combustor and eventually optimize its performance. Among all flame phenomena, ignition is rather sensitive to the oxidative and pyrolytic propensity of the fuel as well as to its diffusivity. The counterflow configuration is ideal in probing both the fuel reactivity and diffusivity aspects of the ignition process and it was used in the present work to determine the ignition temperatures of premixed and non-premixed flames of a variety of fuels relevant to air-breathing propulsion. The experiments were performed at atmospheric pressure, elevated unburned fuel mixture temperatures, and various strain rates that were measured locally. Several recent kinetic models were used in direct numerical simulations of the experiments and the computed results were tested against the experimental data. Furthermore, through sensitivity, reaction path, and structure analyses of the computed flames, insight was provided into the dominant mechanisms that control ignition. It was found that ignition is primarily sensitive to fuel diffusion and secondarily sensitive to chemical kinetics and intermediate species diffusivities under the low fuel concentrations. As for the detailed high temperature oxidation chemistry, ignition of normal, branched, and cyclic alkane flames were found to be sensitive largely to H2/CO and C1-C4 small hydrocarbon chemistry, while for branched alkanes fuel-related reactions do have accountable effect on ignition due to the low rate of initial fuel decomposition that limits the overall reactions preceding ignition. Analyses of the computed flame structures revealed that the concentrations of ignition-promoting radicals such as H, HCO, C2H3, and OH, and ignition-inhibiting radicals such as C3H6, aC3H5, and CH3 are key to the occurrence of ignition. Finally, the ignition characteristics of conventional and alternative jet fuels were studied and were to correlate with the chemical classifications and diffusivities of the neat species that are present in the practical fuel.

  4. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith

    1992-01-01

    The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.

  5. Numerical simulations of mechanical and ignition-deflagration responses for PBXs under low-to-medium-level velocity impact loading.

    PubMed

    Yang, Kun; Wu, Yanqing; Huang, Fenglei; Li, Ming

    2017-09-05

    An effective computational model is required to accurately predict the dynamic responses in accidental initiations of explosives. The present work uses a series of two-dimensional mechanical-chemical simulations performed via a hydrodynamic-code, DREXH-2D, to efficiently describe the mechanical and ignition-deflagration responses of cased cylindrical polymer-bonded explosives (PBXs) undergoing a low-to-medium-level impact (70-350m/s) in longitudinal direction. The ignition response was predicted based on an ignition criterion of effective plastic work. Slow burning and its growth to deflagration were described through a pressure-dependent reaction rate equation. The extreme value of effective plastic work was found to be useful to determine the ignition threshold velocity for PBXs. For low-level velocity impact, the incident stress wave reflection from lateral surfaces contributed to the formation of ignition regions. After the ignition, the deflagration was induced in the medium-level impact, and its violence was related to the shock strength. However, the low-strength stress wave only induced reaction at local regions, and sequent burning was no longer sensitive to the strength of incident wave. The predicted pressure and temperature results of PBXs were consistent with the medium-level impact tests performed by China Academy of Engineering Physics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Critical mass flux for flaming ignition of wood as a function of external radiant heat flux and moisture content

    Treesearch

    S. McAllister; M. Finney; J. Cohen

    2011-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  7. Critical mass flux for flaming ignition of dead, dry wood as a function of exernal radiant heat flux

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion - that a sufficient amount of pyrolysis gases must be...

  8. Modeling of Transient Flow Mixing of Streams Injected into a Mixing Chamber

    NASA Technical Reports Server (NTRS)

    Voytovych, Dmytro M.; Merkle, Charles L.; Lucht, Robert P.; Hulka, James R.; Jones, Gregg W.

    2006-01-01

    Ignition is recognized as one the critical drivers in the reliability of multiple-start rocket engines. Residual combustion products from previous engine operation can condense on valves and related structures thereby creating difficulties for subsequent starting procedures. Alternative ignition methods that require fewer valves can mitigate the valve reliability problem, but require improved understanding of the spatial and temporal propellant distribution in the pre-ignition chamber. Current design tools based mainly on one-dimensional analysis and empirical models cannot predict local details of the injection and ignition processes. The goal of this work is to evaluate the capability of the modern computational fluid dynamics (CFD) tools in predicting the transient flow mixing in pre-ignition environment by comparing the results with the experimental data. This study is a part of a program to improve analytical methods and methodologies to analyze reliability and durability of combustion devices. In the present paper we describe a series of detailed computational simulations of the unsteady mixing events as the cold propellants are first introduced into the chamber as a first step in providing this necessary environmental description. The present computational modeling represents a complement to parallel experimental simulations' and includes comparisons with experimental results from that effort. A large number of rocket engine ignition studies has been previously reported. Here we limit our discussion to the work discussed in Refs. 2, 3 and 4 which is both similar to and different from the present approach. The similarities arise from the fact that both efforts involve detailed experimental/computational simulations of the ignition problem. The differences arise from the underlying philosophy of the two endeavors. The approach in Refs. 2 to 4 is a classical ignition study in which the focus is on the response of a propellant mixture to an ignition source, with emphasis on the level of energy needed for ignition and the ensuing flame propagation issues. Our focus in the present paper is on identifying the unsteady mixing processes that provide the propellant mixture in which the ignition source is to be placed. In particular, we wish to characterize the spatial and temporal mixture distribution with a view toward identifying preferred spatial and temporal locations for the ignition source. As such, the present work is limited to cold flow (pre-ignition) conditions

  9. Deriving forest fire ignition risk with biogeochemical process modelling.

    PubMed

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  10. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  11. 30 CFR 77.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., which is ignited by electric current, or the spark of a fuse. Used for detonating explosives. (h) Blasting circuit means electric circuits used to fire electric detonators or to ignite an igniter cord by... where miners are normally required to work or travel; (b) American Table of Distances means the current...

  12. 30 CFR 77.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., which is ignited by electric current, or the spark of a fuse. Used for detonating explosives. (h) Blasting circuit means electric circuits used to fire electric detonators or to ignite an igniter cord by... where miners are normally required to work or travel; (b) American Table of Distances means the current...

  13. 30 CFR 77.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., which is ignited by electric current, or the spark of a fuse. Used for detonating explosives. (h) Blasting circuit means electric circuits used to fire electric detonators or to ignite an igniter cord by... where miners are normally required to work or travel; (b) American Table of Distances means the current...

  14. Response Mechanism: Blast/Fire Interactions.

    DTIC Science & Technology

    1983-11-01

    A WORK UNIT NUMBERS University of Notre Dame Notre Dame, IN L FEMA WU No. 2564H ItI. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Fedqral...Fires 9 Class A Fires 10 Control by Physics or Chemistry? 11 Conments 14 EXTINCTION AND IGNITION 15 Pool Fire 15 Analysis 17 Charring Solid Fire 21...post-explosion time, although its magnitude may make the efforts to control appear futile in the wake of a nuclear attack. There is considerable

  15. Definition of Ignition in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Christopherson, A. R.; Betti, R.

    2017-10-01

    Defining ignition in inertial confinement fusion (ICF) is an unresolved problem. In ICF, a distinction must be made between the ignition of the hot spot and the propagation of the burn wave in the surrounding dense fuel. Burn propagation requires that the hot spot is robustly ignited and the dense shell exhibits enough areal density. Since most of the energy gain comes from burning the dense shell, in a scale of increasing yields, hot-spot ignition comes before high gains. Identifying this transition from hot-spot ignition to burn-wave propagation is key to defining ignition in general terms applicable to all fusion approaches that use solid DT fuel. Ad hoc definitions such as gain = 1 or doubling the temperature are not generally valid. In this work, we show that it is possible to identify the onset of ignition through a unique value of the yield amplification defined as the ratio of the fusion yield including alpha-particle deposition to the fusion yield without alphas. Since the yield amplification is a function of the fractional alpha energy fα =EαEα 2Ehs 2Ehs (a measurable quantity), it appears possible not only to define ignition but also to measure the onset of ignition by the experimental inference of the fractional alpha energy and yield amplification. This material is based upon work supported by the Department of Energy Office of Fusion Energy Services under Award Number DE-FC02-04ER54789 and National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Ignition of expandable polystyrene foam by a hot particle: an experimental and numerical study.

    PubMed

    Wang, Supan; Chen, Haixiang; Liu, Naian

    2015-01-01

    Many serious fires have occurred in recent years due to the ignition of external building insulation materials by hot metallic particles. This work studied the ignition of expandable polystyrene foam by hot metallic particles experimentally and numerically. In each experiment, a spherical steel particle was heated to a high temperature (within 1173-1373K) and then dropped to the surface of an expandable polystyrene foam block. The particles used in experiments ranged from 3mm to 7 mm in radius. The observed results for ignition were categorized into two types: "flaming ignition" and "no ignition", and the flaming ignition limit was determined by statistical analysis. According to the experimental observations, a numerical model was proposed, taking into account the reactant consumption and volatiles convection of expandable polystyrene decomposition in air. Three regimes, no ignition, unstable ignition and stable ignition, were identified, and two critical particle temperatures for separating the three regimes were determined. Comparison with the experimental data shows that the model can predict the range of critical ignition temperatures reasonably well. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Experimental and Numerical Study on Effect of Sample Orientation on Auto-Ignition and Piloted Ignition of Poly(methyl methacrylate)

    PubMed Central

    Peng, Fei; Zhou, Xiao-Dong; Zhao, Kun; Wu, Zhi-Bo; Yang, Li-Zhong

    2015-01-01

    In this work, the effect of seven different sample orientations from 0° to 90° on pilot and non-pilot ignition of PMMA (poly(methyl methacrylate)) exposed to radiation has been studied with experimental and numerical methods. Some new and significant conclusions are drawn from the study, including a U-shape curve of ignition time and critical mass flux as sample angle increases for pilot ignition conditions. However, in auto-ignition, the ignition time and critical mass flux increases with sample angle α. Furthermore, a computational fluid dynamic model have been built based on the Fire Dynamics Simulator (FDS6) code to investigate the mechanisms controlling the dependence on sample orientation of the ignition of PMMA under external radiant heating. The results of theoretical analysis and modeling results indicate the decrease of total incident heat flux at sample surface plays the dominant role during the ignition processes of auto-ignition, but the volatiles gas flow has greater influence for piloted ignition conditions. PMID:28793421

  18. A k-omega-multivariate beta PDF for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Alexopoulos, G. A.; Baurle, R. A.; Hassan, H. A.

    1992-01-01

    In an attempt to study the interaction between combustion and turbulence in supersonic flows, an assumed PDF has been employed. This makes it possible to calculate the time average of the chemical source terms that appear in the species conservation equations. In order to determine the averages indicated in an equation, two transport equations, one for the temperature (enthalpy) variance and one for Q, are required. Model equations are formulated for such quantities. The turbulent time scale controls the evolution. An algebraic model similar to that used by Eklund et al was used in an attempt to predict the recent measurements of Cheng et al. Predictions were satisfactory before ignition but were less satisfactory after ignition. One of the reasons for this behavior is the inadequacy of the algebraic turbulence model employed. Because of this, the objective of this work is to develop a k-omega model to remedy the situation.

  19. Laboratory testing of GNB switch 12 volt SLI (starting, lighting and ignition) battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.E.

    1990-03-01

    The purpose of this report is to describe the testing performed on the GNB Switch flooded lead SLI battery in the INEL Electric Vehicle Battery Laboratory, to present the results and conclusions of this testing, and to make appropriate recommendations. GNB Inc. is a Pacific Dunlop Company. The term SWITCH'' comes from the fact that this product consists of two batteries in one package which can be connected in parallel by a switch for higher cranking energy or reserve capacity. The smaller second battery is float charged through a diode. GNB advertising describes the SWITCH'' as The Battery With Amore » Spare''. The Switch, a BCI Group 24 SLI (Starting, Lighting and Ignition) battery, is manufactured in Georgia for sale throughout the US. The initial design work on the Switch was done in Australia under the Pulsar name by Dunlop. 11 figs., 3 tabs.« less

  20. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    NASA Astrophysics Data System (ADS)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  1. Microwave-induced combustion: Thermal and morphological aspects for understanding the mechanism of ignition process for analytical applications.

    PubMed

    Pedrotti, Matheus F; Pereira, Leticia S F; Bizzi, Cezar A; Paniz, Jose N G; Barin, Juliano S; Flores, Erico M M

    2017-11-01

    In the present work, for the first time a systematic study was performed using an infrared camera and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectrometry (EDS) to evaluate the mechanisms involved in microwave-induced combustion method, which has been extensively used for sample preparation. Cellulose and glass fiber discs, wetted with the igniter solution (6molL -1 NH 4 NO 3 ), were evaluated under microwave field in a monomode system. The temperature of the discs surface was recorded during microwave irradiation and the effect of NH 4 NO 3 concentration and irradiation time on cellulose oxidation was evaluated. The morphology of the discs surface was characterized by SEM before and after irradiation in an inert atmosphere. According to the results, the surface temperature of the discs increased near to 100°C and remained in this temperature for few seconds while water evaporate. After that, temperature increased over 200°C due to the thermal decomposition of NH 4 NO 3 salt, releasing a large amount of energy that accelerates cellulose oxidation. The higher the igniter concentration, the shorter was the microwave irradiation time for cellulose oxidation. The SEM images revealed that cellulose disc was more porous after microwave irradiation, enhancing oxygen diffusion within the paper and making easier its ignition. The EDS spectrum of cellulose and glass fiber discs showed that signal intensity for nitrogen decreased after microwave irradiation, showing that NH 4 NO 3 was consumed during this process. Therefore, it was demonstrated that the ignition process is the result of synergic interaction of NH 4 NO 3 thermal decomposition and organic matter oxidation (cellulose) releasing heat and feeding the chain reaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ignition improvement by injector arrangement in a multi-fuel combustor for micro gas turbine

    NASA Astrophysics Data System (ADS)

    Antoshkiv, O.; Poojitganont, T.; Jeansirisomboon, S.; Berg, H. P.

    2018-01-01

    The novel combustor design also has an impact on the ignitor arrangement. The conventional ignitor system cannot guarantee optimal ignition performance in the usual radial position. The difficult ignitability of gaseous fuels was the main challenge for the ignitor system improvement. One way to improve the ignition performance significantly is a torch ignitor system in which the gaseous fuel is directly mixed with a large amount of the combustor air. To reach this goal, the ignition process was investigated in detail. The micro gas turbine (MGT) ignition was optimised considering three main procedures: torch ignitor operation, burner ignition and flame propagation between the neighbour injectors. A successful final result of the chain of ignition procedures depends on multiple aspects of the combustor design. Performed development work shows an important step towards designing modern high-efficiency low-emission combustors.

  3. Critical mass flux for flaming ignition of dead, dry wood as a function of external radiant heat flux and oxidizer flow velocity

    Treesearch

    Sara McAllister; Mark Finney; Jack Cohen

    2010-01-01

    Extreme weather often contributes to crown fires, where the fire spreads from one tree crown to the next as a series of piloted ignitions. An important aspect in predicting crown fires is understanding the ignition of fuel particles. The ignition criterion considered in this work is the critical mass flux criterion – that a sufficient amount of pyrolysis gases must be...

  4. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Kaushik; Werth, David; Gupta, Narendra

    2013-01-01

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known asmore » the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.« less

  5. Laser-induced breakdown ignition in a gas fed two-stroke engine

    NASA Astrophysics Data System (ADS)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  6. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  7. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  8. Breath Alcohol Ignition Interlock Devices : Policy and Implementing Implications [Mobile .MP4 (480x320/29.97fps/13.9MB)

    DOT National Transportation Integrated Search

    2011-01-01

    The goal of this project is to perform a systematic review of breath alcohol ignition interlock devices (BAIID or IID) to understand how other states have integrated such systems into administrative and judicial practice and to make recommendations f...

  9. Breath Alcohol Ignition Interlock Devices : Policy and Implementing Implications [SD .MP4 (640x424/29.97fps/22.6MB)

    DOT National Transportation Integrated Search

    2011-01-01

    The goal of this project is to perform a systematic review of breath alcohol ignition interlock devices (BAIID or IID) to understand how other states have integrated such systems into administrative and judicial practice and to make recommendations f...

  10. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  11. Ignition of Cellulosic Paper at Low Radiant Fluxes

    NASA Technical Reports Server (NTRS)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  12. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Technical Reports Server (NTRS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    1989-01-01

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  13. Ignition of PTFE-lined flexible hoses by rapid pressurization with oxygen

    NASA Astrophysics Data System (ADS)

    Janoff, Dwight; Bamford, Larry J.; Newton, Barry E.; Bryan, Coleman J.

    A high-volume pneumatic-impact system has been used to test PTFE-lined stainless steel braided hoses, in order to characterize the roles played in the mechanism of oxygen-induced ignition by impact pressure, pressurization rate, and upstream and downstream volumes of the hose. Ignitions are noted to have occurred at impact pressures well below the working pressure of the hoses, as well as at pressurization rates easily obtainable through manual operation of valves. The use of stainless steel hardlines downstream of the hose prevented ignitions at all pressures and pressurization rates; internal observations have shown evidence of shock ionization in the oxygen prior to ignition.

  14. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  15. Ignition delay of combustible materials in normoxic equivalent environments

    Treesearch

    Sara McAllister; Carlos Fernandez-Pello; Gary Ruff; David Urban

    2009-01-01

    Material flammability is an important factor in determining the pressure and composition (fraction of oxygen and nitrogen) of the atmosphere in the habitable volume of exploration vehicles and habitats. The method chosen in this work to quantify the flammability of a material is by its ease of ignition. The ignition delay time was defined as the time it takes a...

  16. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    EPA Science Inventory

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  17. Numerical Simulation of Ground Coupling of Low Yield Nuclear Detonation

    DTIC Science & Technology

    2010-06-01

    Without nuclear testing, advanced simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring...in planning future experimental work at NIF . 15. NUMBER OF PAGES 93 14. SUBJECT TERMS National Ignition Facility, GEODYN, Ground Coupling...simulation and experimental facilities, such as the National Ignition Facility ( NIF ), are essential to assuring safety, reliability, and effectiveness

  18. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep

    PubMed Central

    Tagliazucchi, Enzo; Sanjuán, Ana

    2017-01-01

    Abstract A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states. PMID:28966977

  19. Novel Intrinsic Ignition Method Measuring Local-Global Integration Characterizes Wakefulness and Deep Sleep.

    PubMed

    Deco, Gustavo; Tagliazucchi, Enzo; Laufs, Helmut; Sanjuán, Ana; Kringelbach, Morten L

    2017-01-01

    A precise definition of a brain state has proven elusive. Here, we introduce the novel local-global concept of intrinsic ignition characterizing the dynamical complexity of different brain states. Naturally occurring intrinsic ignition events reflect the capability of a given brain area to propagate neuronal activity to other regions, giving rise to different levels of integration. The ignitory capability of brain regions is computed by the elicited level of integration for each intrinsic ignition event in each brain region, averaged over all events. This intrinsic ignition method is shown to clearly distinguish human neuroimaging data of two fundamental brain states (wakefulness and deep sleep). Importantly, whole-brain computational modelling of this data shows that at the optimal working point is found where there is maximal variability of the intrinsic ignition across brain regions. Thus, combining whole brain models with intrinsic ignition can provide novel insights into underlying mechanisms of brain states.

  20. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the issue of Wednesday, April 13, 2011, make the following correction: Sec. 1042...

  1. Analysis of the NASA White Sands Test Facility (WSTF) Test System for Friction-Ignition of Metallic Materials

    NASA Technical Reports Server (NTRS)

    Shoffstall, Michael S.; Wilson, D. Bruce; Stoltzfus, Joel M.

    2000-01-01

    Friction is a known ignition source for metals in oxygen-enriched atmospheres. The test system developed by the NASA White Sands Test Facility in response to ASTM G-94 has been used successfully to determine the relative ignition from friction of numerous metallic materials and metallic materials pairs. These results have been ranked in terms of a pressure-velocity product (PV) as measured under the prescribed test conditions. A high value of 4.1(exp 8) watts per square meter for Inconel MA 754 is used to imply resistance to friction ignition, whereas a low value of 1.04(exp 8) watts per square meter for stainless steel 304 is taken as indicating material susceptible to friction ignition. No attempt has been made to relate PV values to other material properties. This work reports the analysis of the WSTF friction-ignition test system for producing fundamental properties of metallic materials relating to ignition through friction. Three materials, aluminum, titanium, and nickel were tested in the WSTF frictional ignition instrument system under atmospheres of oxygen or nitrogen. Test conditions were modified to reach a steady state of operation, that is applied, the force was reduced and the rotational speed was reduced. Additional temperature measurements were made on the stator sample. The aluminum immediately galled on contact (reproducible) and the test was stopped. Titanium immediately ignited as a result of non-uniform contact of the stator and rotor. This was reproducible. A portion of the stator sampled burned, but the test continued. Temperature measurements on the stator were used to validate the mathematical model used for estimating the interface (stator/rotor) temperature. These interface temperature measurements and the associate thermal flux into the stator were used to distinguish material-phase transitions, chemical reaction, and mechanical work. The mechanical work was used to analyze surface asperities in the materials and to estimate a coefficient of fiction. The coefficient of fiction was analyzed in terms of material properties that is, hardness, Young's modulus and elasticity/plasticity of the material.

  2. The National Ignition Facility: The Path to a Carbon-Free Energy Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolz, C J

    2011-03-16

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  3. The National Ignition Facility: the path to a carbon-free energy future.

    PubMed

    Stolz, Christopher J

    2012-08-28

    The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory. The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centres on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

  4. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule correction document C1-2011-8794 appearing on page 25246 in the issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901...

  5. Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

    NASA Astrophysics Data System (ADS)

    Shang, W.; Betti, R.

    2016-10-01

    Shock ignition uses a late strong shock to ignite the hot spot of an inertial confinement fusion capsule. In the standard shock-ignition scheme, an ignitor shock is launched by the ablation pressure from a spike in laser intensity. Recent experiments on OMEGA have shown that focused beams with intensity up to 6 ×1015 W /cm2 can produce copious amounts of hot electrons. The hot electrons are produced by laser-plasma instabilities (LPI's) and can carry up to 15 % of the instantaneous laser power. Megajoule-scale targets will likely produce even more hot electrons because of the large plasma scale length. We show that it is possible to design ignition targets with low implosion velocities that can be shock ignited using LPI-generated hot electrons to obtain high energy gains. These designs are robust to low-mode asymmetries and they ignite even for highly distorted implosions. Electron shock ignition requires tens of kilojoules of hot electrons, which can only be produced on a large laser facility like the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE PAGES

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.; ...

    2018-03-20

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  7. The impact of physicochemical property interactions of iso -octane/ethanol blends on ignition timescales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Luecke, Jon; Zigler, Bradley T.

    This work presents new measurements of liquid fuel ignition delay times of iso-octane and ethanol fuel blends obtained from an ignition quality tester at the National Renewable Energy Laboratory (NREL IQT), which are compared to previous ignition delay data from the University of Michigan rapid compression facility (UM RCF), at the same experimental conditions. Pressure-time histories were used to determine liquid fuel ignition delays at global stoichiometric non-premixed conditions for iso-octane, ethanol and iso-octane/ethanol blends of 25, 50, 75% by volume in mixtures of 10% oxygen diluted in nitrogen. Temperatures ranging from 880 to 970 K were studied at amore » pressure of 10 atm. By comparing total ignition delay times from the NREL IQT with chemical ignition delay times from the UM RCF, the contributions of physical phenomena were quantified as representative time scales for spray injection, breakup and evaporation processes, and for gas-phase turbulent mixing. Regression analyses were developed for ignition time scales as function of blend level and charge temperature. Non-dimensional analyses were also carried out to determine the relative effects of physical time scales with respect to chemical ignition delay times.« less

  8. Determining Acceptable Limits of Fast-Electron Preheat in Polar-Drive-Ignition Designs

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Ye, C.

    2014-10-01

    In direct-drive-ignition designs, preheat by fast electrons created by the two-plasmon-decay instability at the quarter-critical density surface can increase the adiabat in the fuel layer and prevent ignition. Since eliminating the preheat entirely is not possible, it is necessary to understand the levels of preheat our targets can withstand before ignition is precluded. The current polar-drive point design is used as the basis for examining the effects of increasing the levels of fast electrons using the one-dimensional, radiation-hydrodynamics code LILAC. Once ignition failure is obtained, the design is then reoptimized using Telios, a downhill simplex method program, to recover ignition. This cycle is repeated until the design can no longer be reoptimized to produce ignition. Mappings of these final results provide insight into ignition failure caused by preheat and what specific target parameters serve to best stave off the effects of the preheat. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Development and Testing of a Green Monopropellant Ignition System

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Judson, Michael I.; Taylor, Terry L.

    2013-01-01

    This paper will detail the development and testing of a "green" monopropellant booster ignition system. The proposed booster ignition technology eliminates the need for a pre-heated catalyst bed, a high wattage power source, toxic pyrophoric ignition fluids, or a bi-propellant spark ignitor. The design offers the simplicity of a monopropellant feed system features non-hazardous gaseous oxygen (GOX) as the working fluid. The approach is fundamentally different from all other "green propellant" solutions in the aerospace in the industry. Although the proposed system is more correctly a "hybrid" rocket technology, since only a single propellant feed path is required, it retains all the simple features of a monopropellant system. The technology is based on the principle of seeding an oxidizing flow with a small amount of hydrocarbon.1 The ignition is initiated electrostatically with a low-wattage inductive spark. Combustion gas byproducts from the hydrocarbon-seeding ignition process can exceed 2400 C and the high exhaust temperature ensures reliable main propellant ignition. The system design is described in detail in the Hydrocarbon-Seeded Ignition System Design subsection.

  10. A method for estimating the probability of lightning causing a methane ignition in an underground mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacks, H.K.; Novak, T.

    2008-03-15

    During the past decade, several methane/air explosions in abandoned or sealed areas of underground coal mines have been attributed to lightning. Previously published work by the authors showed, through computer simulations, that currents from lightning could propagate down steel-cased boreholes and ignite explosive methane/air mixtures. The presented work expands on the model and describes a methodology based on IEEE Standard 1410-2004 to estimate the probability of an ignition. The methodology provides a means to better estimate the likelihood that an ignition could occur underground and, more importantly, allows the calculation of what-if scenarios to investigate the effectiveness of engineering controlsmore » to reduce the hazard. The computer software used for calculating fields and potentials is also verified by comparing computed results with an independently developed theoretical model of electromagnetic field propagation through a conductive medium.« less

  11. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  12. Evaluation of the Revolver Ignition Design at the National Ignition Facility Using Polar-Direct-Drive Illumination

    NASA Astrophysics Data System (ADS)

    McKenty, P. W.; Collins, T. J. B.; Marozas, J. A.; Campbell, E. M.; Molvig, K.; Schmitt, M.

    2017-10-01

    The direct-drive ignition design Revolver employs a triple-shell target using a beryllium ablator, a copper driver, and an eventual gold pusher. Symmetric numerical calculations indicate that each of the three shells exhibit low convergence ( 3to 5) resulting in a modest gain (G 4) for 1.7 MJ of incident laser energy. Studies are now underway to evaluate the robustness of this design employing polar direct drive (PDD) at the National Ignition Facility. Integral to these calculations is the leveraging of illumination conditioning afforded by research done to demonstrate ignition for a traditional PDD hot-spot target design. Two-dimensional simulation results, employing nonlocal electron-thermal transport and cross-beam energy transport, will be presented that indicate ignition using PDD. A study of the allowed levels of long-wavelength perturbations (target offset and power imbalance) not precluding ignition will also be examined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. [Exposure to electrocution by automotive ignition system in the work environment of car service employees].

    PubMed

    Fryśkowski, Bernard; Swiatek-Fryśkowska, Dorota

    2014-01-01

    Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed.

  14. The IGNITE network: a model for genomic medicine implementation and research.

    PubMed

    Weitzel, Kristin Wiisanen; Alexander, Madeline; Bernhardt, Barbara A; Calman, Neil; Carey, David J; Cavallari, Larisa H; Field, Julie R; Hauser, Diane; Junkins, Heather A; Levin, Phillip A; Levy, Kenneth; Madden, Ebony B; Manolio, Teri A; Odgis, Jacqueline; Orlando, Lori A; Pyeritz, Reed; Wu, R Ryanne; Shuldiner, Alan R; Bottinger, Erwin P; Denny, Joshua C; Dexter, Paul R; Flockhart, David A; Horowitz, Carol R; Johnson, Julie A; Kimmel, Stephen E; Levy, Mia A; Pollin, Toni I; Ginsburg, Geoffrey S

    2016-01-05

    Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these interventions. Through these efforts and collaboration with other stakeholders, IGNITE is poised to have a significant impact on the acceleration of genomic information into medical practice.

  15. A diffusion-reaction scheme for modeling ignition and self-propagating reactions in Al/CuO multilayered thin films

    NASA Astrophysics Data System (ADS)

    Lahiner, Guillaume; Nicollet, Andrea; Zapata, James; Marín, Lorena; Richard, Nicolas; Rouhani, Mehdi Djafari; Rossi, Carole; Estève, Alain

    2017-10-01

    Thermite multilayered films have the potential to be used as local high intensity heat sources for a variety of applications. Improving the ability of researchers to more rapidly develop Micro Electro Mechanical Systems devices based on thermite multilayer films requires predictive modeling in which an understanding of the relationship between the properties (ignition and flame propagation), the multilayer structure and composition (bilayer thicknesses, ratio of reactants, and nature of interfaces), and aspects related to integration (substrate conductivity and ignition apparatus) is achieved. Assembling all these aspects, this work proposes an original 2D diffusion-reaction modeling framework to predict the ignition threshold and reaction dynamics of Al/CuO multilayered thin films. This model takes into consideration that CuO first decomposes into Cu2O, and then, released oxygen diffuses across the Cu2O and Al2O3 layers before reacting with pure Al to form Al2O3. This model is experimentally validated from ignition and flame velocity data acquired on Al/CuO multilayers deposited on a Kapton layer. This paper discusses, for the first time, the importance of determining the ceiling temperature above which the multilayers disintegrate, possibly before their complete combustion, thus severely impacting the reaction front velocity and energy release. This work provides a set of heating surface areas to obtain the best ignition conditions, i.e., with minimal ignition power, as a function of the substrate type.

  16. Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.

    2001-01-01

    A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.

  17. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    NASA Astrophysics Data System (ADS)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part of the electrical energy is actually used for promoting chemical reactions and that temperature during the arc and kernel phases are influenced to a reduced extent by fuel concentrations.

  18. Ignition Characteristics at Low Ambient Pressures of a Full-Scale Injector Using H.T.P. and C-Fuel

    DTIC Science & Technology

    1951-06-01

    to two effects: (i) The pressure switch was very sensitive and opened before the Miller recorder indicated a rise in pressure, (ii) The photocell used...cause an indeterminate in- crease in the measured ignition delay. In order to make the pressure switch less sensitive it was re-sot to open at about 55 lb

  19. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  20. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Osborne, Robin; Drake, Gregory W.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  1. Direct current microhollow cathode discharges on silicon devices operating in argon and helium

    NASA Astrophysics Data System (ADS)

    Michaud, R.; Felix, V.; Stolz, A.; Aubry, O.; Lefaucheux, P.; Dzikowski, S.; Schulz-von der Gathen, V.; Overzet, L. J.; Dussart, R.

    2018-02-01

    Microhollow cathode discharges have been produced on silicon platforms using processes usually used for MEMS fabrication. Microreactors consist of 100 or 150 μm-diameter cavities made from Ni and SiO2 film layers deposited on a silicon substrate. They were studied in the direct current operating mode in two different geometries: planar and cavity configuration. Currents in the order of 1 mA could be injected in microdischarges operating in different gases such as argon and helium at a working pressure between 130 and 1000 mbar. When silicon was used as a cathode, the microdischarge operation was very unstable in both geometry configurations. Strong current spikes were produced and the microreactor lifetime was quite short. We evidenced the fast formation of blisters at the silicon surface which are responsible for the production of these high current pulses. EDX analysis showed that these blisters are filled with argon and indicate that an implantation mechanism is at the origin of this surface modification. Reversing the polarity of the microdischarge makes the discharge operate stably without current spikes, but the discharge appearance is quite different from the one obtained in direct polarity with the silicon cathode. By coating the silicon cathode with a 500 nm-thick nickel layer, the microdischarge becomes very stable with a much longer lifetime. No current spikes are observed and the cathode surface remains quite smooth compared to the one obtained without coating. Finally, arrays of 76 and 576 microdischarges were successfully ignited and studied in argon. At a working pressure of 130 mbar, all microdischarges are simultaneously ignited whereas they ignite one by one at higher pressure.

  2. Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Wang, Binshen; Jin, Yunhe; Yan, Chao; Wang, Yi; Zhang, Qinghua

    2018-05-14

    The design and synthesis of new hypergolic ionic liquids (HILs) as replacements for toxic hydrazine derivatives have been the focus of current academic research in the field of liquid bipropellant fuels. In most cases, however, the requirements of excellent ignition performances, good hydrolytic stabilities, and low synthetic costs are often contradictory, which makes the development of high-performance HILs an enormous challenge. Here, we show how a fuel-rich boranophosphate ion was rationally designed and used to synthesize a series of high-performance HILs with excellent comprehensive properties. In the design strategy, we introduced the {BH 3 } moiety into the boranophosphate ion for improving the self-ignition property, whereas the complexation of boron and phosphite was used to improve the hydrolytic activity of the borohydride species. As a result, these boranophosphate HILs exhibited wide liquid operating ranges (>220 °C), high densities (1.00-1.10 g cm -3 ), good hydrolytic stabilities, and short ignition delay times (2.3-9.7 milliseconds) with white fuming nitric acid (WFNA) as the oxidizer. More importantly, these boranophosphate HILs could be readily prepared in high yields from commercial phosphite esters, avoiding complex and time-consuming synthetic routes. This work offers an effective strategy of designing boranophosphate HILs towards safer and greener hypergolic fuels for liquid bipropellant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Progress of Research Project for Magnetized Target Fusion in China

    NASA Astrophysics Data System (ADS)

    Yang, Xian-Jun

    2015-11-01

    The fusion of magnetized plasma called Magnetized Target Fusion (MTF) is a hot research area recently. It may significantly reduce the cost and size. Great progress has been achieved in past decades around the world. Five years ago, China initiated the MTF project and has gotten some progress as follows: 1. Verifying the feasibility of ignition of MTF by means of first principle and MHD simulation; 2. Generating the magnetic field over 1400 Tesla, which can be suppress the heat conduction from charged particles, deposit the energy of alpha particle to promote the ignition process, and produce the stable magnetized plasma for the target of ignition; 3. The imploding facility of FP-1 can put several Mega Joule energy to the solid liner of about ten gram in the range of microsecond risen time, while the simulating tool has been developed for design and analysis of the process; 4. The target of FRC can be generated by ``YG 1 facility'' while some simulating tools have be developed. Next five years, the above theoretical work and the experiments of MTF may be integrated to step up as the National project, which may make my term play an important lead role and be supposed to achieve farther progress in China. Supported by the National Natural Science Foundation of China under Grant No 11175028.

  4. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  5. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    NASA Astrophysics Data System (ADS)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the gas temperature is suitable for combustion (T=2000-3000 K). This technique is demonstrated by attempting ignition of various mixtures of propane-air and it is shown to have distinct advantages when compared to the classical approach: lower ignition energy for given stoichiometry than conventional laser ignition ( 20% lower), extension of the lean limit ( 15% leaner) and improvement in combustion efficiency. Moreover, it is demonstrated that careful alignment of the two pulses influences the fluid dynamics of the early flame kernel growth. This finding has a number of implications for practical uses as it demonstrates that the flame kernel dynamics can be tailored using various combinations of laser pulses and opens the door for implementing such a technique to applications such as: flame holding and flame stabilization in high speed flow combustors (such as ramjet and scramjet engines), reducing flame stretching in highly turbulent combustion devices and increasing combustion efficiency for stationary natural gas engines. As such, the work presented in this dissertation should be of interest to a broad audience including those interested in combustion research, engine operation, chemically reacting flows, plasma dynamics and laser diagnostics.

  6. Investigation of Al/CuO multilayered thermite ignition

    NASA Astrophysics Data System (ADS)

    Nicollet, Andréa; Lahiner, Guillaume; Belisario, Andres; Souleille, Sandrine; Djafari-Rouhani, Mehdi; Estève, Alain; Rossi, Carole

    2017-01-01

    The ignition of the Al/CuO multilayered material is studied experimentally to explore the effects of the heating surface area, layering, and film thickness on the ignition characteristics and reaction performances. After the description of the micro-initiator devices and ignition conditions, we show that the heating surface area must be properly calibrated to optimize the nanothermite ignition performances. We demonstrated experimentally that a heating surface area of 0.25 mm2 is sufficient to ignite a multilayered thermite film of 1.6 mm wide by a few cm long, with a success rate of 100%. A new analytical and phenomenological ignition model based on atomic diffusion across layers and thermal exchange is also proposed. This model considers that CuO first decomposes into Cu2O, and then the oxygen diffuses across the Cu2O and Al2O3 layers before reaching the Al layer, where it reacts to form Al2O3. The theoretical results in terms of ignition response times confirm the experimental observation. The increase of the heating surface area leads to an increase of the ignition response time and ignition power threshold (go/no go condition). We also provide evidence that, for any heating surface area, the ignition time rapidly decreases when the electrical power density increases until an asymptotic value. This time point is referred to as the minimum response ignition time, which is a characteristic of the multilayered thermite itself. At the stoichiometric ratio (Al thickness is half of the CuO thickness), the minimum ignition response time can be easily tuned from 59 μs to 418 ms by tuning the heating surface area. The minimum ignition response time increases when the bilayer thickness increases. This work not only provides a set of micro-initiator design rules to obtain the best ignition conditions and reaction performances but also details a reliable and robust MicroElectroMechanical Systems process to fabricate igniters and brings new understanding of phenomena governing the ignition process of Al/CuO multilayers.

  7. Development of a new generation solid rocket motor ignition computer code

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  8. Inertial Confinement Fusion as an Extreme Example of Dynamic Compression

    NASA Astrophysics Data System (ADS)

    Moses, E.

    2013-06-01

    Initiating and controlling thermonuclear burn at the national ignition facility (NIF) will require the manipulation of matter to extreme energy densities. We will discuss recent advances in both controlling the dynamic compression of ignition targets and our understanding of the physical states and processes leading to ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.

  9. The effect of venting on cookoff of a melt-castable explosive (Comp-B)

    DOE PAGES

    Hobbs, Michael L.; Kaneshige, Michael J.

    2015-03-01

    Occasionally, our well-controlled cookoff experiments with Comp-B give anomalous results when venting conditions are changed. For example, a vented experiment may take longer to ignite than a sealed experiment. In the current work, we show the effect of venting on thermal ignition of Comp-B. We use Sandia’s Instrumented Thermal Ignition (SITI) experiment with various headspace volumes in both vented and sealed geometries to study ignition of Comp-B. In some of these experiments, we have used a boroscope to observe Comp-B as it melts and reacts. We propose that the mechanism for ignition involves TNT melting, dissolution of RDX, and complexmore » bubbly liquid flow. High pressure inhibits bubble formation and flow is significantly reduced. At low pressure, a vigorous dispersed bubble flow was observed.« less

  10. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  11. Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility [On the combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility

    DOE PAGES

    Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.

    2016-08-31

    Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less

  12. The study of theoretical and experimental feasibilities of the rocket fuel components ignition by laser radiation

    NASA Astrophysics Data System (ADS)

    Belyaev, Vadim S.; Guterman, Vitaly Y.; Ivanov, Anatoly V.

    2004-06-01

    The report presents the theoretical and experimental results obtained during the first year of the ISTC project No. 1926. The energy and temporal characteristics of the laser radiation necessary to ignite the working components mixture in a rocket engine combustion chamber have been predicted. Two approaches have been studied: the optical gas fuel laser-induced breakdown; the laser-initiated plasma torch on target surface. The possibilities and conditions of the rocket fuel components ignition by a laser beam in the differently designed combustion chambers have been estimated and studied. The comparative analysis shows that both the optical spark and light focusing on target techniques can ignite the mixture.

  13. Pyrotechnic hazards classification and evaluation program. Electrostatic vulnerability of the E8 and XM15/XM165 clusters, phase 1

    NASA Technical Reports Server (NTRS)

    1970-01-01

    A survey of the electrostatic vulnerability of explosive manufacturing plants and recommendations for reducing the vulnerability are discussed. During the course of the investigations, the XM15/XM165 and the E8 launcher were shown to be susceptible to electrostatic ignition. The pyrotechnic hazard of prime concern associated with electrostatics is that of the spark which can be generated. The heat, shock, and ionization produced by the spark can cause ignition of pyrotechnics. However, as a result of the initial ignition tests (XM15 fuse train), changes have been incorporated to make the fusing system relatively safe from premature electrostatic activation.

  14. A study of ignition phenomena of bulk metals by radiant heating

    NASA Technical Reports Server (NTRS)

    Branch, Melvin C.; Abbud-Madrid, A.; Feiereisen, T. J.; Daily, J. W.

    1993-01-01

    Early research on combustion of metals was motivated by the knowledge of the large heat release and corresponding high temperatures associated with metal-oxygen reactions. The advent of space flight brought about an increased interest in the ignition and combustion of metallic particles as additives in solid rocket propellants. More recently, attention has been given to the flammability properties of bulk, structural metals due to the number of accidental explosions of metal components in high-pressure oxygen systems. The following work represents a preliminary study that is part of a broader research effort aimed at providing further insight into the phenomena of bulk metal combustion by looking at the effects of gravity on the ignition behavior of metals. The scope of this preliminary experimental study includes the use of a non-coherent, continuous radiation ignition source, the measurement of temperature profiles of a variety of metals and a qualitative observation of the ignition phenomena at normal gravity. The specific objectives of the investigation include: (1) a feasibility study of the use of a continuous radiation source for metal ignition; (2) testing and characterization of the ignition behavior of a variety of metals; and (3) building a preliminary experimental database on ignition of metals under normal gravity conditions.

  15. Development of Ionic Liquid Monopropellants for In-Space Propulsion

    NASA Technical Reports Server (NTRS)

    Blevins, John A.; Drake, Gregory W.; Osborne, Robin J.

    2005-01-01

    A family of new, low toxicity, high energy monopropellants is currently being evaluated at NASA Marshall Space Flight Center for in-space rocket engine applications such as reaction control engines. These ionic liquid monopropellants, developed in recent years by the Air Force Research Laboratory, could offer system simplification, less in-flight thermal management, and reduced handling precautions, while increasing propellant energy density as compared to traditional storable in-space propellants such as hydrazine and nitrogen tetroxide. However, challenges exist in identifying ignition schemes for these ionic liquid monopropellants, which are known to burn at much hotter combustion temperatures compared to traditional monopropellants such as hydrazine. The high temperature combustion of these new monopropellants make the use of typical ignition catalyst beds prohibitive since the catalyst cannot withstand the elevated temperatures. Current research efforts are focused on monopropellant ignition and burn rate characterization, parameters that are important in the fundamental understanding of the monopropellant behavior and the eventual design of a thruster. Laboratory studies will be conducted using alternative ignition techniques such as laser-induced spark ignition and hot wire ignition. Ignition delay, defined as the time between the introduction of the ignition source and the first sign of light emission from a developing flame kernel, will be measured using Schlieren visualization. An optically-accessible liquid monopropellant burner, shown schematically in Figure 1 and similar in design to apparatuses used by other researchers to study solid and liquid monopropellants, will be used to determine propellant burn rate as a function of pressure and initial propellant temperature. The burn rate will be measured via high speed imaging through the chamber s windows.

  16. Wildfires caused by self-heating ignition of carbon-rich soil

    NASA Astrophysics Data System (ADS)

    Restuccia, Francesco; Huang, Xinyan; Rein, Guillermo

    2017-04-01

    Carbon-rich soils, like peat, cover more than 3% of the earth's land surface, and store roughly three times more carbon than the earth's plants. Carbon-rich soils are reactive porous materials, prone to smouldering combustion if the inert and moisture content are low enough. An example of carbon-rich soil combustion happens in peatlands, which are prone to wildfires both in boreal and tropical regions and where combustion is a commonly seen phenomena. The experimental work presented here focuses on understanding one of the ways carbon-rich soil can ignite. The ignition phenomenon is known as self-heating, which is due to soil undergoing spontaneous exothermic reactions in the presence of oxygen. In this work we investigate the effect of soil inorganic content by creating under controlled conditions soil samples with inorganic contents ranging from 3% to 86% of dry weight. Combining oven experiments with the Frank-Kamenetskii theory of ignition, the lumped kinetic and thermal parameters are determined. We then use these parameters to upscale the laboratory experiments to soil layers of different depths for a range of ambient temperatures ranging from 0 °C to 40 °C. Experimental results show that self-heating ignition in the different soil layers is possible. The kinetic analysis predicts the critical soil layer thicknesses required for self-ignition. For example, at 40 °C a soil layer of 3% inorganic content can be ignited through self-heating if it is thicker than 8.8 m. This is also the first experimental quantification of soil self-heating showing that indeed it is possible that wildfires are initiated by self-heating of the soil.

  17. Hot Jet Ignition Delay Characterization of Methane and Hydrogen at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tarraf Kojok, Ali

    This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.

  18. The effects of particle swarm optimization algorithm on volume ignition gain of Proton-Lithium (7) pellets

    NASA Astrophysics Data System (ADS)

    Livari, As. Ali; Malekynia, B.; Livari, Ak. A.; Khoda-Bakhsh, R.

    2017-11-01

    When it was found out that the ignition of nuclear fusion hinges upon input energy laser, the efforts in order to make giant lasers began, and energy gains of DT fuel were obtained. But due to the neutrons generation and emitted radioactivity from DT reaction, gains of fuels like Proton-Lithium (7) were also adverted. Therefore, making larger and powerful lasers was followed. Here, using new versions of particle swarm optimization algorithm, it will be shown that available maximum gain of Proton-Lithium (7) is reached only at energies about 1014 J, and not only the highest input energy is not helpful but the efficiency is also decreased.

  19. Initial Findings on Hydrodynamic Scaling Extrapolations of National Ignition Facility BigFoot Implosions

    NASA Astrophysics Data System (ADS)

    Nora, R.; Field, J. E.; Peterson, J. Luc; Spears, B.; Kruse, M.; Humbird, K.; Gaffney, J.; Springer, P. T.; Brandon, S.; Langer, S.

    2017-10-01

    We present an experimentally corroborated hydrodynamic extrapolation of several recent BigFoot implosions on the National Ignition Facility. An estimate on the value and error of the hydrodynamic scale necessary for ignition (for each individual BigFoot implosion) is found by hydrodynamically scaling a distribution of multi-dimensional HYDRA simulations whose outputs correspond to their experimental observables. The 11-parameter database of simulations, which include arbitrary drive asymmetries, dopant fractions, hydrodynamic scaling parameters, and surface perturbations due to surrogate tent and fill-tube engineering features, was computed on the TRINITY supercomputer at Los Alamos National Laboratory. This simple extrapolation is the first step in providing a rigorous calibration of our workflow to provide an accurate estimate of the efficacy of achieving ignition on the National Ignition Facility. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud

    NASA Astrophysics Data System (ADS)

    Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei

    2017-12-01

    The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.

  1. Ignition and Combustion Characteristics of Pure Bulk Metals: Normal-Gravity Test Results

    NASA Technical Reports Server (NTRS)

    Abbud-Madrid, A.; Fiechtner, G. J.; Branch, M. C.; Daily, J. W.

    1994-01-01

    An experimental apparatus has been designed for the study of bulk metal ignition under elevated, normal and reduced gravity environments. The present work describes the technical characteristics of the system, the analytical techniques employed, the results obtained from the ignition of a variety of metals subjected to normal gravity conditions and the first results obtained from experiments under elevated gravity. A 1000 W xenon short-arc lamp is used to irradiate the top surface of a cylindrical metal specimen 4 mm in diameter and 4 mm high in a quiescent pure-oxygen environment at 0.1 MPa. Iron, titanium, zirconium, magnesium, zinc, tin, and copper specimens are investigated. All these metals exhibit ignition and combustion behavior varying in strength and speed. Values of ignition temperatures below, above or in the range of the metal melting point are obtained from the temperature records. The emission spectra from the magnesium-oxygen gas-phase reaction reveals the dynamic evolution of the ignition event. Scanning electron microscope and x-ray spectroscopic analysis provide the sequence of oxide formation on the burning of copper samples. Preliminary results on the effect of higher-than-normal gravity levels on the ignition of titanium specimens is presented.

  2. Plasma Properties of an Exploding Semiconductor Igniter

    NASA Astrophysics Data System (ADS)

    McGuirk, J. S.; Thomas, K. A.; Shaffer, E.; Malone, A. L.; Baginski, T.; Baginski, M. E.

    1997-11-01

    Requirements by the automotive industry for low-cost, pyrotechnic igniters for automotive airbags have led to the development of several semiconductor devices. The properties of the plasma produced by the vaporization of an exploding semiconductor are necessary in order to minimize the electrical energy requirements. This work considers two silicon-based semiconductor devices: the semiconductor bridge (SCB) and the semiconductor junction igniter both consisting of etched silicon with vapor deposited aluminum structures. Electrical current passing through the device heats a narrow junction region to the point of vaporization creating an aluminum and silicon low-temperature plasma. This work will investigate the electrical characteristics of both devices and infer the plasma properties. Furthermore optical spectral measurements will be taken of the exploding devices to estimate the temperature and density of the plasma.

  3. Improved Photo-Ignition of Carbon Nanotubes/Ferrocene Using a Lipophilic Porphyrin under White Power LED Irradiation

    PubMed Central

    Primiceri, Patrizio; de Fazio, Roberto; Carlucci, Antonio Paolo; Mazzetto, Selma Elaine

    2018-01-01

    The aim of this work is to investigate and characterize the photo-ignition process of dry multi-walled carbon nanotubes (MWCNTs) mixed with ferrocene (FeCp2) powder, using an LED (light-emitting diode) as the light source, a combination that has never been used, to the best of our knowledge. The ignition process was improved by adding a lipophilic porphyrin (H2Pp) in powder to the MWCNTs/FeCp2 mixtures—thus, a lower ignition threshold was obtained. The ignition tests were carried out by employing a continuous emission and a pulsed white LED in two test campaigns. In the first, two MWCNT typologies, high purity (HP) and industrial grade (IG), were used without porphyrin, obtaining, for both, similar ignition thresholds. Furthermore, comparing ignition thresholds obtained with the LED source with those previously obtained with a Xenon (Xe) lamp, a significant reduction was observed. In the second test campaign, ignition tests were carried out by means of a properly driven and controlled pulsed XHP70 LED source. The minimum ignition energy (MIE) of IG-MWCNTs/FeCp2 samples was determined by varying the duration of the light pulse. Experimental results show that ignition is obtained with a pulse duration of 110 ms and a MIE density of 266 mJ/cm2. The significant reduction of the MIE value (10–40%), observed when H2Pp in powder form was added to the MWCNTs/FeCp2 mixtures, was ascribed to the improved photoexcitation and charge transfer properties of the lipophilic porphyrin molecules. PMID:29342878

  4. Improved Photo-Ignition of Carbon Nanotubes/Ferrocene Using a Lipophilic Porphyrin under White Power LED Irradiation.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; de Fazio, Roberto; Carlucci, Antonio Paolo; Mazzetto, Selma Elaine; Mele, Giuseppe

    2018-01-13

    The aim of this work is to investigate and characterize the photo-ignition process of dry multi-walled carbon nanotubes (MWCNTs) mixed with ferrocene (FeCp₂) powder, using an LED (light-emitting diode) as the light source, a combination that has never been used, to the best of our knowledge. The ignition process was improved by adding a lipophilic porphyrin (H₂Pp) in powder to the MWCNTs/FeCp₂ mixtures-thus, a lower ignition threshold was obtained. The ignition tests were carried out by employing a continuous emission and a pulsed white LED in two test campaigns. In the first, two MWCNT typologies, high purity (HP) and industrial grade (IG), were used without porphyrin, obtaining, for both, similar ignition thresholds. Furthermore, comparing ignition thresholds obtained with the LED source with those previously obtained with a Xenon (Xe) lamp, a significant reduction was observed. In the second test campaign, ignition tests were carried out by means of a properly driven and controlled pulsed XHP70 LED source. The minimum ignition energy (MIE) of IG-MWCNTs/FeCp₂ samples was determined by varying the duration of the light pulse. Experimental results show that ignition is obtained with a pulse duration of 110 ms and a MIE density of 266 mJ/cm². The significant reduction of the MIE value (10-40%), observed when H₂Pp in powder form was added to the MWCNTs/FeCp₂ mixtures, was ascribed to the improved photoexcitation and charge transfer properties of the lipophilic porphyrin molecules.

  5. Particular bi-fuel application of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  6. Methane and hydrogen ignition with ethanol and butanol admixtures

    NASA Astrophysics Data System (ADS)

    Eremin, A. V.; Matveeva, N. A.; Mikheyeva, E. Yu

    2018-01-01

    This work is devoted to the investigation of combustion of simple and complex gaseous fuels: methane and hydrogen with admixtures of the most promising alcohols: ethanol and butanol. The process of ignition of investigated blends behind reflected shock waves in the temperature range of 1000-1600 K and pressure range of 4.5-6 bar was studied. The temperature dependences of ignition delay times for stoichiometric methane-oxygen-ethanol (or butanol) and hydrogen-oxygen-ethanol (or butanol) mixtures diluted in argon were obtained. The possible kinetic description is discussed.

  7. Analysis of advanced solid rocket motor ignition phenomena

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.

    1995-01-01

    This report presents the results obtained from an experimental analysis of the flow field in the slots of the star grain section in the head-end of the advanced solid rocket motor during the ignition transient. This work represents an extension of the previous tests and analysis to include the effects of using a center port in conjunction with multiple canted igniter ports. The flow field measurements include oil smear data on the star slot walls, pressure and heat transfer coefficient measurements on the star slot walls and velocity measurements in the star slot.

  8. Progress on LMJ targets for ignition

    NASA Astrophysics Data System (ADS)

    Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Fremerye, P.; Galmiche, D.; Gauthier, P.; Giorla, J.; Lambert, F.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.

    2010-08-01

    Targets designed to produce ignition on the Laser MegaJoule are presented. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4MJ and 380TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-shaped cocktail hohlraum. 1D and 2D robustness evaluations of these different targets shed light on critical points for ignition, that can be traded off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  9. Development of Augmented Spark Impinging Igniter System for Methane Engines

    NASA Technical Reports Server (NTRS)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a commercial compact exciter system, which eliminates this high voltage cabling, was tested at altitude conditions. A modified, conventional exciter system with an improved ignition lead was also recently tested at altitude conditions. This test program demonstrated the capability of these exciter systems to operate at altitude. While more extensive testing may be required, these systems or similar ones may be used for future NASA and commercial engine programs.

  10. Short Pulse Laser Applications Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Clark, D S; Kemp, A J

    We are applying our recently developed, LDRD-funded computational simulation tool to optimize and develop applications of Fast Ignition (FI) for stockpile stewardship. This report summarizes the work performed during a one-year exploratory research LDRD to develop FI point designs for the National Ignition Facility (NIF). These results were sufficiently encouraging to propose successfully a strategic initiative LDRD to design and perform the definitive FI experiment on the NIF. Ignition experiments on the National Ignition Facility (NIF) will begin in 2010 using the central hot spot (CHS) approach, which relies on the simultaneous compression and ignition of a spherical fuel capsule.more » Unlike this approach, the fast ignition (FI) method separates fuel compression from the ignition phase. In the compression phase, a laser such as NIF is used to implode a shell either directly, or by x rays generated from the hohlraum wall, to form a compact dense ({approx}300 g/cm{sup 3}) fuel mass with an areal density of {approx}3.0 g/cm{sup 2}. To ignite such a fuel assembly requires depositing {approx}20kJ into a {approx}35 {micro}m spot delivered in a short time compared to the fuel disassembly time ({approx}20ps). This energy is delivered during the ignition phase by relativistic electrons generated by the interaction of an ultra-short high-intensity laser. The main advantages of FI over the CHS approach are higher gain, a lower ignition threshold, and a relaxation of the stringent symmetry requirements required by the CHS approach. There is worldwide interest in FI and its associated science. Major experimental facilities are being constructed which will enable 'proof of principle' tests of FI in integrated subignition experiments, most notably the OMEGA-EP facility at the University of Rochester's Laboratory of Laser Energetics and the FIREX facility at Osaka University in Japan. Also, scientists in the European Union have recently proposed the construction of a new FI facility, called HiPER, designed to demonstrate FI. Our design work has focused on the NIF, which is the only facility capable of forming a full-scale hydro assembly, and could be adapted for full-scale FI by the conversion of additional beams to short-pulse operation.« less

  11. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  12. Low power arcjet thruster pulse ignition

    NASA Technical Reports Server (NTRS)

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  13. A Hybrid Ion/Electron Beam Fast Ignition Concept

    NASA Astrophysics Data System (ADS)

    Albright, B. J.

    2009-11-01

    Fast ignition (FI) inertial confinement fusion is an approach to high-gain inertial fusion, whereby a dense core of deuterium/tritium fuel is assembled via direct or indirect drive and then a hot spot within the core is heated rapidly (over a time scale of order 10 ps) to ignition conditions by beams of fast charged particles. These particle beams are generated outside the capsule by the interaction of ultra-intense laser pulses with solid density targets. Most study of FI to date has focused on the use of electron [Tabak et al., Phys. Plasmas 1, 1696 (1994)] or ion [Fern'andez et al., Nuclear Fusion 49, 065004 (2009)] beams, however a hybrid approach involving both may have advantages. This paper will describe recent work in this arena. Work performed under the auspices of the U. S. Dept. of Energy by the Los Alamos National Security, Los Alamos National Laboratory. This work was supported by LANL Laboratory Directed Research and Development (LDRD).

  14. Compression Ignition Engines – Revolutionary Technology That has Civilized Frontiers all Over the Globe from the Industrial Revolution into the Twenty-First Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciatti, Stephen A.

    The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture ofmore » the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population) achieve the economic and environmental goals they seek.« less

  15. 40 CFR 1054.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-IGNITION ENGINES AND EQUIPMENT Certifying Emission Families § 1054.255 What decisions may EPA make... emission family meets all the requirements of this part and the Clean Air Act, we will issue a certificate of conformity for your emission family for that model year. We may make the approval subject to...

  16. Fuel gain exceeding unity in an inertially confined fusion implosion.

    PubMed

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  17. Direct electrical arc ignition of hybrid rocket motors

    NASA Astrophysics Data System (ADS)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  18. Effect of Intake Pressure and Temperature on Auto-Ignition of Fuels with Different Cetane Number and Volatility

    DTIC Science & Technology

    2012-04-12

    1 Effect Of Intake Pressure And Temperature On Auto-Ignition Of Fuels With Different Cetane Number And Volatility C. Jayakumar , U. Joshi, Z...AUTHOR(S) Eric Sattler; C. Jayakumar ; U. Joshi; Z. Zheng; W. Bryzik 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING

  19. Shock ignition targets: gain and robustness vs ignition threshold factor

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano; Antonelli, Luca; Schiavi, Angelo; Picone, Silvia; Volponi, Gian Marco; Marocchino, Alberto

    2017-10-01

    Shock ignition is a laser direct-drive inertial confinement fusion scheme, in which the stages of compression and hot spot formation are partly separated. The hot spot is created at the end of the implosion by a converging shock driven by a final ``spike'' of the laser pulse. Several shock-ignition target concepts have been proposed and relevant gain curves computed (see, e.g.). Here, we consider both pure-DT targets and more facility-relevant targets with plastic ablator. The investigation is conducted with 1D and 2D hydrodynamic simulations. We determine ignition threshold factors ITF's (and their dependence on laser pulse parameters) by means of 1D simulations. 2D simulations indicate that robustness to long-scale perturbations increases with ITF. Gain curves (gain vs laser energy), for different ITF's, are generated using 1D simulations. Work partially supported by Sapienza Project C26A15YTMA, Sapienza 2016 (n. 257584), Eurofusion Project AWP17-ENR-IFE-CEA-01.

  20. A Statistical Representation of Pyrotechnic Igniter Output

    NASA Astrophysics Data System (ADS)

    Guo, Shuyue; Cooper, Marcia

    2017-06-01

    The output of simplified pyrotechnic igniters for research investigations is statistically characterized by monitoring the post-ignition external flow field with Schlieren imaging. Unique to this work is a detailed quantification of all measurable manufacturing parameters (e.g., bridgewire length, charge cavity dimensions, powder bed density) and associated shock-motion variability in the tested igniters. To demonstrate experimental precision of the recorded Schlieren images and developed image processing methodologies, commercial exploding bridgewires using wires of different parameters were tested. Finally, a statistically-significant population of manufactured igniters were tested within the Schlieren arrangement resulting in a characterization of the nominal output. Comparisons between the variances measured throughout the manufacturing processes and the calculated output variance provide insight into the critical device phenomena that dominate performance. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under contract DE-AC04-94AL85000.

  1. 40 CFR 1045.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What decisions may EPA make regarding my certificate of conformity? 1045.255 Section 1045.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  2. 40 CFR 1045.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What decisions may EPA make regarding my certificate of conformity? 1045.255 Section 1045.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  3. 40 CFR 1045.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What decisions may EPA make regarding my certificate of conformity? 1045.255 Section 1045.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  4. How Service-Learning Can Ignite Thinking

    ERIC Educational Resources Information Center

    Serriere, Stephanie; McGarry, Lori; Fuentes, David; Mitra, Dana

    2012-01-01

    At its best, service learning involves students making meaningful connections to their own community and feeling empowered by the experience. Unfortunately, in the elementary years, student service-learning is often a one-shot effort in which adults make decisions for children, preventing them from truly having a hand in the project's direction…

  5. 40 CFR 1045.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What decisions may EPA make regarding my certificate of conformity? 1045.255 Section 1045.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  6. 40 CFR 1045.255 - What decisions may EPA make regarding my certificate of conformity?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What decisions may EPA make regarding my certificate of conformity? 1045.255 Section 1045.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  7. Science& Technology Review September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, D

    2003-09-01

    This September 2003 issue of ''Science and Technology Review'' covers the following articles: (1) ''The National Ignition Facility Is Born''; (2) ''The National Ignition Facility Comes to Life'' Over the last 15 years, thousands of Livermore engineers, scientists, and technicians as well as hundreds of industrial partners have worked to bring the National Ignition Facility into being. (3) ''Tracking the Activity of Bacteria Underground'' Using real-time polymerase chain reaction and liquid chromatography/tandem mass spectrometry, researchers at Livermore are gaining knowledge on how bacteria work underground to break down compounds of environmental concern. (4) ''When Every Second Counts--Pathogen Identification in Lessmore » Than a Minute'' Livermore has developed a system that can quickly identify airborne pathogens such as anthrax. (5) ''Portable Radiation Detector Provides Laboratory-Scale Precision in the Field'' A team of Livermore physicists and engineers has developed a handheld, mechanically cooled germanium detector designed to identify radioisotopes.« less

  8. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.

  9. Three dimensional calculation of thermonuclear ignition conditions for magnetized targets

    NASA Astrophysics Data System (ADS)

    Cortez, Ross; Cassibry, Jason; Lapointe, Michael; Adams, Robert

    2017-10-01

    Fusion power balance calculations, often performed using analytic methods, are used to estimate the design space for ignition conditions. In this paper, fusion power balance is calculated utilizing a 3-D smoothed particle hydrodynamics code (SPFMax) incorporating recent stopping power routines. Effects of thermal conduction, multigroup radiation emission and nonlocal absorption, ion/electron thermal equilibration, and compressional work are studied as a function of target and liner parameters and geometry for D-T, D-D, and 6LI-D fuels to identify the potential ignition design space. Here, ignition is defined as the condition when fusion particle deposition equals or exceeds the losses from heat conduction and radiation. The simulations are in support of ongoing research with NASA to develop advanced propulsion systems for rapid interplanetary space travel. Supported by NASA Innovative Advanced Concepts and NASA Marshall Space Flight Center.

  10. BigFoot: a program to reduce risk for indirect drive laser fusion

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    The conventional approach to inertial confinement fusion (ICF) with indirect drive is to design for high convergence (40), DT areal density, and target gain. By construction, this strategy is challenged by low-mode control of the implosion (Legendre P2 and P4), instability, and difficulties interpreting data. Here we consider an alternative - an approach to ICF that emphasizes control. To begin, we optimize for hohlraum predictability, and coupling to the capsule. Rather than focus on density, we work on making a high-energy hotspot we can diagnose and ``tune'' at low convergence (20). Though gain is reduced, this makes it possible to study (and improve) stagnation physics in a regime relevant to ignition (1E16-1E17). Further improvements can then be made with small, incremental increases in areal density, target scale, etc. Details regarding the ``BigFoot'' platform and pulse are reported, including recent findings. Work that could enable additional improvements in capsule stability and hohlraum control will also be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination.

    PubMed

    Visconti, Paolo; Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV-vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2 +∙ and MWCNT - , easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples.

  12. Photo-ignition process of multiwall carbon nanotubes and ferrocene by continuous wave Xe lamp illumination

    PubMed Central

    Primiceri, Patrizio; Longo, Daniele; Strafella, Luciano; Carlucci, Paolo; Lomascolo, Mauro; Cretì, Arianna; Mele, Giuseppe

    2017-01-01

    This work aims to investigate and characterize the photo-ignition phenomenon of MWCNT/ferrocene mixtures by using a continuous wave (CW) xenon (Xe) light source, in order to find the power ignition threshold by employing a different type of light source as was used in previous research (i.e., pulsed Xe lamp). The experimental photo-ignition tests were carried out by varying the weight ratio of the used mixtures, luminous power, and wavelength range of the incident Xe light by using selective optical filters. For a better explanation of the photo-induced ignition process, the absorption spectra of MWCNT/ferrocene mixtures and ferrocene only were obtained. The experimental results show that the luminous power (related to the entire spectrum of the Xe lamp) needed to trigger the ignition of MWCNT/ferrocene mixtures decreases with increasing metal nanoparticles content according to previously published results when using a different type of light source (i.e., pulsed vs CW Xe light source). Furthermore, less light power is required to trigger photo-ignition when moving towards the ultraviolet (UV) region. This is in agreement with the measured absorption spectra, which present higher absorption values in the UV–vis region for both MWCNT/ferrocene mixtures and ferrocene only diluted in toluene. Finally, a chemo-physical interpretation of the ignition phenomenon is proposed whereby ferrocene photo-excitation, due to photon absorption, produces ferrocene itself in its excited form and is thus capable of promoting electron transfer to MWCNTs. In this way, the resulting radical species, FeCp2+∙ and MWCNT−, easily react with oxygen giving rise to the ignition of MWCNT/ferrocene samples. PMID:28144572

  13. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  14. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  15. Liquid and gelled sprays for mixing hypergolic propellants using an impinging jet injection system

    NASA Astrophysics Data System (ADS)

    James, Mark D.

    The characteristics of sprays produced by liquid rocket injectors are important in understanding rocket engine ignition and performance. The includes, but is not limited to, drop size distribution, spray density, drop velocity, oscillations in the spray, uniformity of mixing between propellants, and the spatial distribution of drops. Hypergolic ignition and the associated ignition delay times are also important features in rocket engines, providing high reliability and simplicity of the ignition event. The ignition delay time is closely related to the level and speed of mixing between a hypergolic fuel and oxidizer, which makes the injection method and conditions crucial in determining the ignition performance. Although mixing and ignition of liquid hypergolic propellants has been studied for many years, the processes for injection, mixing, and ignition of gelled hypergolic propellants are less understood. Gelled propellants are currently under investigation for use in rocket injectors to combine the advantages of solid and liquid propellants, although not without their own difficulties. A review of hypergolic ignition has been conducted for selected propellants, and methods for achieving ignition have been established. This research is focused on ignition using the liquid drop-on-drop method, as well as the doublet impinging jet injector. The events leading up to ignition, known as pre-ignition stage are discussed. An understanding of desirable ignition and combustion performance requires a study of the effects of injection, temperature, and ambient pressure conditions. A review of unlike-doublet impinging jet injection mixing has also been conducted. This includes mixing factors in reactive and non-reactive sprays. Important mixing factors include jet momentum, jet diameter and length, impingement angle, mass distribution, and injector configuration. An impinging jet injection system is presented using an electro-mechanically driven piston for injecting liquid and gelled hypergolic propellants. A calibration of the system is done with water in preparation for hypergolic injection, and characteristics of individual water and gelled JP-8 jets are studied at velocities in the range of 3 ft/s to 61 ft/s. The piston response is also analyzed to characterize the startup and steady state liquid jet velocities using orifices of 0.02" in diameter. Using this injection system, water and gelled JP-8 sprays are formed and compared across injection velocities of 30 ft/s to 121 ft/s. The comparison includes sheet shape and disintegration, total number of drops, drop size distributions, drop eccentricity, most populated drop bin size, and mean drop sizes. A test matrix for investigating the effects of mixing on ignition of MMH and IRFNA through different injection conditions are presented. First, water and IRFNA are injected to create a spray in the combustion chamber in order to verify effectiveness of test procedures and the test hardware. Next, injection of the hypergolic propellants MMH and IRFNA are done in accordance to the test matrix, although ignition was not observed as expected. These injections are followed by simple drop-on-drop tests to investigate propellant quality and ignition delay. Drop tests are performed with propellants IRFNA/MMH, and again with H2O2/Block 0 as possible propellant replacements for the proposed test plan.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, William L; Gunderson, Jake A; Dickson, Peter M

    There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problemmore » of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the kinetics and thermodynamics of the phase transition, providing Dickson, et al. with the information necessary to develop a four-step model that included a two-step nucleation and growth mechanism for the {beta}-{delta} phase transition. Initially, an irreversible scheme was proposed. That model accurately predicted the spatial and temporal cook off behavior of the small-scale radial experiment under slow heating conditions, but did not accurately capture the endothermic phase transition at a faster heating rate. The current version of the four-step model includes reversibility and accurately describes the small-scale radial experiment over a wide range of heating rates. We have observed impact-induced friction ignition of PBX 9501 with grit embedded between the explosive and the lower anvil surface. Observation was done using an infrared camera looking through the sapphire bottom anvil. Time to ignition and temperature-time behavior were recorded. The time to ignition was approximately 500 microseconds and the temperature was approximately 1000 K. The four step reversible kinetic scheme was previously validated for slow cook off scenarios. Our intention was to test the validity for significantly faster hot-spot processes, such as the impact-induced grit friction process studied here. We found the model predicted the ignition time within experimental error. There are caveats to consider when evaluating the agreement. The primary input to the model was friction work over an area computed by a stress analysis. The work rate itself, and the relative velocity of the grit and substrate both have a strong dependence on the initial position of the grit. Any errors in the analysis or the initial grit position would affect the model results. At this time, we do not know the sensitivity to these issues. However, the good agreement does suggest the four step kinetic scheme may have universal applicability for HMX systems.« less

  17. Investigation of Mechanism of Potential Aircraft Fuel Tank Vent Fires and Explosions Caused by Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    1961-01-01

    The nature of the potential fuel tank vent fire and explosion hazard is discussed in relation to present vent exit design practice, available knowledge of atmospheric electricity as a source of ignition energy, and the vent system vapor space environment. Flammable mixtures and possible ignition sources may occur simultaneously as a rare phenomena according to existing knowledge. There is a need to extend the state of science in order to make possible vent design which is aimed specifically at minimizing fire and explosion hazards.

  18. Shock Initiation Experiments with Ignition and Growth Modeling on the HMX-Based Explosive LX-14

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Dehaven, Martin R.; Strickland, Shawn L.; Tarver, Craig M.; Springer, H. Keo; Cowan, Matt R.

    2017-06-01

    Shock initiation experiments on the HMX-based explosive LX-14 were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between sample disks pressed to different densities ( 1.57 or 1.83 g/cm3 that corresponds to 85 or 99% of theoretical maximum density (TMD), respectively). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published on other HMX-based formulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  19. Effects of void anisotropy on the ignition and growth rates of energetic materials

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Initiation of heterogeneous energetic materials is thought to occur at hot spots; reaction fronts propagate from sites of such hot spots into the surrounding material resulting in complete consumption of the material. Heterogeneous materials, such as plastic bonded explosives (PBXs) and pressed materials contain numerous voids, defects and interfaces at which hot spots can occur. Amongst the various mechanisms of hot spot formation, void collapse is considered to be the predominant one in the high strain rate loading conditions. It is established in the past the shape of the voids has a significant effect on the initiation behavior of energetic materials. In particular, void aspect ratio and orientations play an important role in this regard. This work aims to quantify the effects of void aspect ratio and orientation on the ignition and growth rates of chemical reaction from the hot spot. A wide range of aspect ratio and orientations is considered to establish a correlation between the ignition and growth rates and the void morphology. The ignition and growth rates are obtained from high fidelity reactive meso-scale simulations. The energetic material considered in this work is HMX and Tarver McGuire HMX decomposition model is considered to capture the reaction mechanism of HMX. The meso-scale simulations are performed using a Cartesian grid based Eulerian solver SCIMITAR3D. The void morphology is shown to have a significant effect on the ignition and growth rates of HMX.

  20. Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR

    NASA Astrophysics Data System (ADS)

    Pan, Guanfu

    2018-01-01

    The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.

  1. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    NASA Astrophysics Data System (ADS)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  2. 40 CFR 1048.250 - What records must I keep and make available to EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, including its origin and buildup, steps you took to ensure that it represents production engines... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Certifying Engine Families § 1048.250 What records must I keep and make available to EPA? (a) Send the...

  3. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephens, Richarad Burnite; Freeman, Richard R.; Van Woekom, L. D.

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000,more » renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.« less

  4. Progress Towards Microwave Ignition of Explosives

    NASA Astrophysics Data System (ADS)

    Curling, Mark; Collins, Adam; Dima, Gabriel; Proud, William

    2009-06-01

    Microwaves could provide a method of propellant ignition that does away with a traditional primer, making ammunition safer and suitable for Insensitive Munitions (IM) applications. By embedding a suitable material inside a propellant, it is postulated that microwaves could be used to stimulate hotspots, through direct heating or electrostatic discharge (arcing) across the energetic material. This paper reports on progress in finding these suitable materials. Graphite rod, magnetite cubes and powders of graphite, aluminium, copper oxide, and iron were irradiated in a conventional microwave oven. Temperature measurements were made using a shielded thermocouple and thermal paints. Only graphite rod and magnetite showed significant heating upon microwave exposure. The light output from arcing of iron, steel, iron pyrite, magnetite and graphite was measured in the same microwave oven as above. Sample mass and shape were correlated with arcing intensity. A strategy is proposed to create a homogeneous igniter material by embedding arcing materials within an insulator, Polymethylpentene (TPX). External discharges were transmitted through TPX, however no embedded samples were successful in generating an electrical breakdown suitable for propellant ignition.

  5. The effect of intraoral suction on oxygen-enriched surgical environments: a mechanism for reducing the risk of surgical fires.

    PubMed

    VanCleave, Andrea M; Jones, James E; McGlothlin, James D; Saxen, Mark A; Sanders, Brian J; Vinson, LaQuia A

    2014-01-01

    In this study, a mechanical model was applied in order to replicate potential surgical fire conditions in an oxygen-enriched environment with and without high-volume suction typical for dental surgical applications. During 41 trials, 3 combustion events were measured: an audible pop, a visible flash of light, and full ignition. In at least 11 of 21 trials without suction, all 3 conditions were observed, sometimes with an extent of fire that required early termination of the experimental trial. By contrast, in 18 of 20 with-suction trials, ignition did not occur at all, and in the 2 cases where ignition did occur, the fire was qualitatively a much smaller, candle-like flame. Statistically comparing these 3 combustion events in the no-suction versus with-suction trials, ignition (P = .0005), audible pop (P = .0211), and flash (P = .0092) were all significantly more likely in the no-suction condition. These results suggest a possible significant and new element to be added to existing surgical fire safety protocols toward making surgical fires the "never-events" they should be.

  6. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE PAGES

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James; ...

    2017-03-28

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  7. Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolodziej, Christopher P.; Pamminger, Michael; Sevik, James

    Previously we show that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flamemore » speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed. Our results showed that fuel laminar flame speed can have as big an effect on lean or EGR dilute engine operation as engine design parameters, with the largest effects seen during EGR dilute operation and when changes were made to cylinder charge motion.« less

  8. Extended temperature range ACPS thruster investigation

    NASA Technical Reports Server (NTRS)

    Blubaugh, A. L.; Schoenman, L.

    1974-01-01

    The successful hot fire demonstration of a pulsing liquid hydrogen/liquid oxygen and gaseous hydrogen/liquid oxygen attitude control propulsion system thruster is described. The test was the result of research to develop a simple, lightweight, and high performance reaction control system without the traditional requirements for extensive periods of engine thermal conditioning, or the use of complex equipment to convert both liquid propellants to gas prior to delivery to the engine. Significant departures from conventional injector design practice were employed to achieve an operable design. The work discussed includes thermal and injector manifold priming analyses, subscale injector chilldown tests, and 168 full scale and 550 N (1250 lbF) rocket engine tests. Ignition experiments, at propellant temperatures ranging from cryogenic to ambient, led to the generation of a universal spark ignition system which can reliably ignite an engine when supplied with liquid, two phase, or gaseous propellants. Electrical power requirements for spark igniter are very low.

  9. Experimental and numerical investigation on the ignition and combustion stability in solid fuel ramjet with swirling flow

    NASA Astrophysics Data System (ADS)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-08-01

    The present article investigates experimentally and numerically the ignition and flame stability of high-density polyethylene solid fuel with incoming swirling air through a solid fuel ramjet (SFRJ). A new design of swirler is proposed and used in this work. Experiments on connected pipes test facility were performed for SFRJ with and without swirl. An in-house code has been developed to simulate unsteady, turbulent, reacting, swirling flow in the SFRJ. Four different swirl intensities are utilized to study experimentally and numerically the effect of swirl number on the transient regression, ignition of the solid fuel in a hot-oxidizing flow and combustion phenomenon in the SFRJ. The results showed that using swirl flow decreases the ignition time delay, recirculation zone length, and the distance between the flame and the wall, meanwhile, increases the residence time, heat transfer, regression rate and mixing degree, thus, improving the combustion efficiency and stability.

  10. Progress on LMJ targets for ignition

    NASA Astrophysics Data System (ADS)

    Cherfils-Clérouin, C.; Boniface, C.; Bonnefille, M.; Dattolo, E.; Galmiche, D.; Gauthier, P.; Giorla, J.; Laffite, S.; Liberatore, S.; Loiseau, P.; Malinie, G.; Masse, L.; Masson-Laborde, P. E.; Monteil, M. C.; Poggi, F.; Seytor, P.; Wagon, F.; Willien, J. L.

    2009-12-01

    Targets designed to produce ignition on the Laser Megajoule (LMJ) are being simulated in order to set specifications for target fabrication. The LMJ experimental plans include the attempt of ignition and burn of an ICF capsule with 160 laser beams, delivering up to 1.4 MJ and 380 TW. New targets needing reduced laser energy with only a small decrease in robustness have then been designed for this purpose. Working specifically on the coupling efficiency parameter, i.e. the ratio of the energy absorbed by the capsule to the laser energy, has led to the design of a rugby-ball shaped cocktail hohlraum; with these improvements, a target based on the 240-beam A1040 capsule can be included in the 160-beam laser energy-power space. Robustness evaluations of these different targets shed light on critical points for ignition, which can trade off by tightening some specifications or by preliminary experimental and numerical tuning experiments.

  11. Ignition and Growth Modeling of Detonating LX-04 (85% HMX / 15% VITON) Using New and Previously Obtained Experimental Data

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2017-06-01

    An Ignition and Growth reactive flow model for detonating LX-04 (85% HMX / 15% Viton) was developed using new and previously obtained experimental data on: cylinder test expansion; wave curvature; failure diameter; and laser interferometric copper and tantalum foil free surface velocities and LiF interface particle velocity histories. A reaction product JWL EOS generated by the CHEETAH code compared favorably with the existing, well normalized LX-04 product JWL when both were used with the Ignition and Growth model. Good agreement with all existing experimental data was obtained. Keywords: LX-04, HMX, detonation, Ignition and Growth PACS:82.33.Vx, 82.40.Fp This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J. E.

    HE ignition caused by shear localization is the principal concern for safety analyses of postulated mechanical insults to explosive assemblies. Although prompt detonation from shock is certainly a concern, insults that lead to prompt detonation are associated with high velocity, and correspondingly rare. For high-density HMX assemblies, an impact speed (by a steel object) of 400 m/s is needed to develop a detonation in a run distance less than 30 mm. To achieve a steady plane shock, which results in the shortest run distance to detonation for a given peak pressure, the impactor diameter must exceed 60 mm, and thicknessmore » approach 20 mm. Thinner plates and/or smaller diameter ones require even higher impact velocity. Ignitions from shear localization, however, have been observed from impacts less than 50 m/s in Steven tests, less than 30 m/s from spigot impact tests, and less than 10 m/s from various drop tests. This lower velocity range is much frequent in postulated mechanical insults. Preliminary computer simulations and analyses of a variety of such tests have suggested that although each is accompanied by shear localization, there are differing detailed mechanisms at work that cause the ignitions. We identify those mechanisms that may be at work in a variety of such tests, and suggest how models of shear ignition, such as HERMES, may be revised and calibrated to conform to experiment. We suggest combining additional experiments with computer simulations and model development to begin confirm or uncover mechanisms that may be at work in a specific postulated event.« less

  13. Determination of Ignitable Liquids in Fire Debris: Direct Analysis by Electronic Nose

    PubMed Central

    Ferreiro-González, Marta; Barbero, Gerardo F.; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.

    2016-01-01

    Arsonists usually use an accelerant in order to start or accelerate a fire. The most widely used analytical method to determine the presence of such accelerants consists of a pre-concentration step of the ignitable liquid residues followed by chromatographic analysis. A rapid analytical method based on headspace-mass spectrometry electronic nose (E-Nose) has been developed for the analysis of Ignitable Liquid Residues (ILRs). The working conditions for the E-Nose analytical procedure were optimized by studying different fire debris samples. The optimized experimental variables were related to headspace generation, specifically, incubation temperature and incubation time. The optimal conditions were 115 °C and 10 min for these two parameters. Chemometric tools such as hierarchical cluster analysis (HCA) and linear discriminant analysis (LDA) were applied to the MS data (45–200 m/z) to establish the most suitable spectroscopic signals for the discrimination of several ignitable liquids. The optimized method was applied to a set of fire debris samples. In order to simulate post-burn samples several ignitable liquids (gasoline, diesel, citronella, kerosene, paraffin) were used to ignite different substrates (wood, cotton, cork, paper and paperboard). A full discrimination was obtained on using discriminant analysis. This method reported here can be considered as a green technique for fire debris analyses. PMID:27187407

  14. Direct Final Rule for Technical Amendments for Marine Spark-Ignition Engines and Vessels

    EPA Pesticide Factsheets

    Rule published September 16, 2010 to make technical amendments to the design standard for portable marine fuel tanks. This rule incorporates safe recommended practices, developed through industry consensus.

  15. A Study of Flame Physics and Solid Propellant Rocket Physics

    DTIC Science & Technology

    2007-10-01

    and ellipsoids, and the packing of pellets relevant to igniter modeling. Other topics are the instabilities of smolder waves, premixed flame...instabilities in narrow tubes, and flames supported by a spinning porous plug burner . Much of this work has been reported in the high-quality archival...perchlorate in fuel binder, the combustion of model propellant packs of ellipses and ellipsoids, and the packing of pellets relevant to igniter modeling

  16. 29 CFR 1915.504 - Fire watches.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...

  17. 29 CFR 1915.504 - Fire watches.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...

  18. 29 CFR 1915.504 - Fire watches.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...

  19. 29 CFR 1915.504 - Fire watches.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...

  20. 29 CFR 1915.504 - Fire watches.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hot work is carried out on or near insulation, combustible coatings, or sandwich-type construction...) The hot work is close enough to cause ignition through heat radiation or conduction on the following...

  1. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  2. On chemical inhibition of shock wave ignition of hydrogen-oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Eremin, A. V.; Mikheyeva, E. Yu

    2018-01-01

    In this work an influence of the wide range of various inhibitors, namely CCl4, CF3H, C2F4Br2, (CH3O)3P, CF3I and C3F7I on shock-induced ignition of hydrogen was experimentally investigated. Observed temperature dependencies of induction times indicates that CF3H and (CH3O)3P do not show noticeable inhibiting activity at given conditions, while the effectiveness of halogen-containing specie dramatically increases in a row Cl → Br → I. It is shown that the most effective inhibitors of ignition of hydrogen-oxygen mixtures are iodinated hydrocarbons CF3I and C3F7I.

  3. Experimental investigation of the auto-ignition characteristics of oxygenated reference fuel compounds

    NASA Astrophysics Data System (ADS)

    Walton, Stephen Michael

    The increased use of biofuels presents an opportunity to improve combustion performance while simultaneously reducing greenhouse gases and pollutant emissions. This work focused on improving the fundamental understanding of the auto-ignition chemistry of oxygenated reference fuel compounds. A systematic study of the effects of ester structure on ignition chemistry was performed using the University of Michigan Rapid Compression Facility. The ignition properties of the ester compounds were investigated over a broad range of pressures (P=5-20 atm) and temperatures (T=850-1150 K) which are directly relevant to advanced combustion engine strategies. Ignition delay times for five esters were determined using the RCF. The esters were selected to systematically consider the chemical structure of the compounds. Three esters were saturated: methyl butanoate, butyl methanoate, and ethyl propanoate; and two were unsaturated: methyl crotonate and methyl trans-3-hexenoate. The unsaturated esters were more reactive than their saturated counterparts, with the largest unsaturated ester, methyl trans-3-hexenoate having the highest reactivity. Two isomers of the saturated esters, butyl methanoate and ethyl propanoate, were more reactive than the isomer methyl butanoate. The results are explained if we assume that butyl methanoate and ethyl propanoate form intermediate ring structures which decompose more rapidly than esters such as methyl butanoate, which do not form ring structures. Modeling studies of the reaction chemistry were conducted for methyl butanoate and ethyl propanoate, for which detailed mechanisms were available in the literature. The new experimental data indicated that literature rate coefficients for some of the methyl butanoate/HO2 reactions were too fast. Modifying these within the theoretical uncertainties for the reaction rates, led to excellent agreement between the model predictions and the experimental data. Comparison of the modeling results with the intermediates measured during methyl butanoate ignition indicated that pathways leading to the formation of small hydrocarbons are relatively well represented in the reaction mechanism. The results of this work provide archival benchmark data for improved understanding of the dominant reaction pathways and species controlling the auto-ignition of oxygenated reference fuel compounds. These data also provide a path for continued development of chemical kinetic models to optimize practical combustion systems.

  4. Sensitivity of combustion and ignition characteristics of the solid-fuel charge of the microelectromechanical system of a microthruster to macrokinetic and design parameters

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Ermolaeva, E. M.; Dobrego, K. V.; Bondarenko, V. P.; Dolgii, L. N.

    2012-07-01

    We have developed a sensitivity analysis permitting effective estimation of the change in the impulse responses of a microthrusters and in the ignition characteristics of the solid-fuel charge caused by the variation of the basic macrokinetic parameters of the mixed fuel and the design parameters of the microthruster's combustion chamber. On the basis of the proposed sensitivity analysis, we have estimated the spread of both the propulsive force and impulse and the induction period and self-ignition temperature depending on the macrokinetic parameters of combustion (pre-exponential factor, activation energy, density, and heat content) of the solid-fuel charge of the microthruster. The obtained results can be used for rapid and effective estimation of the spread of goal functions to provide stable physicochemical characteristics and impulse responses of solid-fuel mixtures in making and using microthrusters.

  5. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, P.

    2012-08-29

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF.more » NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.« less

  6. Development of Diesel Engine Operated Forklift Truck for Explosive Gas Atmospheres

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Rajendra Kumar; Singh, Arvind Kumar; Ahirwal, Bhagirath; Sinha, Amalendu

    2018-02-01

    For the present study, a prototype diesel engine operated Forklift truck of 2 t capacity is developed for explosive gas atmosphere. The parts of the Forklift truck are assessed against risk of ignition of the explosive gases, vapors or mist grouped in Gr. IIA and having ignition temperature more than 200°C. Identification of possible sources of ignition and their control or prevention is the main objective of this work. The design transformation of a standard Forklift truck into a special Forklift truck is made on prototype basis. The safety parameters of the improved Forklift truck are discussed in this paper. The specially designed Forklift truck is useful in industries where explosive atmospheres may present during normal working conditions and risk of explosion is a concern during handling or transportation of materials. This indigenous diesel engine based Forklift truck for explosive gas atmosphere classified as Zone 1 and Zone 2 area and gas group IIA is developed first time in India in association with the Industry.

  7. Numerical investigation of spontaneous flame propagation under RCCI conditions

    DOE PAGES

    Bhagatwala, Ankit V; Sankaran, Ramanan; Kokjohn, Sage; ...

    2015-06-30

    This paper presents results from one and two-dimensional direct numerical simulations under Reactivity Controlled Compression Ignition (RCCI) conditions of a primary reference fuel (PRF) mixture consisting of n-heptane and iso-octane. RCCI uses in-cylinder blending of two fuels with different autoignition characteristics to control combustion phasing and the rate of heat release. These simulations employ an improved model of compression heating through mass source/sink terms developed in a previous work by Bhagatwala et al. (2014), which incorporates feedback from the flow to follow a predetermined experimental pressure trace. Two-dimensional simulations explored parametric variations with respect to temperature stratification, pressure profiles andmore » n-heptane concentration. Furthermore, statistics derived from analysis of diffusion/reaction balances locally normal to the flame surface were used to elucidate combustion characteristics for the different cases. Both deflagration and spontaneous ignition fronts were observed to co-exist, however it was found that higher n-heptane concentration provided a greater degree of flame propagation, whereas lower n-heptane concentration (higher fraction of iso-octane) resulted in more spontaneous ignition fronts. A significant finding was that simulations initialized with a uniform initial temperature and a stratified n-heptane concentration field, resulted in a large fraction of combustion occurring through flame propagation. The proportion of spontaneous ignition fronts increased at higher pressures due to shorter ignition delay when other factors were held constant. For the same pressure and fuel concentration, the contribution of flame propagation to the overall combustion was found to depend on the level of thermal stratification, with higher initial temperature gradients resulting in more deflagration and lower gradients generating more ignition fronts. Statistics of ignition delay are computed to assess the Zel’dovich (1980) theory for the mode of combustion propagation based on ignition delay gradients.« less

  8. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    NASA Astrophysics Data System (ADS)

    Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo

    2018-03-01

    Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  9. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE PAGES

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...

    2016-05-08

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  10. NIF Target Designs and OMEGA Experiments for Shock-Ignition Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    2012-10-01

    Shock ignition (SI)footnotetextR. Betti et al., Phys. Rev. Lett. 98, 155001 (2007). is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs require the addition of a high-intensity (˜5 x 10^15 W/cm^2) laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the imploding capsule. Achieving ignition with SI requires the laser spike to generate an ignitor shock with a launching pressure typically in excess of ˜300 Mbar. At the high laser intensities required during the spike pulse, stimulated Raman (SRS) and Brillouin scattering (SBS) could reflect a significant fraction of the incident light. In addition, SRS and the two-plasmon-decay instability can accelerate hot electrons into the shell and preheat the fuel. Since the high-power spike occurs at the end of the pulse when the areal density of the shell is several tens of mg/cm^2, shock-ignition fuel layers are shielded against hot electrons with energies below 150 keV. This paper will present data for a set of OMEGA experiments that were designed to study laser--plasma interactions during the spike pulse. In addition, these experiments were used to demonstrate that high-pressure shocks can be produced in long-scale-length plasmas with SI-relevant intensities. Within the constraints imposed by the hydrodynamics of strong shock generation and the laser--plasma instabilities, target designs for SI experiments on the NIF will be presented. Two-dimensional radiation--hydrodynamic simulations of SI target designs for the NIF predict ignition in the polar-drive beam configuration at sub-MJ laser energies. Design robustness to various 1-D effects and 2-D nonuniformities has been characterized. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  11. Compositional effects on the ignition of FACE gasolines [Compositional effects on the ignition of FACE gasoline fuels: experiments, surrogate fuel formulation, and chemical kinetic modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco

    As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less

  12. The assessment of low probability containment failure modes using dynamic PRA

    NASA Astrophysics Data System (ADS)

    Brunett, Acacia Joann

    Although low probability containment failure modes in nuclear power plants may lead to large releases of radioactive material, these modes are typically crudely modeled in system level codes and have large associated uncertainties. Conventional risk assessment techniques (i.e. the fault-tree/event-tree methodology) are capable of accounting for these failure modes to some degree, however, they require the analyst to pre-specify the ordering of events, which can vary within the range of uncertainty of the phenomena. More recently, dynamic probabilistic risk assessment (DPRA) techniques have been developed which remove the dependency on the analyst. Through DPRA, it is now possible to perform a mechanistic and consistent analysis of low probability phenomena, with the timing of the possible events determined by the computational model simulating the reactor behavior. The purpose of this work is to utilize DPRA tools to assess low probability containment failure modes and the driving mechanisms. Particular focus is given to the risk-dominant containment failure modes considered in NUREG-1150, which has long been the standard for PRA techniques. More specifically, this work focuses on the low probability phenomena occurring during a station blackout (SBO) with late power recovery in the Zion Nuclear Power Plant, a Westinghouse pressurized water reactor (PWR). Subsequent to the major risk study performed in NUREG-1150, significant experimentation and modeling regarding the mechanisms driving containment failure modes have been performed. In light of this improved understanding, NUREG-1150 containment failure modes are reviewed in this work using the current state of knowledge. For some unresolved mechanisms, such as containment loading from high pressure melt ejection and combustion events, additional analyses are performed using the accident simulation tool MELCOR to explore the bounding containment loads for realistic scenarios. A dynamic treatment in the characterization of combustible gas ignition is also presented in this work. In most risk studies, combustion is treated simplistically in that it is assumed an ignition occurs if the gas mixture achieves a concentration favorable for ignition under the premise that an adequate ignition source is available. However, the criteria affecting ignition (such as the magnitude, location and frequency of the ignition sources) are complicated. This work demonstrates a technique for characterizing the properties of an ignition source to determine a probability of ignition. The ignition model developed in this work and implemented within a dynamic framework is utilized to analyze the implications and risk significance of late combustion events. This work also explores the feasibility of using dynamic event trees (DETs) with a deterministic sampling approach to analyze low probability phenomena. The flexibility of this approach is demonstrated through the rediscretization of containment fragility curves used in construction of the DET to show convergence to a true solution. Such a rediscretization also reduces the computational burden introduced through extremely fine fragility curve discretization by subsequent refinement of fragility curve regions of interest. Another advantage of the approach is the ability to perform sensitivity studies on the cumulative distribution functions (CDFs) used to determine branching probabilities without the need for rerunning the simulation code. Through review of the NUREG-1150 containment failure modes using the current state of knowledge, it is found that some failure modes, such as Alpha and rocket, can be excluded from further studies; other failure modes, such as failure to isolate, bypass, high pressure melt ejection (HPME), combustion-induced failure and overpressurization are still concerns to varying degrees. As part of this analysis, scoping studies performed in MELCOR show that HPME and the resulting direct containment heating (DCH) do not impose a significant threat to containment integrity. Additional scoping studies regarding the effect of recovery actions on in-vessel hydrogen generation show that reflooding a partially degraded core do not significantly affect hydrogen generation in-vessel, and the NUREG-1150 assumption that insufficient hydrogen is generated in-vessel to produce an energetic deflagration is confirmed. The DET analyses performed in this work show that very late power recovery produces the potential for very energetic combustion events which are capable of failing containment with a non-negligible probability, and that containment cooling systems have a significant impact on core concrete attack, and therefore combustible gas generation ex-vessel. Ultimately, the overall risk of combustion-induced containment failure is low, but its conditional likelihood can have a significant effect on accident mitigation strategies. It is also shown in this work that DETs are particularly well suited to examine low probability events because of their ability to rediscretize CDFs and observe solution convergence.

  13. New insights into the shock tube ignition of H 2/O 2 at low to moderate temperatures using high-speed end-wall imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninnemann, Erik; Koroglu, Batikan; Pryor, Owen

    In this study, the effects of pre-ignition energy releases on H 2—O 2 mixtures were explored in a shock tube with the aid of high-speed imaging and conventional pressure and emission diagnostics. Ignition delay times and time-resolved camera image sequences were taken behind the reflected shockwaves for two hydrogen mixtures. High concentration experiments spanned temperatures between 858 and 1035 K and pressures between 2.74 and 3.91 atm for a 15% H 2\\18% O 2\\Ar mixture. Low concentration data were also taken at temperatures between 960 and 1131 K and pressures between 3.09 and 5.44 atm for a 4% H 2\\2%more » O 2\\Ar mixture. These two model mixtures were chosen as they were the focus of recent shock tube work conducted in the literature. Experiments were performed in both a clean and dirty shock tube facility; however, no deviations in ignition delay times between the two types of tests were apparent. The high-concentration mixture (15%H 2\\18%O 2\\Ar) experienced energy releases in the form of deflagration flames followed by local detonations at temperatures < 1000 K. Measured ignition delay times were compared to predictions by three chemical kinetic mechanisms: GRI-Mech 3.0, AramcoMech 2.0, and Burke's et al. (2012) mechanisms. It was found that when proper thermodynamic assumptions are used, all mechanisms were able to accurately predict the experiments with superior performance from the well-validated AramcoMech 2.0 and Burke et al. mechanisms. Current work provides better guidance in using available literature hydrogen shock tube measurements, which spanned more than 50 years but were conducted without the aid of high-speed visualization of the ignition process, and their modeling using combustion kinetic mechanisms.« less

  14. New insights into the shock tube ignition of H 2/O 2 at low to moderate temperatures using high-speed end-wall imaging

    DOE PAGES

    Ninnemann, Erik; Koroglu, Batikan; Pryor, Owen; ...

    2017-09-21

    In this study, the effects of pre-ignition energy releases on H 2—O 2 mixtures were explored in a shock tube with the aid of high-speed imaging and conventional pressure and emission diagnostics. Ignition delay times and time-resolved camera image sequences were taken behind the reflected shockwaves for two hydrogen mixtures. High concentration experiments spanned temperatures between 858 and 1035 K and pressures between 2.74 and 3.91 atm for a 15% H 2\\18% O 2\\Ar mixture. Low concentration data were also taken at temperatures between 960 and 1131 K and pressures between 3.09 and 5.44 atm for a 4% H 2\\2%more » O 2\\Ar mixture. These two model mixtures were chosen as they were the focus of recent shock tube work conducted in the literature. Experiments were performed in both a clean and dirty shock tube facility; however, no deviations in ignition delay times between the two types of tests were apparent. The high-concentration mixture (15%H 2\\18%O 2\\Ar) experienced energy releases in the form of deflagration flames followed by local detonations at temperatures < 1000 K. Measured ignition delay times were compared to predictions by three chemical kinetic mechanisms: GRI-Mech 3.0, AramcoMech 2.0, and Burke's et al. (2012) mechanisms. It was found that when proper thermodynamic assumptions are used, all mechanisms were able to accurately predict the experiments with superior performance from the well-validated AramcoMech 2.0 and Burke et al. mechanisms. Current work provides better guidance in using available literature hydrogen shock tube measurements, which spanned more than 50 years but were conducted without the aid of high-speed visualization of the ignition process, and their modeling using combustion kinetic mechanisms.« less

  15. Thermal Loss Determination for a Small Internal Combustion Engine

    DTIC Science & Technology

    2014-03-27

    calibration temperature rc Compression ratio S̄ p Mean piston speed T Temperature Vc Combustion chamber volume Vd Displacement volume Wc,i Indicated work...are typically fueled by gasoline, ignited by a spark, and operate on either a two or four-stroke cycle. Compression-ignition diesel engines as seen in...engine, the fuel is usually withheld from the cylinder until the combustion event is desired as in diesel engines. Similarly, the fuel in a gas

  16. The Effect of Particle Properties on Hot Particle Spot Fire Ignition

    NASA Astrophysics Data System (ADS)

    Zak, Casey David

    The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental data. Model simulations identify the important physics controlling ignition for different sized particles and clarify many of the experimental trends. The results show a hyperbolic relationship between particle size and temperature, with the larger particles requiring lower temperatures to ignite the cellulose than the smaller particles. For very small spheres, the temperature required for ignition is very sensitive to particle size, while for very large spheres, ignition temperature shows only a weak dependence on that variable. Flaming ignition of powdered cellulose by particles ≤ 11 mm in size requires particle temperatures of at least 600°C. Ignition has not been observed for 2 mm particles at temperatures up to 1100°C, but the statistical analysis indicates that ignition by particles 2 mm and smaller may be possible at temperatures above 950°C. No clear trend is observed with particle metal type, but copper particles require slightly higher ignition temperatures and seem more sensitive to experimental variation, likely due to their relatively high thermal conductivity. High-speed Schlieren images taken during the ignition experiments show that once particles land, they volatilize the powdered cellulose and the fuel vapor diffuses out into the surrounding air. Ignition occurs in the mixing layer between the vapor and the air, either during the initial expansion of the pyrolyzate away from the particle, or after a stable plume of volatiles has formed. Modeling results indicate that in the large-particle, high-conductivity limit, the particle's surface temperature remains close to its impact temperature over the timescales of ignition. As a result, particle thermal properties are unimportant and ignition occurs when heat generation in the mixing layer overcomes losses to the surrounding air. When the large-particle limit does not apply, the particle cools upon impact with the fuel bed. In addition to the losses to the surrounding air, the reaction zone experiences losses to the cooling particle and must generate a larger amount of heat for ignition to occur. Because cooling is so important, the initial bulk energy is more useful than impact temperature for predicting ignition by smaller particles. Along those lines, the additional heat of melting available to molten particles helps to resist particle cooling; as such, molten aluminum particles 3.5 -- 7 mm in diameter can ignite at lower temperatures than solid particles of the same size with similar thermal properties. Decreasing volumetric heat capacity does increase minimum ignition temperature somewhat, but this effect is reduced for larger particles. Emissivity does not appear to have a significant effect on ignition propensity, suggesting that, over the timescales of ignition, radiation heat transfer is small relative to other modes of particle heat loss.

  17. 4D Imaging in Thermally Damaged Polymer-bonded Explosives

    NASA Astrophysics Data System (ADS)

    Parker, Gary; Bourne, Neil; Eastwood, David; Jacques, Simon; Dickson, Peter; Lopez-Pulliam, Ian; Heatwole, Eric; Holmes, Matt; Smilowitz, Laura; Rau, Christoph

    2017-06-01

    PBXs are composites in which explosive crystallites are bound by compliant polymers. There are safety benefits derived from compliant binders; e.g. they mitigate some effects of mechanical insult. However, during elevated thermal insult, degradation of binder and HE crystallites can modify the morphology in ways that can reduce safety margins by increasing post-ignition reaction violence. The response of thermally damaged PBXs, before and following self-ignition has safety implications and it is desirable to understand the fundamental physics controlling the rate of pre-ignition thermal runaway and the post-ignition flame propagation in thermal accident scenarios. Coupled with this there is an ongoing effort to make in situ, time-resolved, measurements of the size, nature and extent of micro-porosity in PBX 9501 during thermal decomposition. We report on PBX heating experiments conducted at the Diamond synchrotron with both PBX 9501 and an inert mock. During heating, CT radiography was conducted in order to observe void production and interconnectivity of gas flow pathways, as well as to monitor phase changes within the crystals. We explore the variation of behavior as a function of heating rate, soak temperature, soak time and confinement.

  18. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  19. Bonfire-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  20. Large eddy simulation of forced ignition of an annular bluff-body burner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, V.; Domingo, P.; Vervisch, L.

    2010-03-15

    The optimization of the ignition process is a crucial issue in the design of many combustion systems. Large eddy simulation (LES) of a conical shaped bluff-body turbulent nonpremixed burner has been performed to study the impact of spark location on ignition success. This burner was experimentally investigated by Ahmed et al. [Combust. Flame 151 (2007) 366-385]. The present work focuses on the case without swirl, for which detailed measurements are available. First, cold-flow measurements of velocities and mixture fractions are compared with their LES counterparts, to assess the prediction capabilities of simulations in terms of flow and turbulent mixing. Timemore » histories of velocities and mixture fractions are recorded at selected spots, to probe the resolved probability density function (pdf) of flow variables, in an attempt to reproduce, from the knowledge of LES-resolved instantaneous flow conditions, the experimentally observed reasons for success or failure of spark ignition. A flammability map is also constructed from the resolved mixture fraction pdf and compared with its experimental counterpart. LES of forced ignition is then performed using flamelet fully detailed tabulated chemistry combined with presumed pdfs. Various scenarios of flame kernel development are analyzed and correlated with typical flow conditions observed in this burner. The correlations between, velocities and mixture fraction values at the sparking time and the success or failure of ignition, are then further discussed and analyzed. (author)« less

  1. Catalytic Ignition and Upstream Reaction Propagation in Monolith Reactors

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Miller, Fletcher J.; T'ien, James S.

    2007-01-01

    Using numerical simulations, this work demonstrates a concept called back-end ignition for lighting-off and pre-heating a catalytic monolith in a power generation system. In this concept, a downstream heat source (e.g. a flame) or resistive heating in the downstream portion of the monolith initiates a localized catalytic reaction which subsequently propagates upstream and heats the entire monolith. The simulations used a transient numerical model of a single catalytic channel which characterizes the behavior of the entire monolith. The model treats both the gas and solid phases and includes detailed homogeneous and heterogeneous reactions. An important parameter in the model for back-end ignition is upstream heat conduction along the solid. The simulations used both dry and wet CO chemistry as a model fuel for the proof-of-concept calculations; the presence of water vapor can trigger homogenous reactions, provided that gas-phase temperatures are adequately high and there is sufficient fuel remaining after surface reactions. With sufficiently high inlet equivalence ratio, back-end ignition occurs using the thermophysical properties of both a ceramic and metal monolith (coated with platinum in both cases), with the heat-up times significantly faster for the metal monolith. For lower equivalence ratios, back-end ignition occurs without upstream propagation. Once light-off and propagation occur, the inlet equivalence ratio could be reduced significantly while still maintaining an ignited monolith as demonstrated by calculations using complete monolith heating.

  2. Turbulent flame spreading mechanisms after spark ignition

    NASA Astrophysics Data System (ADS)

    Subramanian, V.; Domingo, Pascale; Vervisch, Luc

    2009-12-01

    Numerical simulation of forced ignition is performed in the framework of Large-Eddy Simulation (LES) combined with a tabulated detailed chemistry approach. The objective is to reproduce the flame properties observed in a recent experimental work reporting probability of ignition in a laboratory-scale burner operating with Methane/air non premixed mixture [1]. The smallest scales of chemical phenomena, which are unresolved by the LES grid, are approximated with a flamelet model combined with presumed probability density functions, to account for the unresolved part of turbulent fluctuations of species and temperature. Mono-dimensional flamelets are simulated using GRI-3.0 [2] and tabulated under a set of parameters describing the local mixing and progress of reaction. A non reacting case was simulated at first, to study the unsteady velocity and mixture fields. The time averaged velocity and mixture fraction, and their respective turbulent fluctuations, are compared against the experimental measurements, in order to estimate the prediction capabilities of LES. The time history of axial and radial components of velocity and mixture fraction is cumulated and analysed for different burner regimes. Based on this information, spark ignition is mimicked on selected ignition spots and the dynamics of kernel development analyzed to be compared against the experimental observations. The possible link between the success or failure of the ignition and the flow conditions (in terms of velocity and composition) at the sparking time are then explored.

  3. Low fuel convergence path to ignition on the NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Molvig, Kim; Gianakon, T. A.; Woods, C. N.; Krasheninnikova, N. S.; Hsu, S. C.; Schmidt, D. W.; Dodd, E. S.; Zylstra, Alex; Scheiner, B.; McKenty, P.; Campbell, E. M.; Froula, D.; Betti, R.; Michel, T.

    2017-10-01

    A novel concept for achieving ignition on the NIF is proposed that obviates current issues plaguing single-shell high-convergence capsules. A large directly-driven Be shell is designed to robustly implode two nested internal shells by efficiently converting 1.7MJ of laser energy from a 6 ns, low intensity laser pulse, into a 1 ns dynamic pressure pulse to ignite and burn a central liquid DT core after a fuel convergence of only 9. The short, low intensity laser pulse mitigates LPI allowing more uniform laser drive of the target and eliminates hot e-, preheat and laser zooming issues. Preliminary rad-hydro simulations predict ignition initiation with 90% maximum inner shell velocity, before deceleration Rayleigh-Taylor growth can cause significant pusher shell mix into the compressed DT fuel. The gold inner pusher shell reduces pre-ignition radiation losses from the fuel allowing ignition to occur at 2.5keV. Further 2D simulations show that the short pulse design results in a spatially uniform kinetic drive that is tolerant to variations in laser cone power. A multi-pronged effort, in collaboration with LLE, is progressing to optimize this design for NIF's PDD laser configuration. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under contract DE-FG02-051ER54810.

  4. High-resolution 3D simulations of NIF ignition targets performed on Sequoia with HYDRA

    NASA Astrophysics Data System (ADS)

    Marinak, M. M.; Clark, D. S.; Jones, O. S.; Kerbel, G. D.; Sepke, S.; Patel, M. V.; Koning, J. M.; Schroeder, C. R.

    2015-11-01

    Developments in the multiphysics ICF code HYDRA enable it to perform large-scale simulations on the Sequoia machine at LLNL. With an aggregate computing power of 20 Petaflops, Sequoia offers an unprecedented capability to resolve the physical processes in NIF ignition targets for a more complete, consistent treatment of the sources of asymmetry. We describe modifications to HYDRA that enable it to scale to over one million processes on Sequoia. These include new options for replicating parts of the mesh over a subset of the processes, to avoid strong scaling limits. We consider results from a 3D full ignition capsule-only simulation performed using over one billion zones run on 262,000 processors which resolves surface perturbations through modes l = 200. We also report progress towards a high-resolution 3D integrated hohlraum simulation performed using 262,000 processors which resolves surface perturbations on the ignition capsule through modes l = 70. These aim for the most complete calculations yet of the interactions and overall impact of the various sources of asymmetry for NIF ignition targets. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Shaw, J. G.; Seka, W.; Epstein, R.; Short, R. W.; Follett, R. K.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Michel, P.; Chapman, T.; Hohenberger, M.

    2017-10-01

    Laser-plasma interaction (LPI) instabilities, such as stimulated Raman scattering (SRS) and two-plasmon decay, can be detrimental for direct-drive inertial confinement fusion because of target preheat by the high-energy electrons they generate. The radiation-hydrodynamic code DRACO was used to design planar-target experiments at the National Ignition Facility that generated plasma and interaction conditions relevant to ignition direct-drive designs (IL 1015W/cm2 , Te > 3 keV, density gradient scale lengths of Ln 600 μm). Laser-energy conversion efficiency to hot electrons of 0.5% to 2.5% with temperature of 45 to 60 keV was inferred from the experiment when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014W/cm2 . LPI was dominated by SRS, as indicated by the measured scattered-light spectra. Simulations of SRS using the LPI code LPSE have been performed and compared with predictions of theoretical models. Implications for ignition-scale direct-drive experiments will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Higher Velocity High-Foot Implosions on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, Debra

    2014-10-01

    After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Studies of Carbonization Process on the Production of Durian Peel Biobriquettes with Mixed Biomass Coconut and Palm Shells

    NASA Astrophysics Data System (ADS)

    Sari, Ellyta; Pasymi; Khatab, Umar; Desmiarti, Reni; Ariansyah, Rian; Hariadi; Sutra

    2018-03-01

    Biobriquettes as alternative energy that can replace the role of kerosene. Biobriquettes made from agricultural waste biomass. Biobriquettes durian peel has been researched and developed continuously to obtain optimal quality in terms of calorific value, compressive strength and duration of ignition. In making durian peel biobriquettes needed other biomass mix to sustain duration of Ignition for biobriquettes durian skin quickly burned out. Stages of making biobriquettes durian skin are: material of drying, carbonization of biomass, grinding, mixing with adhesives, and printing. Carbonization process is a process that is important in obtaining the biomass charcoal. Carbonization is done by means of karbonisator pyrolysis. The purpose of this research is to study the process of carbonization to obtain biobriquettes durian skin that of quality in terms of value compressive strength, calorific value, and duration of ignition. Variations that done was kind mix of biomass,coconut shells and palm shells with the massa ratio 2 : 1, type of adhesive used tapioca powder and banana peels, carbonization of temperature 200°C. 300°C and 400 °C. The results showed that the highest compressive strength of the durian skin with a mixture of coconut shell and adhesive tapioca powder and carbonization temperature of 300 °C namely 12,7 g/cm2. The calorific value of the highest on the mix of skin durian with coconut shells and adhesive banana skin with temperature of carbonization 400 °C ie 6040 cal/g, and duration of ignition highest on a mixture of skin durian with coconut shell and adhesive banana skin at a temperature of carbonization 300 °C is 73 minutes.

  8. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doleans, Marc

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  9. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  10. Ignition and monitoring technique for plasma processing of multicell superconducting radio-frequency cavities

    DOE PAGES

    Doleans, Marc

    2016-12-27

    In this study, an in-situ plasma processing technique has been developed at the Spallation Neutron Source (SNS) to improve the performance of the superconducting radio-frequency (SRF) cavities in operation. The technique uses a low-density reactive neon-oxygen plasma at room-temperature to improve the surface work function, to help remove adsorbed gases on the RF surface and to reduce its secondary emission yield. SNS SRF cavities are six-cell elliptical cavities and the plasma typically ignites in the cell where the electric field is the highest. This article will detail a technique that was developed to ignite and monitor the plasma in eachmore » cell of the SNS cavities.« less

  11. Oxygen-Methane Thruster

    NASA Technical Reports Server (NTRS)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  12. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  13. Numerical investigation of spray ignition of a multi-component fuel surrogate

    NASA Astrophysics Data System (ADS)

    Backer, Lara; Narayanaswamy, Krithika; Pepiot, Perrine

    2014-11-01

    Simulating turbulent spray ignition, an important process in engine combustion, is challenging, since it combines the complexity of multi-scale, multiphase turbulent flow modeling with the need for an accurate description of chemical kinetics. In this work, we use direct numerical simulation to investigate the role of the evaporation model on the ignition characteristics of a multi-component fuel surrogate, injected as droplets in a turbulent environment. The fuel is represented as a mixture of several components, each one being representative of a different chemical class. A reduced kinetic scheme for the mixture is extracted from a well-validated detailed chemical mechanism, and integrated into the multiphase turbulent reactive flow solver NGA. Comparisons are made between a single-component evaporation model, in which the evaporating gas has the same composition as the liquid droplet, and a multi-component model, where component segregation does occur. In particular, the corresponding production of radical species, which are characteristic of the ignition of individual fuel components, is thoroughly analyzed.

  14. Ignition delays, heats of combustion, and reaction rates of aluminum alkyl derivatives used as ignition and combustion enhancers for supersonic combustors

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Harlowe, W. W.; Schwab, S.

    1992-01-01

    The work was based on adapting an apparatus and procedure developed at Southwest Research Institute for rating the ignition quality of fuels for diesel engines. Aluminum alkyls and various Lewis-base adducts of these materials, both neat and mixed 50/50 with pure JP-10 hydrocarbon, were injected into the combustion bomb using a high-pressure injection system. The bomb was pre-charged with air that was set at various initial temperatures and pressures for constant oxygen density. The ignition delay times were determined for the test materials at these different initial conditions. The data are presented in absolute terms as well as comparisons with the parent alkyls. The relative heats of reaction of the various test materials were estimated based on a computation of the heat release, using the pressure data recorded during combustion in the bomb. In addition, the global reaction rates for each material were compared at a selected tmperature and pressure.

  15. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2) a 98-species version including nitric oxide formation reactions. Development of reduced mechanisms is necessary because the detailed mechanism is computationally prohibitive in three-dimensional CFD and chemical kinetics simulations. Simulations of Partial Fuel Stratification (PFS), a GCI strategy, have been performed using CONVERGE with the 96-species reduced mechanism developed in this work for a 4-component gasoline surrogate. Comparison is made to experimental data from the Sandia HCCI/GCI engine at a compression ratio 14:1 at intake pressures of 1 bar and 2 bar. Analysis of the heat release and temperature in the different equivalence ratio regions reveals that sequential auto-ignition of the stratified charge occurs in order of increasing equivalence ratio for 1 bar intake pressure and in order of decreasing equivalence ratio for 2 bar intake pressure. Increased low- and intermediate-temperature heat release with increasing equivalence ratio at 2 bar intake pressure compensates for decreased temperatures in higher-equivalence ratio regions due to evaporative cooling from the liquid fuel spray and decreased compression heating from lower values of the ratio of specific heats. The presence of low- and intermediate-temperature heat release at 2 bar intake pressure alters the temperature distribution of the mixture stratification before hot-ignition, promoting the desired sequential auto-ignition. At 1 bar intake pressure, the sequential auto-ignition occurs in the reverse order compared to 2 bar intake pressure and too fast for useful reduction of the maximum pressure rise rate compared to HCCI. Additionally, the premixed portion of the charge auto-ignites before the highest-equivalence ratio regions. Conversely, at 2 bar intake pressure, the premixed portion of the charge auto-ignites last, after the higher-equivalence ratio regions. More importantly, the sequential auto-ignition occurs over a longer time period for 2 bar intake pressure than at 1 bar intake pressure such that a sizable reduction in the maximum pressure rise rate compared to HCCI can be achieved.

  16. Ignition of PBXW-115 Due to Electrostatic Discharge

    DTIC Science & Technology

    1991-05-01

    observations, a model describing the shock ignition of a solid explosive has been developed. This work was funded by the Office Of Naval Technology...analytical model , which is discussed in Chapter 6, has demonstrated that if ESD induces a thermal explosion in an arc channel, then the reaction can be...voltage electrode to measure the current change, dI/dt, through the sample. The dI/dt data were used to Epon 815 Resin, Miller Stephenson Chemical Co

  17. Development and Characterization of a 16.3 keV X-Ray Source at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Barrios, M. A.; Schneider, M. B.; Khan, S.; Chen, H.; Coppari, F.; Rygg, R.; Hohenberger, M.; Albert, F.; Moody, J.; Ralph, J.; Kemp, G. E.; Regan, S. P.

    2014-10-01

    X-ray sources at the National Ignition Facility are needed for radiography of in-flight capsules in inertial confinement fusion experiments and for diffraction studies of materials at high pressures. In the former case, we want to optimize signal to noise and signal over background ratios for the radiograph, in the latter case, we want to minimize high-energy emission from the backlighter that creates background on the diffraction data. Four interleaved shots at NIF were taken in one day, with laser irradiances on a Zr backlighter target ranging from 5 to 14 × 1015 W/cm2. Two shots were for source optimization as a function of laser irradiance. X-ray fluxes were measured with the time-resolved NIF X-ray Spectrometer (NXS) and the DANTE array of calibrated, filtered diodes. Two shots were optimized to make backscatter measurements with the FABS and NBI optical power systems. The backscatter levels are investigated to look for correlation with hot electron populations inferred from high-energy x rays measured with the FFLEX broadband spectrometer. Results from all shots are presented and compared with models. Work performed under the auspices of the U.S. DOE by LLNL under Contract No. DE-AC52-07NA27344.

  18. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part II: reactive case

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In the first part of this work, we focused on the hydrodynamic effects in the collapse process by switching off the reaction terms in the mathematical formulation. In this part, we reinstate the reactive terms and study the collapse of the cavity in the presence of chemical reactions. By using a multi-phase formulation which overcomes current challenges of cavity collapse modelling in reactive media, we account for the large density difference across the material interface without generating spurious temperature peaks, thus allowing the use of a temperature-based reaction rate law. The mathematical and physical models are validated against experimental and analytic data. In Part I, we demonstrated that, compared to experiments, the generated hot spots have a more complex topological structure and that additional hot spots arise in regions away from the cavity centreline. Here, we extend this by identifying which of the previously determined high-temperature regions in fact lead to ignition and comment on the reactive strength and reaction growth rate in the distinct hot spots. We demonstrate and quantify the sensitisation of nitromethane by the collapse of the isolated cavity by comparing the ignition times of nitromethane due to cavity collapse and the ignition time of the neat material. The ignition in both the centreline hot spots and the hot spots generated by Mach stems occurs in less than half the ignition time of the neat material. We compare two- and three-dimensional simulations to examine the change in topology, temperatures, and reactive strength of the hot spots by the third dimension. It is apparent that belated ignition times can be avoided by the use of three-dimensional simulations. The effect of the chemical reactions on the topology and strength of the hot spots in the timescales considered is also studied, in a comparison between inert and reactive simulations where maximum temperature fields and their growth rates are examined.

  19. Experimental investigation on the initial expansion stage of vacuum arc on cup-shaped TMF contacts

    NASA Astrophysics Data System (ADS)

    Wang, Ting; Xiu, Shixin; Liu, Zixi; Zhang, Yanzhe; Feng, Dingyu

    2018-02-01

    Arc behavior and measures to control it directly affect the properties of vacuum circuit breakers. Nowadays, transverse magnetic field (TMF) contacts are widely used for medium voltages. A magnetic field perpendicular to the current direction between the TMF contacts makes the arc move, transmitting its energy to the whole contact and avoiding excessive local ablation. Previous research on TMF arc behavior concentrated mainly on the arc movement and less on the initial stage (from arc ignition to an unstable arc column). A significant amount of experiment results suggest that there is a short period of arc stagnation after ignition. The duration of this arc stagnation and the arc characteristics during this stage affect the subsequent arc motion and even the breaking property of interrupters. The present study is of the arc characteristics in the initial stage. Experiments were carried out in a demountable vacuum chamber with cup-shaped TMF contacts. Using a high-speed camera, both single-point arc ignition mode and multiple-point arc ignition (MPAI) mode were observed. The experimental data show that the probability of MPAI mode occurring is related to the arc current. The influences of arc-ignition mode, arc current, and contact diameter on the initial expansion process were investigated. In addition, simulations were performed to analyze the multiple arc expansion process mechanically. Based on the experimental phenomena and simulation results, the mechanism of the arc expansion motion was analyzed.

  20. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, Morton L.

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  1. Spark-safe low-voltage detonator

    DOEpatents

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  2. A Self-Propagating Foaming Process of Porous Al-Ni Intermetallics Assisted by Combustion Reactions

    PubMed Central

    Kobashi, Makoto; Kanetake, Naoyuki

    2009-01-01

    The self-propagating foaming process of porous Al-Ni intermetallics was investigated. Aluminum and nickel powders were blended, and titanium and boron carbide powders were added as reactive exothermic agents. The blended powder was extruded to make a rod-shape precursor. Only one end of the rod precursor was heated to ignite the reaction. The reaction propagated spontaneously throughout the precursor. Pore formation took place at the same time as the reaction occurred. Adding the exothermic agent was effective to increase the porosity. Preheating the precursor before the ignition was also very effective to produce porous Al-Ni intermetallics with high porosity.

  3. Plasma & reactive ion etching to prepare ohmic contacts

    DOEpatents

    Gessert, Timothy A.

    2002-01-01

    A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

  4. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  5. 33 CFR 401.73 - Cleaning tanks-hazardous cargo vessels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... gas freeing and tank cleaning has been reported to the nearest Seaway station. (b) Hot work permission. Before any hot work, defined as any work that uses flame or that can produce a source of ignition... prior to the vessel's arrival on SLSMC approach walls or wharfs. The hot work shall not commence until...

  6. Effect of Pressure on Piloted Ignition Delay of PMMA

    NASA Technical Reports Server (NTRS)

    McAllister, Sara; Lai, Janice; Scott, Sarah; Ramirez-Correa, Amelia; Fernandez-Pello, Carlos; Urban, David; Ruff, Gary

    2008-01-01

    In order to reduce the risk of decompression sickness associated with spacewalks, NASA is considering designing the next generation of exploration vehicles and habitats with a different cabin environment than used previously. The proposed environment uses a total cabin pressure of 52.7 to 58.6 kPa with an oxygen concentration of 30 to 34% by volume and was chosen with material flammability in mind. Because materials may burn differently under these conditions and there is little information on how this new environment affects the flammability of the materials onboard, it is important to conduct material flammability experiments at the intended exploration atmosphere. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in the Forced Ignition and Spread Test (FIST) apparatus subject to this new environment. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. The ultimate goal is to determine the individual effect of pressure and the combined effect of pressure and oxygen concentration on the ignition delay. Tests were conducted for a baseline case of normal pressure and oxygen concentration, low pressure (58.6 kPa) with normal oxygen (21%). Future work will focus on low pressure with 32% oxygen concentration (space exploration atmosphere - SEA) conditions. It was found that reducing the pressure while keeping the oxygen concentration at 21% reduced the ignition time by 17% on average. It was also noted that the critical heat flux for ignition decreases in low-pressure conditions. Because tests conducted in standard atmospheric conditions will underpredict the flammability of materials intended for use on spacecraft, fire safety onboard at exploration atmospheres may be compromised.

  7. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  8. A Study of Ignition Effects on Thruster Performance of a Multi-Electrode Capillary Discharge Using Visible Emission Spectroscopy Diagnostics

    DTIC Science & Technology

    2009-09-01

    observed today, it is discussed further in Section 1.1. In addition to the work done in propulsion with coaxial electro thermal pulse plasma thrusters (PPTs...initial plasma conditions. The literature supported these findings for more basic laboratory capillaries, but the effect on a thruster device was unknown...An in- depth investigation of different ignition systems were conducted for a capillary discharge based pulsed plasma thruster. In addition to

  9. Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Rotavera, B.; Petersen, E. L.

    2013-07-01

    Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.

  10. Ignition in convective-diffusive systems

    NASA Astrophysics Data System (ADS)

    Fotache, Catalin Grig

    The main goal of this work is understanding the controlling mechanisms and responses of forced ignition in an environment where chemistry and transport phenomena are intimately coupled. To analyze systematically this interaction the well-characterized counterflow configuration is selected whereupon a cold fuel jet impinges on a heated air jet, and ignites as the air temperature is raised gradually. In this configuration the ignition response is studied experimentally and numerically with extensive variations of the fuel dilution, flow strain rate, and ambient pressure, for hydrogen and Csb1{-}Csb4 paraffins. Experimentally, the temperatures are measured by thermocouple and Raman spectroscopy, while flow strain rates are determined through laser Doppler velocimetry. The experimental envelope comprises pressures of 0.1-8.0 atm, fuel concentrations from 0 to 100%, and strain rates between 50 and 700 ssp{-1}. Computations are performed using various detailed kinetic and transport models, whose adequacy is assessed by comparison with the experimental results. Through computational simulations, the controlling ignition mechanisms are isolated and analyzed. Simplified kinetic models are derived and evaluated, by using sensitivity/flux analyses and the Computational Singular Perturbation (CSP) method. The investigation demonstrates that the coupling chemistry-transport can produce unexpected responses, even for the arguably simplest Hsb2-air kinetic system. Here, up to three stable steady-states are identified experimentally for identical boundary conditions, corresponding to the distinct regimes of frozen flow, mild oxidation, and flaming combustion, respectively. These states can be accessed in a dual-staged ignition sequence, with radical runaway followed by thermokinetic ignition. The pattern, however, depends on the imposed parameters. Specifically, three ignition limits are found when pressure is varied; the first two are characterized by radical runaway only, whereas the third is thermokinetic in character, and may involve dual-staged ignition. The similarity with homogeneous pressure-temperature explosion limits is attributed to the dominance of similar chemistry. When this involves fast kinetics only the transport effects are minimal, such as occurs within the second limit. Conversely, the other two limits are transport-sensitive because of the relatively slower dominant chemistry. The homogeneous-heterogeneous analogy persists when studying the hydrocarbons. For example, increasing pressure uniformly facilitates ignition in both systems. The transport of heat and chemical species out of the reaction zone, however, requires higher temperatures for nonpremixed ignition. Furthermore, nonpremixed ignition is affected by preferential diffusion of light species such as Hsb2. As a result, the addition of relatively small amounts of hydrogen to the fuel jet dramatically reduces the ignition temperature for low ignitability fuels, such as methane. Finally, the presence of diffusive-convective losses results in a selection of the most efficient chemical branching modes. For hydrocarbons, this selection typically implies the dominance of high temperature kinetics, although the Csb4 alkanes show possible transition to a low-to-intermediate temperature branching mode in the limit of elevated pressures. Further research is suggested in this area, as well as in other related directions.

  11. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    2000-04-25

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  12. Controlling dynamics of imploded core plasma for fast ignition

    NASA Astrophysics Data System (ADS)

    Nagatomo, H.; Johzaki, T.; Sunahara, A.; Shiraga, H.; Sakagami, H.; Cai, H.; Mima, K.

    2010-08-01

    In the Fast ignition, formation of highly compressed core plasma is one of critical issue. In this work, the effect hydrodynamic instability in cone-guided shell implosion is studied. Two-dimensional radiation hydrodynamic simulations are carried out where realistic seeds of Rayleigh-Taylor instability are imposed. Preliminary results suggest that the instability reduces implosion performance, such as implosion velocity, areal density, and maximum density. In perturbed target implosion, the break-up time of the tip of the cone is earlier than that of ideal unperturbed target implosion case. This is crucial matter for the Fast ignition because the pass for the heating laser is filled with plasma before the shot of heating laser. A sophisticated implosion design of stable and low in-flight aspect ratio is necessary for cone-guided shell implosion.

  13. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, P.D.

    The goal of the National Ignition Facility (NIF) project is to provide an aboveground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber--the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusionmore » reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California.« less

  14. Radiation hardening of gated x-ray imagers for the National Ignition Facility (invited).

    PubMed

    Bell, P M; Bradley, D K; Kilkenny, J D; Conder, A; Cerjan, C; Hagmann, C; Hey, D; Izumi, N; Moody, J; Teruya, A; Celeste, J; Kimbrough, J; Khater, H; Eckart, M J; Ayers, J

    2010-10-01

    The National Ignition Facility will soon be producing x-ray flux and neutron yields higher than any produced in laser driven implosion experiments in the past. Even a non-igniting capsule will require x-ray imaging of near burning plasmas at 10(17) neutrons, requiring x-ray recording systems to work in more hostile conditions than we have encountered in past laser facilities. We will present modeling, experimental data and design concepts for x-ray imaging with electronic recording systems for this environment (ARIANE). A novel instrument, active readout in a nuclear environment, is described which uses the time-of-flight difference between the gated x-ray signal and the neutron which induces a background signal to increase the yield at which gated cameras can be used.

  15. A Study by High-Speed Photography of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1942-01-01

    The study of combustion in a spark-ignition engine given in Technical Report no. 704 has been continued. The investigation was made with the NACA high-speed motion-picture camera and the NACA optical engine indicator. The camera operates at the rate of 40,000 photographs a second and makes possible the study of phenomena occurring in time intervals as short as 0.000025 second. Photographs are presented of combustion without knock and with both light and heavy knocks, the end zone of combustion being within the field of view. Time-pressure records covering the same conditions as the photographs are presented and their relations to the photographs are studied. Photographs with ignition at various advance angles are compared with a view to observing any possible relationship between pressure and flame depth. A tentative explanation of knock is suggested, which is designed to agree with the indications of the high-speed photographs and the time-pressure records.

  16. SEM Characterization of Extinguished Grains from Plasma-Ignited M30 Charges

    NASA Technical Reports Server (NTRS)

    Kinkennon, A.; Birk, A.; DelGuercio, M.; Kaste, P.; Lieb, R.; Newberry, J.; Pesce-Rodriguez, R.; Schroeder, M.

    2000-01-01

    M30 propellant grains that had been ignited in interrupted closed bomb experiments were characterize by scanning electron microscopy (SEM). Previous chemical analysis of extinguished grains had given no indications of plasma-propellant chemical interactions that could explain the increased burning rates that had been previously observed in full-pressure closed bomb experiments. (This does not mean that there is no unique chemistry occurring with plasma ignition. It may occur very early in the ignition event and then become obscured by the burning chemistry.) In this work, SEM was used to look at grain morphologies to determine if there were increases in the surface areas of the plasma-ignited grains which would contribute to the apparent increase in the burning rate. Charges were made using 30 propellant grains (approximately 32 grams) stacked in two tiers and in two concentric circles around a plastic straw. Each grain was notched so that, when the grains were expelled from the bomb during extinguishment, it could be determined in which tier and which circle each grain was originally packed. Charges were ignited in a closed bomb by either a nickel wire/Mylar-capillary plasma or black powder. The bomb contained a blowout disk that ruptured when the pressure reached 35 MPa, and the propellant was vented into a collection chamber packed with polyurethane foam. SEM analysis of the grains fired with a conventional black powder igniter showed no signs of unusual burning characteristics. The surfaces seemed to be evenly burned on the exteriors of the grains and in the perforations. Grains that had been subjected to plasma ignition, however, had pits, gouges, chasms, and cracks in the surfaces. The sides of the grains closest to the plasma had the greatest amount of damage, but even surfaces facing the outer wall of the bomb had small pits. The perforations contained gouges and abnormally burned regions (wormholes) that extended into the web. The SEM photos indicated that a grain from the top tier, which was farther away from the plasma ignition source, sustained more plasma-induced damage to the perforations and the web than did the grains on the bottom tier.

  17. Hydrodynamical Evolution of Merging Carbon-Oxygen White Dwarfs: Their Pre-supernova Structure and Observational Counterparts

    NASA Astrophysics Data System (ADS)

    Tanikawa, Ataru; Nakasato, Naohito; Sato, Yushi; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2015-07-01

    We perform smoothed particle hydrodynamics simulations for merging binary carbon-oxygen (CO) WDs with masses of 1.1 and 1.0 {M}⊙ , until the merger remnant reaches a dynamically steady state. Using these results, we assess whether the binary could induce a thermonuclear explosion, and whether the explosion could be observed as a type Ia supernova (SN Ia). We investigate three explosion mechanisms: a helium-ignition following the dynamical merger (“helium-ignited violent merger model”), a carbon-ignition (“carbon-ignited violent merger model”), and an explosion following the formation of the Chandrasekhar mass WD (“Chandrasekhar mass model”). An explosion of the helium-ignited violent merger model is possible, while we predict that the resulting SN ejecta are highly asymmetric since its companion star is fully intact at the time of the explosion. The carbon-ignited violent merger model can also lead to an explosion. However, the envelope of the exploding WD spreads out to ˜ 0.1 {R}⊙ ; it is much larger than that inferred for SN 2011fe (\\lt 0.1 {R}⊙ ) while much smaller than that for SN 2014J (˜ 1 {R}⊙ ). For the particular combination of the WD masses studied in this work, the Chandrasekhar mass model does not successfully lead to an SN Ia explosion. Besides these assessments, we investigate the evolution of unbound materials ejected through the merging process (“merger ejecta”), assuming a case where the SN Ia explosion is not triggered by the helium- or carbon-ignition during the merger. The merger ejecta interact with the surrounding interstellar medium and form a shell. The shell has a bolometric luminosity of more than 2× {10}35 {erg} {{{s}}}-1, lasting for ˜ 2× {10}4 years. If this is the case, the Milky Way should harbor about 10 such shells at any given time. The detection of the shell(s) can therefore rule out the helium-ignited and carbon-ignited violent merger models as major paths to SN Ia explosions.

  18. Conceptual design of fast-ignition laser fusion reactor FALCON-D

    NASA Astrophysics Data System (ADS)

    Goto, T.; Someya, Y.; Ogawa, Y.; Hiwatari, R.; Asaoka, Y.; Okano, K.; Sunahara, A.; Johzaki, T.

    2009-07-01

    A new conceptual design of the laser fusion power plant FALCON-D (Fast-ignition Advanced Laser fusion reactor CONcept with a Dry wall chamber) has been proposed. The fast-ignition method can achieve sufficient fusion gain for a commercial operation (~100) with about 10 times smaller fusion yield than the conventional central ignition method. FALCON-D makes full use of this property and aims at designing with a compact dry wall chamber (5-6 m radius). 1D/2D simulations by hydrodynamic codes showed a possibility of achieving sufficient gain with a laser energy of 400 kJ, i.e. a 40 MJ target yield. The design feasibility of the compact dry wall chamber and the solid breeder blanket system was shown through thermomechanical analysis of the dry wall and neutronics analysis of the blanket system. Moderate electric output (~400 MWe) can be achieved with a high repetition (30 Hz) laser. This dry wall reactor concept not only reduces several difficulties associated with a liquid wall system but also enables a simple cask maintenance method for the replacement of the blanket system, which can shorten the maintenance period. The basic idea of the maintenance method for the final optics system has also been proposed. Some critical R&D issues required for this design are also discussed.

  19. The national ignition facility and atomic data

    NASA Astrophysics Data System (ADS)

    Crandall, David H.

    1998-07-01

    The National Ignition Facility (NIF) is under construction, capping over 25 years of development of the inertial confinement fusion concept by providing the facility to obtain fusion ignition in the laboratory for the first time. The NIF is a 192 beam glass laser to provide energy controlled in space and time so that a millimeter-scale capsule containing deuterium and tritium can be compressed to fusion conditions. Light transport, conversion of light in frequency, interaction of light with matter in solid and plasma forms, and diagnostics of extreme material conditions on small scale all use atomic data in preparing for use of the NIF. The NIF will provide opportunity to make measurements of atomic data in extreme physical environments related to fusion energy, nuclear weapon detonation, and astrophysics. The first laser beams of NIF should be operational in 2001 and the full facility completed at the end of 2003. NIF is to provide 1.8 megajoule of blue light on fusion targets and is intended to achieve fusion ignition by about the end of 2007. Today's inertial fusion development activities use atomic data to design and predict fusion capsule performance and in non-fusion applications to analyze radiation transport and radiation effects on matter. Conditions investigated involve radiation temperature of hundreds of eV, pressures up to gigabars and time scales of femptoseconds.

  20. Small Volume Fuel Testers Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoegl, I.; McNenly, M. J.; Killingsworth, N. J.

    Micro-liter fuel ignition testing (μ-FIT) is based on the premise that characteristics FREI (Flames with Repetitive Extinction and Ignition, i.e. cyclically occurring combustion events within heated capillaries), are linked to fuel properties. In early FY16, proof-of-concept measurements with primary reference fuel (PRF) mixtures, i.e. blends of n-heptane and iso-octane, yielded clear evidence for the feasibility of the approach. Our experiments showed that it is critical to accurately link observed flame positions to local temperatures, which provides information on ignition, extinction and flame propagation, all of which are known to be impacted by fuel properties. In FY16, one major hurdle wasmore » uncertainty of temperature calibration, which required significant efforts for corrective action that were not included in the original scope of work. Temperature calibrations are obtained by translating a thermocouple within the capillary in absence of a flame. While measurements have good repeatability when accounting for transient and insertion effects, results from nominally identical thermocouples reveal unacceptable uncertainty (up to ±50K), which is attributed to variations in thermocouple placement and manufacturing tolerances. This issue is currently being resolved by switching to non-intrusive optical temperature measurements. Updates are expected to yield uncertainties of less than ±10K, while also eliminating transient and insertion effects. The experimental work was complemented by computational efforts where it was shown that a simplified Lagrangian zero-D model with detailed kinetics yields fuelspecific differentiation of ignition temperatures for simple fuels that are consistent with experiments. Further, a 2D transient model was implemented in OpenFOAM to investigate combustion behavior of simple fuels at elevated pressure. In an upcoming visit to LLNL, more advanced simulations using LLNL’s computational tools (e.g. zero-RK) are planned, which will yield additional numerical insights on FREI behavior of more realistic spark ignited (SI) engine fuel surrogates. As there is a lag between DOE FY16 and the time frame of the LSU subcontract, it is anticipated that deliverables outlined in the scope of work will be met by the end of the subcontract (January 2017).« less

  1. Improving the cold flow properties of biodiesel by fractionation

    USDA-ARS?s Scientific Manuscript database

    Production of biodiesel is increasing world-wide and contributing to the growing development of renewable alternative fuels. Biodiesel has many fuel properties such as density, viscosity, lubricity, and cetane number that make it compatible for combustion in compression-ignition (diesel) engines. ...

  2. Re-examining the effect of low and intermediate mode number perturbations on Ignition Metrics Scaling Laws

    NASA Astrophysics Data System (ADS)

    Malka, Elad; Shvarts, Dov

    2017-10-01

    We re-examine the way 2/3D effects on scaling laws for ignition metrics, such as the generalized Lawson Criterion (GLC) and the Ignition Threshold Factor (ITF). These scaling laws were derived for 1D symmetrical case and 2/3D perturbations [Hann et al. PoP 2010; Lindl et al., PoP 2014; Betti et al., PoP 2010]. The main cause for the difference between the 1D and the 2/3D scaling laws in those works, is heat conduction losses from the hot-spot bubbles to the cold shell [Kishony and Shvarts, PoP 2001]. This ``dry out'' of the bubbles is the dominant mechanism for intermediate mode number perturbations (6

  3. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  4. Aircraft engine sump-fire studies

    NASA Technical Reports Server (NTRS)

    Loomis, W. R.

    1976-01-01

    Results of ongoing experimental studies are reported in which a 125-millimeter-diameter-advanced-bearing test rig simulating an engine sump is being used to find the critical range of conditions for fires to occur. Design, material, and operating concepts and techniques are being studied with the objective of minimizing the problem. It has been found that the vapor temperature near a spark ignitor is most important in determining ignition potential. At temperatures producing oil vapor pressures below or much above the calculated flammability limits, fires have not been ignited. But fires have been routinely started within the theoretical flammability range. This indicates that generalizing the sump-fire problem may make it amenable to analysis, with the potential for realistic solutions.

  5. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anticipated, will ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat... covering is one means for making the conductor insulated. Insulation means a dielectric substance offering... flammable vapors when subjected to fire or heat. Concrete, masonry block, brick, and steel are examples of...

  6. GDP: A new source for shallow high-resolution seismic exploration

    NASA Astrophysics Data System (ADS)

    Rashed, Mohamed A.

    2009-06-01

    Gas-Driven Piston (GDP) is a new source for shallow seismic exploration. This source works by igniting a small amount of gas inside a closed chamber connected to a vertical steel cylinder. The gas explosion drives a steel piston, mounted inside the cylinder, downward so that the piston's thick head hits a steel base at the end of the cylinder generating a strong shock wave into the ground. Experimental field tests conducted near Ismailia, Egypt, prove that the portable, inexpensive and environmentally benign GDP generates stronger seismic waves than the sledgehammer that is commonly used in shallow seismic exploration. Tests also show that GDP is a highly repeatable and controllable and that its seismic waves contain a good amount of high frequencies which makes the GDP an excellent source for shallow seismic exploration.

  7. Cooling Effect Analysis of Suppressing Coal Spontaneous Ignition with Heat Pipe

    NASA Astrophysics Data System (ADS)

    Zhang, Yaping; Zhang, Shuanwei; Wang, Jianguo; Hao, Gaihong

    2018-05-01

    Suppression of spontaneous ignition of coal stockpiles was an important issue for safe utilization of coal. The large thermal energy from coal spontaneous ignition can be viewed as the latent energy source to further utilize for saving energy purpose. Heat pipe was the more promising way to diffuse effectively concentrated energy of the coal stockpile, so that retarding coal spontaneous combustion was therefore highly desirable. The cooling mechanism of the coal with heat pipe was pursued. Based on the research result, the thermal energy can be transported from the coal seam to the surface continuously with the use of heat pipe. Once installed the heat pipes will work automatically as long as the coal oxidation reaction was happened. The experiment was indicated that it can significantly spread the high temperature of the coal pile.

  8. National Ignition Facility Laser System Performance

    DOE PAGES

    Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...

    2017-03-23

    The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, R. C.

    Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriatemore » to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.« less

  10. Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive: Modeling and Evidence from National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.

    2017-10-01

    Cross-beam energy transfer (CBET) has been shown to significantly reduce the laser absorption and implosion speed in direct-drive implosion experiments on OMEGA and the National Ignition Facility (NIF). Mitigating CBET assists in achieving ignition-relevant hot-spot pressures in deuterium-tritium cryogenic OMEGA implosions. In addition, reducing CBET permits lower, more hydrodynamically stable, in-flight aspect ratio ignition designs with smaller nonuniformity growth during the acceleration phase. Detuning the wavelengths of the crossing beams is one of several techniques under investigation at the University of Rochester to mitigate CBET. This talk will describe these techniques with an emphasis on wavelength detuning. Recent experiments designed and predicted using multidimensional hydrodynamic simulations including CBET on the NIF have exploited the wavelength arrangement of the NIF beam geometry to demonstrate CBET mitigation through wavelength detuning in polar-direct-drive (PDD) implosions. Shapes and trajectories inferred from time-resolved x-ray radiography of the imploding shell, scattered-light spectra, and hard x-ray spectra generated by suprathermal electrons all indicate a reduction in CBET. These results and their implications for direct-drive ignition will be presented and discussed. In addition, hydrodynamically scaled ignition-relevant designs for OMEGA implosions exploiting wavelength detuning will be presented. Changes required to the OMEGA laser to permit wavelength detuning will be discussed. Future plans for PDD on the NIF including more-uniform implosions with CBET mitigation will be explored. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. The choice of the energy embedding law in the design of heavy ionic fusion cylindrical targets

    NASA Astrophysics Data System (ADS)

    Dolgoleva, GV; Zykova, A. I.

    2017-10-01

    The paper considers the numerical design of heavy ion fusion (FIHIF) targets, which is one of the branches of controlled thermonuclear fusion (CTF). One of the important tasks in the targets design for controlled thermonuclear fusion is the energy embedding selection whereby it is possible to obtain “burning” (the presence of thermonuclear reactions) of the working DT region. The work is devoted to the rapid ignition of FIHIF targets by means of an additional short-term energy contribution to the DT substance already compressed by massively more longer by energy embedding. This problem has been fairly well studied for laser targets, but this problem is new for heavy ion fusion targets. Maximum momentum increasing is very technically difficult and expensive on modern FIHIF installations. The work shows that the additional energy embedding (“igniting” impulse) reduces the requirements to the maximum impulse. The purpose of this work is to research the ignition impulse effect on the FIHIF target parameters.

  12. Sediment Grain-Size and Loss-on-Ignition Analyses from 2002 Englebright Lake Coring and Sampling Campaigns

    USGS Publications Warehouse

    Snyder, Noah P.; Allen, James R.; Dare, Carlin; Hampton, Margaret A.; Schneider, Gary; Wooley, Ryan J.; Alpers, Charles N.; Marvin-DiPasquale, Mark C.

    2004-01-01

    This report presents sedimentologic data from three 2002 sampling campaigns conducted in Englebright Lake on the Yuba River in northern California. This work was done to assess the properties of the material deposited in the reservoir between completion of Englebright Dam in 1940 and 2002, as part of the Upper Yuba River Studies Program. Included are the results of grain-size-distribution and loss-on-ignition analyses for 561 samples, as well as an error analysis based on replicate pairs of subsamples.

  13. Existence and non-existence of transition fronts in mixed ignition-monostable media

    NASA Astrophysics Data System (ADS)

    Graham, Cole; Shean Lim, Tau; Ma, Andrew; Weber, David

    2018-02-01

    We study transition fronts for one-dimensional reaction-diffusion equations with compactly-perturbed ignition-monostable reactions. We establish an almost sharp condition on reactions which characterizes the existence and non-existence of fronts. In particular, we prove that a strong inhomogeneity in the reaction prevents formation of transition fronts, while a weak inhomogeneity gives rise to a front. Our work extends the results and methods introduced in Nolen et al 2012 (Arch. Ration. Mech. Anal. 203 217-46), which studied the same question in inhomogeneous KPP media.

  14. Progress of Rugby Hohlraum Experiments on Omega

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Tassin, Veronique; Casner, Alexis; Gauthier, Pascal; Seytor, Patricia; Monteil, Marie-Christine; Park, Hye-Sook; Robey, Harry; Ross, Steven; Amendt, Peter; Girard, Frederic; Villette, Bruno; Reverdin, Charles; Loiseau, Pascal; Caillaud, Tony; Landoas, Olivier; Li, Chi Kang; Petrasso, Richard; Seguin, Fredrick; Rosenberg, Markus

    2011-10-01

    The rugby hohlraum concept is predicted to enable better coupling and higher gains in the indirect drive approach to ignition. A collaborative experimental program is currently pursued on OMEGA to test this concept in preparation for future megajoule-scale ignition designs. A direct comparison of gas-filled rugby hohlraums with classical cylinders was recently performed, showing a significant (up to ~40%) observed x-ray drive enhancement and neutron yields that are consistently higher in the rugby case. This work extends and confirms our previous findings in empty rugby hohlraums.

  15. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE PAGES

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.; ...

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  16. Ignition of detonation in accreted helium envelopes

    NASA Astrophysics Data System (ADS)

    Glasner, S. Ami; Livne, E.; Steinberg, E.; Yalinewich, A.; Truran, James W.

    2018-05-01

    Sub-Chandrasekhar CO white dwarfs accreting helium have been considered as candidates for Type Ia supernova (SNIa) progenitors since the early 1980s (helium shell mass >0.1 M⊙). These models, once detonated, did not fit the observed spectra and light curve of typical SNIa observations. New theoretical work examined detonations on much less massive (<0.05 M⊙) envelopes. They find stable detonations that lead to light curves, spectra, and abundances that compare relatively well with the observational data. The exact mechanism leading to the ignition of helium detonation is a key issue, since it is a mandatory first step for the whole scenario. As the flow of the accreted envelope is unstable to convection long before any hydrodynamic phenomena develops, a multidimensional approach is needed in order to study the ignition process. The complex convective reactive flow is challenging to any hydrodynamical solver. To the best of our knowledge, all previous 2D studies ignited the detonation artificially. We present here, for the first time, fully consistent results from two hydrodynamical 2D solvers that adopt two independent accurate schemes. For both solvers, an effort was made to overcome the problematics raised by the finite resolution and numerical diffusion by the advective terms. Our best models lead to the ignition of a detonation in a convective cell. Our results are robust and the agreement between the two different numerical approaches is very good.

  17. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M.

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We do this by performing a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution ofmore » the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.« less

  18. Planar Laser-Plasma Interaction Experiments at Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Froula, D. H.; Radha, P. B.; Michel, P. A.; Moody, J. D.; Masse, L.; Goyon, C.; Turnbull, D. P.; Barrios, M. A.; Bates, J. W.; Schmitt, A. J.

    2016-10-01

    The first experiments at the National Ignition Facility to probe laser-plasma interactions and the hot electron production at scale lengths relevant to direct-drive ignition are reported. The irradiation on one side of planar CH foils generated a plasma at the quarter-critical surface with predicted density scale lengths of Ln 600 μm, measured electron temperatures of Te 3.5 to 4.0 keV, and overlapped laser intensities of I 6 to 15 ×1014W/cm2. Optical emission from stimulated Raman scattering (SRS) and at ω/2 are correlated with the time-dependent hard x-ray signal. The fraction of laser energy converted to hot electrons increased from 0.5 % to 2.3 % as the laser intensity increased from 6 to 15 ×1014W/cm2, while the hot electron temperature was nearly constant around 40 to 50 keV. Only a sharp red-shifted feature is observed around ω/2, and both refracted and sidescattered SRS are detected, suggesting that multibeam SRS contributes to, and may even dominate, hot-electron production. These results imply a diminished presence of two-plasmon decay relative to SRS at these conditions, which has implications for hot-electron preheat mitigation strategies for direct-drive ignition. This work is supported by the DOE NNSA under Award Number DE-NA0001944.

  19. Planar Two-Plasmon-Decay Experiments at Polar-Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Collins, T. J. B.; Turnbull, D. P.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    Results from the first experiments at the National Ignition Facility (NIF) to probe two-plasmon -decay (TPD) hot-electron production at scale lengths relevant to polar-direct-drive (PDD) ignition are reported. The irradiation on one side of a planar CH foil generated a plasma at the quarter-critical surface with a predicted density gradient scale length of Ln ~ 600 μm , a measured electron temperature of Te ~ 3 . 5 to 4.0 keV, an overlapped laser intensity of I ~ 6 ×1014 W/cm2, and a predicted TPD threshold parameter of η ~ 4 . The hard x-ray spectrum and the Kα emission from a buried Mo layer were measured to infer the hot-electron temperature and the fraction of total laser energy converted to TPD hot electrons. Optical emission at ω/2 correlated with the time-dependent hard x-ray signal confirms that TPD is responsible for the hot-electron generation. The effect of laser beam angle of incidence on TPD hot-electron generation was assessed, and the data show that the beam angle of incidence did not have a strong effect. These results will be used to benchmark simulations of TPD hot-electron production at conditions relevant to PDD ignition-scale implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  20. Control of Early Flame Kernel Growth by Multi-Wavelength Laser Pulses for Enhanced Ignition.

    PubMed

    Dumitrache, Ciprian; VanOsdol, Rachel; Limbach, Christopher M; Yalin, Azer P

    2017-08-31

    The present contribution examines the impact of plasma dynamics and plasma-driven fluid dynamics on the flame growth of laser ignited mixtures and shows that a new dual-pulse scheme can be used to control the kernel formation process in ways that extend the lean ignition limit. We perform a comparative study between (conventional) single-pulse laser ignition (λ = 1064 nm) and a novel dual-pulse method based on combining an ultraviolet (UV) pre-ionization pulse (λ = 266 nm) with an overlapped near-infrared (NIR) energy addition pulse (λ = 1064 nm). We employ OH* chemiluminescence to visualize the evolution of the early flame kernel. For single-pulse laser ignition at lean conditions, the flame kernel separates through third lobe detachment, corresponding to high strain rates that extinguish the flame. In this work, we investigate the capabilities of the dual-pulse to control the plasma-driven fluid dynamics by adjusting the axial offset of the two focal points. In particular, we find there exists a beam waist offset whereby the resulting vorticity suppresses formation of the third lobe, consequently reducing flame stretch. With this approach, we demonstrate that the dual-pulse method enables reduced flame speeds (at early times), an extended lean limit, increased combustion efficiency, and decreased laser energy requirements.

  1. Post-processing flame-retardant for polyurethane

    NASA Technical Reports Server (NTRS)

    Monaghan, P.; Sidman, K. R.

    1980-01-01

    Treatment of polyurethane form with elastomer formulation after processing makes foam fire resistant without compromising physical properties. In testing, once ignition source is removed, combustion stops. Treatment also prevents molten particle formation, generates no smoke or toxic gases in fire, and does not deteriorate under prolonged exposure to Sun.

  2. Towards real-time detection and tracking of spatio-temporal features: Blob-filaments in fusion plasma

    DOE PAGES

    Wu, Lingfei; Wu, Kesheng; Sim, Alex; ...

    2016-06-01

    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes tomore » detect and track blob-filaments in real time in fusion plasma. Here, on a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.« less

  3. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30 x 30 x 10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/sq m. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  4. Effects of Heat Flux, Oxygen Concentration and Glass Fiber Volume Fraction on Pyrolysate Mass Flux from Composite Solids

    NASA Technical Reports Server (NTRS)

    Rich, D. B.; Lautenberger, C. W.; Yuan, Z.; Fernandez-Pello, A. C.

    2004-01-01

    Experimental work on the effects of heat flux, oxygen concentration and glass fiber volume fraction on pyrolysate mass flux from samples of polypropylene/glass fiber composite (PP/G) is underway. The research is conducted as part of a larger project to develop a test methodology for flammability of materials, particularly composites, in the microgravity and variable oxygen concentration environment of spacecraft and space structures. Samples of PP/G sized at 30x30x10 mm are flush mounted in a flow tunnel, which provides a flow of oxidizer over the surface of the samples at a fixed value of 1 m/s and oxygen concentrations varying between 18 and 30%. Each sample is exposed to a constant external radiant heat flux at a given value, which varies between tests from 10 to 24 kW/m2. Continuous sample mass loss and surface temperature measurements are recorded for each test. Some tests are conducted with an igniter and some are not. In the former case, the research goal is to quantify the critical mass flux at ignition for the various environmental and material conditions described above. The later case generates a wider range of mass flux rates than those seen prior to ignition, providing an opportunity to examine the protective effects of blowing on oxidative pyrolysis and heating of the surface. Graphs of surface temperature and sample mass loss vs. time for samples of 30% PPG at oxygen concentrations of 18 and 21% are presented in the figures below. These figures give a clear indication of the lower pyrolysis rate and extended time to ignition that accompany a lower oxygen concentration. Analysis of the mass flux rate at the time of ignition gives good repeatability but requires further work to provide a clear indication of mass flux trends accompanying changes in environmental and material properties.

  5. 40 CFR 1045.405 - How does this program work?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How does this program work? 1045.405 Section 1045.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS In-Use Testing...

  6. 40 CFR 1045.405 - How does this program work?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How does this program work? 1045.405 Section 1045.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS In-Use Testing...

  7. 40 CFR 1045.405 - How does this program work?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How does this program work? 1045.405 Section 1045.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS In-Use Testing...

  8. 40 CFR 1045.405 - How does this program work?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How does this program work? 1045.405 Section 1045.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS In-Use Testing...

  9. 40 CFR 1045.405 - How does this program work?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How does this program work? 1045.405 Section 1045.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS In-Use Testing...

  10. Work on the Super and the Study of Atmospheric Ignition

    NASA Astrophysics Data System (ADS)

    Hull, Mcallister

    2001-03-01

    By 1951, the group of young faculty (Bob Gluckstern and me), post doctoral fellows and graduate students, was comfortably established in Sloane Laboratory, and as "The Breit Group", in the department of physics at Yale. We didn't consciously separate ourselves from others in the department, and no one seemed to put us apart, but the association with Breit gave us a special "aura"--sometimes as objects of pity. Any project that involved the group as a whole, or a significant part of it, was discussed with Bob and me, and sometime in 1951 Breit called us in to consider a request that we look at the possibility of atmospheric ignition by a "Super" - as we still called it then, after Edward Teller. At the end of my stay at Los Alamos, in the summer of 1946, we youngsters had many bull sessions about that "Super", and the possibility of controlled fusion energy. We were confident that the former would be working in perhaps five years, and the latter within ten. After all, Han Bethe had shown us how the sun made its energy, and all that was needed to do was to replace a couple of his slow beta decays with something faster. As I write, some fifty-four years later, we still haven't got fusion energy for power. Our crystal balls were cloudier than Vicky Weisskopf's were to be! But I knew some of the lingo, and had worked out the way radiation penetrates the atmosphere (for understanding the Bikini tests), so in 1951, initially drew the task of looking at opacity, a key question in the bomb itself, and in the possibility of atmospheric ignition. Most of our limited work on the bomb was checking calculations that had been done by others as the Teller-Ulam design was being put together. At least some work on atmospheric ignition had already been done as well, but Teller wanted the "most careful physicist he knew" to do the definitive calculations, so Breit got the call. I do not recall all the members of the group who worked on the project and for that I apologize - no private notes were allowed because the work was classified. But in addition to Bob Gluckstern, I recall, for reasons that will appear, that John McHale was one of the project workers. At one point I think we were all working on nitrogen reactions ...

  11. Thermal Ignition

    NASA Astrophysics Data System (ADS)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region sufficiently rapidly undergoes only a moderate amount of thermal decomposition and explodes quite violently. This behavior can also be captured and analyzed using a one-step reaction model, where the heat release is in competition with the depletion of reactants. Hot surface ignition is examined using a glow plug or heated nickel element in a series of premixed n-hexane air mixtures. High-speed schlieren photography, a thermocouple, and a fast response pressure transducer are used to record flame characteristics such as ignition temperature, flame speed, pressure rises, and combustion mode. The ignition event is captured by considering the dominant balance of diffusion and chemical reaction that occurs near a hot surface. Experiments and models show a dependence of ignition temperature on mixture composition, initial pressure, and hot surface size. The mixtures exhibit the known lower flammability limit where the maximum temperature of the hot surface was insufficient at igniting the mixture. Away from the lower flammability limit, the ignition temperature drops to an almost constant value over a wide range of equivalence ratios (0.7 to 2.8) with large variations as the upper flammability limit is approached. Variations in the initial pressure and equivalence ratio also give rise to different modes of combustion: single flame, re-ignition, and puffing flames. These results are successfully compared to computational results obtained using a flamelet model and a detailed chemical mechanism for n-heptane. These different regimes can be delineated by considering the competition between inertia, i.e., flame propagation, and buoyancy, which can be expressed in the Richardson number. In experiments of hot surface ignition and subsequent flame propagation a 10 Hz puffing flame instability is visible in mixtures that are stagnant and premixed prior to the ignition sequence. By varying the size of the hot surface, power input, and combustion vessel volume, we determined that the instability is a function of the interaction of the flame with the fluid flow induced by the combustion products rather than the initial plume established by the hot surface. The phenomenon is accurately reproduced in numerical simulations and a detailed flow field analysis revealed a competition between the inflow velocity at the base of the flame and the flame propagation speed. The increasing inflow velocity, which exceeds the flame propagation speed, is ultimately responsible for creating a puff. The puff is then accelerated upward, allowing for the creation of the subsequent instabilities. The frequency of the puffing is proportional to the gravitational acceleration and inversely proportional to the flame speed. We propose a relation describing the dependence of the frequency on gravitational acceleration, hot surface diameter, and flame speed. This relation shows good agreement for lean and rich n-hexane-air as well as lean hydrogen-air flames.

  12. A strong and deformable in-situ magnesium nanocomposite igniting above 1000 °C.

    PubMed

    Tekumalla, Sravya; Nandigam, Yogesh; Bibhanshu, Nitish; Rajashekara, Shabadi; Yang, Chen; Suwas, Satyam; Gupta, Manoj

    2018-05-04

    Magnesium has been trending of late in automobile, aerospace, defense, sports, electronic and biomedical sectors as it offers an advantage in light-weighting. In aluminum, titanium, and steel dominated aerospace and defense sectors, applications of Mg were banned/restricted until recently due to perceived easy ignition and inability to self-extinguish immediately. Strength is generally inversely related to ductility, weak texture and unrelated to ignition resistance, making it challenging to optimize all four concurrently in a material. We address this challenge by designing a low density (~1.76 g.cm -3 ) in-situ Mg nanocomposite. It is a resultant of a sequence of in-situ reactions during melt processing and extrusion. The in-situ formed Y 2 O 3 nanoparticles exhibit coherency with matrix and lead to development of large amount of elastic and plastic strain fields around them. These nanoparticles and secondary phases (Mg 2 Ca and Mg 2 Y) are responsible for the nanocomposite's high tensile strength (~343 MPa). A weak texture mediated tensile ductility of 30% and compressive failure strain of 44% is observed. Further, the ignition temperature increased to 1045 °C (near the boiling point of Mg)  due to the formation of protective surficial oxide layers aided by the presence of insulating Y 2 O 3 nanoparticles, rendering the nanocomposite outperform other traditional commercial Mg-based materials.

  13. Statistical Hotspot Model for Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Nichols, Albert

    2005-07-01

    The presence and need for energy localization in the ignition and detonation of high explosives is a corner stone in our understanding of explosive behavior. This energy localization, known as hot spots, provides the match that starts the energetic response that is integral to the detonation. In our model, we use the life cycle of a hot spot to predict explosive response. This life cycle begins with a random distribution of inhomogeneities in the explosive that we describe as a potential hot spot. A shock wave can transform these into hot spots that can then grow by consuming the explosive around them. The fact that the shock wave can collapse a potential hot spot without causing ignition is required in order to model phenomena like dead pressing. The burn rate of the hot spot is taken directly from experimental data. In our approach we do not assume that every hot spot is burning in an identical environment, but rather we take a statistical approach to the burning process. We also do not make a uniform temperature assumption in order to close the mixture equation of state, but track the flow of energy from reactant to product. Finally, we include both the hot spot burn model and a thermal decomposition path, required to explain certain long time behaviors. Building on work performed by Reaugh et. al., we have developed a set of reaction parameters for an HMX based heterogeneous explosive. These parameters have been determined from computer models on the micron scale, and experimental data. This model will be compared to experimental rate stick data. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  14. Radiation-driven hydrodynamics of long pulse hohlraums on the National Ignition Facility*,**

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard

    2005-10-01

    The first hohlraum experiments have been performed at the National Ignition Facility (NIF) in support of indirect drive Inertial Confinement Fusion (ICF) and High Energy Density Physics. Vacuum hohlraums have been irradiated with laser powers up to 8 TW, 1-9 ns pulse lengths and energies up to 17 kJ to activate several hohlraum drive diagnostics, to study the radiation temperature scaling with the laser power and hohlraum size, and to make contact with hohlraum experiments performed at the NOVA and Omega laser facilities. The vacuum hohlraums yield low laser backscattering and hot electron fractions, and the hohlraum radiation temperature measured with a newly activated 18 channel Dante soft x-ray power diagnostic agrees well with two-dimensional LASNEX calculations. Using the unique feature of NIF to deliver long steady laser drives, these hohlraum experiments have also validated analytical models and LASNEX calculations of hohlraum plasma filling as evidenced by time-resolved hard x-ray imaging and coronal hohlraum radiation production measured by Dante. Analytical modeling used to estimate hohlraum radiation limits due to plasma filling is in agreement with measurements and predicts for full NIF system with peak powers up to 500 TW peak radiation temperatures that are considerably higher than required in ICF designs. * Work performed in collaboration with L.J. Suter, O.L. Landen, J. Schein, K. Campbell, M.S. Schneider, J. Holder, S.H. Glenzer, J.W. McDonald, C. Niemann, A.J. Mackinnon, D.H. Kalantar, C. Haynam, S. Dixit **This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  15. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  16. Ignition and Combustion of Pulverized Coal and Biomass under Different Oxy-fuel O2/N2 and O2/CO2 Environments

    NASA Astrophysics Data System (ADS)

    Khatami Firoozabadi, Seyed Reza

    This work studied the ignition and combustion of burning pulverized coals and biomasses particles under either conventional combustion in air or oxy-fuel combustion conditions. Oxy-fuel combustion is a 'clean-coal' process that takes place in O2/CO2 environments, which are achieved by removing nitrogen from the intake gases and recirculating large amounts of flue gases to the boiler. Removal of nitrogen from the combustion gases generates a high CO2-content, sequestration-ready gas at the boiler effluent. Flue gas recirculation moderates the high temperatures caused by the elevated oxygen partial pressure in the boiler. In this study, combustion of the fuels took place in a laboratory laminar-flow drop-tube furnace (DTF), electrically-heated to 1400 K, in environments containing various mole fractions of oxygen in either nitrogen or carbon-dioxide background gases. The experiments were conducted at two different gas conditions inside the furnace: (a) quiescent gas condition (i.e., no flow or inactive flow) and, (b) an active gas flow condition in both the injector and furnace. Eight coals from different ranks (anthracite, semi-snthracite, three bituminous, subbituminous and two lignites) and four biomasses from different sources were utilized in this work to study the ignition and combustion characteristics of solid fuels in O2/N2 or O2/CO2 environments. The main objective is to study the effect of replacing background N2 with CO2, increasing O2 mole fraction and fuel type and rank on a number of qualitative and quantitative parameters such as ignition/combustion mode, ignition temperature, ignition delay time, combustion temperatures, burnout times and envelope flame soot volume fractions. Regarding ignition, in the quiescent gas condition, bituminous and sub-bituminous coal particles experienced homogeneous ignition in both O2/N 2 and O2/CO2 atmospheres, while in the active gas flow condition, heterogeneous ignition was evident in O2/CO 2. Anthracite, semi-anthracite and lignites mostly experienced heterogeneous ignition in either O2/N2 or O2/CO2 atmospheres in both flow conditions. Replacing the N2 by CO 2 slightly increased the ignition temperature (30--40K). Ignition temperatures increased with the enhancement of coal rank in either air or oxy-fuel combustion conditions. However, increasing oxygen mole fraction decreased the ignition temperature for all coals. The ignition delay of coal particles was prolonged in the slow-heating O2/CO2 atmospheres, relative to the faster-heating O2/N2 atmospheres, particularly at high-diluent mole fractions. At higher O2 mole fractions, ignition delays decreased in both environments. Higher rank fuels such as anthracite and semi-anthracite experienced higher ignition delays while lower rank fuels such as lignite and biomasses experienced lower igniton delay times. In combustion, fuel particles were observed to burn in different modes, such as two-mode, or in one-mode combustion, depending on their rank and the furnace conditions. Strong tendencies were observed for all fuels to burn in one-mode when N2 was replaced by CO2, and when O 2 mole fraction increased in both environments. Moreover, increasing the coal rank, from lignite to bituminous, enhanced the tendency of coal particles to exhibit a two-mode combustion behavior. Particle luminosity, fragmentation and deduced temperatures were higher in O2/N2 than in O2/CO2 atmospheres, and corresponding burnout times were shorter, at the same O2 mole fractions. Particle luminosity and temperatures increased with increasing O2 mole fractions in both N2 and in CO2 background gases, and corresponding burnout times decreased with increasing O2 mole fractions. Bituminous coal particles swelled, whereas sub-bituminous coal particles exhibited limited fragmentation prior to and during the early stages of combustion. Lignite coal particles fragmented extensively and burned in one-mode regardless of the O2 mole fraction and the background gas. The timing of fragmentation (prior or after ignition) and the number of fragments depended on the type of the lignite and on the particle shape. Temperatures and burnout times of particles were also affected by the combustion mode. In nearly all bituminous and biomass particles combustion, sooty envelope flames were formed around the particles. Replacement of background N 2 by CO2 gas decreased the average soot volume fraction, fv, whereas increasing O2 from 20% to 30--40% increased the fv and then further increasing O2 to 100% decreased the soot volume fraction drastically. bituminous coal particle flames generated lower soot volume fractions in the range 2x10 -5--9x10-5, depending on O2 mole fraction. Moreover, biomass particle flames were optically thin and of equal-sized at all O2 mole fractions. (Abstract shortened by UMI.).

  17. Proposing transportation designs and concepts to make Houston METRO's southeast line at the Palm Center area more walkable, bikeable, and livable.

    DOT National Transportation Integrated Search

    2015-12-01

    Over the years, the Palm Center (PC) in Houston, Texas, has been the beneficiary of several economic : development endeavors designed to ignite economic and community growth and revitalization. While : these endeavors brought forth initial success, t...

  18. Alternative Fuels Data Center: Dimethyl Ether

    Science.gov Websites

    Hydrocarbon Biofuels Dimethyl Ether Dimethyl ether (DME) is a synthetically produced alternative to diesel for use in specially designed compression ignition diesel engines. Under normal atmospheric conditions ether has several fuel properties that make it attractive for use in diesel engines. It has a very high

  19. X-34 40K Fastrac II Engine Test

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a photo of an X-34 40K Fastrac II duration test performed at the Marshall Space Flight Center test stand 116 (TS116) in June 1997. Engine ignition is started with Tea-Gas which makes the start burn green. The X-34 program was cancelled in 2001.

  20. Branched-chain fatty acid methyl esters as cold flow improvers for biodiesel

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm, or soybean and has a number of properties that make it compatible in compression-ignition engines. Despite...

  1. Science & Technology Review June 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poyneer, L A

    2012-04-20

    This month's issue has the following articles: (1) A New Era in Climate System Analysis - Commentary by William H. Goldstein; (2) Seeking Clues to Climate Change - By comparing past climate records with results from computer simulations, Livermore scientists can better understand why Earth's climate has changed and how it might change in the future; (3) Finding and Fixing a Supercomputer's Faults - Livermore experts have developed innovative methods to detect hardware faults in supercomputers and help applications recover from errors that do occur; (4) Targeting Ignition - Enhancements to the cryogenic targets for National Ignition Facility experiments aremore » furthering work to achieve fusion ignition with energy gain; (5) Neural Implants Come of Age - A new generation of fully implantable, biocompatible neural prosthetics offers hope to patients with neurological impairment; and (6) Incubator Busy Growing Energy Technologies - Six collaborations with industrial partners are using the Laboratory's high-performance computing resources to find solutions to urgent energy-related problems.« less

  2. Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris

    2015-11-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  3. Three-Dimensional Simulation of Base Bleed Unit with AP/HTPB Propellant in Fast Cook-off Conditions

    NASA Astrophysics Data System (ADS)

    Li, Wen-feng; Yu, Yong-gang; Ye, Rui; Yang, Hou-wen

    2017-07-01

    In this work, a three-dimensional unsteady heat transfer model of base bleed unit with trilobite ammonium perchlorate (AP)/hydroxyl-terminated polybutadiene (HTPB) composite solid propellant is presented to analyze the cook-off characteristics. According to the two-step chemical reaction of AP/HTPB propellant, a small-scale cook-off test is established. A comparison of the experimental and calculated results is made to verify the rationality of the computation model. On this basis, a cook-off numerical simulation of the base bleed unit at the heating rates of 0.33, 0.58 and 0.83 K/s is presented to investigate the ignition and initiation characteristics. The results show that the ignitions occur on the head face of the AP/HTPB propellant and near the internal gas chamber in these conditions. As the heating rate increases, the runaway time decreases and the ignition temperature rises.

  4. OH PLIF measurement in a spark ignition engine with a tumble flow

    NASA Astrophysics Data System (ADS)

    Kumar, Siddhartha; Moronuki, Tatsuya; Shimura, Masayasu; Minamoto, Yuki; Yokomori, Takeshi; Tanahashi, Mamoru; Strategic Innovation Program (SIP) Team

    2017-11-01

    Under lean conditions, high compression ratio and strong tumble flow; cycle-to-cycle variations of combustion in spark ignition (SI) engines is prominent, therefore, relation between flame propagation characteristics and increase of pressure needs to be clarified. The present study is aimed at exploring the spatial and temporal development of the flame kernel using OH planar laser-induced fluorescence (OH PLIF) in an optical SI engine. Equivalence ratio is changed at a fixed indicated mean effective pressure of 400 kPa. From the measurements taken at different crank angle degrees (CAD) after ignition, characteristics of flame behavior were investigated considering temporal evolution of in-cylinder pressure, and factors causing cycle-to-cycle variations are discussed. In addition, the effects of tumble flow intensity on flame propagation behavior were also investigated. This work is supported by the Cross-ministerial Strategic Innovation Program (SIP), `Innovative Combustion Technology'.

  5. Measurements of Deuterium-Tritium Fuel Fractionation from Kinetic Effects in Ignition-Relevant Direct-Drive Cryogenic Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, C.; Glebov, V. Yu.; Knauer, J. P.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Stoeckl, C.

    2016-10-01

    Measurements of DT and DD reaction yields have been studied using ignition-relevant, cryogenically cooled deuterium-tritium gas-filled cryogenic DT targets in inertial confinement fusion (ICF) implosions. In these experiments, carried out at the Omega Laser Facility, highresolution time-of-flight spectroscopy was used to measure the primary neutron peak distribution required to infer the DT and DD reaction yields. From these measurements, it will be shown that the yield ratio has a χ2/per degree of freedom of 0.67 as compared with the measured fraction of the target fuel composition. This observation indicates that kinetic effects leading to species separation are insignificant in ICF ignition-relevant DT implosions on OMEGA. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  7. Two-Dimensional Failure Waves and Ignition Fronts in Premixed Combustion

    NASA Technical Reports Server (NTRS)

    Vedarajan, T. G.; Buckmaster J.; Ronney, P.

    1998-01-01

    This paper is a continuation of our work on edge-flames in premixed combustion. An edge-flame is a two-dimensional structure constructed from a one-dimensional configuration that has two stable solutions (bistable equilibrium). Edge-flames can display wavelike behavior, advancing as ignition fronts or retreating as failure waves. Here we consider two one-dimensional configurations: twin deflagrations in a straining flow generated by the counterflow of fresh streams of mixture: and a single deflagration subject to radiation losses. The edge-flames constructed from the first configuration have positive or negative speeds, according to the value of the strain rate. But our numerical solutions strongly suggest that only positive speeds (corresponding to ignition fronts) can exist for the second configuration. We show that this phenomenon can also occur in diffusion flames when the Lewis numbers are small. And we discuss the asymptotics of the one-dimensional twin deflagration configuration. an overlooked problem from the 70s.

  8. Discharge ignition in the diaphragm configuration supplied by DC non-pulsing voltage

    NASA Astrophysics Data System (ADS)

    Hlochová, L.; Hlavatá, L.; Kozáková, Z.; Krčma, F.

    2016-05-01

    This work deals with the ignition of the discharge in the diaphragm configuration generated in water solutions containing supporting NaCl electrolyte. The reactor has volume of 110 ml and it is made of polycarbonate. HV electrodes made of stainless steel are placed in this reactor. Ceramic (Shapal-MTM) diaphragm is placed in the barrier separating the cathode and the anode space. An electric power source supplies the reactor by constant DC voltage up to 4 kV and electric current up to 300 mA. The discharge ignition is compared in the reactor with different sizes of diaphragms. Measurements are carried out in electrolyte solutions with the same conductivity. Images of plasma streamers and bubble formation are taken by an ICCD camera iStar 734. Electrical characteristics are measured by an oscilloscope LeCroy LT 374 L in order to determine breakdown moments at different experimental conditions.

  9. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  10. Thermonuclear milestones: (2) Beginnings of the Soviet H-bomb program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, G.A.

    1996-11-01

    Early Soviet theoretical work on thermonuclear ignition was adied by espionage, but many important ideas were conceived and developed independently {copyright} {ital 1996 American Institute of Physics.}

  11. Air Separation Using Hollow Fiber Membranes

    NASA Technical Reports Server (NTRS)

    Huang, Stephen E.

    2004-01-01

    The NASA Glenn Research Center in partnership with the Ohio Aerospace Institute provides internship programs for high school and college students in the areas of science, engineering, professional administrative, and other technical areas. During the summer of 2004, I worked with Dr. Clarence T. Chang at NASA Glenn Research Center s combustion branch on air separation using hollow fiber membrane technology. . In light of the accident of Trans World Airline s flight 800, FAA has mandated that a suitable solution be created to prevent the ignition of fuel tanks in aircrafts. In order for any type of fuel to ignite, three important things are needed: fuel vapor, oxygen, and an energy source. Two different ways to make fuel tanks less likely to ignite are reformulating the fuel to obtain a lower vapor pressure for the fuel and or using an On Board Inert Gas Generating System (OBIGGS) to inert the Central Wing Tank. goal is to accomplish the mission, which means that the Air Separation Module (ASM) tends to be bulky and heavy. The primary goal for commercial aviation companies is to transport as much as they can with the least amount of cost and fuel per person, therefore the ASM must be compact and light as possible. The plan is to take bleed air from the aircraft s engines to pass air through a filter first to remove particulates and then pass the air through the ASM containing hollow fiber membranes. In the lab, there will be a heating element provided to simulate the temperature of the bleed air that will be entering the ASM and analysis of the separated air will be analyzed by a Gas Chromatograph/Mass Spectrometer (GC/MS). The GUMS will separate the different compounds in the exit streams of the ASM and provide information on the performance of hollow fiber membranes. Hopefully I can develop ways to improve efficiency of the ASM. different types of jet fuel were analyzed and data was well represented on SAE Paper 982485. Data consisted of the concentrations of over 300 different hydrocarbons commonly found in JP- 8, Jet A, and JP-5 fuels. I researched the major hydrocarbons that has a concentration of greater than 50 parts per million and found the vapor pressure data coefficients for a specific temperature range. The coefficients were applied to Antoine s Equation and Riedel's Equation to calculate the vapor pressures for that specific hydrocarbon in the specific temperature range. With the vapor pressure data scientists can formulate a fuel composition that has a lower vapor pressure profile, therefore making jet fuels less flammable. work, learn how to operate and examine the data from Gas Chromatograph and Mass Spectrometer, and develop new ways in applying hollow fiber membrane technology to other areas of environmental engineering. The United States military currently uses air separation technology and their primary The other side of making air travel safer is to reformulate the fuel. Analyses of three My goal this summer is to learn about hollow fiber membrane technologies and how they

  12. A Survey of Studies on Ignition and Burn of Inertially Confined Fuels

    NASA Astrophysics Data System (ADS)

    Atzeni, Stefano

    2016-10-01

    A survey of studies on ignition and burn of inertial fusion fuels is presented. Potentials and issues of different approaches to ignition (central ignition, fast ignition, volume ignition) are addressed by means of simple models and numerical simulations. Both equimolar DT and T-lean mixtures are considered. Crucial issues concerning hot spot formation (implosion symmetry for central ignition; igniting pulse parameters for fast ignition) are briefly discussed. Recent results concerning the scaling of the ignition energy with the implosion velocity and constrained gain curves are also summarized.

  13. Localized microwave pulsed plasmas for ignition and flame front enhancement

    NASA Astrophysics Data System (ADS)

    Michael, James Bennett

    Modern combustor technologies require the ability to match operational parameters to rapidly changing demands. Challenges include variable power output requirements, variations in air and fuel streams, the requirement for rapid and well-controlled ignition, and the need for reliability at low fuel mixture fractions. Work on subcritical microwave coupling to flames and to weakly ionized laser-generated plasmas has been undertaken to investigate the potential for pulsed microwaves to allow rapid combustion control, volumetric ignition, and leaner combustion. Two strategies are investigated. First, subcritical microwaves are coupled to femtosecond laser-generated ionization to ignite methane/air mixtures in a quasi-volumetric fashion. Total energy levels are comparable to the total minimum ignition energies for laser and spark discharges, but the combined strategy allows a 90 percent reduction in the required laser energy. In addition, well-defined multi-dimensional ignition patterns are designated with multiple laser passes. Second, microwave pulse coupling to laminar flame fronts is achieved through interaction with chemiionization-produced electrons in the reaction zone. This energy deposition remains well-localized for a single microwave pulse, resulting in rapid temperature rises of greater than 200 K and maintaining flame propagation in extremely lean methane/air mixtures. The lean flammability limit in methane/air mixtures with microwave coupling has been decreased from an equivalence ratio 0.6 to 0.3. Additionally, a diagnostic technique for laser tagging of nitrogen for velocity measurements is presented. The femtosecond laser electronic excitation tagging (FLEET) technique utilizes a 120 fs laser to dissociate nitrogen along a laser line. The relatively long-lived emission from recombining nitrogen atoms is imaged with a delayed and fast-gated camera to measure instantaneous velocities. The emission strength and lifetime in air and pure nitrogen allow instantaneous velocity measurements. FLEET is shown to perform in high temperature and reactive mixtures.

  14. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    NASA Astrophysics Data System (ADS)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  15. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  16. Modeling Laser-Plasma Interactions at Direct-Drive Ignition-Relevant Plasma Conditions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Seka, W.; Hohenberger, M.; Short, R. W.; Shaw, J. G.; Regan, S. P.; Froula, D. H.; Radha, P. B.; Bates, J. W.; Schmitt, A. J.; Michel, P.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.

    2016-10-01

    Laser-plasma interaction instabilities, such as two-plasmon decay (TPD) and stimulated Raman scattering (SRS), can be detrimental for direct-drive inertial confinement fusion because of target preheat by generated high-energy electrons. The radiation-hydrodynamics code DRACO has been used to design planar-target experiments that generate plasma and interaction conditions relevant to direct-drive-ignition designs (IL 1015 W / cm 2 , Te > 3 KeV density gradient scale lengths of Ln 600 μm) . The hot-electron temperature of 40to50keV and the fraction of laser energy converted to hot electrons of 0.5to were inferred based on comparing the simulated and experimentally observed x-ray emission when the laser intensity at the quarter-critical surface increased from 6 to 15 ×1014 W / cm 2 . The measured SRS energy was sufficient to explain the observed total energy in hot electrons. Implications for ignition-scale direct-drive experiments and hot-electron preheat mitigation using mid- Z ablators will be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  18. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  19. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  20. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  1. 14 CFR 27.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... master ignition control. (b) Each group of ignition switches, except ignition switches for turbine engines for which continuous ignition is not required, and each master ignition control must have a means... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1145 Ignition...

  2. Ignition characterization of LOX/hydrocarbon propellants

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Wong, K. Y.

    1985-01-01

    The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.

  3. EDITORIAL: Inertial Fusion State of the Art---A Collection of Overview and Technical Papers from IFSA2003

    NASA Astrophysics Data System (ADS)

    Hogan, W. J.

    2004-12-01

    The Third International Conference on Inertial Fusion Sciences and Applications (IFSA2003) was held in Monterey, CA, USA, on 7--12 September 2003. The goal of IFSA2003 was to bring together scientists and engineers in the fields of inertial fusion sciences, high energy density physics, inertial fusion energy (IFE) and other related research and applications. By all measures IFSA2003 was a resounding success. IFSA2003 was hosted by the University of California, which was supported in organizing the conference by seven institutions: General Atomics, Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Naval Research Laboratory, Sandia National Laboratory and the University of Rochester, Laboratory for Laser Energetics. IFSA2003 was the largest IFSA conference yet with 405 participants from 17 countries. Approximately 430 papers were presented and 236 appeared in the Proceedings, published in July 2004 by the American Nuclear Society [1]. A subset of the Nuclear Fusion Board of Editors, those who work on inertial confinement fusion (ICF), recommended creating this special issue of Nuclear Fusion by selecting a representative cross-section of the papers presented at IFSA2003. Authors of the selected papers were asked to expand their papers and make them suitable for publication in it Nuclear Fusion. Nineteen papers are presented in this special issue. They represent a cross-section of the papers presented at IFSA2003. However, there was no attempt to represent the `feel' of the conference by having the same fraction of papers on each topic as existed at IFSA. There were far more detailed scientific papers at IFSA than are presented in this special issue. However, in the interest of giving the reader a cross-section of the papers and showing the entire breadth of ICF research going on, we have biased the selection process toward review papers. The first three papers here are based upon the keynote talks at IFSA2003 and are, therefore, overviews of all ICF research being done in the Americas, Asia, and Europe. The next two papers are also reviews but of a different sort. The Teller Medal is awarded at the IFSA conferences for pioneering work and leadership in inertial fusion and high energy density science. The two recipients for 2003 were H. Takabe of the Institute of Laser Engineering at Osaka University and L. Suter of Lawrence Livermore National Laboratory. These awardees were asked to deliver the two Teller Lectures at IFSA based upon the work for which they were being honoured. The papers presented here are expansions of those two review talks. Suter chose to focus his review on his recent work on ignition physics for targets driven by 0.54 m light. This is of interest because large facilities like the National Ignition Facility (NIF) will deliver much more energy in the frequency doubled wavelength than in the frequency tripled one. Takabe, on the other hand chose to give a historical perspective of his lifelong work. The other 14 papers were selected to represent a cross-section of the research being conducted in the science and engineering of inertial fusion. The papers by Haan et al and Holstein et al represent some of the recent progress in target design calculations for the ignition first experiments. Haan presents his team's work on indirect drive ignition targets (driven by 0.35 m) intended for the National Ignition Facility (NIF) when all the beamlines are activated. Holstein does the same for targets being design for the Laser MegaJoule (LMJ). Suter's paper, presented earlier as a Teller Lecture also falls into this ignition target physics category. The next four papers look at some of the exciting high energy density physics being studied in ICF facilities around the world. Glenzer et al looks at stimulated light scattering processes in hot dense plasmas. Pukhov et al look at relativistic laser-plasma interactions that produce energetic particles and x-rays. Peyrusse et al examine atomic physics and radiative processes in hot dense plasmas. Koenig et al examine ways to simulate planetary physics processes using high pressures generated in laser driven shocks. Non-laser approaches to inertial fusion were also fully represented at IFSA2003. The paper by Lebedev et al shows important physics developments in Z-pinch plasmas. Sharp et al present chamber transport modelling for heavy ion fusion drivers. Technology development studies were also well represented at IFSA2003. There was a special session on facility and driver developments that contained several papers. Presented here are the papers by Miller et al on the NIF, Danson et al on the Vulcan petawatt facility, and Myers et al on KrF lasers for IFE. A paper by Goodin et al shows progress in finding cost effective target manufacturing methods for IFE. Finally, there were many papers at IFSA2003 that focused upon the very promising but more immature field of fast ignition. Barty et al give an overview of the development issues for short pulse lasers that will be essential if fast ignition is to become mainstream. A paper by Kodama et al looks at target physics using cone focus targets. Fast ignition lasers and innovative target physics within this concept were a `hot topic' at IFSA2003. The IFSA conferences have become the principal forum for the exchange of research results in inertial fusion and high energy and density science. There is a unique blend of science and technology. All fields of inertial fusion are represented. This special issue is a snapshot and a cross-section of the field at this time. We hope the reader is encouraged to look into more of the papers in areas that interest them. References [1] Inertial Fusion Sciences and Applications: State of the Art 2003 ed B. Hammel, D. Meyerhofer, J. Meyer-ter-Vehn and H. Azechi American Nuclear Society (July 2004) These IFSA2003 proceedings may be purchased on-line at http://www.ans.org.

  4. Making aerospace technology work for the automotive industry - Introduction

    NASA Technical Reports Server (NTRS)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  5. Laser Induced Aluminum Surface Breakdown Model

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Liu, Jiwen; Zhang, Sijun; Wang, Ten-See (Technical Monitor)

    2002-01-01

    Laser powered propulsion systems involve complex fluid dynamics, thermodynamics and radiative transfer processes. Based on an unstructured grid, pressure-based computational aerothermodynamics; platform, several sub-models describing such underlying physics as laser ray tracing and focusing, thermal non-equilibrium, plasma radiation and air spark ignition have been developed. This proposed work shall extend the numerical platform and existing sub-models to include the aluminum wall surface Inverse Bremsstrahlung (IB) effect from which surface ablation and free-electron generation can be initiated without relying on the air spark ignition sub-model. The following tasks will be performed to accomplish the research objectives.

  6. Internal sub-sonic burning during an explosion viewed via dynamic X-ray radiography

    NASA Astrophysics Data System (ADS)

    Smilowitz, L.; Henson, B. F.; Oschwald, D.; Suvorova, N.; Remelius, D.

    2017-10-01

    We observe internal convective and conductive burn front propagation and solid consumption subsequent to thermal ignition for plastic bonded formulations of the solid organic secondary explosives octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene. This work describes x-ray radiographic diagnostics enabling the study of solid density in a fully encased explosive during internal burning subsequent to ignition. The result of this study is the ability to directly observe and measure rates of energy release during a thermal explosion.

  7. 49 CFR 176.138 - Deck stowage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., machinery exhaust, galley uptake, locker used for combustible stores, or other potential sources of ignition. They must be clear of walkways and cargo working areas, fire hydrants, steam pipes, and means of access...

  8. Fluid-Plasma-Combustion Coupling Effects on the Ignition of a Fuel Jet

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Freund, Jonathan

    2016-11-01

    We analyze the effect of plasma-combustion coupling on the ignition and flame supported by a DBD interacting with a jet of H2 in a air cross-flow. We propose that plasma-combustion coupling is due to the strong temperature-dependence of specific collisional energy loss as predicted by the Boltzmann equation, and that e- transport can be modeled by assuming a form for the E-field pulse in microstreamers. We introduce a two-way coupling based on the Boltzmann equation and the charged species conservation. The addition of this mechanism to a hydrogen combustion scheme leads to an improvement of the ignition prediction and of the understanding of the effect of the plasma on the flow. The key points of the analysis are 1) explanation of the mechanism for the two-stage ignition and quenching observed experimentally, 2) explanation of the existence of a power threshold above which the plasma is beneficial to the ignition probability, 3) understanding of the increase in power absorbed by the plasma in burning conditions and the reduction in power absorbed with an increase in the cross velocity, 4) explanation of the non-symmetric emissions and the increase in luminescence at the rotovibrational H2O band. The model is validated in part against air-H2 flow experiments. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  9. Stab Sensitivity of Energetic Nanolaminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gash, A; Barbee, T; Cervantes, O

    2006-05-22

    This work details the stab ignition, small-scale safety, and energy release characteristics of bimetallic Al/Ni(V) and Al/Monel energetic nanolaminate freestanding thin films. The influence of the engineered nanostructural features of the energetic multilayers is correlated with both stab initiation and small-scale energetic materials testing results. Structural parameters of the energetic thin films found to be important include the bi-layer period, total thickness of the film, and presence or absence of aluminum coating layers. In general the most sensitive nanolaminates were those that were relatively thick, possessed fine bi-layer periods, and were not coated. Energetic nanolaminates were tested for their stabmore » sensitivity as freestanding continuous parts and as coarse powders. The stab sensitivity of mock M55 detonators loaded with energetic nanolaminate was found to depend strongly upon both the particle size of the material and the configuration of nanolaminate material, in the detonator cup. In these instances stab ignition was observed with input energies as low as 5 mJ for a coarse powder with an average particle dimension of 400 {micro}m. Selected experiments indicate that the reacting nanolaminate can be used to ignite other energetic materials such as sol-gel nanostructured thermite, and conventional thermite that was either coated onto the multilayer substrate or pressed on it. These results demonstrate that energetic nanolaminates can be tuned to have precise and controlled ignition thresholds and can initiate other energetic materials and therefore are viable candidates as lead-free impact initiated igniters or detonators.« less

  10. Ohmic ignition with high engineering beta based on the RFP

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Anderson, J. K.; Chapman, B. E.; McCollam, K. J.

    2017-10-01

    The RFP configuration allows the possibility of ohmic ignition for fusion energy, eliminating the need for auxiliary heating by rf or neutral beam injection. Complex plasma-facing antennas and NBI sources are therefore not required, simplifying the difficult fusion materials challenge. While all toroidal configurations require a volume-average 〈 B 〉 >= 5 T, the field strength at the magnet in the RFP is only Bcoil 3T since plasma current generates almost all of the field. Engineering beta is therefore maximized. We summarize access to ohmic ignition by examining a Lawson-like power balance for an RFP fusion plasma comparable to the ARIES-AT advanced tokamak, which generates neutron wall loading Pn / A 5 MW/m2. The required energy confinement for ohmic ignition in an RFP is similar to that for a tokamak. Confinement in MST is comparable to a same-size, same-field tokamak plasma, but 〈 B 〉 in MST is only 1/20th that required for fusion. While transport could ultimately be dominated by micro turbulence, extrapolation of stochastic transport using Lundquist number scaling for MHD tearing indicates standard RFP confinement (not enhanced by current profile control) could be sufficient to access ohmic ignition. This bolsters the possibility for steady-state inductive sustainment using oscillating field current drive. The high beta and classical energetic ion confinement measured in MST also bolster the RFP's fusion potential. Work supported by U.S. DoE.

  11. Source, dispersion and combustion modelling of an accidental release of hydrogen in an urban environment.

    PubMed

    Venetsanos, A G; Huld, T; Adams, P; Bartzis, J G

    2003-12-12

    Hydrogen is likely to be the most important future energy carrier, for many stationary and mobile applications, with the potential to make significant reductions in greenhouse gas emissions especially if renewable primary energy sources are used to produce the hydrogen. A safe transition to the use of hydrogen by members of the general public requires that the safety issues associated with hydrogen applications have to be investigated and fully understood. In order to assess the risks associated with hydrogen applications, its behaviour in realistic accident scenarios has to be predicted, allowing mitigating measures to be developed where necessary. A key factor in this process is predicting the release, dispersion and combustion of hydrogen in appropriate scenarios. This paper illustrates an application of CFD methods to the simulation of an actual hydrogen explosion. The explosion occurred on 3 March 1983 in a built up area of central Stockholm, Sweden, after the accidental release of approximately 13.5 kg of hydrogen from a rack of 18 interconnected 50 l industrial pressure vessels (200 bar working pressure) being transported by a delivery truck. Modelling of the source term, dispersion and combustion were undertaken separately using three different numerical tools, due to the differences in physics and scales between the different phenomena. Results from the dispersion calculations together with the official accident report were used to identify a possible ignition source and estimate the time at which ignition could have occurred. Ignition was estimated to occur 10s after the start of the release, coinciding with the time at which the maximum flammable hydrogen mass and cloud volume were found to occur (4.5 kg and 600 m(3), respectively). The subsequent simulation of the combustion adopts initial conditions for mean flow and turbulence from the dispersion simulations, and calculates the development of a fireball. This provides physical values, e.g. maximum overpressure and far-field overpressure that may be used as a comparison with the known accident details to give an indication of the validity of the models. The simulation results are consistent with both the reported near-field damage to buildings and persons and with the far-field damage to windows. The work was undertaken as part of the European Integrated Hydrogen Project-Phase 2 (EIHP2) with partial funding from the European Commission via the Fifth Framework Programme.

  12. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  13. Laser ignition of an experimental combustion chamber with a multi-injector configuration at low pressure conditions

    NASA Astrophysics Data System (ADS)

    Börner, Michael; Manfletti, Chiara; Kroupa, Gerhard; Oschwald, Michael

    2017-09-01

    In search of reliable and light-weight ignition systems for re-ignitable upper stage engines, a laser ignition system was adapted and tested on an experimental combustion chamber for propellant injection into low combustion chamber pressures at 50-80 mbar. The injector head pattern consisted of five coaxial injector elements. Both, laser-ablation-driven ignition and laser-plasma-driven ignition were tested for the propellant combination liquid oxygen and gaseous hydrogen. The 122 test runs demonstrated the reliability of the ignition system for different ignition configurations and negligible degradation due to testing. For the laser-plasma-driven scheme, minimum laser pulse energies needed for 100% ignition probability were found to decrease when increasing the distance of the ignition location from the injector faceplate with a minimum of 2.6 mJ. For laser-ablation-driven ignition, the minimum pulse energy was found to be independent of the ablation material tested and was about 1.7 mJ. The ignition process was characterized using both high-speed Schlieren and OH* emission diagnostics. Based on these findings and on the increased fiber-based pulse transport capabilities recently published, new ignition system configurations for space propulsion systems relying on fiber-based pulse delivery are formulated. If the laser ignition system delivers enough pulse energy, the laser-plasma-driven configuration represents the more versatile configuration. If the laser ignition pulse power is limited, the application of laser-ablation-driven ignition is an option to realize ignition, but implies restrictions concerning the location of ignition.

  14. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE PAGES

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.; ...

    2016-08-18

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  15. Transient and translating gas jet modeling for pressure gain combustion applications

    NASA Astrophysics Data System (ADS)

    Wijeyakulasuriya, Sameera Devsritha

    Major mechanisms governing the mixing process of a gas injected into a long confined chamber is analyzed when there's a relative motion between the two. Such applications arise in a wave rotor combustor (WRCVC) where the moving combustion chambers receive gas from stationary injectors for fueling and ignition. Counter rotating vortices govern the mixing process in such problems, which moves across the channel enhancing mixing. The actions of vortices were seen to localize the injected gas in the vicinity of the injector end wall which can prove advantages during fueling to make a rich mixture near the ignition source and during hot gas injection for ignition to minimize the drop of temperature. The vortex structures can alter the exit conditions of the injector due to its strong near field interactions. The confinement is also important in which it suppresses the development and motion of such vortices and hence affect mixing. The thesis discusses several important features in a WRCVC. Namely, the effect of a combustion channel being opened to the preceding exit port prior to its opening to the gas injectors, on mixing of injected gas with channel gases. This prior opening was seen to deposit vorticity on the channel wall which gets convected along them. This convecting vorticity resulted in enhanced jet penetration. The effect of combustible mixture non-uniformity on ignition success of a WRCVC was also analyzed using 2D and 1D computations. The predictions are validated against measured data from a WRCVC test rig. Ignition locations and combustion pressures were successfully predicted. Limited 3D computations of the hot gas jet mixing with the channel gases were carried out and measure temperature data from the WRCVC test rig was used to verify the axial penetration predictions of the jet. A methodology is proposed to quantify the level of mixing and ignition success by comparing the amount of injected gas inside the channel which is above a certain threshold temperature and mass fraction limits, to the total amount of injected mass trapped inside it at that particular time. Conclusions were made on the level of mixing and the 'ignitability' of the mixture by looking at the time variation of these defined quantities.

  16. Investigation of Iso-octane Ignition and Validation of a Multizone Modeling Method in an Ignition Quality Tester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.

    An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less

  17. NIF featured on BBC "Horizon"

    ScienceCinema

    Brian Cox

    2017-12-09

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  18. NIF featured on BBC "Horizon"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian Cox

    2010-01-12

    The National Ignition Facility, the world's largest laser system, located at Lawrence Livermore National Laboratory, was featured in the BBC broadcast "Horizon" hosted by physicist Brian Cox. Here is the NIF portion of the program, which was entitled "Can We Make A Star On Earth?" This video is used with the express permission of the BBC.

  19. Automotive Engines; Automotive Mechanics I: 9043.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  20. Making Art Matter-ings: Engaging (with) Art in Early Childhood Education, in Aotearoa New Zealand

    ERIC Educational Resources Information Center

    Craw, Janita

    2015-01-01

    This article examines the special nature of "Te Whariki," Aotearoa New Zealand's early childhood national curriculum, as a dynamic social, cultural document through an exploration of two art-inspired imaginary case studies. Thinking with "Te Whariki" retains the potential to ignite thinking post-developmentally about art,…

  1. History of Piedmont Forests: Implications For Current Pine Management

    Treesearch

    D.H. Van Lear; R.A. Harper; P.R. Kapeluck; W.D. Carroll

    2004-01-01

    Piedmont forests were maintained for millennia in an open condition by anthropogenic- and lightning-ignited fires. After European settlement, row-crop agriculture caused serious soil erosion, making Piedmont soils less capable of supplying moisture and nutrients during drought periods. Dense stands of pine, both naturally and artificially regenerated over the past 70...

  2. Seasonal fire danger forecasts for the USA

    Treesearch

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  3. Spark Ignition of Monodisperse Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Danis, Allen M.; Cernansky, Nicholas P.; Namer, Izak

    1987-01-01

    A study of spark ignition energy requirements was conducted with a monodisperse spray system allowing independent control of droplet size, equivalent ratio, and fuel type. Minimum ignition energies were measured for n-heptane and methanol sprays characterized at the spark gap in terms of droplet diameter, equivalence ratio (number density) and extent of prevaporization. In addition to sprays, minimum ignition energies were measured for completely prevaporized mixtures of the same fuels over a range of equivalence ratios to provide data at the lower limit of droplet size. Results showed that spray ignition was enhanced with decreasing droplet size and increasing equivalence ratio over the ranges of the parameters studied. By comparing spray and prevaporized ignition results, the existence of an optimum droplet size for ignition was indicated for both fuels. Fuel volatility was seen to be a critical factor in spray ignition. The spray ignition results were analyzed using two different empirical ignition models for quiescent mixtures. Both models accurately predicted the experimental ignition energies for the majority of the spray conditions. Spray ignition was observed to be probabilistic in nature, and ignition was quantified in terms of an ignition frequency for a given spark energy. A model was developed to predict ignition frequencies based on the variation in spark energy and equivalence ratio in the spark gap. The resulting ignition frequency simulations were nearly identical to the experimentally observed values.

  4. Developing a Common Framework for Evaluating the Implementation of Genomic Medicine Interventions in Clinical Care: The IGNITE Network’s Common Measures Working Group

    PubMed Central

    Orlando, Lori A.; Sperber, Nina R.; Voils, Corrine; Nichols, Marshall; Myers, Rachel A.; Wu, R. Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D.; Levy, Mia; Pollin, Toni I.; Guan, Yue; Horowitz, Carol R.; Ramos, Michelle; Kimmel, Stephen E.; McDonough, Caitrin W.; Madden, Ebony B.; Damschroder, Laura J.

    2017-01-01

    Purpose Implementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing GeNomics In PracTicE (IGNITE) Network’s efforts to promote: 1) a broader understanding of genomic medicine implementation research; and 2) the sharing of knowledge generated in the network. Methods To facilitate this goal the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide their approach to: identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross network analyses. Results CMG identified ten high-priority CFIR constructs as important for genomic medicine. Of those, eight didn’t have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model. Conclusion We developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field. PMID:28914267

  5. Engine Operating Conditions and Fuel Properties on Pre-Spark Heat Release and SPI Promotion in SI Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Splitter, Derek A; Kaul, Brian C; Szybist, James P

    This work explores the dependence of fuel ignition delay on stochastic pre-ignition (SPI). Findings are based on bulk gas thermodynamic state, where the effects of kinetically controlled bulk gas pre-spark heat release (PSHR) are correlated to SPI tendency and magnitude. Specifically, residual gas and low temperature PSHR chemistry effects and observations are explored, which are found to be indicative of bulk gas conditions required for strong SPI events. Analyzed events range from non-knocking SPI to knocking SPI and even detonation SPI events in excess of 325 bar peak cylinder pressure. The work illustrates that singular SPI event count and magnitudemore » are found to be proportional to PSHR of the bulk gas mixture and residual gas fraction. Cycle-to-cycle variability in trapped residual mass and temperature are found to impose variability in singular SPI event count and magnitude. However, clusters and short lived bursts of multiple SPI events are found to better correlate with fuel-wall interaction. The results highlight the interplay of bulk gas thermodynamics and SPI ignition source, on SPI event magnitude and cluster tendency. Moreover, the results highlight fundamental fuel reactivity and associated hypersensitivity to operating conditions at SPI prone operating conditions.« less

  6. Developing a common framework for evaluating the implementation of genomic medicine interventions in clinical care: the IGNITE Network's Common Measures Working Group.

    PubMed

    Orlando, Lori A; Sperber, Nina R; Voils, Corrine; Nichols, Marshall; Myers, Rachel A; Wu, R Ryanne; Rakhra-Burris, Tejinder; Levy, Kenneth D; Levy, Mia; Pollin, Toni I; Guan, Yue; Horowitz, Carol R; Ramos, Michelle; Kimmel, Stephen E; McDonough, Caitrin W; Madden, Ebony B; Damschroder, Laura J

    2018-06-01

    PurposeImplementation research provides a structure for evaluating the clinical integration of genomic medicine interventions. This paper describes the Implementing Genomics in Practice (IGNITE) Network's efforts to promote (i) a broader understanding of genomic medicine implementation research and (ii) the sharing of knowledge generated in the network.MethodsTo facilitate this goal, the IGNITE Network Common Measures Working Group (CMG) members adopted the Consolidated Framework for Implementation Research (CFIR) to guide its approach to identifying constructs and measures relevant to evaluating genomic medicine as a whole, standardizing data collection across projects, and combining data in a centralized resource for cross-network analyses.ResultsCMG identified 10 high-priority CFIR constructs as important for genomic medicine. Of those, eight did not have standardized measurement instruments. Therefore, we developed four survey tools to address this gap. In addition, we identified seven high-priority constructs related to patients, families, and communities that did not map to CFIR constructs. Both sets of constructs were combined to create a draft genomic medicine implementation model.ConclusionWe developed processes to identify constructs deemed valuable for genomic medicine implementation and codified them in a model. These resources are freely available to facilitate knowledge generation and sharing across the field.

  7. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  8. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  9. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  10. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  11. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  12. 14 CFR 23.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 23.1145 Ignition switches. (a) Ignition switches must control and shut off each ignition circuit... the grouping of switches or by a master ignition control. (c) Each group of ignition switches, except...

  13. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

    DTIC Science & Technology

    2014-01-15

    in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression

  14. Web Application to Monitor Logistics Distribution of Disaster Relief Using the CodeIgniter Framework

    NASA Astrophysics Data System (ADS)

    Jamil, Mohamad; Ridwan Lessy, Mohamad

    2018-03-01

    Disaster management is the responsibility of the central government and local governments. The principles of disaster management, among others, are quick and precise, priorities, coordination and cohesion, efficient and effective manner. Help that is needed by most societies are logistical assistance, such as the assistance covers people’s everyday needs, such as food, instant noodles, fast food, blankets, mattresses etc. Logistical assistance is needed for disaster management, especially in times of disasters. The support of logistical assistance must be timely, to the right location, target, quality, quantity, and needs. The purpose of this study is to make a web application to monitorlogistics distribution of disaster relefusing CodeIgniter framework. Through this application, the mechanisms of aid delivery will be easily controlled from and heading to the disaster site.

  15. Time-of-Flight Measurements of Neutron Yields from Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Caggaino, Joseph

    2014-10-01

    Three 20-m time-of-flight detectors measure neutron spectra from implosions of deuterium-tritium targets at the National Ignition Facility. Two prominent peaks appear in the spectra from the T(d, n) and D(d, n) reactions. The ratio of yields extracted from the peaks depend on the DT and DD reaction rates and attenuation from the compressed DT fuel, which makes the ratio a diagnostic of the hotspot thermodynamics and fuel areal density. The measured peak widths provide additional constraints on reactant temperature. Recent measurements from a high-yield campaign will be presented and compared to radiation-hydrodynamic simulations of similar implosions. This research is supported by the Department of Energy National Nuclear Security Administration under Contract DE-NA0001944.

  16. Investigations of the small-scale thermal behavior of sol-gel thermites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Mial E.; Farrow, Matthew; Tappan, Alexander Smith

    2009-02-01

    Sol-gel thermites, formulated from nanoporous oxides and dispersed fuel particles, may provide materials useful for small-scale, intense thermal sources, but understanding the factors affecting performance is critical prior to use. Work was conducted on understanding the synthesis conditions, thermal treatments, and additives that lead to different performance characteristics in iron oxide sol-gel thermites. Additionally, the safety properties of sol-gel thermites were investigated, especially those related to air sensitivity. Sol-gel thermites were synthesized using a variety of different techniques and there appear to be many viable routes to relatively equivalent thermites. These thermites were subjected to several different thermal treatments undermore » argon in a differential scanning calorimeter, and it was shown that a 65 C hold for up to 200 minutes was effective for the removal of residual solvent, thus preventing boiling during the final thermal activation step. Vacuum-drying prior to this heating was shown to be even more effective at removing residual solvent. The addition of aluminum and molybdenum trioxide (MoO{sub 3}) reduced the total heat release per unit mass upon exposure to air, probably due to a decrease in the amount of reduced iron oxide species in the thermite. For the thermal activation step of heat treatment, three different temperatures were investigated. Thermal activation at 200 C resulted in increased ignition sensitivity over thermal activation at 232 C, and thermal activation at 300 C resulted in non-ignitable material. Non-sol-gel iron oxide did not exhibit any of the air-sensitivity observed in sol-gel iron oxide. In the DSC experiments, no bulk ignition of sol-gel thermites was observed upon exposure to air after thermal activation in argon; however ignition did occur when the material was heated in air after thermal treatment. In larger-scale experiments, up to a few hundred milligrams, no ignition was observed upon exposure to air after thermal activation in vacuum; however ignition by resistively-heated tungsten wire was possible. Thin films of thermite were fabricated using a dispersed mixture of aluminum and iron oxide particles, but ignition and propagation of these films was difficult. The only ignition and propagation observed was in a preheated sample.« less

  17. Molded composite pyrogen igniter for rocket motors. [solid propellant ignition

    NASA Technical Reports Server (NTRS)

    Heier, W. C.; Lucy, M. H. (Inventor)

    1978-01-01

    A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.

  18. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  19. A polar-drive shock-ignition design for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.; Betti, R.; McKenty, P. W.; Collins, T. J. B.; Hohenberger, M.; Theobald, W.; Craxton, R. S.; Delettrez, J. A.; Lafon, M.; Marozas, J. A.; Nora, R.; Skupsky, S.; Shvydky, A.

    2013-05-01

    Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

  20. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  1. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  2. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  3. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... ignition. (e) Each turbine engine ignition system must be independent of any electrical circuit that is not... commuter category airplanes, each turbine engine ignition system must be an essential electrical load. [Doc...

  4. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  5. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  6. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  7. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  8. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  9. 14 CFR 25.1145 - Ignition switches.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1145 Ignition switches. (a) Ignition switches must control each engine ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  10. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Controls and Accessories § 23.1165 Engine ignition systems. Link to an amendment published at 76 FR 75759... discharge of any battery used for engine ignition. (e) Each turbine engine ignition system must be... ignition systems. (f) In addition, for commuter category airplanes, each turbine engine ignition system...

  11. 14 CFR 29.1145 - Ignition switches.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1145 Ignition switches. (a) Ignition switches must control each ignition circuit on each engine. (b) There must be means to quickly shut off all ignition by the grouping of switches or by a master ignition control. (c...

  12. 40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...

  13. 40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...

  14. Physics and Designs of Ignition Capsules Using High-Density Carbon (HDC) Ablators: Robust Designs, Stability, and Shock Mergers

    NASA Astrophysics Data System (ADS)

    Ho, D.; Salmonson, J.; Haan, S.; Clark, D.; Lindl, J.; Meezan, N.; Thomas, C.

    2015-11-01

    We present six ignition designs using W-doped HDC ablators with, respectively, 2, 3, and 4-step increases in Tr. Fuel adiabat α ranges between 1.5 and 4. The 4-step design has the lowest α of 1.5 but has the highest ablation front Rayleigh-Taylor (RT) growth. Consequently, the overall robustness of the 4-step design is inferior to the intermediate- α 3-step design, assuming typical currently measured surface roughness spectrum. As the foot level is increased further and the shocks merge inside the fuel, the fuel adiabat is raised to 4. The RT growth and mix are reduced but the 1D margin is decreased making it overall more susceptible to surface roughness. The 2-step α = 2.5 design turns out to be the most robust against surface roughness and still can deliver very high 1D yield of 14.5 MJ. Systematic evaluation of the robustness of these capsules with respect to low-mode radiation asymmetries, will also be discussed. Different paths to achieve low-convergence-ratio implosions (i.e. high velocity and high α as one option versus low velocity and low α as another option), while still giving respectable neutron yield will be presented. Finally, we discuss how the performance of these doped capsules changes; if the Au wall of the hohlraum is replaced by U. Work performed under auspices of U.S. DOE by LLNL under DE-AC52-07NA27344.

  15. Benefit from NASA

    NASA Image and Video Library

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  16. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for new the flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes.

  17. Land Mines Removal

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The same rocket fuel that helps power the Space Shuttle as it thunders into orbit will now be taking on a new role, with the potential to benefit millions of people worldwide. Leftover rocket fuel from NASA is being used to make a flare that destroys land mines where they were buried, without using explosives. The flare is safe to handle and easy to use. People working to deactivate the mines simply place the flare next to the uncovered land mine and ignite it from a safe distance using a battery-triggered electric match. The flare burns a hole in the land mine's case and ignites its explosive contents. The explosive burns away, disabling the mine and rendering it harmless. Using leftover rocket fuel to help destroy land mines incurs no additional costs to taxpayers. To ensure enough propellant is available for each Shuttle mission, NASA allows for a small percentage of extra propellant in each batch. Once mixed, surplus fuel solidifies and carnot be saved for use in another launch. In its solid form, it is an ideal ingredient for the new flare. The flare was developed by Thiokol Propulsion in Brigham City, Utah, the NASA contractor that designs and builds rocket motors for the Solid Rocket Booster Space Shuttle. An estimated 80 million or more active land mines are scattered around the world in at least 70 countries, and kill or maim 26,000 people a year. Worldwide, there is one casualty every 22 minutes

  18. Maxwell-Wagner Effect Applied to Microwave-Induced Self-Ignition: A Novel Approach for Carbon-Based Materials.

    PubMed

    Bizzi, Cezar A; Cruz, Sandra M; Schmidt, Lucas; Burrow, Robert A; Barin, Juliano S; Paniz, Jose N G; Flores, Erico M M

    2018-04-03

    A new method for analytical applications based on the Maxwell-Wagner effect is proposed. Considering the interaction of carbonaceous materials with an electromagnetic field in the microwave frequency range, a very fast heating is observed due to interfacial polarization that results in localized microplasma formation. Such effect was evaluated in this work using a monomode microwave system, and temperature was recorded using an infrared camera. For analytical applications, a closed reactor under oxygen pressure was evaluated. The combination of high temperature and oxidant atmosphere resulted in a very effective self-ignition reaction of sample, allowing its use as sample preparation procedure for further elemental analysis. After optimization, a high sample mass (up to 600 mg of coal and graphite) was efficiently digested using only 4 mol L -1 HNO 3 as absorbing solution. Several elements (Ba, Ca, Fe, K, Li, Mg, Na, and Zn) were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Accuracy was evaluated by using a certified reference material (NIST 1632b). Blanks were negligible, and only a diluted solution was required for analytes absorption preventing residue generation and making the proposed method in agreement with green chemistry recommendations. The feasibility of the proposed method for hard-to-digest materials, the minimization of reagent consumption, and the possibility of multi elemental analysis with lower blanks and better limits of detection can be considered as the main advantages of this method.

  19. Soft Argon-Propane Dielectric Barrier Discharge Ionization.

    PubMed

    Schütz, Alexander; Lara-Ortega, Felipe J; Klute, Felix David; Brandt, Sebastian; Schilling, Michael; Michels, Antje; Veza, Damir; Horvatic, Vlasta; García-Reyes, Juan F; Franzke, Joachim

    2018-03-06

    Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N 2 , present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C 3 H 8 ) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.

  20. A new predictive multi-zone model for HCCI engine combustion

    DOE PAGES

    Bissoli, Mattia; Frassoldati, Alessio; Cuoci, Alberto; ...

    2016-06-30

    Here, this work introduces a new predictive multi-zone model for the description of combustion in Homogeneous Charge Compression Ignition (HCCI) engines. The model exploits the existing OpenSMOKE++ computational suite to handle detailed kinetic mechanisms, providing reliable predictions of the in-cylinder auto-ignition processes. All the elements with a significant impact on the combustion performances and emissions, like turbulence, heat and mass exchanges, crevices, residual burned gases, thermal and feed stratification are taken into account. Compared to other computational approaches, this model improves the description of mixture stratification phenomena by coupling a wall heat transfer model derived from CFD application with amore » proper turbulence model. Furthermore, the calibration of this multi-zone model requires only three parameters, which can be derived from a non-reactive CFD simulation: these adaptive variables depend only on the engine geometry and remain fixed across a wide range of operating conditions, allowing the prediction of auto-ignition, pressure traces and pollutants. This computational framework enables the use of detail kinetic mechanisms, as well as Rate of Production Analysis (RoPA) and Sensitivity Analysis (SA) to investigate the complex chemistry involved in the auto-ignition and the pollutants formation processes. In the final sections of the paper, these capabilities are demonstrated through the comparison with experimental data.« less

  1. Implosion symmetry and ρR measurements on the National Ignition Facility from nascent 27-31 MeV tertiary protons (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Petrasso, Richard D.

    1997-01-01

    Tertiary protons with birth energies from ˜27 to 30.8 MeV result from the implosion of ignition-scale inertial confinement fusion targets, such as those planned for the National Ignition Facility (NIF). Measurement of the tertiaries' slowing can provide a determination of the imploded areal density of the fuel capsule, as well as implosion asymmetry that results from anisotropy of the areal density and plasma temperature. In order to determine the utility of tertiaries for all phases of the NIF, we analyze three representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite (15 kJ); and a cryogenic fuel capsule that ignites and burns (13 000 kJ). In each case, tertiaries escape from the capsule and convey critical information about implosion dynamics. In addition, we show that for some gas-capsule implosions anticipated on OMEGA, tertiaries may be the only species of energetic charged particles that can determine the fuel areal density. Presently, we are building a charge-coupled device (CCD)-based charged particle spectrometer for OMEGA and for NOVA. In addition to the tertiaries, the spectrometers are sensitive to a variety of the energetic charged particles, such as knock-on protons, deuterons, and tritons, and 3He-burnup protons. In fact the latter set of charged particles will usually be the dominant signal. We will describe the basic features of the spectrometers and the measured response of the CCDs to 1-5 MeV protons, 1-5 MeV alphas, and 14 MeV neutrons (and associated gammas), the latter constitute the principal source of noise. This work is done in collaboration with C. K. Li, D. Hicks, and F. Seguin of MIT; with B. Burke of LL/MIT; with M. Cable, S. Pollaine, S. Haan, T. Bernat, T. Phillips, and J. Kilkenny of LLNL; with J, Knauer, S. Cremer, C. Verdon, and B. Kremens of University of Rochester; and with C. Ruiz and R. Leeper of SNL. This work is supported in part by LLNL Subcontract B313875 and University of Rochester Subcontract 410025-G.

  2. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1991-01-01

    An apparatus for testing ignitability of an initiator includes a body having a central cavity, an initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and having a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator. It contains a chamber in communication with the cavity of the ignition material and the central cavity of the body, and a measuring system for analyzing pressure characteristics generated by ignition of the ignition material by the initiator. The measuring system includes at least one transducer coupled with an oscillograph for recording pressure traces generated by ignition.

  3. Lagged cumulative spruce budworm defoliation affects the risk of fire ignition in Ontario, Canada.

    PubMed

    James, Patrick M A; Robert, Louis-Etienne; Wotton, B Mike; Martell, David L; Fleming, Richard A

    2017-03-01

    Detailed understanding of forest disturbance interactions is needed for effective forecasting, modelling, and management. Insect outbreaks are a significant forest disturbance that alters forest structure as well as the distribution and connectivity of combustible fuels at broad spatial scales. The effect of insect outbreaks on fire activity is an important but contentious issue with significant policy consequences. The eastern spruce budworm (Choristoneura fumiferana) is a native defoliating insect in eastern North America whose periodic outbreaks create large patches of dead fir and spruce trees. Of particular concern to fire and forest managers is whether these patches represent an increased fire risk, if so, for how long, and how the relationship between defoliation and fire risk varies through space and time. Previous work suggests a temporary increase in flammability in budworm-killed forests, but regional and seasonal variability in these relationships has not been examined. Using an extensive database on historical lightning-caused fire ignitions and spruce budworm defoliation between 1963 and 2000, we assess the relative importance of cumulative defoliation and fire weather on the probability of ignition in Ontario, Canada. We modeled fire ignition using a generalized additive logistic regression model that accounts for temporal autocorrelation in fire weather. We compared two ecoregions in eastern Ontario (Abitibi Plains) and western Ontario (Lake of the Woods) that differ in terms of climate, geomorphology, and forest composition. We found that defoliation has the potential to both increase and decrease the probability of ignition depending on the time scale, ecoregion, and season examined. Most importantly, we found that lagged spruce budworm defoliation (8-10 yr) increases the risk of fire ignition whereas recent defoliation (1 yr) can decrease this risk. We also found that historical defoliation has a greater influence on ignition risk during the spring than during the summer fire season. Given predicted increases in forest insect activity due to global change, these results represent important information for fire management agencies that can be used to refine existing models of fire risk. © 2016 by the Ecological Society of America.

  4. An Exploratory Investigation of the Influence of Igniter Chemistry on Ignition in Porous Bed Gun Propellants

    DTIC Science & Technology

    1981-09-01

    nitrocellulose igniter materials using the Ignition Energetics Characterization Device (IECD). The results presented herein represent Phase II eperimental ...auxiliary test cham- bcz is a combustion gas diagnostic section designed to permit determination of the composition and enthalpy level of the gases...removal/assembly and propellant loading. 2.2 Igniter Characteristics 2.2.1 Baseline Igniter The igniter system, Figure 2.3, is designed to provide overall

  5. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  6. Manufacturing of Igniters for NHB 8060.1 Testing

    NASA Technical Reports Server (NTRS)

    Williams, James

    1996-01-01

    The purpose of this WJI is to incorporate a standard procedure to prepare, certify, and ship standard NHB 8060.1B and NHB 8060.1C igniters for flammability testing and to update LJI-320-35-18. The operations are divided into five parts as follows: A. Preparing the igniter mix; B. Extruding the igniters; C. Curing, cutting, and weighing the igniters; D. Certifying the igniters and E. Packaging, storing, and shipping the igniters

  7. Chemically ignited thermonuclear reactions—A near-term means for a high specific impulse—High thrust propulsion system

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    The combination of metallic shells imploded with chemical explosives and the recently proposed magnetic booster target inertial fusion concept, could make possible the fissionless ignition of small thermonuclear explosions. In the magnetic booster concept a very dense but magnetically confined thermonuclear plasma of low yield serves as the trigger for an inertially confined thermonuclear plasma of high yield. For the most easily ignitable fusion reaction, the DT reaction, this could lead to a fissionless bomb propulsion system, with the advantage to have a much smaller yield of the pure fusion bombs as compared to either fission- or fission-induced fusion bombs, previously proposed for propulsion. Typically, the proposed propulsion concept should give a specific impulse of ˜ 3000 secs, corresponding to an exhaust velocity of ˜ 30 km/sec. If the energy released in each pure fusion bomb is of the order of 10 18 erg or the order of 100 tons of TNT, and if one fusion explosion per second takes place, the average thrust is of the order 10 3 tons. The propulsion system appears ideally suited for the fast economical transport of large spacecraft within the solar system.

  8. ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS: MODELING AND TESTING FOR AIR AND WATER EXPOSURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anton, D.; James, C.; Cortes-Concepcion, J.

    2010-05-18

    To make commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using these materials. A rigorous set of environmental reactivity tests have been developed based on modified testing procedures codified by the United Nations for the transportation of dangerous goods. Potential hydrogen storage material, 2LiBH4{center_dot}MgH2 and NH3BH3, have been tested using these modified procedures to evaluate the relative risks of these materials coming in contact with the environment in hypothetical accident scenarios. It is apparent that an ignition event will only occur if both a flammable concentration of hydrogen and sufficient thermalmore » energy were available to ignite the hydrogen gas mixture. In order to predict hydride behavior for hypothesized accident scenarios, an idealized finite element model was developed for dispersed hydride from a breached system. Empirical thermodynamic calculations based on precise calorimetric experiments were performed in order to quantify the energy and hydrogen release rates and to quantify the reaction products resulting from water and air exposure. Both thermal and compositional predictions were made with identification of potential ignition event scenarios.« less

  9. Modeling the ignition of a copper oxide aluminum thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  10. Analysis of Knock Phenomenon Induced in a Constant Volume Chamber by Local Gas Temperature Measurement and Visualization

    NASA Astrophysics Data System (ADS)

    Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru

    Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.

  11. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  12. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine

    NASA Astrophysics Data System (ADS)

    Smith, James D.; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  13. Performance analysis of exhaust heat recovery using organic Rankine cycle in a passenger car with a compression ignition engine

    NASA Astrophysics Data System (ADS)

    Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.

    2016-08-01

    Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.

  14. Positron Radiography of Ignition-Relevant ICF Capsules

    NASA Astrophysics Data System (ADS)

    Williams, Jackson; Chen, Hui; Field, John; Landen, Nino; Strozzi, David

    2017-10-01

    X-ray and neutron radiography are currently used to infer residual ICF shell and fuel asymmetries and areal density non-uniformities near and at peak compression that can impede ignition. Charged particles offer an alternative probe source that, in principle, are capable of radiographing the shell shape and areal density at arbitrary times, even in the presence of large x-ray self-emission. Laser-generated positrons are evaluated as a source to radiograph ICF capsules where current ultraintense laser facilities are capable of producing 2 ×1012 relativistic positrons in a narrow energy bandwidth and short duration. Monte Carlo simulations suggest that both the areal density and shell radius can be reconstructed for ignition-relevant capsules conditions between 0.002-2 g/cm2, and that this technique might be better suited to direct-drive. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD Program under project tracking code 17-ERD-010.

  15. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  16. Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.

    2017-10-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.

  17. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion.

  18. Evaluation of Burning Test Rate Method for Flammable Solids to Increase air-Cargo Safety.

    PubMed

    Lukežič, Marjan; Marinšek, Marjan; Faganeli, Jadran

    2010-03-01

    This paper deals with a standard classification procedure for readily combustible solids and their assignment to the relevant packing groups according to international air-cargo legislation and regulations. The current International Air Transport Association and United Nations Orange Book regulations were used on chemically similar substances: hexamethylenetetramine and Dancook ignition briquettes, which are both assigned into the same Packing Group III. To critically evaluate the degree of hazard both chemicals present, a standard burning test rate as well as thermogravimetry, differential scanning calorimetry and evolved gas analysis measurements were performed. It was shown that relatively small changes in the chemical composition of the material may have essential influence on the package group determination. Taking into account all the facts collected in the experimental work, it was concluded that ignition briquettes will undergo spontaneous combustion if exposed to elevated temperatures and, from this point of view, represent higher risk than hexamethylenetetramine during air transportation. Therefore, ignition briquettes should be classified into Packing Group II.

  19. Aerospace Laser Ignition/Ablation Variable High Precision Thruster

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor); Edwards, David L. (Inventor); Campbell, Jason J. (Inventor)

    2015-01-01

    A laser ignition/ablation propulsion system that captures the advantages of both liquid and solid propulsion. A reel system is used to move a propellant tape containing a plurality of propellant material targets through an ignition chamber. When a propellant target is in the ignition chamber, a laser beam from a laser positioned above the ignition chamber strikes the propellant target, igniting the propellant material and resulting in a thrust impulse. The propellant tape is advanced, carrying another propellant target into the ignition chamber. The propellant tape and ignition chamber are designed to ensure that each ignition event is isolated from the remaining propellant targets. Thrust and specific impulse may by precisely controlled by varying the synchronized propellant tape/laser speed. The laser ignition/ablation propulsion system may be scaled for use in small and large applications.

  20. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    PubMed

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  1. A hybrid-drive nonisobaric-ignition scheme for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X. T., E-mail: xthe@iapcm.ac.cn; Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871; IFSA Collaborative Innovation Center of MoE, Shanghai Jiao-Tong University, Shanghai 200240

    A new hybrid-drive (HD) nonisobaric ignition scheme of inertial confinement fusion (ICF) is proposed, in which a HD pressure to drive implosion dynamics increases via increasing density rather than temperature in the conventional indirect drive (ID) and direct drive (DD) approaches. In this HD (combination of ID and DD) scheme, an assembled target of a spherical hohlraum and a layered deuterium-tritium capsule inside is used. The ID lasers first drive the shock to perform a spherical symmetry implosion and produce a large-scale corona plasma. Then, the DD lasers, whose critical surface in ID corona plasma is far from the radiationmore » ablation front, drive a supersonic electron thermal wave, which slows down to a high-pressure electron compression wave, like a snowplow, piling up the corona plasma into high density and forming a HD pressurized plateau with a large width. The HD pressure is several times the conventional ID and DD ablation pressure and launches an enhanced precursor shock and a continuous compression wave, which give rise to the HD capsule implosion dynamics in a large implosion velocity. The hydrodynamic instabilities at imploding capsule interfaces are suppressed, and the continuous HD compression wave provides main pdV work large enough to hotspot, resulting in the HD nonisobaric ignition. The ignition condition and target design based on this scheme are given theoretically and by numerical simulations. It shows that the novel scheme can significantly suppress implosion asymmetry and hydrodynamic instabilities of current isobaric hotspot ignition design, and a high-gain ICF is promising.« less

  2. Prediction of the Ignition Phases in Aeronautical and Laboratory Burners using Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Gicquel, L. Y. M.; Staffelbach, G.; Sanjose, M.; Boileau, M.

    2009-12-01

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many aeronautical gas turbine manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are two phenomena that are usually not studied. The present work presents on-going and past Large Eddy Simulations (LES) on this specific subject and as investigated at CERFACS (European Centre for Research and Advanced Training in Scientific Computation) located in Toulouse, France. Validation steps and potential difficulties are underlined to ensure reliability of LES for such problems. Preliminary LES results on simple burners are then presented, followed by simulations of a complete ignition sequence in an annular helicopter chamber. For all cases and when possible, two-phase or purely gaseous LES have been applied to the experimentally simplified or the full geometries. For the latter, massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform the computation. Results show that liquid fuel injection has a strong influence on the ignition times and the rate at which the flame progresses from burner to burner. The propagation speed characteristic of these phenomena is much higher than the turbulent flame speed. Based on an in-depth analysis of the computational data, the difference in speed is mainly identified as being due to thermal expansion and the flame speed is strongly modified by the main burner aerodynamics issued by the swirled injection.

  3. 40 CFR 1048.405 - How does this program work?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS CONTROL OF EMISSIONS FROM NEW, LARGE NONROAD SPARK-IGNITION ENGINES Testing In-use Engines § 1048.405 How does this program work? (a) You must test in-use engines, for exhaust emissions, from the families we select. We may select up to 25 percent of your engine families in any model year—or one engine...

  4. Close the Achievement Gap with Summer Learning

    ERIC Educational Resources Information Center

    Huggins, Gary

    2012-01-01

    Summer vacation from school can bring afternoons at the swimming pool, family vacations, and maybe a spirit-filled summer camp that ignites a passion for art or rock climbing. But for many children, summer also means setbacks in learning that take a tremendous toll on teaching and student performance over time. PTA leaders can make a vital…

  5. Fire behavior in northern Rocky Mountain forests

    Treesearch

    J. S. Barrows

    1951-01-01

    Knowledge of fire behavior is an essential requirement for firefighters. Successful fire control operations depend, first of all, upon the ability of the protection forces to judge where and when fires will start and how they will behave once ignition takes place. Every member of the firefighting team from ranger to smokechaser must be able to make reliable estimates...

  6. Spatial bottom-up controls on fire likelihood vary across western North America

    Treesearch

    Sean A. Parks; Marc-Andre Parisien; Carol Miller

    2012-01-01

    The unique nature of landscapes has challenged our ability to make generalizations about the effects of bottom-up controls on fire regimes. For four geographically distinct fire-prone landscapes in western North America, we used a consistent simulation approach to quantify the influence of three key bottom-up factors, ignitions, fuels, and topography, on spatial...

  7. Cultivating Innovation to Ignite Organizational Transformation

    DTIC Science & Technology

    2004-03-01

    over a modem . Need to have a section entitled "incoming students" The current site and design sitemap make and incoming student hunt through the...Download Times: Estimated download times (seconds) Object type Number Size (bytes) 14.4 28.8 33.6 56K 128K T1 HTML 1 8600 6.27 3.44 2.87 2.46

  8. Physical characteristics of some northern California brush fuels

    Treesearch

    Clive M. Countryman

    1982-01-01

    Brush species make up much of the fuel load in forested wildlands. Basic physical and chemical characteristics of these species influence ease of ignition, rate of fire spread, burning time, and fire intensity. Quantitative knowledge of the variations in brush characteristics is essential to progress in fire control and effective use of fire in wildland management....

  9. Measurement of Knock Characteristics in Spark-ignition Engines

    NASA Technical Reports Server (NTRS)

    Schutz, R

    1940-01-01

    This paper presents a discussion of three potential sources of error in recording engine knocking which are: the natural oscillation of the membrane, the shock process between test contacts, and the danger of burned contacts. Following this discussion, the paper calls attention to various results which make the bouncing-pin indicator appear fundamentally unsuitable for recording knock phenomena.

  10. Lignite pellets and methods of agglomerating or pelletizing

    DOEpatents

    Baker, Albert F.; Blaustein, Eric W.; Deurbrouck, Albert W.; Garvin, John P.; McKeever, Robert E.

    1981-01-01

    The specification discloses lignite pellets which are relatively hard, dust resistant, of generally uniform size and free from spontaneous ignition and general degradation. Also disclosed are methods for making such pellets which involve crushing as mined lignite, mixing said lignite with a binder such as asphalt, forming the lignite binder mixture into pellets, and drying the pellets.

  11. Screening analysis and selection of emission reduction concepts for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Meyers, J. E.; Tucker, J. R.; Stuckas, S. J.

    1976-01-01

    An analysis was conducted to screen, evaluate, and select three engine exhaust emission reduction concepts from a group of 14 candidate alternatives. A comprehensive literature search was conducted to survey the emission reduction technology state-of-the-art and establish contact with firms working on intermittent combustion engine development and pollution reduction problems. Concept development, advantages, disadvantages, and expected emission reduction responses are stated. A set of cost effectiveness criteria was developed, appraised for relative importance, and traded off against each concept so that its merit could be determined. A decision model was used to aid the evaluators in managing the criteria, making consistent judgements, calculating merit scores, and ranking the concepts. An Improved Fuel Injection System, Improved Cooling Combustion Chamber, and a Variable Timing Ignition System were recommended to NASA for approval and further concept development. An alternate concept, Air Injection, was also recommended.

  12. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  13. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts radiant heat transfer losses to the walls to be only approximately 3 percent of the fuel energy supplied. Additional work is required to determine the effects of secondary atomization on two-phase losses in the nozzle.

  14. Analysis of operator splitting errors for near-limit flame simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.

    2017-04-01

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.

  15. Optical engine initiation: multiple compartment applications

    NASA Astrophysics Data System (ADS)

    Hunt, Jeffrey H.

    2009-05-01

    Modern day propulsion systems are used in aerospace applications for different purposes. The aerospace industry typically requires propulsion systems to operate in a rocket mode in order to drive large boost vehicles. The defense industry generally requires propulsion systems to operate in an air-breathing mode in order to drive missiles. A mixed system could use an air-breathing first stage and a rocket-mode upper stage for space access. Thus, propulsion systems can be used for high mass payloads and where the payload is dominated by the fuel/oxidizer mass being used by the propulsion system. The pulse detonation wave engine (PDWE) uses an alternative type of detonation cycle to achieve the same propulsion results. The primary component of the PDWE is the combustion chamber (or detonation tube). The PDWE represents an attractive propulsion source since its engine cycle is thermodynamically closest to that of a constant volume reaction. This characteristic leads to the inference that a maximum of the potential energy of the PDWE is put into thrust and not into flow work. Consequently, the volume must be increased. The technical community has increasingly adopted the alternative choice of increasing total volume by designing the engine to include a set of banks of smaller combustion chambers. This technique increases the complexity of the ignition subsystem because the inter-chamber timing must be considered. Current approaches to igniting the PDWE have involved separate shock or blast wave initiators and chemical additives designed to enhance detonatibility. An optical ignition subsystem generates a series of optical pulses, where the optical pulses ignite the fuel/oxidizer mixture such that the chambers detonate in a desired order. The detonation system also has an optical transport subsystem for transporting the optical pulses from the optical ignition subsystem to the chambers. The use of optical ignition and transport provides a non-toxic, small, lightweight, precisely controlled detonation system.

  16. Analysis of operator splitting errors for near-limit flame simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhen; Zhou, Hua; Li, Shan

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory combustion from cool flames, both the Strang splitting and the midpoint method can successfully capture the dynamic behavior, whereas the balanced splitting scheme results in significant errors.« less

  17. Ignition and flame characteristics of cryogenic hydrogen releases

    DOE PAGES

    Panda, Pratikash P.; Hecht, Ethan S.

    2017-01-01

    In this work, under-expanded cryogenic hydrogen jets were investigated experimentally for their ignition and flame characteristics. The test facility described herein, was designed and constructed to release hydrogen at a constant temperature and pressure, to study the dispersion and thermo-physical properties of cryogenic hydrogen releases and flames. In this study, a non-intrusive laser spark focused on the jet axis was used to measure the maximum ignition distance. The radiative power emitted by the corresponding jet flames was also measured for a range of release scenarios from 37 K to 295 K, 2–6 bar abs through nozzles with diameters from 0.75more » to 1.25 mm. The maximum ignition distance scales linearly with the effective jet diameter (which scales as the square root of the stagnant fluid density). A 1-dimensional (stream-wise) cryogenic hydrogen release model developed previously at Sandia National Laboratories (although this model is not yet validated for cryogenic hydrogen) was exercised to predict that the mean mole fraction at the maximum ignition distance is approximately 0.14, and is not dependent on the release conditions. The flame length and width were extracted from visible and infra-red flame images for several test cases. The flame length and width both scale as the square root of jet exit Reynolds number, as reported in the literature for flames from atmospheric temperature hydrogen. As shown in previous studies for ignited atmospheric temperature hydrogen, the radiative power from the jet flames of cold hydrogen scales as a logarithmic function of the global flame residence time. The radiative heat flux from jet flames of cold hydrogen is higher than the jet flames of atmospheric temperature hydrogen, for a given mass flow rate, due to the lower choked flow velocity of low-temperature hydrogen. Lastly, this study provides critical information with regard to the development of models to inform the safety codes and standards of hydrogen infrastructure.« less

  18. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  19. Ignition of Hydrogen-Oxygen Rocket Combustor with Chlorine Trifluoride and Triethylaluminum

    NASA Technical Reports Server (NTRS)

    Gregory, John W.; Straight, David M.

    1961-01-01

    Ignition of a nominal-125-pound-thrust cold (2000 R) gaseous-hydrogen - liquid-oxygen rocket combustor with chlorine trifluoride (hypergolic with hydrogen) and triethylaluminum (hypergolic with oxygen) resulted in consistently smooth starting transients for a wide range of combustor operating conditions. The combustor exhaust nozzle discharged into air at ambient conditions. Each starting transient consisted of the following sequence of events: injection of the lead main propellant, injection of the igniter chemical, ignition of these two chemicals, injection of the second main propellant, ignition of the two main propellants, increase in chamber pressure to its terminal value, and cutoff of igniter-chemical flow. Smooth ignition was obtained with an ignition delay of less than 100 milliseconds for the reaction of the lead propellant with the igniter chemical using approximately 0.5 cubic inch (0-038 lb) of chlorine trifluoride or 1.0 cubic inch (0-031 lb) of triethylaluminum. These quantities of igniter chemical were sufficient to ignite a 20-percent-fuel hydrogen-oxygen mixture with a delay time of less than 15 milliseconds. Test results indicated that a simple, light weight chemical ignition system for hydrogen-oxygen rocket engines may be possible.

  20. Ignitability test method

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Schimmel, Morry L.

    1989-01-01

    To overcome serious weaknesses in determining the performance of initiating devices, a novel 'ignitability test method', representing actual design interfaces and ignition materials, has been developed. Ignition device output consists of heat, light, gas an burning particles. Past research methods have evaluated these parameters individually. This paper describes the development and demonstration of an ignitability test method combining all these parameters, and the quantitative assessment of the ignition performance of two widely used percussion primers, the M42C1-PA101 and the M42C2-793. The ignition materials used for this evaluation were several powder, granule and pellet sizes of black powder and boron-potassium nitrate. This test method should be useful for performance evaluation of all initiator types, quality assurance, evaluation of ignition interfaces, and service life studies of initiators and ignition materials.

  1. Alternative Fuels Data Center: How Do Hybrid Electric Cars Work?

    Science.gov Websites

    , and the air/fuel mix is ignited by the spark from a spark plug. Power electronics controller: This maintains a proper operating temperature range of the engine, electric motor, power electronics, and other

  2. Alternative Fuels Data Center: How Do Propane Vehicles Work?

    Science.gov Websites

    gasoline vehicles with spark-ignited internal combustion engines. There are two types of propane fuel -injection systems available: vapor and liquid injection. In both types, propane is stored as a liquid in a

  3. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma

    NASA Astrophysics Data System (ADS)

    An, Bin; Wang, Zhenguo; Yang, Leichao; Li, Xipeng; Zhu, Jiajian

    2017-08-01

    Cavity ignition of a model scramjet combustor fueled by ethylene was achieved through laser induced plasma, with inflow conditions of Ma = 2.92, total temperature T0 = 1650 K and stagnation pressure P0 = 2.6 MPa. The overall equivalent ratio was kept at 0.152 for all the tests. The ignition processes at different ignition energies and various ignition positions were captured by CH∗ and OH∗ chemiluminescence imaging. The results reveal that the initial flame kernel is carried to the cavity leading edge by the recirculation flow, and resides there for ∼100 μs before spreading downstream. The ignition time can be reduced, and the possibility of successful ignition for single laser pulse can be promoted by enhancing ignition energy. The scale and strength of the initial flame kernel is influenced by both the ignition energy and position. In present study, the middle part of the cavity is the best position for ignition, as it keeps a good balance between the strength of initial flame kernel and the impacts of strain rate in recirculation flow.

  4. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    PubMed

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  5. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    PubMed Central

    Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well. PMID:24672372

  6. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  7. The evolution of the temperature field during cavity collapse in liquid nitromethane. Part I: inert case

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2018-02-01

    This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In order to understand the relative contribution between these two processes, we consider in this first part of the work the evolution of the physical system in the absence of chemical reactions. We employ a multi-phase mathematical formulation which can account for the large density difference across the gas-liquid material interface without generating spurious temperature peaks. The mathematical and physical models are validated against experimental, analytic, and numerical data. Previous inert studies have identified the impact of the upwind (relative to the direction of the incident shock wave) side of the cavity wall to the downwind one as the main reason for the generation of a hot spot outside of the cavity, something which is also observed in this work. However, it is also apparent that the topology of the temperature field is more complex than previously thought and additional hot spot locations exist, which arise from the generation of Mach stems rather than jet impact. To explain the generation mechanisms and topology of the hot spots, we carefully follow the complex wave patterns generated in the collapse process and identify specifically the temperature elevation or reduction generated by each wave. This enables tracking each hot spot back to its origins. It is shown that the highest hot spot temperatures can be more than twice the post-incident shock temperature of the neat material and can thus lead to ignition. By comparing two-dimensional and three-dimensional simulation results in the context of the maximum temperature observed in the domain, it is apparent that three-dimensional calculations are necessary in order to avoid belated ignition times in reactive scenarios.

  8. Ignitability test method and apparatus

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J. (Inventor); Bailey, James W. (Inventor); Schimmel, Morry L. (Inventor)

    1989-01-01

    An apparatus for testing ignitability of an initiator includes a body with a central cavity, initiator holder for holding the initiator over the central cavity of the body, an ignition material holder disposed in the central cavity of the body and a cavity facing the initiator holder which receives a measured quantity of ignition material to be ignited by the initiator and a chamber in communication with the cavity of the ignition material holder and the central cavity of the body. A measuring system for analyzing pressure characteristics is generated by ignition material by the initiator. The measuring system includes at least one transducer coupled to an oscillograph for recording pressure traces generated by ignition.

  9. Ignition at NIF: Where we have been, and where we are going

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai

    2014-10-01

    This talk reviews results from the past several years in the pursuit of indirect-drive ignition on the National Ignition Facility (NIF), and summarizes ideas and plans for moving forward. We describe the challenging issues encountered by the low-adiabat (``low foot''), ``ignition point design'' approach, such as: hydrodynamic instability growth and ensuing mix of the CH ablator into the DT hot spot; very high convergence implosions with resultant imperfect symmetry; possible other issues such as hot electron preheat. The complex interplay among these issues is a key theme. We describe the progress that has been made in the understanding and diagnosis of these issues. We present the results from the high-adiabat (``high foot'') approach, with its property of relative hydrodynamic stability when compared to the low foot approach, its somewhat reduced convergence ratio, and its achievement of entering the alpha heating regime, an important milestone on the road to ignition. Paths forward towards ignition include excursions from the present approaches in pulse shape, hohlraum, and choice of ablator. Further pulse shaping can lower the adiabat of the high foot approach and lead to higher performance if it continues to retain its hydrodynamic stability properties. Conversely, pulse shaping can provide for ``adiabat-shaping'' for the low foot approach for it to try to attain better stability. A plethora of hohlraum approaches (size, shape, materials, gas fills) can improve the zero-order drive, as well as the low-mode shape of the implosion. Diagnosing, and then correcting, the time dependence of the symmetry is also a key issue. A variety of ablator materials, along with carefully engineering the drive spectrum, can increase implosion velocity. The high-density carbon ablator has shown promising results in this regard. Some combinations of these developments may allow for an operating space that has a relatively short pulse, in a near vacuum hohlraum. That combination has shown, to date, much better coupling efficiency, and a much lower level of laser plasma instabilities (thus, less electron preheat), than the longer pulse, full gas-fill, ignition hohlraums. Advances in modeling, experimental platforms, and diagnostic techniques developed over the past several years have been key enabling technologies in moving towards ignition, and we anticipate further advances as well. We gratefully acknowledge the dedicated efforts of many hundreds of personnel across the globe who have participated in the laser construction, operation, target fabrication, and all aspects of the target physics program, that have taken us this far towards ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Analytical and experimental study of resonance ignition tubes

    NASA Technical Reports Server (NTRS)

    Stabinsky, L.

    1973-01-01

    The application of the gas-dynamic resonance concept was investigated in relation to ignition of rocket propulsion systems. Analytical studies were conducted to delineate the potential uses of resonance ignition in oxygen/hydrogen bipropellant and hydrazine monopropellant rocket engines. Experimental studies were made to: (1) optimize the resonance igniter configuration, and (2) evaluate the ignition characteristics when operating with low temperature oxygen and hydrogen at the inlet to the igniter.

  11. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    NASA Astrophysics Data System (ADS)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  12. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Science.gov Websites

    rises above set safe levels. However, even if conditions result in a fuel release, an ignition source vehicle tanks are all equipped with PRDs to ensure safe levels of LPG pressure in the tanks, and we are practices for OPDs to ensure they work properly. The US DOE Clean Cities (DOE-CC) program is working with

  13. Alternative Fuels Data Center: How Do Bi-fuel Propane Vehicles Work?

    Science.gov Websites

    Vehicles Work? Bi-fuel propane vehicles typically use a spark-ignited internal combustion engine. A bi-fuel stored on board and the driver can switch between the fuels. The vehicle is equipped with fuel tanks Propane vehicle image Key Components of a Bi-fuel Propane Vehicle Battery: The battery provides

  14. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations and ignition probability grids (1000 x 1000 m) built from historical fire data (1995-2007). The simulation outputs were then examined to understand relationships between burn probability and specific vegetation types and ignition sources. Wildfire threats to specific values of human interest were quantified to map landscape patterns of wildfire risk. The simulation outputs also allowed us to differentiate between areas of the landscape that were progenitors of fires versus "victims" of large fires. The results provided spatially explicit data on wildfire likelihood and intensity that can be used in a variety of strategic and tactical planning forums to mitigate wildfire threats to human and other values in the Mediterranean Basin.

  15. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency (EPA). ACTION: Extension of... for stationary compression ignition and spark ignition internal combustion engines. In this [[Page... combustion engines. After publication of the proposed rule, EPA received requests from the American Petroleum...

  16. Dual-Laser-Pulse Ignition

    NASA Technical Reports Server (NTRS)

    Trinh, Huu; Early, James W.; Thomas, Matthew E.; Bossard, John A.

    2006-01-01

    A dual-pulse laser (DPL) technique has been demonstrated for generating laser-induced sparks (LIS) to ignite fuels. The technique was originally intended to be applied to the ignition of rocket propellants, but may also be applicable to ignition in terrestrial settings in which electric igniters may not be suitable.

  17. Modeling fuel treatment impacts on fire suppression cost savings: A review

    Treesearch

    Matthew P. Thompson; Nathaniel M. Anderson

    2015-01-01

    High up-front costs and uncertain return on investment make it difficult for land managers to economically justify large-scale fuel treatments, which remove trees and other vegetation to improve conditions for fire control, reduce the likelihood of ignition, or reduce potential damage from wildland fire if it occurs. In the short-term, revenue from harvested forest...

  18. Experimental Contribution to the Study of Combustion in Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Duchene, R

    1940-01-01

    The purpose of this paper is to explain the differences in thermodynamic qualities of two oils and to try to make this differentiation clear enough so that it can be applied to two oils extremely alike, as, for instance a given oil and the same oil to which a small amount of another substance has been added.

  19. Initiate, Create, Activate: Practical Solutions for Making Culturally Diverse Music Education a Reality

    ERIC Educational Resources Information Center

    Cain, Melissa; Lindblom, Shari; Walden, Jennifer

    2013-01-01

    Cross-cultural music education can motivate children to look at music in fresh ways and awaken their imagination to new possibilities and ways of thinking. This paper presents the voices of three practitioners experienced in, and passionate about the field of culturally diverse music education. Over the past 25 years the presenters have ignited an…

  20. Teachers Differ over Meeting Nonfiction Rule

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2013-01-01

    As the common core is brought to life in classrooms this year, some English/language arts teachers are finding themselves caught in a swirl of debate about whether the new standards require them to cut back on prized pieces of the literary canon to make room for nonfiction. A recent spate of news reports has ignited a new wave of anxiety about the…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Kirkwood, Bob

    The way the Death Star works in the fictional Star Wars universe has long been dismissed by scientists as something that defies our physical reality, but researchers at Lawrence Livermore's National Ignition Facility have found a way to successfully combine laser beams using plasma for the first time ever.

  2. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignition system. 33.37 Section 33.37... STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition system. Each spark ignition engine must have a dual ignition system with at least two spark plugs for each...

  3. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  4. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...

  5. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  6. 40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...

  7. Fundamental ignition study for material fire safety improvement, part 1

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Zung, L. B.

    1970-01-01

    The investigation of preignition, ignition, and combustion characteristics of Delrin (acetate terminated polyformaldehyde) and Teflon (polytetrafluoroethylene) resins in air and oxygen are presented. The determination of ignition limits and their dependence on temperature and the oxidizing media, as well as the analyses of the volatiles produced, were studied. Tests were conducted in argon, an inert medium in which only purely pyrolytic reactions can take place, using the stagnation burner arrangement designed and constructed for this purpose. A theoretical treatment of the ignition and combination phenomena was devised. In the case of Delrin the ignition and ignition delays are apparently independent of the gas (air, oxygen) temperatures. The results indicate that hydrogen is the ignition triggering agent. Teflon ignition limits were established in oxygen only.

  8. Ignition characterization of the GOX/ethanol propellant combination

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Boyd, W. C.

    1984-01-01

    This paper describes the results of a study to define the ignition characteristics and thruster pulse mode capabilities of the GOX/ethanol propellant combination. Ignition limits were defined in terms of mixture ratio and cold flow pressure using a spark initiated torch igniter. Igniter tests were run over a wide range of cold flow pressure, propellant temperature and mixture ratio. The product of cold flow pressure and igniter chamber diameter was used to correlate mixture ratio regimes of ignition and nonignition. Engine ignition reliability and pulse mode capability were demonstrated using a 620 lbF thruster with an integrated torch igniter. The nominal chamber pressure and mixture ratio were 150 psia and 1.8, respectively, thruster tests were run over a wide range of chamber pressures and mixture ratios. The feasibility of thruster pulse mode operation with the non-hypergolic GOX/ethanol propellant combination was demonstrated.

  9. On thermonuclear ignition criterion at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirementsmore » of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.« less

  10. Catalytic ignition of hydrogen/oxygen

    NASA Technical Reports Server (NTRS)

    Green, James M.; Zurawski, Robert L.

    1988-01-01

    An experimental program was conducted to evaluate the catalytic ignition of gaseous hydrogen and oxygen. Shell 405 granular catalyst and a unique monolithic sponge catalyst were tested. Mixture ratio, mass flow rate, propellant inlet temperature, and back pressure were varied parametrically in testing to determine the operational limits of a catalytic igniter. The test results showed that the gaseous hydrogen/oxygen propellant combination can be ignited catalytically using Shell 405 catalyst over a wide range of mixture ratios, mass flow rates, and propellant injection temperatures. These operating conditions must be optimized to ensure reliable ignition for an extended period of time. The results of the experimental program and the established operational limits for a catalytic igniter using both the granular and monolithic catalysts are presented. The capabilities of a facility constructed to conduct the igniter testing and the advantages of a catalytic igniter over other ignition systems for gaseous hydrogen and oxygen are also discussed.

  11. Quantifying the human influence on fire ignition across the western USA.

    PubMed

    Fusco, Emily J; Abatzoglou, John T; Balch, Jennifer K; Finn, John T; Bradley, Bethany A

    2016-12-01

    Humans have a profound effect on fire regimes by increasing the frequency of ignitions. Although ignition is an integral component of understanding and predicting fire, to date fire models have not been able to isolate the ignition location, leading to inconsistent use of anthropogenic ignition proxies. Here, we identified fire ignitions from the Moderate Resolution Imaging Spectrometer (MODIS) Burned Area Product (2000-2012) to create the first remotely sensed, consistently derived, and regionally comprehensive fire ignition data set for the western United States. We quantified the spatial relationships between several anthropogenic land-use/disturbance features and ignition for ecoregions within the study area and used hierarchical partitioning to test how the anthropogenic predictors of fire ignition vary among ecoregions. The degree to which anthropogenic features predicted ignition varied considerably by ecoregion, with the strongest relationships found in the Marine West Coast Forest and North American Desert ecoregions. Similarly, the contribution of individual anthropogenic predictors varied greatly among ecoregions. Railroad corridors and agricultural presence tended to be the most important predictors of anthropogenic ignition, while population density and roads were generally poor predictors. Although human population has often been used as a proxy for ignitions at global scales, it is less important at regional scales when more specific land uses (e.g., agriculture) can be identified. The variability of ignition predictors among ecoregions suggests that human activities have heterogeneous impacts in altering fire regimes within different vegetation types and geographies. © 2016 by the Ecological Society of America.

  12. Summary Report of Laboratory Testing to Establish the Effectiveness of Proposed Treatment Methods for Unremediated and Remediated Nitrate Salt Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anast, Kurt Roy; Funk, David John

    The inadvertent creation of transuranic waste carrying hazardous waste codes D001 and D002 requires the treatment of the material to eliminate the hazardous characteristics and allow its eventual shipment and disposal at the Waste Isolation Pilot Plant (WIPP). This report documents the effectiveness of two treatment methods proposed to stabilize both the unremediated and remediated nitrate salt waste streams (UNS and RNS, respectively). The two technologies include the addition of zeolite (with and without the addition of water as a processing aid) and cementation. Surrogates were developed to evaluate both the solid and liquid fractions expected from parent waste containers,more » and both the solid and liquid fractions were tested. Both technologies are shown to be effective at eliminating the characteristic of ignitability (D001), and the addition of zeolite was determined to be effective at eliminating corrosivity (D002), with the preferred option1 of zeolite addition currently planned for implementation at the Waste Characterization, Reduction, and Repackaging Facility. During the course of this work, we established the need to evaluate and demonstrate the effectiveness of the proposed remedy for debris material, if required. The evaluation determined that Wypalls absorbed with saturated nitrate salt solutions exhibit the ignitability characteristic (all other expected debris is not classified as ignitable). Follow-on studies will be developed to demonstrate the effectiveness of stabilization for ignitable Wypall debris. Finally, liquid surrogates containing saturated nitrate salts did not exhibit the characteristic of ignitability in their pure form (those neutralized with Kolorsafe and mixed with sWheat did exhibit D001). As a result, additional nitrate salt solutions (those exhibiting the oxidizer characteristic) will be tested to demonstrate the effectiveness of the remedy.« less

  13. Particle Effects On The Extinction And Ignition Of Flames In Normal- And Micro-Gravity

    NASA Technical Reports Server (NTRS)

    Andac, M. G.; Egolfopoulos, F. N.; Campbell, C. S.

    2003-01-01

    Reacting dusty flows have been studied to lesser extent than pure gas phase flows and sprays. Particles can significantly alter the ignition, burning and extinction characteristics of the gas phase due to the dynamic, thermal, and chemical couplings between the phases. The understanding of two-phase flows can be attained in stagnation flow configurations, which have been used to study spray combustion [e.g. 1] as well as reacting dusty flows [e.g. 2]. The thermal coupling between inert particles and a gas, as well as the effect of gravity, were studied in Ref. 3. It was also shown that the gravity can substantially affect parameters such as the particle velocity, number density, mass flux, and temperature. In Refs. 4 and 5, the effects of inert particles on the extinction of strained premixed and nonpremixed flames were studied both experimentally and numerically at 1-g and m-g. It was shown that large particles can cool flames more effectively than smaller particles. The effects of flame configuration and particle injection orientation were also addressed. It was shown that it was not possible to obtain a simple and still meaningful scaling that captured all the pertinent physics due to the complexity of the couplings between parameters. Also, the cooling by particles is more profound in the absence of gravity as gravity works to reduce the particle number density in the neighborhood of the flame. The efforts were recently shifted towards the understanding of the effects of combustible particles on extinction [6], the gas-phase ignition by hot particle injection [7], and the hot gas ignition of flames in the presence of particles that are not hot enough to ignite the gas phase by themselves.

  14. Assessing Transboundary Wildfire Exposure in the Southwestern United States.

    PubMed

    Ager, Alan A; Palaiologou, Palaiologos; R Evers, Cody; Day, Michelle A; G Barros, Ana M

    2018-04-25

    We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning. Published 2018. This article is a U.S. government work and is in the public domain in the USA.

  15. Polar-Drive Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  16. Advanced Ignition in Supersonic Airflow by Tunable Plasma System

    NASA Astrophysics Data System (ADS)

    Firsov, A. A.; Dolgov, E. V.; Leonov, S. B.; Yarantsev, D. A.

    2017-10-01

    The plasma-based technique was studied for ignition and flameholding in a supersonic airflow in different laboratories for a long time. It was shown that flameholding of gaseous and liquid hydrocarbon fuel is feasible by means of surface DC discharge without employing mechanical flameholders in a supersonic combustion chamber. However, a high power consumption may limit application of this method in a real apparatus. This experimental and computational work explores a distributed plasma system, which allows reducing the total energy consumption and extending the life cycle of the electrode system. Due to the circuit flexibility, this approach may be potentially enriched with feedbacks for design of a close loop control system.

  17. Detailed mechanism for oxidation of benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1990-01-01

    A detailed mechanism for the oxidation of benzene is presented and used to compute experimentally obtained concentration profiles and ignition delay times over a wide range of equivalence ratio and temperature. The computed results agree qualitatively with all the experimental trends. Quantitative agreement is obtained with several of the composition profiles and for the temperature dependence of the ignition delay times. There are indications, however, that some important reactions are as yet undiscovered in this mechanism. Recent literature expressions have been used for the rate coefficients of most important reactions, except for some involving phenol. The discrepancy between the phenol pyrolysis rate coefficient used in this work and a recent literature expression remains to be explained.

  18. Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Chidester, S K; Forbes, J W

    2002-06-28

    The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction,more » shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.« less

  19. Validating Hydrodynamic Growth in National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. Luc

    2014-10-01

    The hydrodynamic growth of capsule imperfections can threaten the success of inertial confinement fusion implosions. Therefore, it is important to design implosions that are robust to hydrodynamic instabilities. However, the numerical simulation of interacting Rayleigh-Taylor and Richtmyer-Meshkov growth in these implosions is sensitive to modeling uncertainties such as radiation drive and material equations of state, the effects of which are especially apparent at high mode number (small perturbation wavelength) and high convergence ratio (small capsule radius). A series of validation experiments were conducted at the National Ignition Facility to test the ability to model hydrodynamic growth in spherically converging ignition-relevant implosions. These experiments on the Hydro-Growth Radiography platform constituted direct measurements of the growth of pre-imposed imperfections up to Legendre mode 160 and a convergence ratio of greater than four using two different laser drives: a ``low-foot'' drive used during the National Ignition Campaign and a larger adiabat ``high-foot'' drive that is modeled to be relatively more robust to ablation front hydrodynamic growth. We will discuss these experiments and how their results compare to numerical simulations and analytic theories of hydrodynamic growth, as well as their implications for the modeling of future designs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail

    The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less

  1. Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines

    DOE PAGES

    Lucachick, Glenn; Curran, Scott; Storey, John Morse; ...

    2016-03-10

    Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less

  2. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons

    PubMed Central

    Gupta, Manoj

    2017-01-01

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47–1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed. PMID:28841189

  3. Enhancing the Ignition, Hardness and Compressive Response of Magnesium by Reinforcing with Hollow Glass Microballoons.

    PubMed

    Manakari, Vyasaraj; Parande, Gururaj; Doddamani, Mrityunjay; Gupta, Manoj

    2017-08-25

    Magnesium (Mg)/glass microballoons (GMB) metal matrix syntactic foams (1.47-1.67 g/cc) were synthesized using a disintegrated melt deposition (DMD) processing route. Such syntactic foams are of great interest to the scientific community as potential candidate materials for the ever-changing demands in automotive, aerospace, and marine sectors. The synthesized composites were evaluated for their microstructural, thermal, and compressive properties. Results showed that microhardness and the dimensional stability of pure Mg increased with increasing GMB content. The ignition response of these foams was enhanced by ~22 °C with a 25 wt % GMB addition to the Mg matrix. The authors of this work propose a new parameter, ignition factor, to quantify the superior ignition performance that the developed Mg foams exhibit. The room temperature compressive strengths of pure Mg increased with the addition of GMB particles, with Mg-25 wt % GMB exhibiting the maximum compressive yield strength (CYS) of 161 MPa and an ultimate compressive strength (UCS) of 232 MPa for a GMB addition of 5 wt % in Mg. A maximum failure strain of 37.7% was realized in Mg-25 wt % GMB foam. The addition of GMB particles significantly enhanced the energy absorption by ~200% prior to compressive failure for highest filler loading, as compared to pure Mg. Finally, microstructural changes in Mg owing to the presence of hollow GMB particles were elaborately discussed.

  4. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  5. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  6. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  7. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  8. Nano-Ignition Torch Applied to Cryogenic H2/O2 Coaxial Jet

    DTIC Science & Technology

    2016-01-04

    developed and ignition of liquid fuel sprays by the torch has been achieved. In this report, we will describe the experimental procedure for producing...ignition that is induced by a compact Xe-flash, including the results for photoignition of a simple fuel spray in air as well as ignition of a coaxial...window. Experimental Setup for Fuel Spray Ignition Three different setups were utilized for the fuel ignition experiments. The first one was used

  9. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  10. 40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...

  11. Relation between inflammables and ignition sources in aircraft environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1951-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.

  12. Predicting the occurrence of wildfires with binary structured additive regression models.

    PubMed

    Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel

    2017-02-01

    Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Evaluating free vs bound oxygen on ignition of nano-aluminum based energetics leads to a critical reaction rate criterion

    NASA Astrophysics Data System (ADS)

    Zhou, Wenbo; DeLisio, Jeffery B.; Wang, Xizheng; Egan, Garth C.; Zachariah, Michael R.

    2015-09-01

    This study investigates the ignition of nano-aluminum (n-Al) and n-Al based energetic materials (nanothermites) at varying O2 pressures (1-18 atm), aiming to differentiate the effects of free and bound oxygen on ignition and to assess if it is possible to identify a critical reaction condition for ignition independent of oxygen source. Ignition experiments were conducted by rapidly heating the samples on a fine Pt wire at a heating rate of ˜105 °C s-1 to determine the ignition time and temperature. The ignition temperature of n-Al was found to reduce as the O2 pressure increased, whereas the ignition temperatures of nanothermites (n-Al/Fe2O3, n-Al/Bi2O3, n-Al/K2SO4, and n-Al/K2S2O8) had different sensitivities to O2 pressure depending on the formulations. A phenomenological kinetic/transport model was evaluated to correlate the concentrations of oxygen both in condensed and gaseous phases, with the initiation rate of Al-O at ignition temperature. We found that a constant critical reaction rate (5 × 10-2 mol m-2 s-1) for ignition exists which is independent to ignition temperature, heating rate, and free vs bound oxygen. Since for both the thermite and the free O2 reaction the critical reaction rate for ignition is the same, the various ignition temperatures are simply reflecting the conditions when the critical reaction rate for thermal runaway is achieved.

  14. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    PubMed Central

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2014-01-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  15. Thermal ignition combustion system

    DOEpatents

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  16. Thermal ignition combustion system

    DOEpatents

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  17. Dual coil ignition system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  18. 40 CFR 63.1381 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wool fiberglass to which a phenol-formaldehyde binder has been applied. Building insulation means bonded wool fiberglass insulation, having a loss on ignition of less than 8 percent and a density of less... charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work, fuel...

  19. 40 CFR 63.1381 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wool fiberglass to which a phenol-formaldehyde binder has been applied. Building insulation means bonded wool fiberglass insulation, having a loss on ignition of less than 8 percent and a density of less... charger systems, heat exchangers, melter cooling system, exhaust system, refractory brick work, fuel...

  20. 29 CFR 1915.157 - Hand and body protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment... employee uses appropriate hand protection and other protective clothing where there is exposure to hazards... working near an ignition source. (c) Electrical protective devices. The employer shall ensure that each...

  1. 29 CFR 1915.157 - Hand and body protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Personal Protective Equipment... employee uses appropriate hand protection and other protective clothing where there is exposure to hazards... working near an ignition source. (c) Electrical protective devices. The employer shall ensure that each...

  2. Fuelling the palaeoatmospheric oxygen debate: how much atmospheric oxygen is required for ignition and propagation of smouldering fires?

    NASA Astrophysics Data System (ADS)

    Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo

    2010-05-01

    Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined expertise from both the Earth science and fire engineering disciplines to develop realistic ignition mechanisms and measurements of fire propagation within different levels of atmospheric oxygen. We present data from experimental burns run in the fully controlled and realistic atmospheric environment of the UCD PÉAC facility. The burns are designed to develop our understanding of ignition of fires in the natural world. We have studied ignition and propagation of fire in peat, a natural and highly flammable substance. Peat samples of approximately 100mm by 100mm in cross section and 50mm in depth were exposed to an ignition source (~100W of electric power) for 30 minutes. Thermocouples were placed throughout the sample to measure temperature changes during the initial 30 minute ignition phase and in order to observe ignition of the peat, intensity of combustion and spread of the smouldering front within the different atmospheric oxygen settings. We show that ignition and propagation of smouldering in peat does not occur below 16% atmospheric oxygen and that smouldering combustion continues for long periods (~4 hours in the size sample used) at 18% atmospheric oxygen and above. This suggests that atmospheric levels above 16% atmospheric are required to allow ignition and propagation of smouldering fires and that frequent occurrences of wildfires might only be expected in the geological past when atmospheric levels were above 18% oxygen. Fires play an important role in Earth's biogeochemical cycles; this work suggests that fire feedbacks into the Earth system would likely have been suppressed during periods of low atmospheric oxygen.

  3. Research on measurement of aviation magneto ignition strength and balance

    NASA Astrophysics Data System (ADS)

    Gao, Feng; He, Zhixiang; Zhang, Dingpeng

    2017-12-01

    Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.

  4. Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures.

    PubMed

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-04-15

    The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Experimental investigation on ignition schemes of partially covered cavities in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Cai, Zun; Sun, Mingbo; Wang, Hongbo; Wang, Zhenguo

    2016-04-01

    In this study, ignition schemes of the partially covered cavity in a scramjet combustor were investigated under inflow conditions of Ma=2.1 with stagnation pressure P0=0.7 Mpa and stagnation temperature T0=947 K. It reveals that the ignition scheme of the partially covered cavity has a great impact on the ignition and flame stabilization process. There always exists an optimized global equivalence ratio of a fixed ignition scheme, and the optimized global equivalence ratio of ignition in the partially covered cavity is lower than that of the uncovered cavity. For tandem dual-cavities, ignition in the partially covered cavity could be enhanced with the optimization of global equivalence ratio. However, ignition in the partially covered cavity would be exacerbated with further increasing the global equivalence ratio. The global equivalence ratio and the jet penetration height have a strong coupling with the combustion flow-field. For multi-cavities, it is assured that fuel injection on the opposite side could hardly be ignited after ignition in the partially covered cavity even with the optimized global equivalence ratio. It is possible to realize ignition enhancement in the partially covered cavity with the optimization of global equivalence ratio, but it is not beneficial for thrust increment during the steady combustion process.

  6. Pre-ignition confinement and deflagration violence in LX-10 and PBX 9501

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, J. W., E-mail: tringe2@llnl.gov; Glascoe, E. A.; McClelland, M. A.

    In thermal explosions of the nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)-based explosives LX-10 and PBX-9501, the pre-ignition spatial and temporal heating profile defines the ignition location. The ignition location then determines the extent of inertial confinement and the violence of the resulting deflagration. In this work, we present results of experiments in which ∼23 g cylinders of LX-10 and PBX 9501 in thin-walled aluminum confinement vessels were subjected to identical heating profiles but which presented starkly different energy release signatures. Post-explosion LX-10 containment vessels were completely fragmented, while the PBX 9501 vessels were merely ruptured. Flash x-ray radiography images show that the initiation locationmore » for the LX-10 is a few mm farther from the end caps of the vessel relative to the initiation location of PBX 9501. This difference increases deflagration confinement for LX-10 at the time of ignition and extends the pressurization time during which the deflagration front propagates in the explosive. The variation in the initiation location, in turn, is determined by the thermal boundary conditions, which differ for these two explosives because of the larger coefficient of thermal expansion and greater thermal stability of the Viton binder in LX-10 relative to the estane and bis(2,2-dinitropropyl) acetal/formal binder of the PBX 9501. The thermal profile and initiation location were modeled for LX-10 using the hydrodynamics and structures code ALE3D; results indicate temperatures in the vicinity of the ignition location in excess of 274 °C near the time of ignition. The conductive burn rates for these two explosives, as determined by flash x-ray radiography, are comparable in the range 0.1–0.2 mm/μs, somewhat faster than rates observed by strand burner experiments for explosives in the temperature range 150–180 °C and pressures up to 100 MPa. The thinnest-wall aluminum containment vessels presented here rupture at lower pressures, in the range 10 MPa, suggesting that moderately higher temperatures and pressures are present near the deflagration front. For these explosives, however the most important property for determining deflagration violence is the degree of inertial confinement.« less

  7. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Wang, Yang; Wu, Shixi

    2017-07-01

    Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.

  8. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.

    PubMed

    Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas

    2013-07-15

    Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Present Status and Prospects of FIREX Project

    NASA Astrophysics Data System (ADS)

    Mima, K.

    2008-07-01

    The goal of the first phase of Fast Ignition Realization EXperiment (FIREX) project (FIREX-I) is to demonstrate ignition temperature of 5-10 keV, followed by the second phase to demonstrate ignition and burn. Since starting FIREX-I project, plasma physics study in ILE has been devoted to increase the coupling efficiency and to improve compression performance. The heating efficiency can be increased by the following two ways. 1) A previous experiments indicate that the coupling of heating laser to imploded plasmas increases with coating a low-density. foam used in the experiment, low-Z plastic foam is desired for efficient electron transport. (Lei et al. 2006). 2) Electrons generated in the inner surface of the double cone will return by sheathe potential generated between two cones. A 2-D PIC simulation indicates that hot electron confinement is improved by a factor of 1.7 (Nakamura et al. 2007). Further optimization of cone geometry by 2-D simulation will be presented in the workshop. The implosion performance can be improved by three ways. 1) Low-Z plastic layer coating on the outer surface of the cone: The 2D hydro-simulation PINOCO predicts that the target areal density increases by a factor of 2. 2) Br doped plastic layer on a fuel pellet may significantly moderate the Rayleigh-Taylor instability (Fujioka et al. 2004), making implosion more stable. 3) Reducing vapor gas pressure in a pellet is necessary to suppress strength of a jet that will destroy the cone tip. (Stephens et al. 2005). As for the cryogenic target fabrication, R&D of fabricating foam cryogenic cine shell target are under development by the joint group between Osaka Univ. and NIFS. The amplifier system of the heating laser LFEX is completed in March 2008. The amplification test has demonstrated laser energy of 3 kJ/beam at 3nm bandwidth. The equivalent 12 kJ in 4 beams meets the specification of LFEX. The large tiled gratings for pulse compressor are completed and installed. The short pulse laser will be delivered on a target in September, 2008. The fully integrated fast ignition experiments is scheduled on February 2009 until the end of 2010. If subsequent FIREX-II will start as proposed, the ignition and burn will be demonstrated in parallel to that at NIF and LMJ, providing a scientific database of both central and fast ignition.

  10. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  11. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection

    NASA Astrophysics Data System (ADS)

    Wang, C.; Hu, J.; Wang, F.; Jiang, J.; Zhang, Z. Z.; Yang, Y.; Ding, J. X.; Jiang, H. C.; Wang, Y. M.; Wei, H. Y.

    2018-04-01

    Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.

  12. Measurement of Ti-6Al-4V alloy ignition temperature by reflectivity detection.

    PubMed

    Wang, C; Hu, J; Wang, F; Jiang, J; Zhang, Z Z; Yang, Y; Ding, J X; Jiang, H C; Wang, Y M; Wei, H Y

    2018-04-01

    Fires resulting from titanium combustion are complex and violent processes which can instantly burn a titanium alloy once ignited. The occurrence of titanium combustion is a disaster for aircraft. Accurate measurement of the ignition temperature of titanium alloys is of significance in preventing such fires and in investigating combustion-resistance properties. In this study, monochromatic temperature and emissivity measurement methods based on reflectivity detection were used to determine the ignition temperature of a titanium alloy. Experiments were carried out using a titanium burning apparatus. The temperatures of titanium in the oxidation stage before ignition and in the combustion stage during the ignition process were measured using wavelengths of 1050 nm and 940 nm, respectively. Experimental results showed that the ignition temperature of the titanium alloy could be measured by reflectivity detection and that measurement precision during thermal oxidation (500-900 °C) was ±1 °C. The temperature of the ignition process ranged between 1653 and 1857 °C, and the ignition temperature was around 1680 °C.

  13. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-07-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  14. Comparison of aldehyde emissions simulation with FTIR measurements in the exhaust of a spark ignition engine fueled by ethanol

    NASA Astrophysics Data System (ADS)

    Zarante, Paola Helena Barros; Sodré, José Ricardo

    2018-02-01

    This work presents a numerical simulation model for aldehyde formation and exhaust emissions from ethanol-fueled spark ignition engines. The aldehyde simulation model was developed using FORTRAN software, with the input data obtained from the dedicated engine cycle simulation software AVL BOOST. The model calculates formaldehyde and acetaldehyde concentrations from post-flame partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained from a mid-size sedan powered by a 1.4-l spark ignition engine, tested on a chassis dynamometer. Exhaust aldehyde concentrations were determined using a Fourier Transform Infrared (FTIR) Spectroscopy analyzer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. The measured acetaldehyde concentrations showed values from 3 to 6 times higher than formaldehyde in the range studied. The model could predict reasonably well the qualitative experimental trends, with the quantitative results showing a maximum discrepancy of 39% for acetaldehyde concentration and 21 ppm for exhaust formaldehyde.

  15. Hydro-scaling of DT implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  17. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  18. Scope of Work for Integration Management and Installation Services of the National Ignition Facility Beampath Infrastructure System

    NASA Astrophysics Data System (ADS)

    Coyle, P. D.

    2000-03-01

    The goal of the National Ignition Facility (NIF) project is to provide an above ground experimental capability for maintaining nuclear competence and weapons effects simulation and to provide a facility capable of achieving fusion ignition using solid-state lasers as the energy driver. The facility will incorporate 192 laser beams, which will be focused onto a small target located at the center of a spherical target chamber-the energy from the laser beams will be deposited in a few billionths of a second. The target will then implode, forcing atomic nuclei to sufficiently high temperatures and densities necessary to achieve a miniature fusion reaction. The NIF is under construction, at Livermore, California, located approximately 50 miles southeast of San Francisco, California. The University of California, Lawrence Livermore National Laboratory (LLNL), operating under Prime Contract W-7405-ENG. 48 with the U.S. Department of Energy (DOE), shall subcontract for Integration Management and Installation (IMI) Services for the Beampath Infrastructure System (BIS). The BIS includes Beampath Hardware and Beampath Utilities. Conventional Facilities work for the NIF Laser and Target Area Building (LTAB) and Optics Assembly Building (OAB) is over 86 percent constructed. This Scope of Work is for Integration Management and Installation (IMI) Services corresponding to Management Services, Design Integration Services, Construction Services, and Commissioning Services for the NIB BIS. The BIS includes Beampath Hardware and Beampath Utilities. Beampath Hardware and Beampath Utilities include beampath vessels, enclosures, and beam tubes; auxiliary and utility systems; and support structures. A substantial amount of GFE will be provided by the University for installation as part of the infrastructure packages.

  19. Ignition Delay Associated with a Strained Strip

    NASA Technical Reports Server (NTRS)

    Gerk, T. J.; Karagozian, A. R.

    1996-01-01

    Ignition processes associated with two adjacent fuel-oxidizer interferences bounding a strained fuel strip are explored here using single-step activation energy asymptotics. Calculations are made for constant as well as temporally decaying strain fields. There possible models of ignition are determined: one in which the two interfaces ignite independently as diffusion flames; one in which the two interfaces ignite dependently and in which ignition occurs to form a single , premixed flame at very high strain rates before ignition is completely prevented. In contrast to a single, isolated interface in which ignition can be prevented by overmatching heat production with heat convection due to strain, ignition of a strained fuel strip can also be prevented if the finite extend of fuel is diluted by oxidizer more quickly than heat production can cause a positive feedback thermal runaway. These behaviors are dependent on the relative sizes of timescales associated with species and heat diffusion, with convection due to strain, and with the chemical reaction. The result here indicate that adjacent, strained species interfaces may ignite quite differently in nature from ignition of a single, strained intrface and that their interdependence should be considered as the interfaces are brought closer together in complex strain fields. Critical strain rates leading to complete ignition delay are found to be considerably smaller for the fuel strip than those for single interfaces as the fuel strip is made thin in comparison to diffusion and chemical length scales.

  20. A review of laser-plasma interaction physics of indirect-drive fusion

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.

    2013-10-01

    The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.

  1. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D

    1941-01-01

    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  2. Relation Between Inflammables and Ignition Sources in Aircraft Environments

    NASA Technical Reports Server (NTRS)

    Scull, Wilfred E

    1950-01-01

    A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.

  3. Ignition patterns & prescribed fire behavior in southern pine stands

    Treesearch

    Ragnar W. Johansen

    1987-01-01

    As an aid to forest managers who use or contemplate using aerial ignition techniques in their prescribed burning programs, a study was designed to evaluate the magnitude of the differences that could occur depending on whether lines of fire were used (ignited by a helitorch) or a spot-fire technique was used (ignited by aerial ignition devices). Six experimental fires...

  4. LOX/Methane Main Engine Glow Plug Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Ajmani, Kumud

    2009-01-01

    Ignition data for tests with a LOX/methane igniter that utilized a glow plug as the ignition source are presented. The tests were conducted in a vacuum can with thermally conditioned (cold) hardware. Data showing the effects of glow plug geometry, type, and igniter operating conditions are discussed. Comparisons between experimental results and multidimensional, transient computer models are also made.

  5. Transition from Ignition to Flame Growth under External Radiation in Three Dimensions (TIGER-3D)

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Olson, Sandra L.; Mell, William

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  6. Transition from Ignition to Flame Growth under External Radiation in 3D

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Mell, William E.; Olson, Sandra L.

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  7. An analysis of wildfire prevention

    NASA Technical Reports Server (NTRS)

    Heineke, J. M.; Weissenberger, S.

    1974-01-01

    A model of the production of wildfire ignitions and damages is developed and used to determine wildland activity-regulation decisions, which minimize total expected cost-plus-loss due to wildfires. In this context, the implications of various policy decisions are considered. The resulting decision rules take a form that makes it possible for existing wildfire management agencies to readily adopt them upon collection of the required data.

  8. Effect of oxygen on the ignition of liquid fuels

    NASA Technical Reports Server (NTRS)

    Pahl, H

    1929-01-01

    The ignition temperature, ignition lag, and ignition strength of simple and homogeneous fuels in combustion air of small oxygen content differ from what they are in air of greater oxygen content. In the case of small oxygen content, these fuels behave as if mixed unevenly. In the case of air with a definite oxygen content, the simple fuels have two ignition points, between which ignition takes place within a certain temperature range. The phenomena are explained by pyrogenous decomposition, comparison of the individual heat quantities, and the effect of the walls.

  9. Laser ignition application in a space experiment

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.; Culley, Dennis E.

    1993-01-01

    A laser ignition system is proposed for the Combustion Experiment Module on an orbiting spacecraft. The results of a design study are given using the scheduled 'Flame Ball Experiment' as the design guidelines. Three laser ignition mechanisms and wavelengths are evaluated. A prototype laser is chosen and its specifications are given, followed by consideration of the beam optical arrangement, the ignition power requirement, the laser ignition system weight, size, reliability, and laser cooling and power consumption. Electromagnetic interference to the onboard electronics caused by the laser ignition process is discussed. Finally, ground tests are suggested.

  10. Importance of the gas phase role to the prediction of energetic material behavior: An experimental study

    NASA Astrophysics Data System (ADS)

    Ali, A. N.; Son, S. F.; Asay, B. W.; Sander, R. K.

    2005-03-01

    Various thermal (radiative, conductive, and convective) initiation experiments are performed to demonstrate the importance of the gas phase role in combustion modeling of energetic materials (EM). A previously published condensed phase model that includes a predicted critical irradiance above which ignition is not possible is compared to experimental laser ignition results for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT). Experimental results conflict with the predicted critical irradiance concept. The failure of the model is believed to result from a misconception about the role of the gas phase in the ignition process of energetic materials. The model assumes that ignition occurs at the surface and that evolution of gases inhibits ignition. High speed video of laser ignition, oven cook-off and hot wire ignition experiments captures the ignition of HMX and TNT in the gas phase. A laser ignition gap test is performed to further evaluate the effect of gas phase laser absorption and gas phase disruption on the ignition process. Results indicate that gas phase absorption of the laser energy is probably not the primary factor governing the gas phase ignition observations. It is discovered that a critical gap between an HMX pellet and a salt window of 6mm±0.4mm exists below which ignition by CO2 laser is not possible at the tested irradiances of 29W /cm2 and 38W/cm2 for HMX ignition. These observations demonstrate that a significant disruption of the gas phase, in certain scenarios, will inhibit ignition, independent of any condensed phase processes. These results underscore the importance of gas phase processes and illustrate that conditions can exist where simple condensed phase models are inadequate to accurately predict the behavior of energetic materials.

  11. Prospects of lean ignition with the quarter wave coaxial cavity igniter

    NASA Astrophysics Data System (ADS)

    Pertl, Franz Andreas Johannes

    New ignition sources are needed to operate the next generation of lean high efficiency internal combustion engines. A significant environmental and economic benefit could be obtained from these lean engines. Toward this goal, the quarter wave coaxial cavity resonator, QWCCR, igniter was examined. A detailed theoretical analysis of the resonator was performed relating geometric and material parameters to performance characteristics, such as resonator quality factor and developed tip electric field. The analysis provided for the construction and evaluation of a resonator for ignition testing. The evaluation consisted of ignition tests with liquefied-petroleum-gas (LPG) air mixtures of varying composition. The combustion of these mixtures was contained in a closed steel vessel with a precombustion pressure near one atmosphere. The resonator igniter was fired in this vessel with a nominal 150 W microwave pulse of varying duration, to determine ignition energy limits for various mixtures. The mixture compositions were determined by partial pressure measurement and the ideal gas law. Successful ignition was determined through observation of the combustion through a view port. The pulse and reflected microwave power were captured in real time with a high-speed digital storage oscilloscope. Ignition energies and power levels were calculated from these measurements. As a comparison, these ignition experiments were also carried out with a standard non-resistive spark plug, where gap voltage and current were captured for energy calculations. The results show that easily ignitable mixtures around stoichiometric and slightly rich compositions are ignitable with the QWCCR using the similar kinds of energies as the conventional spark plug in the low milli-Joule range. Energies for very lean mixtures could not be determined reliably for the QWCCR for this prototype test, but could be lower than that for a conventional spark. Given the capability of high power, high energy delivery, and opportunity for optimization, the QWCCR has the potential to deliver more energy per unit time than a conventional spark plug and thus should be considered be as a lean ignition source.

  12. Experimental study on the minimum ignition temperature of coal dust clouds in oxy-fuel combustion atmospheres.

    PubMed

    Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric

    2016-04-15

    BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  14. Ignition and combustion characteristics of metallized propellants

    NASA Technical Reports Server (NTRS)

    Mueller, D. C.; Turns, Stephen R.

    1991-01-01

    Over the past six months, experimental investigations were continued and theoretical work on the secondary atomization process was begun. Final shakedown of the sizing/velocity measuring system was completed and the aluminum combustion detection system was modified and tested. Atomizer operation was improved to allow steady state operation over long periods of time for several slurries. To validate the theoretical modeling, work involving carbon slurry atomization and combustion was begun and qualitative observations were made. Simultaneous measurements of aluminum slurry droplet size distributions and detection of burning aluminum particles were performed at several axial locations above the burner. The principle theoretical effort was the application of a rigid shell formation model to aluminum slurries and an investigation of the effects of various parameters on the shell formation process. This shell formation model was extended to include the process leading up to droplet disruption, and previously developed analytical models were applied to yield theoretical aluminum agglomerate ignition and combustion times. The several theoretical times were compared with the experimental results.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klem, Michael

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred.more » Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.« less

  16. Foam-lined hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Thomas, Cliff

    2017-10-01

    Indirect drive inertial confinement fusion (ICF) is made difficult by hohlraum wall motion, laser backscatter, x-ray preheat, high-energy electrons, and specular reflection of the incident laser (i.e. glint). To mitigate, we line the hohlraum with a low-density metal foam, or tamper, whose properties can be readily engineered (opacity, density, laser absorption, ion-acoustic damping, etc.). We motivate the use of low-density foams for these purposes, discuss their development, and present initial findings. Importantly, we demonstrate that we can fabricate a 200-500 um thick liner at densities of 10-100 mg/cm3 that could extend the capabilities of existing physics platforms. The goal of this work is to increase energy coupled to the capsule, and maximize the yield available to science missions at the National Ignition Facility. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions atmore » full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.« less

  18. Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination

    NASA Technical Reports Server (NTRS)

    Robinson, Philip J.; Popp, Christopher G.; veith, Eric M.

    2007-01-01

    A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) un der the auspices of the Exploration Systems Mission Directorate to de velop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for R eaction Control Subsystems (RCS). Contract NAS8-01109 was issued to A erojet to develop a dual thrust Reaction Control Engine (RCE) that ut ilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thru st level of 10 - 30 lbf. The preferred RCS approach for the dual thru st RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol pr opellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the de sign. GOX/Ethanol was easier to ignite, but this combination had syst em design implications of providing GOX for the igniters. A LOX/Ethan ol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not e xist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk m itigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successful ignition from GOX to LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was desig ned to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardwa re, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two'phase flow to subcooled LOX. The Workh orse igniter was well instrumented: Pressure and temperature instrumentation permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provide d chamber thermal profile characteristics. The cold flow chamber pres sure (Pc) for each test was determined and coupled with the igniter chamber diameter (De) to calculate the characteristic quench parameter (Pc x Dc), which was plotted as a function of core mixture ratio, MRc . Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 deg R LOX to 486 deg R GOX. Once ign ited at cold GOX conditions, combustion was continuous as the hardwar e chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to pr ovide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds. Igniter pulse tests were performed at three conditions: (1) an EPW of 0.080 se conds at 25% duty cycle for 400 pulses; (2) an EPW of 0.160 seconds a nd a 5% duty cycle for 124 pulses; (3) an EPW of 0.160 seconds and a 50% duty cycle for 380 pulses. Successful ignition of LOX/Ethanol was demonstrated over a broad range of valve inlet conditions, with the empirically determined LOX/Ethanol ignition limits extending the previous database established for GOX/Ethanol ignition limits. Although th e observed chill-in characteristics of the hardware varied significan tly with flowrate, ignition was readily achieved. Combustion was marg inal at extremely fuel-rich conditions, and it fluctuated as the oxygen passed rough the twophase flow regime during the period of hardware chill-in. Pulse testing showed good repeatability with 100 percent r e-ignition for all pulses. Certain pulse-to-pulse repeatability requirements for actual RCS operation may necessitate establishment of mini mum oxygen flow rates and engine thrust levels for satisfactory engin e performance.

  19. Temperature analysis of laser ignited metalized material using spectroscopic technique

    NASA Astrophysics Data System (ADS)

    Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet

    2018-05-01

    The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.

  20. Numerical Analysis of the Interaction between Thermo-Fluid Dynamics and Auto-Ignition Reaction in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Saijyo, Katsuya; Nishiwaki, Kazuie; Yoshihara, Yoshinobu

    The CFD simulations were performed integrating the low-temperature oxidation reaction. Analyses were made with respect to the first auto-ignition location in the case of a premixed-charge compression auto-ignition in a laminar flow field and in the case of the auto-ignition in an end gas during an S. I. Engine combustion process. In the latter simulation, the spatially-filtered transport equations were solved to express fluctuating temperatures in a turbulent flow in consideration of strong non-linearity to temperature in the reaction equations. It is suggested that the first auto-ignition location does not always occur at higher-temperature locations and that the difference in the locations of the first auto-ignition depends on the time period during which the local end gas temperature passes through the region of shorter ignition delay, including the NTC region.

  1. Generalized Lawson Criteria for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tipton, Robert E.

    2015-08-27

    The Lawson Criterion was proposed by John D. Lawson in 1955 as a general measure of the conditions necessary for a magnetic fusion device to reach thermonuclear ignition. Over the years, similar ignition criteria have been proposed which would be suitable for Inertial Confinement Fusion (ICF) designs. This paper will compare and contrast several ICF ignition criteria based on Lawson’s original ideas. Both analytical and numerical results will be presented which will demonstrate that although the various criteria differ in some details, they are closely related and perform similarly as ignition criteria. A simple approximation will also be presented whichmore » allows the inference of each ignition parameter directly from the measured data taken on most shots fired at the National Ignition Facility (NIF) with a minimum reliance on computer simulations. Evidence will be presented which indicates that the experimentally inferred ignition parameters on the best NIF shots are very close to the ignition threshold.« less

  2. Research on the Electro-explosive Behaviors and the Ignition Performances of Energetic Igniters

    NASA Astrophysics Data System (ADS)

    Li, Yong; Jia, Xin; Wang, Liu; Zhou, Bin; Shen, Ruiqi

    2018-01-01

    This article describes the electro-explosive behaviors and the ignition performances of energetic igniters based on the combination of polysilicon film with Al/CuO nanoenergetic multilayer films (nEMFs).The ultra-high-speed framing camera images show that melting first occurs at the V-type angles and then expands to the entire bridge. The Al/CuO nEMF is heated and fired from below, forced to form lots of flyers with different sizes, ejected with the expansion of polysilicon plasma, and reacts exothermically to release a large quantity of energy. Furthermore, temperature diagnosis results demonstrate higher temperature products of energetic igniters. Ignition experiment at a standoff of 1.5 mm results show that the average firing voltage and the variance of energetic igniters are 28.50 V and 0.96, whereas those of polysilicon igniters are 32.05 V and 1.94.

  3. Qualification Motor no. 8 (QM-8), volume 1

    NASA Technical Reports Server (NTRS)

    Garecht, D. M.

    1989-01-01

    All inspection and instrumentation data indicate that the QM-8 static test firing conducted 20 January 1989 was successful. Ambient temperature at T-0 was 28 F. With two flights successfully accomplished, this final test in the redesigned solid rocket motor (RSRM) program certified that the design meets motor performance requirements under extreme cold conditions. This test was a prerequisite to the third flight. The entire test article was cold conditioned at 20 to 25 F for approximately 31 days to assure a maximum propellant mean bulk temperature (PMBT) of 40 F, making it the lowest PMBT in the history of the program. This extreme condition also presented the opportunity to certify critical components at low temperatures. Certification of field joint and igniter heaters, adhesive bondline integrity, flex bearing performance, flight instrumentation performance, RSRM seal performance, and LSC and nozzle plug performance was accomplished. Prior to motor ignition, the field joints were maintained between 75 to 130 F, the igniter-to-case joint was maintained between 75 to 123 F, and the case-to-nozzle joint was maintained between 75 to 120 F. QM-8 was tested with induced side loads to simulate the strut loads experienced during ignition and maximum aerodynamic loading conditions. The ability of the safe and arm device to change position from safe-to-arm and arm-to-safe was certified. Ballistics performance was certified at the lower limits. Values were within specification requirements. Nozzle performance was nominal with typical erosion. The use of Fiberite carbon-cloth phenolic was certified. The water deluge system, CO2 quench, and other test equipment performed as planned during all required test operations.

  4. Amazon soil charcoal: Pyrogenic carbon stock depends of ignition source distance and forest type in Roraima, Brazil.

    PubMed

    da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I

    2018-04-18

    Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source (<3 km), occurring mainly in flood-free ombrophilous forests (3.46 ± 5.22 Mg PyC/ha). The vertical distribution of PyC in the deeper layers of the soil (> 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.

  5. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was developed to describe the experiments. Experiments with different jet velocities in air environment were performed to validate the model. The interaction of the laser beam with particles is particle size dependent and a narrow range of particle sizes (around 3.4 microm) is heated most effectively. Therefore, the heat transfer model needs to be analyzed only for the particles with this specific size, which greatly simplifies the interpretation of experiments. Describing heating of a micron sized metal particle involves the transition regime heat transfer. A modified Fuchs model was used to describe the heat transfer in this study. In addition to dry air environment, the experimental technique was also used with other oxidizing environments, including O2, H2O, CO2 and mixtures thereof. It was observed that particle size capable of maintaining a vapor phase flame is a function of the environment. Arrhenius model kinetics parameters for Al ignition in O2, CO2 and H2O environments were determined.

  6. Convective Ignition of Propellant Cylinders in a Developing Cross-Flow Field.

    DTIC Science & Technology

    1980-09-01

    Ignition. .. ...... ..... 69 (ii) Polymer Ignition .. ....... ....... 72 F . Flame Spreading and Blow -off Phenomena .. ...... 72 G. Ignition and Flame...polymeric fuel binder for mechanical integrity. It also includes solid additives (like aluminum) and various catalysts and plasticizing agents . Ballistic...placed on distinguishing the ignition sites and the flame spreading (and blow off) tendencies as functions of the external flow velocity pressure and

  7. Surface breakdown igniter for mercury arc devices

    DOEpatents

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  8. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  9. Integrating micro-ignitors with Al/Bi2O3/graphene oxide composite energetic films to realize tunable ignition performance

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoxia; Cheng, Shengxian; Hu, Yan; Ye, Yinghua; Shen, Ruiqi

    2018-03-01

    The integration of composite energetic films (CEFs) with various types of initiators can effectively adjust their performance and represents potential applications in microscale energy-demanding systems. In this study, the Al/Bi2O3/graphene oxide (GO) CEFs were successfully integrated into copper micro-ignitors by electrophoretic deposition, a low-cost and time-saving method. The effects of the Al/Bi2O3/GO CEFs with different GO contents on exothermic performance and ignition properties of micro-ignitors were then systematically investigated in terms of heat release, activation energy, ignition duration, the maximum height of the ignition product, and ignition delay time. The results showed that the addition of GO promoted more heat releases and higher activation energies of Al/Bi2O3/GO CEFs. The addition of ≤3.5 wt. % GO prolonged the ignition duration from 450 μs to 950 μs and increased the maximum height of the ignition product from about 40 mm to 60 mm. However, the micro-ignitors with more than 3.5 wt. % GO cannot be ignited, which suggested that GO played a contradictory role in the ignition properties of micro-ignitors and the controlled GO content was a prerequisite for improved ignition performance. The ignition delay time gradually extended from 10.7 μs to 27.6 μs with increases in the GO contents of Al/Bi2O3 CEFs, revealing that an increase in the weight ratio of GO leads to lower ignition sensitivity of micro-ignitors.

  10. 33 CFR 183.440 - Secondary circuits of ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Requirements § 183.440 Secondary circuits of ignition systems. (a) Each conductor in a secondary circuit of an ignition system must meet SAE Standard J557. (b) The connection of each ignition conductor to a spark plug...

  11. 33 CFR 183.440 - Secondary circuits of ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Requirements § 183.440 Secondary circuits of ignition systems. (a) Each conductor in a secondary circuit of an ignition system must meet SAE Standard J557. (b) The connection of each ignition conductor to a spark plug...

  12. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith; Marcotte, Ryan

    1992-01-01

    The purpose of this project is to develop a flight-ready apparatus of the microgravity ignition experiment for the GASCAN 2 program. The microgravity ignition experiment is designed to study how a microgravity environment affects the time to ignition of a sample of alpha-cellulose paper. A microgravity environment will result in a decrease in the heat transferred from the sample due to a lack of convection currents, which would decrease time to ignition. A lack of convection current would also cause the oxygen supply at the sample not to be renewed, which could delay or even prevent ignition. When this experiment is conducted aboard GASCAN 2, the dominant result of the lack of ignition will be determined. The experiment consists of four canisters containing four thermocouples and a sensor to detect ignition of the paper sample. This year the interior of the canister was redesigned and a mathematical model of the heat transfer around the sample was developed. This heat transfer model predicts an ignition time of approximately 5.5 seconds if the decrease of heat loss from the sample is the dominant factor of the lack of convection currents.

  13. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  14. Ignition of Combustible Dust Clouds by Strong Capacitive Electric Sparks of Short Discharge Times

    NASA Astrophysics Data System (ADS)

    Eckhoff, Rolf K.

    2017-10-01

    It has been known for more than half a century that the discharge times of capacitive electric sparks can influence the minimum ignition energies of dust clouds substantially. Experiments by various workers have shown that net electric-spark energies for igniting explosive dust clouds in air were reduced by a factor of the order of 100 when spark discharge times were increased from a few μs to 0.1-1 ms. Experiments have also shown that the disturbance of the dust cloud by the shock/blast wave emitted by "short" spark discharges is a likely reason for this. The disturbance increases with increasing spark energy. In this paper a hitherto unpublished comprehensive study of this problem is presented. The work was performed about 50 years ago, using sparks of comparatively high energies (strong sparks). Lycopodium was used as test dust. The experiments were conducted in a brass vessel of 1 L volume. A transient dust cloud was generated in the vessel by a blast of compressed air. Synchronization of appearance of dust cloud and spark discharge was obtained by breaking the spark gap down by the dust cloud itself. This may in fact also be one possible synchronization mechanism in accidental industrial dust explosions initiated by electrostatic sparks. The experimental results for various spark energies were expressed as the probability of ignition, based on 100 replicate experiments, as a function of the nominal dust concentration. All probabilities obtained were 0%

  15. A recoverable gas-cell diagnostic for the National Ignition Facility.

    PubMed

    Ratkiewicz, A; Berzak Hopkins, L; Bleuel, D L; Bernstein, L A; van Bibber, K; Cassata, W S; Goldblum, B L; Siem, S; Velsko, C A; Wiedeking, M; Yeamans, C B

    2016-11-01

    The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of nat Xe and discuss future work to study the strength of interactions between plasma and nuclei.

  16. Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus

    Treesearch

    S. McAllister; D. R. Weise

    2017-01-01

    An understanding of what variables affect the ignition of live wildland fuels is crucial to predicting crown fire spread, the most poorly understood type of wildland fire. Ignition tests were performed over the course of an entire year for ten species (three species in year one, seven in year two) to evaluate seasonal changes in flammability. Ignition delay and mass...

  17. Remote fire stack igniter. [with solenoid-controlled valve

    NASA Technical Reports Server (NTRS)

    Ray, W. L. (Inventor)

    1974-01-01

    An igniter is described mounted on a vent stack with an upper, flame cage near the top of the stack to ignite emissions from the stack. The igniter is a tube with a lower, open, flared end having a spark plug near the lower end and a solenoid-controlled valve which supplies propane fuel from a supply tank. Propane from the tank is supplied at the top under control of a second, solenoid-controlled valve. The valve controlling the lower supply is closed after ignition at the flame cage. The igniter is economical, practical, and highly reliable.

  18. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon

    USGS Publications Warehouse

    Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.

    2001-01-01

    Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.

  19. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 μm (˜10%) thicker targets and laser powers at or beyond facility limits.

  20. Implosion dynamics measurements at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used tomore » establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.« less

Top