Materials Discovery | Photovoltaic Research | NREL
and specialized analysis algorithms. The Center for Next Generation of Materials by Design (CNGMD) is , incorporating metastable materials into predictive design, and developing theory to guide materials synthesis design, accuracy and relevance, metastability, and synthesizability-to make computational materials
Village Science: A Resource Handbook for Rural Alaskan Teachers.
ERIC Educational Resources Information Center
Dick, Alan
A resource handbook for rural Alaskan teachers covers village science, to make basic science concepts relevant to the physical environment in villages. Material is intended for use as filler for weeks that come up short on science materials, to provide stimulation for students who cannot see the relevance of science in their lives, and to help…
CRIS Case Study Materials in Ethical Decision Making.
ERIC Educational Resources Information Center
Blanning, James R.
Designed for secondary-level classroom discussion, these materials contain nine, short case studies of ethical dilemmas. The cast studies focus mainly on incidents and issues relevant to high school students. Discussion questions for each case study require students to examine the case, discuss the issue, and make an ethical decision about how…
Acoustic Absorption in Porous Materials
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Johnston, James C.
2011-01-01
An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.
Ojibway Hockey CD ROM in the Making.
ERIC Educational Resources Information Center
Williams, Shirley I.
A shortage of instructional materials and activities is a continual problem for Native language courses, as is making the material relevant to students. The Native way of teaching and learning has always been to have fun. In response to these concerns, a group of language experts at Trent University (Ontario) are developing a CD-ROM for high…
Engineered Plants Make Potential Precursor to Raw Material for Plastics
Shanklin, John
2018-06-12
In a first step toward achieving industrial-scale green production, scientists from BNL and collaborators at Dow AgroSciences report engineering a plant that produces industrially relevant levels of chemicals that could potentially be used to make plastics.
Honors Anthropology and the Four Rs.
ERIC Educational Resources Information Center
Farrer, Claire R.
1990-01-01
Describes an honors introductory cultural anthropology course taught at California State University, Chico. Discusses the course design, how course information is made relevant and reinforced, and how students have partial responsibility for the course design. Discusses the use of science fiction books to make material relevant to students. (JS)
Books Offer Entry into Understanding Cultures.
ERIC Educational Resources Information Center
Van Ausdell, Barbara Wass
1994-01-01
Making classroom materials relevant to students is paramount for one Missouri high school English teacher. Since a relevant curriculum needs more than short stories and essays, she has incorporated books like Ngugi Wa Thiong'o's "Weep Not, Child," Kamala Markandaya's "Nectar in a Sieve," and Charles Dickens's "Tale of Two…
Exploring Nature through a New Lens
ERIC Educational Resources Information Center
Deaton, Cynthia; Hardin, Catherine
2014-01-01
One way to encourage students to interact with science content and materials is to make science relevant and meaningful. By focusing on the school yard as the context for science lessons and activities, teachers can incorporate students' interest in learning outdoors and help students make connections between science content discussed in…
ERIC Educational Resources Information Center
Matuk, Camillia F.; Linn, Marcia C.; Eylon, Bat-Sheva
2015-01-01
Teachers' involvement in curriculum design is essential for sustaining the relevance of technology-enhanced learning materials. Customizing--making small adjustments to tailor given materials to particular situations and settings--is one design activity in which busy teachers can feasibly engage. Research indicates that customizations based…
33 CFR 154.1075 - Appeal process.
Code of Federal Regulations, 2011 CFR
2011-07-01
... are not limited to, those listed in § 154.1016(b). After considering all relevant material presented... making his or her decision on reconsideration. (c) Within 10 days of the COTP's decision under paragraph...
33 CFR 154.1075 - Appeal process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... are not limited to, those listed in § 154.1016(b). After considering all relevant material presented... making his or her decision on reconsideration. (c) Within 10 days of the COTP's decision under paragraph...
Tolma, Eleni; John, Robert; Garner, Jane
2007-01-01
Food insecurity in the United States is a major public health issue. The main objective of this study was to evaluate the availability and quality of printed materials addressing food security targeted to special populations by the United States Department of Agriculture (USDA). Nutrition education resources addressing food security available from USDA websites were selected for analysis. Not applicable. The review team consisted of project staff (n = 6), two of who were fluent in Spanish. Selection criteria were established to identify the food-security materials, and a group of reviewers assessed the quality of each publication both quantitatively and qualitatively. A consensus meeting among the reviewers was held to make final determinations of the quality of the materials. The quantitative data analysis consisted of basic descriptive statistics. Among the 27 materials initially identified, 20 were either irrelevant or of low relevance to food security. Moreover, very few of them were intended for minority populations. The quality of most of the materials ranged from "average" to "good." Some of the major weaknesses include readability level, lack of cultural relevance, and inadequate coverage of food insecurity. Very few materials on food insecurity are of high quality. In the development of such materials, emphasis should be given to the readability level, content, and cultural relevance.
Teaching science for public understanding: Developing decision-making abilities
NASA Astrophysics Data System (ADS)
Siegel, Marcelle A.
One of the most important challenges educators have is teaching students how to make decisions about complex issues. In this study, methods designed to enhance students' decision-making skills and attitudes were investigated. An issue-oriented science curriculum was partly replaced with activities designed by the experimenter. The first objective of the study was to examine the effects of an instructional method to increase students' use of relevant scientific evidence in their decisions. The second goal of the research was to test whether the instructional activities could promote students' beliefs that science is relevant to them, because attitudes have been shown to affect students' performance and persistence (Schommer, 1994). Third, the study was designed to determine whether the instructional activities would affect students' beliefs that their intelligence is not fixed but can grow; this question is based on Dweck and Leggett's (1988) definition of two orientations toward intelligence---entity theorists and incremental theorists (Dweck & Leggett, 1988; Dweck & Henderson, 1989). Two urban high-school classrooms participated in this study. Tenth graders examined scientific materials about current issues involving technology and society. Instructional materials on decision making were prepared for one class of students to enhance their regular issue-oriented course, Science and Sustainability. A computer program, called Convince Me (Schank, Ranney & Hoadley, 1996), provided scaffolding for making an evidence-based decision. The experimental group's activities also included pen-and-paper lessons on decision making and the effect of experience on the structure of the brain. The control class continued to engage in Science and Sustainability decision-making activities during the time the experimental class completed the treatment. The control group did not show significant improvement on decision-making tasks, and the experimental group showed marginally significant gains (p = .06) according to the Rasch analysis. A measure of students' understanding of coherent argumentation was correlated with higher decision posttest scores. Over time, both classes significantly regarded science as being more relevant to everyday life. Students' attitudes about ability showed insignificant changes.
Strachan, Patricia H.; de Laat, Sonya; Carroll, Sandra L.; Schwartz, Lisa; Vaandering, Katie; Toor, Gurjit K.; Arthur, Heather M.
2012-01-01
Background Implantable cardioverter defibrillators (ICDs) are increasingly offered to patients for primary prevention of sudden cardiac death. Candidates for ICD receive ICD-related patient education material when they make decisions to consent or decline a primary prevention ICD. Printed patient education material directed at ICD candidates has not been the focus of direct appraisal. Objective We evaluated the readability and content of ICD-related print education materials made available to patients who were enrolled in a study involving patient decision making for ICD from 3 ICD sites in southern Ontario, Canada. Methods All ICD print materials referred to during interviews and/or that were available in ICD site waiting rooms were collected for analysis. Readability testing was conducted using the SMOG (“simple measurement of gobbledygook”) and Fry methods. The material was evaluated according to selected plain-language criteria, thematic content analysis, and rhetoric analysis. Results Twenty-one print materials were identified and analyzed. Documents were authored by device manufacturers, tertiary care hospitals, and cardiac support organizations. Although many documents adhered to plain-language recommendations, text-reading levels were higher than recommended. Twelve major content themes were identified. Content focused heavily on the positive aspects of living with the device to the exclusion of other possible information that could be relevant to the decisions that patients made. Conclusions Print-based patient education materials for ICD candidates are geared to a highly literate population. The focus on positive information to the exclusion of potentially negative aspects of the ICD, or alternatives to accepting 1, could influence and/or confuse patients about the purpose and implications of this medical device. Development of print materials is indicated that includes information about possible problems and that would be relevant for the multicultural and debilitated population who may require ICDs. The findings are highly relevant for nurses who care for primary prevention ICD candidates. PMID:21926915
21 CFR 111.140 - Under this subpart F, what records must you make and keep?
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Evaluation of whether or not the deviation or unanticipated occurrence has resulted in or could lead to a..., and of each qualified individual who provides information relevant to that material review and...
Some Aspects of Enzymatic Browning in Apples
ERIC Educational Resources Information Center
Liffen, C. L.; Cleeve, H. N.
1975-01-01
Describes material modified from the Nuffield advanced chemistry course to make it meaningful and relevant to pupils in the middle school. Discusses a series of simple experiments on apple browning and summarizes the browning process and its control. (Author/GS)
Coman, Dora; Coman, Alin; Hirst, William
2013-01-01
Medical decisions will often entail a broad search for relevant information. No sources alone may offer a complete picture, and many may be selective in their presentation. This selectivity may induce forgetting for previously learned material, thereby adversely affecting medical decision-making. In the study phase of two experiments, participants learned information about a fictitious disease and advantages and disadvantages of four treatment options. In the subsequent practice phase, they read a pamphlet selectively presenting either relevant (Experiment 1) or irrelevant (Experiment 2) advantages or disadvantages. A final cued recall followed and, in Experiment 2, a decision as to the best treatment for a patient. Not only did reading the pamphlet induce forgetting for related and unmentioned information, the induced forgetting adversely affected decision-making. The research provides a cautionary note about the risks of searching through selectively presented information when making a medical decision. PMID:23785320
ERIC Educational Resources Information Center
Chisholm, Anita; And Others
This guide was developed to assist American Indian and Canadian Native educators in developing cultural curriculum materials for use in the classroom. The purpose of developing authentic cultural materials is to enhance the educational experience of Indian students and White students. The guide covers the following topics: (1) cultural curriculum…
Emittance Measurements Relevant to a 250 W(sub t) Class RTPV Generator for Space Exploration
NASA Technical Reports Server (NTRS)
Wolford, Dave; Chubb, Donald; Clark, Eric; Pal, Anna Maria; Scheiman, Dave; Colon, Jack
2009-01-01
A proposed 250 Wt Radioisotope Thermophotovoltaic (RTPV) power system for utilization in lunar exploration and the subsequent exploration of Mars is described. Details of emitter selection are outlined for use in a maintenance free power supply that is productive over a 14-year mission life. Thorough knowledge of a material s spectral emittance is essential for accurate modeling of the RTPV system. While sometimes treated as a surface effect, emittance involves radiation from within a material. This creates a complex thermal gradient which is a combination of conductive and radiative heat transfer mechanisms. Emittance data available in the literature is a valuable resource but it is particular to the test sample s physical characteristics and the test environment. Considerations for making spectral emittance measurements relevant to RTPV development are discussed. Measured spectral emittance data of refractory emitter materials is given. Planned measurement system modifications to improve relevance to the current project are presented.
Antes, Alison L.; Thiel, Chase E.; Martin, Laura E.; Stenmark, Cheryl K.; Connelly, Shane; Devenport, Lynn D.; Mumford, Michael D.
2015-01-01
This study examined the role of reflection on personal cases for making ethical decisions with regard to new ethical problems. Participants assumed the position of a business manager in a hypothetical organization and solved ethical problems that might be encountered. Prior to making a decision for the business problems, participants reflected on a relevant ethical experience. The findings revealed that application of material garnered from reflection on a personal experience was associated with decisions of higher ethicality. However, whether the case was viewed as positive or negative, and whether the outcomes, process, or outcomes and processes embedded in the experience were examined, influenced the application of case material to the new problem. As expected, examining positive experiences and the processes involved in those positive experiences resulted in greater application of case material to new problems. Future directions and implications for understanding ethical decision-making are discussed. PMID:26257506
10 CFR 300.11 - Independent verification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... verifiers, and has been empowered to make decisions relevant to the provision of a verification statement... methods; and (v) Risk assessment and methodologies and materiality analysis procedures outlined by other... Accreditation Board program for Environmental Management System auditors (ANSI-RAB-EMS); Board of Environmental...
10 CFR 300.11 - Independent verification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... verifiers, and has been empowered to make decisions relevant to the provision of a verification statement... methods; and (v) Risk assessment and methodologies and materiality analysis procedures outlined by other... Accreditation Board program for Environmental Management System auditors (ANSI-RAB-EMS); Board of Environmental...
Making Technology Work for Your Students.
ERIC Educational Resources Information Center
Trosko, Nancy
1997-01-01
Discusses benefits of using laser disc technology in the elementary school classroom including increased student enthusiasm and subject relevance, efficient test preparation, and comprehensible materials for English-challenged students. Notes the importance of researching available resources and easing into use when integrating technology into the…
One issue for community groups, local and regional planners, and politicians, is that they require relevant information to develop programs and initiatives for incorporating sustainability principles into their physical infrastructure, operations, and decision-making processes. T...
Ecology, Pollution, Environment.
ERIC Educational Resources Information Center
Turk, Amos; And Others
Elements of environmental science and how the science is related to the more traditionally established disciplines are explored in this supplementary text. Two aspects of environmental science are considered--subject matter and decision making. Relevant background material in the physical sciences is presented under the following topics: ecology,…
DOT National Transportation Integrated Search
1997-01-16
An FAA Notice gives temporary direction or makes one-time announcements. Notices : remain in effect for 12 months or less. They are self-canceling and my not be : revised or extended. This notice provided guidance material relevant to digital : fligh...
ERIC Educational Resources Information Center
Lustbader, Sara
1995-01-01
Describes a program for teaching about tropical rainforests in a concrete way using what's outside the door. This activity uses an eastern deciduous hardwood forest as an example. Step-by-step instructions include introductory activities, plus descriptions of stations in the forest to be visited. Resources include books, audio-visual materials,…
Green material selection for sustainability: A hybrid MCDM approach.
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection.
Green material selection for sustainability: A hybrid MCDM approach
Zhang, Honghao; Peng, Yong; Tian, Guangdong; Wang, Danqi; Xie, Pengpeng
2017-01-01
Green material selection is a crucial step for the material industry to comprehensively improve material properties and promote sustainable development. However, because of the subjectivity and conflicting evaluation criteria in its process, green material selection, as a multi-criteria decision making (MCDM) problem, has been a widespread concern to the relevant experts. Thus, this study proposes a hybrid MCDM approach that combines decision making and evaluation laboratory (DEMATEL), analytical network process (ANP), grey relational analysis (GRA) and technique for order performance by similarity to ideal solution (TOPSIS) to select the optimal green material for sustainability based on the product's needs. A nonlinear programming model with constraints was proposed to obtain the integrated closeness index. Subsequently, an empirical application of rubbish bins was used to illustrate the proposed method. In addition, a sensitivity analysis and a comparison with existing methods were employed to validate the accuracy and stability of the obtained final results. We found that this method provides a more accurate and effective decision support tool for alternative evaluation or strategy selection. PMID:28498864
The current status of NORM/TENORM industries and establishment of regulatory framework in Korea.
Chang, Byung-Uck; Kim, Yongjae; Oh, Jang-Jin
2011-07-01
During the last several years, a nationwide survey on naturally occurring radioactive material (NORM)/technologically enhanced naturally occurring radioactive materials (TENORM) industries has been conducted. Because of the rapid economic growth in Korea, the huge amount of raw materials, including NORM have been consumed in various industrial areas, and some representative TENORM industries exist in Korea. Recently, the Korean government decided to establish a regulatory framework for natural radiation, including NORM/TENORM and is making efforts to introduce relevant publically consent regulations on the basis of international safety standards.
ERIC Educational Resources Information Center
McHoul, Alec; Rapley, Mark
2002-01-01
Subjects Sack's (1992) conjecture about there being "omni-relevant devices" in specific kinds of conversation to empirical analysis. Examines a data fragment taken from a corpus of materials in which "resettled" mental patients are undergoing "quality of life assessments." (Author/VWL)
ERIC Educational Resources Information Center
Bear, Andrew
1969-01-01
Despite an excess of materials available today on classroom approaches to the mass media, few English teachers have either the training or experience to determine which studies are relevant and worthwhile or how to utilize them in the classroom. A survey of some of this literature, therefore, can help interested teachers make selections…
English, Tammy; Carstensen, Laura L
2015-06-01
Research and theory suggest that emotional goals are increasingly prioritized with age. Related empirical work has shown that, compared with younger adults, older adults attend to and remember positive information more than negative information. This age-related positivity effect has been eliminated in experiments that have explicitly demanded processing of both positive and negative information. In the present study, we explored whether a reduction of the preference for positive information over negative information appears when the material being reviewed holds personal relevance for the individual. Older participants whose health varied from poor to very good reviewed written material prior to making decisions about health related and non-health-related issues. As predicted, older adults in relatively poor health (compared with those in relatively good health) showed less positivity in review of information while making health-related decisions. In contrast, positivity emerged regardless of health status for decisions that were unrelated to health. Across decision contexts, those individuals who focused more on positive information than negative information reported better postdecisional mood and greater decision satisfaction. Results are consistent with the theoretical argument that the age-related positivity effect reflects goal-directed cognitive processing and, furthermore, suggests that personal relevance and contextual factors determine whether positivity emerges. (c) 2015 APA, all rights reserved.
English, Tammy; Carstensen, Laura L.
2015-01-01
Research and theory suggest that emotional goals are increasingly prioritized with age. Related empirical work has shown that, compared to younger adults, older adults attend to and remember positive information more than negative information. This age-related positivity effect has been eliminated in experiments that have explicitly demanded processing of both positive and negative information. In the present study, we explored whether a reduction of the preference for positive information over negative information appears when the material being reviewed holds personal relevance for the individual. Older participants whose health varied from poor to very good reviewed written material prior to making decisions about health related and non-health related issues. As predicted, older adults in relatively poor health (compared with those in relatively good health) showed less positivity in review of information while making health-related decisions. In contrast, positivity emerged regardless of health status for decisions that were unrelated to health. Across decision contexts, those individuals who focused more on positive information than negative information reported better post-decisional mood and greater decision satisfaction. Results are consistent with the theoretical argument that the age-related positivity effect reflects goal-directed cognitive processing and, furthermore, suggests that personal relevance and contextual factors determine whether or not positivity emerges. PMID:25894484
ERIC Educational Resources Information Center
Hurtt, Barbekka; Bryant, Jennifer
2016-01-01
We describe changes in an undergraduate anatomy and physiology (A&P) curriculum designed to address educational goals at a private, comprehensive university. Educational goals included making course material more relevant to students' future career interests, exposing students to professionals in their careers of interest, and incorporating…
Evaluation of Autism-Related Health Information on the Web
ERIC Educational Resources Information Center
Grant, Nicole; Rodger, Sylvia; Hoffmann, Tammy
2015-01-01
Background: The Internet is a frequently accessed source of information for parents of a child with autism. To help parents make informed decisions about treatment options, websites should contain accurate information. This study aimed to evaluate the quality of information in a sample of autism-relevant websites. Materials and Methods:…
NASA Astrophysics Data System (ADS)
Anbalagan, Kousika; Thomas, Tiju
2018-05-01
Interatomic potentials for complex materials (like ceramic systems) are important for realistic molecular dynamics (MD) simulations. Such simulations are relevant for understanding equilibrium, transport and dynamical properties of materials, especially in the nanoregime. Here we derive a hybrid interatomic potential (based on bond valence (BV) derived Morse and Coulomb terms), for modeling a complex ceramic, barium tantalum oxynitride (BaTaO2N). This material has been chosen due to its relevance for capacitive and photoactive applications. However, the material presents processing challenges such as the emergence of non-stoichiometric phases during processing, demonstrating complex processing-property correlations. This makes MD investigations of this material both scientifically and technologically relevant. The BV based hybrid potential presented here has been used for simulating sintering of BaTaO2N nanoparticles ( 2-20 nm) under different conditions (using the relevant canonical ensemble). Notably, we show that sintering of particles of diameter < 10 nm requires no external sintering aids such as the addition of barium sources (since stoichiometry is preserved during heat treatment in this size regime). Also, we observe that sintering of particles > 10 nm in size results in the formation of a cluster of tantalum and oxygen atoms at the interface of the BaTaO2N particles. This is in agreement with the experimental reports. The results presented here suggest that the potential proposed can be used to explore dynamical properties of BaTaO2N and related systems. This work will also open avenues for development of nanoscience-enabled aid-free sintering approaches to this and related materials.
Openness, Dynamic Specialization, and the Disaggregated Future of Higher Education
ERIC Educational Resources Information Center
Wiley, David; Hilton, John, III
2009-01-01
Openness is a fundamental value underlying significant changes in society and is a prerequisite to changes institutions of higher education need to make in order to remain relevant to the society in which they exist. There are a number of ways institutions can be more open, including programs of open sharing of educational materials. Individual…
39 CFR 3001.20a - Limited participation by persons not parties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 3001.35, and within 15 days after the release of an intermediate decision, or such other time as may be...; however, limited participators, particularly those making contentions under 39 U.S.C. 3622(b)(4), are advised that failure to provide relevant and material information in support of their claims will be taken...
[Perspectives on patient competence in psychiatry: cognitive functions, emotions and values].
Ruissen, A; Meynen, G; Widdershoven, G A M
2011-01-01
Informed consent, a central concept in the doctor-patient relationship, is only valid if it is given by a competent patient. To review the literature on competence or decision-making capacity in psychiatry. We studied the international literature and relevant Dutch material such as health acts and medical guidelines. We found a consensus in the literature about the assessment criteria and the basic principles, but we did not find any consensus about the exact definition of competence. We review a number of perspectives on competence. The conceptualisations of competence, particularly in the field of psychiatry, are still being debated. The best known clinical tool to assess patients’ capacities to make treatment decisions is the MacArthur Competence Assessment Tool (MacCAT). There are three perspectives on competence: a cognitive perspective, a perspective concerning emotions and a perspective relating to values. Further research is needed in order to make the conceptual debate on competence relevant to psychiatric practice.
Silk-polypyrrole biocompatible actuator performance under biologically relevant conditions
NASA Astrophysics Data System (ADS)
Hagler, Jo'elen; Peterson, Ben; Murphy, Amanda; Leger, Janelle
Biocompatible actuators that are capable of controlled movement and can function under biologically relevant conditions are of significant interest in biomedical fields. Previously, we have demonstrated that a composite material of silk biopolymer and the conducting polymer polypyrrole (PPy) can be formed into a bilayer device that can bend under applied voltage. Further, these silk-PPy composites can generate forces comparable to human muscle (>0.1 MPa) making them ideal candidates for interfacing with biological tissues. Here silk-PPy composite films are tested for performance under biologically relevant conditions including exposure to a complex protein serum and biologically relevant temperatures. Free-end bending actuation performance, current response, force generation and, mass degradation were investigated . Preliminary results show that when exposed to proteins and biologically relevant temperatures, these silk-PPy composites show minimal degradation and are able to generate forces and conduct currents comparable to devices tested under standard conditions. NSF.
Holt, Cheryl L; Wynn, Theresa A; Southward, Penny; Litaker, Mark S; Jeames, Sanford; Schulz, Emily
2009-09-01
One way of developing culturally relevant health communication in the African American church setting is to develop spiritually based interventions, in which the health message is framed by relevant spiritual themes and scripture. In this article we describe the development of a community health advisor(CHA)-led intervention aimed at increasing informed decision making (IDM) for prostate cancer screening among church-attending African American men. Full-color print educational booklets were developed and pilot tested with extensive community participation of church-attending African American men age-eligible for screening. The intervention development phase consisted of ideas solicited from an advisory panel of African American men (N = 10), who identified core content and developed the spiritual themes. In the intervention pilot testing phase, prototypes of the intervention materials were pilot tested for graphic appeal in two focus groups (N = 16), and content was tested for acceptability and comprehension using individual cognitive response interviews (N = 10). Recommendations were made for project branding and logo and for use of graphics of real people in the educational materials. Significant feedback was obtained from the focus groups, on the graphics, colors, fonts, continuity, titles, and booklet size/shape. The importance of working closely with the community when developing interventions is discussed, as well as the importance of pilot testing of educational materials.
Radiolytic and Thermal Processes Relevant to Dry Storage of Spent Nuclear Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marschman, Steven C.; Madey,Theodore E.; Haustein, Peter E.
2000-06-01
The purpose of this project is to deliver pertinent information that can be used to make rational decisions about the safety and treatment issues associated with dry storage of spent nuclear fuel materials. In particular, we will establish an understanding of: (1) water interactions with failed-fuel rods and metal-oxide materials; (2) the role of thermal processes and radiolysis (solid-state and interfacial) in the generation of potentially explosive mixtures of gaseous H2 and O2; and (3) the potential role of radiation-assisted corrosion during fuel rod storage.
What Major Search Engines Like Google, Yahoo and Bing Need to Know about Teachers in the UK?
ERIC Educational Resources Information Center
Seyedarabi, Faezeh
2014-01-01
This article briefly outlines the current major search engines' approach to teachers' web searching. The aim of this article is to make Web searching easier for teachers when searching for relevant online teaching materials, in general, and UK teacher practitioners at primary, secondary and post-compulsory levels, in particular. Therefore, major…
Night Gallery: An Innovative Multimedia Strategy for Delivering a General Microbiology Lecture
ERIC Educational Resources Information Center
Dahl, John; Mixter, Phil
2008-01-01
In delivering a core science course to pre-health-related majors, the authors sought ways to engage students, make material relevant to life-long learning, and present it in a memorable way. Their goals were to present scientific content fused with history, ethics, public policy, and art in such a way that the students would be provided a unique…
Making It Applicable: Using Introspective Essays in Abnormal Psychology Classes
ERIC Educational Resources Information Center
Nelson, W. M., III; Stukenberg, Karl W.; Laffoon, Anthony T.
2014-01-01
In the quest for new and effective teaching methods, there is little doubt that activities and lessons which bring course material to students in an applied way that is relevant and pertinent to their lives and interests help to foster more effective learning and retention. A prominent pedagogical tool for this is the use of reflective writing.…
Oloketa Tingting Fo Apem Education Long Solomon Islands: Issues in Solomon Islands Education
ERIC Educational Resources Information Center
Alcorn, Noeline
2010-01-01
This book makes available to a wider audience for the first time material based on fieldwork carried out by the Solomon Island researchers in their own country. The findings will have vital relevance to policy makers, teachers and students. Over the past four years the School of Education, Solomon Islands College of Higher Education and the…
Ground Water Studies. Earth Science Module for Grades 7-9.
ERIC Educational Resources Information Center
Baldwin, Roland L.; And Others
Earth science education needs to be relevant to students in order to make them aware of the serious problems facing the planet. In an effort to insure that this need is meet, the Denver Earth Science Project has set as one of their goals the development of new earth science curriculum materials for teachers. This document provides a collection of…
Making good use of online case study materials.
Keefer, Matthew Wilks
2005-07-01
Web-based access to engaging instructional materials for SEE instruction represents an increasingly viable and attractive opportunity for educators. This paper will review research findings that demonstrate important differences in more experienced and novice ethical responses to engaging online materials, including authentic cases, codes, and commentaries. Results demonstrate that experienced ethical thinkers are more likely than novices to appeal to middle level principles that identify professional role-specific obligations (RSO); to make greater use of professional knowledge in order to recognize moral issues and relevant facts; and to employ more 'contextually sensitive' reasoning strategies when crafting resolutions to moral problems--e.g., identify alternative moral issues, assess the moral implications of actions, and provide alternative practical resolutions to conflicts. These findings suggest that when effectively integrated into SEE courses, authentic instructional materials have the potential to effectively challenge students and enhance student learning. However, there is evidence that the uses and benefits of these materials are not well understood. In the second part of this paper, five research-based instructional principles will be identified and discussed that can help SEE instructors better understand how to effectively integrate these materials into their courses.
Cachat, Jonathan; Bandrowski, Anita; Grethe, Jeffery S; Gupta, Amarnath; Astakhov, Vadim; Imam, Fahim; Larson, Stephen D; Martone, Maryann E
2012-01-01
The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.
Designing persuasive health materials using processing fluency: a literature review.
Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro
2017-06-08
Health materials to promote health behaviors should be readable and generate favorable evaluations of the message. Processing fluency (the subjective experience of ease with which people process information) has been increasingly studied over the past decade. In this review, we explore effects and instantiations of processing fluency and discuss the implications for designing effective health materials. We searched seven online databases using "processing fluency" as the key word. In addition, we gathered relevant publications using reference snowballing. We included published records that were written in English and applicable to the design of health materials. We found 40 articles that were appropriate for inclusion. Various instantiations of fluency have a uniform effect on human judgment: fluently processed stimuli generate positive judgments (e.g., liking, confidence). Processing fluency is used to predict the effort needed for a given task; accordingly, it has an impact on willingness to undertake the task. Physical perceptual, lexical, syntactic, phonological, retrieval, and imagery fluency were found to be particularly relevant to the design of health materials. Health-care professionals should consider the use of a perceptually fluent design, plain language, numeracy with an appropriate degree of precision, a limited number of key points, and concrete descriptions that make recipients imagine healthy behavior. Such fluently processed materials that are easy to read and understand have enhanced perspicuity and persuasiveness.
ERIC Educational Resources Information Center
Ahmad, Iftikhar
2017-01-01
American and global history curriculum frameworks for high schools across the 50 states generally present the topic of the Cold War from the Western political perspective and contain material about the impact of the US-Soviet ideological rivalry on American society. This article argues that since the Cold War impacted the lives of people in the…
ERIC Educational Resources Information Center
Keddell, Emily
2011-01-01
Providing engaging, relevant, and motivating courses to teach students about interpersonal social work theories is an ongoing challenge. The educator's problem is to provide an environment in which students engage with theory in a way that enables them to apply it in practice situations and reflect critically on the ways theories are produced and…
NASA Astrophysics Data System (ADS)
Hull, Anthony B.; Westerhoff, Thomas
2014-06-01
For competed missions, payload costs are often the discriminate of whether or not outstanding science can be selected to fly. Optical Telescope Assemblies (OTAs) encompass a significant fraction of the payload cost, and mirror aperture and stability are usually are key to the science merit. The selection of the primary mirror approach drives architecture decisions for the rest of the OTA and even payload. We look at the ways OTA architecture is affected by the PM selection, and specifically at the benefits of selecting a low expansion material. We will also review recent advances in ZERODUR® fabrication which make this low-expansion material relevant in situations where affordable, lightweight mirrors can enable the apertures needed for science merit. Extreme Lightweight ZERODUR® Mirrors (ELZM) are available in apertures from 0.3m to over 4m. SCHOTT has recently demonstrated a relevant 1.2m ELZM substrate.
Photopolymer based VPHGs: from materials to sky results
NASA Astrophysics Data System (ADS)
Zanutta, A.; Orselli, E.; Fäcke, T.; Bianco, A.
2016-07-01
Volume Phase Holographic Gratings cover a relevant position as transmission dispersing elements in astronomical spectrographs and each astronomical observation could take advantage of specific dispersive elements with features tailored for achieving the best performances. The design and manufacturing of high efficiency and reliable VPHGs require photosensitive materials where it is possible to control both the refractive index modulation and the film thickness. By means of Bayfol® HX photopolymers, we designed and manufactured six VPHGs for astronomical instrumentation in a GRISM configuration. We demonstrated how photopolymers are reliable holographic materials for making astronomical VPHGs with performances comparable to those provided by VPHGs based on Dichromated Gelatins (DCGs), but with a much simpler production process.
Organization aesthetics in nursing homes.
Hujala, Anneli; Rissanen, Sari
2011-05-01
The aim of this study was to make visible the material dimensions of nursing management. Management theories have mainly ignored the material dimensions, namely the physical spaces in which management actually takes place as well as the physical bodies of organization members. The perspective of organization aesthetics enhances our understanding of the role of materiality in nursing management. The data were collected in 2009 using observation and interviews in eight nursing homes. Qualitative content analysis with critical interpretations was used. Three main issues of organizational aesthetics related to nursing management were identified: (1) the functionality of working spaces and equipment; (2) the relevance of 'organizational' space; and (3) the emotional-aesthetic dimension of daily work. Materiality is closely related to management topics, such as decision-making, values and identity formation of organizational members. Aesthetic dimensions of care are constructed by management practices which, in their turn, influence the nature of management. Implications for nursing management Nurse managers need to be aware of the unintended and unnoticed consequences of materiality and aesthetics. Space and body issues may have considerable effects, for example, on the identity of care workers and on the attractiveness of the care branch. © 2011 The Authors. Journal compilation © 2011 Blackwell Publishing Ltd.
A polymer dataset for accelerated property prediction and design.
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
NASA Astrophysics Data System (ADS)
Adhikari, Pashupati Raj
Materials selection processes have been the most important aspects in product design and development. Knowledge-based system (KBS) and some of the methodologies used in the materials selection for the design of aircraft cabin metallic structures are discussed. Overall aircraft weight reduction means substantially less fuel consumption. Part of the solution to this problem is to find a way to reduce overall weight of metallic structures inside the cabin. Among various methodologies of materials selection using Multi Criterion Decision Making (MCDM) techniques, a few of them are demonstrated with examples and the results are compared with those obtained using Ashby's approach in materials selection. Pre-defined constraint values, mainly mechanical properties, are employed as relevant attributes in the process. Aluminum alloys with high strength-to-weight ratio have been second-to-none in most of the aircraft parts manufacturing. Magnesium alloys that are much lighter in weight as alternatives to the Al-alloys currently in use in the structures are tested using the methodologies and ranked results are compared. Each material attribute considered in the design are categorized as benefit and non-benefit attribute. Using Ashby's approach, material indices that are required to be maximized for an optimum performance are determined, and materials are ranked based on the average of consolidated indices ranking. Ranking results are compared for any disparity among the methodologies.
Flowable Resin Composites: A Systematic Review and Clinical Considerations
Rodrigues, Jean C.
2015-01-01
Background Little is known about flowable composite materials. Most literature mentions conventional composite materials at large, giving minimal emphasis to flowables in particular. This paper briefly gives an in depth insight to the multiple facets of this versatile material. Aim To exclusively review the most salient features of flowable composite materials in comparison to conventional composites and to give clinicians a detailed understanding of the advantages, drawbacks, indications and contraindications based on composition and physical/mechanical properties. Methodology Data Sources: A thorough literature search from the year 1996 up to January 2015 was done on PubMed Central, The Cochrane Library, Science Direct, Wiley Online Library, and Google Scholar. Grey literature (pending patents, technical reports etc.) was also screened. The search terms used were “dental flowable resin composites”. Search Strategy After omitting the duplicates/repetitions, a total of 491 full text articles were assessed. As including all articles were out of the scope of this paper. Only relevant articles that fulfilled the reviewer’s objectives {mentioning indications, contraindications, applications, assessment of physical/mechanical/biological properties (in vitro/ in vivo /ex vivo)} were considered. A total of 92 full text articles were selected. Conclusion Flowable composites exhibit a variable composition and consequently variable mechanical/ physical properties. Clinicians must be aware of this aspect to make a proper material selection based on specific properties and indications of each material relevant to a particular clinical situation. PMID:26266238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radojcic, Riko; Nowak, Matt; Nakamoto, Mark
The status of the development of a Design-for-Stress simulation flow that captures the stress effects in packaged 3D-stacked Si products like integrated circuits (ICs) using advanced via-middle Through Si Via technology is outlined. The next set of challenges required to proliferate the methodology and to deploy it for making and dispositioning real Si product decisions are described here. These include the adoption and support of a Process Design Kit (PDK) that includes the relevant material properties, the development of stress simulation methodologies that operate at higher levels of abstraction in a design flow, and the development and adoption of suitablemore » models required to make real product reliability decisions.« less
Earth observations and global change decision making: A special bibliography, 1991
NASA Technical Reports Server (NTRS)
1991-01-01
The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.
Introduction to cognitive processes of expert pilots.
Adams, R J; Ericsson, A E
2000-10-01
This report addresses the historical problem that a very high percentage of accidents have been classified as involving "pilot error." Through extensive research since 1977, the Federal Aviation Administration determined that the predominant underlying cause of these types of accidents involved decisional problems or cognitive information processing. To attack these problems, Aeronautical Decision Making (ADM) training materials were developed and tested for ten years. Since the publication of the ADM training manuals in 1987, significant reductions in human performance error (HPE) accidents have been documented both in the U.S. and world wide. However, shortcomings have been observed in the use of these materials for recurrency training and in their relevance to more experienced pilots. The following discussion defines the differences between expert and novice decision makers from a cognitive information processing perspective, correlates the development of expert pilot cognitive processes with training and experience, and reviews accident scenarios which exemplify those processes. This introductory material is a necessary prerequisite to an understanding of how to formulate expert pilot decision making training innovations; and, to continue the record of improved safety through ADM training.
Haluza, Daniela; Schwab, Markus; Simic, Stana; Cervinka, Renate; Moshammer, Hanns
2015-11-09
Individual skin health attitudes are influenced by various factors, including public education campaigns, mass media, family, and friends. Evidence-based, educative information materials assist communication and decision-making in doctor-patient interactions. The present study aims at assessing the prevailing use of skin health information material and sources and their impact on skin health knowledge, motives to tan, and sun protection. We conducted a questionnaire survey among a representative sample of Austrian residents. Print media and television were perceived as the two most relevant sources for skin health information, whereas the source physician was ranked third. Picking the information source physician increased participants' skin health knowledge (p = 0.025) and sun-protective behavior (p < 0.001). The study results highlight the demand for targeted health messages to attain lifestyle changes towards photo-protective habits. Providing resources that encourage pro-active counseling in every-day doctor-patient communication could increase skin health knowledge and sun-protective behavior, and thus, curb the rise in skin cancer incidence rates.
ERIC Educational Resources Information Center
Jeffrey, Bob
2008-01-01
Making learning relevant involves many aspects of teaching such as attention to levels of maturity, individual inclinations, emotional, physical, aesthetic and cognitive activity and group dynamics. However, making learning relevant is not only a teacher led activity, for learners make activities relevant by the identification of connections with…
NASA Astrophysics Data System (ADS)
Wilson, B. D.; McGibbney, L. J.; Mattmann, C. A.; Ramirez, P.; Joyce, M.; Whitehall, K. D.
2015-12-01
Quantifying scientific relevancy is of increasing importance to NASA and the research community. Scientific relevancy may be defined by mapping the impacts of a particular NASA mission, instrument, and/or retrieved variables to disciplines such as climate predictions, natural hazards detection and mitigation processes, education, and scientific discoveries. Related to relevancy, is the ability to expose data with similar attributes. This in turn depends upon the ability for us to extract latent, implicit document features from scientific data and resources and make them explicit, accessible and useable for search activities amongst others. This paper presents MemexGATE; a server side application, command line interface and computing environment for running large scale metadata extraction, general architecture text engineering, document classification and indexing tasks over document resources such as social media streams, scientific literature archives, legal documentation, etc. This work builds on existing experiences using MemexGATE (funded, developed and validated through the DARPA Memex Progrjam PI Mattmann) for extracting and leveraging latent content features from document resources within the Materials Research domain. We extend the software functionality capability to the domain of scientific literature with emphasis on the expansion of gazetteer lists, named entity rules, natural language construct labeling (e.g. synonym, antonym, hyponym, etc.) efforts to enable extraction of latent content features from data hosted by wide variety of scientific literature vendors (AGU Meeting Abstract Database, Springer, Wiley Online, Elsevier, etc.) hosting earth science literature. Such literature makes both implicit and explicit references to NASA datasets and relationships between such concepts stored across EOSDIS DAAC's hence we envisage that a significant part of this effort will also include development and understanding of relevancy signals which can ultimately be utilized for improved search and relevancy ranking across scientific literature.
A research program to reduce interior noise in general aviation airplanes
NASA Technical Reports Server (NTRS)
Peschier, T. D.; Andrews, D.; Henderson, T.
1977-01-01
The relevance of KU-FRL test results in predicting (theoretically or semi-empirically) interior noise levels in general aviation aircraft was studied. As a result of this study, it was decided to make a few additions to the program. These additions are: (1) to use three (instead of two) noise sources in the plane wave tube to evaluate the influence of excitation spectrum on panel response, (2) to use theoretical and experimental data obtained in the course of the project to develop more efficient noise reduction materials (or procedures to apply these), or to develop guidelines for the design of such materials for procedures, and (3) to use nonstructural materials in the collection of specimens to be tested in the KU-FRL plane wave tube.
The e-MapScholar project—an example of interoperability in GIScience education
NASA Astrophysics Data System (ADS)
Purves, R. S.; Medyckyj-Scott, D. J.; Mackaness, W. A.
2005-03-01
The proliferation of the use of digital spatial data in learning and teaching provides a set of opportunities and challenges for the development of e-learning materials suitable for use by a broad spectrum of disciplines in Higher Education. Effective e-learning materials must both provide engaging materials with which the learner can interact and be relevant to the learners' disciplinary and background knowledge. Interoperability aims to allow sharing of data and materials through the use of common agreements and specifications. Shared learning materials can take advantage of interoperable components to provide customisable components, and must consider issues in sharing data across institutional borders. The e-MapScholar project delivers teaching materials related to spatial data, which are customisable with respect to both context and location. Issues in the provision of such interoperable materials are discussed, including suitable levels of granularity of materials, the provision of tools to facilitate customisation and mechanisms to deliver multiple data sets and the metadata issues related to such materials. The examples shown make extensive use of the OpenGIS consortium specifications in the delivery of spatial data.
Rubber-like materials derived from biosourced phenolic resins
NASA Astrophysics Data System (ADS)
Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.
2017-07-01
The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.
A polymer dataset for accelerated property prediction and design
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; ...
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate targetmore » of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. As a result, it will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.« less
Towards clinically translatable in vivo nanodiagnostics
NASA Astrophysics Data System (ADS)
Park, Seung-Min; Aalipour, Amin; Vermesh, Ophir; Yu, Jung Ho; Gambhir, Sanjiv S.
2017-05-01
Nanodiagnostics as a field makes use of fundamental advances in nanobiotechnology to diagnose, characterize and manage disease at the molecular scale. As these strategies move closer to routine clinical use, a proper understanding of different imaging modalities, relevant biological systems and physical properties governing nanoscale interactions is necessary to rationally engineer next-generation bionanomaterials. In this Review, we analyse the background physics of several clinically relevant imaging modalities and their associated sensitivity and specificity, provide an overview of the materials currently used for in vivo nanodiagnostics, and assess the progress made towards clinical translation. This work provides a framework for understanding both the impressive progress made thus far in the nanodiagnostics field as well as presenting challenges that must be overcome to obtain widespread clinical adoption.
Building locally relevant ethics curricula for nursing education in Botswana.
Barchi, F; Kasimatis Singleton, M; Magama, M; Shaibu, S
2014-12-01
The goal of this multi-institutional collaboration was to develop an innovative, locally relevant ethics curriculum for nurses in Botswana. Nurses in Botswana face ethical challenges that are compounded by lack of resources, pressures to handle tasks beyond training or professional levels, workplace stress and professional isolation. Capacity to teach nursing ethics in the classroom and in professional practice settings has been limited. A pilot curriculum, including cases set in local contexts, was tested with nursing faculty in Botswana in 2012. Thirty-three per cent of the faculty members indicated they would be more comfortable teaching ethics. A substantial number of faculty members were more likely to introduce the International Council of Nurses Code of Ethics in teaching, practice and mentoring as a result of the training. Based on evaluation data, curricular materials were developed using the Code and the regulatory requirements for nursing practice in Botswana. A web-based repository of sample lectures, discussion cases and evaluation rubrics was created to support the use of the materials. A new master degree course, Nursing Ethics in Practice, has been proposed for fall 2015 at the University of Botswana. The modular nature of the materials and the availability of cases set within the context of clinical nurse practice in Botswana make them readily adaptable to various student academic levels and continuing professional development programmes. The ICN Code of Ethics for Nursing is a valuable teaching tool in developing countries when taught using locally relevant case materials and problem-based teaching methods. The approach used in the development of a locally relevant nursing ethics curriculum in Botswana can serve as a model for nursing education and continuing professional development programmes in other sub-Saharan African countries to enhance use of the ICN Code of Ethics in nursing practice. © 2014 International Council of Nurses.
Large strain dynamic compression for soft materials using a direct impact experiment
NASA Astrophysics Data System (ADS)
Meenken, T.; Hiermaier, S.
2006-08-01
Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.
Mesoporous Silicate Materials in Sensing
Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.
2008-01-01
Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810
Strategies for selecting effective patient nutrition education materials.
Clayton, Laura H
2010-10-01
Nutrition and diet therapy are at the center of health promotion activities and self-management of chronic diseases. To assist an individual in making informed decisions regarding his or her diet and increase adherence to dietary recommendations or treatments, healthcare professionals must select health information that is appropriate to the client's level of understanding. A systematic approach in the evaluation of patient education material, whether in print or on the World Wide Web, must focus on the information's content, literacy level, graphical displays, layout and typography, motivating principles, cultural relevance, and feasibility. Additional criteria should be evaluated when accessing Web sites and include source, site credibility, conflict of interest, disclaimer, disclosure, navigation, and interactivity information.
Research on Human Embryos and Reproductive Materials: Revisiting Canadian Law and Policy
Zarzeczny, Amy; Baltz, Jay; Bedford, Patrick; Du, Jenny; Hyun, Insoo; Jaafar, Yasmeen; Jurisicova, Andrea; Kleiderman, Erika; Koukio, Yonida; Knoppers, Bartha Maria; Leader, Arthur; Master, Zubin; Nguyen, Minh Thu; Noohi, Forough; Ravitsky, Vardit; Toews, Maeghan
2018-01-01
Research involving human embryos and reproductive materials, including certain forms of stem cell and genetic research, is a fast-moving area of science with demonstrated clinical relevance. Canada's current governance framework for this field of research urgently requires review and reconsideration in view of emerging applications. Based on a workshop involving ethics, legal, policy, scientific and clinical experts, we present a series of recommendations with the goal of informing and supporting health policy and decision-making regarding the governance of the field. With a pragmatic and principled governance approach, Canada can continue its global leadership in this field, as well as advance the long-term health and well-being of Canadians. PMID:29595433
Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Liu, Rentao; Wang, Peng
2016-06-05
In the emergency management relevant to pollution accidents, efficiency emergency rescues can be deeply influenced by a reasonable assignment of the available emergency materials to the related risk sources. In this study, a two-stage optimization framework is developed for emergency material reserve layout planning under uncertainty to identify material warehouse locations and emergency material reserve schemes in pre-accident phase coping with potential environmental accidents. This framework is based on an integration of Hierarchical clustering analysis - improved center of gravity (HCA-ICG) model and material warehouse location - emergency material allocation (MWL-EMA) model. First, decision alternatives are generated using HCA-ICG to identify newly-built emergency material warehouses for risk sources which cannot be satisfied by existing ones with a time-effective manner. Second, emergency material reserve planning is obtained using MWL-EMA to make emergency materials be prepared in advance with a cost-effective manner. The optimization framework is then applied to emergency management system planning in Jiangsu province, China. The results demonstrate that the developed framework not only could facilitate material warehouse selection but also effectively provide emergency material for emergency operations in a quick response. Copyright © 2016. Published by Elsevier B.V.
Brien, Susan; Gheihman, Galina; Tse, Yi Ki Yvonne; Byrnes, Mary; Harrison, Sophia; Dobrow, Mark J
2014-05-01
Jurisdictions are increasingly focusing on appropriate use of healthcare services and interventions as a means to improve health system performance. Our objectives were to conduct a scoping review to (a) map Canadian research and related activity on system-level appropriateness of care and (b) create a resource database that could be used to inform evidence-based decision-making and future research priorities in this area. We searched Medline, EMBASE and CINAHL databases between 2003-2013 using terms including "appropriate," "inappropriate," "health technology assessment" and "cost-effectiveness." Articles were included if they were Canadian-based and relevant to our definition. The database search was complemented by a website search of relevant Canadian organizations. 4,979 articles were identified through the literature search, and 103 articles relevant to system-level appropriateness of care across Canada were charted. Of these, 64 contained an evaluation of appropriateness, 30 used a method of cost-effectiveness or total cost impact analysis and 9 involved another methodology. The most common health service categories included drug therapy (n=40) and health service utilization (n=33). Fifty-eight websites were summarized containing material relevant to system-level appropriateness of care. Our review identifies Canadian research and related activity pertaining to appropriateness of healthcare from a system-level perspective and provides a useful resource both to support evidence-based decision-making and to guide future appropriateness research. Copyright © 2014 Longwoods Publishing.
Straus, Sharon E.
2008-01-01
BACKGROUND Studies indicate a gap between evidence and clinical practice in osteoporosis management. Tools that facilitate clinical decision making at the point of care are promising strategies for closing these practice gaps. OBJECTIVE To systematically review the literature to identify and describe the effectiveness of tools that support clinical decision making in osteoporosis disease management. DATA SOURCES Medline, EMBASE, CINAHL, and EBM Reviews (CDSR, DARE, CCTR, and ACP J Club), and contact with experts in the field. REVIEW METHODS Randomized controlled trials (RCTs) in any language from 1966 to July 2006 investigating disease management interventions in patients at risk for osteoporosis. Outcomes included fractures and bone mineral density (BMD) testing. Two investigators independently assessed articles for relevance and study quality, and extracted data using standardized forms. RESULTS Of 1,246 citations that were screened for relevance, 13 RCTs met the inclusion criteria. Reported study quality was generally poor. Meta-analysis was not done because of methodological and clinical heterogeneity; 77% of studies included a reminder or education as a component of their intervention. Three studies of reminders plus education targeted to physicians and patients showed increased BMD testing (RR range 1.43 to 8.67) and osteoporosis medication use (RR range 1.60 to 8.67). A physician reminder plus a patient risk assessment strategy found reduced fractures [RR 0.58, 95% confidence interval (CI) 0.37 to 0.90] and increased osteoporosis therapy (RR 2.44, CI 1.43 to 4.17). CONCLUSION Multi-component tools that are targeted to physicians and patients may be effective for supporting clinical decision making in osteoporosis disease management. Electronic supplementary material The online version of this article (doi:10.1007/s11606-008-0812-9) contains supplementary material, which is available to authorized users. PMID:18836782
Intelligent medical information filtering.
Quintana, Y
1998-01-01
This paper describes an intelligent information filtering system to assist users to be notified of updates to new and relevant medical information. Among the major problems users face is the large volume of medical information that is generated each day, and the need to filter and retrieve relevant information. The Internet has dramatically increased the amount of electronically accessible medical information and reduced the cost and time needed to publish. The opportunity of the Internet for the medical profession and consumers is to have more information to make decisions and this could potentially lead to better medical decisions and outcomes. However, without the assistance from professional medical librarians, retrieving new and relevant information from databases and the Internet remains a challenge. Many physicians do not have access to the services of a medical librarian. Most physicians indicate on surveys that they do not prefer to retrieve the literature themselves, or visit libraries because of the lack of recent materials, poor organisation and indexing of materials, lack of appropriate and available material, and lack of time. The information filtering system described in this paper records the online web browsing behaviour of each user and creates a user profile of the index terms found on the web pages visited by the user. A relevance-ranking algorithm then matches the user profiles to the index terms of new health care web pages that are added each day. The system creates customised summaries of new information for each user. A user can then connect to the web site to read the new information. Relevance feedback buttons on each page ask the user to rate the usefulness of the page to their immediate information needs. Errors in relevance ranking are reduced in this system by having both the user profile and medical information represented in the same representation language using a controlled vocabulary. This system also updates the user profiles, automatically relieving this burden from the user, but also allowing the user to explicitly state preferences. An initial evaluation of this system was done with health consumers using a web site on consumer health. It was found that users often modified their criteria for what they considered relevant not only between browsing sessions but also during a session. A user's criteria for what is relevant is constantly changing as they interact with the information. New revised metrics of recall and precision are needed to account for the partially relevant judgements and the dynamically changing criteria of users. Future research, development, and evaluation of interactive information retrieval systems will need to take into account the users' dynamically changing criteria of relevance.
Nanomaterials for Functional Textiles and Fibers
NASA Astrophysics Data System (ADS)
Rivero, Pedro J.; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J.
2015-12-01
Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.
Nanomaterials for Functional Textiles and Fibers.
Rivero, Pedro J; Urrutia, Aitor; Goicoechea, Javier; Arregui, Francisco J
2015-12-01
Nanoparticles are very interesting because of their surface properties, different from bulk materials. Such properties make possible to endow ordinary products with new functionalities. Their relatively low cost with respect to other nano-additives make them a promising choice for industrial mass-production systems. Nanoparticles of different kind of materials such as silver, titania, and zinc oxide have been used in the functionalization of fibers and fabrics achieving significantly improved products with new macroscopic properties. This article reviews the most relevant approaches for incorporating such nanoparticles into synthetic fibers used traditionally in the textile industry allowing to give a solution to traditional problems for textiles such as the microorganism growth onto fibers, flammability, robustness against ultraviolet radiation, and many others. In addition, the incorporation of such nanoparticles into special ultrathin fibers is also analyzed. In this field, electrospinning is a very promising technique that allows the fabrication of ultrathin fiber mats with an extraordinary control of their structure and properties, being an ideal alternative for applications such as wound healing or even functional membranes.
Considerations on the EU definition of a nanomaterial: science to support policy making.
Bleeker, Eric A J; de Jong, Wim H; Geertsma, Robert E; Groenewold, Monique; Heugens, Evelyn H W; Koers-Jacquemijns, Marjorie; van de Meent, Dik; Popma, Jan R; Rietveld, Anton G; Wijnhoven, Susan W P; Cassee, Flemming R; Oomen, Agnes G
2013-02-01
In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other materials is prerequisite to include provisions for nanomaterials in legislation. In October 2011 the European Commission published the 'Recommendation on the definition of a nanomaterial', primarily intended to provide unambiguous criteria to identify materials for which special regulatory provisions might apply, but also to promote consistency on the interpretation of the term 'nanomaterial'. In this paper, the current status of various regulatory frameworks of the European Union with regard to nanomaterials is described, and major issues relevant for regulation of nanomaterials are discussed. This will contribute to better understanding the implications of the choices policy makers have to make in further regulation of nanomaterials. Potential issues that need to be addressed and areas of research in which science can contribute are indicated. These issues include awareness on situations in which nano-related risks may occur for materials that fall outside the definition, guidance and further development of measurement techniques, and dealing with changes during the life cycle. Copyright © 2012 Elsevier Inc. All rights reserved.
Fransen, Mirjam P; Dekker, Evelien; Timmermans, Daniëlle R M; Uiters, Ellen; Essink-Bot, Marie-Louise
2017-02-01
To explore the accessibility of standardized printed information materials of the national Dutch colorectal cancer screening program among low health literate screening invitees and to assess the effect of the information on their knowledge about colorectal cancer and the screening program. Linguistic tools were used to analyze the text and design characteristics. The accessibility, comprehensibility and relevance of the information materials were explored in interviews and in observations (n=25). The effect of the information on knowledge was assessed in an online survey (n=127). The materials employed a simple text and design. However, respondents expressed problems with the amount of information, and the difference between screening and diagnostic follow-up. Knowledge significantly increased in 10 out of 16 items after reading the information but remained low for colorectal cancer risk, sensitivity of testing, and the voluntariness of colorectal cancer screening. Despite intelligible linguistic and design characteristics, screening invitees with low health literacy had problems in accessing, comprehending and applying standard information materials on colorectal cancer screening, and lacked essential knowledge for informed decision-making about participation. To enable equal access to informed decision-making, information strategies need to be adjusted to the skills of low health literate screening invitees. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Morssink, C B; Kumanyika, S; Tell, G S; Schoenbach, V J
1996-01-01
The underrepresentation in epidemiology of members of racial/ethnic minority groups is greater than in medicine and health fields in general. Using printed recruitment materials, we evaluated the impression that epidemiology programs might make on prospective minority students. Mainstream recruitment materials were solicited from all identifiable U.S. epidemiology programs (n = 70) by requesting copies of typical mailings to prospective students. Of 51 respondents, 46 sent materials that could be analyzed by tabulating and evaluating minority-related content in text and pictures. Materials reflected a generally low-key approach to epidemiology student recruitment. Most minority-related text referred to affirmative action or financial aid and was at the school level rather than specific to the epidemiology programs. Few minority-related epidemiology course titles or research interests were identified. We recommend including more information about epidemiology and its relevance to minority health in mainstream recruitment materials as one possible strategy for increasing the number of minority applicants.
Working memory and the design of health materials: a cognitive factors perspective.
Wilson, Elizabeth A H; Wolf, Michael S
2009-03-01
Working memory and other supportive cognitive processes involved in learning are reviewed in the context of developing patient education materials. We specifically focus on the impact of certain design factors such as text format and syntax, the inclusion of images, and the choice of modality on individuals' ability to understand and remember health information. A selective review of relevant cognitive and learning theories is discussed with regard to their potential impact on the optimal design of health materials. Working memory is measured as an individual's capacity to hold and manipulate information in active consciousness. It is limited by necessity, and well-designed health materials can effectively minimize extraneous cognitive demands placed on individuals, making working memory resources more available to better process content-related information. Further research is needed to evaluate specific design principles and identify ideal uses of print versus video-based forms of communication for conveying information. The process of developing health materials should account for the cognitive demands that extrinsic factors such as modality place on patients.
Prevalence of relevant nutritional claims related to prevention of obesity in Spanish market
Lopéz-Galán, Belinda; De Magistris, Tiziana
2017-02-01
Introduction: Although previous studies have provided relevant information regarding the progress in the implementation of Regulation (EC) No 1924/2006 of the European Union. So far it not determined the prevalence of relevant nutrition claims in preventing obesity in the Spanish market. Objective: To determine the prevalence of relevant nutritional claims related to prevent the obesity in the Spanish market. Material and methods: A database with 9 food product categories and it nutritional claims was created. Three supermarket chains were included because they represent the 40% of market share. Only the nutritional claims that mention nutrients related obesity was considered. Results: A total of 4,568 products were examined and a total of 900 nutrition claims were found in 20% of the products found. The most frequent nutrients referred in the nutritional claims were fat (42%), sugar (32%), dietary fibre (20%) and salt (6%). Conclusions: In accordance with previous studies, findings reported a low prevalence of nutritional claims indicating that agrifood sector should include more nutritional claims to help consumers making better food choices.
What Drives False Memories in Psychopathology? A Case for Associative Activation
Otgaar, Henry; Muris, Peter; Howe, Mark L.; Merckelbach, Harald
2017-01-01
In clinical and court settings, it is imperative to know whether posttraumatic stress disorder (PTSD) and depression may make people susceptible to false memories. We conducted a review of the literature on false memory effects in participants with PTSD, a history of trauma, or depression. When emotional associative material was presented to these groups, their levels of false memory were raised relative to those in relevant comparison groups. This difference did not consistently emerge when neutral or nonassociative material was presented. Our conclusion is supported by a quantitative comparison of effect sizes between studies using emotional associative or neutral, nonassociative material. Our review suggests that individuals with PTSD, a history of trauma, or depression are at risk for producing false memories when they are exposed to information that is related to their knowledge base. PMID:29170722
What Drives False Memories in Psychopathology? A Case for Associative Activation.
Otgaar, Henry; Muris, Peter; Howe, Mark L; Merckelbach, Harald
2017-11-01
In clinical and court settings, it is imperative to know whether posttraumatic stress disorder (PTSD) and depression may make people susceptible to false memories. We conducted a review of the literature on false memory effects in participants with PTSD, a history of trauma, or depression. When emotional associative material was presented to these groups, their levels of false memory were raised relative to those in relevant comparison groups. This difference did not consistently emerge when neutral or nonassociative material was presented. Our conclusion is supported by a quantitative comparison of effect sizes between studies using emotional associative or neutral, nonassociative material. Our review suggests that individuals with PTSD, a history of trauma, or depression are at risk for producing false memories when they are exposed to information that is related to their knowledge base.
Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators
Reichmann, Klaus; Feteira, Antonio; Li, Ming
2015-01-01
The ban of lead in many electronic products and the expectation that, sooner or later, this ban will include the currently exempt piezoelectric ceramics based on Lead-Zirconate-Titanate has motivated many research groups to look for lead-free substitutes. After a short overview on different classes of lead-free piezoelectric ceramics with large strain, this review will focus on Bismuth-Sodium-Titanate and its solid solutions. These compounds exhibit extraordinarily high strain, due to a field induced phase transition, which makes them attractive for actuator applications. The structural features of these materials and the origin of the field-induced strain will be revised. Technologies for texturing, which increases the useable strain, will be introduced. Finally, the features that are relevant for the application of these materials in a multilayer design will be summarized. PMID:28793724
Reframing conceptual physics: Improving relevance to elementary education and sonography majors
NASA Astrophysics Data System (ADS)
LaFazia, David Gregory
This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design principles. The unit is designed to be educative in nature and serves as a model for the reframing of other units. A number of the design principles are highly transdisciplinary in nature and may be applied for reframing instructional units outside of the physics and science disciplines.
A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).
Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert
2015-03-15
The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Depth of manual dismantling analysis: a cost-benefit approach.
Achillas, Ch; Aidonis, D; Vlachokostas, Ch; Karagiannidis, A; Moussiopoulos, N; Loulos, V
2013-04-01
This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in order to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models' applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product's components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93-23.06 €, depending on the level of disassembly. Copyright © 2013 Elsevier Ltd. All rights reserved.
Making a protein extract from plant pathogenic fungi for gel- and LC-based proteomics.
Fernández, Raquel González; Redondo, Inmaculada; Jorrin-Novo, Jesus V
2014-01-01
Proteomic technologies have become a successful tool to provide relevant information on fungal biology. In the case of plant pathogenic fungi, this approach would allow a deeper knowledge of the interaction and the biological cycle of the pathogen, as well as the identification of pathogenicity and virulence factors. These two elements open up new possibilities for crop disease diagnosis and environment-friendly crop protection. Phytopathogenic fungi, due to its particular cellular characteristics, can be considered as a recalcitrant biological material, which makes it difficult to obtain quality protein samples for proteomic analysis. This chapter focuses on protein extraction for gel- and LC-based proteomics with specific protocols of our current research with Botrytis cinerea.
Disassembling archeology, reassembling the modern world.
Carruthers, William; Van Damme, Stéphane
2017-09-01
This article provides a substantive discussion of the relevance of the history of archeology to the history of science. At the same time, the article introduces the papers contained in this special issue as exemplars of this relevance. To make its case, the article moves through various themes in the history of archeology that overlap with key issues in the history of science. The article discusses the role and tension of regimes of science in antiquarian and archeological practices, and also considers issues of scale and place, particularly in relation to the field. Additionally, the piece attends to issues of professionalization and the constitution of an archeological public, at the same time as discussing issues of empire, colonialism, and the circulation of knowledge. Meanwhile, enriching discussions within and beyond the history of science, the article discusses the history of archeology and its relationship with museums, collecting, and material culture and materiality. Finally, the piece discusses the relationship of the history of archeology with wider discussions about scientific ethics. In conclusion, the article questions whether we should speak of 'the history of archeology' at all.
Haluza, Daniela; Schwab, Markus; Simic, Stana; Cervinka, Renate; Moshammer, Hanns
2015-01-01
Individual skin health attitudes are influenced by various factors, including public education campaigns, mass media, family, and friends. Evidence-based, educative information materials assist communication and decision-making in doctor-patient interactions. The present study aims at assessing the prevailing use of skin health information material and sources and their impact on skin health knowledge, motives to tan, and sun protection. We conducted a questionnaire survey among a representative sample of Austrian residents. Print media and television were perceived as the two most relevant sources for skin health information, whereas the source physician was ranked third. Picking the information source physician increased participants’ skin health knowledge (p = 0.025) and sun-protective behavior (p < 0.001). The study results highlight the demand for targeted health messages to attain lifestyle changes towards photo-protective habits. Providing resources that encourage pro-active counseling in every-day doctor-patient communication could increase skin health knowledge and sun-protective behavior, and thus, curb the rise in skin cancer incidence rates. PMID:26569274
Mosconi, Paola; Antes, Gerd; Barbareschi, Giorgio; Burls, Amanda; Demotes-Mainard, Jacques; Chalmers, Iain; Colombo, Cinzia; Garattini, Silvio; Gluud, Christian; Gyte, Gill; Mcllwain, Catherine; Penfold, Matt; Post, Nils; Satolli, Roberto; Valetto, Maria Rosa; West, Brian; Wolff, Stephanie
2016-01-12
The ECRAN (European Communication on Research Awareness Needs) project was initiated in 2012, with support from the European Commission, to improve public knowledge about the importance of independent, multinational, clinical trials in Europe. Participants in the ECRAN consortium included clinicians and methodologists directly involved in clinical trials; researchers working in partnership with the public and patients; representatives of patients; and experts in science communication. We searched for, and evaluated, relevant existing materials and developed additional materials and tools, making them freely available under a Creative Commons licence. The principal communication materials developed were: 1. A website ( http://ecranproject.eu ) in six languages, including a Media centre section to help journalists to disseminate information about the ECRAN project 2. An animated film about clinical trials, dubbed in the 23 official languages of the European Community, and an interactive tutorial 3. An inventory of resources, available in 23 languages, searchable by topic, author, and media type 4. Two educational games for young people, developed in six languages 5. Testing Treatments interactive in a dozen languages, including five official European Community languages 6. An interactive tutorial slide presentation testing viewers' knowledge about clinical trials Over a 2-year project, our multidisciplinary and multinational consortium was able to produce, and make freely available in many languages, new materials to promote public knowledge about the importance of independent and international clinical trials. Sustained funding for the ECRAN information platform could help to promote successful recruitment to independent clinical trials supported through the European Clinical Research Infrastructure Network.
Simmons, Vani Nath; Cruz, Ligia M; Brandon, Thomas H; Quinn, Gwendolyn P
2011-01-01
Quitting smoking is one of the most important behavior changes a pregnant woman can make, with health benefits extending beyond pregnancy for the woman and her child. Increasing numbers of pregnant women are quitting smoking; however, the majority resume smoking later in their pregnancy or shortly after giving birth. Previous research has demonstrated the efficacy of self-help smoking relapse-prevention booklets; however, there is a dearth of materials available in Spanish for Hispanic smokers. The goal of the present study was to translate and adapt existing, theoretically based, smoking relapse-prevention materials for pregnant and postpartum Hispanic women. This article describes the transcreation approach used to ensure the Forever Free for Baby and Me booklets were linguistically and culturally relevant for the heterogeneous populations of Hispanic women. The authors conducted multistage formative research to adapt the booklets and modify vignettes and graphics. Compared with previous research conducted with pregnant non-Hispanic women, results revealed the following: (a) a lack of association or concern about smoking and weight gain, (b) the importance of family approval of behavior, and (c) stress related to difficulties surrounding the immigration experience. The authors' qualitative findings confirm and extend past research that has suggested ways to enhance the cultural relevance and acceptability of a health intervention.
Polymer optics for the passive infrared
NASA Astrophysics Data System (ADS)
Claytor, Richard N.
2016-10-01
An important, but largely invisible, area of polymer optics involves sensing the motion of warm objects. It can be further subdivided into optics for security, for energy conservation, and for convenience; the area has become known as optics for the passive infrared. The passive infrared is generally known as the 8 to 14 μm region of the optical spectrum. The region's roots are in the traditional infrared technology of many decades ago; there is a coincident atmospheric window, although that has little relevance to many short-range applications relevant to polymer optics. Regrettably, there is no polymer material ideally suited to the passive infrared, but one material is generally superior to other candidates. The inadequacy of this material makes the Fresnel lens important. Polymer optics for the passive infrared were first introduced in the 1970s. Patents from that period will be shown, as well as early examples. The unfamiliar names of the pioneering companies and their technical leaders will be mentioned. The 1980s and 90s brought a new and improved lens type, and rapid growth. Pigments for visible-light appearance and other reasons were introduced; one was a spectacular failure. Recent advances include faster lenses, a new groove structure, additional pigments, and lens-mirror combinations. New sensor types are also being introduced. Finally, some unique and inventive applications will be discussed.
Readability of Online Materials for Rhinoplasty.
Santos, Pauline Joy F; Daar, David A; Paydar, Keyianoosh Z; Wirth, Garrett A
2018-01-01
Rhinoplasty is a popular aesthetic and reconstructive surgical procedure. However, little is known about the content and readability of online materials for patient education. The recommended grade level for educational materials is 7th to 8th grade according to the National Institutes of Health (NIH). This study aims to assess the readability of online patient resources for rhinoplasty. The largest public search engine, Google, was queried using the term "rhinoplasty" on February 26, 2016. Location filters were disabled and sponsored results excluded to avoid any inadvertent search bias. The 10 most popular websites were identified and all relevant, patient-directed information within one click from the original site was downloaded and saved as plain text. Readability was analyzed using five established analyses (Readability-score.com, Added Bytes, Ltd., Sussex, UK). Analysis of ten websites demonstrates an average grade level of at least 12 th grade. No material was at the recommended 7 th to 8 th grade reading level (Flesch-Kincaid, 11.1; Gunning-Fog, 14.1; Coleman-Liau, 14.5; SMOG 10.4; Automated Readability, 10.7; Average Grade Level, 12.2). Overall Flesch-Kincaid Reading Ease Index was 43.5, which is rated as "difficult." Online materials available for rhinoplasty exceed NIH-recommended reading levels, which may prevent appropriate decision-making in patients considering these types of surgery. Outcomes of this study identify that Plastic Surgeons should be cognizant of available online patient materials and make efforts to develop and provide more appropriate materials. Readability results can also contribute to marketing strategy and attracting a more widespread interest in the procedure.
Readability of Online Materials for Rhinoplasty
Santos, Pauline Joy F; Daar, David A; Paydar, Keyianoosh Z; Wirth, Garrett A
2018-01-01
BACKGROUND Rhinoplasty is a popular aesthetic and reconstructive surgical procedure. However, little is known about the content and readability of online materials for patient education. The recommended grade level for educational materials is 7th to 8th grade according to the National Institutes of Health (NIH). This study aims to assess the readability of online patient resources for rhinoplasty. METHODS The largest public search engine, Google, was queried using the term “rhinoplasty” on February 26, 2016. Location filters were disabled and sponsored results excluded to avoid any inadvertent search bias. The 10 most popular websites were identified and all relevant, patient-directed information within one click from the original site was downloaded and saved as plain text. Readability was analyzed using five established analyses (Readability-score.com, Added Bytes, Ltd., Sussex, UK). RESULTS Analysis of ten websites demonstrates an average grade level of at least 12th grade. No material was at the recommended 7th to 8th grade reading level (Flesch-Kincaid, 11.1; Gunning-Fog, 14.1; Coleman-Liau, 14.5; SMOG 10.4; Automated Readability, 10.7; Average Grade Level, 12.2). Overall Flesch-Kincaid Reading Ease Index was 43.5, which is rated as “difficult.” CONCLUSION Online materials available for rhinoplasty exceed NIH-recommended reading levels, which may prevent appropriate decision-making in patients considering these types of surgery. Outcomes of this study identify that Plastic Surgeons should be cognizant of available online patient materials and make efforts to develop and provide more appropriate materials. Readability results can also contribute to marketing strategy and attracting a more widespread interest in the procedure. PMID:29651397
Relevance and application of TEACH-VIP: perspective from a developing nation--India.
Malhotra, Sumit
2008-01-01
TEACH-VIP (Training, Educating and Advancing Collaboration in Health on Violence and Injury Prevention) was developed by the World Health Organization in response to the need for formal training materials and curriculum relating to violent injuries. The course is meant for utilization in diverse settings and by different nations to raise awareness among professionals about this public health issue. TEACH-VIP is designed so that the content can be customized to local scenarios and needs, to make it more locally relevant. This article examines the relevance and application of the course within the Indian setting. It focuses on three violence issues covered in TEACH-VIP: gender-based violence, child and adolescent sexual abuse and self-inflicted harm, reviewing evidence from local research studies, suggesting points for adaptation and highlighting the multiple stakeholder responses. Such local adaptations would serve the major objective of TEACH-VIP by facilitating the prevention of violence and injury through the training of a variety of personnel.
The neural correlates of implicit self-relevant processing in low self-esteem: an ERP study.
Yang, Juan; Guan, Lili; Dedovic, Katarina; Qi, Mingming; Zhang, Qinglin
2012-08-30
Previous neuroimaging studies have shown that implicit and explicit processing of self-relevant (schematic) material elicit activity in many of the same brain regions. Electrophysiological studies on the neural processing of explicit self-relevant cues have generally supported the view that P300 is an index of attention to self-relevant stimuli; however, there has been no study to date investigating the temporal course of implicit self-relevant processing. The current study seeks to investigate the time course involved in implicit self-processing by comparing processing of self-relevant with non-self-relevant words while subjects are making a judgment about color of the words in an implicit attention task. Sixteen low self-esteem participants were examined using event-related potentials technology (ERP). We hypothesized that this implicit attention task would involve P2 component rather than the P300 component. Indeed, P2 component has been associated with perceptual analysis and attentional allocation and may be more likely to occur in unconscious conditions such as this task. Results showed that latency of P2 component, which indexes the time required for perceptual analysis, was more prolonged in processing self-relevant words compared to processing non-self-relevant words. Our results suggested that the judgment of the color of the word interfered with automatic processing of self-relevant information and resulted in less efficient processing of self-relevant word. Together with previous ERP studies examining processing of explicit self-relevant cues, these findings suggest that the explicit and the implicit processing of self-relevant information would not elicit the same ERP components. Copyright © 2012 Elsevier B.V. All rights reserved.
Industrial applications of nanoparticles.
Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A
2015-08-21
Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.
Assessing what to address in science communication.
Bruine de Bruin, Wändi; Bostrom, Ann
2013-08-20
As members of a democratic society, individuals face complex decisions about whether to support climate change mitigation, vaccinations, genetically modified food, nanotechnology, geoengineering, and so on. To inform people's decisions and public debate, scientific experts at government agencies, nongovernmental organizations, and other organizations aim to provide understandable and scientifically accurate communication materials. Such communications aim to improve people's understanding of the decision-relevant issues, and if needed, promote behavior change. Unfortunately, existing communications sometimes fail when scientific experts lack information about what people need to know to make more informed decisions or what wording people use to describe relevant concepts. We provide an introduction for scientific experts about how to use mental models research with intended audience members to inform their communication efforts. Specifically, we describe how to conduct interviews to characterize people's decision-relevant beliefs or mental models of the topic under consideration, identify gaps and misconceptions in their knowledge, and reveal their preferred wording. We also describe methods for designing follow-up surveys with larger samples to examine the prevalence of beliefs as well as the relationships of beliefs with behaviors. Finally, we discuss how findings from these interviews and surveys can be used to design communications that effectively address gaps and misconceptions in people's mental models in wording that they understand. We present applications to different scientific domains, showing that this approach leads to communications that improve recipients' understanding and ability to make informed decisions.
Developing Culturally Relevant Literacy Assessments for Bahamian Children
ERIC Educational Resources Information Center
Sachs, Gertrude Tinker; Jackson, Annmarie P.; Sullivan, Tarika; Wynter-Hoyte, Kamania
2018-01-01
The strong presence of culturally relevant materials in classrooms is seen as an indicator of good teaching but the development and use of these materials is under-investigated. Similarly, the actual construction and use of culturally relevant materials for literacy assessment purposes is under-reported. This paper examines the development and…
The history of science as oxymoron: from scientific exceptionalism to episcience.
Alder, Ken
2013-03-01
This essay argues that historians of science who seek to embody our oxymoronic self-description must confront both contradictory terms that define our common enterprise--that is, both "history" and "science." On the history/methods side, it suggests that we embrace the heterogeneity of our institutional arrangements and repudiate the homogeneous disciplinary model sometimes advocated by Thomas Kuhn and followed by art history. This implies that rather than treating the history of science as an end in itself, we consider it a means to a variety of historical ends. think of ourselves as a tool-making community, and jettison moralistic assertions of scientific exceptionalism. To do so, this essay argues--on the science/subject side--that xe rebrand the subject of our historical inquiry as "episcience," a neologism that stands in relation to "science" as the new field of epigenetics does to the old genetics. Episcience encompasses both the material activities of the relevant sciences and their "surround" (environment, milieu, Umgebung) to reframe knowledge making to include the material processes that put science "in play" and make its findings matter beyond science. The essay concludes that "the history of science" is an oxymoron that makes sense to the extent that its practitioners acknowledge that the history of science is important not just because science is important, but because its history is.
Liquid metals: fundamentals and applications in chemistry.
Daeneke, T; Khoshmanesh, K; Mahmood, N; de Castro, I A; Esrafilzadeh, D; Barrow, S J; Dickey, M D; Kalantar-Zadeh, K
2018-04-03
Post-transition elements, together with zinc-group metals and their alloys belong to an emerging class of materials with fascinating characteristics originating from their simultaneous metallic and liquid natures. These metals and alloys are characterised by having low melting points (i.e. between room temperature and 300 °C), making their liquid state accessible to practical applications in various fields of physical chemistry and synthesis. These materials can offer extraordinary capabilities in the synthesis of new materials, catalysis and can also enable novel applications including microfluidics, flexible electronics and drug delivery. However, surprisingly liquid metals have been somewhat neglected by the wider research community. In this review, we provide a comprehensive overview of the fundamentals underlying liquid metal research, including liquid metal synthesis, surface functionalisation and liquid metal enabled chemistry. Furthermore, we discuss phenomena that warrant further investigations in relevant fields and outline how liquid metals can contribute to exciting future applications.
Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications.
Achakulvisut, Titipat; Acuna, Daniel E; Ruangrong, Tulakan; Kording, Konrad
2016-01-01
Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate.
Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications
Achakulvisut, Titipat; Acuna, Daniel E.; Ruangrong, Tulakan; Kording, Konrad
2016-01-01
Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate. PMID:27383424
Porous silicon in drug delivery devices and materials☆
Anglin, Emily J.; Cheng, Lingyun; Freeman, William R.; Sailor, Michael J.
2009-01-01
Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications. PMID:18508154
Material efficiency in a multi-material world.
Lifset, Reid; Eckelman, Matthew
2013-03-13
Material efficiency--using less of a material to make a product or supply a service--is gaining attention as a means for accomplishing important environmental goals. The ultimate goal of material efficiency is not to use less physical material but to reduce the impacts associated with its use. This article examines the concept and definition of material efficiency and argues that for it to be an effective strategy it must confront the challenges of operating in a multi-material world, providing guidance when materials are used together and when they compete. A series of conceptions of material efficiency are described, starting with mass-based formulations and expanding to consider multiple resources in the supply chain of a single material, and then to multiple resources in the supply chains of multiple materials used together, and further to multiple environmental impacts. The conception of material efficiency is further broadened by considering material choice, exploring the technical and economic effects both of using less material and of materials competition. Finally, this entire materials-based techno-economic system is considered with respect to the impact of complex policies and political forces. The overall goal here is to show how the concept of material efficiency when faced with more expansive--and yet directly relevant--definitional boundaries is forced to confront analytical challenges that are both familiar and difficult in life cycle assessment and product-based approaches.
Technetium Tetrachloride Revisited: A Precursor to Lower-Valent Binary Technetium Chlorides
Johnstone, Erik V.; Poineau, Frederic; Forster, Paul M.; ...
2012-07-09
Technetium (Tc) is the lightest element that doesn't occur in nature. At UNLV, our radiochemistry program gives us access to Tc and the ability to make various Tc compounds. Here we describe the preparation and characterization of TcCl 4. The Tc atom is found to have a magnetic moment and magnetically orders at low temperature. As discerning trends in the transition metals, of which Tc is one, is important for understanding all transition metal compounds, this research is relevant to understanding these materials.
Highly chromic, proton-responsive phenyl pyrimidones.
Dhuguru, Jyothi; Gheewala, Chirag; Kumar, N S Saleesh; Wilson, James N
2011-08-19
Aryl pyrimidones are pharmacologically relevant compounds whose optical properties have only been partially explored. We report the synthesis and optical characterization of a series of aryl- and diaryl-2(1H)-pyrimidones. The electronic transitions of these chromophores are modulated by the extent of conjugation between the pendant phenyl ring and the pyrimidone core as well as the presence of electron-donating auxochromes. Monoprotonation of the pyrimidone ring results in large hyperchromic and bathochromic shifts as well as switching of fluorescence making these phenyl pyrimidones of interest as sensory materials. © 2011 American Chemical Society
Ordering of the nanoscale step morphology as a mechanism for droplet self-propulsion.
Hilner, Emelie; Zakharov, Alexei A; Schulte, Karina; Kratzer, Peter; Andersen, Jesper N; Lundgren, Edvin; Mikkelsen, Anders
2009-07-01
We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the structure and dynamics from micrometers to the atomic scale. We argue that the simple assumptions underlying the propulsion mechanism make it relevant for a wide variety of materials systems.
Inventory of research methods for librarianship and informatics.
Eldredge, Jonathan D
2004-01-01
This article defines and describes the rich variety of research designs found in librarianship and informatics practice. Familiarity with the range of methods and the ability to make distinctions between those specific methods can enable authors to label their research reports correctly. The author has compiled an inventory of methods from a variety of disciplines, but with attention to the relevant applications of a methodology to the field of librarianship. Each entry in the inventory includes a definition and description for the particular research method. Some entries include references to resource material and examples.
Recyclable Materials (Waste) Management in Enterprise’s Production Process
NASA Astrophysics Data System (ADS)
Malevskaia-Malevich, E. D.; Demidenko, D. S.
2017-10-01
Currently, in view of the increasing garbage crisis, the notion of a “new lease of life” for waste becomes even more relevant. Waste recycling makes it possible not only to solve obvious environmental problems, but also to offer new resource opportunities for industries. Among the obvious economic, social and environmental advantages, however, waste recycling meets various problems. These problems and solutions for them, as well as the problems of economic efficiency improvement and recycling activities’ appeal for industrial companies in Leningrad region, are discussed in the present study.
The mathematical model accuracy estimation of the oil storage tank foundation soil moistening
NASA Astrophysics Data System (ADS)
Gildebrandt, M. I.; Ivanov, R. N.; Gruzin, AV; Antropova, L. B.; Kononov, S. A.
2018-04-01
The oil storage tanks foundations preparation technologies improvement is the relevant objective which achievement will make possible to reduce the material costs and spent time for the foundation preparing while providing the required operational reliability. The laboratory research revealed the nature of sandy soil layer watering with a given amount of water. The obtained data made possible developing the sandy soil layer moistening mathematical model. The performed estimation of the oil storage tank foundation soil moistening mathematical model accuracy showed the experimental and theoretical results acceptable convergence.
Relevance Judging, Evaluation, and Decision Making in Virtual Libraries: A Descriptive Study.
ERIC Educational Resources Information Center
Fitzgerald, Mary Ann; Galloway, Chad
2001-01-01
Describes a study that investigated the cognitive processes undergraduates used to select information while using a virtual library, GALILEO (Georgia Library Learning Online). Discusses higher order thinking processes, relevance judging, evaluation (critical thinking), decision making, reasoning involving documents, relevance-related reasoning,…
NASA Astrophysics Data System (ADS)
Ma, Yan; Yao, Jinxia; Gu, Chao; Chen, Yufeng; Yang, Yi; Zou, Lida
2017-05-01
With the formation of electric big data environment, more and more big data analyses emerge. In the complicated data analysis on equipment condition assessment, there exist many join operations, which are time-consuming. In order to save time, the approach of materialized view is usually used. It places part of common and critical join results on external storage and avoids the frequent join operation. In the paper we propose the methods of selecting and placing materialized views to reduce the query time of electric transmission and transformation equipment, and make the profits of service providers maximal. In selection method we design a computation way for the value of non-leaf node based on MVPP structure chart. In placement method we use relevance weights to place the selected materialized views, which help reduce the network transmission time. Our experiments show that the proposed selection and placement methods have a high throughput and good optimization ability of query time for electric transmission and transformation equipment.
Geometry and mechanics of two-dimensional defects in amorphous materials
Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran
2015-01-01
We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331
Temporal Modulation of Stem Cell Activity Using Magnetoactive Hydrogels.
Abdeen, Amr A; Lee, Junmin; Bharadwaj, N Ashwin; Ewoldt, Randy H; Kilian, Kristopher A
2016-10-01
Cell activity is coordinated by dynamic interactions with the extracellular matrix, often through stimuli-mediated spatiotemporal stiffening and softening. Dynamic changes in mechanics occur in vivo through enzymatic or chemical means, processes which are challenging to reconstruct in cell culture materials. Here a magnetoactive hydrogel material formed by embedding magnetic particles in a hydrogel matrix is presented whereby elasticity can be modulated reversibly by attenuation of a magnetic field. Orders of magnitude change in elasticity using low magnetic fields are shown and reversibility of stiffening with simple permanent magnets is demonstrated. The broad applicability of this technique is demonstrated with two therapeutically relevant bioactivities in mesenchymal stem cells: secretion of proangiogenic molecules, and dynamic control of osteogenesis. The ability to reversibly stiffen cell culture materials across the full spectrum of soft tissue mechanics, using simple materials and commercially available permanent magnets, makes this approach viable for a broad range of laboratory environments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Global Mental Health: sharing and synthesizing knowledge for sustainable development.
O'Donnell, K; O'Donnell, M Lewis
2016-01-01
Global mental health (GMH) is a growing domain with an increasing capacity to positively impact the world community's efforts for sustainable development and wellbeing. Sharing and synthesizing GMH and multi-sectoral knowledge, the focus of this paper, is an important way to support these global efforts. This paper consolidates some of the most recent and relevant 'context resources' [global multi-sector (GMS) materials, emphasizing world reports on major issues] and 'core resources' (GMH materials, including newsletters, texts, conferences, training, etc.). In addition to offering a guided index of materials, it presents an orientation framework (global integration) to help make important information as accessible and useful as possible. Mental health colleagues are encouraged to stay current in GMH and global issues, to engage in the emerging agendas for sustainable development and wellbeing, and to intentionally connect and contribute across sectors. Colleagues in all sectors are encouraged to do likewise, and to take advantage of the wealth of shared and synthesized knowledge in the GMH domain, such as the materials featured in this paper.
The use of technologies in African programmes of population education.
Krystall, A; Johnston, T
1985-06-01
In Africa South of the Sahara, the most commonly expressed purpose of population education, whether in or out of school, is an improved quality of life for the individual, family, community or nation. Use of the technologies available for population education can contribute to the efficiency and effectiveness of the learning process in a variety of ways. A significant contribution of visual and audiovisual media to population education is the power to stimulate visualization and imaginative comprehension, thereby increasing understanding and inducing affective change. Population education programs in schools and teacher training institutions in sub-Saharan Africa seem to rely heavily on the single technology of the printed text. This paper suggests that the initial priority when selecting materials for population education may be to explore the possible advantages of nontext technologies. Visual material loses its power to influence people's attitudes and actions if they are unable to identify with what they see; in some places, adequate localization may have a linguistic dimension. Basing materials on issues of relevance to specific target groups is only part of the task when the educational intent is behavior change. Pre-testing is necessary to determine the overall relevance of media materials for an intended audience. The assumption that educational media must be produced by educational experts has caused planners to make minimal use of other strategies such as: 1) users as producers and 2) professionals as producers. 4 suggestions to contribute to the quality of population education are: 1) for the 2 regional offices to disseminate all population-related materials used at the national level, 2) training for population educators in media use, 3) initiating and supporting comparisons of various technologies, and 4) assisting users to become producers of their own materials.
Making objective decisions in mechanical engineering problems
NASA Astrophysics Data System (ADS)
Raicu, A.; Oanta, E.; Sabau, A.
2017-08-01
Decision making process has a great influence in the development of a given project, the goal being to select an optimal choice in a given context. Because of its great importance, the decision making was studied using various science methods, finally being conceived the game theory that is considered the background for the science of logical decision making in various fields. The paper presents some basic ideas regarding the game theory in order to offer the necessary information to understand the multiple-criteria decision making (MCDM) problems in engineering. The solution is to transform the multiple-criteria problem in a one-criterion decision problem, using the notion of utility, together with the weighting sum model or the weighting product model. The weighted importance of the criteria is computed using the so-called Step method applied to a relation of preferences between the criteria. Two relevant examples from engineering are also presented. The future directions of research consist of the use of other types of criteria, the development of computer based instruments for decision making general problems and to conceive a software module based on expert system principles to be included in the Wiki software applications for polymeric materials that are already operational.
The Making of Cosmic Africa: The Research Behind the Film
NASA Astrophysics Data System (ADS)
Rogers, A.
2007-07-01
The multi-award winning, documentary film "Cosmic Africa" was released in 2003. It tells the remarkable personal odyssey of South African astronomer, Dr Thebe Medupe, who journeys into remote corners of the ancient continent to explore and shed new light on Africa's rich astronomical knowledge and sacred traditions. His quest begins to fill in the gap in historical African astronomy and also helps to bridge the future with the past and to make astronomy accessible and relevant to both Africa and the world. The film is a co-production of Cosmos Studios (USA), Aland Pictures (RSA) and Anne Rogers, the concept originator and key researcher. This paper explores the research methods used in the film and also highlights some of the subject material that was omitted from the documentary.
Stress and Strain in Silicon Electrode Models
Higa, Kenneth; Srinivasan, Venkat
2015-03-24
While the high capacity of silicon makes it an attractive negative electrode for Li-ion batteries, the associated large volume change results in fracture and capacity fade. Composite electrodes incorporating silicon have additional complexity, as active material is attached to surrounding material which must likewise experience significant volume change. In this paper, a finite-deformation model is used to explore, for the first time, mechanical interactions between a silicon particle undergoing lithium insertion, and attached binder material. Simulations employ an axisymmetric model system in which solutions vary in two spatial directions and shear stresses develop at interfaces between materials. The mechanical responsemore » of the amorphous active material is dependent on lithium concentration, and an equation of state incorporating reported volume expansion data is used. Simulations explore the influence of active material size and binder stiffness, and suggest delamination as an additional mode of material damage. Computed strain energies and von Mises equivalent stresses are in physically-relevant ranges, comparable to reported yield stresses and adhesion energies, and predicted trends are largely consistent with reported experimental results. It is hoped that insights from this work will support the design of more robust silicon composite electrodes.« less
Concerted Creativity: Emergence in the Socio-(Im)Material and Intangible Practice of Making Music.
Hvidtfeldt, Dan Lund
2018-06-01
The purpose of this article is to explore how the basic conception of 'emergence' informs the study of creativity as a socio-material practice. Initially, the article explicates how creative processes, products and performances involve not only tangible, but also intangible and social elements. Secondly, the theoretical conception of creativity as socio-material and the general philosophical notion of emergence are introduced. Inspired by the idea that a 'whole' is other than the sum of its 'parts' and by examples primarily from the world of music, the article argues that the relationship between subject and object - the main analytical focus of studies on creativity as a socio-material practice - is fundamentally embedded in an emergent process. The article concludes by highlighting how emergence theory acknowledges the performance or product as an intangible material for creative processes of musicians, and that studies of the socio-materiality of creative practices clearly involving tangible, intangible and social elements must refer to the emergent process through which the creative product or performance evolves meaning. The theoretical framework suggested is relevant for researchers interested in exploring how materials, social settings and physical environments are involved in creative processes.
Alginate Particles as Platform for Drug Delivery by the Oral Route: State-of-the-Art.
Sosnik, Alejandro
2014-01-01
Pharmaceutical research and development aims to design products with ensured safety, quality, and efficacy to treat disease. To make the process more rational, coherent, efficient, and cost-effective, the field of Pharmaceutical Materials Science has emerged as the systematic study of the physicochemical properties and behavior of materials of pharmaceutical interest in relation to product performance. The oral route is the most patient preferred for drug administration. The presence of a mucus layer that covers the entire gastrointestinal tract has been exploited to expand the use of the oral route by developing a mucoadhesive drug delivery system that showed a prolonged residence time. Alginic acid and sodium and potassium alginates have emerged as one of the most extensively explored mucoadhesive biomaterials owing to very good cytocompatibility and biocompatibility, biodegradation, sol-gel transition properties, and chemical versatility that make possible further modifications to tailor their properties. The present review overviews the most relevant applications of alginate microparticles and nanoparticles for drug administration by the oral route and discusses the perspectives of this biomaterial in the future.
Depth of manual dismantling analysis: A cost–benefit approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achillas, Ch., E-mail: c.achillas@ihu.edu.gr; Aidonis, D.; Vlachokostas, Ch.
Highlights: ► A mathematical modeling tool for OEMs. ► The tool can be used by OEMs, recyclers of electr(on)ic equipment or WEEE management systems’ regulators. ► The tool makes use of cost–benefit analysis in order to determine the optimal depth of product disassembly. ► The reusable materials and the quantity of metals and plastics recycled can be quantified in an easy-to-comprehend manner. - Abstract: This paper presents a decision support tool for manufacturers and recyclers towards end-of-life strategies for waste electrical and electronic equipment. A mathematical formulation based on the cost benefit analysis concept is herein analytically described in ordermore » to determine the parts and/or components of an obsolete product that should be either non-destructively recovered for reuse or be recycled. The framework optimally determines the depth of disassembly for a given product, taking into account economic considerations. On this basis, it embeds all relevant cost elements to be included in the decision-making process, such as recovered materials and (depreciated) parts/components, labor costs, energy consumption, equipment depreciation, quality control and warehousing. This tool can be part of the strategic decision-making process in order to maximize profitability or minimize end-of-life management costs. A case study to demonstrate the models’ applicability is presented for a typical electronic product in terms of structure and material composition. Taking into account the market values of the pilot product’s components, the manual disassembly is proven profitable with the marginal revenues from recovered reusable materials to be estimated at 2.93–23.06 €, depending on the level of disassembly.« less
NASA Astrophysics Data System (ADS)
Darby-Hobbs, Linda
2013-02-01
There has been a recent push to reframe curriculum and pedagogy in ways that make school more meaningful and relevant to students' lives and perceived needs. This `relevance imperative' is evident in contemporary rhetoric surrounding quality education, and particularly in relation to the junior secondary years where student disengagement with schooling continues to abate. This paper explores how teachers translate this imperative into their mathematics and science teaching. Interview data and critical incidents from classroom practice are used to explore how six teachers attempted to make the subject matter meaningful for their students. Four `Categories of Meaning Making' emerged, highlighting key differences in how the nature of science and mathematics content constrained or enabled linkages between content and students' lifeworlds. While the teachers demonstrated a commitment to humanising the subject at some level, this analysis has shown that expecting teachers to make the curriculum relevant is not unproblematic because the meaning of relevance as a construct is complex, subject-specific, and embedded in understanding the human dimensions of learning, using, and identifying with, content. Through an examination of the construct of relevance and a humanistic turn in mathematics and science literature I argue for an expanded notion of relevance.
Integrating ethics into technical courses: micro-insertion.
Davis, Michael
2006-10-01
Perhaps the most common reason science and engineering faculty give for not including 'ethics' (that is, research ethics, engineering ethics, or some discussion of professional responsibility) in their technical classes is that 'there is no room'. This article 1) describes a technique ('micro-insertion') that introduces ethics (and related topics) into technical courses in small enough units not to push out technical material, 2) explains where this technique might fit into the larger undertaking of integrating ethics into the technical (scientific or engineering) curriculum, and 3) concludes with some quantified evidence (collected over more than a decade) suggesting success. Integrating ethics into science and engineering courses is largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem 'more relevant'.
Developing Culturally Targeted Diabetes Educational Materials for Older Russian-Speaking Immigrants.
Van Son, Catherine R
2014-07-01
Older adults who immigrate late in life face many challenges adapting to a new country. Immigrants bring their cultural beliefs and behaviors with them, which can influence their ability to make dietary changes required when they have type 2 diabetes. Culturally targeted patient education materials are needed to improve immigrants' health literacy and abilities to self-manage diabetes. Currently, there is a scarcity of diabetes patient education materials to meet the educational needs of the Russian-speaking immigrant group. The purpose of this article is to describe a project in which culturally targeted diabetes education materials for older Russian-speaking immigrants were designed and developed. Culturally targeted patient education materials are essential if they are to be accepted and used by clients from different ethnic minority populations. The creation of culturally relevant materials requires a team effort and community stakeholder input. The availability of materials on the internet facilitates access and use by health care providers. Culturally targeted education materials are an important component in addressing health literacy in ethnic minority populations. Next steps require that these materials be evaluated to test their impact on diabetes self-management behaviors and clinical outcomes such as adherence, amount of physical activity, and blood glucose levels. © 2014 The Author(s).
Effects of invalid feedback on learning and feedback-related brain activity in decision-making.
Ernst, Benjamin; Steinhauser, Marco
2015-10-01
For adaptive decision-making it is important to utilize only relevant, valid and to ignore irrelevant feedback. The present study investigated how feedback processing in decision-making is impaired when relevant feedback is combined with irrelevant and potentially invalid feedback. We analyzed two electrophysiological markers of feedback processing, the feedback-related negativity (FRN) and the P300, in a simple decision-making task, in which participants processed feedback stimuli consisting of relevant and irrelevant feedback provided by the color and meaning of a Stroop stimulus. We found that invalid, irrelevant feedback not only impaired learning, it also altered the amplitude of the P300 to relevant feedback, suggesting an interfering effect of irrelevant feedback on the processing of relevant feedback. In contrast, no such effect on the FRN was obtained. These results indicate that detrimental effects of invalid, irrelevant feedback result from failures of controlled feedback processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Mental disorder and legal responsibility: the relevance of stages of decision making.
Kalis, Annemarie; Meynen, Gerben
2014-01-01
The paper discusses the relevance of decision-making models for evaluating the impact of mental disorder on legal responsibility. A three-stage model is presented that analyzes decision making in terms of behavioral control. We argue that understanding dysfunctions in each of the three stages of decision making could provide important insights in the relation between mental disorder and legal responsibility. In particular, it is argued that generating options for action constitutes an important but largely ignored stage of the decision-making process, and that dysfunctions in this early stage might undermine the whole process of making decisions (and thus behavioral control) more strongly than dysfunctions in later stages. Lastly, we show how the presented framework could be relevant to the actual psychiatric assessment of a defendant's decision making within the context of an insanity defense. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evidence and Obesity Prevention: Developing Evidence Summaries to Support Decision Making
ERIC Educational Resources Information Center
Clark, Rachel; Waters, Elizabeth; Armstrong, Rebecca; Conning, Rebecca; Allender, Steven; Swinburn, Boyd
2013-01-01
Public health practitioners make decisions based on research evidence in combination with a variety of other influences. Evidence summaries are one of a range of knowledge translation options used to support evidence-informed decision making. The literature relevant to obesity prevention requires synthesis for it to be accessible and relevant to…
Materials for Paediatric Dentistry. Part 1: Background to the Treatment of Carious Primary Teeth.
Jenkins, Natalie
2015-12-01
Dental caries is a disease that affects many people, including children, and presents numerous challenges to healthcare providers. As clinicians it is important that we consider the advantages and disadvantages of treating carious primary teeth, and make an informed decision about when it is appropriate or not. This paper describes the background to the treatment of carious primary teeth, looking at the differences between primary and permanent teeth, and the relevance of this. It also suggests points to consider when looking at restoration survival studies, as the ability to appraise the literature critically is important for us all in this 'evidence-based' age. CPD/Clinical Relevance: Our early life experiences have the ability to shape our future attitudes and behaviour. Children with carious teeth require careful management so that pain and suffering is minimized, and positive attitudes towards dentistry are fostered.
An interactive parents' guide for feeding preschool-aged children: pilot studies for improvement.
Reznar, Melissa M; Carlson, John S; Hughes, Sheryl O; Pavangadkar, Amol S; Scott, Marci K; Hoerr, Sharon L
2014-05-01
There are few motivational materials to help families with limited resources develop optimal, practical feeding strategies for young children to reduce dietary risk for poor diet and weight status. Formative evaluation strategies consisting of both qualitative and quantitative data helped to refine the parent feeding guide Eat Healthy, Your Children are Watching, A Parent's Guide to Raising a Healthy Eater. An interdisciplinary planning team developed a five-topic, multimedia, interactive guide addressing the strategies most associated with improved diet quality and weight status of children aged 3 to 5 years. Research staff conducted iterative phases of field testing, reformatting, in-depth interviews, and materials testing with Head Start or Supplemental Nutrition Assistance Program-Education caregivers (N=38) of children aged 3 to 5 years during 2011 and 2012. Convergence of feedback from caregivers' interviews and each booklet's attention, relevance, confidence, and satisfaction subscale scores were used to determine and affirm areas for improvement. Lower than desired attention, relevance, confidence, and satisfaction scores (optimal score=5) in 2011 and too much text resulted in revisions and reformatting that improved scores from 3.8 to 4.9 in 2012. The revision of materials to reflect less text, additional white space, checklists of mealtime behaviors, and learning activities for preschool-aged children resulted in dramatically improved materials and greater acceptance by parents, as shown by both quantitative and qualitative evaluations. Formative evaluation procedures involving the use of data-based decision making allowed for the development of intervention materials that met the unique needs of the population served. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Promoting interest and performance in high school science classes.
Hulleman, Chris S; Harackiewicz, Judith M
2009-12-04
We tested whether classroom activities that encourage students to connect course materials to their lives will increase student motivation and learning. We hypothesized that this effect will be stronger for students who have low expectations of success. In a randomized field experiment with high school students, we found that a relevance intervention, which encouraged students to make connections between their lives and what they were learning in their science courses, increased interest in science and course grades for students with low success expectations. The results have implications for the development of science curricula and theories of motivation.
Inventory of research methods for librarianship and informatics
Eldredge, Jonathan D.
2004-01-01
This article defines and describes the rich variety of research designs found in librarianship and informatics practice. Familiarity with the range of methods and the ability to make distinctions between those specific methods can enable authors to label their research reports correctly. The author has compiled an inventory of methods from a variety of disciplines, but with attention to the relevant applications of a methodology to the field of librarianship. Each entry in the inventory includes a definition and description for the particular research method. Some entries include references to resource material and examples. PMID:14762467
NASA Astrophysics Data System (ADS)
Halpern, J. B.
2017-12-01
Libretexts is an online open system for distributing educational materials with over 5 million page views per month. Covering geophysics, chemistry, physics and more it offers a platform for authors and users including faculty and students to access curated educational materials. Currently there are on line texts covering geology, geobiology, natural hazards and understanding the refusal to accept climate change as well as relevant materials in other sections on aquatic and atmospheric chemistry. In addition to "written" materials Libretexts provides access to simulations and demonstrations that are relevant. Most importantly the Libretext project welcomes new contributors. Faculty can use available materials to construct their own texts or supplementary materials in relatively short order. Since all material is covered by a Creative Commons Copyright, material can be added to as needed for teaching.
Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities.
Lin, Yen-Hung; Pattanasattayavong, Pichaya; Anthopoulos, Thomas D
2017-12-01
Following the unprecedented rise in photovoltaic power conversion efficiencies during the past five years, metal-halide perovskites (MHPs) have emerged as a new and highly promising class of solar-energy materials. Their extraordinary electrical and optical properties combined with the abundance of the raw materials, the simplicity of synthetic routes, and processing versatility make MHPs ideal for cost-efficient, large-volume manufacturing of a plethora of optoelectronic devices that span far beyond photovoltaics. Herein looks beyond current applications in the field of energy, to the area of large-area electronics using MHPs as the semiconductor material. A comprehensive overview of the relevant fundamental material properties of MHPs, including crystal structure, electronic states, and charge transport, is provided first. Thereafter, recent demonstrations of MHP-based thin-film transistors and their application in logic circuits, as well as bi-functional devices such as light-sensing and light-emitting transistors, are discussed. Finally, the challenges and opportunities in the area of MHPs-based electronics, with particular emphasis on manufacturing, stability, and health and environmental concerns, are highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Education in the workplace for the physician: clinical management states as an organizing framework.
Greenes, R A
2000-01-01
Medical educators are interested in approaches to making selected relevant knowledge available in the context of problem-based care. This is of value both during the process of care and as a means of organizing information for offline self-study. Four trends in health information technology are relevant to achieving the goal and can be expected to play a growing role in the future. First, health care enterprises are developing approaches for access to information resources related to the care of a patient, including clinical data and images but also communication tools, referral and other logistic tools, decision support, and educational materials. Second, information for patients and methods for patient-doctor interaction and decision making are becoming available. Third, computer-based methods for representation of practice guidelines are being developed to support applications that can incorporate their logic. Finally, considering patients as being in particular "clinical management states" (or CMSs) for specific problems, approaches are being developed to use guidelines as a kind of "predictive" framework to enable development of interfaces for problem-based clinical encounters. The guidelines for a CMS can be used to identify the kinds of resources specifically needed for clinical encounters of that type. As the above trends converge to produce problem-specific environments, professional specialty organizations and continuing medical education course designers will need to focus energies on organizing and updating medical knowledge to make it available in CMS-specific contexts.
Clinical studies in restorative dentistry: New directions and new demands.
Opdam, N J M; Collares, K; Hickel, R; Bayne, S C; Loomans, B A; Cenci, M S; Lynch, C D; Correa, M B; Demarco, F; Schwendicke, F; Wilson, N H F
2018-01-01
Clinical research of restorative materials is confounded by problems of study designs, length of trials, type of information collected, and costs for trials, despite increasing numbers and considerable development of trials during the past 50 years. This opinion paper aims to discuss advantages and disadvantages of different study designs and outcomes for evaluating survival of dental restorations and to make recommendations for future study designs. Advantages and disadvantages of randomized trials, prospective and retrospective longitudinal studies, practice-based, pragmatic and cohort studies are addressed and discussed. The recommendations of the paper are that clinical trials should have rational control groups, include confounders such as patient risk factors in the data and analysis and should use outcome parameters relevant for profession and patients. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Molecularly Imprinted Polymers for Ochratoxin A Extraction and Analysis
Yu, Jorn C. C.; Lai, Edward P. C.
2010-01-01
Molecularly imprinted polymers (MIPs) are considered as polymeric materials that mimic the functionality of antibodies. MIPs have been utilized for a wide variety of applications in chromatography, solid phase extraction, immunoassays, and sensor recognition. In this article, recent advances of MIPs for the extraction and analysis of ochratoxins are discussed. Selection of functional monomers to bind ochratoxin A (OTA) with high affinities, optimization of extraction procedures, and limitations of MIPs are compared from different reports. The most relevant examples in the literature are described to clearly show how useful these materials are. Strategies on MIP preparation and schemes of analytical methods are also reviewed in order to suggest the next step that would make better use of MIPs in the field of ochratoxin research. The review ends by outlining the remaining issues and impediments. PMID:22069649
Leadership in British nursing: a historical dimension.
Lorentzon, M; Bryant, J
1997-09-01
A historical overview of nurse leadership in the late 19th and late 20th centuries is presented, supported by relevant material from the literature. The 19th century material revealed the following main themes: emphasis on practical and domestic aspects of management; prominent input of religious ideals and social conscience and, autocratic and feminized style of leadership. The main themes in the contemporary literature examined were: role models in history, dysfunctional leadership styles, importance of knowledge, gender as an influencing factor on nurse leadership and threats to the autonomy of nurse leaders. It was concluded that formal nurse professionalization has progressed steadily during the past hundred years with associated evolution of nurse leaders to fit in with contemporary needs. It is hoped that future policies for nursing will encourage decision-making nearer the 'bed-side', more resource-driven care and value-based leadership.
Magnetic hydroxyapatite: a promising multifunctional platform for nanomedicine application
Mondal, Sudip; Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Kim, Hye Hyun; Seo, Hansu; Lee, Kang Dae; Oh, Junghwan
2017-01-01
In this review, specific attention is paid to the development of nanostructured magnetic hydroxyapatite (MHAp) and its potential application in controlled drug/gene delivery, tissue engineering, magnetic hyperthermia treatment, and the development of contrast agents for magnetic resonance imaging. Both magnetite and hydroxyapatite materials have excellent prospects in nanomedicine with multifunctional therapeutic approaches. To date, many research articles have focused on biomedical applications of nanomaterials because of which it is very difficult to focus on any particular type of nanomaterial. This study is possibly the first effort to emphasize on the comprehensive assessment of MHAp nanostructures for biomedical applications supported with very recent experimental studies. From basic concepts to the real-life applications, the relevant characteristics of magnetic biomaterials are patented which are briefly discussed. The potential therapeutic and diagnostic ability of MHAp-nanostructured materials make them an ideal platform for future nanomedicine. We hope that this advanced review will provide a better understanding of MHAp and its important features to utilize it as a promising material for multifunctional biomedical applications. PMID:29200851
Panzarasa, Guido; Osypova, Alina; Consolati, Giovanni; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W M R
2018-01-23
Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene- alt -maleic anhydride) (P(E- alt -MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E- alt -MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.
Direct X-ray detection with hybrid solar cells based on organolead halide perovskites
NASA Astrophysics Data System (ADS)
Gill, Hardeep Singh; Elshahat, Bassem; Sajo, Erno; Kumar, Jayant; Kokil, Akshay; Zygmanski, Piotr; Li, Lian; Mosurkal, Ravi
2014-03-01
Organolead halide perovskite materials are attracting considerable interest due to their exceptional opto-electronic properties, such as, high charge carrier mobilities, high exciton diffusion length, high extinction coefficients and broad-band absorption. These interesting properties have enabled their application in high performance hybrid photovoltaic devices. The high Z value of their constituents also makes these materials efficient for absorbing X-rays. Here we will present on the efficient use of hybrid solar cells based on organolead perovskite materials as X-ray detectors. Hybrid solar cells based on CH3NH3PbI3 were fabricated using facile processing techniques on patterned indium tin oxide coated glass substrates. The solar cells typically had a planar configuration of ITO/CH3NH3PbI3/P3HT/Ag. High sensitivity for X-rays due to high Z value, larger carrier mobility and better charge collection was observed. Detecting X-rays with energies relevant to medical oncology applications opens up the potential for diagnostic imaging applications.
Effect of high fluence neutron irradiation on transport properties of thermoelectrics
NASA Astrophysics Data System (ADS)
Wang, H.; Leonard, K. J.
2017-07-01
Thermoelectric materials were subjected to high fluence neutron irradiation in order to understand the effect of radiation damage on transport properties. This study is relevant to the NASA Radioisotope Thermoelectric Generator (RTG) program in which thermoelectric elements are exposed to radiation over a long period of time in space missions. Selected n-type and p-type bismuth telluride materials were irradiated at the High Flux Isotope Reactor with a neutron fluence of 1.3 × 1018 n/cm2 (E > 0.1 MeV). The increase in the Seebeck coefficient in the n-type material was partially off-set by an increase in electrical resistivity, making the power factor higher at lower temperatures. For the p-type materials, although the Seebeck coefficient was not affected by irradiation, electrical resistivity decreased slightly. The figure of merit, zT, showed a clear drop in the 300-400 K range for the p-type material and an increase for the n-type material. Considering that the p-type and n-type materials are connected in series in a module, the overall irradiation damages at the device level were limited. These results, at neutron fluences exceeding a typical space mission, are significant to ensure that the radiation damage to thermoelectrics does not affect the performance of RTGs.
The effectiveness of knowledge translation strategies used in public health: a systematic review
2012-01-01
Background Literature related to the effectiveness of knowledge translation (KT) strategies used in public health is lacking. The capacity to seek, analyze, and synthesize evidence-based information in public health is linked to greater success in making policy choices that have the best potential to yield positive outcomes for populations. The purpose of this systematic review is to identify the effectiveness of KT strategies used to promote evidence-informed decision making (EIDM) among public health decision makers. Methods A search strategy was developed to identify primary studies published between 2000–2010. Studies were obtained from multiple electronic databases (CINAHL, Medline, EMBASE, and the Cochrane Database of Systematic Reviews). Searches were supplemented by hand searching and checking the reference lists of included articles. Two independent review authors screened studies for relevance, assessed methodological quality of relevant studies, and extracted data from studies using standardized tools. Results After removal of duplicates, the search identified 64, 391 titles related to KT strategies. Following title and abstract review, 346 publications were deemed potentially relevant, of which 5 met all relevance criteria on full text screen. The included publications were of moderate quality and consisted of five primary studies (four randomized controlled trials and one interrupted time series analysis). Results were synthesized narratively. Simple or single KT strategies were shown in some circumstances to be as effective as complex, multifaceted ones when changing practice including tailored and targeted messaging. Multifaceted KT strategies led to changes in knowledge but not practice. Knowledge translation strategies shown to be less effective were passive and included access to registries of pre-processed research evidence or print materials. While knowledge brokering did not have a significant effect generally, results suggested that it did have a positive effect on those organizations that at baseline perceived their organization to place little value on evidence-informed decision making. Conclusions No singular KT strategy was shown to be effective in all contexts. Conclusions about interventions cannot be taken on their own without considering the characteristics of the knowledge that was being transferred, providers, participants and organizations. PMID:22958371
PROSTATE REGULATION: MODELING ENDOGENOUS ...
Prostate function is an important indicator of androgen status in toxicological studies making predictive modeling of the relevant pharmacokinetics and pharmacodynamics desirable. Prostate function is an important indicator of androgen status in toxicological studies making predictive modeling of the relevant pharmacokinetics and pharmacodynamics desirable.
The making of evidence-informed health policy in Cambodia: knowledge, institutions and processes.
Liverani, Marco; Chheng, Kannarath; Parkhurst, Justin
2018-01-01
In global health discussions, there have been widespread calls for health policy and programme implementation to be informed by the best available evidence. However, recommendations in the literature on knowledge translation are often decontextualised, with little attention to the local systems of institutions, structures and practices which can direct the production of evidence and shape whether or how it informs health decisions. This article explores these issues in the country setting of Cambodia, where the Ministry of Health has explicitly championed the language of evidence-based approaches to policy and planning. Research for this paper combined multiple sources and material, including in-depth interviews with key informants in Phnom Penh and the analysis of documentary material and publications. Data collection and analysis focused on two key domains in evidence advisory systems: domestic capacities to generate health policy-relevant evidence and institutional mechanisms to monitor, evaluate and incorporate evidence in the policy process. We identified a number of structural arrangements that may increasingly work to facilitate the supply of health-related data and information, and their use to inform policy and planning. However, other trends and features appear to be more problematic, including gaps between research and public health priorities in the country, the fragmented nature of research activities and information systems, the lack of a national policy to support and guide the production and use of evidence for health policy, and challenges to the use of evidence for intersectoral policy-making. In Cambodia, as in other low/middle-income countries, continued investments to increase the supply and quality of health data and information are needed, but greater attention should be paid to the enabling institutional environment to ensure relevance of health research products and effective knowledge management.
Application of Hemp Hurds in the Preparation of Biocomposites
NASA Astrophysics Data System (ADS)
Cigasova, J.; Stevulova, N.; Schwarzova, I.; Sicakova, A.; Junak, J.
2015-11-01
Hemp is a controversial bio-product with promising performance as a sustainable building material. The fact that hemp is an organic, natural product makes it highly relevant in the present reality of global pollution and struggle for coping with planetary warming. The construction sector is among the leading industries when it comes to energy consumption, release of CO2; it is responsible for great amounts of waste and pollution. The research and implementation of sustainable building materials is a crucial necessity in the modern times. Hemp (Cannabis sativa) is an agricultural crop that can be used as a building material in combination with conventional or alternative binders. Hemp composites have many advantages as a building material, but it is not load-bearing and must be used in combination with a loadbearing wooden frame. Despite this disadvantage, hemp composite materials offer several of appropriate properties, namely: low density, good thermal insulation, antiseptic and breathability. This paper studies the possibility of preparing the lightweight composites based on hemp hurds (treated and/or untreated) as a filler and alternative MgO-cement as a binder. Properties of hemp composites are characterized by mechanical and physical methods.
NASA Astrophysics Data System (ADS)
Kuchipudi, Suresh Chandra
Additive manufacturing (AM) also known as 3D printing has tremendous advancements in recent days with a vast number of applications in industrial, automotive, architecture, consumer projects, fashion, toys, food, art, etc. Composite materials are widely used in structures with weight as a critical factor especially in aerospace industry. Recently, additive manufacturing technology, a rapidly growing innovative technology, has gained lot of importance in making composite materials. The properties of composite materials depend upon the properties of constituent's matrix and fiber. There is lot of research on effect of fiber orientation on mechanical properties of composite materials made using conventional manufacturing methods. It will be interesting and relevant to study the relationship between the fiber orientation and fiber volume with mechanical properties of additively manufactured composite materials. This thesis work presents experimental investigation of mechanical behavior like tensile strength and fatigue life with variation in fiber orientation and fiber volume fraction of 3D printed composite materials. The aim is to study the best combination of volume fraction of fiber and fiber orientation that has better fatigue strength for additive manufactured composite materials. Using this study, we can decide the type of orientation and volume percent for desired properties. This study also finds the range of fatigue limits of 3d printed composite materials.
49 CFR 845.25 - Examination of witnesses.
Code of Federal Regulations, 2010 CFR
2010-10-01
... witnesses. (b) Materiality, relevancy, and competency of witness testimony, exhibits, or physical evidence... inquiry, opportunity shall be given to show materiality, relevancy, or competency of the testimony or...
Marusich, Laura R; Bakdash, Jonathan Z; Onal, Emrah; Yu, Michael S; Schaffer, James; O'Donovan, John; Höllerer, Tobias; Buchler, Norbou; Gonzalez, Cleotilde
2016-03-01
We investigated how increases in task-relevant information affect human decision-making performance, situation awareness (SA), and trust in a simulated command-and-control (C2) environment. Increased information is often associated with an improvement of SA and decision-making performance in networked organizations. However, previous research suggests that increasing information without considering the task relevance and the presentation can impair performance. We used a simulated C2 task across two experiments. Experiment 1 varied the information volume provided to individual participants and measured the speed and accuracy of decision making for task performance. Experiment 2 varied information volume and information reliability provided to two participants acting in different roles and assessed decision-making performance, SA, and trust between the paired participants. In both experiments, increased task-relevant information volume did not improve task performance. In Experiment 2, increased task-relevant information volume reduced self-reported SA and trust, and incorrect source reliability information led to poorer task performance and SA. These results indicate that increasing the volume of information, even when it is accurate and task relevant, is not necessarily beneficial to decision-making performance. Moreover, it may even be detrimental to SA and trust among team members. Given the high volume of available and shared information and the safety-critical and time-sensitive nature of many decisions, these results have implications for training and system design in C2 domains. To avoid decrements to SA, interpersonal trust, and decision-making performance, information presentation within C2 systems must reflect human cognitive processing limits and capabilities. © 2016, Human Factors and Ergonomics Society.
Printing Fabrication of Bulk Heterojunction Solar Cells and In Situ Morphology Characterization.
Liu, Feng; Ferdous, Sunzida; Wan, Xianjian; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Russell, Thomas P
2017-01-29
Polymer-based materials hold promise as low-cost, flexible efficient photovoltaic devices. Most laboratory efforts to achieve high performance devices have used devices prepared by spin coating, a process that is not amenable to large-scale fabrication. This mismatch in device fabrication makes it difficult to translate quantitative results obtained in the laboratory to the commercial level, making optimization difficult. Using a mini-slot die coater, this mismatch can be resolved by translating the commercial process to the laboratory and characterizing the structure formation in the active layer of the device in real time and in situ as films are coated onto a substrate. The evolution of the morphology was characterized under different conditions, allowing us to propose a mechanism by which the structures form and grow. This mini-slot die coater offers a simple, convenient, material efficient route by which the morphology in the active layer can be optimized under industrially relevant conditions. The goal of this protocol is to show experimental details of how a solar cell device is fabricated using a mini-slot die coater and technical details of running in situ structure characterization using the mini-slot die coater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Lintao; Nimlos, Mark R.; Robichaud, David J.
Hierarchical mesoporous zeolites exhibit higher catalytic activities and longer lifetime compared to the traditional microporous zeolites due to improved diffusivity of substrate molecules and their enhanced access to the zeolite active sites. Understanding diffusion of biomass pyrolysis vapors and their upgraded products in such materials is fundamentally important during catalytic fast pyrolysis (CFP) of lignocellulosic biomass, since diffusion makes major contribution to determine shape selectivity and product distribution. However, diffusivities of biomass relevant species in hierarchical mesoporous zeolites are poorly characterized, primarily due to the limitations of the available experimental technology. In this work, molecular dynamics (MD) simulations are utilizedmore » to investigate the diffusivities of several selected coke precursor molecules, benzene, naphthalene, and anthracene, in hierarchical mesoporous H-ZSM-5 zeolite. The effects of temperature and size of mesopores on the diffusivity of the chosen model compounds are examined. The simulation results demonstrate that diffusion within the microspores as well as on the external surface of mesoporous H-ZSM-5 dominates only at low temperature. At pyrolysis relevant temperatures, mass transfer is essentially conducted via diffusion along the mesopores. Additionally, the results illustrate the heuristic diffusion model, such as the extensively used Knudsen diffusion, overestimates the diffusion of bulky molecules in the mesopores, thus making MD simulation a powerful and compulsory approach to explore diffusion in zeolites.« less
Which Features Make Illustrations in Multimedia Learning Interesting?
ERIC Educational Resources Information Center
Magner, Ulrike Irmgard Elisabeth; Glogger, Inga; Renkl, Alexander
2016-01-01
How can illustrations motivate learners in multimedia learning? Which features make illustrations interesting? Beside the theoretical relevance of addressing these questions, these issues are practically relevant when instructional designers are to decide which features of illustrations can trigger situational interest irrespective of individual…
12 CFR 1102.30 - Rules of evidence.
Code of Federal Regulations, 2010 CFR
2010-01-01
... in this section, relevant, material and reliable evidence that is not unduly repetitive is admissible... relevant, material, reliable and not unduly repetitive. (b) Stipulations. Any party may stipulate in...
12 CFR 1102.30 - Rules of evidence.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in this section, relevant, material and reliable evidence that is not unduly repetitive is admissible... relevant, material, reliable and not unduly repetitive. (b) Stipulations. Any party may stipulate in...
Dy, Sydney M; Purnell, Tanjala S
2012-02-01
High-quality provider-patient decision-making is key to quality care for complex conditions. We performed an analysis of key elements relevant to quality and complex, shared medical decision-making. Based on a search of electronic databases, including Medline and the Cochrane Library, as well as relevant articles' reference lists, reviews of tools, and annotated bibliographies, we developed a list of key concepts and applied them to a decision-making example. Key concepts identified included provider competence, trustworthiness, and cultural competence; communication with patients and families; information quality; patient/surrogate competence; and roles and involvement. We applied this concept list to a case example, shared decision-making for live donor kidney transplantation, and identified the likely most important concepts as provider and cultural competence, information quality, and communication with patients and families. This concept list may be useful for conceptualizing the quality of complex shared decision-making and in guiding research in this area. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Jiang, Weilin
2014-11-01
MAX phases, such as titanium silicon carbide (Ti 3SiC 2), have a unique combination of both metallic and ceramic properties, which make them attractive for potential nuclear applications. Ti 3SiC 2 has been suggested in the literature as a possible fuel cladding material. Prior to the application, it is necessary to investigate diffusivities of fission products in the ternary compound at elevated temperatures. This study attempts to obtain relevant data and make an initial assessment for Ti 3SiC 2. Ion implantation was used to introduce fission product surrogates (Ag and Cs) and a noble metal (Au) in Ti 3SiC 2,more » SiC, and a dual-phase nanocomposite of Ti 3SiC 2/SiC synthesized at PNNL. Thermal annealing and in-situ Rutherford backscattering spectrometry (RBS) were employed to study the diffusivity of the various implanted species in the materials. In-situ RBS study of Ti 3SiC 2 implanted with Au ions at various temperatures was also performed. The experimental results indicate that the implanted Ag in SiC is immobile up to the highest temperature (1273 K) applied in this study; in contrast, significant out-diffusion of both Ag and Au in MAX phase Ti 3SiC 2 occurs during ion implantation at 873 K. Cs in Ti 3SiC 2 is found to diffuse during post-irradiation annealing at 973 K, and noticeable Cs release from the sample is observed. This study may suggest caution in using Ti 3SiC 2 as a fuel cladding material for advanced nuclear reactors operating at very high temperatures. Further studies of the related materials are recommended.« less
Manimekalai: The ancient Buddhist Tamil epic, its relevance to psychiatry
Somasundaram, Ottilingam; Tejus Murthy, A. G.
2016-01-01
This article refers to materials of psychiatric interest found in the Manimekalai written by the 2nd Century CE Buddhist poet Sathanar. From the early description of a wandering psychotic in the streets of Pukar, the ancient maritime capital of the Cholas it is opined that this description fits that of present-day schizophrenia. A drunkard making fun of a Jain monk and a cross-dressed individual are also found in the same streets. Manimekalai's request to the Chola king to convert the prison to a place of piety with Buddhist monks is mentioned. Lord Buddha's teachings on the compassionate way of life are presented. PMID:27385862
Senanayake, S D; Idriss, H
2006-01-31
We report the conversion of a large fraction of formamide (NH(2)CHO) to high-molecular-weight compounds attributed to nucleoside bases on the surface of a TiO(2) (001) single crystal in ultra-high vacuum conditions. If true, we present previously unreported evidence for making biologically relevant molecules from a C1 compound on any single crystal surface in high vacuum and in dry conditions. An UV light of 3.2 eV was necessary to make the reaction. This UV light excites the semiconductor surface but not directly the adsorbed formamide molecules or the reaction products. There thus is no need to use high energy in the form of photons or electrical discharge to make the carbon-carbon and carbon-nitrogen bonds necessary for life. Consequently, the reaction products may accumulate with time and may not be subject to decomposition by the excitation source. The formation of these molecules, by surface reaction of formamide, is proof that some minerals in the form of oxide semiconductors are active materials for making high-molecular-weight organic molecules that may have acted as precursors for biological compounds required for life in the universe.
Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo
2017-10-01
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for opto-electronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the charge transport in black phosphorus at room temperature; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs). The effect opens up opportunities for future development of electro-mechanical transducers based on black phosphorus, and we demonstrate strain gauges constructed from black phosphorus thin crystals.
Strain-Modulated Bandgap and Piezo-Resistive Effect in Black Phosphorus Field-Effect Transistors.
Zhang, Zuocheng; Li, Likai; Horng, Jason; Wang, Nai Zhou; Yang, Fangyuan; Yu, Yijun; Zhang, Yu; Chen, Guorui; Watanabe, Kenji; Taniguchi, Takashi; Chen, Xian Hui; Wang, Feng; Zhang, Yuanbo
2017-10-11
Energy bandgap largely determines the optical and electronic properties of a semiconductor. Variable bandgap therefore makes versatile functionality possible in a single material. In layered material black phosphorus, the bandgap can be modulated by the number of layers; as a result, few-layer black phosphorus has discrete bandgap values that are relevant for optoelectronic applications in the spectral range from red, in monolayer, to mid-infrared in the bulk limit. Here, we further demonstrate continuous bandgap modulation by mechanical strain applied through flexible substrates. The strain-modulated bandgap significantly alters the density of thermally activated carriers; we for the first time observe a large piezo-resistive effect in black phosphorus field-effect transistors (FETs) at room temperature. The effect opens up opportunities for future development of electromechanical transducers based on black phosphorus, and we demonstrate an ultrasensitive strain gauge constructed from black phosphorus thin crystals.
Pilot Project for Spaceborne Massive Optical Storage Devices
NASA Technical Reports Server (NTRS)
Chen, Y. J.
1996-01-01
A space bound storage device has many special requirements. In addition to large storage capacity, fas read/ write time, and high reliability, it also needs to have small volume, light weight, low power consumption, radiation hardening, ability to operate in extreme temperature ranges, etc. Holographic optical recording technology, which has been making major advancements in recent years, is an extremely promising candidate. The goal of this pilot project is to demonstrate a laboratory bench-top holographic optical recording storage system (HORSS) based on nonlinear polymer films 1 and/or other advanced photo-refractive materials. This system will be used as a research vehicle to study relevant optical properties of novel holographic optical materials, to explore massive optical storage technologies based on the photo-refractive effect and to evaluate the feasibility of developing a massive storage system, based on holographic optical recording technology, for a space bound experiment in the near future.
Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations
NASA Astrophysics Data System (ADS)
Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.
2005-09-01
Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each of the four steps of DNA replication included in the instructional presentation was represented as a text slide, a simple 2D graphic, and a rich 3D graphic. Participants were middle grade girls ( n = 21) attending a summer math and science program. Students' eye movements were measured as they viewed the representations. Participants were interviewed following instruction to assess their perceived salient features. Eye tracking fixation counts indicated that the same features (look zones) in the corresponding 2D and 3D graphics had different salience. The interviews revealed that students used different characteristics such as color, shape, and complexity to make sense of the graphics. The results of this study have implications for the design of instructional representations. Since many students have difficulty distinguishing between relevant and irrelevant information, cueing and directing student attention through the instructional representation could allow cognitive resources to be directed to the most relevant material.
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
Patient Involvement in Health Care Decision Making: A Review
Vahdat, Shaghayegh; Hamzehgardeshi, Leila; Hessam, Somayeh; Hamzehgardeshi, Zeinab
2014-01-01
Background: Patient participation means involvement of the patient in decision making or expressing opinions about different treatment methods, which includes sharing information, feelings and signs and accepting health team instructions. Objectives: Given the importance of patient participation in healthcare decision making which empowers patients and improves services and health outcomes, this study was performed to review previous studies on patient participation in healthcare decision making. Materials and Methods: To prepare this narrative review article, researchers used general and specific search engines, as well as textbooks addressing this subject for an in-depth study of patient involvement in healthcare decision-making. As a result, 35 (out of 100 relevant) articles and also two books were selected for writing this review article. Results: Based on the review of articles and books, topics were divided into six general categories: definition of participation, importance of patient participation, factors influencing participation of patients in healthcare decisions, method of patient participation, tools for evaluating participation, and benefits and consequences of patient participation in health care decision-making. Conclusions: In most studies, factors influencing patient participation consisted of: factors associated with health care professionals such as doctor-patient relationship, recognition of patient’s knowledge, allocation of sufficient time for participation, and also factors related to patients such as having knowledge, physical and cognitive ability, and emotional connections, beliefs, values and their experiences in relation to health services. PMID:24719703
Code of Federal Regulations, 2010 CFR
2010-07-01
... verbatim. Objections to relevancy or materiality of testimony, or to errors and irregularities occurring at... therefor and specifically identify the documents or objects and their relevance and materiality to the...
Clinical teaching with emotional intelligence: A teaching toolbox
Omid, Athar; Haghani, Fariba; Adibi, Peyman
2016-01-01
Background: Emotional intelligence (EI) helps humans to perceive their own and others’ emotions. It helps to make better interpersonal communication that consequently leads to an increase in everyday performance and professional career. Teaching, particularly teaching in the clinical environment, is among the professions that need a high level of EI due to its relevance to human interactions. Materials and Methods: We adopted EI competencies with characteristics of a good clinical teacher. As a result, we extracted 12 strategies and then reviewed the literatures relevant to these strategies. Results: In the present article, 12 strategies that a clinical teacher should follow to use EI in her/his teaching were described. Conclusion: To apply EI in clinical settings, a teacher should consider all the factors that can bring about a more positive emotional environment and social interactions. These factors will increase students’ learning, improve patients’ care, and maintain her/his well-being. In addition, he/she will be able to evaluate her/his teaching to improve its effectiveness. PMID:27904573
Kreibig, Sylvia D
2017-09-01
The emerging field of the psychophysiology of motivation bears many new findings, but little replication. Using my own data (Kreibig, Gendolla, & Scherer, 2012), I test the reproducibility of this specific study, provide the necessary materials to make the study reproducible, and instantiate proper reproducibility practices that other researchers can use as a road map toward the same goal. In addition, based on re-analyses of the original data, I report new evidence for the motivational effects of emotional responding to performance feedback. Specifically, greater appraisal of goal relevance amplifies the emotional response to events appraised as conducive (i.e., effort mobilization), but not to those appraised as obstructive to a person's goals (i.e., effort withdrawal). I conclude by providing a ten-step road map of best practices to facilitate computational reproducibility for future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
I PREPARE: development and clinical utility of an environmental exposure history mnemonic.
Paranzino, Grace K; Butterfield, Patricia; Nastoff, Teresa; Ranger, Cherryll
2005-01-01
The I PREPARE environmental exposure history mnemonic is a quick reference tool created for primary care providers. Health care providers (N = 159) were asked to evaluate a prototype mnemonic, to suggest new health history questions, and to propose the deletion of less relevant questions. The goal of this evaluation was to create a practical and clinically relevant mnemonic, rather than to obtain quantitative estimates of validity. The final I PREPARE mnemonic cues the provider to "Investigate potential exposures;" ask questions related to "Present work," "Residence," "Environmental concerns," "Past work," and "Activities;" provide "Referrals and resources;" and "Educate" the patient by reviewing a checklist of strategies to prevent or minimize exposures. The sequence of I PREPARE makes intuitive sense by cueing the provider to ask specific questions and provide educational materials to the patient. National improvements in the quality of environmental exposure history data are predicated in part on the creation of simple and convenient tools for use in clinical practice.
A target development program for beamhole spallation neutron sources in the megawatt range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, G.S.; Atchison, F.
1995-10-01
Spallation sources as an alternative to fission neutron sources have been operating successfully up to 160 kW of beam power. With the next generation of these facilities aiming at the medium power range between 0.5 and 5 MW, loads on the targets will be high enough to make present experience of little relevance. With the 0.6 MW continuous facility SINQ under construction, and a 5 MW pulsed facility (ESS) under study in Europe, a research and development program is about to be started which aimes at assessing the limits of stationary and moving solid targets and the feasibility and potentialmore » benefits of flowing liquid metal targets. Apart from theoretical work and examination of existing irradiated material, including used targets from ISIS, it is intended to take advantage of the SINQ solid rod target design to improve the relevant data base by building the target in such a way that individual rods can be equipped as irradiation capsules.« less
Pair Comparison Study of the Relevance of Nine Basic Science Courses
ERIC Educational Resources Information Center
Spilman, Edra L.; Spilman, Helen W.
1975-01-01
Reports a survey study in which basic science courses were rated according to relevance. Notes approaches for making the anatomy disciplines more relevant because results showed them of lowest relevancy compared with physiology, pathology, and pharmacology which were rated of highest relevance and with biochemistry and microbiology which fell…
Child Decision-Making: On the Burden of Predecisional Information Search
ERIC Educational Resources Information Center
Lindow, Stefanie; Betsch, Tilmann
2018-01-01
In many decision situations, individuals must actively search information before they can make a satisfying choice. In such instances, individuals must be aware of the fact that not all information may be equally relevant for the choice at hand--thus, individuals should weight information by its respective relevance. We compared children's and…
NASA Technical Reports Server (NTRS)
Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.
2010-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings
Controlling conflict from interfering long-term memory representations.
Jost, Kerstin; Khader, Patrick H; Düsel, Peter; Richter, Franziska R; Rohde, Kristina B; Bien, Siegfried; Rösler, Frank
2012-05-01
Remembering is more than an activation of a memory trace. As retrieval cues are often not uniquely related to one specific memory, cognitive control should come into play to guide selective memory retrieval by focusing on relevant while ignoring irrelevant information. Here, we investigated, by means of EEG and fMRI, how the memory system deals with retrieval interference arising when retrieval cues are associated with two material types (faces and spatial positions), but only one is task-relevant. The topography of slow EEG potentials and the fMRI BOLD signal in posterior storage areas indicated that in such situations not only the relevant but also the irrelevant material becomes activated. This results in retrieval interference that triggers control processes mediated by the medial and lateral PFC, which are presumably involved in biasing target representations by boosting the task-relevant material. Moreover, memory-based conflict was found to be dissociable from response conflict that arises when the relevant and irrelevant materials imply different responses. The two types of conflict show different activations in the medial frontal cortex, supporting the claim of domain-specific prefrontal control systems.
Fabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review.
Nagels, Steven; Deferme, Wim
2018-03-03
Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials. These basic principles however have spawned a myriad of materials systems wherein future application engineers need to find their way. This paper reports a literature study on the spectrum of different approaches towards stretchable electronics, discusses standardization of characteristic tests together with their reports and estimates matureness for industry. Patterned copper foils that are embedded in elastomeric sheets, which are closest to conventional electronic circuits processing, make up one end of the spectrum. Furthest from industry are the more recent circuits based on intrinsically stretchable liquid metals. These show extremely promising results, however, as a technology, liquid metal is not mature enough to be adapted. Printing makes up the transition between both ends, and is also well established on an industrial level, but traditionally not linked to creating electronics. Even though a certain level of maturity was found amongst the approaches that are reviewed herein, industrial adaptation for consumer electronics remains unpredictable without a designated break-through commercial application.
Fabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review
Nagels, Steven
2018-01-01
Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials. These basic principles however have spawned a myriad of materials systems wherein future application engineers need to find their way. This paper reports a literature study on the spectrum of different approaches towards stretchable electronics, discusses standardization of characteristic tests together with their reports and estimates matureness for industry. Patterned copper foils that are embedded in elastomeric sheets, which are closest to conventional electronic circuits processing, make up one end of the spectrum. Furthest from industry are the more recent circuits based on intrinsically stretchable liquid metals. These show extremely promising results, however, as a technology, liquid metal is not mature enough to be adapted. Printing makes up the transition between both ends, and is also well established on an industrial level, but traditionally not linked to creating electronics. Even though a certain level of maturity was found amongst the approaches that are reviewed herein, industrial adaptation for consumer electronics remains unpredictable without a designated break-through commercial application. PMID:29510497
Cano, Santiago
2018-01-01
Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented. PMID:29783705
Gonzalez-Gutierrez, Joamin; Cano, Santiago; Schuschnigg, Stephan; Kukla, Christian; Sapkota, Janak; Holzer, Clemens
2018-05-18
Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.
Recasting particle physics by entangling physics, history and philosophy
NASA Astrophysics Data System (ADS)
Bertozzi, Eugenio; Levrini, Olivia
2016-05-01
-1The paper presents the design process we followed to recast particle physics so as to make it conceptually relevant for secondary school students. In this design process, the concept of symmetry was assumed as core-idea because of its structural and foundational role in particle physics, its crosscutting character and its epistemological and philosophical value. The first draft of the materials was tested in a pilot-study which involved 19 students of a regular class (grade 13) of an Italian school. The data analysis showed that the students were in their "regime of competence" for grasping subtle nuances of the materials and for providing important hints for revising them. In particular, students' reactions brought into light the need of clarifying the "foundational" character that symmetry attained in twentieth-century physics. The delicate step of re-thinking the materials required the researchers to articulate the complex relationship between researches on physics teaching, history and philosophy of physics. This analytic phase resulted in a version of the materials which implies the students to be guided to grasp the meaning of symmetry as normative principle in twentieth-century physics, throughout the exploration of the different meanings assumed by symmetry over time. The whole process led also to the production of an essential, on-line version, of the materials targeted to a wider audience.
Modifying ``Six Ideas that Shaped Physics'' for a Life-Science major audience at Hope College
NASA Astrophysics Data System (ADS)
Mader, Catherine
2005-04-01
The ``Six Ideas That Shaped Physics'' textbook has been adapted and used for use in the algebra-based introductory physics course for non-physics science majors at Hope College. The results of the first use will be presented. Comparison of FCI for pre and post test scores will be compared with results from 8 years of results from both the algebra-based course and the calculus-based course (when we first adopted ``Six Ideas that Shaped Physcs" for the Calculus-based course). In addition, comparison on quantitative tests and homework problems with prior student groups will also be made. Because a large fraction of the audience in the algebra-based course is life-science majors, a goal of this project is to make the material relevant for these students. Supplemental materials that emphasize the connection between the life sciences and the fundamental physics concepts are being be developed to accompany the new textbook. Samples of these materials and how they were used (and received) during class testing will be presented.
Making data matter: Voxel printing for the digital fabrication of data across scales and domains.
Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri
2018-05-01
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
Walther, Andreas; Bjurhager, Ingela; Malho, Jani-Markus; Pere, Jaakko; Ruokolainen, Janne; Berglund, Lars A; Ikkala, Olli
2010-08-11
Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.
Osypova, Alina; Quasso, Fiorenza; Soliveri, Guido; Ribera, Javier; Schwarze, Francis W. M. R.
2018-01-01
Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride) (P(E-alt-MA)). Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye) for a wide pH range (from pH 2 to 12) and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA), the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes. PMID:29360734
NASA Astrophysics Data System (ADS)
Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf
2016-04-01
We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.
Three-Dimensional Bioprinting Materials with Potential Application in Preprosthetic Surgery.
Fahmy, Mina D; Jazayeri, Hossein E; Razavi, Mehdi; Masri, Radi; Tayebi, Lobat
2016-06-01
Current methods in handling maxillofacial defects are not robust and are highly dependent on the surgeon's skills and the inherent potential in the patients' bodies for regenerating lost tissues. Employing custom-designed 3D printed scaffolds that securely and effectively reconstruct the defects by using tissue engineering and regenerative medicine techniques can revolutionize preprosthetic surgeries. Various polymers, ceramics, natural and synthetic bioplastics, proteins, biomolecules, living cells, and growth factors as well as their hybrid structures can be used in 3D printing of scaffolds, which are still under development by scientists. These scaffolds not only are beneficial due to their patient-specific design, but also may be able to prevent micromobility, make tension free soft tissue closure, and improve vascularity. In this manuscript, a review of materials employed in 3D bioprinting including bioceramics, biopolymers, composites, and metals is conducted. A discussion of the relevance of 3D bioprinting using these materials for craniofacial interventions is included as well as their potential to create analogs to craniofacial tissues, their benefits, limitations, and their application. © 2016 by the American College of Prosthodontists.
The Ocean Acidification Curriculum Collection - sharing ocean science resources for k-12 classrooms
NASA Astrophysics Data System (ADS)
Williams, P.
2016-02-01
The fish and shellfish provided by ecosystems that abound in the waters of Puget Sound have sustained the Suquamish Tribe for millennia. However, years of development, pollution and over-harvest have reduced some fish and shellfish populations to just a fraction of their former abundance. Now, ocean acidification (OA) and climate change pose additional threats to these essential natural resources. Ocean acidification can't be stopped; however, many of the other human-caused stressors to ocean health can. If human behaviors that harm ocean health can be modified to reduce impacts, fish populations and ecosystems could become more resilient to the changing ocean conditions. School is arguably the best place to convey the ideas and awareness needed for people to adopt new behaviors. Students are open to new ideas and they influence their peers and parents. In addition, they are captive audiences in classrooms for many years.The Suquamish Tribe is helping to foster new generations of ocean stewards by creating an online searchable database (OACurriculumCollection.org). This site is designed to facilitate finding, reviewing and sharing free educational materials on OA. At the same time, the Next Generation Science Standards (NGSS) were released providing a great opportunity to get new materials into classrooms. OA provides highly appropriate context to teach many of the ideas in the new standards making it attractive to teachers looking for interesting and relevant materials. In this presentation, we will demonstrate how teachers can use the site as a place to find and share materials on OA. We will also present a framework developed by teachers for understanding OA, its impacts, and the many ways students can help ease the impacts on ocean ecosystems. We will provide examples of how OA can be used as context and content for the NGSS and finally, we will discuss the failures and successes on our journey to get relevant materials into the classroom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mccall, Scott K.; Kuntz, Joshua D.
A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.
Gatekeepers for Pragmatic Clinical Trials
Whicher, Danielle M.; Miller, Jennifer E.; Dunham, Kelly M.; Joffe, Steven
2015-01-01
To successfully implement a pragmatic clinical trial, investigators need access to numerous resources, including financial support, institutional infrastructure (e.g., clinics, facilities, staff), eligible patients, and patient data. Gatekeepers are people or entities who have the ability to allow or deny access to the resources required to support the conduct of clinical research. Based on this definition, gatekeepers relevant to the United States clinical research enterprise include research sponsors, regulatory agencies, payers, health system and other organizational leadership, research team leadership, human research protections programs, advocacy and community groups, and clinicians. This manuscript provides a framework to help guide gatekeepers’ decision-making related to the use of resources for pragmatic clinical trials. These include (1) concern for the interests of individuals, groups, and communities affected by the gatekeepers’ decisions, including protection from harm and maximization of benefits, (2) advancement of organizational mission and values, and (3) stewardship of financial, human, and other organizational resources. Separate from these ethical considerations, gatekeepers’ actions will be guided by relevant federal, state, and local regulations. This framework also suggests that to further enhance the legitimacy of their decision-making, gatekeepers should adopt transparent processes that engage relevant stakeholders when feasible and appropriate. We apply this framework to the set of gatekeepers responsible for making decisions about resources necessary for pragmatic clinical trials in the United States, describing the relevance of the criteria in different situations and pointing out where conflicts among the criteria and relevant regulations may affect decision-making. Recognition of the complex set of considerations that should inform decision-making will guide gatekeepers in making justifiable choices regarding the use of limited and valuable resources. PMID:26374683
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy; English, Shawn; Briggs, Timothy
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
Diffusion of aromatic hydrocarbons in hierarchical mesoporous H-ZSM-5 zeolite
Bu, Lintao; Nimlos, Mark R.; Robichaud, David J.; ...
2018-02-08
Hierarchical mesoporous zeolites exhibit higher catalytic activities and longer lifetime compared to the traditional microporous zeolites due to improved diffusivity of substrate molecules and their enhanced access to the zeolite active sites. Understanding diffusion of biomass pyrolysis vapors and their upgraded products in such materials is fundamentally important during catalytic fast pyrolysis (CFP) of lignocellulosic biomass, since diffusion makes major contribution to determine shape selectivity and product distribution. However, diffusivities of biomass relevant species in hierarchical mesoporous zeolites are poorly characterized, primarily due to the limitations of the available experimental technology. In this work, molecular dynamics (MD) simulations are utilizedmore » to investigate the diffusivities of several selected coke precursor molecules, benzene, naphthalene, and anthracene, in hierarchical mesoporous H-ZSM-5 zeolite. The effects of temperature and size of mesopores on the diffusivity of the chosen model compounds are examined. The simulation results demonstrate that diffusion within the microspores as well as on the external surface of mesoporous H-ZSM-5 dominates only at low temperature. At pyrolysis relevant temperatures, mass transfer is essentially conducted via diffusion along the mesopores. Additionally, the results illustrate the heuristic diffusion model, such as the extensively used Knudsen diffusion, overestimates the diffusion of bulky molecules in the mesopores, thus making MD simulation a powerful and compulsory approach to explore diffusion in zeolites.« less
ERIC Educational Resources Information Center
Loch, Birgit; Lamborn, Julia
2016-01-01
Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering…
From Aristotle to Today: Making the History and Nature of Science Relevant
ERIC Educational Resources Information Center
Sterling, Donna R.
2009-01-01
Students connect to science in multiple ways. For some students, learning how real people have developed and defended their scientific ideas makes science relevant and interesting. Tracking the changes in scientific thought over time can be fascinating for students as they see how scientists based their growing understanding on empirical data that…
Age differences in attention toward decision-relevant information: education matters.
Xing, Cai; Isaacowitz, Derek
2011-01-01
Previous studies suggested that older adults are more likely to engage in heuristic decision-making than young adults. This study used eye tracking technique to examine young adults' and highly educated older adults' attention toward two types of decision-relevant information: heuristic cue vs. factual cues. Surprisingly, highly educated older adults showed the reversed age pattern-they looked more toward factual cues than did young adults. This age difference disappeared after controlling for educational level. Additionally, education correlated with attentional pattern to decision-relevant information. We interpret this finding as an indication of the power of education: education may modify what are thought to be "typical" age differences in decision-making, and education may influence young and older people's decision-making via different paths.
Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science
NASA Astrophysics Data System (ADS)
Cartwright, T. J.; Hogsett, M.
2009-05-01
Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion of scientific instruments such as GPS and probeware, fostered additional student interest in earth science. IDGE has shown to have a lasting effect on the participating students who learn from the experience that science is a dynamic field in need of creative minds who want to make discoveries. Through relevant inquiry, the quality of geoscience instruction is inspiring a new generation of geoscientists. This work was supported in part by the National Science Foundation under award 0735596. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.
Hofmann, Julia; Kien, Christina; Gartlehner, Gerald
2015-01-01
Evidence-based information materials about the pros and cons of cancer screening are important sources for men and women to decide for or against cancer screening. The aim of this paper was to compare recommendations from different cancer institutions in German-speaking countries (Austria, Germany, and Switzerland) regarding screening for breast, cervix, colon, and prostate cancer and to assess the quality and development process of patient information materials. Relevant information material was identified through web searches and personal contact with cancer institutions. To achieve our objective, we employed a qualitative approach. The quality of 22 patient information materials was analysed based on established guidance by Bunge et al. In addition, we conducted guided interviews about the process of developing information materials with decision-makers of cancer institutes. Overall, major discrepancies in cancer screening recommendations exist among the Austrian, German, and Swiss cancer institutes. Process evaluation revealed that crucial steps of quality assurance, such as assembling a multi-disciplinary panel, assessing conflicts of interest, or transparency regarding funding sources, have frequently not been undertaken. All information materials had substantial quality deficits in multiple areas. Three out of four institutes issued information materials that met fewer than half of the quality criteria. Most patient information materials of cancer institutes in German-speaking countries are fraught with substantial deficits and do not provide an objective source for patients to be able to make an informed decision for or against cancer screening. Copyright © 2015. Published by Elsevier GmbH.
Culturally Relevant Education: Extending the Conversation to Religious Diversity
ERIC Educational Resources Information Center
Aronson, Brittany; Amatullah, Tasneem; Laughter, Judson
2016-01-01
Culturally relevant education represents a wide collection of pedagogies of opposition to social injustice and holds a commitment to collective empowerment and social justice. By using culturally relevant education as a framework, we make the case to include religious diversity as a part of culturally relevant education intentionally. We believe…
The Personal Relevance of the Social Studies.
ERIC Educational Resources Information Center
VanSickle, Ronald L.
1990-01-01
Conceptualizes a personal-relevance framework derived from Ronald L. VanSickle's five areas of life integrated with four general motivating goals from Abraham Maslow's hierarchy of needs and Richard and Patricia Schmuck's social motivation theory. Illustrates ways to apply the personal relevance framework to make social studies more relevant to…
NASA Astrophysics Data System (ADS)
Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.
2010-12-01
The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion passed final review. Reviewer comments are recorded as annotations to enhance the resources in the collection and help educators with the implementation in their curriculum. CLEAN launched the first collection of digital educational resources about climate science and energy awareness in November 2010. The final CLEAN collection will include ≥500 resources and will also provide the alignment with the Benchmarks for Science Literacy and the NAAEE Excellence in Environmental Education Guidelines for Learning through the interactive NSDL strandmaps. We will present the first user feedback to this new collection.
Magnetostrictive direct drive motors
NASA Technical Reports Server (NTRS)
Naik, Dipak; Dehoff, P. H.
1992-01-01
A new rare earth alloy, Terfenol-D, combines low frequency operation and extremely high energy density with high magnetostriction. Its material properties make it suitable as a drive element for actuators requiring high output torque. The high strains, the high forces and the high controllability of Terfenol alloys provide a powerful and challenging basis for new ways to generate motion in actuators. Two prototypes of motors using Terfenol-D rods were developed at NASA Goddard. The basic principles of operation are provided of the motor along with other relevant details. A conceptual design of a torque limiting safety clutch/brake under development is illustrated. Also, preliminary design drawings of a linear actuator using Terfenol-D is shown.
Gate-Defined Quantum Confinement in InSe-based van der Waals Heterostructures.
Hamer, Matthew J; Tóvári, Endre; Zhu, Mengjian; Thompson, Michael Dermot; Mayorov, Alexander S; Prance, Jonathan; Lee, Yongjin; Haley, Richard; Kudrynskyi, Zakhar R; Patanè, Amalia; Terry, Daniel; Kovalyuk, Zakhar D; Ensslin, Klaus; Kretinin, Andrey V; Geim, Andre K; Gorbachev, Roman Vladislavovich
2018-05-15
Indium selenide, a post-transition metal chalcogenide, is a novel two-dimensional (2D) semiconductor with interesting electronic properties. Its tunable band gap and high electron mobility have already attracted considerable research interest. Here we demonstrate strong quantum confinement and manipulation of single electrons in devices made from few-layer crystals of InSe using electrostatic gating. We report on gate-controlled quantum dots in the Coulomb blockade regime as well as one-dimensional quantization in point contacts, revealing multiple plateaus. The work represents an important milestone in the development of quality devices based on 2D materials and makes InSe a prime candidate for relevant electronic and optoelectronic applications.
Porous polymers: enabling solutions for energy applications.
Thomas, Arne; Kuhn, Pierre; Weber, Jens; Titirici, Maria-Magdalena; Antonietti, Markus
2009-02-18
A new generation of porous polymers was made for various energy-related applications, e.g., as fuel cell membranes, as electrode materials for batteries, for gas storage, partly from renewable resources. This review intends to catch this emerging field by reporting on a variety of different approaches to make high performing polymers porous. This includes template techniques, polymers with inherent microporosity, polymer frameworks by ionothermal polymerization, and the polymerization of carbon from appropriate precursors and by hydrothermal polymerization. In this process, we try to not only identify the current status of the field, but also point to open question and tasks to identify the potentially relevant progress. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
49 CFR 209.111 - Informal response and assessment.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., information or materials, submitted by the respondent and relevant information presented during any conference... consideration of an informal response, including any relevant information presented at a conference, the Chief... written explanations, information or other materials as respondent may desire in answer to the charges or...
Brain dynamics in spider-phobic individuals exposed to phobia-relevant and other emotional stimuli.
Michalowski, Jaroslaw M; Melzig, Christiane A; Weike, Almut I; Stockburger, Jessica; Schupp, Harald T; Hamm, Alfons O
2009-06-01
Dense sensor event-related brain potentials were measured in participants with spider phobia and nonfearful controls during viewing of phobia-relevant spider and standard emotional (pleasant, unpleasant, neutral) pictures. Irrespective of the picture content, spider phobia participants responded with larger P1 amplitudes than controls, suggesting increased vigilance in this group. Furthermore, spider phobia participants showed a significantly enlarged early posterior negativity (EPN) and late positive potential (LPP) during the encoding of phobia-relevant pictures compared to nonfearful controls. No group differences were observed for standard emotional materials indicating that these effects were specific to phobia-relevant material. Within group comparisons of the spider phobia group, though, revealed comparable EPN and LPP evoked by spider pictures and emotional (unpleasant and pleasant) picture contents. These results demonstrate a temporal unfolding in perceptual processing from unspecific vigilance (P1) to preferential responding (EPN and LPP) to phobia-relevant materials in the spider phobia group. However, at the level of early stimulus processing, these effects of increased attention seem to be related to emotional relevance of the stimulus cues rather than reflecting a fear-specific response.
Process of making porous ceramic materials with controlled porosity
Anderson, Marc A.; Ku, Qunyin
1993-01-01
A method of making metal oxide ceramic material is disclosed by which the porosity of the resulting material can be selectively controlled by manipulating the sol used to make the material. The method can be used to make a variety of metal oxide ceramic bodies, including membranes, but also pellets, plugs or other bodies. It has also been found that viscous sol materials can readily be shaped by extrusion into shapes typical of catalytic or adsorbent bodies used in industry, to facilitate the application of such materials for catalytic and adsorbent applications.
Using cancer to make cellular reproduction rigorous and relevant
NASA Astrophysics Data System (ADS)
Duncan, Cynthia F.
The 1983 report Nation at Risk highlighted the fact that test scores of American students were far below that of competing nations and educational standards were being lowered. This trend has continued and studies have also shown that students are not entering college ready for success. This trend can be reversed. Students can better understand and retain biology content expectations if they are taught in a way that is both rigorous and relevant. In the past, students have learned the details of cellular reproduction with little knowledge of why it is important to their everyday lives. This material is learned only for the test. Knowing the details of cellular reproduction is crucial for understanding cancer. Cancer is a topic that will likely affect all of my students at some point in their lives. Students used hands on activities, including simulations, labs, and models to learn about cellular reproduction with cancer as a theme throughout. Students were challenged to learn how to use the rigorous biology content expectations to think about cancer, including stem cell research. Students that will some day be college students, voting citizens, and parents, will become better learners. Students were assessed before and after the completion of the unit to determine if learning occurs. Students did learn the material and became more critical thinkers. Statistical analysis was completed to insure confidence in the results.
McClusky, Leon Mendel
2012-01-01
The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.
When Emotions Matter: Focusing on Emotion Improves Working Memory Updating in Older Adults
Berger, Natalie; Richards, Anne; Davelaar, Eddy J.
2017-01-01
Research indicates that emotion can affect the ability to monitor and replace content in working memory, an executive function that is usually referred to as updating. However, it is less clear if the effects of emotion on updating vary with its relevance for the task and with age. Here, 25 younger (20–34 years of age) and 25 older adults (63–80 years of age) performed a 1-back and a 2-back task, in which they responded to younger, middle-aged, and older faces showing neutral, happy or angry expressions. The relevance of emotion for the task was manipulated through instructions to make match/non-match judgments based on the emotion (i.e., emotion was task-relevant) or the age (i.e., emotion was task-irrelevant) of the face. It was found that only older adults updated emotional faces more readily compared to neutral faces as evidenced by faster RTs on non-match trials. This emotion benefit was observed under low-load conditions (1-back task) but not under high-load conditions (2-back task) and only if emotion was task-relevant. In contrast, task-irrelevant emotion did not impair updating performance in either age group. These findings suggest that older adults can benefit from task-relevant emotional information to a greater extent than younger adults when sufficient cognitive resources are available. They also highlight that emotional processing can buffer age-related decline in WM tasks that require not only maintenance but also manipulation of material. PMID:28966602
Gurtner, Sebastian
2014-01-01
Decision makers in hospitals are regularly faced with choices about the adoption of new technologies. Wrong decisions lead to a waste of resources and can have serious effects on the patients' and hospital's well-being. The goal of this research was to contribute to the understanding of decision making in hospitals. This study produced insights regarding relevant decision criteria and explored their specific relevance. An initial empirical survey was used to collect the relevant criteria for technological decision making in hospitals. In total, 220 experts in the field of health technology assessment from 34 countries participated in the survey. As a second step, the abovementioned criteria were used to form the basis of an analytic hierarchy process model. A group of 115 physicians, medical technical assistants, and other staff, all of whom worked in the field of radiooncology, prioritized the criteria. An analysis of variance was performed to explore differences among groups in terms of institutional and personal categorization variables. The first part of the research revealed seven key criteria for technological decision making in hospitals. The analytic hierarchy process model revealed that organizational impact was the most important criterion, followed by budget impact. The analysis of variance indicated that there were differences in the perceptions of the importance of the identified criteria. This exploration of the criteria for technological decision making in hospitals will help decision makers consider all of the relevant aspects, leading to more structured and rational decisions. For the optimal resource allocation, all of the relevant stakeholder perspectives and local issues must be considered appropriately.
Transformational Teaching in the Information Age: Making Why and How We Teach Relevant to Students
ERIC Educational Resources Information Center
Rosebrough, Thomas R.; Leverett, Ralph G.
2011-01-01
Yes, it's true that today's students have tons of distractions that take their attention away from the hard work of learning. That's why it's more important than ever to establish a teaching relationship with students that makes academic learning relevant to their lives. Here's a book that explains how to do that by changing teaching practices…
ERIC Educational Resources Information Center
Sterie, Anca Cristina
2015-01-01
At the hospital, nurses' telephone calls to doctors mostly revolve around obtaining doctors' intervention in a medical case. To achieve this, nurses need to make the doctor's intervention relevant, by explicitly requesting it or, more indirectly, by reporting a medical problem. Two recorded telephone conversations have been selected for analysis…
46 CFR 560.5 - Receipt of relevant information.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 9 2010-10-01 2010-10-01 false Receipt of relevant information. 560.5 Section 560.5... FOREIGN PORTS § 560.5 Receipt of relevant information. (a) In making its decision on matters arising under... submissions should be supported by affidavits of fact and memorandum of law. Relevant information may include...
Shared decision making: relevant concepts and facilitating strategies.
Bae, Jong-Myon
2017-01-01
As the paradigm in healthcare nowadays is the evidence-based, patient-centered decision making, the issue of shared decision making (SDM) is highlighted. The aims of this manuscript were to look at the relevant concepts and suggest the facilitating strategies for overcoming barriers of conducting SDM. While the definitions of SDM were discordant, several concepts such as good communication, individual autonomy, patient participants, and patient-centered decision-making were involved. Further, the facilitating strategies of SDM were to educate and train physician, to apply clinical practice guidelines and patient decision aids, to develop valid measurement tools for evaluation of SDM processes, and to investigate the impact of SDM.
International strategy for fusion materials development
NASA Astrophysics Data System (ADS)
Ehrlich, Karl; Bloom, E. E.; Kondo, T.
2000-12-01
In this paper, the results of an IEA-Workshop on Strategy and Planning of Fusion Materials Research and Development (R&D), held in October 1998 in Risø Denmark are summarised and further developed. Essential performance targets for materials to be used in first wall/breeding blanket components have been defined for the major materials groups under discussion: ferritic-martensitic steels, vanadium alloys and ceramic composites of the SiC/SiC-type. R&D strategies are proposed for their further development and qualification as reactor-relevant materials. The important role of existing irradiation facilities (mainly fission reactors) for materials testing within the next decade is described, and the limits for the transfer of results from such simulation experiments to fusion-relevant conditions are addressed. The importance of a fusion-relevant high-intensity neutron source for the development of structural as well as breeding and special purpose materials is elaborated and the reasons for the selection of an accelerator-driven D-Li-neutron source - the International Fusion Materials Irradiation Facility (IFMIF) - as an appropriate test bed are explained. Finally the necessity to execute the materials programme for fusion in close international collaboration, presently promoted by the International Energy Agency, IEA is emphasised.
Nelson, Stacy; English, Shawn; Briggs, Timothy
2016-05-06
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
Development of an information retrieval tool for biomedical patents.
Alves, Tiago; Rodrigues, Rúben; Costa, Hugo; Rocha, Miguel
2018-06-01
The volume of biomedical literature has been increasing in the last years. Patent documents have also followed this trend, being important sources of biomedical knowledge, technical details and curated data, which are put together along the granting process. The field of Biomedical text mining (BioTM) has been creating solutions for the problems posed by the unstructured nature of natural language, which makes the search of information a challenging task. Several BioTM techniques can be applied to patents. From those, Information Retrieval (IR) includes processes where relevant data are obtained from collections of documents. In this work, the main goal was to build a patent pipeline addressing IR tasks over patent repositories to make these documents amenable to BioTM tasks. The pipeline was developed within @Note2, an open-source computational framework for BioTM, adding a number of modules to the core libraries, including patent metadata and full text retrieval, PDF to text conversion and optical character recognition. Also, user interfaces were developed for the main operations materialized in a new @Note2 plug-in. The integration of these tools in @Note2 opens opportunities to run BioTM tools over patent texts, including tasks from Information Extraction, such as Named Entity Recognition or Relation Extraction. We demonstrated the pipeline's main functions with a case study, using an available benchmark dataset from BioCreative challenges. Also, we show the use of the plug-in with a user query related to the production of vanillin. This work makes available all the relevant content from patents to the scientific community, decreasing drastically the time required for this task, and provides graphical interfaces to ease the use of these tools. Copyright © 2018 Elsevier B.V. All rights reserved.
Schwartzkopf, Matthias; Roth, Stephan V.
2016-01-01
Tailoring the polymer–metal interface is crucial for advanced material design. Vacuum deposition methods for metal layer coating are widely used in industry and research. They allow for installing a variety of nanostructures, often making use of the selective interaction of the metal atoms with the underlying polymer thin film. The polymer thin film may eventually be nanostructured, too, in order to create a hierarchy in length scales. Grazing incidence X-ray scattering is an advanced method to characterize and investigate polymer–metal interfaces. Being non-destructive and yielding statistically relevant results, it allows for deducing the detailed polymer–metal interaction. We review the use of grazing incidence X-ray scattering to elucidate the polymer–metal interface, making use of the modern synchrotron radiation facilities, allowing for very local studies via in situ (so-called “stop-sputter”) experiments as well as studies observing the nanostructured metal nanoparticle layer growth in real time. PMID:28335367
Creating Culturally Relevant Instructional Materials: A Swaziland Case Study
ERIC Educational Resources Information Center
Titone, Connie; Plummer, Emily C.; Kielar, Melissa A.
2012-01-01
In the field of English language learning, research proves that culturally relevant reading materials improve students' language acquisition, learning motivation, self-esteem, and identity formation. Since English is the language of instruction in many distant countries, such as Swaziland, even when English is not the native language of those…
40 CFR 60.1070 - How do I make my draft materials separation plan available to the public?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I make my draft materials... Preconstruction Requirements: Materials Separation Plan § 60.1070 How do I make my draft materials separation plan available to the public? (a) Distribute your draft materials separation plan to the main public libraries in...
40 CFR 60.1070 - How do I make my draft materials separation plan available to the public?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I make my draft materials... Preconstruction Requirements: Materials Separation Plan § 60.1070 How do I make my draft materials separation plan available to the public? (a) Distribute your draft materials separation plan to the main public libraries in...
40 CFR 60.1070 - How do I make my draft materials separation plan available to the public?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I make my draft materials... Preconstruction Requirements: Materials Separation Plan § 60.1070 How do I make my draft materials separation plan available to the public? (a) Distribute your draft materials separation plan to the main public libraries in...
40 CFR 60.1070 - How do I make my draft materials separation plan available to the public?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I make my draft materials... Preconstruction Requirements: Materials Separation Plan § 60.1070 How do I make my draft materials separation plan available to the public? (a) Distribute your draft materials separation plan to the main public libraries in...
NASA Astrophysics Data System (ADS)
Fourment, Lionel; Ducloux, Richard; Marie, Stéphane; Ejday, Mohsen; Monnereau, Dominique; Massé, Thomas; Montmitonnet, Pierre
2010-06-01
The use of material processing numerical simulation allows a strategy of trial and error to improve virtual processes without incurring material costs or interrupting production and therefore save a lot of money, but it requires user time to analyze the results, adjust the operating conditions and restart the simulation. Automatic optimization is the perfect complement to simulation. Evolutionary Algorithm coupled with metamodelling makes it possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. Ten industrial partners have been selected to cover the different area of the mechanical forging industry and provide different examples of the forming simulation tools. It aims to demonstrate that it is possible to obtain industrially relevant results on a very large range of applications within a few tens of simulations and without any specific automatic optimization technique knowledge. The large computational time is handled by a metamodel approach. It allows interpolating the objective function on the entire parameter space by only knowing the exact function values at a reduced number of "master points". Two algorithms are used: an evolution strategy combined with a Kriging metamodel and a genetic algorithm combined with a Meshless Finite Difference Method. The later approach is extended to multi-objective optimization. The set of solutions, which corresponds to the best possible compromises between the different objectives, is then computed in the same way. The population based approach allows using the parallel capabilities of the utilized computer with a high efficiency. An optimization module, fully embedded within the Forge2009 IHM, makes possible to cover all the defined examples, and the use of new multi-core hardware to compute several simulations at the same time reduces the needed time dramatically. The presented examples demonstrate the method versatility. They include billet shape optimization of a common rail, the cogging of a bar and a wire drawing problem.
Relevance: Cornerstone for Constructing Meaning
ERIC Educational Resources Information Center
Cardell, Melanie
2005-01-01
Relevance has been called the "What's In It For Me" (WIIFM) issue. If there is not something in the content that the learner really needs, then they normally do not want to be bothered with it. Relevance is learner driven, but must be teacher provided for optimal learning. Relevance is so important to the making of meaning that Eric Jensen (1996,…
2015-08-24
new energetic materials with enhanced energy release rates and reduced sensitivity to unintentional detonation . The following results have been...Mechanics of Advanced Energetic Materials Relevant to Detonation Prediction The views, opinions and/or findings contained in this report are those of the...modeling, molecular simulations, detonation prediction REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1974-01-01
The requirement of Federal charters for large energy corporations, coupled with the appointment of public directors to serve on their boards, would make these corporations more responsive to the public interest. The large oil companies wield economic power greater than many governments by running vast production and refinery complexes, operating large tanker fleets, investing billions in resource development, and lastly, controlling the prices consumers pay for energy. Other alternatives for making the companies more responsive to public interest are to nationalize segments of the oil industry; create new federally owned oil companies; break major oil companies into functional components and/ormore » regional components; bring major oil companies under a Federal regulatory structure that treats the corporation as public utilities, regulates rates on a cost of service basis, and makes them subject to control; or improve corporate accountability and responsibility by revising the hundreds of Federal statutes that now affect various aspects of corporate practice. A collection of relevant papers are included. (MCW)« less
Suurvali, Helen; Hodgins, David C; Cunningham, John A
2010-03-01
This literature review summarizes recent empirical research on the reasons disordered gamblers try, through treatment or otherwise, to resolve or reduce their gambling problems. Relevant databases and bibliographies were searched for English-language studies, published since 1998, that asked gamblers themselves about motivators for action. Found were ten studies addressing reasons for trying to resolve or reduce gambling problems, five addressing reasons for seeking help and four addressing reasons for requesting self-exclusion from casinos. Help-seeking occurred largely in response to gambling-related harms (especially financial problems, relationship issues and negative emotions) that had already happened or that were imminent. Resolution was often motivated by the same kinds of harms but evaluation/decision-making and changes in lifestyle or environment played a more prominent role. Self-exclusion was motivated by harms, evaluation/decision-making and a wish to regain control. Awareness and educational materials could incorporate messages that might encourage heavy gamblers to make changes before harms became too great. Intervention development could also benefit from more research on the motivators leading to successful (vs. failed) resolution, as well as on the ways in which disordered gamblers are able to overcome specific barriers to seeking help or reaching resolution.
Dixon, Brian E; Gamache, Roland E; Grannis, Shaun J
2013-01-01
Objective To summarize the literature describing computer-based interventions aimed at improving bidirectional communication between clinical and public health. Materials and Methods A systematic review of English articles using MEDLINE and Google Scholar. Search terms included public health, epidemiology, electronic health records, decision support, expert systems, and decision-making. Only articles that described the communication of information regarding emerging health threats from public health agencies to clinicians or provider organizations were included. Each article was independently reviewed by two authors. Results Ten peer-reviewed articles highlight a nascent but promising area of research and practice related to alerting clinicians about emerging threats. Current literature suggests that additional research and development in bidirectional communication infrastructure should focus on defining a coherent architecture, improving interoperability, establishing clear governance, and creating usable systems that will effectively deliver targeted, specific information to clinicians in support of patient and population decision-making. Conclusions Increasingly available clinical information systems make it possible to deliver timely, relevant knowledge to frontline clinicians in support of population health. Future work should focus on developing a flexible, interoperable infrastructure for bidirectional communications capable of integrating public health knowledge into clinical systems and workflows. PMID:23467470
Facilitating access to pre-processed research evidence in public health
2010-01-01
Background Evidence-informed decision making is accepted in Canada and worldwide as necessary for the provision of effective health services. This process involves: 1) clearly articulating a practice-based issue; 2) searching for and accessing relevant evidence; 3) appraising methodological rigor and choosing the most synthesized evidence of the highest quality and relevance to the practice issue and setting that is available; and 4) extracting, interpreting, and translating knowledge, in light of the local context and resources, into practice, program and policy decisions. While the public health sector in Canada is working toward evidence-informed decision making, considerable barriers, including efficient access to synthesized resources, exist. Methods In this paper we map to a previously developed 6 level pyramid of pre-processed research evidence, relevant resources that include public health-related effectiveness evidence. The resources were identified through extensive searches of both the published and unpublished domains. Results Many resources with public health-related evidence were identified. While there were very few resources dedicated solely to public health evidence, many clinically focused resources include public health-related evidence, making tools such as the pyramid, that identify these resources, particularly helpful for public health decisions makers. A practical example illustrates the application of this model and highlights its potential to reduce the time and effort that would be required by public health decision makers to address their practice-based issues. Conclusions This paper describes an existing hierarchy of pre-processed evidence and its adaptation to the public health setting. A number of resources with public health-relevant content that are either freely accessible or requiring a subscription are identified. This will facilitate easier and faster access to pre-processed, public health-relevant evidence, with the intent of promoting evidence-informed decision making. Access to such resources addresses several barriers identified by public health decision makers to evidence-informed decision making, most importantly time, as well as lack of knowledge of resources that house public health-relevant evidence. PMID:20181270
DOE Office of Scientific and Technical Information (OSTI.GOV)
Estrada Rodas, Ernesto A.; Neu, Richard W.
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Estrada Rodas, Ernesto A.; Neu, Richard W.
2017-09-11
A crystal viscoplasticity (CVP) model for the creep-fatigue interactions of nickel-base superalloy CMSX-8 is proposed. At the microstructure scale of relevance, the superalloys are a composite material comprised of a γ phase and a γ' strengthening phase with unique deformation mechanisms that are highly dependent on temperature. Considering the differences in the deformation of the individual material phases is paramount to predicting the deformation behavior of superalloys at a wide range of temperatures. In this work, we account for the relevant deformation mechanisms that take place in both material phases by utilizing two additive strain rates to model the deformationmore » on each material phase. The model is capable of representing the creep-fatigue interactions in single-crystal superalloys for realistic 3-dimensional components in an Abaqus User Material Subroutine (UMAT). Using a set of material parameters calibrated to superalloy CMSX-8, the model predicts creep-fatigue, fatigue and thermomechanical fatigue behavior of this single-crystal superalloy. In conclusion, a sensitivity study of the material parameters is done to explore the effect on the deformation due to changes in the material parameters relevant to the microstructure.« less
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
NASA Technical Reports Server (NTRS)
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
New Curricular Material for Science Classes: How Do Students Evaluate It?
NASA Astrophysics Data System (ADS)
Freire, Sofia; Faria, Cláudia; Galvão, Cecília; Reis, Pedro
2013-02-01
Living in an unpredictable and ever changing society demands from its' citizens the development of complex competencies that challenges school, education and curriculum. PARSEL, a pan-European Project related to science education, emerges as a contribution to curricular development as it proposes a set of teaching-learning materials (modules) in order to make science classes more popular and relevant in the eyes of the students and as such to increase their interest with school science. The goal of this study was to understand how students evaluate those innovative modules. This paper presents data concerning 134 secondary students, collected through interviews, questionnaires and written documents. A quantitative analysis of the data collected through questionnaires was complemented by a qualitative analysis of the data collected by interviews and written documents. Results show that understanding the relationship between science and daily life, participating in practical activities based on problem solving and developing critical thinking and reasoning were the issues most valued by students.
3D printing of soft robotic systems
NASA Astrophysics Data System (ADS)
Wallin, T. J.; Pikul, J.; Shepherd, R. F.
2018-06-01
Soft robots are capable of mimicking the complex motion of animals. Soft robotic systems are defined by their compliance, which allows for continuous and often responsive localized deformation. These features make soft robots especially interesting for integration with human tissues, for example, the implementation of biomedical devices, and for robotic performance in harsh or uncertain environments, for example, exploration in confined spaces or locomotion on uneven terrain. Advances in soft materials and additive manufacturing technologies have enabled the design of soft robots with sophisticated capabilities, such as jumping, complex 3D movements, gripping and releasing. In this Review, we examine the essential soft material properties for different elements of soft robots, highlighting the most relevant polymer systems. Advantages and limitations of different additive manufacturing processes, including 3D printing, fused deposition modelling, direct ink writing, selective laser sintering, inkjet printing and stereolithography, are discussed, and the different techniques are investigated for their application in soft robotic fabrication. Finally, we explore integrated robotic systems and give an outlook for the future of the field and remaining challenges.
Xenobiotics removal by adsorption in the context of tertiary treatment: a mini review.
Tahar, Alexandre; Choubert, Jean-Marc; Coquery, Marina
2013-08-01
Many xenobiotics, including several pharmaceuticals and pesticides, are poorly treated in domestic wastewater treatment plants. Adsorption processes, such as with activated carbons, could be a solution to curb their discharge into the aquatic environment. As adsorbent-like activated carbon is known to be expensive, identifying promising alternative adsorbent materials is a key challenge for efficient yet affordable xenobiotic removal from wastewaters. As part of the effort to address this challenge, we surveyed the literature on pharmaceutical and pesticide xenobiotics and built a database compiling data from 38 scientific publications covering 65 xenobiotics and 58 materials. Special focus was given to the relevance and comparability of the data to the characteristics of the adsorbent materials used and to the operating conditions of the batch tests inventoried. This paper gives an in-depth overview of the adsorption capacities of various adsorbents. The little data on alternative adsorbent materials, especially for the adsorption of pharmaceuticals, makes it difficult to single out any one activated carbon alternative capable of adsorbing pesticides and pharmaceuticals at the tertiary stage of treatment. There is a pressing need for further lab-scale experiments to investigate the tertiary treatment of discharged effluents. We conclude with recommendations on how future data should best be used and interpreted.
Material Flow Analysis as a Tool to improve Waste Management Systems: The Case of Austria.
Allesch, Astrid; Brunner, Paul H
2017-01-03
This paper demonstrates the power of material flow analysis (MFA) for designing waste management (WM) systems and for supporting decisions with regards to given environmental and resource goals. Based on a comprehensive case study of a nationwide WM-system, advantages and drawbacks of a mass balance approach are discussed. Using the software STAN, a material flow system comprising all relevant inputs, stocks and outputs of wastes, products, residues, and emissions is established and quantified. Material balances on the level of goods and selected substances (C, Cd, Cr, Cu, Fe, Hg, N, Ni, P, Pb, Zn) are developed to characterize this WM-system. The MFA results serve well as a base for further assessments. Based on given goals, stakeholders engaged in this study selected the following seven criteria for evaluating their WM-system: (i) waste input into the system, (ii) export of waste (iii) gaseous emissions from waste treatment plants, (iv) long-term gaseous and liquid emissions from landfills, (v) waste being recycled, (vi) waste for energy recovery, (vii) total waste landfilled. By scenario analysis, strengths and weaknesses of different measures were identified. The results reveal the benefits of a mass balance approach due to redundancy, data consistency, and transparency for optimization, design, and decision making in WM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, J. C.
2011-09-01
It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from amore » small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.« less
NASA Astrophysics Data System (ADS)
Popovici, T. D.; Dijmărescu, M. R.
2017-08-01
The aim of the research presented in this paper is to determine a cutting force prediction model for milling machining of the X105CrMo17 stainless steel. The analysed material is a martensitic stainless steel which, due to the high Carbon content (∼1%) and Chromium (∼17%), has high hardness and good corrosion resistance characteristics. This material is used for the steel structures parts which are subject of wear in corrosive environments, for making valve seats, bearings, various types of cutters, high hardness bushings, casting shells and nozzles, measuring instruments, etc. The paper is structured into three main parts in accordance to the considered research program; they are preceded by an introduction and followed by relevant conclusions. In the first part, for a more detailed knowledge of the material characteristics, a quality and quantity micro-analysis X-ray and a spectral analysis were performed. The second part presents the physical experiment in terms of input, necessary means, process and registration of the experimental data. In the third part, the experimental data is analysed and the cutting force model is developed in terms of the cutting regime parameters such as cutting speed, feed rate, axial depth and radial depth.
Kvich, L; Jensen, P Ø; Justesen, U S; Bjarnsholt, T
2016-11-01
The aim of this study was to prospectively investigate the incidence of Propionibacterium acnes in thioglycollate broths reported as culture-negative at the Department of Clinical Microbiology, Rigshospitalet, to evaluate whether 5 days of incubation was enough to find all relevant cases. Five hundred thioglycollate broths reported as culture-negative after 5 days were consecutively collected and incubated for at least a further 9 days (at least 14 days of incubation in total). Only tissue samples from sterile sites of the body (n = 298), bone tissue (n = 197) and foreign material (n = 5) were included in this study. Samples were divided into two groups: infected group and control group. This made it possible to compare findings between groups, thereby making it possible to estimate the level of true-positive findings and contamination. Samples from 296 participants were included in this study. After exclusion criteria were met, P. acnes was cultured from ten out of 151 patients (6.6%) in the infected group and from one out of 138 participants (0.7%) in the control group. This resulted in more findings of P. acnes in the infected group on day 14 than on day 5 (p 0.002). Furthermore, P. acnes was cultured more often from bone tissue and tissue surrounding foreign materials on day 14 than on day 5 (p 0.04). Clinical microbiology laboratories should consider incubating thioglycollate broths for at least 14 days to find all relevant cases of P. acnes, especially when it comes to bone tissue and tissue surrounding foreign materials. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Ghavami-Lahiji, Mehrsima; Hooshmand, Tabassom
2017-01-01
Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation. PMID:28928776
45 CFR 1641.3 - Scope of debarment, suspension and removal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... employee, independent contractor, agent or other representative of an IPA firm. (b) Actions against IPA... elements materially involved in the relevant engagement and as to which there is cause to debar, suspend or... the IPA firm only if such firm was materially involved in the relevant engagement and is specifically...
USDA-ARS?s Scientific Manuscript database
A key strategy to reduce insect-borne disease is to reduce contact between disease vectors and hosts. In the current study, residual pesticide application and misting system were applied on militarily relevant materials and evaluated against medically important mosquitoes. Field evaluations were car...
Functional analysis from visual and compositional data. An artificial intelligence approach.
NASA Astrophysics Data System (ADS)
Barceló, J. A.; Moitinho de Almeida, V.
Why archaeological artefacts are the way they are? In this paper we try to solve such a question by investigating the relationship between form and function. We propose new ways of studying the way behaviour in the past can be asserted on the examination of archaeological observables in the present. In any case, we take into account that there are also non-visual features characterizing ancient objects and materials (i.e., compositional information based on mass spectrometry data, chronological information based on radioactive decay measurements, etc.). Information that should make us aware of many functional properties of objects is multidimensional in nature: size, which makes reference to height, length, depth, weight and mass; shape and form, which make reference to the geometry of contours and volumes; texture, which refers to the microtopography (roughness, waviness, and lay) and visual appearance (colour variations, brightness, reflectivity and transparency) of surfaces; and finally material, meaning the combining of distinct compositional elements and properties to form a whole. With the exception of material data, the other relevant aspects for functional reasoning have been traditionally described in rather ambiguous terms, without taking into account the advantages of quantitative measurements of shape/form, and texture. Reasoning about the functionality of archaeological objects recovered at the archaeological site requires a cross-disciplinary investigation, which may also range from recognition techniques used in computer vision and robotics to reasoning, representation, and learning methods in artificial intelligence. The approach we adopt here is to follow current computational theories of object perception to ameliorate the way archaeology can deal with the explanation of human behaviour in the past (function) from the analysis of visual and non-visual data, taking into account that visual appearances and even compositional characteristics only constrain the way an object may be used, but never fully determine it.
Tracing and control of raw materials sourcing for vaccine manufacturers.
Faretra Peysson, Laurence
2010-05-01
The control of the raw materials used to manufacture vaccines is mandatory; therefore, a very clear process must be in place to guarantee that raw materials are traced. Those who make products or supplies used in vaccine manufacture (suppliers of culture media, diagnostic tests, etc.) must apply quality systems proving that they adhere to certain standards. ISO certification, Good Manufacturing Practices for production sites and the registration of culture media with a 'Certificate of Suitability' from the European Directorate for the Quality of Medicines and Healthcare are reliable quality systems pertaining to vaccine production. Suppliers must assure that each lot of raw materials used in a product that will be used in vaccine manufacture adheres to the level of safety and traceability required. Incoming materials must be controlled in a single 'Enterprise Resource Planning' system which is used to document important information, such as the assignment of lot number, expiration date, etc. Ingredients for culture media in particular must conform to certain specifications. The specifications that need to be checked vary according to the ingredient, based on the level of risk. The way a raw material is produced is also important, and any aspect relative to cross-contamination, such as the sanitary measures used in producing and storing the raw material must be checked as well. In addition, suppliers can reduce the risk of viral contamination of raw materials by avoiding purchases in countries where a relevant outbreak is currently declared. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Bennett, Erin R; Clausen, Jay; Linkov, Eugene; Linkov, Igor
2009-11-01
Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.
NASA Astrophysics Data System (ADS)
Loch, Birgit; Lamborn, Julia
2016-01-01
Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to 'make maths relevant' for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.
NASA Astrophysics Data System (ADS)
Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun
2016-05-01
A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection.
Zhou, Chaoyu; Wu, Zhaofeng; Guo, Yanan; Li, Yushu; Cao, Hongyu; Zheng, Xuefang; Dou, Xincun
2016-01-01
A simple method combing Mn2+ doping with a hierarchical structure was developed for the improvement of thin-film sensors and efficient detection of the explosives relevant to improvised explosive devices (IEDs). ZnS hierarchical nanospheres (HNs) were prepared via a solution-based route and their sensing performances were manipulated by Mn2+ doping. The responses of the sensors based on ZnS HNs towards 8 explosives generally increase firstly and then decrease with the increase of the doped Mn2+ concentration, reaching the climate at 5% Mn2+. Furthermore, the sensory array based on ZnS HNs with different doping levels achieved the sensitive and discriminative detection of 6 analytes relevant to IEDs and 2 military explosives in less than 5 s at room temperature. Importantly, the superior sensing performances make ZnS HNs material interesting in the field of chemiresistive sensors, and this simple method could be a very promising strategy to put the sensors based on thin-films of one-dimensional (1D) nanostructures into practical IEDs detection. PMID:27161193
An Exploration of Cognitive Agility as Quantified by Attention Allocation in a Complex Environment
2017-03-01
quantified by eye-tracking data collected while subjects played a military-relevant cognitive agility computer game (Make Goal), to determine whether...subjects played a military-relevant cognitive agility computer game (Make Goal), to determine whether certain patterns are associated with effective...Group and Control Group on Eye Tracking and Game Performance .....................36 3. Comparison between High and Low Performers on Eye tracking and
Assessing the relevance of ecotoxicological studies for regulatory decision making.
Rudén, Christina; Adams, Julie; Ågerstrand, Marlene; Brock, Theo Cm; Poulsen, Veronique; Schlekat, Christian E; Wheeler, James R; Henry, Tala R
2017-07-01
Regulatory policies in many parts of the world recognize either the utility of or the mandate that all available studies be considered in environmental or ecological hazard and risk assessment (ERA) of chemicals, including studies from the peer-reviewed literature. Consequently, a vast array of different studies and data types need to be considered. The first steps in the evaluation process involve determining whether the study is relevant to the ERA and sufficiently reliable. Relevance evaluation is typically performed using existing guidance but involves application of "expert judgment" by risk assessors. In the present paper, we review published guidance for relevance evaluation and, on the basis of the practical experience within the group of authors, we identify additional aspects and further develop already proposed aspects that should be considered when conducting a relevance assessment for ecotoxicological studies. From a regulatory point of view, the overarching key aspect of relevance concerns the ability to directly or indirectly use the study in ERA with the purpose of addressing specific protection goals and ultimately regulatory decision making. Because ERA schemes are based on the appropriate linking of exposure and effect estimates, important features of ecotoxicological studies relate to exposure relevance and biological relevance. Exposure relevance addresses the representativeness of the test substance, environmental exposure media, and exposure regime. Biological relevance deals with the environmental significance of the test organism and the endpoints selected, the ecological realism of the test conditions simulated in the study, as well as a mechanistic link of treatment-related effects for endpoints to the protection goal identified in the ERA. In addition, uncertainties associated with relevance should be considered in the assessment. A systematic and transparent assessment of relevance is needed for regulatory decision making. The relevance aspects also need to be considered by scientists when designing, performing, and reporting ecotoxicological studies to facilitate their use in ERA. Integr Environ Assess Manag 2017;13:652-663. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2016 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Dynamic Behavior of Sand: Annual Report FY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, T; Herbold, E; Johnson, S
2012-03-15
Currently, design of earth-penetrating munitions relies heavily on empirical relationships to estimate behavior, making it difficult to design novel munitions or address novel target situations without expensive and time-consuming full-scale testing with relevant system and target characteristics. Enhancing design through numerical studies and modeling could help reduce the extent and duration of full-scale testing if the models have enough fidelity to capture all of the relevant parameters. This can be separated into three distinct problems: that of the penetrator structural and component response, that of the target response, and that of the coupling between the two. This project focuses onmore » enhancing understanding of the target response, specifically granular geomaterials, where the temporal and spatial multi-scale nature of the material controls its response. As part of the overarching goal of developing computational capabilities to predict the performance of conventional earth-penetrating weapons, this project focuses specifically on developing new models and numerical capabilities for modeling sand response in ALE3D. There is general recognition that granular materials behave in a manner that defies conventional continuum approaches which rely on response locality and which degrade in the presence of strong response nonlinearities, localization, and phase gradients. There are many numerical tools available to address parts of the problem. However, to enhance modeling capability, this project is pursuing a bottom-up approach of building constitutive models from higher fidelity, smaller spatial scale simulations (rather than from macro-scale observations of physical behavior as is traditionally employed) that are being augmented to address the unique challenges of mesoscale modeling of dynamically loaded granular materials. Through understanding response and sensitivity at the grain-scale, it is expected that better reduced order representations of response can be formulated at the continuum scale as illustrated in Figure 1 and Figure 2. The final result of this project is to implement such reduced order models in the ALE3D material library for general use.« less
NASA Technical Reports Server (NTRS)
Green, R. H.
1972-01-01
In 1969 the Jet Propulsion Laboratory undertook an investigation to determine which of its space-derived capabilities could make significant contributions to the improvement of health care delivery in the U.S. The area of planetary quarantine was identified as one of high relevance. Two studies were conducted in this connection. The first study, which could contribute to infection reduction and control, was concerned with conversion of infection implicated complex, nonheat sterilizable equipment to dry heat, sterilizable equipment by changes in design and materials of construction. The second study area related to hospital acquired infection is clean room technology. A definite investigation has been performed to demonstrate and statistically evaluate performance under controlled conditions.
Accelerating global access to plant diversity information.
Lughadha, Eimear Nic; Miller, Chuck
2009-11-01
Botanic gardens play key roles in the development and dissemination of plant information resources. Drivers for change have included progress in information technology, growing public expectations of electronic access and international conservation policy. Great advances have been made in the quantity, quality and accessibility of plant information in digital form and the extent to which information from multiple providers can be accessed through a single portal. However, significant challenges remain to be addressed in making botanic gardens resources maximally accessible and impactful, not least the overwhelming volume of material which still awaits digitisation. The year 2010 represents an opportunity for botanic gardens to showcase their collaborative achievements in delivery of electronic plant information and reinforce their relevance to pressing environmental issues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkelbach, Timothy C., E-mail: tcb2112@columbia.edu; Reichman, David R., E-mail: drr2103@columbia.edu; Hybertsen, Mark S., E-mail: mhyberts@bnl.gov
We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singletmore » fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.« less
NASA Astrophysics Data System (ADS)
Morris, A. R.
2014-12-01
In order for the United States to remain competitive in the STEM fields, all available interested citizens must be engaged, prepared, and retained in the geoscience workforce. The misperception that the geosciences do little to support the local community and give back to fellow citizens contributes to the lack of diversity in the field. Another challenge is that the assumptions of career paths for someone trained in geosciences are often limited to field work, perpetuated by visuals found in media, popular culture and recruiting materials and university websites. In order to combat these views it is critical that geoscientists make visible both the diverse career opportunities for those trained in geoscience and the relevance of the field to societal issues. In order to make a substantive change in the number of underrepresented minorities pursuing and working in geosciences we must rethink how we describe our work, its impacts and its relevance to society. At UNAVCO, we have undertaken this charge to change they way the future generation of geoscientists views opportunities in our field. This presentation will include reflections of a trained geoscientist taking a non-field/research career path and the opportunities it has afforded as well as the challenges encountered. The presentation will also highlight how experience managing a STEM program for middle school girls, serving as a Congressional Science Fellow, and managing an undergraduate research internship program is aiding in shaping the Geoscience Workforce Initiative at UNAVCO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiszpanski, Anna M.
Metamaterials are composites with patterned subwavelength features where the choice of materials and subwavelength structuring bestows upon the metamaterials unique optical properties not found in nature, thereby enabling optical applications previously considered impossible. However, because the structure of optical metamaterials must be subwavelength, metamaterials operating at visible wavelengths require features on the order of 100 nm or smaller, and such resolution typically requires top-down lithographic fabrication techniques that are not easily scaled to device-relevant areas that are square centimeters in size. In this project, we developed a new fabrication route using block copolymers to make over large device-relevant areas opticalmore » metamaterials that operate at visible wavelengths. Our structures are smaller in size (sub-100 nm) and cover a larger area (cm 2) than what has been achieved with traditional nanofabrication routes. To guide our experimental efforts, we developed an algorithm to calculate the expected optical properties (specifically the index of refraction) of such metamaterials that predicts that we can achieve surprisingly large changes in optical properties with small changes in metamaterials’ structure. In the course of our work, we also found that the ordered metal nanowires meshes produced by our scalable fabrication route for making optical metamaterials may also possibly act as transparent electrodes, which are needed in electrical displays and solar cells. We explored the ordered metal nanowires meshes’ utility for this application and developed design guidelines to aide our experimental efforts.« less
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J; Kovács, Adorján F; Ghanaati, Shahram; Sader, Robert A
2016-01-01
In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss ® , BO) and a synthetic (NanoBone ® , NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials.
36 CFR 907.14 - Corporation decision making procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Corporation decision making... CORPORATION ENVIRONMENTAL QUALITY § 907.14 Corporation decision making procedures. To ensure that at major decision making points all relevant environmental concerns are considered by the Decision Maker, the...
Electrosorption capacitance of nanostructured carbon-based materials.
Hou, Chia-Hung; Liang, Chengdu; Yiacoumi, Sotira; Dai, Sheng; Tsouris, Costas
2006-10-01
The fundamental mechanism of electrosorption of ions developing a double layer inside nanopores was studied via a combination of experimental and theoretical studies. A novel graphitized-carbon monolithic material has proven to be a good electrical double-layer capacitor that can be applied in the separation of ions from aqueous solutions. An extended electrical double-layer model indicated that the pore size distribution plays a key role in determining the double-layer capacitance in an electrosorption process. Because of the occurrence of double-layer overlapping in narrow pores, mesopores and micropores make significantly different contributions to the double-layer capacitance. Mesopores show good electrochemical accessibility. Micropores present a slow mass transfer of ions and a considerable loss of double-layer capacitance, associated with a shallow potential distribution inside pores. The formation of the diffuse layer inside the micropores determines the magnitude of the double-layer capacitance at low electrolyte concentrations and at conditions close to the point of zero charge of the material. The effect of the double-layer overlapping on the electrosorption capacitance can be reduced by increasing the pore size, electrolyte concentration, and applied potential. The results are relevant to water deionization.
Hong, Guo; Schutzius, Thomas M; Zimmermann, Severin; Burg, Brian R; Zürcher, Jonas; Brunschwiler, Thomas; Tagliabue, Giulia; Michel, Bruno; Poulikakos, Dimos
2015-01-14
In situ assembly of high thermal conductivity materials in severely confined spaces is an important problem bringing with it scientific challenges but also significant application relevance. Here we present a simple, affordable, and reproducible methodology for synthesizing such materials, composed of hierarchical diamond micro/nanoparticle scaffolds and an ethylenediamine coating. An important feature of the assembly process is the utilization of ethylenediamine as an immobilizing agent to secure the integrity of the microparticle scaffolds during and after each processing step. After other liquid components employed in the scaffolds assembly dry out, the immobilization agent solidifies forming a stable coated particle scaffold structure. Nanoparticles tend to concentrate in the shell and neck regions between adjacent microparticles. The interface between core and shell, along with the concentrated neck regions of nanoparticles, significantly enhance the thermal conductivity, making such materials an excellent candidate as thermal underfills in the electronics industry, where efficient heat removal is a major stumbling block toward increasing packing density. We show that the presented structures exhibit nearly 1 order of magnitude improvement in thermal conductivity, enhanced temperature uniformity, and reduced processing time compared to commercially available products for electronics cooling, which underpins their potential utility.
NASA Astrophysics Data System (ADS)
Pint, Roser
2005-01-01
This paper introduces the four research papers in this paper set, which all derive from a European research project, STTIS (Science Teacher Training in an Information Society). The central concern of the project was to study curriculum innovations in science, and to investigate ways in which teachers transform these innovations when putting them into practice. This work led to the construction of appropriate teacher training materials for use when an innovation is being introduced. The paper describes the mutual research strategy agreed upon by the STTIS partners. Both to avoid repetition and to underline the understanding that the partners share about the issues involved in curriculum innovation and related teacher education, the main theoretical background and the review of literature relevant to all four papers is to be found here. Themes and conclusions common to all the papers are highlighted. The paper also outlines the common features of the approach the STTIS partners took toward the construction of teacher training materials. These materials build in concrete results from the research, in forms that provoke discussion and reflection aimed at making teachers more aware of their ideas and behavior, with a view to effecting lasting change.
ERIC Educational Resources Information Center
Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher
2008-01-01
Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…
Self-Relevance Constructions of Biology Concepts: Meaning-Making and Identity-Formation
ERIC Educational Resources Information Center
Davidson, Yonaton Sahar
2018-01-01
Recent research supports the benefit of students' construction of relevance through writing about the connection of content to their life. However, most such research defines relevance narrowly as utility value--perceived instrumentality of the content to the student's career goals. Furthermore, the scope of phenomenological and conceptual…
ERIC Educational Resources Information Center
Huang, Wenhao; Huang, Wenyeh; Diefes-Dux, Heidi; Imbrie, Peter K.
2006-01-01
This paper describes a preliminary validation study of the Instructional Material Motivational Survey (IMMS) derived from the Attention, Relevance, Confidence and Satisfaction motivational design model. Previous studies related to the IMMS, however, suggest its practical application for motivational evaluation in various instructional settings…
Accurate Monitoring Leads to Effective Control and Greater Learning of Patient Education Materials
ERIC Educational Resources Information Center
Rawson, Katherine A.; O'Neil, Rochelle; Dunlosky, John
2011-01-01
Effective management of chronic diseases (e.g., diabetes) can depend on the extent to which patients can learn and remember disease-relevant information. In two experiments, we explored a technique motivated by theories of self-regulated learning for improving people's learning of information relevant to managing a chronic disease. Materials were…
36 CFR 1010.13 - Trust decision-making procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Trust decision-making procedures. 1010.13 Section 1010.13 Parks, Forests, and Public Property PRESIDIO TRUST ENVIRONMENTAL QUALITY § 1010.13 Trust decision-making procedures. To ensure that at major decision-making points all relevant...
Do we need a threshold conception of competence?
den Hartogh, Govert
2016-03-01
On the standard view we assess a person's competence by considering her relevant abilities without reference to the actual decision she is about to make. If she is deemed to satisfy certain threshold conditions of competence, it is still an open question whether her decision could ever be overruled on account of its harmful consequences for her ('hard paternalism'). In practice, however, one normally uses a variable, risk dependent conception of competence, which really means that in considering whether or not to respect a person's decision-making authority we weigh her decision on several relevant dimensions at the same time: its harmful consequences, its importance in terms of the person's own relevant values, the infringement of her autonomy involved in overruling it, and her decision-making abilities. I argue that we should openly recognize the multi-dimensional nature of this judgment. This implies rejecting both the threshold conception of competence and the categorical distinction between hard and soft paternalism.
Classification-free threat detection based on material-science-informed clustering
NASA Astrophysics Data System (ADS)
Yuan, Siyang; Wolter, Scott D.; Greenberg, Joel A.
2017-05-01
X-ray diffraction (XRD) is well-known for yielding composition and structural information about a material. However, in some applications (such as threat detection in aviation security), the properties of a material are more relevant to the task than is a detailed material characterization. Furthermore, the requirement that one first identify a material before determining its class may be difficult or even impossible for a sufficiently large pool of potentially present materials. We therefore seek to learn relevant composition-structure-property relationships between materials to enable material-identification-free classification. We use an expert-informed, data-driven approach operating on a library of XRD spectra from a broad array of stream of commerce materials. We investigate unsupervised learning techniques in order to learn about naturally emergent groupings, and apply supervised learning techniques to determine how well XRD features can be used to separate user-specified classes in the presence of different types and degrees of signal degradation.
Chahine, Saad; Cristancho, Sayra; Padgett, Jessica; Lingard, Lorelei
2017-06-01
In the competency-based medical education (CBME) approach, clinical competency committees are responsible for making decisions about trainees' competence. However, we currently lack a theoretical model for group decision-making to inform this emerging assessment phenomenon. This paper proposes an organizing framework to study and guide the decision-making processes of clinical competency committees.This is an explanatory, non-exhaustive review, tailored to identify relevant theoretical and evidence-based papers related to small group decision-making. The search was conducted using Google Scholar, Web of Science, MEDLINE, ERIC, and PsycINFO for relevant literature. Using a thematic analysis, two researchers (SC & JP) met four times between April-June 2016 to consolidate the literature included in this review.Three theoretical orientations towards group decision-making emerged from the review: schema, constructivist, and social influence. Schema orientations focus on how groups use algorithms for decision-making. Constructivist orientations focus on how groups construct their shared understanding. Social influence orientations focus on how individual members influence the group's perspective on a decision. Moderators of decision-making relevant to all orientations include: guidelines, stressors, authority, and leadership.Clinical competency committees are the mechanisms by which groups of clinicians will be in charge of interpreting multiple assessment data points and coming to a shared decision about trainee competence. The way in which these committees make decisions can have huge implications for trainee progression and, ultimately, patient care. Therefore, there is a pressing need to build the science of how such group decision-making works in practice. This synthesis suggests a preliminary organizing framework that can be used in the implementation and study of clinical competency committees.
Conceptions of decision-making capacity in psychiatry: interviews with Swedish psychiatrists.
Sjöstrand, Manne; Karlsson, Petter; Sandman, Lars; Helgesson, Gert; Eriksson, Stefan; Juth, Niklas
2015-05-21
Decision-making capacity is a key concept in contemporary healthcare ethics. Previous research has mainly focused on philosophical, conceptual issues or on evaluation of different tools for assessing patients' capacity. The aim of the present study is to investigate how the concept and its normative role are understood in Swedish psychiatric care. Of special interest for present purposes are the relationships between decisional capacity and psychiatric disorders and between health law and practical ethics. Eight in-depth interviews were conducted with Swedish psychiatrists. The interviews were analysed according to descriptive qualitative content analysis in which categories and sub-categories were distilled from the material. Decision-making capacity was seen as dependent on understanding, insight, evaluation, reasoning, and abilities related to making and communicating a choice. However, also the actual content of the decision was held as relevant. There was an ambivalence regarding the relationship between psychiatric disorders and capacity and a tendency to regard psychiatric patients who made unwise treatment decisions as decisionally incapable. However, in cases relating to patients with somatic illnesses, the assumption was rather that patients who made unwise decisions were imprudent but yet decisionally capable. The respondents' conceptions of decision-making capacity were mainly in line with standard theories. However, the idea that capacity also includes aspects relating to the content of the decision clearly deviates from the standard view. The tendency to regard imprudent choices by psychiatric patients as betokening lack of decision-making capacity differs from the view taken of such choices in somatic care. This difference merits further investigations.
An investigation into graphene exfoliation and potential graphene application in MEMS devices
NASA Astrophysics Data System (ADS)
Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary
2011-02-01
The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (n<3) of approximately 10μm x 44μm. Photolithography could possibly be utilized to tailor designs for microshutter technology to be used in future deep space telescopes.
A Statistics-Based Material Property Analysis to Support TPS Characterization
NASA Technical Reports Server (NTRS)
Copeland, Sean R.; Cozmuta, Ioana; Alonso, Juan J.
2012-01-01
Accurate characterization of entry capsule heat shield material properties is a critical component in modeling and simulating Thermal Protection System (TPS) response in a prescribed aerothermal environment. The thermal decomposition of the TPS material during the pyrolysis and charring processes is poorly characterized and typically results in large uncertainties in material properties as inputs for ablation models. These material property uncertainties contribute to large design margins on flight systems and cloud re- construction efforts for data collected during flight and ground testing, making revision to existing models for entry systems more challenging. The analysis presented in this work quantifies how material property uncertainties propagate through an ablation model and guides an experimental test regimen aimed at reducing these uncertainties and characterizing the dependencies between properties in the virgin and charred states for a Phenolic Impregnated Carbon Ablator (PICA) based TPS. A sensitivity analysis identifies how the high-fidelity model behaves in the expected flight environment, while a Monte Carlo based uncertainty propagation strategy is used to quantify the expected spread in the in-depth temperature response of the TPS. An examination of how perturbations to the input probability density functions affect output temperature statistics is accomplished using a Kriging response surface of the high-fidelity model. Simulations are based on capsule configuration and aerothermal environments expected during the Mars Science Laboratory (MSL) entry sequence. We identify and rank primary sources of uncertainty from material properties in a flight-relevant environment, show the dependence on spatial orientation and in-depth location on those uncertainty contributors, and quantify how sensitive the expected results are.
The SERC K12 Educators Portal to Teaching Activities and Pedagogic Approaches
NASA Astrophysics Data System (ADS)
Larsen, K.; Kirk, K. B.; Manduca, C. A.; Ledley, T. S.; Schmitt, L.
2013-12-01
The Science Education Resource Center (SERC) has created a portal to information for K12 educators to provide high-quality grade level appropriate materials from a wide variety of projects and topics. These materials were compiled across the SERC site, showcasing materials that were created for, or easily adaptable to, K12 classrooms. This resource will help support implementation of Next Generation Science Standards by assisting educators in finding innovative resources to address areas of instruction that are conceptually different than previous national and state science standards. Specifically, the K12 portal assists educators in learning about approaches that address the cross-cutting nature of science concepts, increasing students quantitative reasoning and numeracy skills, incorporating technology such as GIS in the classroom, and by assisting educators of all levels of K12 instruction in using relevant and meaningful ways to teach science concepts. The K12 portal supports educators by providing access to hundreds of teaching activities covering a wide array of science topics and grade levels many of which have been rigorously reviewed for pedagogic quality and scientific accuracy. The portal also provides access to web pages that enhance teaching practices that help increase student's system thinking skills, make lectures interactive, assist instructors in conducting safe and effective indoor and outdoor labs, providing support for teaching energy and climate literacy principles, assisting educators in addressing controversial content, provide guidance in engaging students affective domain, and provides a collection of tools for making teaching relevant in 21st century classrooms including using GIS, Google Earth, videos, visualizations and simulations to model and describe scientific concepts. The portal also provides access to material for specific content and audiences by (1) Supporting AGIs 'Map your World' week to specifically highlight teaching activities and approaches that use maps as the basis of instruction for a wide range of topics commonly taught in K12 science courses such as natural hazards, urban development, plate tectonics, climate change, ocean science, and water resources; and (2) Providing easy access to a vast collection of materials specifically for teachers of AP and IB classes including collections of teaching activities for all science disciplines as well as pedagogic approaches that are appropriate for the lab-intensive nature of these classes. The contents of the K12 portal are drawn from a number of projects and collaborations, including CLEAN, Earth Exploration Toolbook, Minnesota Science Teachers Education Project, Pedagogy in Action, EarthLabs, NAGT and On the Cutting Edge. Teachers can add their own materials to the site by sharing lessons plans, activities, and labs. K12 educators of all levels will find a wide variety of resources to spark the curiosity and interest of students. Explore the SERC K12 Educators Portal at: http://serc.carleton.edu/k12/index.html
Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers
ERIC Educational Resources Information Center
Gegg-Harrison, Timothy S.
2005-01-01
Although computer scientists understand the importance of discrete mathematics to the foundations of their field, computer science (CS) students do not always see the relevance. Thus, it is important to find a way to show students its relevance. The concept of program correctness is generally taught as an activity independent of the programming…
ERIC Educational Resources Information Center
Sugimoto, Amanda T.; Turner, Erin E.; Stoehr, Kathleen J.
2017-01-01
The pedagogical practice of connecting mathematical content to real world contexts, particularly contexts relevant to students' knowledge and experiences, can positively impact student motivation as well as promote conceptual understanding. However, little is known about how middle school teachers actually make relevant world connections, and more…
Making Learning Personally Meaningful: A New Framework for Relevance Research
ERIC Educational Resources Information Center
Priniski, Stacy J.; Hecht, Cameron A.; Harackiewicz, Judith M.
2018-01-01
Personal relevance goes by many names in the motivation literature, stemming from a number of theoretical frameworks. Currently these lines of research are being conducted in parallel with little synthesis across them, perhaps because there is no unifying definition of the relevance construct within which this research can be situated. In this…
Translating a "Relevance Imperative" into Junior Secondary Mathematics and Science Pedagogy
ERIC Educational Resources Information Center
Darby, Linda
2009-01-01
Inquiries into the state of mathematics and science education in Australia express the need to make curriculum and teaching practices more relevant and meaningful to students' lives. This vision requires that teachers understand how relevance can enter the classroom in meaningful, appropriate, and subject-specific ways. In this paper I use…
ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.
Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel
2008-03-15
Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.
Currie, Danielle J; Smith, Carl; Jagals, Paul
2018-03-27
Policy and decision-making processes are routinely challenged by the complex and dynamic nature of environmental health problems. System dynamics modelling has demonstrated considerable value across a number of different fields to help decision-makers understand and predict the dynamic behaviour of complex systems in support the development of effective policy actions. In this scoping review we investigate if, and in what contexts, system dynamics modelling is being used to inform policy or decision-making processes related to environmental health. Four electronic databases and the grey literature were systematically searched to identify studies that intersect the areas environmental health, system dynamics modelling, and decision-making. Studies identified in the initial screening were further screened for their contextual, methodological and application-related relevancy. Studies deemed 'relevant' or 'highly relevant' according to all three criteria were included in this review. Key themes related to the rationale, impact and limitation of using system dynamics in the context of environmental health decision-making and policy were analysed. We identified a limited number of relevant studies (n = 15), two-thirds of which were conducted between 2011 and 2016. The majority of applications occurred in non-health related sectors (n = 9) including transportation, public utilities, water, housing, food, agriculture, and urban and regional planning. Applications were primarily targeted at micro-level (local, community or grassroots) decision-making processes (n = 9), with macro-level (national or international) decision-making to a lesser degree. There was significant heterogeneity in the stated rationales for using system dynamics and the intended impact of the system dynamics model on decision-making processes. A series of user-related, technical and application-related limitations and challenges were identified. None of the reported limitations or challenges appeared unique to the application of system dynamics within the context of environmental health problems, but rather to the use of system dynamics in general. This review reveals that while system dynamics modelling is increasingly being used to inform decision-making related to environmental health, applications are currently limited. Greater application of system dynamics within this context is needed before its benefits and limitations can be fully understood.
Method of making carbon nanotube composite materials
O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas
2014-05-20
The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.
43 CFR 10010.48 - Decision-making procedures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... in its formal decision-making procedures provisions for consideration of environmental factors and... the environmental impacts of the entire range of alternatives described in any relevant environmental...
43 CFR 10010.48 - Decision-making procedures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... in its formal decision-making procedures provisions for consideration of environmental factors and... the environmental impacts of the entire range of alternatives described in any relevant environmental...
Causes of shortage and delay in material supply: a preliminary study
NASA Astrophysics Data System (ADS)
Rahman, M. M.; Yap, Y. H.; Ramli, N. R.; Dullah, M. A.; Shamsuddin, M. S. W.
2017-11-01
Shortage and delay in materials supply is argued to be one of the most important factors that lead to delay in construction project delivery globally. However, the relevant underlying reasons vary from country to country. As such, this paper summarises the outcomes of a study that targeted identifying causes of shortage and delay in materials supply in Brunei Darussalam. The study was conducted through fifteen semi-structured interviews of contractors and materials suppliers in Brunei. The study identified six causes of shortageof materials and nine causes of delay in materials supply in Brunei. The most importantcausefor shortage of materials relates to the origin or availability of construction materials. On the other hand, the most influential cause of delay in material supply was found to be poor materials procurement and inventory management system, which has other underlying reasons such as late identification of the type of materials needed. The observations are expected to help in formulating or reviewing relevant policies, in order to ensure on-time project delivery.
Foreign Trip Report MATGEN-IV Sep 24- Oct 26, 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Caro, M S
2007-10-30
Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD projectmore » on Critical Issues on Materials for Gen-IV Reactors).« less
Non-contact Measurement of Creep in Ultra-High-Temperature Materials
2009-11-04
Task 1: Process UHTC materials at the relevant temperatures in Electrostatic Levitation for extended periods. 5 3.5 Task 2: Prepare the required high...Electrostatic Levitation ITI Industrial Tectonics, Inc. MSFC NASA George C. Marshall Space Flight Center NASA National Aeronautics and Space...was divided into certain research questions: Can high-precision UHTC spheres be processed in Electrostatic Levitation (ESL) at the relevant
ERIC Educational Resources Information Center
Darby-Hobbs, Linda
2013-01-01
There has been a recent push to reframe curriculum and pedagogy in ways that make school more meaningful and relevant to students' lives and perceived needs. This "relevance imperative" is evident in contemporary rhetoric surrounding quality education, and particularly in relation to the junior secondary years where student disengagement with…
Implementing Infrastructures for Managing Learning Objects
ERIC Educational Resources Information Center
Klemke, Roland; Ternier, Stefaan; Kalz, Marco; Specht, Marcus
2010-01-01
Making learning objects available is critical to reuse learning resources. Making content transparently available and providing added value to different stakeholders is among the goals of the European Commission's eContentplus programme. This paper analyses standards and protocols relevant for making learning objects accessible in distributed data…
Specimens as records: scientific practice and recordkeeping in natural history research.
Ilerbaig, Juan
2010-01-01
For the past two decades, scholars in archival science have begun to question traditional assumptions about the nature of the record. Drawing on theories from fields such as sociology, organization theory, and science studies, and on their own ethnographic studies, they propose more inclusive definitions and widening the contexts of analysis of record making and recordkeeping. This paper continues this critical consideration of the concept of record by examining the nature of nonprototypical records in the scientific world. The paper focuses on the system of specimens and field notes established by biologist Joseph Grinnell at the Museum of Vertebrate Zoology (University of California, Berkeley) as a means of examining several aspects of the nature of the scientific record: materiality, representation, and the triad evidence/memory/accountability. Focusing on the creation and management of these scientific records, the paper argues that further analyses of scientific record making and recordkeeping are bound to benefit both scientific work, which depends more and more on databases and archives, as well as archival science, which is becoming more relevant beyond its traditional realm of the legal/business/administrative world.
Candiani, Gabriele; Picone, Nicoletta; Pompilio, Loredana; Pepe, Monica; Colledani, Marcello
2017-01-01
Waste of electric and electronic equipment (WEEE) is the fastest-growing waste stream in Europe. The large amount of electric and electronic products introduced every year in the market makes WEEE disposal a relevant problem. On the other hand, the high abundance of key metals included in WEEE has increased the industrial interest in WEEE recycling. However, the high variability of materials used to produce electric and electronic equipment makes key metals’ recovery a complex task: the separation process requires flexible systems, which are not currently implemented in recycling plants. In this context, hyperspectral sensors and imaging systems represent a suitable technology to improve WEEE recycling rates and the quality of the output products. This work introduces the preliminary tests using a hyperspectral system, integrated in an automatic WEEE recycling pilot plant, for the characterization of mixtures of fine particles derived from WEEE shredding. Several combinations of classification algorithms and techniques for signal enhancement of reflectance spectra were implemented and compared. The methodology introduced in this study has shown characterization accuracies greater than 95%. PMID:28505070
Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces
NASA Astrophysics Data System (ADS)
Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew
2011-03-01
The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).
Steady-state low thermal resistance characterization apparatus: The bulk thermal tester
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burg, Brian R.; Kolly, Manuel; Blasakis, Nicolas
The reliability of microelectronic devices is largely dependent on electronic packaging, which includes heat removal. The appropriate packaging design therefore necessitates precise knowledge of the relevant material properties, including thermal resistance and thermal conductivity. Thin materials and high conductivity layers make their thermal characterization challenging. A steady state measurement technique is presented and evaluated with the purpose to characterize samples with a thermal resistance below 100 mm{sup 2} K/W. It is based on the heat flow meter bar approach made up by two copper blocks and relies exclusively on temperature measurements from thermocouples. The importance of thermocouple calibration is emphasizedmore » in order to obtain accurate temperature readings. An in depth error analysis, based on Gaussian error propagation, is carried out. An error sensitivity analysis highlights the importance of the precise knowledge of the thermal interface materials required for the measurements. Reference measurements on Mo samples reveal a measurement uncertainty in the range of 5% and most accurate measurements are obtained at high heat fluxes. Measurement techniques for homogeneous bulk samples, layered materials, and protruding cavity samples are discussed. Ultimately, a comprehensive overview of a steady state thermal characterization technique is provided, evaluating the accuracy of sample measurements with thermal resistances well below state of the art setups. Accurate characterization of materials used in heat removal applications, such as electronic packaging, will enable more efficient designs and ultimately contribute to energy savings.« less
Crystals: animal, vegetable or mineral?
Hyde, Stephen T.
2015-01-01
The morphologies of biological materials, from body shapes to membranes within cells, are typically curvaceous and flexible, in contrast to the angular, facetted shapes of inorganic matter. An alternative dichotomy has it that biomolecules typically assemble into aperiodic structures in vivo, in contrast to inorganic crystals. This paper explores the evolution of our understanding of structures across the spectrum of materials, from living to inanimate, driven by those naive beliefs, with particular focus on the development of crystallography in materials science and biology. The idea that there is a clear distinction between these two classes of matter has waxed and waned in popularity through past centuries. Our current understanding, driven largely by detailed exploration of biomolecular structures at the sub-cellular level initiated by Bernal and Astbury in the 1930s, and more recent explorations of sterile soft matter, makes it clear that this is a false dichotomy. For example, liquid crystals and other soft materials are common to both living and inanimate materials. The older picture of disjoint universes of forms is better understood as a continuum of forms, with significant overlap and common features unifying biological and inorganic matter. In addition to the philosophical relevance of this perspective, there are important ramifications for science. For example, the debates surrounding extra-terrestrial life, the oldest terrestrial fossils and consequent dating of the emergence of life on the Earth rests to some degree on prejudices inferred from the supposed dichotomy between life-forms and the rest. PMID:26464788
Crystals: animal, vegetable or mineral?
Hyde, Stephen T
2015-08-06
The morphologies of biological materials, from body shapes to membranes within cells, are typically curvaceous and flexible, in contrast to the angular, facetted shapes of inorganic matter. An alternative dichotomy has it that biomolecules typically assemble into aperiodic structures in vivo, in contrast to inorganic crystals. This paper explores the evolution of our understanding of structures across the spectrum of materials, from living to inanimate, driven by those naive beliefs, with particular focus on the development of crystallography in materials science and biology. The idea that there is a clear distinction between these two classes of matter has waxed and waned in popularity through past centuries. Our current understanding, driven largely by detailed exploration of biomolecular structures at the sub-cellular level initiated by Bernal and Astbury in the 1930s, and more recent explorations of sterile soft matter, makes it clear that this is a false dichotomy. For example, liquid crystals and other soft materials are common to both living and inanimate materials. The older picture of disjoint universes of forms is better understood as a continuum of forms, with significant overlap and common features unifying biological and inorganic matter. In addition to the philosophical relevance of this perspective, there are important ramifications for science. For example, the debates surrounding extra-terrestrial life, the oldest terrestrial fossils and consequent dating of the emergence of life on the Earth rests to some degree on prejudices inferred from the supposed dichotomy between life-forms and the rest.
21 CFR 111.87 - Who conducts a material review and makes a disposition decision?
Code of Federal Regulations, 2010 CFR
2010-04-01
... MANUFACTURING, PACKAGING, LABELING, OR HOLDING OPERATIONS FOR DIETARY SUPPLEMENTS Requirement to Establish a Production and Process Control System § 111.87 Who conducts a material review and makes a disposition... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Who conducts a material review and makes a...
NASA Astrophysics Data System (ADS)
Babakhanova, Kh A.; Varepo, L. G.; Nagornova, I. V.; Babluyk, E. B.; Kondratov, A. P.
2018-04-01
Paper is one of the printing system key components causing the high-quality printed products output. Providing the printing companies with the specified printing properties paper, while simultaneously increasing the paper products range and volume by means of the forecasting methods application and evaluation during the production process, is certainly a relevant problem. The paper presents the printing quality control algorithm taking into consideration the paper printing properties quality assessment depending on the manufacture technological features and composition variation. The information system including raw material and paper properties data and making possible pulp and paper enterprises to select paper composition optimal formulation is proposed taking into account the printing process procedure peculiarities of the paper manufacturing with specified printing properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewair, M.
1989-01-01
Hypersensitivity pneumonitis (HP), an immunologically mediated chronic pulmonary disease, is the result of an inflammatory response of the lung initiated by the inhalation of environmental organic dusts. These organic dusts usually contain substances (antigens) capable of eliciting immune responses in humans. The symptoms of HP generally present as recurrent flu-like episodes which makes it difficult to establish the proper diagnosis. However, detection in patients' sera of high-titer antibodies against the environmental antigens could be of great help in identifying those materials causing the disease and which must be avoided. A highly specific and sensitive serodiagnostic test, a radioimmuno assay (RIA),more » was developed for measurement of antibodies against antigens relevant to Farmer's Lung Disease (FLD), a type of HP affecting farmers.« less
Semi-Supervised Data Summarization: Using Spectral Libraries to Improve Hyperspectral Clustering
NASA Technical Reports Server (NTRS)
Wagstaff, K. L.; Shu, H. P.; Mazzoni, D.; Castano, R.
2005-01-01
Hyperspectral imagers produce very large images, with each pixel recorded at hundreds or thousands of different wavelengths. The ability to automatically generate summaries of these data sets enables several important applications, such as quickly browsing through a large image repository or determining the best use of a limited bandwidth link (e.g., determining which images are most critical for full transmission). Clustering algorithms can be used to generate these summaries, but traditional clustering methods make decisions based only on the information contained in the data set. In contrast, we present a new method that additionally leverages existing spectral libraries to identify materials that are likely to be present in the image target area. We find that this approach simultaneously reduces runtime and produces summaries that are more relevant to science goals.
[Providing successful education and further training: 10 tips].
Brand, Paul L P; Boendermaker, Peter M; Venekamp, Ruud M
2014-01-01
Almost all physicians teach or provide postgraduate medical education from time to time. Although many people assume that there are 'born teachers' and 'those who will never learn to teach', teaching is an ability. The knowledge and skills required to teach well can be learned and practised. In this review article, we present 10 tips that will help the busy clinician to teach effectively. The 10 tips, which are based on the principles of adult learning, are: prepare your teaching session, involve the learners actively, connect to the learners' level of competence, define learning objectives, make the subject of your teaching relevant to the learners, use questions, be a good role model, vary your teaching methods, practise your teaching, and limit the amount of material you are teaching in each session.
Nanoplasmonics: a frontier of photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Gu, Min; Ouyang, Zi; Jia, Baohua; Stokes, Nicholas; Chen, Xi; Fahim, Narges; Li, Xiangping; Ventura, Michael James; Shi, Zhengrong
2012-12-01
Nanoplasmonics recently has emerged as a new frontier of photovoltaic research. Noble metal nanostructures that can concentrate and guide light have demonstrated great capability for dramatically improving the energy conversion efficiency of both laboratory and industrial solar cells, providing an innovative pathway potentially transforming the solar industry. However, to make the nanoplasmonic technology fully appreciated by the solar industry, key challenges need to be addressed; including the detrimental absorption of metals, broadband light trapping mechanisms, cost of plasmonic nanomaterials, simple and inexpensive fabrication and integration methods of the plasmonic nanostructures, which are scalable for full size manufacture. This article reviews the recent progress of plasmonic solar cells including the fundamental mechanisms, material fabrication, theoretical modelling and emerging directions with a distinct emphasis on solutions tackling the above-mentioned challenges for industrial relevant applications.
Nanodiamonds as platforms for biology and medicine.
Man, Han B; Ho, Dean
2013-02-01
Nanoparticles possess a wide range of exceptional properties applicable to biology and medicine. In particular, nanodiamonds (NDs) are being studied extensively because they possess unique characteristics that make them suitable as platforms for diagnostics and therapeutics. This carbon-based material (2-8 nm) is medically relevant because it unites several key properties necessary for clinical applications, such as stability and compatibility in biological environments, and scalability in production. Research by the Ho group and others has yielded ND particles with a variety of capabilities ranging from delivery of chemotherapeutic drugs to targeted labeling and uptake studies. In addition, encouraging new findings have demonstrated the ability for NDs to effectively treat chemoresistant tumors in vivo. In this review, we highlight the progress made toward bringing nanodiamonds from the bench to the bedside.
Finding research information on the web: how to make the most of Google and other free search tools.
Blakeman, Karen
2013-01-01
The Internet and the World Wide Web has had a major impact on the accessibility of research information. The move towards open access and development of institutional repositories has resulted in increasing amounts of information being made available free of charge. Many of these resources are not included in conventional subscription databases and Google is not always the best way to ensure that one is picking up all relevant material on a topic. This article will look at how Google's search engine works, how to use Google more effectively for identifying research information, alternatives to Google and will review some of the specialist tools that have evolved to cope with the diverse forms of information that now exist in electronic form.
Phonon-interface scattering in multilayer graphene on an amorphous support
Sadeghi, Mir Mohammad; Jo, Insun; Shi, Li
2013-01-01
The recent studies of thermal transport in suspended, supported, and encased graphene just began to uncover the richness of two-dimensional phonon physics, which is relevant to the performance and reliability of graphene-based functional materials and devices. Among the outstanding questions are the exact causes of the suppressed basal-plane thermal conductivity measured in graphene in contact with an amorphous material, and the layer thickness needed for supported or embedded multilayer graphene (MLG) to recover the high thermal conductivity of graphite. Here we use sensitive in-plane thermal transport measurements of graphene samples on amorphous silicon dioxide to show that full recovery to the thermal conductivity of the natural graphite source has yet to occur even after the MLG thickness is increased to 34 layers, considerably thicker than previously thought. This seemingly surprising finding is explained by long intrinsic scattering mean free paths of phonons in graphite along both basal-plane and cross-plane directions, as well as partially diffuse scattering of MLG phonons by the MLG-amorphous support interface, which is treated by an interface scattering model developed for highly anisotropic materials. Based on the phonon transmission coefficient calculated from reported experimental thermal interface conductance results, phonons emerging from the interface consist of a large component that is scattered across the interface, making rational choice of the support materials a potential approach to increasing the thermal conductivity of supported MLG. PMID:24067656
Bustamante, Michele L; Gaustad, Gabrielle; Alonso, Elisa
2018-01-02
Materials criticality assessment is a screening framework increasingly applied to identify materials of importance that face scarcity risks. Although these assessments highlight materials for the implicit purpose of informing future action, the aggregated nature of their findings make them difficult to use for guidance in developing nuanced mitigation strategy and policy response. As a first step in the selection of mitigation strategies, the present work proposes a modeling framework and accompanying set of metrics to directly compare strategies by measuring effectiveness of risk reduction as a function of the features of projected supply demand balance over time. The work focuses on byproduct materials, whose criticality is particularly important to understand because their supplies are inherently less responsive to market balancing forces, i.e., price feedbacks. Tellurium, a byproduct of copper refining, which is critical to solar photovoltaics, is chosen as a case study, and three commonly discussed byproduct-relevant strategies are selected: dematerialization of end-use product, byproduct yield improvement, and end-of-life recycling rate improvement. Results suggest that dematerialization will be nearly twice as effective at reducing supply risk as the next best option, yield improvement. Finally, due to its infrequent use at present and its dependence upon long product lifespans, recycling end-of-life products is expected to be the least effective option despite potentially offering other benefits (e.g., cost savings and environmental impact reduction).
Making microbiology of the built environment relevant to design.
Brown, G Z; Kline, Jeff; Mhuireach, Gwynne; Northcutt, Dale; Stenson, Jason
2016-02-16
Architects are enthusiastic about "bioinformed design" as occupant well-being is a primary measure of architectural success. However, architects are also under mounting pressure to create more sustainable buildings. Scientists have a critical opportunity to make the emerging field of microbiology of the built environment more relevant and applicable to real-world design problems by addressing health and sustainability in tandem. Practice-based research, which complements evidence-based design, represents a promising approach to advancing knowledge of the indoor microbiome and translating it to architectural practice.
NASA Astrophysics Data System (ADS)
Rawat, R. S.
2015-03-01
The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of nanostructured materials using DPF device will discussed to establish this device as versatile tool for plasma nanotechnology.
The Art and Materials Physics of the Motorcycle
NASA Astrophysics Data System (ADS)
Falco, Charles M.
2008-03-01
In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle, and thus produced the world's first motorcycle. A steam engine was a logical choice, having steadily developed from the work of Savery and Newcomen in the 17th century to the point where Perreaux was able to make one small enough to use for this purpose. Unfortunately, it was a technological dead-end the moment it was created, since nine years earlier Alphonse Beau de Rochas had published the description of the four-cycle internal-combustion process. Significantly, the Michaux-Perreaux engine produced 1-2 hp in an overall machine that weighed 88 kg, whereas modern motorcycles produce 100 times more horsepower while weighing only twice as much. Examples I will show illustrate that developments in materials science over the past century are almost entirely responsible for making this possible. After a period of extraordinarily-rapid technological advance, by 1903 essentially all the components of a modern motorcycle were in place, and changes since then have been largely the result of evolutionary refinement in step with advances in materials science, rather than further revolutionary invention. Also, like many other objects of industrial design, motorcycles have played a variety of roles in society over the 137 years since the Michaux-Perreaux. I will discuss the interrelationship of the relevant technological, cultural, and aesthetic factors over the past century that have, amongst other things, resulted in standard production motorcycles -- incorporating such materials as carbon-fiber composites, maraging steels, and ``exotic'' alloys of magnesium, titanium and aluminum -- that can exceed 190 mph straight from the show room floor. For more information see http://www.optics.arizona.edu/ssd/aotm.html. Acknowledgment: I am grateful for the contributions of Ultan Guilfoyle to our joint work on the Solomon R. Guggenheim's ``The Art of the Motorcycle.''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stroeve, Pieter; Faller, Roland
The objective of this project was to develop robust, high-efficiency materials for capture of fission product gases such as He, Xe and Kr in scenarios relevant for both reactor fuels and reprocessing operations. The relevant environments are extremely harsh, encompassing temperatures up to 1500 °C, high levels of radiation, as well as potential exposures to highly-reactive chemicals such as nitric acid and organic solvents such as kerosene. The requirement for nanostructured capture materials is driven in part by the very short (few micron) diffusion distances for product gases in nuclear fuel. We achieved synthesis, characterization and detailed modeling of themore » materials. Although not all materials reviewed in this report will be feasible for the ultimate goal of integration in nuclear fuel, nevertheless each material studied has particular properties which will enable an optimized material to be efficiently developed and characterized.« less
29 CFR 37.4 - What definitions apply to this part?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (TDDs/TTYs), videotext displays, or other effective means of making aurally delivered materials..., brailled materials, large print materials, or other effective means of making visually delivered materials... employment-related training; (5) Participation in upward mobility programs; (6) Deciding rates of pay or...
29 CFR 37.4 - What definitions apply to this part?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (TDDs/TTYs), videotext displays, or other effective means of making aurally delivered materials..., brailled materials, large print materials, or other effective means of making visually delivered materials... employment-related training; (5) Participation in upward mobility programs; (6) Deciding rates of pay or...
29 CFR 37.4 - What definitions apply to this part?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (TDDs/TTYs), videotext displays, or other effective means of making aurally delivered materials..., brailled materials, large print materials, or other effective means of making visually delivered materials... employment-related training; (5) Participation in upward mobility programs; (6) Deciding rates of pay or...
29 CFR 37.4 - What definitions apply to this part?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (TDDs/TTYs), videotext displays, or other effective means of making aurally delivered materials..., brailled materials, large print materials, or other effective means of making visually delivered materials... employment-related training; (5) Participation in upward mobility programs; (6) Deciding rates of pay or...
ERIC Educational Resources Information Center
Hong, Jon-Chao; Hwang, Ming-Yueh; Szeto, Elson; Tai, Kai-Hsin; Tsai, Chi-Ruei
2016-01-01
Hands-on making (e.g., "Maker") has become prevalent in current educational settings. To understand the role that students' epistemic curiosity plays in hands-on making contests, this study explored its correlation to students' positive affect and continuance intention to participate in a hands-on making contest called…
Strategic Decision Making Cycle in Higher Education: Case Study of E-Learning
ERIC Educational Resources Information Center
Divjak, Blaženka; Redep, Nina Begicevic
2015-01-01
This paper presents the methodology for strategic decision making in higher education (HE). The methodology is structured as a cycle of strategic decision making with four phases, and it is focused on institutional and national perspective, i.e. on decision making that takes place at institutions of HE and relevant national authorities, in case…
Jenke, Dennis R; Stults, Cheryl L M; Paskiet, Diane M; Ball, Douglas J; Nagao, Lee M
Elemental impurities in drug products can arise from a number of different sources and via a number of different means, including the active pharmaceutical ingredient, excipients, the vehicle, and leaching of elemental entities that are present in the drug product's manufacturing or packaging systems. Thus, knowledge about the presence, level, and likelihood of leaching of elemental entities in manufacturing and packaging systems is relevant to understanding how these systems contribute to a drug product's total elemental impurity burden. To that end, a joint team from the Extractables and Leachables Safety Information Exchange (ELSIE) Consortium and the International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) has conducted a review of the available literature on elemental entities in pharmaceutically relevant polymers and the presence of these elemental entities in material extracts and/or drug products. This review article contains the information compiled from the available body of literature and considers two questions: (1) What elemental entities are present in the relevant polymers and materials and at what levels are they present? (2) To what extent are these elemental entities leached from these materials under conditions relevant to the manufacturing and storage/distribution of solution drug products? Conclusions drawn from the compiled data are as follows: (1) Elemental entities are present in the materials used to construct packaging and manufacturing systems as these materials either contain these elemental entities as additives or are exposed to elemental entities during their production. (2) Unless the elemental entities are parts of the materials themselves (for example, SiO 2 in glass) or intentionally added to the materials (for example, metal stearates in polymers), their incidental amounts in the materials are generally low. (3) When elemental entities are present in materials and systems, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, while sources of certain elemental impurities may be ubiquitous in the natural environment, they are not ubiquitous in materials used in pharmaceutical packaging and manufacturing systems and when they are present, they are not extensively leached under relevant conditions. The information summarized here can be utilized to aid the elemental impurity risk assessment process by providing the identities of commonly reported elements and data to support probability estimates of those becoming elemental impurities in the drug product. Furthermore, recommendations are made related to establishing elements of potential product impact for individual materials. Extraneous impurities in drug products provide no therapeutic benefit and thus should be known and controlled. Elemental impurities can arise from a number of sources and by a number of means, including the leaching of elemental entities from drug product packaging and manufacturing systems. To understand the extent to which materials used in packaging systems contain elemental entities and the extent to which those entities leach into drug products to become elemental impurities, the Extractables and Leachables Safety Information Exchange (ELSIE) and International Pharmaceutical Aerosol Consortium on Regulation and Science (IPAC-RS) Consortia have jointly performed a literature review on this subject. Using the compiled information, it was concluded that while packaging materials may contain elemental entities, unless those entities are intentional parts of the materials, the amounts of those elemental entities are generally low. Furthermore, generally only a very small fraction of the total available amount of the entity can be leached under conditions that are relevant to packaged drug products. Thus, risk assessment of sources of elemental impurities in drug products that may be related to materials used in pharmaceutical packaging and manufacturing systems can utilize the information and recommendations presented here. © PDA, Inc. 2015.
Wildeman, Sheila; Dunn, Laura B; Onyemelukwe, Cheluchi
2013-04-01
In Canada, as in the United States, the legal frameworks governing research involving adults incapable of providing informed consent are beset by gaps and ambiguities. In both countries, federal laws and policies relevant to the regulation of research involving decisionally incapable adults interact in complex ways with provincial or state laws. To alert researchers to these complexities and to urge law reform, this review provides a comprehensive account of the federal and provincial/ territorial legal frameworks relevant to research involving decisionally incapable adults in Canada. We identified the federal and provincial/territorial laws and policies pertinent to this review by updating previous work on substitute decision-making about research in Canada and then performing keyword searches on a Canadian legal information database (CanLii) to identify further laws of relevance. Our analysis of identified laws focused on three questions: 1) What (if any) preconditions-including permissible risk and/or benefit thresholds-are imposed on research involving persons who lack capacity to consent? 2) What provisions (if any) are in place for identification of the legally authorized representative for research decision making? and 3) What factors, if any, are stipulated as mandatory relevant considerations for the legally authorized representative's decision-making process? Across Canada, laws relating to substitute decision-making are highly variable, and often ambiguous or uncertain, on each of the matters targeted in our analysis. Researchers and research institutions should be aware of federal and provincial/territorial legal requirements for research involving persons who lack capacity to consent in Canada. The relevant governments should undertake coordinated efforts at law reform to clarify, and potentially harmonize, these requirements. Copyright © 2013 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Kroeger, Marie E; Sorenson, Blaire A; Thomas, J Santoro; Stojković, Emina A; Tsonchev, Stefan; Nicholson, Kenneth T
2014-10-24
Atomic force microscopy (AFM) uses a pyramidal tip attached to a cantilever to probe the force response of a surface. The deflections of the tip can be measured to ~10 pN by a laser and sectored detector, which can be converted to image topography. Amplitude modulation or "tapping mode" AFM involves the probe making intermittent contact with the surface while oscillating at its resonant frequency to produce an image. Used in conjunction with a fluid cell, tapping-mode AFM enables the imaging of biological macromolecules such as proteins in physiologically relevant conditions. Tapping-mode AFM requires manual tuning of the probe and frequent adjustments of a multitude of scanning parameters which can be challenging for inexperienced users. To obtain high-quality images, these adjustments are the most time consuming. PeakForce Quantitative Nanomechanical Property Mapping (PF-QNM) produces an image by measuring a force response curve for every point of contact with the sample. With ScanAsyst software, PF-QNM can be automated. This software adjusts the set-point, drive frequency, scan rate, gains, and other important scanning parameters automatically for a given sample. Not only does this process protect both fragile probes and samples, it significantly reduces the time required to obtain high resolution images. PF-QNM is compatible for AFM imaging in fluid; therefore, it has extensive application for imaging biologically relevant materials. The method presented in this paper describes the application of PF-QNM to obtain images of a bacterial red-light photoreceptor, RpBphP3 (P3), from photosynthetic R. palustris in its light-adapted state. Using this method, individual protein dimers of P3 and aggregates of dimers have been observed on a mica surface in the presence of an imaging buffer. With appropriate adjustments to surface and/or solution concentration, this method may be generally applied to other biologically relevant macromolecules and soft materials.
Lorenz, Jonas; Eichler, Kathrin; Barbeck, Mike; Lerner, Henriette; Stübinger, Stefan; Seipel, Catherine; Vogl, Thomas J.; Kovács, Adorján F.; Ghanaati, Shahram; Sader, Robert A.
2016-01-01
Background: In numerous animal and human studies, it could be detected that in bone augmentation procedures, material's physicochemical characteristics can influence the cellular inflammatory pattern and therefore the integration in the host tissue. Histological, histomorphometrical, and clinical analyses of the integration of the biomaterial in the surrounding tissue are well established methodologies; however, they do not make a statement on volume and density changes of the augmented biomaterial. Aims: The aim of the present study was to assess the volume and density of a xenogeneic (Bio-Oss®, BO) and a synthetic (NanoBone®, NB) bone substitute material in split-mouth sinus augmentations in former tumor patients to complete histological and histomorphometrical assessment. Methods: Immediately and 6 months after sinus augmentation computed tomography scans were recorded, bone grafts were marked, and the volume was calculated with radiologic RIS-PACS software (General Electric Healthcare, Chalfont St. Giles, Great Britain) to determine the integration and degradation behavior of both biomaterials. Results: Radiographic analysis revealed a volume reduction of the initial augmented bone substitute material (i.e. 100%) to 77.36 (±11.68) % in the BO-group, respectively, 75.82 (±22.28) % in the NB-group six months after augmentation. In both materials, the volume reduction was not significant. Bone density significantly increased in both groups. Conclusion: The presented radiological investigation presents a favorable method to obtain clinically relevant information concerning the integration and degradation behavior of bone substitute materials. PMID:28299254
SIGI: An Interactive Aid to Career Decision Making.
ERIC Educational Resources Information Center
Katz, Martin R.
1980-01-01
The System of Interactive Guidance and Information (SIGI) helps students make informed and rational career decisions. Interacting with a computer, students examine values, identify and explore options, gain and interpret relevant information, master strategies for decision making, and formulate plans of action. Extensively field-tested, SIGI has…
20 CFR 404.1527 - Evaluating opinion evidence.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for making the determination or decision about whether you meet the statutory definition of disability.... (c) Making disability determinations. After we review all of the evidence relevant to your claim... decide whether you are disabled, we will make our determination or decision based on that evidence. (2...
Liu, Donglai; Zhou, Haiwei; Shi, Dawei; Shen, Shu; Tian, Yabin; Wang, Lin; Lou, Jiatao; Cong, Rong; Lu, Juan; Zhang, Henghui; Zhao, Meiru; Zhu, Shida; Cao, Zhisheng; Jin, Ruilin; Wang, Yin; Zhang, Xiaoni; Yang, Guohua; Wang, Youchun; Zhang, Chuntao
2018-01-01
Background: Widespread clinical implementation of next-generation sequencing (NGS)-based cancer in vitro diagnostic tests (IVDs) highlighted the urgency to establish reference materials which could provide full control of the process from nucleic acid extraction to test report generation. The formalin-fixed, paraffin-embedded (FFPE) tissue and blood plasma containing circulating tumor deoxyribonucleic acid (ctDNA) were mostly used for clinically detecting onco-relevant mutations. Methods: We respectively developed multiplex FFPE and plasma reference materials covering three clinically onco-relevant mutations within the epidermal growth factor receptor ( EGFR ) gene at serial allelic frequencies. All reference materials were quantified and validated via droplet digital polymerase chain reaction (ddPCR), and then were distributed to eight domestic manufacturers for the collaborative evaluation of the performance of several domestic NGS-based cancer IVDs covering four major NGS platforms (NextSeq, HiSeq, Ion Proton and BGISEQ). Results: All expected mutations except one at extremely low allelic frequencies were detected, despite some differences in coefficient of variation (CV) which increased with the decrease of allelic frequency (CVs ranging from 18% to 106%). It was worth noting that the CV value seemed to correlate with a particular mutation as well. The repeatability of determination of different mutations was L858R>T790M>19del. Conclusions: The results indicated our reference materials would be pivotal for quality control of NGS-based cancer IVDs and would guide the further development of reference materials covering more onco-relevant mutations.
NASA Astrophysics Data System (ADS)
Beaumont, Robert
Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions about the relative ballistic performances. The tests showed that all of the composites would outperform the alumina materials. Further, all of the tests led to the prediction that AD995 would be better ballistically than Sintox FA, possibly up to a factor of two better. The predictions were in very good agreement with literature values for depth-of-penetration testing. The situation was more complex for the carbide materials, with different tests leading to slightly different predictions. However, the predictions from the ultrasonic tests were consistent with the available ballistic data. Indeed, the ultrasonic data proved to be the most consistent predictor of ballistic performance, supporting the view that the total defect population is more relevant than a ‘critical flaw’ concept. Thus, it can be concluded that with further development, and subject to validation across a wider spread of materials and microstructures, thermal shock testing coupled with ultrasonic measurements could form the basis of a future screening test for ceramics for armour applications.
NASA Astrophysics Data System (ADS)
Yudin, V.
2017-11-01
Due to the historical peculiarities of Russia, by the end of the 20th century many temples were destroyed or they lost their iconostases which most often were made of wood. When it became necessary to revive the traditional craft it turned out that it was lost almost completely which negatively affects the quality of the wooden iconostases restoration and their new construction. The article aims to fill the loss of knowledge and skills that make up the content of one of the most interesting types of the architectural and monumental and decorative art through study of the forms of preserved fragments once being a very rich historical and cultural heritage. Similar works on the study of wooden iconostases aimed at the recreation of oak decorative wooden elements and restoration practice have not been performed so far which gives it a character of particular relevance for the architectural science. New and relevant technological improvements are not rejected but skillfully introduced into the arsenal of techniques and means of modern restorers and carvers to facilitate the recovery of iconostasis construction from a crisis state and the transition to the subsequent continuation of the tradition development. The deep knowledge of the research subject allowed one to use oak decorative elements in the manufacture for recreating the iconostasis of the Krestovozdvizhensky temple in the village of Syrostan, the Chelyabinsk region. This material is undoubtedly of a scientific and reference nature as well as economic efficiency for all those who wish to join the noble traditional iconostasis making art.
Mercadante, Sebastiano; Adile, Claudio; Lanzetta, Gaetano; Mystakidou, Kyriaki; Maltoni, Marco; Soares, Luiz Guilherme; De Santis, Stefano; Ferrera, Patrizia; Valenti, Marco; Rosati, Marta; Rossi, Romina; Cortegiani, Andrea; Masedu, Francesco; Marinangeli, Franco; Aielli, Federica
2018-05-16
The aim of this study was to assess the patients' global impression (PGI) after symptom management, as well as the achievement of personalized symptom goals (PSG). The secondary outcome was to assess related factors. Subjects, Materials, and Methods . Advanced cancer patients admitted to palliative care units rated symptom intensity by using the Edmonton Symptom Assessment Score (ESAS) at admission and then after 1 week. For each symptom, patient-reported PGI and PSG, as well as the rate of PSG response, were evaluated. Eight hundred seventy-six patients were taken into consideration for this study. A mean of 1.71-2.16 points was necessary to perceive a bit better improvement of symptom intensity. Most patients had a PSG of ≤3. A statistically significant number of patients achieved their PSG after starting palliative care. Patients with high intensity of ESAS items at admission achieved a more favorable PGI response. In the multivariate analysis, symptom intensity and PSG were the most frequent factors independently associated to a best PGI, whereas high levels of Karnofsky had a lower odd ratio. PSG and PGI seem to be relevant for patients' assessment and decision-making process, translating in terms of therapeutic intervention. Some factors may be implicated in determining the individual target and clinical response. Personalized symptom goals and global impression of change are relevant for patients' assessment and decision-making process, translating in terms of therapeutic intervention. Some factors may be implicated in determining the individual target and clinical response. © AlphaMed Press 2018.
Code of Federal Regulations, 2010 CFR
2010-04-01
... nonpublic information if the person demonstrates that: (i) The individual making the investment decision on... the basis of” material nonpublic information about that security or issuer if the person making the... or sale is not “on the basis of” material nonpublic information if the person making the purchase or...
The material from Lampung as coarse aggregate to substitute andesite for concrete-making
NASA Astrophysics Data System (ADS)
Amin, M.; Supriyatna, Y. I.; Sumardi, S.
2018-01-01
Andesite stone is usually used for split stone material in the concrete making. However, its availability is decreasing. Lampung province has natural resources that can be used for coarse aggregate materials to substitute andesite stone. These natural materials include limestone, feldspar stone, basalt, granite, and slags from iron processing waste. Therefore, a research on optimizing natural materials in Lampung to substitute andesite stone for concrete making is required. This research used laboratory experiment method. The research activities included making cubical object samples of 150 x 150 x 150 mm with material composition referring to a standard of K.200 and w/c 0.61. Concrete making by using varying types of aggregates (basalt, limestone, slag) and aggregate sizes (A = 5-15 mm, B = 15-25 mm, and 25-50 mm) was followed by compressive strength test. The results showed that the obtained optimal compressive strengths for basalt were 24.47 MPa for 50-150 mm aggregate sizes, 21.2 MPa for 15-25 mm aggregate sizes, and 20.7 MPa for 25-50 mm aggregate sizes. These results of basalt compressive strength values were higher than the same result for andesite (19.69 MPa for 50-150 mm aggregate sizes), slag (22.72 MPa for 50-150 mm aggregate sizes), and limestone (19.69 Mpa for 50-150 mm aggregate sizes). These results indicated that basalt, limestone, and slag aggregates were good enough to substitute andesite as materials for concrete making. Therefore, natural resources in Lampung can be optimized as construction materials in concrete making.
Modelling the effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2017-01-01
Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.
Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Annabelle; Kurokawa, Naruki; Hillmyer, Marc A.
2017-05-03
Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (M e = 2.9 kg mol –1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (f LA = 0.17) results in TPEs with high stresses and elongations at break (σ B = 24 ± 2 MPa and ε B = 1029 ± 20%, respectively) and low levels of hysteresis. The use ofmore » isotactic PLA as the end blocks (f LLA = 0.17) increases the strength and toughness of the material (σ B = 30 ± 4 MPa, ε B = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment–segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.« less
IDEAL: Images Across Domains, Experiments, Algorithms and Learning
NASA Astrophysics Data System (ADS)
Ushizima, Daniela M.; Bale, Hrishikesh A.; Bethel, E. Wes; Ercius, Peter; Helms, Brett A.; Krishnan, Harinarayan; Grinberg, Lea T.; Haranczyk, Maciej; Macdowell, Alastair A.; Odziomek, Katarzyna; Parkinson, Dilworth Y.; Perciano, Talita; Ritchie, Robert O.; Yang, Chao
2016-11-01
Research across science domains is increasingly reliant on image-centric data. Software tools are in high demand to uncover relevant, but hidden, information in digital images, such as those coming from faster next generation high-throughput imaging platforms. The challenge is to analyze the data torrent generated by the advanced instruments efficiently, and provide insights such as measurements for decision-making. In this paper, we overview work performed by an interdisciplinary team of computational and materials scientists, aimed at designing software applications and coordinating research efforts connecting (1) emerging algorithms for dealing with large and complex datasets; (2) data analysis methods with emphasis in pattern recognition and machine learning; and (3) advances in evolving computer architectures. Engineering tools around these efforts accelerate the analyses of image-based recordings, improve reusability and reproducibility, scale scientific procedures by reducing time between experiments, increase efficiency, and open opportunities for more users of the imaging facilities. This paper describes our algorithms and software tools, showing results across image scales, demonstrating how our framework plays a role in improving image understanding for quality control of existent materials and discovery of new compounds.
Bowl Inversion and Electronic Switching of Buckybowls on Gold.
Fujii, Shintaro; Ziatdinov, Maxim; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kiguchi, Manabu
2016-09-21
Bowl-shaped π-conjugated compounds, or buckybowls, are a novel class of sp(2)-hybridized nanocarbon materials. In contrast to tubular carbon nanotubes and ball-shaped fullerenes, the buckybowls feature structural flexibility. Bowl-to-bowl structural inversion is one of the unique properties of the buckybowls in solutions. Bowl inversion on a surface modifies the metal-molecule interactions through bistable switching between bowl-up and bowl-down states on the surface, which makes surface-adsorbed buckybowls a relevant model system for elucidation of the mechano-electronic properties of nanocarbon materials. Here, we report a combination of scanning tunneling microscopy (STM) measurements and ab initio atomistic simulations to identify the adlayer structure of the sumanene buckybowl on Au(111) and reveal its unique bowl inversion behavior. We demonstrate that the bowl inversion can be induced by approaching the STM tip toward the molecule. By tuning the local metal-molecule interaction using the STM tip, the sumanene buckybowl exhibits structural bistability with a switching rate that is two orders of magnitude faster than that of the stochastic inversion process.
Evaluating automatic attentional capture by self-relevant information.
Ocampo, Brenda; Kahan, Todd A
2016-01-01
Our everyday decisions and memories are inadvertently influenced by self-relevant information. For example, we are faster and more accurate at making perceptual judgments about stimuli associated with ourselves, such as our own face or name, as compared with familiar non-self-relevant stimuli. Humphreys and Sui propose a "self-attention network" to account for these effects, wherein self-relevant stimuli automatically capture our attention and subsequently enhance the perceptual processing of self-relevant information. We propose that the masked priming paradigm and continuous flash suppression represent two ways to experimentally examine these controversial claims.
Knowledge acquisition and interface design for learning on demand systems
NASA Technical Reports Server (NTRS)
Nelson, Wayne A.
1993-01-01
The rapid changes in our world precipitated by technology have created new problems and new challenges for education and training. A knowledge 'explosion' is occurring as our society moves toward a service oriented economy that relies on information as the major resource. Complex computer systems are beginning to dominate the workplace, causing alarming growth and change in many fields. The rapidly changing nature of the workplace, especially in fields related to information technology, requires that our knowledge be updated constantly. This characteristic of modern society poses seemingly unsolvable instructional problems involving coverage and obsolescence. The sheer amount of information to be learned is rapidly increasing, while at the same time some information becomes obsolete in light of new information. Education, therefore, must become a lifelong process that features learning of new material and skills as needed in relation to the job to be done. Because of the problems cited above, the current model of learning in advance may no longer be feasible in our high-technology world. In many cases, learning in advance is impossible because there are simply too many things to learn. In addition, learning in advance can be time consuming, and often results in decontextualized knowledge that does not readily transfer to the work environment. The large and growing discrepancy between the amount of potentially relevant knowledge available and the amount a person can know and remember makes learning on demand an important alternative to current instructional practices. Learning on demand takes place whenever an individual must learn something new in order to perform a task or make a decision. Learning on demand is a promising approach for addressing the problems of coverage and obsolescence because learning is contextualized and integrated into the task environment rather than being relegated to a separate phase that precedes work. Learning on demand allows learners to see for themselves the usefulness of new knowledge for actual problem situations, thereby increasing the motivation for learning new information. Finally, learning on demand makes new information relevant to the task at hand, leading to more informed decision making, better quality products, and improved performance.
Meeting the Challenges of Diversity and Relevance.
ERIC Educational Resources Information Center
Schwan-Smith, Margaret; Silver, Edward A.
1995-01-01
Discusses the QUASAR Project, which has worked with middle school teachers in disadvantaged communities in order to help increase the relevance of mathematics by making connections between the mathematics taught in school and the lives of students. (16 references) (MKR)
Local Jurisdictions and Active Shooters: Building Networks, Building Capacities
2010-12-01
coordination will be the foundation for identifying relevant sources and materials on the armed active shooter assault. This research will also benefit...CONCLUSION In summary, the literature review identified relevant sources and materials on the importance of an armed attack. While an armed assault...armed with the following: dozens of explosive devices of varying potency, seven knives, two Savage-Stevens 12 gauge double- barrel shotguns with the
ERIC Educational Resources Information Center
Howard, Tyrone C.; Rodriguez-Scheel, Andrea
2017-01-01
In this paper, the authors discuss the concept of culturally relevant pedagogy 20 years after its introduction to the professional literature. The authors discuss key tenets of culturally relevant pedagogy, examine empirical examples of it, and makes recommendations on how the concept may inform and influence the outcomes of culturally diverse…
ERIC Educational Resources Information Center
Barrett, Angeline M.
2017-01-01
This think piece focuses on relevance in secondary science education to propose a research agenda for contexts in sub-Saharan Africa, where enrolments are expanding from a low base. The notion of sustainable work is used to consider what kind of science education is relevant for students who will continue to become science specialists and those…
Decision making in acquiring medical technologies in Israeli medical centers: a preliminary study.
Greenberg, Dan; Pliskin, Joseph S; Peterburg, Yitzhak
2003-01-01
This preliminary study had two objectives: a) charting the considerations relevant to decisions about acquisition of new medical technology at the hospital level; and b) creating a basis for the development of a research tool that will examine the function of the Israeli health system in assessment of new medical technologies. A comprehensive literature review and in-depth interviews with decision makers at different levels allowed formulation of criteria considered by decision makers when they decide to purchase and use (or disallow the use) of new medical technology. The resulting questionnaire was sent to medical center directors, along with a letter explaining the goals of the study. The questionnaire included 31 possible considerations for decision making concerning the acquisition of new medical technology by medical centers. The interviewees were asked to indicate the relevance of each consideration in the decision-making process. The most relevant criteria for the adoption of new technologies related to the need for a large capital investment, clinical efficacy of the technology as well as its influence on side effects and complication rates, and a formal approval by the Ministry of Health. Most interviewees stated that pressures exerted by the industry, by patients, or by senior physicians in the hospital are less relevant to decision making. Very small and usually not statistically significant differences in the ranking of hospital directors were found according to the hospitals' ownership, size, or location. The present study is a basis for a future study that will map and describe the function of hospital decision makers within the area of new technology assessment and the decision-making process in the adoption of new healthcare technologies.
Hanahau'oli School: Theory Meets Practice
ERIC Educational Resources Information Center
Peters, Robert
2015-01-01
Progressive schools, by their very nature, need to respond to changing societal conditions. Within that context, learning guided by the teachings of John Dewey will not only make the progressive tradition sustainable but also make it increasingly relevant in a future that will increasingly make demands on students to possess the knowledge to…
Making Construals as a New Digital Skill for Learning
ERIC Educational Resources Information Center
Beynon, Meurig; Boyatt, Russell; Foss, Jonathan; Hall, Chris; Hudnott, Elizabeth; Russ, Steve; Sutinen, Erkki; Macleod, Hamish; Kommers, Piet
2015-01-01
Making construals is a practical approach to computing that was originally developed for and by computer science undergraduates. It is the central theme of an EU project aimed at disseminating the relevant principles to a broader audience. This involves bringing together technical experts in making construals and international experts in…
38 CFR 26.7 - VA environmental decision making and documents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... environmental decision making and documents. (a) Relevant environmental documents shall accompany other decision documents as they proceed through the decision-making process. (b) The major decision points for VA actions... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false VA environmental decision...
Guidelines for integrating population education into primary education and literacy programmes.
1989-01-01
In recent seminars and workshops in the Asia and Pacific region the integration of population education into primary schools and literacy programs were the main topics. In most of the countries in this area separate courses in population education appear to be unfeasible for primary and secondary schools. In the nonformal area experience has indicated that population education acquires more meaning and relevance if it is integrated into an ongoing development program. The integration approach requires knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of the accommodating subjects or programs and knowledge of the contents of population education. Guidelines suggested include the following steps in developing an integrated curriculum and instructional materials. First determine the needs, characteristics and other background information needed on the target group. Next prioritize the problems and needs of the target group, and formulate educational objectives from the identified needs and problems. Next determine and sequence the curriculum contents and then determine specific population education objectives and contents for integration, and what specific materials have to be developed. Then identify the specific type of format of materials to be developed, and write the first draft of the material. Also prepare illustrations and other art and graphic materials. Then the draft material should be reviewed and translated into the language of the target audience if needed. The materials should then be pretested, or field tested, using a sample of the intended users. To make sure the materials are reaching the target groups and being used effectively, a user's guide should be prepared and teachers and facilitators, as well as supervisors, should be prepared on the use of the material. In addition, a distribution and utilization plan should be prepared. Nonformal education materials can be distributed through libraries, reading center, residences of village leaders, neighborhood stores, and direct mail. The material distribution and utilization should be monitored and evaluated.
Low-Dimensional Nanomaterials and Molecular Dielectrics for Radiation-Hard Electronics
NASA Astrophysics Data System (ADS)
McMorrow, Julian
The electronic materials research driving Moore's law has provided several decades of increasingly powerful yet simultaneously miniaturized computer technologies. As we approach the physical and practical limits of what can be accomplished with silicon electronics, we look to new materials to drive innovation in future electronic applications. New materials paradigms require the development of understanding from first principles to the demonstration of applications that comes with mature technologies. Semiconducting single-walled carbon nanotubes (SWCNTs), single- and few-layer molybdenum disulfide (MoS2) and self-assembled nanodielectric (SAND) gate materials have all made significant impacts in the research field of unconventional electronic materials. The materials selection, interfaces between materials, processing steps to assemble them, and their interaction with their environment all have significant bearing on the operation of the overall device. Operating in harsh radiation environments, like those of satellites orbiting the Earth, present unique challenges to the functionality and reliability of electronic devices. Because the future of space-bound electronics is often informed by the technology of terrestrial devices, a proactive approach is adopted to identify and understand the radiation response of new materials systems as they emerge and develop. The work discussed here drives the innovation and development of multiple nanomaterial based electronic technologies while simultaneously exploring their relevant radiation response mechanisms. First, collaborative efforts result in the demonstration of a SWCNT-based circuit technology that is solution processed, large-area, and compatible with flexible substrates. The statistical characterization of SWCNT transistors enables the development of robust doping and encapsulation schemes, which make the SWCNT circuits stable, scalable, and low-power. These SWCNTs are then integrated into static random access memory (SRAM) cells, an accomplishment that illustrates the technological relevance of this work by implementing a highly utilized component of modern day computing. Next, these SRAM devices demonstrate functionality as true random number generators (TRNGs), which are critical components in cryptography and encryption. The randomness of these SWCNT TRNGs is verified by a suite of statistical tests. This achievement has implications for securing data and communication in future solution-processed, large-area, flexible electronics. The unprecedented integration achieved by the underlying SWCNT doping and encapsulation motivates the study of this technology in a radiation environment. Doing so results in an understanding of the fundamental charge trapping mechanisms responsible for the radiation response in this system. The integrated nature of these devices enables, for the first time, the observation of system-level effects in a SWCNT integrated circuit technology. This technology is found to be total ionizing dose-hard, a promising result for the adoption of SWCNTs in future space-bound applications. Compared to SWCNTs, the field of MoS2 electronics is relatively nascent. As a result, studies of radiation effects in MoS2 devices focus on the fundamental mechanisms at play in the materials system. Here, we reveal the critical role of atmospheric adsorbates in the radiation effects of MoS2 transistors by measuring their response to vacuum ultraviolet radiation. These results highlight the importance of controlling the atmosphere of MoS2 devices during irradiation. Furthermore, we make recommendations for radiation-hard MoS2-based devices in the future as the technology continues to mature. One such recommendation is the incorporation of specialized dielectrics with proven radiation hardness. To this end, we address the materials integration challenge of incorporating SAND gate dielectrics on arbitrary substrates. We explore a novel approach for preparing metal substrates for SAND deposition, supporting the SAND superlattice structure and its superlative electronic properties on a metal surface. This result is critical for conducting fundamental transport studies when integrating SAND with novel semiconductor materials, as well as enabling complex circuit integration and SAND on flexible substrates. Altogether, these works drive the integration of novel nanoelectronic materials for future electronics while providing an understanding of their varying radiation response mechanisms to enable their adoption in future space-bound applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Tretiak, Sergei
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atomsmore » in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.« less
Anti-Ferroelectric Ceramics for High Energy Density Capacitors.
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R
2015-11-25
With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.
Anti-Ferroelectric Ceramics for High Energy Density Capacitors
Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R.
2015-01-01
With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field. PMID:28793694
Recent development and biomedical applications of self-healing hydrogels.
Wang, Yinan; Adokoh, Christian K; Narain, Ravin
2018-01-01
Hydrogels are of special importance, owing to their high-water content and various applications in biomedical and bio-engineering research. Self-healing properties is a common phenomenon in living organisms. Their endowed property of being able to self-repair after physical/chemical/mechanical damage to fully or partially its original properties demonstrates their prospective therapeutic applications. Due to complicated preparation and selection of suitable materials, the application of many host-guest supramolecular polymeric hydrogels are so limited. Thus, the design and construction of self-repairing material are highly desirable for effectively increase in the lifetime of a functional material. However, recent advances in the field of materials science and bioengineering and nanotechnology have led to the design of biologically relevant self-healing hydrogels for therapeutic applications. This review focuses on the recent development of self-healing hydrogels for biomedical application. Areas covered: The strategies of making self-healing hydrogels and their healing mechanisms are discussed. The significance of self-healing hydrogel for biomedical application is also highlighted in areas such as 3D/4D printing, cell/drug delivery, as well as soft actuators. Expert opinion: Materials that have the ability to self-repair damage and regain the desired mechanical properties, have been found to be excellent candidate materials for a range of biomedical uses especially if their unique characteristics are similar to that of soft-tissues. Self-healing hydrogels have been synthesized and shown to exhibit similar characteristics as human tissues, however, significant improvement is required in the fabrication process from inexpensive and nontoxic/non-hazardous materials and techniques, and, in addition, further fine-tuning of the self-healing properties are needed for specific biomedical uses.
Identifying biologically relevant differences between metagenomic communities.
Parks, Donovan H; Beiko, Robert G
2010-03-15
Metagenomics is the study of genetic material recovered directly from environmental samples. Taxonomic and functional differences between metagenomic samples can highlight the influence of ecological factors on patterns of microbial life in a wide range of habitats. Statistical hypothesis tests can help us distinguish ecological influences from sampling artifacts, but knowledge of only the P-value from a statistical hypothesis test is insufficient to make inferences about biological relevance. Current reporting practices for pairwise comparative metagenomics are inadequate, and better tools are needed for comparative metagenomic analysis. We have developed a new software package, STAMP, for comparative metagenomics that supports best practices in analysis and reporting. Examination of a pair of iron mine metagenomes demonstrates that deeper biological insights can be gained using statistical techniques available in our software. An analysis of the functional potential of 'Candidatus Accumulibacter phosphatis' in two enhanced biological phosphorus removal metagenomes identified several subsystems that differ between the A.phosphatis stains in these related communities, including phosphate metabolism, secretion and metal transport. Python source code and binaries are freely available from our website at http://kiwi.cs.dal.ca/Software/STAMP CONTACT: beiko@cs.dal.ca Supplementary data are available at Bioinformatics online.
Let's Get Physical: Teaching Physics Through Gymnastics
NASA Astrophysics Data System (ADS)
Sojourner, Elena J.; Burgasser, Adam J.; Weise, Eric D.
2018-01-01
The concept of embodied learning—that we can learn with our bodies and with our minds—is a well-established concept in physics and math education research, and includes symbolic understanding (e.g., gestures that track how students think or facilitate learning to model complex systems of energy flow) as well as the literal experience of exploring physical phenomena through body movements. Sport has long served as a guide for both illustrating and experiencing physical concepts and phenomena, with a particularly relevant example being the sport of gymnastics. Here, the practitioner is subjected to a wide range of forces and torques, and experiences translational and rotational motions, all guided by control of body positioning, shape, strength, and leverage. Smith provides a comprehensive study of the mechanics used to analyze gymnastic movements, which includes core concepts such as force balance, leverage and torque, center of mass and stability, moment of inertia, ballistic motion, pendulum motion, and circular motion. For life science majors, gymnastics also provides relevant physical examples of biomechanics and the physical limits of biological materials (skin, bones, ligaments). The popularity of gymnastics—consider the phenomenon of Simone Biles—makes it broadly accessible and engaging, particularly across genders.
International Scavenging for First Responder Guidance and Tools: IAEA Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, W.; Berthelot, L.; Bachner, K.
In fiscal years (FY) 2016 and 2017, with support from the U.S. Department of Homeland Security (DHS), Brookhaven National Laboratory (BNL) examined the International Atomic Energy Agency (IAEA) radiological emergency response and preparedness products (guidance and tools) to determine which of these products could be useful to U.S. first responders. The IAEA Incident and Emergency Centre (IEC), which is responsible for emergency preparedness and response, offers a range of tools and guidance documents for responders in recognizing, responding to, and recovering from radiation emergencies and incidents. In order to implement this project, BNL obtained all potentially relevant tools and productsmore » produced by the IAEA IEC and analyzed these materials to determine their relevance to first responders in the U.S. Subsequently, BNL organized and hosted a workshop at DHS National Urban Security Technology Laboratory (NUSTL) for U.S. first responders to examine and evaluate IAEA products to consider their applicability to the United States. This report documents and describes the First Responder Product Evaluation Workshop, and provides recommendations on potential steps the U.S. federal government could take to make IAEA guidance and tools useful to U.S. responders.« less
Towards Quantum Simulation with Circular Rydberg Atoms
NASA Astrophysics Data System (ADS)
Nguyen, T. L.; Raimond, J. M.; Sayrin, C.; Cortiñas, R.; Cantat-Moltrecht, T.; Assemat, F.; Dotsenko, I.; Gleyzes, S.; Haroche, S.; Roux, G.; Jolicoeur, Th.; Brune, M.
2018-01-01
The main objective of quantum simulation is an in-depth understanding of many-body physics, which is important for fundamental issues (quantum phase transitions, transport, …) and for the development of innovative materials. Analytic approaches to many-body systems are limited, and the huge size of their Hilbert space makes numerical simulations on classical computers intractable. A quantum simulator avoids these limitations by transcribing the system of interest into another, with the same dynamics but with interaction parameters under control and with experimental access to all relevant observables. Quantum simulation of spin systems is being explored with trapped ions, neutral atoms, and superconducting devices. We propose here a new paradigm for quantum simulation of spin-1 /2 arrays, providing unprecedented flexibility and allowing one to explore domains beyond the reach of other platforms. It is based on laser-trapped circular Rydberg atoms. Their long intrinsic lifetimes, combined with the inhibition of their microwave spontaneous emission and their low sensitivity to collisions and photoionization, make trapping lifetimes in the minute range realistic with state-of-the-art techniques. Ultracold defect-free circular atom chains can be prepared by a variant of the evaporative cooling method. This method also leads to the detection of arbitrary spin observables with single-site resolution. The proposed simulator realizes an X X Z spin-1 /2 Hamiltonian with nearest-neighbor couplings ranging from a few to tens of kilohertz. All the model parameters can be dynamically tuned at will, making a large range of simulations accessible. The system evolution can be followed over times in the range of seconds, long enough to be relevant for ground-state adiabatic preparation and for the study of thermalization, disorder, or Floquet time crystals. The proposed platform already presents unrivaled features for quantum simulation of regular spin chains. We discuss extensions towards more general quantum simulations of interacting spin systems with full control on individual interactions.
NASA Astrophysics Data System (ADS)
Ernawati, D.; Ikhsan, J.
2017-02-01
The development of 3D technology provides more advantages in education sectors. In chemistry, the 3D technology makes chemistry objects look more tangible. This research developed a monograph titled “Augmented Chemistry: Hydrocarbon” as learning enrichment materials. The development model consisted of 5 steps, which were the adaptation of the ADDIE model. The 3D objects of chemistry were built using the computer applications of Chem Sketch, and Google Sketch Up with AR Plugin. The 3D objects were displayed by relevant markers on the texts of the monograph from which the visualizations of the 3D objects appeared when they were captured by digital camera of laptop or smartphone, and were possibly viewed with free-rotation. Not only were 3D chemistry objects included in the monograph, but also graphics, videos, audios, and animations, which facilitated more fun learning for readers of the monograph. After the reviews by the experts of subject matter, of media, of instruction, and by peers, the monograph was revised, and then rated by chemistry teachers. The analysis of the data showed that the monograph titled “Augmented Chemistry: Hydrocarbon” was in the criteria of very good for the enrichment materials of Chemistry learning.
Takahashi, Hidekazu; Finger, Werner J; Kurokawa, Rie; Furukawa, Masae; Komatsu, Masashi
2010-03-01
To determine the sulcus penetration ability of hydrophilic and hydrophobic polyvinyl siloxane (PVS) impression materials by impression technique, temperature, and sulcus width. Hydrophilic Flexitime (FLE; Heraeus Kulzer) and its hydrophobic counterpart (EXP) without surfactant were investigated, using light (L), monophase (M), and heavy (H) consistencies. A truncated steel cone surrounded by a 2-mm-deep and 50-, 100-, or 200-microm-wide sulcus, simulating the gingival tissue with agar, served as the test model. Impressions were made with single-mix (L or M) and double-mix (LM or LH) techniques at 23 degrees C and 37 degrees C, respectively. The reproduced sulcus heights were measured with a 3D laser scanner. Data were analyzed by ANOVA and Tukey HSD (P < .05). Irrespective of sulcus widths and temperature FLE-L penetrated deepest (> 1.9 mm); FLE-M, -LM, and-LH reproductions were shorter with narrow sulci. Reproductions of 50- and 100-microm sulci with EXP-L were shallower than with FLE-L. The shortest reproduction was, however, greater than 1.6 mm. In spite of some significant differences found in sulcus-reproducing ability with hydrophilic and hydrophobic impression materials applied at different impression-making temperatures and with different techniques, the practical relevance is limited.
Tooth and bone deformation: structure and material properties by ESPI
NASA Astrophysics Data System (ADS)
Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve
2006-08-01
In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.
Buis, Arjan
2016-01-01
Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm – Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable. PMID:27695626
Mathur, Neha; Glesk, Ivan; Buis, Arjan
2016-06-01
Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.
Psychological Principles in Materials Selection.
ERIC Educational Resources Information Center
Colvin, Cynthia M.
Those psychological principles which might aid the teacher in the selection of instructional materials are examined. Since learning is a process which builds sequentially on past learning, beginning reading materials should include words that have personal relevance for the individual child. Meaningful material is learned more quickly than…
Meeting EFL Learners Halfway by Using Locally Relevant Authentic Materials
ERIC Educational Resources Information Center
Thomas, Catherine
2014-01-01
The author defines and describes authentic materials and discusses their benefits--citing the Input Hypothesis and the Output Principle in support of such materials--as well as some challenges of using authentic materials. Five categories of authentic materials are presented, and sources for materials and ways to use them in the EFL classroom are…
2014-01-01
Background Clinical practice guidelines are typically written for healthcare providers but there is increasing interest in producing versions for the public, patients and carers. The main objective of this review is to identify and synthesise evidence of the public’s attitudes towards clinical practice guidelines and evidence-based recommendations written for providers or the public, together with their awareness of guidelines. Methods We included quantitative and qualitative studies of any design reporting on public, patient (and their carers) attitudes and awareness of guidelines written for providers or patients/public. We searched electronic databases including MEDLINE, PSYCHINFO, ERIC, ASSIA and the Cochrane Library from 2000 to 2012. We also searched relevant websites, reviewed citations and contacted experts in the field. At least two authors independently screened, abstracted data and assessed the quality of studies. We conducted a thematic analysis of first and second order themes and performed a separate narrative synthesis of patient and public awareness of guidelines. Results We reviewed 5415 records and included 26 studies (10 qualitative studies, 13 cross sectional and 3 randomised controlled trials) involving 24 887 individuals. Studies were mostly good to fair quality. The thematic analysis resulted in four overarching themes: Applicability of guidelines; Purpose of guidelines for patient; Purpose of guidelines for health care system and physician; and Properties of guidelines. Overall, participants had mixed attitudes towards guidelines; some participants found them empowering but many saw them as a way of rationing care. Patients were also concerned that the information may not apply to their own health care situations. Awareness of guidelines ranged from 0-79%, with greater awareness in participants surveyed on national guideline websites. Conclusion There are many factors, not only formatting, that may affect the uptake and use of guideline-derived material by the public. Producers need to make clear how the information is relevant to the reader and how it can be used to make healthcare improvements although there were problems with data quality. Awareness of guidelines is generally low and guideline producers cannot assume that the public has a more positive perception of their material than of alternative sources of health information. PMID:25064372
Learners as Historians: Making History Come Alive through Historical Inquiry
ERIC Educational Resources Information Center
Pappas, Marjorie L.
2007-01-01
Historians explore historical accounts, memoirs, diaries, letters, newspaper articles, speeches, historical documents, relevant legislation, maps, ship manifests, genealogical records, official certificates, photographs, and paintings. In short, historians examine any official or unofficial document that might provide relevant information about…
The design of patient decision support interventions: addressing the theory-practice gap.
Elwyn, Glyn; Stiel, Mareike; Durand, Marie-Anne; Boivin, Jacky
2011-08-01
Although an increasing number of decision support interventions for patients (including decision aids) are produced, few make explicit use of theory. We argue the importance of using theory to guide design. The aim of this work was to address this theory-practice gap and to examine how a range of selected decision-making theories could inform the design and evaluation of decision support interventions. We reviewed the decision-making literature and selected relevant theories. We assessed their key principles, theoretical pathways and predictions in order to determine how they could inform the design of two core components of decision support interventions, namely, information and deliberation components and to specify theory-based outcome measures. Eight theories were selected: (1) the expected utility theory; (2) the conflict model of decision making; (3) prospect theory; (4) fuzzy-trace theory; (5) the differentiation and consolidation theory; (6) the ecological rationality theory; (7) the rational-emotional model of decision avoidance; and finally, (8) the Attend, React, Explain, Adapt model of affective forecasting. Some theories have strong relevance to the information design (e.g. prospect theory); some are more relevant to deliberation processes (conflict theory, differentiation theory and ecological validity). None of the theories in isolation was sufficient to inform the design of all the necessary components of decision support interventions. It was also clear that most work in theory-building has focused on explaining or describing how humans think rather than on how tools could be designed to help humans make good decisions. It is not surprising therefore that a large theory-practice gap exists as we consider decision support for patients. There was no relevant theory that integrated all the necessary contributions to the task of making good decisions in collaborative interactions. Initiatives such as the International Patient Decision Aids Standards Collaboration influence standards for the design of decision support interventions. However, this analysis points to the need to undertake more work in providing theoretical foundations for these interventions. © 2010 Blackwell Publishing Ltd.
Zhang, Shujun
2018-01-01
Genome-wide association studies (GWASs) have identified many disease associated loci, the majority of which have unknown biological functions. Understanding the mechanism underlying trait associations requires identifying trait-relevant tissues and investigating associations in a trait-specific fashion. Here, we extend the widely used linear mixed model to incorporate multiple SNP functional annotations from omics studies with GWAS summary statistics to facilitate the identification of trait-relevant tissues, with which to further construct powerful association tests. Specifically, we rely on a generalized estimating equation based algorithm for parameter inference, a mixture modeling framework for trait-tissue relevance classification, and a weighted sequence kernel association test constructed based on the identified trait-relevant tissues for powerful association analysis. We refer to our analytic procedure as the Scalable Multiple Annotation integration for trait-Relevant Tissue identification and usage (SMART). With extensive simulations, we show how our method can make use of multiple complementary annotations to improve the accuracy for identifying trait-relevant tissues. In addition, our procedure allows us to make use of the inferred trait-relevant tissues, for the first time, to construct more powerful SNP set tests. We apply our method for an in-depth analysis of 43 traits from 28 GWASs using tissue-specific annotations in 105 tissues derived from ENCODE and Roadmap. Our results reveal new trait-tissue relevance, pinpoint important annotations that are informative of trait-tissue relationship, and illustrate how we can use the inferred trait-relevant tissues to construct more powerful association tests in the Wellcome trust case control consortium study. PMID:29377896
NASA Astrophysics Data System (ADS)
Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.
2017-10-01
Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.
NASA Technical Reports Server (NTRS)
Entin, Elliot E.; Kerrigan, Caroline; Serfaty, Daniel; Young, Philip
1998-01-01
The goals of this project were to identify and investigate aspects of team and individual decision-making and risk-taking behaviors hypothesized to be most affected by prolonged isolation. A key premise driving our research approach is that effects of stressors that impact individual and team cognitive processes in an isolated, confined, and hazardous environment will be projected onto the performance of a simulation task. To elicit and investigate these team behaviors we developed a search and rescue task concept as a scenario domain that would be relevant for isolated crews. We modified the Distributed Dynamic Decision-making (DDD) simulator, a platform that has been extensively used for empirical research in team processes and taskwork performance, to portray the features of a search and rescue scenario and present the task components incorporated into that scenario. The resulting software is called DD-Search and Rescue (Version 1.0). To support the use of the DDD-Search and Rescue simulator in isolated experiment settings, we wrote a player's manual for teaching team members to operate the simulator and play the scenario. We then developed a research design and experiment plan that would allow quantitative measures of individual and team decision making skills using the DDD-Search and Rescue simulator as the experiment platform. A description of these activities and the associated materials that were produced under this contract are contained in this report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael
2011-02-17
Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less
ERIC Educational Resources Information Center
Grant, Gloria W.
The purpose of this study was to examine the effect of text materials with relevant language, illustrations, and content upon the reading achievement and reading preference (attitude) of black primary and intermediate grade inner-city students. The subjects for the study were 330 black students enrolled in three schools in a large urban area. A…
Can a decision-making model be justified in the management of hepatocellular adenoma?
van Aalten, Susanna M; Witjes, Caroline D M; de Man, Robert A; Ijzermans, Jan N M; Terkivatan, Türkan
2012-01-01
During recent years, there was a great development in the area of hepatocellular adenomas (HCA), especially regarding the pathological subtype classification, radiological imaging and management during pregnancy. This review discusses the current knowledge about diagnosis and treatment modalities of HCA and proposes a decision-making model for HCA. A Medline search of studies relevant to epidemiology, histopathology, complications, imaging and management of HCA lesions was undertaken. References from identified articles were hand-searched for further relevant articles. © 2011 John Wiley & Sons A/S.
Schulz, Arndt P; Jönsson, Anders; Kasch, Richard; Jettoo, Prithee; Bhandari, Mohit
2013-03-14
Manufacturers of implants and materials in the field of orthopaedics use significant amounts of funding to produce informational material to influence the decision-making process of orthopaedic surgeons with regards to choice between novel implants and techniques. It remains unclear how far orthopaedic surgeons are really influenced by the materials supplied by companies or whether other, evidence-based publications have a higher impact on their decision-making. The objective was to evaluate the subjective usefulness and usage of different sources of information upon which orthopaedic surgeons base their decisions when acquiring new implants or techniques. We undertook an online survey of 1174 orthopaedic surgeons worldwide (of whom n = 305 were head of their department). The questionnaire included 34 items. Sequences were randomized to reduce possible bias. Questions were closed or semi-open with single or multiple answers. The usage and relevance of different sources of information when learning about and selecting orthopaedic treatments were evaluated. Orthopaedic surgeons and trainees were targeted, and were only allowed to respond once over a period of two weeks. Baseline information included country of workplace, level of experience and orthopaedic subspecialisation. The results were statistically evaluated. Independent scientific proof had the highest influence on decisions for treatment while OEM (Original Equipment Manufacturer) driven activities like newsletters, white papers or workshops had the least impact. Comparison of answers from the three best-represented countries in this study (Germany, UK and USA) showed some significant differences: Scientific literature and congresses are significantly more important in the US than in the UK or Germany, although they are very important in all countries. Independent and peer-reviewed sources of information are preferred by surgeons when choosing between methods and implants. Manufacturers of medical devices in orthopaedics employ a considerable workforce to inform or influence hospital managers and leading doctors with marketing activities. Our results indicate that it might be far more effective to channel at least some of these funds into peer-reviewed research projects, thereby assuring significantly higher acceptance of the related products.
Légaré, France; Turcotte, Stéphane; Stacey, Dawn; Ratté, Stéphane; Kryworuchko, Jennifer; Graham, Ian D
2012-01-01
Shared decision making is the process in which a healthcare choice is made jointly by the health professional and the patient. Little is known about what patients view as effective or ineffective strategies to implement shared decision making in routine clinical practice. This systematic review evaluates the effectiveness of interventions to improve health professionals' adoption of shared decision making in routine clinical practice, as seen by patients. We searched electronic databases (PubMed, the Cochrane Library, EMBASE, CINAHL, and PsycINFO) from their inception to mid-March 2009. We found additional material by reviewing the reference lists of the studies found in the databases; systematic reviews of studies on shared decision making; the proceedings of various editions of the International Shared Decision Making Conference; and the transcripts of the Society for Medical Decision Making's meetings. In our study selection, we included randomized controlled trials, controlled clinical trials, controlled before-and-after studies, and interrupted time series analyses in which patients evaluated interventions to improve health professionals' adoption of shared decision making. The interventions in question consisted of the distribution of printed educational material; educational meetings; audit and feedback; reminders; and patient-mediated initiatives (e.g. patient decision aids). Two reviewers independently screened the studies and extracted data. Statistical analyses considered categorical and continuous process measures. We computed the standardized effect size for each outcome at the 95% confidence interval. The primary outcome of interest was health professionals' adoption of shared decision making as reported by patients in a self-administered questionnaire. Of the 6764 search results, 21 studies reported 35 relevant comparisons. Overall, the quality of the studies ranged from 0% to 83%. Only three of the 21 studies reported a clinically significant effect for the primary outcome that favored the intervention. The first study compared an educational meeting and a patient-mediated intervention with another patient-mediated intervention (median improvement of 74%). The second compared an educational meeting, a patient-mediated intervention, and audit and feedback with an educational meeting on an alternative topic (improvement of 227%). The third compared an educational meeting and a patient-mediated intervention with usual care (p = 0.003). All three studies were limited to the patient-physician dyad. To reduce bias, future studies should improve methods and reporting, and should analyze costs and benefits, including those associated with training of health professionals. Multifaceted interventions that include educating health professionals about sharing decisions with patients and patient-mediated interventions, such as patient decision aids, appear promising for improving health professionals' adoption of shared decision making in routine clinical practice as seen by patients.
Jenke, Dennis; Castner, James; Egert, Thomas; Feinberg, Tom; Hendricker, Alan; Houston, Christopher; Hunt, Desmond G; Lynch, Michael; Shaw, Arthur; Nicholas, Kumudini; Norwood, Daniel L; Paskiet, Diane; Ruberto, Michael; Smith, Edward J; Holcomb, Frank
2013-01-01
Polymeric and elastomeric materials are commonly encountered in medical devices and packaging systems used to manufacture, store, deliver, and/or administer drug products. Characterizing extractables from such materials is a necessary step in establishing their suitability for use in these applications. In this study, five individual materials representative of polymers and elastomers commonly used in packaging systems and devices were extracted under conditions and with solvents that are relevant to parenteral and ophthalmic drug products (PODPs). Extraction methods included elevated temperature sealed vessel extraction, sonication, refluxing, and Soxhlet extraction. Extraction solvents included a low-pH (pH = 2.5) salt mixture, a high-pH (pH = 9.5) phosphate buffer, a 1/1 isopropanol/water mixture, isopropanol, and hexane. The resulting extracts were chemically characterized via spectroscopic and chromatographic means to establish the metal/trace element and organic extractables profiles. Additionally, the test articles themselves were tested for volatile organic substances. The results of this testing established the extractables profiles of the test articles, which are reported herein. Trends in the extractables, and their estimated concentrations, as a function of the extraction and testing methodologies are considered in the context of the use of the test article in medical applications and with respect to establishing best demonstrated practices for extractables profiling of materials used in PODP-related packaging systems and devices. Plastic and rubber materials are commonly encountered in medical devices and packaging/delivery systems for drug products. Characterizing the extractables from these materials is an important part of determining that they are suitable for use. In this study, five materials representative of plastics and rubbers used in packaging and medical devices were extracted by several means, and the extracts were analytically characterized to establish each material's profile of extracted organic compounds and trace element/metals. This information was utilized to make generalizations about the appropriateness of the test methods and the appropriate use of the test materials.
Multiple Enactments of Educational Research
ERIC Educational Resources Information Center
Landri, Paolo
2012-01-01
The article addresses the widespread claim to make educational research more relevant for practitioners, policy makers, potential users and stakeholders, and proposes a problematisation of the notion of "useful knowledge". The article illustrates the conceptual, instrumental and legitimative relevance of knowledge and highlights empirically the…
System for characterizing semiconductor materials and photovoltaic devices through calibration
Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd
1998-01-01
A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.
System for characterizing semiconductor materials and photovoltaic devices through calibration
Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.
1998-05-26
A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.
ERIC Educational Resources Information Center
Landmesser, John Andrew
2014-01-01
Information technology (IT) investment decision makers are required to process large volumes of complex data. An existing body of knowledge relevant to IT portfolio management (PfM), decision analysis, visual comprehension of large volumes of information, and IT investment decision making suggest Multi-Criteria Decision Making (MCDM) and…
ERIC Educational Resources Information Center
Gutierez, Sally B.
2015-01-01
Scientific literacy has been focused on the construction of students' knowledge to use appropriate and meaningful concepts, critically think, and make balanced, well-informed decisions relevant to their lives. This study presents the effects of integrating socio-scientific issues to enhance the bioethical decision-making skills of biology…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane
2015-05-01
The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less
Harris, Andrew; Parke, Adrian; Griffiths, Mark D
2018-01-01
Emotions typically exert powerful, enduring, and often predictable influences over decision-making. However, emotion-based decision-making is seen as a mediator of impulsive and reckless gambling behaviour, where emotion may be seen as the antithesis of controlled and rational decision-making, a proposition supported by recent neuroimaging evidence. The present paper argues that the same emotional mechanisms can be used to influence a gambler to cease gambling, by focusing their emotional decision-making on positive external and personally relevant factors, such as familial impact or longer term financial factors. Emotionally stimulating messages may also have the advantage of capturing attention above and beyond traditionally responsible gambling messaging. This is important given the highly emotionally aroused states often experienced by both gamblers and problem gamblers, where attentional activation thresholds for external stimuli such as messages may be increased.
NASA Astrophysics Data System (ADS)
Thylén, Lars
2006-07-01
The design and manufacture of components and systems underpin the European and indeed worldwide photonics industry. Optical materials and photonic components serve as the basis for systems building at different levels of complexity. In most cases, they perform a key function and dictate the performance of these systems. New products and processes will generate economic activity for the European photonics industry into the 21 st century. However, progress will rely on Europe's ability to develop new and better materials, components and systems. To achieve success, photonic components and systems must: •be reliable and inexpensive •be generic and adaptable •offer superior functionality •be innovative and protected by Intellectual Property •be aligned to market opportunities The challenge in the short-, medium-, and long-term is to put a coordinating framework in place which will make the European activity in this technology area competitive as compared to those in the US and Asia. In the short term the aim should be to facilitate the vibrant and profitable European photonics industry to further develop its ability to commercialize advances in photonic related technologies. In the medium and longer terms the objective must be to place renewed emphasis on materials research and the design and manufacturing of key components and systems to form the critical link between science endeavour and commercial success. All these general issues are highly relevant for the component intensive broadband communications industry. Also relevant for this development is the convergence of data and telecom, where the low cost of data com meets with the high reliability requirements of telecom. The text below is to a degree taken form the Strategic Research Agenda of the Technology Platform Photonics 21 [1], as this contains a concerted effort to iron out a strategy for EU in the area of photonics components and systems.
Grudzen, Corita R; Anderson, Jana R; Carpenter, Christopher R; Hess, Erik P
2016-12-01
Shared decision making in emergency medicine has the potential to improve the quality, safety, and outcomes of emergency department (ED) patients. Given that the ED is the gateway to care for patients with a variety of illnesses and injuries and the safety net for patients otherwise unable to access care, shared decision making in the ED is relevant to numerous disciplines and the interests of the United States (U.S.) public. On May 10, 2016 the 16th annual Academic Emergency Medicine (AEM) consensus conference, "Shared Decision Making: Development of a Policy-Relevant Patient-Centered Research Agenda" was held in New Orleans, Louisiana. During this one-day conference clinicians, researchers, policy-makers, patient and caregiver representatives, funding agency representatives, trainees, and content experts across many areas of medicine interacted to define high priority areas for research in 1 of 6 domains: 1) diagnostic testing; 2) policy, 3) dissemination/implementation and education, 4) development and testing of shared decision making approaches and tools in practice, 5) palliative care and geriatrics, and 6) vulnerable populations and limited health literacy. This manuscript describes the current state of shared decision making in the ED context, provides an overview of the conference planning process, the aims of the conference, the focus of each respective breakout session, the roles of patient and caregiver representatives and an overview of the conference agenda. The results of this conference published in this issue of AEM provide an essential summary of the future research priorities for shared decision making to increase quality of care and patient-centered outcomes. © 2016 by the Society for Academic Emergency Medicine.
High durability solar absorptive coating and methods for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Aaron C.; Adams, David P.
The present invention relates to solar absorptive coatings including a ceramic material. In particular, the coatings of the invention are laser-treated to further enhance the solar absorptivity of the material. Methods of making and using such materials are also described.
40 CFR 60.1070 - How do I make my draft materials separation plan available to the public?
Code of Federal Regulations, 2010 CFR
2010-07-01
... location of the public libraries where the public can find your materials separation plan. Include the... separation plan available to the public? 60.1070 Section 60.1070 Protection of Environment ENVIRONMENTAL... Preconstruction Requirements: Materials Separation Plan § 60.1070 How do I make my draft materials separation plan...
ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators
NASA Astrophysics Data System (ADS)
Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle
2015-03-01
Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.
The importance of ignoring: Alpha oscillations protect selectivity.
Payne, Lisa; Sekuler, Robert
2014-06-01
Selective attention is often thought to entail an enhancement of some task-relevant stimulus or attribute. We discuss the perspective that ignoring irrelevant, distracting information plays a complementary role in information processing. Cortical oscillations within the alpha (8-14 Hz) frequency band have emerged as a marker of sensory suppression. This suppression is linked to selective attention for visual, auditory, somatic, and verbal stimuli. Inhibiting processing of irrelevant input makes responses more accurate and timely. It also helps protect material held in short-term memory against disruption. Furthermore, this selective process keeps irrelevant information from distorting the fidelity of memories. Memory is only as good as the perceptual representations on which it is based, and on whose maintenance it depends. Modulation of alpha oscillations can be exploited as an active, purposeful mechanism to help people pay attention and remember the things that matter.
Field-dependent hopping conduction
NASA Astrophysics Data System (ADS)
Hayashi, T.; Tokura, Y.; Fujiwara, A.
2018-07-01
We have numerically calculated transport characteristics on a Miller-Abraham network in a non-linear regime by solving the Kirchhoff's current law at each site. Assuming the Mott model, we obtained the relation between current density and electric field, J ∝exp(γ√{ E}) , which has often been observed in low-mobility materials and whose mechanism has been a source of controversy for over half a century. Our numerical calculation makes it possible to analyze the energy configuration of relevant hopping sites and visualize percolation networks. Following the percolation theory proposed by Shklovskii [Shklovskii, Sov. Phys. Semicond. 10, 855 (1976)], we show that the main mechanism of the field dependence is the replacement of dominating resistances accompanied by the geometrical evolution of the percolation networks. Our calculation is so general that it can be applied to hopping transport in a variety of systems.
Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants
NASA Technical Reports Server (NTRS)
Rickman, D. L.; Young, C.; Stoeser, D.; Edmunson, J.
2014-01-01
The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant.
Understanding Ricin from a Defensive Viewpoint
Griffiths, Gareth D.
2011-01-01
The toxin ricin has long been understood to have potential for criminal activity and there has been concern that it might be used as a mass-scale weapon on a military basis for at least two decades. Currently, the focus has extended to encompass terrorist activities using ricin to disrupt every day activities on a smaller scale. Whichever scenario is considered, there are features in common which need to be understood; these include the knowledge of the toxicity from ricin poisoning by the likely routes, methods for the detection of ricin in relevant materials and approaches to making an early diagnosis of ricin poisoning, in order to take therapeutic steps to mitigate the toxicity. This article will review the current situation regarding each of these stages in our collective understanding of ricin and how to defend against its use by an aggressor. PMID:22174975
Factors Affecting Two Types of Memory Specificity: Particularization of Episodes and Details.
Willén, Rebecca M; Granhag, Pär Anders; Strömwall, Leif A
2016-01-01
Memory for repeated events is relevant to legal investigations about repeated occurrences. We investigated how two measures of specificity (number of events referred to and amount of detail reported about the events) were influenced by interviewees' age, number of experienced events, interviewer, perceived unpleasantness, and memory rehearsal. Transcribed narratives consisting of over 40.000 utterances from 95 dental patients, and the corresponding dental records, were studied. Amount of detail was measured by categorizing the utterances as generic, specific, or specific-extended. We found that the two measures were affected differently by all five factors. For instance, number of experienced events positively influenced number of referred events but had no effect on amount of detail provided about the events. We make suggestions for future research and encourage reanalysis of the present data set and reuse of the material.
NASA Astrophysics Data System (ADS)
Standler, Ronald B.
1989-09-01
To protect electronic systems from the effects of electromagnetic pulse (EMP) form nuclear weapons and high-power microwave (HPM) weapons, it is desirable to have fast responding protection components. The gas-filled spark gap appears to be an attractive protection component, except that it can be slow to conduct under certain conditions. This report reviews the literature and presents ideas for construction of a spark gap that will conduct in less than one nanosecond. The key concept to making a fast-responding spark gap is to produce a large number of free electrons quickly. Seven different mechanisms for production of free electrons are reviewed, and several that are relevant to miniature spark gaps for protective applications are discussed in detail. These mechanisms include: inclusion of radioactive materials, photoelectric effect, secondary electrode emission from the anode, and field emission from the cathode.
Methods for making thin layers of crystalline materials
Lagally, Max G; Paskiewicz, Deborah M; Tanto, Boy
2013-07-23
Methods for making growth templates for the epitaxial growth of compound semiconductors and other materials are provided. The growth templates are thin layers of single-crystalline materials that are themselves grown epitaxially on a substrate that includes a thin layer of sacrificial material. The thin layer of sacrificial material, which creates a coherent strain in the single-crystalline material as it is grown thereon, includes one or more suspended sections and one or more supported sections.
Butler, Julie M; Maruska, Karen P
2016-01-01
Animals use multiple senses during social interactions and must integrate this information in the brain to make context-dependent behavioral decisions. For fishes, the largest group of vertebrates, the mechanosensory lateral line system provides crucial hydrodynamic information for survival behaviors, but little is known about its function in social communication. Our previous work using the African cichlid fish, Astatotilapia burtoni, provided the first empirical evidence that fish use their lateral line system to detect water movements from conspecifics for mutual assessment and behavioral choices. It is unknown, however, where this socially-relevant mechanosensory information is processed in the brain to elicit adaptive behavioral responses. To examine for the first time in any fish species which brain regions receive contextual mechanosensory information, we quantified expression of the immediate early gene cfos as a proxy for neural activation in sensory and socially-relevant brain nuclei from lateral line-intact and -ablated fish following territorial interactions. Our in situ hybridization results indicate that in addition to known lateral line processing regions, socially-relevant mechanosensory information is processed in the ATn (ventromedial hypothalamus homolog), Dl (putative hippocampus homolog), and Vs (putative medial extended amygdala homolog). In addition, we identified a functional network within the conserved social decision-making network (SDMN) whose co-activity corresponds with mutual assessment and behavioral choice. Lateral line-intact and -ablated fight winners had different patterns of co-activity of these function networks and group identity could be determined solely by activation patterns, indicating the importance of mechanoreception to co-activity of the SDMN. These data show for the first time that the mechanosensory lateral line system provides relevant information to conserved decision-making centers of the brain during territorial interactions to mediate crucial behavioral choices such as whether or not to engage in a territorial fight. To our knowledge, this is also the first evidence of a subpallial nucleus receiving mechanosensory input, providing important information for elucidating homologies of decision-making circuits across vertebrates. These novel results highlight the importance of considering multimodal sensory input in mediating context-appropriate behaviors that will provide broad insights on the evolution of decision-making networks across all taxa.
Clinically relevant pharmacokinetic herb-drug interactions in antiretroviral therapy
USDA-ARS?s Scientific Manuscript database
For healthcare professionals, the volume of literature available on herb-drug interactions often makes it difficult to separate experimental/potential interactions from those deemed clinically relevant. There is a need for concise and conclusive information to guide pharmacotherapy in HIV/AIDS. In t...
Where's the Race in Culturally Relevant Pedagogy?
ERIC Educational Resources Information Center
Milner, H. Richard, IV
2017-01-01
Background/Context: When Ladson-Billings described the pedagogical practices of successful teachers of African American children and consequently conceptualized culturally relevant pedagogy as an analytic resource to describe and make sense of pedagogical practices of teachers, her discussion was situated in a frame that examined instructional…
NASA Astrophysics Data System (ADS)
Carlson, Philip Joseph
Applications of Fluorescence Spectroscopy and Electronic Structure Theory to Systems of Materials and Biological Relevance. The photophysics of curcumin was studied in micelles and the solvation dynamics were probed. The high-energy ionic liquid HEATN was also studied using the fragment molecular orbital method. The solvation dynamics of the HEATN system were determined. This marks the first study of the solvation dynamics in a triazolium ionic liquid system.
Instructional Materials for Improved Job Performance.
ERIC Educational Resources Information Center
Foley, John P., Jr.
1978-01-01
Instructional materials developed in military research to improve performance of electromechanical maintenance tasks are described, with implications for teacher education. The materials require task analysis, job task relevance, and task-oriented training. Although many industries have implemented these techniques, teacher training institutions…
Photopolymers for holographic optical elements in astronomy
NASA Astrophysics Data System (ADS)
Zanutta, A.; Orselli, E.; Fäcke, T.; Bianco, A.
2017-05-01
Holographic Optical Elements (HOEs) cover nowadays a relevant position as dispersing elements in astronomical spectrographs because each astronomical observation could take advantage of specific devices with features tailored for achieving the best performances. The design and manufacturing of highly efficient and reliable dispersive elements require photosensitive materials as recording substrate where it is possible to precisely control the parameters that define the efficiency response (namely both the refractive index modulation and the film thickness). The most promising materials in this field are the photopolymers because, beside the ability to provide the tuning feature, they bring also advantages such as self-developing, high refractive index modulation and ease of use thanks to their simple thin structure, which is insensitive from the external environment. In particular, Bayfol HX photopolymers were characterized with the purpose to use them as new material for astronomical Volume Phase Holographic Gratings. We designed and manufactured VPHGs for astronomical instrumentation and we demonstrated how photopolymers are reliable holographic materials for making astronomical devices with performances comparable to those provided by VPHGs based on Dichromated Gelatins (DCGs), but with a much simpler production process. Moreover, the versatility of these materials allowed us to propose and realize novel architectures of the spectroscopic dispersive elements. A compact and unique single prism device was realized for a FOSC spectrograph and new multi-layered devices are proposed, stacking VPHGs one on top of the other to obtain many spectra in the instrument's detector, with advantages as increase of resolution and signal to noise ratio with respect to the classical single dispersive element.
Respectability and Relevance: Reflections on Richard Peters and Analytic Philosophy of Education
ERIC Educational Resources Information Center
Snook, Ivan
2013-01-01
I argue that, after Dewey, Peters was the first modern philosopher of education to write material (in English) that was both philosophically respectable and relevant to the day-to-day concerns of teachers. Since then, some philosophers of education have remained (more or less) relevant but not really respectable while others have "taken off into…
Conjugate Analysis of Two-Dimensional Ablation and Pyrolysis in Rocket Nozzles
NASA Astrophysics Data System (ADS)
Cross, Peter G.
The development of a methodology and computational framework for performing conjugate analyses of transient, two-dimensional ablation of pyrolyzing materials in rocket nozzle applications is presented. This new engineering methodology comprehensively incorporates fluid-thermal-chemical processes relevant to nozzles and other high temperature components, making it possible, for the first time, to rigorously capture the strong interactions and interdependencies that exist between the reacting flowfield and the ablating material. By basing thermal protection system engineering more firmly on first principles, improved analysis accuracy can be achieved. The computational framework developed in this work couples a multi-species, reacting flow solver to a two-dimensional material response solver. New capabilities are added to the flow solver in order to be able to model unique aspects of the flow through solid rocket nozzles. The material response solver is also enhanced with new features that enable full modeling of pyrolyzing, anisotropic materials with a true two-dimensional treatment of the porous flow of the pyrolysis gases. Verification and validation studies demonstrating correct implementation of these new models in the flow and material response solvers are also presented. Five different treatments of the surface energy balance at the ablating wall, with increasing levels of fidelity, are investigated. The Integrated Equilibrium Surface Chemistry (IESC) treatment computes the surface energy balance and recession rate directly from the diffusive fluxes at the ablating wall, without making transport coefficient or unity Lewis number assumptions, or requiring pre-computed surface thermochemistry tables. This method provides the highest level of fidelity, and can inherently account for the effects that recession, wall temperature, blowing, and the presence of ablation product species in the boundary layer have on the flowfield and ablation response. Multiple decoupled and conjugate ablation analysis studies for the HIPPO nozzle test case are presented. Results from decoupled simulations show sensitivity to the wall temperature profile used within the flow solver, indicating the need for conjugate analyses. Conjugate simulations show that the thermal response of the nozzle is relatively insensitive to the choice of the surface energy balance treatment. However, the surface energy balance treatment is found to strongly affect the surface recession predictions. Out of all the methods considered, the IESC treatment produces surface recession predictions with the best agreement to experimental data. These results show that the increased fidelity provided by the proposed conjugate ablation modeling methodology produces improved analysis accuracy, as desired.
NASA Technical Reports Server (NTRS)
Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.
2011-01-01
A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ significantly.
O'Sullivan, D; Wilk, S; Michalowski, W; Slowinski, R; Thomas, R; Kadzinski, M; Farion, K
2014-01-01
Online medical knowledge repositories such as MEDLINE and The Cochrane Library are increasingly used by physicians to retrieve articles to aid with clinical decision making. The prevailing approach for organizing retrieved articles is in the form of a rank-ordered list, with the assumption that the higher an article is presented on a list, the more relevant it is. Despite this common list-based organization, it is seldom studied how physicians perceive the association between the relevance of articles and the order in which articles are presented. In this paper we describe a case study that captured physician preferences for 3-element lists of medical articles in order to learn how to organize medical knowledge for decision-making. Comprehensive relevance evaluations were developed to represent 3-element lists of hypothetical articles that may be retrieved from an online medical knowledge source such as MEDLINE or The Cochrane Library. Comprehensive relevance evaluations asses not only an article's relevance for a query, but also whether it has been placed on the correct list position. In other words an article may be relevant and correctly placed on a result list (e.g. the most relevant article appears first in the result list), an article may be relevant for a query but placed on an incorrect list position (e.g. the most relevant article appears second in a result list), or an article may be irrelevant for a query yet still appear in the result list. The relevance evaluations were presented to six senior physicians who were asked to express their preferences for an article's relevance and its position on a list by pairwise comparisons representing different combinations of 3-element lists. The elicited preferences were assessed using a novel GRIP (Generalized Regression with Intensities of Preference) method and represented as an additive value function. Value functions were derived for individual physicians as well as the group of physicians. The results show that physicians assign significant value to the 1st position on a list and they expect that the most relevant article is presented first. Whilst physicians still prefer obtaining a correctly placed article on position 2, they are also quite satisfied with misplaced relevant article. Low consideration of the 3rd position was uniformly confirmed. Our findings confirm the importance of placing the most relevant article on the 1st position on a list and the importance paid to position on a list significantly diminishes after the 2nd position. The derived value functions may be used by developers of clinical decision support applications to decide how best to organize medical knowledge for decision making and to create personalized evaluation measures that can augment typical measures used to evaluate information retrieval systems.
NASA Astrophysics Data System (ADS)
Braun, Artur; Wang, Hongxin; Shim, Joongpyo; Lee, Steven S.; Cairns, Elton J.
The lithium(1s) K-edge X-ray absorption spectra of lithium-ion battery relevant materials (Li metal, Li 3N, LiPF 6, LiC 6, and LiMn 1.90Ni 0.10O 4) are presented. The Li and LiC 6 spectra are discussed and compared with literature data. The Li in lithium-intercalated carbon LiC 6, typically used as anode battery electrode material, could be clearly identified in the spectrum, and a presumed purely metallic character of the Li can be ruled out based on the chemical shift observed. The Li in corresponding cathode electrode materials, LiMn 1.90Ni 0.10O 4, could be detected with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, but the strong (self-) absorption of the spinel lattice provides an obstacle for quantitative analysis. Owing to its ionic bonding, the spectrum of the electrolyte salt LiPF 6 contains a sharp π-resonance at 61.8 eV, suggesting a distinct charge transfer between Li and the hexafluorophosphate anion. In addition, LiPF 6 resembles many spectral features of LiF, making it difficult to discriminate both from each other. Residual electrolyte on anodes or cathodes poses a problem for the spectroscopic analysis of the electrodes, because its Li spectrum overshadows the spectral features of the Li in the anode or cathode. The electrolyte must be removed from electrodes prior to spectroscopic analysis.
MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry
NASA Astrophysics Data System (ADS)
Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo
2016-04-01
The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy-30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6-7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping.
MgO:Li,Ce,Sm as a high-sensitivity material for Optically Stimulated Luminescence dosimetry
Oliveira, Luiz C.; Yukihara, Eduardo G.; Baffa, Oswaldo
2016-01-01
The goal of this work was to investigate the relevant dosimetric and luminescent properties of MgO:Li3%,Ce0.03%,Sm0.03%, a newly-developed, high sensitivity Optically Stimulated Luminescence (OSL) material of low effective atomic number (Zeff = 10.8) and potential interest for medical and personal dosimetry. We characterized the thermoluminescence (TL), OSL, radioluminescence (RL), and OSL emission spectrum of this new material and carried out a preliminary investigation on the OSL signal stability. MgO:Li,Ce,Sm has a main TL peak at ~180 °C (at a heating rate of 5 °C/s) associated with Ce3+ and Sm3+ emission. The results indicate that the infrared (870 nm) stimulated OSL from MgO:Li,Ce,Sm has suitable properties for dosimetry, including high sensitivity to ionizing radiation (20 times that of Al2O3:C, under the measurement conditions) and wide dynamic range (7 μGy–30 Gy). The OSL associated with Ce3+ emission is correlated with a dominant, practically isolated peak at 180 °C. Fading of ~15% was observed in the first hour, probably due to shallow traps, followed by subsequent fading of 6–7% over the next 35 days. These properties, together with the characteristically fast luminescence from Ce3+, make this material also a strong candidate for 2D OSL dose mapping. PMID:27076349
ERIC Educational Resources Information Center
Yu, Yuqing
2010-01-01
Socio-scientific issues have become increasingly important in Science-Technology-Society (STS) education as a means to make science learning more relevant to students' lives. This study used the e-waste issue as a context to investigate two aspects of socio-scientific decision-making: (1) the relationship between the nature of science (NOS)…
The Constructive Role of Decisions: Implications from a quantum Approach
2016-12-01
objectives. The first was to explore the nature of constructive influences in decision making . The second concerned understanding decision making in...Prisoner’s Dilemma. **First objective; constructive judgments. This is the idea that sometimes making a decision can alter the underlying relevant mental...the performance of the agent. 15. SUBJECT TERMS EOARD, Quantum Probability, Human Modeling, Human Decision Making 16. SECURITY CLASSIFICATION OF
Composite material and method of making
Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.
2004-04-20
The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.
Liebherr, Magnus; Schiebener, Johannes; Averbeck, Heike; Brand, Matthias
2017-01-01
The ability of decision making plays a highly relevant role in our survival, but is adversely affected during the process of aging. The present review aims to provide a better understanding of age-related differences in decision making and the role of cognitive and emotional factors in this context. We reviewed the literature about age-effects on decision-making performance, focusing on decision making under ambiguous and objective risk. In decisions under ambiguous risks, as measured by the Iowa Gambling Task, decisions are based on the experiences with consequences. In this case, many articles have attributed age-related impairments in decision making to changes in emotional and somatic reward- and punishment processing. In decisions under objective risks, as measured for example by the Game of Dice Task, decisions can be based on explicit information about risks and consequences. In this case, age-related changes have been attributed mainly to a cognitive decline, particularly impaired executive functions. However, recent findings challenge these conclusions. The present review summarizes neuropsychological and neurophysiological findings of age-related differences in decision making under ambiguous and objective risk. In this context, the relevance of learning, but also of cognitive and emotional contributors - responsible for age-related differences in decision making - are additionally pointed out.
Liebherr, Magnus; Schiebener, Johannes; Averbeck, Heike; Brand, Matthias
2017-01-01
The ability of decision making plays a highly relevant role in our survival, but is adversely affected during the process of aging. The present review aims to provide a better understanding of age-related differences in decision making and the role of cognitive and emotional factors in this context. We reviewed the literature about age-effects on decision-making performance, focusing on decision making under ambiguous and objective risk. In decisions under ambiguous risks, as measured by the Iowa Gambling Task, decisions are based on the experiences with consequences. In this case, many articles have attributed age-related impairments in decision making to changes in emotional and somatic reward- and punishment processing. In decisions under objective risks, as measured for example by the Game of Dice Task, decisions can be based on explicit information about risks and consequences. In this case, age-related changes have been attributed mainly to a cognitive decline, particularly impaired executive functions. However, recent findings challenge these conclusions. The present review summarizes neuropsychological and neurophysiological findings of age-related differences in decision making under ambiguous and objective risk. In this context, the relevance of learning, but also of cognitive and emotional contributors – responsible for age-related differences in decision making – are additionally pointed out. PMID:29270145
Innovation of Iron Reinforcing Column of Partical From Frame of Light Steel
NASA Astrophysics Data System (ADS)
Ramadhan, M. R.; Faslih, A.; Umar, M. Z.
2018-05-01
Almost half of houses in Indonesia are using lightweight steel roof truss today. The phenomenon in the field is that lightweight steel roof truss can blend with mortar mixture. Thus this phenomenon is captured for later applied dynamically, creatively, and innovatively with new idioms such as reinforcement for columns. This research aims to investigate the comparison of the way of making and the price of the materials between the column material made of the light steel and the column material made of the iron reinforcement which is the most efficient. Type of research is qualitative with a comparative causal approach. This research is divided into several stages, namely; Literature study, column creation, and validation. This study concluds that the manufacture of column material from reinforcement is more efficient, than the lightweight steel column material. The reinforcement column material is more efficient because of the more effective way of making and the price of the working materials more economical than the lightweight steel column material. Lightweight steel columns can be used for public housing on condition made by experienced craftsmen to make the process faster, and the dimensions of lightweight steel can be scaled down to make it more economical.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and law: Review Committee makes final administrative decision. 200.245 Section 200.245 Housing and... Clearance Procedure § 200.245 Hearing Officer determines facts and law: Review Committee makes final administrative decision. The Hearing Officer will determine the facts and the law relevant to the issues and will...
Making Plant Biology Curricula Relevant.
ERIC Educational Resources Information Center
Hershey, David R.
1992-01-01
Reviews rationale, purposes, challenges, and relevance of hands-on, plant biology curricula that have been developed in response to the limited use of plants in biology education. Discusses methods to maintain both instructional rigor and student interest in the following topics: cut flowers, container-growing media, fertilizers, hydroponics,…
ERIC Educational Resources Information Center
Lopez, Ann E.; Button, Jacqueline
2013-01-01
This case study examines the tensions of social justice and culturally relevant leadership. It also examines the challenges of school administration and building cohesive teams. This case engages readers in theorizing about social justice and culturally relevant school leadership as well as thinking about practical ways to make the endeavour…
Integrating the Curriculum: Quality and Relevance for Special Needs Children.
ERIC Educational Resources Information Center
Wessel, Janet A.
A comprehensive, integrated physical education system that has quality and relevance for handicapped students and their nonhandicapped peers is proposed. The Achievement Based Curriculum (ABC) Model is a systematic decision-making process for an instructional system that incorporates curriculum, instruction, assessment, and evaluation in one…
Essential elements of self-help/minimal intervention strategies for smoking cessation.
Glynn, T J; Boyd, G M; Gruman, J C
1990-01-01
Two decades of research suggest that self-help/minimal intervention strategies for smoking cessation may be the preferred means by which smokers stop and can produce success rates approximating those of more formal programs, at lower cost and with greater access to relevant populations. In order to make the best possible use of these self-help/minimal intervention approaches, the National Cancer Institute (NCI) supported a series of randomized, controlled intervention trials and, in June of 1988, convened an Expert Advisory Panel to address the question "What are the essential elements of self-help/minimal intervention strategies for smoking cessation?". The panel's recommendations were that: (1) Intervention efforts should focus on increasing smokers' motivations to make serious quit attempts; (2) Delivery of programs be broadened to include all smokers; (3) Programs be targeted to stages of cessation and specific populations; (4) All programs include (a) elements focused on health and social consequences of smoking, and (b) strategies and exercises aimed at quitting, maintenance of nonsmoking, relapse prevention, and recycling; (5) Materials and programs be made widely available rather than "fine tuning" existing programs or developing new ones; and (6) Programs make use of specific adjunctive strategies. In this way, a reacceleration of the decline in smoking prevalence may be realized in the 1990s and significantly contribute to the NCI's Year 2000 goals and the Surgeon General's aim of a smoke-free society.
The Early Years: Becoming Attuned to Sound
ERIC Educational Resources Information Center
Ashbrook, Peggy
2014-01-01
Exploration of making and changing sounds is part of the first-grade performance expectation 1-PS4-1, "Plan and conduct investigations to provide evidence that vibrating materials can make sound and that sound can make materials vibrate" (NGSS Lead States 2013, p. 10; see Internet Resource). Early learning experiences build toward…
Method for making generally cylindrical underground openings
Routh, J.W.
1983-05-26
A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.
A comparison of the mechanical properties of fiberglass cast materials and their clinical relevance.
Berman, A T; Parks, B G
1990-01-01
The mechanical properties of five synthetic fiberglass casting materials were evaluated and compared with the properties of plaster of Paris. Two of the tests were designed to bear clinical relevance and the third to determine intrinsic material properties. The effect of water on strength degradation was also evaluated. It was found that the synthetics as a group are far superior to plaster of Paris in all methods of testing and that, among the synthetics, KCast Tack Free, Deltalite "S", and KCast Improved were the stronger materials. Clinically, the most important results are that the synthetics attain their relatively high strength in a much shorter time frame than does plaster of Paris, and retain 70-90% of their strength after being immersed in water and allowed to dry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurston, T.R.; Jisrawi, N.M.; Mukerjee, S.
Hard x rays from a synchrotron source were utilized in diffraction experiments which probed the bulk of electrode materials while they were operating {ital in} {ital situ} in battery cells. Two technologically relevant electrode materials were examined; an {ital AB}{sub 2}-type anode in a nickel{endash}metal{endash}hydride cell and a LiMn{sub 2}O{sub 4} cathode in a Li-ion {open_quote}{open_quote}rocking chair{close_quote}{close_quote} cell. Structural features such as lattice expansions and contractions, phase transitions, and the formation of multiple phases were easily observed as either hydrogen or lithium was electrochemically intercalated in and out of the electrode materials. The relevance of this technique for future studiesmore » of battery electrode materials is discussed. {copyright} {ital 1996 American Institute of Physics.}« less
Isotopic Abundances as Tracers of the Processes of Lunar Formation
NASA Astrophysics Data System (ADS)
Pahlevan, K.
2011-12-01
Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly different, if the Moon preferentially forms from the liquid or vapor relative to the Earth, mass-dependent isotopic differences at the planetary scale may arise. The large density contrast between liquid and vapor makes phase separation possible. (3) The precision with which planetary isotopic compositions can be determined has increased such that measurements are sensitive to even small degrees of high-temperature phase separation. Using thermodynamic models of silicate liquids to determine the partial vaporization behavior of the major elements, we will present calculations of isotopic fractionation due to liquid-vapor separation for the elements iron, magnesium, silicon, and oxygen. Improvements in analytical precision have largely settled the question of the source of the lunar material - the Earth's mantle - and isotopic measurements are now beginning to yield insight into the high-temperatures processes operating during lunar formation.
Half-heusler alloys with enhanced figure of merit and methods of making
Ren, Zhifeng; Yan, Xiao; Joshi, Giri; Chen, Shuo; Chen, Gang; Poudel, Bed; Caylor, James Christopher
2015-06-02
Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
Perspectives on Measurement Instruction.
ERIC Educational Resources Information Center
Airasian, Peter W.
1991-01-01
This paper seeks to identify ways of making measurement more relevant to classroom teachers, and making classroom realities more apparent to measurement specialists. Measurement elements of teacher education textbooks and courses, nontraditional assessment topics, informal classroom measurement techniques, terminological issues, and three types of…
The influence of self-relevant materials on working memory in dysphoric undergraduates.
Dai, Qin; Rahman, Shaoon; Lau, Becky; Sook Kim, Hyang; Deldin, Patricia
2015-10-30
Difficulties in updating working memory (WM) may underlie problems with regulating emotions that contribute to depression. To examine the ability of updating affective materials in WM, 33 dysphoric and 34 non-dysphoric participants were asked to evaluate the self-descriptiveness of emotional adjectives and provide answers to self-relevant questions. Within 3-7 days, they completed a two-back task with a series of self-irrelevant or self-relevant emotional words (they had generated previously) and four conditions (match-set, break-set, perseveration-set, and no-set). After the WM task, an unexpected recall task was administered; controls recalled more positive self-relevant words and intrusions while dysphoric participants recalled more negative self-relevant words and intrusions. In break-set trials of the two-back task, dysphoric individuals showed slower response to self-relevant words regardless of valence. In the match-set and perseveration-set trials, dysphoric participants showed delayed response to self-related negative words. Moreover, longer reaction times for self-relevant negative words were correlated with higher rumination and worse depression. The results suggest that dysphoric undergraduates are interfered more by and have a better memory of self-relevant negative stimuli in WM, which is closely correlated with rumination. This study is among the first to confirm the potential mechanism that could underwrite the involvement of self-schema in effectively regulating negative affect. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wiechmann, Warren; Kwan, Daniel; Bokarius, Andrew; Toohey, Shannon L
2016-03-01
The use of personal mobile devices in the medical field has grown quickly, and a large proportion of physicians use their mobile devices as an immediate resource for clinical decision-making, prescription information and other medical information. The iTunes App Store (Apple, Inc.) contains approximately 20,000 apps in its "Medical" category, providing a robust repository of resources for clinicians; however, this represents only 2% of the entire App Store. The App Store does not have strict criteria for identifying content specific to practicing physicians, making the identification of clinically relevant content difficult. The objective of this study is to quantify the characteristics of existing medical applications in the iTunes App Store that could be used by emergency physicians, residents, or medical students. We found applications related to emergency medicine (EM) by searching the iTunes App Store for 21 terms representing core content areas of EM, such as "emergency medicine," "critical care," "orthopedics," and "procedures." Two physicians independently reviewed descriptions of these applications in the App Store and categorized each as the following: Clinically Relevant, Book/Published Source, Non-English, Study Tools, or Not Relevant. A third physician reviewer resolved disagreements about categorization. Descriptive statistics were calculated. We found a total of 7,699 apps from the 21 search terms, of which 17.8% were clinical, 9.6% were based on a book or published source, 1.6% were non-English, 0.7% were clinically relevant patient education resources, and 4.8% were study tools. Most significantly, 64.9% were considered not relevant to medical professionals. Clinically relevant apps make up approximately 6.9% of the App Store's "Medical" Category and 0.1% of the overall App Store. Clinically relevant apps represent only a small percentage (6.9%) of the total App volume within the Medical section of the App Store. Without a structured search-and-evaluation strategy, it may be difficult for the casual user to identify this potentially useful content. Given the increasing adoption of devices in healthcare, national EM associations should consider curating these resources for their members.
van Veghel, Dennis; Marteijn, Marloes; de Mol, Bas
2016-06-01
The aims of this study were to assess patient-relevant outcomes of delivered cardiovascular care by focusing on disease management as determined by a multidisciplinary Heart Team, to establish and share best practices by comparing outcomes and to embed value-based decision-making to improve quality and efficiency in Dutch heart centres. In 2014, 12 Dutch heart centres pooled patient-relevant outcome data, which resulted in transparent publication of the outcomes, including long-term follow-up up to 5 years, of approximately 86 000 heart patients. This study presents the results of both disease- and treatment patient-relevant outcome measures for coronary artery disease and aortic valve disease. The patients included were presented to a Heart Team and underwent invasive or operative treatment. In-hospital and out-of-hospital patient-relevant outcome measures were collected as well as initial conditions. Quality of life was assessed using the Short Form (SF)-36 or SF-12 health survey. In the Netherlands, patient-relevant and risk-adjusted outcomes of cardiovascular care in participating heart centres are published annually. Data were sufficiently reliable to enable comparisons and to subtract best practices. The statistically lower risk-adjusted mortality rate after coronary artery bypass grafting resulted in a voluntary roll-out of a perioperative safety check. The in-depth analysis of outcomes after percutaneous coronary intervention resulted in process improvements in several heart centres, such as pre-hydration for patients with renal insufficiency and the need of target vessel revascularizations within a year. Annual data collection on follow-up of patient-relevant outcomes of cardiovascular care, initiated and organized by physicians, appears feasible. Transparent publication of outcomes drives the improvement of quality within heart centres. The system of using a limited set of patient-relevant outcome measures enables reliable comparisons and exposes the quality of decision-making and the operational process. Transparent communication on outcomes is feasible, safe and cost-effective, and stimulates professional decision-making and disease management. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Meeting the challenge of policy-relevant science: lessons from a water resource project
Lamb, Berton L.
1986-01-01
Water resource scientists face complex tasks in evaluating aspects of water projects, but relatively few assessment procedures have been applied and accepted as standard applications. Decision-makers often rely on environmental assessments to evaluate the value and operation of projects. There is often confusion about scientists' role in policy decisions. The scientist can affect policy-making as an expert withess, an advocate or a surrogate. By understanding the policy process, scientists can make their work more “policy relevant.” Using the Terror Lake hydro project in Alaska as a guide, three lessons are discussed: (1) not all problems are able to be solved with technology; (2) policy-relevant technology is rarely imposed on a problem; and (3) the scientist need not just react to the policy process, but can have an impact on how that process unfolds.
Making Chemistry Relevant to the Engineering Major
ERIC Educational Resources Information Center
Basu-Dutt, Sharmistha; Slappey, Charles; Bartley, Julie K.
2010-01-01
As part of a campus-wide, externally funded project to increase performance in, enthusiasm for, and retention within STEM disciplines, we developed an interdisciplinary, team-taught first-year seminar course. The construction and delivery of this course was designed to show the relevance of selected general chemistry topics such as matter and…
What Makes a Good Educator? The Relevance of Meta Programmes
ERIC Educational Resources Information Center
Brown, Nigel
2004-01-01
This paper reports the results of a qualitative study which explores the relevance of meta programmes to students' perceptions of teaching quality. Meta programmes are a model of personality preferences from the discipline of Neuro Linguistic Programming (NLP). Research into teaching effectiveness indicates that students rate as important "hygiene…
Identifying Organic Molecules in Space: The AstroBiology Explorer (ABE) Mission Concept
NASA Technical Reports Server (NTRS)
Ennico, Kimberly; Sandford, S.; Allamandola, L.; Bregman, J.; Cohen, M.; Cruikshank, D.; Dumas, C.; Greene, T.; Hudgins, D.; Kwok, S.
2004-01-01
The AstroBiology Explorer (ABE) mission concept consists of a modest dedicated space observatory having a 60 cm class primary mirror cooled to T less than 50 K equipped with medium resolution cross-dispersed spectrometers having cooled large format near- and mid-infrared detector arrays. Such a system would be capable of addressing outstanding problems in Astrochemistry and Astrophysics that are particularly relevant to Astrobiology and addressable via astronomical observation. The mission's observaticxiai program woiild make fundamental scieztific: prngress in establishing the nature, distribution, formation and evolution of organic and other molecular materials in the following extra-terrestrial environments: 1) The Outflow of Dying Stars; 2) The Diffuse Interstellar Medium (DISM); 3) Dense Molecular Clouds, Star Formation Regions, and Young Stellar/Planetary Systems; 4) Planets, Satellites, and Small Bodies within the Solar System; and 5) The Interstellar Media of Other Galaxies ABE could make fundamental progress in all of these area by conducting a 1 to 2 year mission to obtain a coordinated set of infrared spectroscopic observations over the 2.5 - 20 micron spectral range at a spectral resolution of R greater than 2500 of about 1500 galaxies, stars, planetary nebulae, young stellar objects, and solar system objects.
Using family paradigms to improve evidence-based practice.
Hidecker, Mary Jo Cooley; Jones, Rebecca S; Imig, David R; Villarruel, Francisco A
2009-08-01
Evidence-based practice (EBP) describes clinical decision making using research, clinical experience, and client values. For family-centered practices, the client's family is integral to this process. This article proposes that using family paradigms, a family science framework, may help elicit and understand client/family values within family-centered EBP. This article describes the family paradigms framework: 4 classic paradigms of "closed," "random," "open," and "synchronous." Its applicability to family-centered EBP is proposed using augmentative and alternative communication examples. A family-centered approach to EBP requires families to be an integral part of clinical decision making, but some families may need assistance in enumerating their views and values. Family paradigms (which consider how a family uses its resources of time, space, energy, and material in the pursuit of its goals of control, affect, meaning, and content) may be a way to elicit family values and preferences relevant to clinical decisions. Family and client values can be incorporated throughout the EBP steps. Considering family paradigms may increase awareness and understanding of how families' views of their goals and resources affect clinical decisions. Further research is needed into both the processes and effectiveness of using family paradigms to conduct family-centered EBP.
Clocks, engines, and quarks--love, dreams, and genes. What makes development happen?
Mayes, L C
1999-01-01
That psychological growth and maturation throughout the lifespan involve progressive linear processes is an implicit assumption of all models of development. Within psychoanalysis, a particular focus has been those processes that hinder forward development and manifest themselves as regressions or fixations or in character structure. However, the implicit assumption of progressive, linear development leaves unexplored the central question of what are the processes that govern developmental progressions. What makes psychological development happen in more or less predictable ways and yet allows for considerable individual variability? And are those developmental progressions inevitably forwardly progressive? Questions regarding what regulates and integrates development are relevant not only for understanding the normal building up of the internal world and of childhood psychopathology but also for those times of dramatic mental reorganization in adulthood surrounding events such as pregnancy and aging and for issues of psychological change during and after an analysis. Clinical material from analyses with a child and an adult and from interviews with four- to five-year-old children is used to explore individual fantasies of how development and change happens. The central role of internalization and object relations in regulating psychological development is emphasized.
Recent Advances in the Synthesis of High Explosive Materials
2015-12-29
explosives and secondary high explosives, and the sensitivities and properties of these molecules are provided. In addition to the synthesis of such materials...This review discusses the recent advances in the syntheses of high explosive energetic materials. Syntheses of some relevant modern primary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-03-01
This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.
Cho, Jung Young; Ahn, Dongjoon; Salvador, James R.; Meisner, Gregory P.
2016-06-07
A thermoelectric material includes a substrate particle and a plurality of conformal oxide layers formed on the substrate particle. The plurality of conformal oxide layers has a total oxide layer thickness ranging from about 2 nm to about 20 nm. The thermoelectric material excludes oxide nanoparticles. A method of making the thermoelectric material is also disclosed herein.
[Incapacitated persons - participation rights and the legal concept of the capacity to consent].
Damm, Reinhard
2016-09-01
Legal problems related to the capacity to consent and decision-making have recently become increasingly important. This concerns the prerequisites and limitations of legal participation as a basis of social participation. Among the relevant social spheres and fields of action, this particulary concerns medicine and health care as well as disability and care. At the normative level, with a view to those concerned, this leads to fundamental questions resulting from the tension between self-determination and care as basic legal and ethical standards. At the empirical level, there are debates between the law and the sciences with regard to the relevant knowledge base for the assessment of (in)capacity to consent. The traditional controversies about the relevant legal criteria determining the existence or absence of capacity to consent are intensified by some recent legal developments, two of which must be highlighted. One of these is the postulate, increasingly emphasized by courts and legislator, of an at least communicative involvement of persons incapable to give consent in the decision-making process. The other is the fundamental discussion of medical ethics on concepts of assisted self-determination and supported decision-making, the consequences of which will also be of relevance at the legal level. Insofar, the development of guardianship law and the legal requirements of the UN Disability Rights Convention are of particular importance.
Measuring the Interestingness of Articles in a Limited User Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pon, R; Cardenas, A; Buttler, David
Search engines, such as Google, assign scores to news articles based on their relevance to a query. However, not all relevant articles for the query may be interesting to a user. For example, if the article is old or yields little new information, the article would be uninteresting. Relevance scores do not take into account what makes an article interesting, which would vary from user to user. Although methods such as collaborative filtering have been shown to be effective in recommendation systems, in a limited user environment, there are not enough users that would make collaborative filtering effective. A generalmore » framework, called iScore, is presented for defining and measuring the ‘‘interestingness of articles, incorporating user-feedback. iScore addresses the various aspects of what makes an article interesting, such as topic relevance, uniqueness, freshness, source reputation, and writing style. It employs various methods, such as multiple topic tracking, online parameter selection, language models, clustering, sentiment analysis, and phrase extraction to measure these features. Due to varying reasons that users hold about why an article is interesting, an online feature selection method in naι¨ve Bayes is also used to improve recommendation results. iScore can outperform traditional IR techniques by as much as 50.7%. iScore and its components are evaluated in the news recommendation task using three datasets from Yahoo! News, actual users, and Digg.« less
Material Barriers to Diffusive Mixing
NASA Astrophysics Data System (ADS)
Haller, George; Karrasch, Daniel
2017-11-01
Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.
Piezoelectric polymers as biomaterials for tissue engineering applications.
Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu
2015-12-01
Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions. Copyright © 2015 Elsevier B.V. All rights reserved.
Clinical decision making in cancer care: a review of current and future roles of patient age.
Tranvåg, Eirik Joakim; Norheim, Ole Frithjof; Ottersen, Trygve
2018-05-09
Patient age is among the most controversial patient characteristics in clinical decision making. In personalized cancer medicine it is important to understand how individual characteristics do affect practice and how to appropriately incorporate such factors into decision making. Some argue that using age in decision making is unethical, and how patient age should guide cancer care is unsettled. This article provides an overview of the use of age in clinical decision making and discusses how age can be relevant in the context of personalized medicine. We conducted a scoping review, searching Pubmed for English references published between 1985 and May 2017. References concerning cancer, with patients above the age of 18 and that discussed age in relation to diagnostic or treatment decisions were included. References that were non-medical or concerning patients below the age of 18, and references that were case reports, ongoing studies or opinion pieces were excluded. Additional references were collected through snowballing and from selected reports, guidelines and articles. Three hundred and forty-seven relevant references were identified. Patient age can have many and diverse roles in clinical decision making: Contextual roles linked to access (age influences how fast patients are referred to specialized care) and incidence (association between increasing age and increasing incidence rates for cancer); patient-relevant roles linked to physiology (age-related changes in drug metabolism) and comorbidity (association between increasing age and increasing number of comorbidities); and roles related to interventions, such as treatment (older patients receive substandard care) and outcome (survival varies by age). Patient age is integrated into cancer care decision making in a range of ways that makes it difficult to claim age-neutrality. Acknowledging this and being more transparent about the use of age in decision making are likely to promote better clinical decisions, irrespective of one's normative viewpoint. This overview also provides a starting point for future discussions on the appropriate role of age in cancer care decision making, which we see as crucial for harnessing the full potential of personalized medicine.
Scherer, Laura D.; Maynard, Andrew; Dolinoy, Dana C.; Fagerlin, Angela; Zikmund-Fisher, Brian J.
2018-01-01
Bisphenol A is a chemical used to make certain types of plastics and is found in numerous consumer products. Because scientific studies have raised concerns about Bisphenol A’s potential impact on human health, it has been removed from some (but not all) products. What many consumers do not know, however, is that Bisphenol A is often replaced with other, less-studied chemicals whose health implications are virtually unknown. This type of situation is known as a potential ‘regrettable substitution’, because the substitute material might actually be worse than the material that it replaces. Regrettable substitutions are a common concern among policymakers, and they are a real-world manifestation of the tension that can exist between the desire to avoid risk (known possible consequences that might or might not occur) and ambiguity (second-order uncertainty), which is itself aversive. In this article we examine how people make such trade-offs using the example of Bisphenol A. Using data from Study 1, we show that people have inconsistent preferences toward these alternatives and that choice is largely determined by irrelevant contextual factors such as the order in which the alternatives are evaluated. Using data from Study 2 we further demonstrate that when people are informed of the presence of substitute chemicals, labeling the alternative product as ‘free’ of Bisphenol A causes them to be significantly more likely to choose the alternative despite its ambiguity. We discuss the relevance of these findings for extant psychological theories as well as their implications for risk, policy and health communication. PMID:29386966
Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K
2017-11-01
Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawitri, Sicilia
2018-03-01
The aims of the research were: (1) To know the students' achievement in Dress Making Teaching by implementing Integrated Entrepreneur Material in Vocational High School, (2) The level of increasing of students' achievement in Dress Making Teaching by integrating Entrepreneurship Material in Vocational High School. By using experimental method this research was conducted in Magelang Vocational High School and applied pre-test post-test design. The samples in this research was XI grade of Fashion Technology Study Program. Observation sheet and documentation were used in this research as instruments. Data analyzed by using descriptive analyze and gain score. The result, there were: (1) students' achievement in Dress Making Teaching was high 88.6 and (2) the increasing of students' achievement was 0.61 it was medium category. The suggestion were: Integrated Entrepreneurship material can be applied in another subject matter, such as Men Wear, Tailoring, Children Wear, and The students who want to be a good entrepreneur, have to drill their skill in making dresses, and know about excellent service to the clients, marketing and make clients satisfaction.
Preparing Students for the Future: Making Career Development a Priority.
ERIC Educational Resources Information Center
Hughey, Kenneth F.; Hughey, Judith K.
1999-01-01
Presents information relevant to school counseling about the implications of work changes. Outlines foundational guides for student success: improving decision making, learning about career paths, acquiring employability skills, and developing lifelong learning attitudes. Describes activities to facilitate career development. (SK)
ERIC Educational Resources Information Center
Chamany, Katayoun; Allen, Deborah; Tanner, Kimberly
2008-01-01
Teaching students to make connections between what they learn in the classroom and what they see in everyday life is imperative. As biology instructors, they may choose to teach biology devoid of social context, believing that students can make these connections on their own. However, students model their instructors' behaviors, and follow their…
Skills and the appreciation of computer art
NASA Astrophysics Data System (ADS)
Boden, Margaret A.
2016-04-01
The appreciation of art normally includes recognition of the artist's skills in making it. Most people cannot appreciate computer art in that way, because they know little or nothing about coding. Various suggestions are made about how computer artists and/or curators might design and present computer art in such a way as to make the relevant making-skills more intelligible.
Stress-relaxation and fatigue behaviour of synthetic brow-suspension materials.
Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E; Salam, Tahrina; Rose, Geoffrey E; Ezra, Daniel G
2015-02-01
Ptosis describes a low position of the upper eyelid. When this condition is due to poor function of the levator palpebrae superioris muscle, responsible for raising the lid, "brow-suspension" ptosis correction is usually performed, which involves internally attaching the malpositioned eyelid to the forehead musculature using brow-suspension materials. In service, such materials are exposed to both rapid tensile loading and unloading sequences during blinking, and a more sustained tensile strain during extended periods of closure. In this study, various mechanical tests were conducted to characterise and compare some of commonly-used synthetic brow-suspension materials (Prolene(®), Supramid Extra(®) II, Silicone rods (Visitec(®) Seiff frontalis suspension set) and Mersilene(®) mesh) for their time-dependent response. At a given constant tensile strain or load, all of the brow-suspension materials exhibited stress-relaxation or creep, with Prolene(®) having a statistically different relaxation or creep ratio as compared with those of others. Uniaxial tensile cyclic tests through preconditioning and fatigue tests demonstrated drastically different time-dependent response amongst the various materials. Although the tests generated hysteresis force-strain loops for all materials, the mechanical properties such as the number of cycles required to reach the steady-state, the reduction in the peak force, and the cyclic energy dissipation varied considerably. To reach the steady-state, Prolene(®) and the silicone rod required the greatest and the least number of cycles, respectively. Furthermore, the fatigue tests at physiologically relevant conditions (15% strain controlled at 6.5 Hz) demonstrated that the reduction in the peak force during 100,000 cycles ranged from 15% to 58%, with Prolene(®) and the silicone rod exhibiting the greatest and the least value, respectively. Many factors need to be considered to select the most suitable brow-suspension material for ptosis correction. These novel data on the mechanical time-dependent performance could therefore help to guide clinicians in their decision-making process for optimal surgical outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.
Liu, Wenbin; Shi, Lizheng; Pong, Raymond W; Dong, Hengjin; Mao, Yiwei; Tang, Meng; Chen, Yingyao
2018-01-01
For health technology assessment (HTA) to be more policy relevant and for health technology-related decision-making to be truly evidence-based, promoting knowledge translation (KT) is of vital importance. Although some research has focused on KT of HTA, there is a dearth of literature on KT determinants and the situation in developing countries and transitional societies remains largely unknown. To investigate the determinants of HTA KT from research to health policy-making from the perspective of researchers in China. Cross-sectional study. A structured questionnaire which focused on KT was distributed to HTA researchers in China. KT activity levels in various fields of HTA research were compared, using one-way ANOVA. Principal component analysis was performed to provide a basis to combine similar variables. To investigate the determinants of KT level, multiple linear regression analysis was performed. Based on a survey of 382 HTA researchers, it was found that HTA KT wasn't widespread in China. Furthermore, results showed that no significant differences existed between the various HTA research fields. Factors, such as attitudes of researchers toward HTA and evidence utilization, academic ranks and linkages between researchers and policy-makers, had significant impact on HTA KT (p-values<0.05). Additionally, collaboration between HTA researchers and policy-makers, policy-relevance of HTA research, practicality of HTA outcomes and making HTA reports easier to understand also contributed to predicting KT level. However, academic nature of HTA research was negatively associated with KT level. KT from HTA to policy-making was influenced by many factors. Of particular importance were collaborations between researchers and policy-makers, ensuring policy relevance of HTA and making HTA evidence easier to understand by potential users.
Liu, Wenbin; Shi, Lizheng; Pong, Raymond W.; Dong, Hengjin; Mao, Yiwei; Tang, Meng; Chen, Yingyao
2018-01-01
Background For health technology assessment (HTA) to be more policy relevant and for health technology-related decision-making to be truly evidence-based, promoting knowledge translation (KT) is of vital importance. Although some research has focused on KT of HTA, there is a dearth of literature on KT determinants and the situation in developing countries and transitional societies remains largely unknown. Objective To investigate the determinants of HTA KT from research to health policy-making from the perspective of researchers in China. Design Cross-sectional study. Methods A structured questionnaire which focused on KT was distributed to HTA researchers in China. KT activity levels in various fields of HTA research were compared, using one-way ANOVA. Principal component analysis was performed to provide a basis to combine similar variables. To investigate the determinants of KT level, multiple linear regression analysis was performed. Results Based on a survey of 382 HTA researchers, it was found that HTA KT wasn’t widespread in China. Furthermore, results showed that no significant differences existed between the various HTA research fields. Factors, such as attitudes of researchers toward HTA and evidence utilization, academic ranks and linkages between researchers and policy-makers, had significant impact on HTA KT (p-values<0.05). Additionally, collaboration between HTA researchers and policy-makers, policy-relevance of HTA research, practicality of HTA outcomes and making HTA reports easier to understand also contributed to predicting KT level. However, academic nature of HTA research was negatively associated with KT level. Conclusion KT from HTA to policy-making was influenced by many factors. Of particular importance were collaborations between researchers and policy-makers, ensuring policy relevance of HTA and making HTA evidence easier to understand by potential users. PMID:29300753
78 FR 38240 - Authentication of Electronic Signatures on Electronically Filed Statements of Account
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... up by any trick, scheme, or device a material fact; (2) makes any materially false, fictitious, or fraudulent statement or representation; or (3) makes or uses any false writing or document knowing the same to contain any materially false, fictitious, or fraudulent statement or entry; shall be fined under...
Ethical decision-making in hospice care.
Walker, Andreas; Breitsameter, Christof
2015-05-01
Hospices are based on a holistic approach which places the physical, psychological, social and spiritual welfare of their patients at the forefront of their work. Furthermore, they draw up their own mission statements which they are at pains to follow and seek to conduct their work in accordance with codes of ethics and standards of care. Our study researched what form the processes and degrees of latitude in decision-making take in practice when questions of an ethical and ethically relevant nature arise. We used a qualitative approach. Data collection and evaluation was based on the methods of grounded theory. The study was reported to the relevant Ethics Commission who had raised no objections following the submission of the study protocol. The study at the hospices was approved by the directors of the hospices and the nursing teams. The rights of the participants were protected by obtaining informed consent. Medication in the prefinal phase and questions affecting the provision of solids and liquids in the end-of-life phase have an ethical dimension. In the context of these two fields, decisions are taken collectively. A nurse's individual (and ethically relevant) leeway in decision-making processes is restricted to the nurse's own style of administering care. The nurse's decision-making often depends to a far greater degree on her ability to adapt her concept of ideal care to fit the practical realities of her work than to any conceptual framework. An adaptive process is necessary for the nurse because she is required to incorporate the four pillars of hospice care - namely, physical, psychological, social and spiritual care - into the practice of her daily work. Ethically relevant decisions are often characterised by nurses adjusting their aspiration levels to the practical conditions with which they are confronted. © The Author(s) 2014.
Lizzi, F; Villat, C; Attik, N; Jackson, P; Grosgogeat, B; Goutaudier, C
2017-06-01
Nowadays bioactive glasses are finding increasing applications in medical practice due to their ability to stimulate re-mineralisation. However, they are intrinsically brittle materials and the study of new compositions will open up new scenarios enhancing their mechanical properties and maintaining the high bioactivity for a broader range of applications. This systematic review aims to identify the relationship between the composition of bioactive glasses used in medical applications and their influence on the mechanical and biological properties. Various electronic databases (PubMed, Science Direct) were used for collecting articles on this subject. This research includes papers from January 2011 to March 2016. PRISMA guidelines for systematic review and meta-analysis have been used. 109 abstracts were collected and screened, 68 articles were read as relevant articles and a total of 22 papers were finally selected for this study. Most of the studies obtained enhanced mechanical properties and the conservation of bioactivity behaviours; although a lack of homogeneity in the characterization methods makes it difficult to compare data. New compositions of bioactive glasses incorporating specific ions and the addition in polymers will be the most important direction for future researches in developing new materials for medical applications and especially for dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales
Walters, Brandan D.; Stegemann, Jan P.
2013-01-01
Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608
A Hydrogen and He Isotope Nanoprobe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Barney L.; Van Deusen, Stuart B.
Materials that incorporate hydrogen and helium isotopes are of great interest at Sandia and throughout the NNSA and DOE. The Ion Beam Lab at SNL-NM has invented techniques using micron to mm-size MeV ion beams to recoil these light isotopes (Elastic Recoil Detection or ERD) that can very accurately make such measurements. However, there are many measurements that would benefit NW and DOE that require much better resolution, such as the distribution of H isotopes (and 3He) in individual grains of materials relevant to TPBARs, H and He-embrittlement of weapon components important to Tritium Sustainment Programs, issues with GTSs, batteries…more » Higher resolution would also benefit the field of materials science in general. To address these and many other issues, nm-scale lateral resolution is required. This LDRD demonstrated that neutral H atoms could be recoiled through a thin film by 70 keV electrons and detected with a Channeltron electron multiplier (CEM). The electrons were steered away from the CEM by strong permanent magnets. This proved the feasibility that the high energy electrons from a transmissionelectron- microscope-TEM can potentially be used to recoil and subsequently detect (e-ERD), quantify and map the concentration of H and He isotopes with nm resolution. This discovery could lead to a TEM-based H/He-isotope nanoprobe with 1000x higher resolution than currently available.« less
What makes a word so attractive? Disclosing the urge to read while bisecting.
Girelli, Luisa; Previtali, Paola; Arduino, Lisa S
2018-04-22
Expert readers have been repeatedly reported to misperceive the centre of visual stimuli, shifting systematically to the left the bisection of any lines (pseudoneglect) while showing a cross-over effect while bisecting different types of orthographic strings (Arduino et al., 2010, Neuropsychologia, 48, 2140). This difference has been attributed to asymmetrical allocation of attention that visuo-verbal material receives when lexical access occurs (e.g., Fischer, 2004, Cognitive Brain Research, 4, 163). The aim of this study was to further examine which visual features guide recognition of potentially orthographic materials. To disentangle the role of orthography, heterogeneity, and visuo-perceptual discreteness, we presented Italian unimpaired adults with four experiments exploiting the bisection paradigm. The results showed that a cross-over effect emerges in most discrete strings, especially when their internal structure, that is being composed of heterogeneous elements, is suggestive of orthographically relevant material. Interestingly, the cross-over effect systematically characterized the processing of letter strings (Experiment 2) and words (Experiments 3 and 4), whether visually discrete or not. Overall, this pattern of results suggests that neither discreteness nor heterogeneity per se are responsible for activating visual scanning mechanisms implied in text exploration, although both contribute to increasing the chance of a visual stimulus undergoing a perceptual analysis dedicated to pre-lexical processing. © 2018 The British Psychological Society.
Zirconia in dental implantology: A review
Apratim, Abhishek; Eachempati, Prashanti; Krishnappa Salian, Kiran Kumar; Singh, Vijendra; Chhabra, Saurabh; Shah, Sanket
2015-01-01
Background: Titanium has been the most popular material of choice for dental implantology over the past few decades. Its properties have been found to be most suitable for the success of implant treatment. But recently, zirconia is slowly emerging as one of the materials which might replace the gold standard of dental implant, i.e., titanium. Materials and Methods: Literature was searched to retrieve information about zirconia dental implant and studies were critically analyzed. PubMed database was searched for information about zirconia dental implant regarding mechanical properties, osseointegration, surface roughness, biocompatibility, and soft tissue health around it. The literature search was limited to English language articles published from 1975 to 2015. Results: A total of 45 papers met the inclusion criteria for this review, among the relevant search in the database. Conclusion: Literature search showed that some of the properties of zirconia seem to be suitable for making it an ideal dental implant, such as biocompatibility, osseointegration, favourable soft tissue response and aesthetics due to light transmission and its color. At the same time, some studies also point out its drawbacks. It was also found that most of the studies on zirconia dental implants are short-term studies and there is a need for more long-term clinical trials to prove that zirconia is worth enough to replace titanium as a biomaterial in dental implantology. PMID:26236672
Pyrolytic carbon black composite and method of making the same
Naskar, Amit K.; Paranthaman, Mariappan Parans; Bi, Zhonghe
2016-09-13
A method of recovering carbon black includes the step of providing a carbonaceous source material containing carbon black. The carbonaceous source material is contacted with a sulfonation bath to produce a sulfonated material. The sulfonated material is pyrolyzed to produce a carbon black containing product comprising a glassy carbon matrix phase having carbon black dispersed therein. A method of making a battery electrode is also disclosed.
Using video to introduce clinical materials.
Kommalage, Mahinda; Senadheera, Chandanie
2012-08-01
The early introduction of clinical material is a recognised strategy in medical education. The University of Ruhana Medical School, where a traditional curriculum is followed, offers students pre-clinical subjects without clinical exposure during their first and second years. Clinical materials in the form of videos were introduced to first-year students. In the videos, patients and their relatives described the diseases and related problems. Students were instructed to identify the problems encountered by patients and relatives. Each video was followed by a discussion of the problems identified by the students. The medical, social and economic problems encountered by patients and relatives were emphasised during post-video discussions. A lecture was conducted linking the contents of the videos to subsequent lectures. The aim of this study is to investigate whether combining teaching preclinical material with a video presentation of relevant clinical cases facilitates the interest and understanding of students. Quantitative data were collected using a questionnaire, whereas qualitative data were collected using focus group discussions. Quantitative data showed that students appreciated the video, had 'better' knowledge acquisition and a 'better' understanding of problems encountered by patients. Qualitative analysis highlighted the following themes: increased interest; enhanced understanding; relevance of basic knowledge to clinical practice; orientation to profession; and personalising theories. The introduction of patients in the form of videos helped students to understand the relevance of subject material for clinical practice, increased their interest and facilitated a better understanding of the subject material. Therefore, it seems video is a feasible medium to introduce clinical materials to first-year students who follow a traditional curriculum in a resource-limited environment. © Blackwell Publishing Ltd 2012.
Innovations in 3D printing: a 3D overview from optics to organs.
Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A
2014-02-01
3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.
Bone tissue engineering: state of the art and future trends.
Salgado, António J; Coutinho, Olga P; Reis, Rui L
2004-08-09
Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
Precisely controlled fabrication, manipulation and in-situ analysis of Cu based nanoparticles.
Martínez, L; Lauwaet, K; Santoro, G; Sobrado, J M; Peláez, R J; Herrero, V J; Tanarro, I; Ellis, G J; Cernicharo, J; Joblin, C; Huttel, Y; Martín-Gago, J A
2018-05-08
The increasing demand for nanostructured materials is mainly motivated by their key role in a wide variety of technologically relevant fields such as biomedicine, green sustainable energy or catalysis. We have succeeded to scale-up a type of gas aggregation source, called a multiple ion cluster source, for the generation of complex, ultra-pure nanoparticles made of different materials. The high production rates achieved (tens of g/day) for this kind of gas aggregation sources, and the inherent ability to control the structure of the nanoparticles in a controlled environment, make this equipment appealing for industrial purposes, a highly coveted aspect since the introduction of this type of sources. Furthermore, our innovative UHV experimental station also includes in-flight manipulation and processing capabilities by annealing, acceleration, or interaction with background gases along with in-situ characterization of the clusters and nanoparticles fabricated. As an example to demonstrate some of the capabilities of this new equipment, herein we present the fabrication of copper nanoparticles and their processing, including the controlled oxidation (from Cu 0 to CuO through Cu 2 O, and their mixtures) at different stages in the machine.
Dammeier, Sascha; Nahnsen, Sven; Veit, Johannes; Wehner, Frank; Ueffing, Marius; Kohlbacher, Oliver
2016-01-04
Standard forensic procedures to examine bullets after an exchange of fire include a mechanical or ballistic reconstruction of the event. While this is routine to identify which projectile hit a subject by DNA analysis of biological material on the surface of the projectile, it is rather difficult to determine which projectile caused the lethal injury--often the crucial point with regard to legal proceedings. With respect to fundamental law it is the duty of the public authority to make every endeavor to solve every homicide case. To improve forensic examinations, we present a forensic proteomic method to investigate biological material from a projectile's surface and determine the tissues traversed by it. To obtain a range of relevant samples, different major bovine organs were penetrated with projectiles experimentally. After tryptic "on-surface" digestion, mass-spectrometry-based proteome analysis, and statistical data analysis, we were able to achieve a cross-validated organ classification accuracy of >99%. Different types of anticipated external variables exhibited no prominent influence on the findings. In addition, shooting experiments were performed to validate the results. Finally, we show that these concepts could be applied to a real case of murder to substantially improve the forensic reconstruction.
The effect of shear strength on isentropic compression experiments
NASA Astrophysics Data System (ADS)
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2015-06-01
Isentropic compression experiments (ICE) are a novel way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 -102 GPa, while the yield strength of the material can be as low as 10-1GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. We will also show using a systematic asymptotic analysis that entropy changes are universally negligible in the absence of shocks. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength over a model based purely on hydrodynamics.
Reflectance spectroscopy of oxalate minerals and relevance to Solar System carbon inventories
NASA Astrophysics Data System (ADS)
Applin, Daniel M.; Izawa, Matthew R. M.; Cloutis, Edward A.
2016-11-01
The diversity of oxalate formation mechanisms suggests that significant concentrations of oxalic acid and oxalate minerals could be widely distributed in the Solar System. We have carried out a systematic study of the reflectance spectra of oxalate minerals and oxalic acid, covering the 0.2-16 μm wavelength region. Our analyses show that oxalates exhibit unique spectral features that enable discrimination between oxalate phases and from other commonly occurring compounds, including carbonates, in all regions of the spectrum except for the visible. Using these spectral data, we consider the possible contribution of oxalate minerals to previously observed reflectance spectra of many objects throughout the Solar System, including satellites, comets, and asteroids. We find that polycarboxylic acid dimers and their salts may explain the reflectance spectra of many carbonaceous asteroids in the 3 μm spectral region. We suggest surface concentration of these compounds may be a type of space weathering from the photochemical and oxidative decomposition of the organic macromolecular material found in carbonaceous chondrites. The stability and ubiquity of these minerals on Earth, in extraterrestrial materials, and in association with biological processes make them useful for many applications in Earth and planetary sciences.
Design for learning - a case study of blended learning in a science unit.
Gleadow, Roslyn; Macfarlan, Barbara; Honeydew, Melissa
2015-01-01
Making material available through learning management systems is standard practice in most universities, but this is generally seen as an adjunct to the 'real' teaching, that takes place in face-to-face classes. Lecture attendance is poor, and it is becoming increasingly difficult to engage students, both in the material being taught and campus life. This paper describes the redevelopment of a large course in scientific practice and communication that is compulsory for all science students studying at our Melbourne and Malaysian campuses, or by distance education. Working with an educational designer, a blended learning methodology was developed, converting the environment provided by the learning management system into a teaching space, rather than a filing system. To ensure focus, topics are clustered into themes with a 'question of the week', a pre-class stimulus and follow up activities. The content of the course did not change, but by restructuring the delivery using educationally relevant design techniques, the content was contextualised resulting in an integrated learning experience. Students are more engaged intellectually, and lecture attendance has improved. The approach we describe here is a simple and effective approach to bringing this university's teaching and learning into the 21 (st) century.
Developing Effective Communications about Extreme Weather Risks.
NASA Astrophysics Data System (ADS)
Bruine de Bruin, W.
2014-12-01
Members of the general public often face complex decisions about the risks that they face, including those associated with extreme weather and climate change adaptation. Scientific experts may be asked to develop communications with the goal of improving people's understanding of weather and climate risks, and informing people's decisions about how to protect against these risks. Unfortunately, scientific experts' communication efforts may fail if they lack information about what people need or want to know to make more informed decisions or what wording people prefer use to describe relevant concepts. This presentation provides general principles for developing effective risk communication materials that aim for widespread dissemination, such as brochures and websites. After a brief review of the social science evidence on how to design effective risk communication materials, examples will focus on communications about extreme weather events and climate change. Specifically, data will be presented from ongoing projects on flood risk perception, public preparedness for heat waves, and public perceptions of climate change. The presentation will end with specific recommendations about how to improve recipients' understanding about risks and inform decisions. These recommendations should be useful to scientific experts who aim to communicate about extreme weather, climate change, or other risks.
Single-layer MoS2 electronics.
Lembke, Dominik; Bertolazzi, Simone; Kis, Andras
2015-01-20
CONSPECTUS: Atomic crystals of two-dimensional materials consisting of single sheets extracted from layered materials are gaining increasing attention. The most well-known material from this group is graphene, a single layer of graphite that can be extracted from the bulk material or grown on a suitable substrate. Its discovery has given rise to intense research effort culminating in the 2010 Nobel Prize in physics awarded to Andre Geim and Konstantin Novoselov. Graphene however represents only the proverbial tip of the iceberg, and increasing attention of researchers is now turning towards the veritable zoo of so-called "other 2D materials". They have properties complementary to graphene, which in its pristine form lacks a bandgap: MoS2, for example, is a semiconductor, while NbSe2 is a superconductor. They could hold the key to important practical applications and new scientific discoveries in the two-dimensional limit. This family of materials has been studied since the 1960s, but most of the research focused on their tribological applications: MoS2 is best known today as a high-performance dry lubricant for ultrahigh-vacuum applications and in car engines. The realization that single layers of MoS2 and related materials could also be used in functional electronic devices where they could offer advantages compared with silicon or graphene created a renewed interest in these materials. MoS2 is currently gaining the most attention because the material is easily available in the form of a mineral, molybdenite, but other 2D transition metal dichalcogenide (TMD) semiconductors are expected to have qualitatively similar properties. In this Account, we describe recent progress in the area of single-layer MoS2-based devices for electronic circuits. We will start with MoS2 transistors, which showed for the first time that devices based on MoS2 and related TMDs could have electrical properties on the same level as other, more established semiconducting materials. This allowed rapid progress in this area and was followed by demonstrations of basic digital circuits and transistors operating in the technologically relevant gigahertz range of frequencies, showing that the mobility of MoS2 and TMD materials is sufficiently high to allow device operation at such high frequencies. Monolayer MoS2 and other TMDs are also direct band gap semiconductors making them interesting for realizing optoelectronic devices. These range from simple phototransistors showing high sensitivity and low noise, to light emitting diodes and solar cells. All the electronic and optoelectronic properties of MoS2 and TMDs are accompanied by interesting mechanical properties with monolayer MoS2 being as stiff as steel and 30× stronger. This makes it especially interesting in the context of flexible electronics where it could combine the high degree of mechanical flexibility commonly associated with organic semiconductors with high levels of electrical performance. All these results show that MoS2 and TMDs are promising materials for electronic and optoelectronic applications.
Combes, Gill; Sein, Kim; Allen, Kerry
2017-11-23
Pre-dialysis education (PDE) is provided to thousands of patients every year, helping them decide which renal replacement therapy (RRT) to choose. However, its effectiveness is largely unknown, with relatively little previous research into patients' views about PDE, and no research into staff views. This study reports findings relevant to PDE from a larger mixed methods study, providing insights into what staff and patients think needs to improve. Semi-structured interviews in four hospitals with 96 clinical and managerial staff and 93 dialysis patients, exploring experiences of and views about PDE, and analysed using thematic framework analysis. Most patients found PDE helpful and staff valued its role in supporting patient decision-making. However, patients wanted to see teaching methods and materials improve and biases eliminated. Staff were less aware than patients of how informal staff-patient conversations can influence patients' treatment decision-making. Many staff felt ill equipped to talk about all treatment options in a balanced and unbiased way. Patient decision-making was found to be complex and patients' abilities to make treatment decisions were adversely affected in the pre-dialysis period by emotional distress. Suggested improvements to teaching methods and educational materials are in line with previous studies and current clinical guidelines. All staff, irrespective of their role, need to be trained about all treatment options so that informal conversations with patients are not biased. The study argues for a more individualised approach to PDE which is more like counselling than education and would demand a higher level of skill and training for specialist PDE staff. The study concludes that even if these improvements are made to PDE, not all patients will benefit, because some find decision-making in the pre-dialysis period too complex or are unable to engage with education due to illness or emotional distress. It is therefore recommended that pre-dialysis treatment decisions are temporary, and that PDE is replaced with on-going RRT education which provides opportunities for personalised education and on-going review of patients' treatment choices. Emotional support to help overcome the distress of the transition to end-stage renal disease will also be essential to ensure all patients can benefit from RRT education.
The commercial use of digital media to market alcohol products: a narrative review.
Lobstein, Tim; Landon, Jane; Thornton, Nicole; Jernigan, David
2017-01-01
The rising use of digital media in the last decade, including social networking media and downloadable applications, has created new opportunities for marketing a wide range of goods and services, including alcohol products. This paper aims to review the evidence in order to answer a series of policy-relevant questions: does alcohol marketing through digital media influence drinking behaviour or increases consumption; what methods of promotional marketing are used, and to what extent; and what is the evidence of marketing code violations and especially of marketing to children? A search of scientific, medical and social journals and authoritative grey literature identified 47 relevant papers (including 14 grey literature documents). The evidence indicated (i) that exposure to marketing through digital media was associated with higher levels of drinking behaviour; (ii) that the marketing activities make use of materials and approaches that are attractive to young people and encourage interactive engagement with branded messaging; and (iii) there is evidence that current alcohol marketing codes are being undermined by alcohol producers using digital media. There is evidence to support public health interventions to restrict the commercial promotion of alcohol in digital media, especially measures to protect children and youth. © 2016 Society for the Study of Addiction.
ERIC Educational Resources Information Center
King, Anny, Ed.
This book provides a description and synthesis of a range of relevant practice and offers a framework for making language learning more relevant for new generations of practice. It is intended as a contribution to the debate about the purposes of language studies in higher education in the 21st century. The book is divided into five parts and 15…
Relevance and reliability of experimental data in human health risk assessment of pesticides.
Kaltenhäuser, Johanna; Kneuer, Carsten; Marx-Stoelting, Philip; Niemann, Lars; Schubert, Jens; Stein, Bernd; Solecki, Roland
2017-08-01
Evaluation of data relevance, reliability and contribution to uncertainty is crucial in regulatory health risk assessment if robust conclusions are to be drawn. Whether a specific study is used as key study, as additional information or not accepted depends in part on the criteria according to which its relevance and reliability are judged. In addition to GLP-compliant regulatory studies following OECD Test Guidelines, data from peer-reviewed scientific literature have to be evaluated in regulatory risk assessment of pesticide active substances. Publications should be taken into account if they are of acceptable relevance and reliability. Their contribution to the overall weight of evidence is influenced by factors including test organism, study design and statistical methods, as well as test item identification, documentation and reporting of results. Various reports make recommendations for improving the quality of risk assessments and different criteria catalogues have been published to support evaluation of data relevance and reliability. Their intention was to guide transparent decision making on the integration of the respective information into the regulatory process. This article describes an approach to assess the relevance and reliability of experimental data from guideline-compliant studies as well as from non-guideline studies published in the scientific literature in the specific context of uncertainty and risk assessment of pesticides. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
McQueeney, Edward
2006-01-01
Making ethics relevant to students in a business communications course continues to be a challenge. Classroom practitioners have long noted the difficulties in surmounting the contradictions students sense in business ethics instruction. Furthermore, students often perceive ethics to be largely irrelevant to the skills necessary for success in…
29 CFR 32.15 - Preemployment inquiries.
Code of Federal Regulations, 2010 CFR
2010-07-01
... official should make a functional assessment of the physical or mental demands of the jobs in order to... handicap. A recipient may, however, make preemployment inquiry into an applicant's ability to perform job... sufficient information regarding any functional limitations relevant to proper job placement or referral to...
Formative Justice: The Regulative Principle of Education
ERIC Educational Resources Information Center
McClintock, Robert
2016-01-01
Background/Context: Concepts of justice relevant to making personal and public decisions about education. Purpose: To clarify a concept of formative justice that persons and the public often ignore in making decisions about educational effort. Setting: "The windmills of your mind" Research Design: Reflective essay.…
43 CFR 46.20 - How to use this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
....4501505.2 (b) The Responsible Official will ensure that the decision making process for proposals subject to this part includes appropriate NEPA review. (c) During the decision making process for each... the relevant environmental document. The Responsible Official's decision may combine elements of...
A Lay Ethics Quest for Technological Futures: About Tradition, Narrative and Decision-Making.
van der Burg, Simone
2016-01-01
Making better choices about future technologies that are being researched or developed is an important motivator behind lay ethics interventions. However, in practice, they do not always succeed to serve that goal. Especially authors who have noted that lay ethicists sometimes take recourse to well-known themes which stem from old, even 'archetypical' stories, have been criticized for making too little room for agency and decision-making in their approach. This paper aims to contribute to a reflection on how lay ethics can acquire more practical relevance. It will use resources in narrative ethics to suggest that in order to be relevant for action, facilitators of lay ethics interventions need to invite participants to engage in a narrative quest. As part of a quest, lay ethicists should be asked to (1) reflect on a specific question or choice, (2) use diverse (imaginative) input which is informative about the heterogeneity of viewpoints that are defended in society and (3) argue for their standpoints.
Diversification and enrichment of clinical biomaterials inspired by Darwinian evolution.
Green, D W; Watson, G S; Watson, J A; Lee, D-J; Lee, J-M; Jung, H-S
2016-09-15
Regenerative medicine and biomaterials design are driven by biomimicry. There is the essential requirement to emulate human cell, tissue, organ and physiological complexity to ensure long-lasting clinical success. Biomimicry projects for biomaterials innovation can be re-invigorated with evolutionary insights and perspectives, since Darwinian evolution is the original dynamic process for biological organisation and complexity. Many existing human inspired regenerative biomaterials (defined as a nature generated, nature derived and nature mimicking structure, produced within a biological system, which can deputise for, or replace human tissues for which it closely matches) are without important elements of biological complexity such as, hierarchy and autonomous actions. It is possible to engineer these essential elements into clinical biomaterials via bioinspired implementation of concepts, processes and mechanisms played out during Darwinian evolution; mechanisms such as, directed, computational, accelerated evolutions and artificial selection contrived in the laboratory. These dynamos for innovation can be used during biomaterials fabrication, but also to choose optimal designs in the regeneration process. Further evolutionary information can help at the design stage; gleaned from the historical evolution of material adaptations compared across phylogenies to changes in their environment and habitats. Taken together, harnessing evolutionary mechanisms and evolutionary pathways, leading to ideal adaptations, will eventually provide a new class of Darwinian and evolutionary biomaterials. This will provide bioengineers with a more diversified and more efficient innovation tool for biomaterial design, synthesis and function than currently achieved with synthetic materials chemistry programmes and rational based materials design approach, which require reasoned logic. It will also inject further creativity, diversity and richness into the biomedical technologies that we make. All of which are based on biological principles. Such evolution-inspired biomaterials have the potential to generate innovative solutions, which match with existing bioengineering problems, in vital areas of clinical materials translation that include tissue engineering, gene delivery, drug delivery, immunity modulation, and scar-less wound healing. Evolution by natural selection is a powerful generator of innovations in molecular, materials and structures. Man has influenced evolution for thousands of years, to create new breeds of farm animals and crop plants, but now molecular and materials can be molded in the same way. Biological molecules and simple structures can be evolved, literally in the laboratory. Furthermore, they are re-designed via lessons learnt from evolutionary history. Through a 3-step process to (1) create variants in material building blocks, (2) screen the variants with beneficial traits/properties and (3) select and support their self-assembly into usable materials, improvements in design and performance can emerge. By introducing biological molecules and small organisms into this process, it is possible to make increasingly diversified, sophisticated and clinically relevant materials for multiple roles in biomedicine. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
MPA-11: Materials Synthesis and Integrated Devices; Overview of an Applied Energy Group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dattelbaum, Andrew Martin
Our mission is to provide innovative and creative chemical synthesis and materials science solutions to solve materials problems across the LANL missions. Our group conducts basic and applied research in areas related to energy security as well as problems relevant to the Weapons Program.
Some relations among engineering constants of wood
Jen Y. Liu; Robert J. Ross
1998-01-01
Wood may be described as an orthotropic material with unique and independent mechanical properties in the directions of three mutually perpendicular axesâ longitudinal ( L ), radial ( R ), and tangential (T ). These mechanical properties are also called engineering constants. Orthotropic materials are of special relevance to composite materials. Therefore, mathematical...
Selected Materials on Drug Abuse and Misuse.
ERIC Educational Resources Information Center
Vigo County Public Library, Terre Haute, IN.
The Vigo County Public Library has a Center for Drug Information which contains pamphlets, leaflets, newsletters, realia kits, films, records, cassettes, slides, educational aids and other materials on drug use, abuse and education. The materials in this list were selected for their relevance to the needs of local groups and organizations in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siranosian, Antranik Antonio; Schembri, Philip Edward; Miller, Nathan Andrew
The Benchmark Extensible Tractable Testbed Engineering Resource (BETTER) is proposed as a family of modular test bodies that are intended to support engineering capability development by helping to identify weaknesses and needs. Weapon systems, subassemblies, and components are often complex and difficult to test and analyze, resulting in low confidence and high uncertainties in experimental and simulated results. The complexities make it difficult to distinguish between inherent uncertainties and errors due to insufficient capabilities. BETTER test bodies will first use simplified geometries and materials such that testing, data collection, modeling and simulation can be accomplished with high confidence and lowmore » uncertainty. Modifications and combinations of simple and well-characterized BETTER test bodies can then be used to increase complexity in order to reproduce relevant mechanics and identify weaknesses. BETTER can provide both immediate and long-term improvements in testing and simulation capabilities. This document presents the motivation, concept, benefits and examples for BETTER.« less
Sub-5 nm, globally aligned graphene nanoribbons on Ge(001)
Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.; ...
2016-05-23
Graphene nanoribbons (GNRs) hold great promise for future electronics because of their edge and width dependent electronic bandgaps and exceptional transport properties. While significant progress toward such devices has been made, the field has been limited by difficulties achieving narrow widths, global alignment, and atomically pristine GNR edges on technologically relevant substrates. A recent advance has challenged these limits by using Ge(001) substrates to direct the bottom-up growth of GNRs with nearly pristine armchair edges and widths near ~10 nm via atmospheric pressure chemical vapor deposition. In this work, we extend the growth of GNRs on Ge(001) to ultra-high vacuummore » conditions and realize GNRs narrower than 5 nm. Armchair graphene nanoribbons directed along the Ge <110> surface directions are achieved with excellent width control and relatively large bandgaps. As a result, the bandgap magnitude and electronic uniformity make these new materials excellent candidates for future developments in nanoelectronics.« less
Individualistic and social motives for justice judgments.
van Prooijen, Jan-Willem
2013-09-01
Justice judgments are subjective by nature, and are influenced substantially by motivational processes. In the present contribution, two motives underlying justice judgments are examined: individualistic motives to evaluate solutions to social problems that benefit the self in material or immaterial ways as fair versus social motives to conceptualize justice in terms of the well-being of others, such as a desire for equality, adherence to in-group norms, and a concern for the collective interest. A review of relevant research reveals evidence for both motivations when people make evaluations of justice. Moreover, which motive is most dominant in the justice judgment process depends on perceptual salience: whereas individualistic motives are activated when a perceiver's own needs and goals are perceptually salient, social motives are activated when others' needs and goals are perceptually salient. It is concluded that both individualistic and social motives contribute in predictable ways to justice judgments. © 2013 New York Academy of Sciences.
Energy and the Environment: A Thematic Approach to Teaching Physics
NASA Astrophysics Data System (ADS)
Cushman, Priscilla
2000-04-01
Most physics teachers have a set of core concepts which they believe to be fundamental to understanding physics. However, an attempt to present the complete set to a liberal arts audience in a semester introductory course usually results in a disconnected series of topics. Students compensate by relying on formulae and memorization. Selecting a smaller subset of unrelated topics from a general purpose textbook is not the answer either. Instead, the appropriate choice of unifying theme can force the students to organize their thinking and thereby understand the material. Energy is a useful theme, since it is embedded in all aspects of physics. Maintaining the quality of our environment is an easily accepted ``good" and provides the motivation for worked problems and discussions which make the physics relevant to everyday life. Experience with introducing such a curriculum at the University of Minnesota is presented, including tips for keeping the class on track and involved.
Potential of Continuous Manufacturing for Liposomal Drug Products.
Worsham, Robert D; Thomas, Vaughan; Farid, Suzanne S
2018-05-21
Over the last several years, continuous manufacturing of pharmaceuticals has evolved from bulk APIs and solid oral dosages into the more complex realm of biologics. The development of continuous downstream processing techniques has allowed biologics manufacturing to realize the benefits (e.g. improved economics, more consistent quality) that come with continuous processing. If relevant processing techniques and principles are selected, the opportunity arises to develop continuous manufacturing designs for additional pharmaceutical products including liposomal drug formulations. Liposome manufacturing has some inherent aspects that make it favorable for a continuous process. Other aspects such as formulation refinement, materials of construction, and aseptic processing need development, but present an achievable challenge. This paper reviews the current state of continuous manufacturing technology applicable to liposomal drug product manufacturing and an assessment of the challenges and potential of this application. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Domanski, Konrad; Alharbi, Essa A.; Hagfeldt, Anders; Grätzel, Michael; Tress, Wolfgang
2018-01-01
Perovskite solar cells have achieved power-conversion efficiency values approaching those of established photovoltaic technologies, making the reliable assessment of their operational stability the next essential step towards commercialization. Although studies increasingly often involve a form of stability characterization, they are conducted in non-standardized ways, which yields data that are effectively incomparable. Furthermore, stability assessment of a novel material system with its own peculiarities might require an adjustment of common standards. Here, we investigate the effects of different environmental factors and electrical load on the ageing behaviour of perovskite solar cells. On this basis, we comment on our perceived relevance of the different ways these are currently aged. We also demonstrate how the results of the experiments can be distorted and how to avoid the common pitfalls. We hope this work will initiate discussion on how to age perovskite solar cells and facilitate the development of consensus stability measurement protocols.
Imaging of cerebellopontine angle lesions: an update. Part 1: enhancing extra-axial lesions.
Bonneville, Fabrice; Savatovsky, Julien; Chiras, Jacques
2007-10-01
Computed tomography (CT) and magnetic resonance (MR) imaging reliably demonstrate typical features of vestibular schwannomas or meningiomas in the vast majority of mass lesions in the cerebellopontine angle (CPA). However, a large variety of unusual lesions can also be encountered in the CPA. Covering the entire spectrum of lesions potentially found in the CPA, these articles explain the pertinent neuroimaging features that radiologists need to know to make clinically relevant diagnoses in these cases, including data from diffusion and perfusion-weighted imaging or MR spectroscopy, when available. A diagnostic algorithm based on the lesion's site of origin, shape and margins, density, signal intensity and contrast material uptake is also proposed. Part 1 describes the different enhancing extra-axial CPA masses primarily arising from the cerebellopontine cistern and its contents, including vestibular and non-vestibular schwannomas, meningioma, metastasis, aneurysm, tuberculosis and other miscellaneous meningeal lesions.
Bonnin, Juan Eduardo
2017-09-01
In this article, we contribute to understanding the interactional aspects of making clinical diagnosis in mental health care. We observe that therapists, during the "problem presentation" sequence in clinical encounters, often use a specific form of diagnostic formulations to elicit more diagnostically relevant information. By doing so, they often substitute one type of verb with another, following a diagnostic hypothesis. Specifically, in interviews that arrive at a diagnosis of neurosis, therapists formulate with behavioral verbal processes; in interviews that arrive at a diagnosis of psychosis, they do so with material ones. Such formulations often prove useful to define clinical diagnoses. They can, however, also be dangerous in that they may favor the therapist's agenda over the patient's. Our analysis helps therapists not only better understand the diagnostic process but also reflect upon their own use of diagnostic formulations and become aware of the clinical effects of their interactional performance.
Transition-Metal Decorated Aluminum Nanocrystals.
Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie
2017-10-24
Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.
Silicon Photo-Multiplier Readouts for Scintillators in High-Energy Astronomy
NASA Technical Reports Server (NTRS)
Bloser, Peter F.; Legere, Jason S.; Bancroft, Christopher M.; McConnell, Mark L.; Ryan, James M.
2008-01-01
New scintillator materials have recently been shown to hold great potential for low-cost, reliable gamma-ray detectors in high-energy astronomy. New devices for the detection of scintillation light promise to make scintillator-based instruments even more attractive by reducing mass and power requirements,in particular, silicon photo-multipliers (SiPMs) are starting to become commercially available that offer gains and quantum efficiencies similar to those of photo-multiplier tubes (PMTs), but with greatly reduced mass, high ruggedness, low voltage requirements, and no sensitivity to magnetic fields. We have conducted laboratory tests of a sample of commercially available SiPMs coupled to LaBr3;Ce, a scintillator of relevance to to future high-energy astrophysics missions. We present results for gamma-ray spectroscopy. compare the SiPM performance to that of a PMT, and discuss the extent to which SiPMs offer significant advantages for scintillator-based space missions.
NASA Astrophysics Data System (ADS)
Lulewicz, J. D.; Roux, N.; Piazza, G.; Reimann, J.; van der Laan, J.
2000-12-01
Li 2ZrO 3 and Li 2TiO 3 pebbles are being investigated at Commissariat à l'Energie Atomique as candidate alternative ceramics for the European helium-cooled pebble bed (HCPB) blanket. The pebbles are fabricated using the extrusion-spheronization-sintering process and are optimized regarding composition, geometrical characteristics, microstructural characteristics, and material purity. Tests were designed and are being performed with other organizations so as to check the functional performance of the pebbles and pebble beds with respect to the HCPB blanket requirements, and, finally, to make the selection of the most appropriate ceramic for the HCPB blanket. Tests include high temperature long-term annealing, thermal shock, thermal cycling, thermal mechanical behaviour of pebble beds, thermal conductivity of pebble beds, and tritium extraction. Current results indicate the attractiveness of these ceramics pebbles for the HCPB blanket.
NASA Astrophysics Data System (ADS)
Erickson, Gregory M.; Sidebottom, Mark A.; Curry, John F.; Kay, David Ian; Kuhn-Hendricks, Stephen; Norell, Mark A.; Sawyer, W. Gregory; Krick, Brandon A.
2016-06-01
In most mammals and a rare few reptilian lineages the evolution of precise dental occlusion led to the capacity to form functional chewing surfaces due to pressures generated while feeding. The complex dental architectures of such teeth and the biomechanics of their self-wearing nature are poorly understood. Our research team composed of paleontologists, evolutionary biologists, and engineers have developed a protocol to: (1) determine the histological make-up of grinding dentitions in extant and fossil taxa; (2) ascertain wear-relevant material properties of the tissues; (3) determine how those properties relate to inter-tissue-biomechanics leading the dental functionality using a three-dimensional Archard’s wear model developed specifically for dental applications; (4) analyze those data in phylogenetic contexts to infer evolutionary patterns as they relate to feeding. Finally we discuss industrial applications that are emerging from our paleontologically-inspired research.
BioCIDER: a Contextualisation InDEx for biological Resources discovery
Horro, Carlos; Cook, Martin; Attwood, Teresa K.; Brazas, Michelle D.; Hancock, John M.; Palagi, Patricia; Corpas, Manuel; Jimenez, Rafael
2017-01-01
Abstract Summary The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping ‘recommendations’, provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. Availability and Implementation BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. Contact carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io PMID:28407033
Optimal management of lower pole stones: the direction of future travel
Moore, Sacha L.; Bres-Niewada, Ewa; Cook, Paul; Wells, Hannah
2016-01-01
Introduction Kidney stone disease is increasing worldwide with its most common location being in the lower pole. A clear strategy for effective management of these stones is essential in the light of ever increasing choice, effectiveness, and complications of different treatment options. Material and methods This review identifies the latest and clinically relevant publications focused on optimal management of lower pole stones. Results We present an up-to-date European Association of Urology and American Urological Association algorithm for lower pole stones, risks and benefits of different treatments, and changing landscape with the miniaturization of percutaneous stone treatments. Conclusions Available literature seems to be deficient on quality of life, patient centered decision making, and cost analysis of optimal management with no defined standard of ‘stone free rate’, all of which are critical in any surgical consultation and outcome analysis. PMID:27729994
Promoting Statistical Thinking in Schools with Road Injury Data
ERIC Educational Resources Information Center
Woltman, Marie
2017-01-01
Road injury is an immediately relevant topic for 9-19 year olds. Current availability of Open Data makes it increasingly possible to find locally relevant data. Statistical lessons developed from these data can mutually reinforce life lessons about minimizing risk on the road. Devon County Council demonstrate how a wide array of statistical…
Re-Thinking the Relevance of Philosophy of Education for Educational Policy Making
ERIC Educational Resources Information Center
Griffiths, Morwenna
2014-01-01
The overall question addressed in this article is,"What kind of philosophy of education is relevant to educational policy makers?" The article focuses on the following four themes: The meanings attached to the term philosophy (of education) by philosophers themselves; the meanings attached to the term philosophy (of education) by policy…
Age Differences in Attention toward Decision-Relevant Information: Education Matters
ERIC Educational Resources Information Center
Xing, Cai; Isaacowitz, Derek
2011-01-01
Previous studies suggested that older adults are more likely to engage in heuristic decision-making than young adults. This study used eye tracking technique to examine young adults' and highly educated older adults' attention toward two types of decision-relevant information: heuristic cue vs. factual cues. Surprisingly, highly educated older…
The Relevant Factors in Promoting Reading Activities in Elementary Schools
ERIC Educational Resources Information Center
Huang, Han-Chen; Tsai, Yao-Hsu; Huang, Shih-Hsiang
2015-01-01
In order to help students absorb knowledge, schools often conduct reading activities. Thorough planning and strategies, however, are needed to insure the effect of reading promotions, and make them a deeply-rooted part of life. This study adopted the analytic hierarchy process (AHP) to discuss the relevant factors in promoting reading activities…
Making the Match: Culturally Relevant Coaching and Training for Early Childhood Caregivers
ERIC Educational Resources Information Center
Kruse, Tina P.
2012-01-01
This study explored the mechanisms for culturally relevant training and coaching for early child care providers, especially family, friend, or neighbor (FFN) caregivers. In particular, given the evidence that coaching early care practitioners may have more significant effects than traditional training programs, the main objective of this research…