Conventional Reduced Risk Pesticide Program
Find out about the Conventional Reduced Risk Pesticide Program, which expedites the review and regulatory decision-making process of conventional pesticides that pose less risk to human health and the environment than existing conventional alternatives.
Embracing the quantum limit in silicon computing.
Morton, John J L; McCamey, Dane R; Eriksson, Mark A; Lyon, Stephen A
2011-11-16
Quantum computers hold the promise of massive performance enhancements across a range of applications, from cryptography and databases to revolutionary scientific simulation tools. Such computers would make use of the same quantum mechanical phenomena that pose limitations on the continued shrinking of conventional information processing devices. Many of the key requirements for quantum computing differ markedly from those of conventional computers. However, silicon, which plays a central part in conventional information processing, has many properties that make it a superb platform around which to build a quantum computer. © 2011 Macmillan Publishers Limited. All rights reserved
Neural correlates of conventional and harm/welfare-based moral decision-making.
White, Stuart F; Zhao, Hui; Leong, Kelly Kimiko; Smetana, Judith G; Nucci, Larry P; Blair, R James R
2017-12-01
The degree to which social norms are processed by a unitary system or dissociable systems remains debated. Much research on children's social-cognitive judgments has supported the distinction between "moral" (harm/welfare-based) and "conventional" norms. However, the extent to which these norms are processed by dissociable neural systems remains unclear. To address this issue, 23 healthy participants were scanned with functional magnetic resonance imaging (fMRI) while they rated the wrongness of harm/welfare-based and conventional transgressions and neutral vignettes. Activation significantly greater than the neutral vignette baseline was observed in regions implicated in decision-making regions including rostral/ventral medial frontal, anterior insula and dorsomedial frontal cortices when evaluating both harm/welfare-based and social-conventional transgressions. Greater activation when rating harm/welfare-based relative to social-conventional transgressions was seen through much of ACC and bilateral inferior frontal gyrus. Greater activation was observed in superior temporal gyrus, bilateral middle temporal gyrus, left PCC, and temporal-parietal junction when rating social-conventional transgressions relative to harm/welfare-based transgressions. These data suggest that decisions regarding the wrongness of actions, irrespective of whether they involve care/harm-based or conventional transgressions, recruit regions generally implicated in affect-based decision-making. However, there is neural differentiation between harm/welfare-based and conventional transgressions. This may reflect the particular importance of processing the intent of transgressors of conventional norms and perhaps the greater emotional content or salience of harm/welfare-based transgressions.
But: Do Age and Working Memory Influence Conventional Implicature Processing?
ERIC Educational Resources Information Center
Janssens, Leen; Drooghmans, Stephanie; Schaeken, Walter
2015-01-01
Conventional implicatures are omnipresent in daily life communication but experimental research on this topic is sparse, especially research with children. The aim of this study was to investigate if eight- to twelve-year-old children spontaneously make the conventional implicature induced by "but," "so," and…
Instructional decision making of high school science teachers
NASA Astrophysics Data System (ADS)
Carver, Jeffrey S.
The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step process for instructional decision-making that was established during this study shows promise for use in both situations.
Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.
Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun
2013-12-01
The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Rangel, Erica Cavalcanti; Pereira, Andre; Cavalcante, Tania Maria; Oliveira, Egléubia Andrade; Silva, Vera Luiza da Costa E
2017-09-21
Tobacco consumption is a leading cause of various types of cancer and other tobacco-related diseases. In 2003, the World Health Assembly adopted the World Health Organization Framework Convention on Tobacco Control (WHO-FCTC), which aims to protect citizens from the health, social, environmental, and economic consequences of tobacco consumption and exposure to tobacco smoke. The Convention was to be ratified by the Member States of the WHO; in Brazil's case, ratification involved the National Congress, which held public hearings in the country's leading tobacco growing communities (municipalities). The current study analyzes this decision-making process according to the different interests, positions, and stakeholders. In methodological terms, this is a qualitative study based on document research, drawing primarily on the shorthand notes from the public hearings. We analyze the interests and arguments for and against ratification. The article shows that although preceded by intense debates, the final decision in favor of ratification was made by a limited group of government stakeholders, characterizing a decision-making process similar to a funnel.
ERIC Educational Resources Information Center
Moriarity, L.; Dew, K.
2011-01-01
The involvement of persons with disabilities in formal decision-making processes is thought to have a range of benefits. However, research suggests that participatory processes may fail to match normative ideals. This study examines the participation of persons with disabilities in the development of the United Nations Convention on the Rights of…
Biomass Processing using Ionic Liquids for Jet Fuel Production
2014-04-09
lignocellulosic biomass. Biomass consists predominantly of three biopolymers— lignin , hemicellulose and cellulose. For fuel production, it is necessary to...hydrocarbons. The lignin and cellulose, however, have very low solubility in conventional solvents making processing difficult. Typically a pretreatment step...is used to break up the lignin and make the cellulose accessible to further hydrolysis to glucose. Pretreatment, however, is one of the most
Balneaves, Lynda G; Truant, Tracy L O; Kelly, Mary; Verhoef, Marja J; Davison, B Joyce
2007-08-01
The purpose of this study was to explore the personal and social processes women with breast cancer engaged in when making decisions about complementary and alternative medicine (CAM). The overall aim was to develop a conceptual model of the treatment decision-making process specific to breast cancer care and CAM that will inform future information and decision support strategies. Grounded theory methodology explored the decisions of women with breast cancer using CAM. Semistructured interviews were conducted with 20 women diagnosed with early-stage breast cancer. Following open, axial, and selective coding, the constant comparative method was used to identify key themes in the data and develop a conceptual model of the CAM decision-making process. The final decision-making model, Bridging the Gap, was comprised of four core concepts including maximizing choices/minimizing risks, experiencing conflict, gathering and filtering information, and bridging the gap. Women with breast cancer used one of three decision-making styles to address the paradigmatic, informational, and role conflict they experienced as a result of the gap they perceived between conventional care and CAM: (1) taking it one step at a time, (2) playing it safe, and (3) bringing it all together. Women with breast cancer face conflict and anxiety when making decisions about CAM within a conventional cancer care context. Information and decision support strategies are needed to ensure women are making safe, informed treatment decisions about CAM. The model, Bridging the Gap, provides a conceptual framework for future decision support interventions.
Report on the study of the tax and rate treatment of renewable energy projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, S.W.; Hill, L.J.; Perlack, R.D.
1993-12-01
This study was conducted in response to the requirements of Section 1205 of the Energy Policy Act of 1992 (EPACT), which states: The Secretary (of Energy), in conjunction with State regulatory commissions, shall undertake a study to determine if conventional taxation and ratemaking procedures result in economic barriers to or incentives for renewable energy power plants compared to conventional power plants. The purpose of the study, therefore, is not to compare the cost-effectiveness of different types of renewable and conventional electric generating plants. Rather, it is to determine the relative impact of conventional ratemaking and taxation procedures on the selectionmore » of renewable power plants compared to conventional ones. To make this determination, we quantify the technical and financial parameters of renewable and conventional electric generating technologies, and hold them fixed throughout the study. Then, we vary taxation and ratemaking procedures to determine their effects on the financial criteria that investor-owned electric utilities (IOUs) and nonutility electricity generators (NUGs) use to make technology-adoption decisions. In the planning process of a typical utility, the opposite is usually the case. That is, utilities typically hold ratemaking and taxation procedures constant and look for the least-cost mix of resources, varying the values of engineering and financial parameters of generating plants in the process.« less
Method for rapidly producing microporous and mesoporous materials
Coronado, Paul R.; Poco, John F.; Hrubesh, Lawrence W.; Hopper, Robert W.
1997-01-01
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods.
Rapid Prototyping Technology for Manufacturing GTE Turbine Blades
NASA Astrophysics Data System (ADS)
Balyakin, A. V.; Dobryshkina, E. M.; Vdovin, R. A.; Alekseev, V. P.
2018-03-01
The conventional approach to manufacturing turbine blades by investment casting is expensive and time-consuming, as it takes a lot of time to make geometrically precise and complex wax patterns. Turbine blade manufacturing in pilot production can be sped up by accelerating the casting process while keeping the geometric precision of the final product. This paper compares the rapid prototyping method (casting the wax pattern composition into elastic silicone molds) to the conventional technology. Analysis of the size precision of blade casts shows that silicon-mold casting features sufficient geometric precision. Thus, this method for making wax patterns can be a cost-efficient solution for small-batch or pilot production of turbine blades for gas-turbine units (GTU) and gas-turbine engines (GTE). The paper demonstrates how additive technology and thermographic analysis can speed up the cooling of wax patterns in silicone molds. This is possible at an optimal temperature and solidification time, which make the process more cost-efficient while keeping the geometric quality of the final product.
Process for making carbon foam
Klett, James W.
2000-01-01
The process obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
Rodriguez-Ramiro, I; Brearley, C A; Bruggraber, S F A; Perfecto, A; Shewry, P; Fairweather-Tait, S
2017-08-01
Myo-inositol hexakisphosphate (IP6), is the main iron chelator in cereals and bread. The aim of this study was to investigate the effect of three commercial baking processes (sourdough, conventional yeast and Chorleywood Bread Making Process (CBP)) on the IP6 content of wholemeal bread, its impact on iron uptake in Caco-2 cells and the predicted bioavailability of iron from these breads with added iron, simulating a mixed-meal. The sourdough process fully degraded IP6 whilst the CBP and conventional processes reduced it by 75% compared with wholemeal flour. The iron released in solution after a simulated digestion was 8-fold higher in sourdough bread than with others but no difference in cellular iron uptake was observed. Additionally, when iron was added to the different breads digestions only sourdough bread elicited a significant ferritin response in Caco-2 cells (4.8-fold compared to the other breads) suggesting that sourdough bread could contribute towards improved iron nutrition. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Fast interrupt platform for extended DOS
NASA Technical Reports Server (NTRS)
Duryea, T. W.
1995-01-01
Extended DOS offers the unique combination of a simple operating system which allows direct access to the interrupt tables, 32 bit protected mode access to 4096 MByte address space, and the use of industry standard C compilers. The drawback is that fast interrupt handling requires both 32 bit and 16 bit versions of each real-time process interrupt handler to avoid mode switches on the interrupts. A set of tools has been developed which automates the process of transforming the output of a standard 32 bit C compiler to 16 bit interrupt code which directly handles the real mode interrupts. The entire process compiles one set of source code via a make file, which boosts productivity by making the management of the compile-link cycle very simple. The software components are in the form of classes written mostly in C. A foreground process written as a conventional application which can use the standard C libraries can communicate with the background real-time classes via a message passing mechanism. The platform thus enables the integration of high performance real-time processing into a conventional application framework.
Method for rapidly producing microporous and mesoporous materials
Coronado, P.R.; Poco, J.F.; Hrubesh, L.W.; Hopper, R.W.
1997-11-11
An improved, rapid process is provided for making microporous and mesoporous materials, including aerogels and pre-ceramics. A gel or gel precursor is confined in a sealed vessel to prevent structural expansion of the gel during the heating process. This confinement allows the gelation and drying processes to be greatly accelerated, and significantly reduces the time required to produce a dried aerogel compared to conventional methods. Drying may be performed either by subcritical drying with a pressurized fluid to expel the liquid from the gel pores or by supercritical drying. The rates of heating and decompression are significantly higher than for conventional methods. 3 figs.
Who gets a second chance? An investigation of Ohio's blended juvenile sentence.
Cheesman, Fred L; Waters, Nicole L; Hurst, Hunter
2010-01-01
Factors differentiating blended sentencing cases (Serious Youthful Offenders or SYOs) from conventional juvenile cases and cases transferred to the adult criminal court in Ohio were investigated using a two-stage probit. Conventional juvenile cases differed from cases selected for non-conventional processing (i.e., SYO or transfer) according to offense seriousness, number of prior Ohio Department of Youth Services placements, age and gender. Controlling for probability of selection for nonconventional processing, transfers differed from SYOs according to age, gender, and race. Minorities were significantly more likely than Whites to be transfers rather than SYOs, suggesting possible bias in the decision-making process. Objective risk and needs assessments should be used to identify the most suitable candidates for blended sentences and adult transfer and enhanced services should be provided to juvenile offenders given blended sentences.
Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.
Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui
2013-11-01
An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production. Copyright © 2013 Elsevier Ltd. All rights reserved.
Estimating the safety benefits of context sensitive solutions.
DOT National Transportation Integrated Search
2011-11-01
Context Sensitive Solutions (CSS), also commonly known by the original name Context Sensitive Design : (CSD), is an alternative approach to the conventional transportation-oriented decision-making and design : processes. The CSS approach can be used ...
Stirling, Andy
2008-04-01
This paper examines apparent tensions between "science-based," "precautionary," and "participatory" approaches to decision making on risk. Partly by reference to insights currently emerging in evolutionary studies, the present paper looks for ways to reconcile some of the contradictions. First, I argue that technological evolution is a much more plural and open-ended process than is conventionally supposed. Risk politics is thus implicitly as much about social choice of technological pathways as narrow issues of safety. Second, it is shown how conventional "science-based" risk assessment techniques address only limited aspects of incomplete knowledge in complex, dynamic, evolutionary processes. Together, these understandings open the door to more sophisticated, comprehensive, rational, and robust decision-making processes. Despite their own limitations, it is found that precautionary and participatory approaches help to address these needs. A concrete framework is outlined through which the synergies can be more effectively harnessed. By this means, we can hope simultaneously to improve scientific rigor and democratic legitimacy in risk governance.
NASA Astrophysics Data System (ADS)
Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.
2015-03-01
High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 μm with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated α 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.
Morodi, T J; Mpofu, Charles
2017-06-28
This paper examines the issue of acid mine drainage in South Africa and environmental decision making processes that could be taken to mitigate the problem in the context of both conventional risk assessment and the precautionary principle. It is argued that conventional risk assessment protects the status quo and hence cannot be entirely relied upon as an effective tool to resolve environmental problems in the context of South Africa, a developing country with complex environmental health concerns. The complexity of the environmental issues is discussed from historical and political perspectives. An argument is subsequently made that the precautionary principle is an alternative tool, and its adoption can be used to empower local communities. This work, therefore, adds to new knowledge by problematising conventional risk assessment and proposing the framing of the acid mine drainage issues in a complex and contextual scenario of a developing country-South Africa.
Biointervention makes leather processing greener: an integrated cleansing and tanning system.
Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2003-06-01
The do-undo methods adopted in conventional leather processing generate huge amounts of pollutants. In other words, conventional methods employed in leather processing subject the skin/hide to wide variations in pH. Pretanning and tanning processes alone contribute more than 90% of the total pollution from leather processing. Included in this is a great deal of solid wastes such as lime and chrome sludge. In the approach described here, the hair and flesh removal as well as fiber opening have been achieved using biocatalysts at pH 8.0 for cow hides. This was followed by a pickle-free chrome tanning, which does not require a basification step. Hence, this tanning technique involves primarily three steps, namely, dehairing, fiber opening, and tanning. It has been found that the extent of hair removal, opening up of fiber bundles, and penetration and distribution of chromium are comparable to that produced by traditional methods. This has been substantiated through scanning electron microscopic, stratigraphic chrome distribution analysis, and softness measurements. Performance of the leathers is shown to be on par with conventionally processed leathers through physical and hand evaluation. Importantly, softness of the leathers is numerically proven to be comparable with that of control. The process also demonstrates reduction in chemical oxygen demand load by 80%, total solids load by 85%, and chromium load by 80% as compared to the conventional process, thereby leading toward zero discharge. The input-output audit shows that the biocatalytic three-step tanning process employs a very low amount of chemicals, thereby reducing the discharge by 90% as compared to the conventional multistep processing. Furthermore, it is also demonstrated that the process is technoeconomically viable.
2005-06-17
conventional military superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery... forced to evade. In this strategic context, the military’s decision-making process with regard to personnel recovery is completely rational. 15...superiority of the U.S. presents significant operational challenges. Recovery forces are vulnerable conducting personnel recovery because the situation
The feminist approach in the decision-making process for treatment of women with breast cancer.
Szumacher, Ewa
2006-09-01
The principal aim of this review was to investigate a feminist approach to the decision-making process for women with breast cancer. Empirical research into patient preferences for being informed about and participating in healthcare decisions has some limitations because it is mostly quantitative and designed within the dominant medical culture. Indigenous medical knowledge and alternative medical treatments are not widely accepted because of the lack of confirmed efficacy of such treatments in evidence-based literature. While discussing their treatment options with oncologists, women with breast cancer frequently express many concerns regarding treatment side effects, and sometimes decline conventional treatment when the risks are too high. A search of all relevant literary sources, including Pub-Med, ERIC, Medline, and the Ontario Institute for Studies in Education at the University of Toronto was conducted. The key words for selection of the articles were "feminism," "decision-making," "patients preferences for treatment," and "breast cancer." Fifty-one literary sources were selected. The review was divided into the following themes: (1) limitations of the patient decision-making process in conventional medicine; (2) participation of native North American patients in healthcare decisions; (3) towards a feminist approach to breast cancer; and (4) towards a feminist theory of breast cancer. This article discusses the importance of a feminist approach to the decision-making process for treatment of patients with breast cancer. As the literature suggests, the needs of minority patients are not completely fulfilled in Western medical culture. Introducing feminist theory into evidence-based medicine will help patients to be better informed about treatment choices and will assist them to select treatment according to their own beliefs and values.
Cleaner processing: a sulphide-free approach for depilation of skins.
Ranjithkumar, Ammasi; Durga, Jayanthi; Ramesh, Ramakrishnan; Rose, Chellan; Muralidharan, Chellappa
2017-01-01
The conventional unhairing process in leather making utilises large amount of lime and sodium sulphide which is hazardous and poses serious waste disposal concerns. Under acidic conditions, sodium sulphide liberates significant quantities of hydrogen sulphide which causes frequent fatal accidents. Further, the conventional unhairing process involves destruction of the hair leading to increased levels of biological oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS) and total suspended solids (TSS) in the effluent. A safe approach is needed to overcome such environmental and health problems through an eco-benign process. The present study deals with a clean technology in which the keratinous body is detached from the dermis using enzymes produced from Bacillus crolab MTCC 5468 by solid state fermentation (SSF) as an alternative to noxious chemicals. Complete unhairing of skin could be achieved with an enzyme concentration of 1.2 % (w/w). The bio-chemical parameters of the spent liquor of the enzymatic process were environmentally favourable when compared with conventional method. The study indicates that the enzymatic unhairing is a safe process which could be used effectively in leather processing to alleviate pollution and health problems.
Progress on high-performance rapid prototype aluminum mirrors
NASA Astrophysics Data System (ADS)
Woodard, Kenneth S.; Myrick, Bruce H.
2017-05-01
Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.
Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger
2011-01-01
With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640
Facilitators and constraints at each stage of the migration decision process.
Kley, Stefanie
2017-10-01
Behavioural models of migration emphasize the importance of migration decision-making for the explanation of subsequent behaviour. But empirical migration research regularly finds considerable gaps between those who intend to migrate and those who actually realize their intention. This paper applies the Theory of Planned Behaviour, enriched by the Rubicon model, to test specific hypotheses about distinct effects of facilitators and constraints on specific stages of migration decision-making and behaviour. The data come from a tailor-made panel survey based on random samples of people drawn from two German cities in 2006-07. The results show that in conventional models the effects of facilitators and constraints on migration decision-making are likely to be underestimated. Splitting the process of migration decision-making into a pre-decisional and a pre-actional phase helps to avoid bias in the estimated effects of facilitators and constraints on both migration decision-making and migration behaviour.
On the use of distributed sensing in control of large flexible spacecraft
NASA Technical Reports Server (NTRS)
Montgomery, Raymond C.; Ghosh, Dave
1990-01-01
Distributed processing technology is being developed to process signals from distributed sensors using distributed computations. Thiw work presents a scheme for calculating the operators required to emulate a conventional Kalman filter and regulator using such a computer. The scheme makes use of conventional Kalman theory as applied to the control of large flexible structures. The required computation of the distributed operators given the conventional Kalman filter and regulator is explained. A straightforward application of this scheme may lead to nonsmooth operators whose convergence is not apparent. This is illustrated by application to the Mini-Mast, a large flexible truss at the Langley Research Center used for research in structural dynamics and control. Techniques for developing smooth operators are presented. These involve spatial filtering as well as adjusting the design constants in the Kalman theory. Results are presented that illustrate the degree of smoothness achieved.
Making MgO/SiO2 Glasses By The Sol-Gel Process
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1989-01-01
Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.
ERIC Educational Resources Information Center
Van Eck, Richard N.; Fu, Hongxia; Drechsel, Paul V. J.
2015-01-01
Air traffic control (ATC) operations are critical to the U.S. aviation infrastructure, making ATC training a critical area of study. Because ATC performance is heavily dependent on visual processing, it is important to understand how to screen for or promote relevant visual processing abilities. While conventional wisdom has maintained that such…
7 CFR 407.9 - Group risk plan common policy.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Provisions. Conventional farming practice. A system or process for producing an agricultural commodity, excluding organic farming practices, that is necessary to produce the crop that may be, but is not required... practice allows the crop to make normal progress toward maturity. Good farming practices. The production...
7 CFR 407.9 - Group risk plan common policy.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Provisions. Conventional farming practice. A system or process for producing an agricultural commodity, excluding organic farming practices, that is necessary to produce the crop that may be, but is not required... practice allows the crop to make normal progress toward maturity. Good farming practices. The production...
de Alba Ulloa, Jessica
2012-01-01
Making an attempt to frame the controversial topic of bioethics within international law and with the aim of watching over the society, the Council of Europe elaborated the Convention for the Protection of Human Rights and Dignity of the Human Being with regard to the application of biology and medicine. The instrument, which came into force 12 years ago, is opened to all countries but only 29 states have ratified it. This legal document represents the base of a universal legislation on the subject. The present article examines the origin of the Convention, its process and evolution. It analyses the intense debates with regard to the human dignity, the freedom of science, the beginning of life, among others; equally it explores the interests at stake within the convention, whether political, moral, scientific, and economic, at the moment of its draft and in the present. Finally, the article analyses the possibility of the adoption of the Convention by the Mexican government. It concludes on the effectiveness of the international law of bioethics, and calls for the need that the Convention be used as a base for universal legislation.
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
The conventional site conceptual model for Brownfield sites considers that the extent of plumes of aromatic petroleum hydrocarbons (such as the BTEX compounds) in ground water are limited by natural biodegradation of the aromatic hydrocarbons by bacteria that use oxygen, nitrate ...
When Time Makes a Difference: Addressing Ergodicity and Complexity in Education
ERIC Educational Resources Information Center
Koopmans, Matthijs
2015-01-01
The detection of complexity in behavioral outcomes often requires an estimation of their variability over a prolonged time spectrum to assess processes of stability and transformation. Conventional scholarship typically relies on time-independent measures, "snapshots", to analyze those outcomes, assuming that group means and their…
Converting Wind Energy to Ammonia at Lower Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malmali, Mahdi; Reese, Michael; McCormick, Alon V.
Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less
Converting Wind Energy to Ammonia at Lower Pressure
Malmali, Mahdi; Reese, Michael; McCormick, Alon V.; ...
2017-11-07
Renewable wind energy can be used to make ammonia. However, wind-generated ammonia costs about twice that made from a traditional fossil-fuel driven process. To reduce the production cost, we replace the conventional ammonia condensation with a selective absorber containing metal halides, e.g., calcium chloride, operating at near synthesis temperatures. With this reaction-absorption process, ammonia can be synthesized at 20 bar from air, water, and wind-generated electricity, with rates comparable to the conventional process running at 150–300 bar. In our reaction-absorption process, the rate of ammonia synthesis is now controlled not by the chemical reaction but largely by the pump usedmore » to recycle the unreacted gases. The results suggest an alternative route to distributed ammonia manufacture which can locally supply nitrogen fertilizer and also a method to capture stranded wind energy as a carbon-neutral liquid fuel.« less
Sodium metasilicate based fiber opening for greener leather processing.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasamit, Thirumalachari
2008-03-01
Growing environmental regulations propound the need for a transformation in the current practice of leather making. The conventional dehairing and fiber opening process results in high negative impact on the environment because of its uncleanliness. This process accounts for most of the biochemical oxygen demand and chemical oxygen demand in tannery wastewater and generation of H2S gas. Hence, this study explores the use of a biological material and a nontoxic chemical for performing the above process more cleanly. In this study, the dehairing and fiber opening processes has been designed using enzyme and sodium metasilicate. The amount of sodium metasilicate required for fiber opening is standardized through the removal of proteoglycan, increase in weight, and bulk properties of leathers. It has been found that the extent of opening up of fiber bundles is comparable to that of conventionally processed leathers using a 2% sodium metasilicate solution. This has been substantiated through scanning electron microscopic analysis and softness measurements. The presence of silica in the crust leather enhances the bulk properties of the leather. This has been confirmed from the energy dispersive X-ray analysis. Performance of the leathers is shown to be on par with conventionally processed leathers through physical and hand evaluation. The process also exhibits significant reduction in chemical oxygen demand and total solid loads by 55 and 24%, respectively. Further, this newly developed process seems to be economically beneficial.
Woodward, Alexander; Froese, Tom; Ikegami, Takashi
2015-02-01
The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.
X-ray topography as a process control tool in semiconductor and microcircuit manufacture
NASA Technical Reports Server (NTRS)
Parker, D. L.; Porter, W. A.
1977-01-01
A bent wafer camera, designed to identify crystal lattice defects in semiconductor materials, was investigated. The camera makes use of conventional X-ray topographs and an innovative slightly bent wafer which allows rays from the point source to strike all portions of the wafer simultaneously. In addition to being utilized in solving production process control problems, this camera design substantially reduces the cost per topograph.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, D.F.; Kwan, S.W.
1999-03-30
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10{sup {minus}4} Torr and about 10{sup {minus}7} Torr, (b) increasing the vacuum to at least about 10{sup {minus}8} Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters. 2 figs.
Process for making a cesiated diamond film field emitter and field emitter formed therefrom
Anderson, David F.; Kwan, Simon W.
1999-01-01
A process for making a cesiated diamond film comprises (a) depositing a quantity of cesium iodide on the diamond film in a vacuum of between about 10.sup.-4 Torr and about 10.sup.-7 Torr, (b) increasing the vacuum to at least about 10.sup.-8 Torr, and (c) imposing an electron beam upon the diamond film, said electron beam having an energy sufficient to dissociate said cesium iodide and to incorporate cesium into interstices of the diamond film. The cesiated diamond film prepared according to the process has an operating voltage that is reduced by a factor of at least approximately 2.5 relative to conventional, non-cesiated diamond film field emitters.
Solving coupled groundwater flow systems using a Jacobian Free Newton Krylov method
NASA Astrophysics Data System (ADS)
Mehl, S.
2012-12-01
Jacobian Free Newton Kyrlov (JFNK) methods can have several advantages for simulating coupled groundwater flow processes versus conventional methods. Conventional methods are defined here as those based on an iterative coupling (rather than a direct coupling) and/or that use Picard iteration rather than Newton iteration. In an iterative coupling, the systems are solved separately, coupling information is updated and exchanged between the systems, and the systems are re-solved, etc., until convergence is achieved. Trusted simulators, such as Modflow, are based on these conventional methods of coupling and work well in many cases. An advantage of the JFNK method is that it only requires calculation of the residual vector of the system of equations and thus can make use of existing simulators regardless of how the equations are formulated. This opens the possibility of coupling different process models via augmentation of a residual vector by each separate process, which often requires substantially fewer changes to the existing source code than if the processes were directly coupled. However, appropriate perturbation sizes need to be determined for accurate approximations of the Frechet derivative, which is not always straightforward. Furthermore, preconditioning is necessary for reasonable convergence of the linear solution required at each Kyrlov iteration. Existing preconditioners can be used and applied separately to each process which maximizes use of existing code and robust preconditioners. In this work, iteratively coupled parent-child local grid refinement models of groundwater flow and groundwater flow models with nonlinear exchanges to streams are used to demonstrate the utility of the JFNK approach for Modflow models. Use of incomplete Cholesky preconditioners with various levels of fill are examined on a suite of nonlinear and linear models to analyze the effect of the preconditioner. Comparisons of convergence and computer simulation time are made using conventional iteratively coupled methods and those based on Picard iteration to those formulated with JFNK to gain insights on the types of nonlinearities and system features that make one approach advantageous. Results indicate that nonlinearities associated with stream/aquifer exchanges are more problematic than those resulting from unconfined flow.
Fabrication of stainless steel clad tubing. [gas pressure bonding
NASA Technical Reports Server (NTRS)
Kovach, C. W.
1978-01-01
The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.
Development of the weld-braze joining process
NASA Technical Reports Server (NTRS)
Bales, T. T.; Royster, D. M.; Arnold, W. E., Jr.
1973-01-01
A joining process, designated weld-brazing, was developed which combines resistance spot welding and brazing. Resistance spot welding is used to position and aline the parts, as well as to establish a suitable faying-surface gap for brazing. Fabrication is then completed at elevated temperature by capillary flow of the braze alloy into the joint. The process was used successfully to fabricate Ti-6Al-4V alloy joints by using 3003 aluminum braze alloy and should be applicable to other metal-braze systems. Test results obtained on single-overlap and hat-stiffened panel specimens show that weld-brazed joints were superior in tensile shear, stress rupture, fatigue, and buckling compared with joints fabricated by conventional means. Another attractive feature of the process is that the brazed joint is hermetically sealed by the braze material, which may eliminate many of the sealing problems encountered with riveted or spot welded structures. The relative ease of fabrication associated with the weld-brazing process may make it cost effective over conventional joining techniques.
Wray-Lake, Laura; Crouter, Ann C.; McHale, Susan M.
2010-01-01
Longitudinal patterns in parents’ reports of youth decision-making autonomy from ages 9 to 20 were examined in a study of 201 European American families with two offspring. Multilevel modeling analyses revealed that decision-making autonomy increased gradually across middle childhood and adolescence before rising sharply in late adolescence. Social domain theory was supported by analyses of eight decision types spanning prudential, conventional, personal, and multifaceted domains. Decision making was higher for girls, youth whom parents perceived as easier to supervise, and youth with better educated parents. Firstborns and secondborns had different age-related trajectories of decision-making autonomy. Findings shed light on the developmental trajectories and family processes associated with adolescents’ fundamental task of gaining autonomy. PMID:20438465
Design and architecture of retailapp: an application to support conventional retailers
NASA Astrophysics Data System (ADS)
Jaya, I.; Tarigan, J. T.; Hardi, S. M.; Nasution, M. K. M.
2018-03-01
Over the last few years, the preference on shopping over internet application, usually called online shopping or e-shopping, has increased significantly. One of the major advantage of online shopping is the capability to use digital content to support the marketing process. Prospective buyers can conveniently browse and look to a certain object and find the information needed with a few clicks. Moreover, the use of multimedia (such as images, sound, and movies) may help prospective buyers to make a decision faster than conventional shopping at retailers. However, shoppers still consider that conventional shopping is the best way to perform shopping due to the ability to make a physical contact to the object. Our objective is to merge these experiences by enabling user to find digital content that relate to nearby retailers. In this research, we built a mobile application that collects data from nearby retailers and shows it to its user. By using this application, it will be easier to users to find the location of the object and to find nearby promotion.
Advances in Multiphase Flow and Transport in the Subsurface Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
Proton conducting ceramics in membrane separations
Brinkman, Kyle S; Korinko, Paul S; Fox, Elise B; Chen, Frank
2015-04-14
Perovskite materials of the general formula SrCeO.sub.3 and BaCeO.sub.3 are provided having improved conductivity while maintaining an original ratio of chemical constituents, by altering the microstructure of the material. A process of making Pervoskite materials is also provided in which wet chemical techniques are used to fabricate nanocrystalline ceramic materials which have improved grain size and allow lower temperature densification than is obtainable with conventional solid-state reaction processing.
Advances in Multiphase Flow and Transport in the Subsurface Environment
Shi, Xiaoqing; Finsterle, Stefan; Zhang, Keni; ...
2018-03-04
Multiphase flow and transport processes in the subsurface environment are extremely important in a number of industrial and environmental applications at various spatial and temporal scales. Thus, it is necessary to identify, understand, and predict these processes to improve the production of conventional and unconventional oil and gas, to increase the safety of geological sequestration of carbon dioxide and nuclear waste disposal, and to make remediation of contaminated aquifers more effective.
General-Purpose Front End for Real-Time Data Processing
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
FRONTIER is a computer program that functions as a front end for any of a variety of other software of both the artificial intelligence (AI) and conventional data-processing types. As used here, front end signifies interface software needed for acquiring and preprocessing data and making the data available for analysis by the other software. FRONTIER is reusable in that it can be rapidly tailored to any such other software with minimum effort. Each component of FRONTIER is programmable and is executed in an embedded virtual machine. Each component can be reconfigured during execution. The virtual-machine implementation making FRONTIER independent of the type of computing hardware on which it is executed.
Boukroufa, Meryem; Boutekedjiret, Chahrazed; Petigny, Loïc; Rakotomanomana, Njara; Chemat, Farid
2015-05-01
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only "in situ" water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm(2) and 59.83°C giving a polyphenol yield of 50.02 mgGA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled "in situ" water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacey, D.; Bacon, M.L.
The UK fully supports the objective of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management to achieve and maintain a high level of safety worldwide in spent fuel and radioactive waste management, through the enhancement of national measures and international co-operation, including where appropriate, safety-related co-operation. The UK's Health and Safety Executive, through its Nuclear Safety Directorate (NSD), has been committed to the Convention since the initial negotiations to set up the Convention and provided the president of the first review meeting in 2003. It would be wrong of anymore » nation to believe that they have all the best solutions to managing spent fuel and radioactive waste. The process of compiling reports for the Convention review meetings provides a structured process through which every contracting party can review its provisions against a common set of standards and identify for itself possible areas of improvements. The sharing of reports and the asking and answering of questions then provides a further opportunity for both sharing of experience and learning. The UK was encouraged by the spirit of constructive discussion rather than negative criticism that pervaded the first review meeting that provided an incentive for all to learn and improve. While, as could be expected of the first meeting of such a group, not everything worked as well as could be hoped for, all parties seemed committed to learn from mistakes and to make the process more effective. Lessons were learned from the Nuclear Safety Convention on the process of submitting reports electronically and the UK actively supported aims to use IAEA requirements documents as an additional focus for reports. This should, we hope, provide for even better benchmarking of achievements and provide feedback for improvements of the IAEA requirements where appropriate. In summary, the UK finds the Joint Convention process to be a very positive one that can only improve the worldwide standards of safety in spent fuel and radioactive waste management. (authors)« less
Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald
2018-06-04
A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.
ERIC Educational Resources Information Center
Parkinson Norton, Susan; Pickus, Keith
2011-01-01
This essay will discuss the creation of adult-learner degree programs at Wichita State University's satellite campuses with a particular focus on how such programs complement the mission of a traditional urban-serving research institution. It will assess the decision-making process that led to the transformation of satellite campuses into…
Novel process windows for enabling, accelerating, and uplifting flow chemistry.
Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi
2013-05-01
Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Process for Making Carbon-Carbon Turbocharger Housing Unit for Intermittent Combustion Engines
NASA Technical Reports Server (NTRS)
Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)
1999-01-01
An improved. lightweight, turbine housing unit for an intermittent combustion reciprocating internal combustion engine turbocharger is prepared from a lay-up or molding of carbon-carbon composite materials in a single-piece or two-piece process. When compared to conventional steel or cast iron, the use of carbon-carbon composite materials in a turbine housing unit reduces the overall weight of the engine and reduces the heat energy loss used in the turbo-charging process. This reduction in heat energy loss and weight reduction provides for more efficient engine operation.
Recruitment Processes in Academia: Does the Emperor Have Any Clothes?
Ataie-Ashtiani, Behzad
2016-10-01
The final outcome of promotion and recruitment processes in universities should be conventional and plausible by the members of the relevant scientific community, to affirm that the processes have been competitive and fair. The objective of this opinion letter is to make a plea for the importance of the post-auditing and quantitative assessment of the selection criteria. It is shown that for an example case the outcome of the post-audit does not look reasonable from an external point of view, at least regarding the research competency.
Frosta: a new technology for making fast-melting tablets.
Jeong, Seong Hoon; Fu, Yourong; Park, Kinam
2005-11-01
The fast-melting tablet (FMT) technology, which is known to be one of the most innovated methods in oral drug delivery systems, is a rapidly growing area of drug delivery. The initial success of the FMT formulation led to the development of various technologies. These technologies, however, still have some limitations. Recently, a new technology called Frosta (Akina) was developed for making FMTs. The Frosta technology utilises the conventional wet granulation process and tablet press for cost-effective production of tablets. The Frosta tablets are mechanically strong with friability of < 1% and are stable in accelerated stability conditions when packaged into a bottle container. They are robust enough to be packaged in multi-tablet vials. Conventional rotary tablet presses can be used for the production of the tablets and no other special instruments are required. Thus, the cost of making FMTs is lower than that of other existing technologies. Depending on the size, Frosta tablets can melt in < 10 s after placing them in the oral cavity for easy swallowing. The Frosta technology is ideal for wide application of FMTs technology to various drug and nutritional formulations.
Ardoino, Ilaria; Lanzoni, Monica; Marano, Giuseppe; Boracchi, Patrizia; Sagrini, Elisabetta; Gianstefani, Alice; Piscaglia, Fabio; Biganzoli, Elia M
2017-04-01
The interpretation of regression models results can often benefit from the generation of nomograms, 'user friendly' graphical devices especially useful for assisting the decision-making processes. However, in the case of multinomial regression models, whenever categorical responses with more than two classes are involved, nomograms cannot be drawn in the conventional way. Such a difficulty in managing and interpreting the outcome could often result in a limitation of the use of multinomial regression in decision-making support. In the present paper, we illustrate the derivation of a non-conventional nomogram for multinomial regression models, intended to overcome this issue. Although it may appear less straightforward at first sight, the proposed methodology allows an easy interpretation of the results of multinomial regression models and makes them more accessible for clinicians and general practitioners too. Development of prediction model based on multinomial logistic regression and of the pertinent graphical tool is illustrated by means of an example involving the prediction of the extent of liver fibrosis in hepatitis C patients by routinely available markers.
Simulation and optimization of continuous extractive fermentation with recycle system
NASA Astrophysics Data System (ADS)
Widjaja, Tri; Altway, Ali; Rofiqah, Umi; Airlangga, Bramantyo
2017-05-01
Extractive fermentation is continuous fermentation method which is believed to be able to substitute conventional fermentation method (batch). The recovery system and ethanol refinery will be easier. Continuous process of fermentation will make the productivity increase although the unconverted sugar in continuous fermentation is still in high concentration. In order to make this process more efficient, the recycle process was used. Increasing recycle flow will enhance the probability of sugar to be re-fermented. However, this will make ethanol enter fermentation column. As a result, the accumulated ethanol will inhibit the growth of microorganism. This research aims to find optimum conditions of solvent to broth ratio (S:B) and recycle flow to fresh feed ratio in order to produce the best yield and productivity. This study employed optimization by Hooke Jeeves method using Matlab 7.8 software. The result indicated that optimum condition occured in S: B=2.615 and R: F=1.495 with yield = 50.2439 %.
A Post-Convention Primer for Programming Boards: Organization, Promptness Key to Follow-Up.
ERIC Educational Resources Information Center
Vaughan, Edee
1998-01-01
Campus activities programmers are offered advice on making the most of what they learn at a convention, including some hints for organization before the convention, suggestions for dealing with agents and other schools and for taking notes, and ideas for follow-up. Special attention is given to cooperative buying agreements schools may make with…
Brien, Sarah; Dibb, Bridget; Burch, Alex
2011-01-01
While intuition plays a role in clinical decision making within conventional medicine, little is understood about its use in complementary and alternative medicine (CAM). The aim of this qualitative study was to investigate intuition from the perspective of homeopathic practitioners; its' manifestation, how it was recognized, its origins and when it was used within daily clinical practice. Semi-structured interviews were carried out with clinically experienced non-National Health Service (NHS) UK homeopathic practitioners. Interpretative phenomenological analysis was used to analyze the data. Homeopaths reported many similarities with conventional medical practitioner regarding the nature, perceived origin and manifestation of their intuitions in clinical practice. Intuition was used in two key aspects of the consultation: (i) to enhance the practitioner-patient relationship, these were generally trusted; and (ii) intuitions relating to the prescribing decision. Homeopaths were cautious about these latter intuitions, testing any intuitive thoughts through deductive reasoning before accepting them. Their reluctance is not surprising given the consequences for patient care, but we propose this also reflects homeopaths' sensitivity to the academic and medical mistrust of both homeopathy and intuition. This study is the first to explore the use of intuition in decision making in any form of complementary medicine. The similarities with conventional practitioners may provide confidence in validating intuition as a legitimate part of the decision making process for these specific practitioners. Further work is needed to elucidate if these findings reflect intuitive use in clinical practice of other CAM practitioners in both private and NHS (i.e., time limited) settings. PMID:19773389
Horwitz, Joshua; Grilley, Anna; Kennedy, Orla
2015-06-01
In a policy arena characterized by polarized debate, such as the consideration of legal interventions to prevent gun violence, research evidence is an important tool to inform decision-making processes. However, unless the evidence is communicated to stakeholders who can influence policy decisions, the research will often remain an academic exercise with little practical impact. The Educational Fund to Stop Violence's process of "unfreezing" individual perceptions and conventional interpretations of the relationship between mental illness and gun violence, forming a consensus, and translating this knowledge to stakeholders through state discussion forums is one way to inform policy change. The recent passage of gun violence prevention legislation in California provides an example of successfully closing the knowledge translation gap between research and decision-making processes. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rengganis, Y. A.; Safrodin, M.; Sukaridhoto, S.
2018-01-01
Virtual Reality Laboratory (VR Lab) is an innovation for conventional learning media which show us whole learning process in laboratory. There are many tools and materials are needed by user for doing practical in it, so user could feel new learning atmosphere by using this innovation. Nowadays, technologies more sophisticated than before. So it would carry in education and it will be more effective, efficient. The Supported technologies are needed us for making VR Lab such as head mounted display device and hand motion gesture device. The integration among them will be used us for making this research. Head mounted display device for viewing 3D environment of virtual reality laboratory. Hand motion gesture device for catching user real hand and it will be visualized in virtual reality laboratory. Virtual Reality will show us, if using the newest technologies in learning process it could make more interesting and easy to understand.
Foote, Kenneth G
2012-05-01
Measurement of acoustic backscattering properties of targets requires removal of the range dependence of echoes. This process is called range compensation. For conventional sonars making measurements in the transducer farfield, the compensation removes effects of geometrical spreading and absorption. For parametric sonars consisting of a parametric acoustic transmitter and a conventional-sonar receiver, two additional range dependences require compensation when making measurements in the nonlinearly generated difference-frequency nearfield: an apparently increasing source level and a changing beamwidth. General expressions are derived for range compensation functions in the difference-frequency nearfield of parametric sonars. These are evaluated numerically for a parametric sonar whose difference-frequency band, effectively 1-6 kHz, is being used to observe Atlantic herring (Clupea harengus) in situ. Range compensation functions for this sonar are compared with corresponding functions for conventional sonars for the cases of single and multiple scatterers. Dependences of these range compensation functions on the parametric sonar transducer shape, size, acoustic power density, and hydrography are investigated. Parametric range compensation functions, when applied with calibration data, will enable difference-frequency echoes to be expressed in physical units of volume backscattering, and backscattering spectra, including fish-swimbladder-resonances, to be analyzed.
Asylum, Participation and the Best Interests of the Child: New Lessons from Norway
ERIC Educational Resources Information Center
Liden, Hilde; Rusten, Hilde
2007-01-01
This article discusses Norway's implementation of the Convention on the Rights of the Child (CRC) in relation to the field of asylum. In particular, we explore the dilemmas and challenges posed by efforts to realise children's right to express their views and have these views given due weight in decision-making processes as stipulated in Article…
The Cognitive Processes Used in Team Collaboration During Asynchronous, Distributed Decision Making
2004-06-01
Transfer Conventions (IPtcp) IP: Solution Alternatives (IPsa) KB: Collaborative Knowledge (KBck) KB: Shared Understanding ( KBsu ) KB: Domain...Gill.” KBsu : Knowledge Building (shared understanding) = using facts to justify a solution. “I think Eddie did it because he was hard of hearing...KB: Collaborative Knowledge (KBck) KB: Shared Understanding ( KBsu ) KB: Domain Expertise (IPde) * * ** ** ** = significant Results 15
Analysis and quality control of carbohydrates in therapeutic proteins with fluorescence HPLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Kun; Huang, Jian; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054
Conbercept is an Fc fusion protein with very complicated carbohydrate profiles which must be carefully monitored through manufacturing process. Here, we introduce an optimized fluorescence derivatization high-performance liquid chromatographic method for glycan mapping in conbercept. Compared with conventional glycan analysis method, this method has much better resolution and higher reproducibility making it excellent for product quality control.
Funding Solar Projects at Federal Agencies: Mechanisms and Selection Criteria (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Implementing solar energy projects at federal facilities is a process. The project planning phase of the process includes determining goals, building a team, determining site feasibility and selecting the appropriate project funding tool. This fact sheet gives practical guidance to assist decision-makers with understanding and selecting the funding tool that would best address their site goals. Because project funding tools are complex, federal agencies should seek project assistance before making final decisions. High capital requirements combined with limits on federal agency energy contracts create challenges for funding solar projects. Solar developers typically require long-term contracts (15-20) years to spread outmore » the initial investment and to enable payments similar to conventional utility bill payments. In the private sector, 20-year contracts have been developed, vetted, and accepted, but the General Services Administration (GSA) contract authority (federal acquisition regulation [FAR] part 41) typically limits contract terms to 10 years. Payments on shorter-term contracts make solar economically unattractive compared with conventional generation. However, in several instances, the federal sector has utilized innovative funding tools that allow long-term contracts or has created a project package that is economically attractive within a shorter contract term.« less
Forest and range mapping in the Houston area with ERTS-1
NASA Technical Reports Server (NTRS)
Heath, G. R.; Parker, H. D.
1973-01-01
ERTS-1 data acquired over the Houston area has been analyzed for applications to forest and range mapping. In the field of forestry the Sam Houston National Forest (Texas) was chosen as a test site, (Scene ID 1037-16244). Conventional imagery interpretation as well as computer processing methods were used to make classification maps of timber species, condition and land-use. The results were compared with timber stand maps which were obtained from aircraft imagery and checked in the field. The preliminary investigations show that conventional interpretation techniques indicated an accuracy in classification of 63 percent. The computer-aided interpretations made by a clustering technique gave 70 percent accuracy. Computer-aided and conventional multispectral analysis techniques were applied to range vegetation type mapping in the gulf coast marsh. Two species of salt marsh grasses were mapped.
Wei, L; Chen, H; Zhou, Y S; Sun, Y C; Pan, S X
2017-02-18
To compare the technician fabrication time and clinical working time of custom trays fabricated using two different methods, the three-dimensional printing custom trays and the conventional custom trays, and to prove the feasibility of the computer-aided design/computer-aided manufacturing (CAD/CAM) custom trays in clinical use from the perspective of clinical time cost. Twenty edentulous patients were recruited into this study, which was prospective, single blind, randomized self-control clinical trials. Two custom trays were fabricated for each participant. One of the custom trays was fabricated using functional suitable denture (FSD) system through CAD/CAM process, and the other was manually fabricated using conventional methods. Then the final impressions were taken using both the custom trays, followed by utilizing the final impression to fabricate complete dentures respectively. The technician production time of the custom trays and the clinical working time of taking the final impression was recorded. The average time spent on fabricating the three-dimensional printing custom trays using FSD system and fabricating the conventional custom trays manually were (28.6±2.9) min and (31.1±5.7) min, respectively. The average time spent on making the final impression with the three-dimensional printing custom trays using FSD system and the conventional custom trays fabricated manually were (23.4±11.5) min and (25.4±13.0) min, respectively. There was significant difference in the technician fabrication time and the clinical working time between the three-dimensional printing custom trays using FSD system and the conventional custom trays fabricated manually (P<0.05). The average time spent on fabricating three-dimensional printing custom trays using FSD system and making the final impression with the trays are less than those of the conventional custom trays fabricated manually, which reveals that the FSD three-dimensional printing custom trays is less time-consuming both in the clinical and laboratory process than the conventional custom trays. In addition, when we manufacture custom trays by three-dimensional printing method, there is no need to pour preliminary cast after taking the primary impression, therefore, it can save the impression material and model material. As to completing denture restoration, manufacturing custom trays using FSD system is worth being popularized.
Pad ultrasonic batch dyeing of causticized lyocell fabric with reactive dyes.
Babar, Aijaz Ahmed; Peerzada, Mazhar Hussain; Jhatial, Abdul Khalique; Bughio, Noor-Ul-Ain
2017-01-01
Conventionally, cellulosic fabric dyed with reactive dyes requires significant amount of salt. However, the dyeing of a solvent spun regenerated cellulosic fiber is a critical process. This paper presents the dyeing results of lyocell fabrics dyed with conventional pad batch (CPB) and pad ultrasonic batch (PUB) processes. The dyeing of lyocell fabrics was carried out with two commercial dyes namely Drimarine Blue CL-BR and Ramazol Blue RGB. Dyeing parameters including concentration of sodium hydroxide, sodium carbonate and dwell time were compared for the two processes. The outcomes show that PUB dyed samples offered reasonably higher color yield and dye fixation than CPB dyed samples. A remarkable reduction of 12h in batching time, 18ml/l in NaOH and 05g/l in Na 2 CO 3 quantity was observed for PUB processed samples producing similar results compared to CPB process, making PUB a more economical, productive and an environment friendly process. Color fastness examination witnessed identical results for both PUB and CPB methods. No significant change in surface morphology of PUB processed samples was observed through scanning electron microscope (SEM) analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Kamara, Daniella; Weil, Jon; Youngblom, Janey; Guerra, Claudia; Joseph, Galen
2018-02-01
In cancer genetic counseling (CGC), communication across language and culture challenges the model of practice based on shared decision-making. To date, little research has examined the decision-making process of low-income, limited English proficiency (LEP) patients in CGC. This study identified communication patterns in CGC sessions with this population and assessed how these patterns facilitate or inhibit the decision-making process during the sessions. We analyzed 24 audio recordings of CGC sessions conducted in Spanish via telephone interpreters at two public hospitals. Patients were referred for risk of hereditary breast and ovarian cancer; all were offered genetic testing. Audio files were coded by two bilingual English-Spanish researchers and analyzed using conventional content analysis through an iterative process. The 24 sessions included 13 patients, 6 counselors, and 18 interpreters. Qualitative data analyses identified three key domains - Challenges Posed by Hypothetical Explanations, Misinterpretation by the Medical Interpreter, and Communication Facilitators - that reflect communication patterns and their impact on the counselor's ability to facilitate shared decision-making. Overall, we found an absence of patient participation in the decision-making process. Our data suggest that when counseling LEP Latina patients via medical interpreter, prioritizing information with direct utility for the patient and organizing information into short- and long-term goals may reduce information overload and improve comprehension for patient and interpreter. Further research is needed to test the proposed counseling strategies with this population and to assess how applicable our findings are to other populations.
Van Hekken, D L; Tunick, M H; Ren, D X; Tomasula, P M
2017-08-01
We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional herds responded in similar ways to typical homogenization and heat processing used in United States dairy plants and showed only minor differences in chemical traits and in vitro digestion. Findings from this research enhance our knowledge of the effect of processing on the quality traits and digestibility of milk from organic/pasture-fed and confined conventional herds and will help health-conscious consumers make informed decisions about dairy selections. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Burch, John Russell, Jr.
2005-01-01
During the Constitutional Convention of 1890, one delegate characterized the history of county formation in Kentucky as a process whereby "fifteen or thirty or forty people" created "outrageous special legislation" to make laws that "were not for the benefit of the people at large, but only for the benefit of people who…
Off-farm applications of solar energy in agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, R.E.
1980-01-01
Food processing applications make up almost all present off-farm studies of solar energy in agriculture. Research, development and demonstration projects on solar food processing have shown significant progress over the past 3 years. Projects have included computer simulation and mathematical models, hardware and process development for removing moisture from horticultural or animal products, integration of energy conservation with solar energy augmentation in conventional processes, and commercial scale demonstrations. The demonstration projects include solar heated air for drying prunes and raisins, soy beans and onions/garlic; and solar generated steam for orange juice pasteurization. Several new and planned projects hold considerable promisemore » for commerical exploitation in future food processes.« less
Weeks, Laura; Balneaves, Lynda G; Paterson, Charlotte; Verhoef, Marja
2014-01-01
Patients with cancer consistently report conflict and anxiety when making decisions about complementary and alternative medicine (CAM) treatment. To design evidence-informed decision-support strategies, a better understanding is needed of how the decision-making process unfolds for these patients during their experience with cancer. We undertook this study to review the research literature regarding CAM-related decision-making by patients with cancer within the context of treatment, survivorship, and palliation. We also aimed to summarize emergent concepts within a preliminary conceptual framework. We conducted an integrative literature review, searching 12 electronic databases for articles published in English that described studies of the process, context, or outcomes of CAM-related decision-making. We summarized descriptive data using frequencies and used a descriptive constant comparative method to analyze statements about original qualitative results, with the goal of identifying distinct concepts pertaining to CAM-related decision-making by patients with cancer and the relationships among these concepts. Of 425 articles initially identified, 35 met our inclusion criteria. Seven unique concepts related to CAM and cancer decision-making emerged: decision-making phases, information-seeking and evaluation, decision-making roles, beliefs, contextual factors, decision-making outcomes, and the relationship between CAM and conventional medical decision-making. CAM decision-making begins with the diagnosis of cancer and encompasses 3 distinct phases (early, mid, and late), each marked by unique aims for CAM treatment and distinct patterns of information-seeking and evaluation. Phase transitions correspond to changes in health status or other milestones within the cancer trajectory. An emergent conceptual framework illustrating relationships among the 7 central concepts is presented. CAM-related decision-making by patients with cancer occurs as a nonlinear, complex, dynamic process. The conceptual framework presented here identifies influential factors within that process, as well as patients' unique needs during different phases. The framework can guide the development and evaluation of theory-based decision-support programs that are responsive to patients' beliefs and preferences.
Ammonia Synthesis at Low Pressure.
Cussler, Edward; McCormick, Alon; Reese, Michael; Malmali, Mahdi
2017-08-23
Ammonia can be synthesized at low pressure by the use of an ammonia selective absorbent. The process can be driven with wind energy, available locally in areas requiring ammonia for synthetic fertilizer. Such wind energy is often called "stranded," because it is only available far from population centers where it can be directly used. In the proposed low pressure process, nitrogen is made from air using pressure swing absorption, and hydrogen is produced by electrolysis of water. While these gases can react at approximately 400 °C in the presence of a promoted conventional catalyst, the conversion is often limited by the reverse reaction, which makes this reaction only feasible at high pressures. This limitation can be removed by absorption on an ammine-like calcium or magnesium chloride. Such alkaline metal halides can effectively remove ammonia, thus suppressing the equilibrium constraints of the reaction. In the proposed absorption-enhanced ammonia synthesis process, the rate of reaction may then be controlled not by the chemical kinetics nor the absorption rates, but by the rate of the recycle of unreacted gases. The results compare favorably with ammonia made from a conventional small scale Haber-Bosch process.
Advantages offered by high average power picosecond lasers
NASA Astrophysics Data System (ADS)
Moorhouse, C.
2011-03-01
As electronic devices shrink in size to reduce material costs, device size and weight, thinner material thicknesses are also utilized. Feature sizes are also decreasing, which is pushing manufacturers towards single step laser direct write process as an attractive alternative to conventional, multiple step photolithography processes by eliminating process steps and the cost of chemicals. The fragile nature of these thin materials makes them difficult to machine either mechanically or with conventional nanosecond pulsewidth, Diode Pumped Solids State (DPSS) lasers. Picosecond laser pulses can cut materials with reduced damage regions and selectively remove thin films due to the reduced thermal effects of the shorter pulsewidth. Also, the high repetition rate allows high speed processing for industrial applications. Selective removal of thin films for OLED patterning, silicon solar cells and flat panel displays is discussed, as well as laser cutting of transparent materials with low melting point such as Polyethylene Terephthalate (PET). For many of these thin film applications, where low pulse energy and high repetition rate are required, throughput can be increased by the use of a novel technique to using multiple beams from a single laser source is outlined.
Development and Demonstration of Adanced Tooling Alloys for Molds and Dies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Enrique J. Lavernia
2006-01-01
This report summarizes research results in the project Development and Demonstration of Advanced Tooling Alloys for Molds and Dies. Molds, dies and related tooling are used to manufacture most of the plastic and metal products we use every day. Conventional fabrication of molds and dies involves a multiplicity of machining, benching and heat treatment unit operations. This approach is very expensive and time consuming. Rapid Solidifcation Process (RSP) Tooling is a spray-forming technology tailored for producing molds and dies. The appraoch combines rapid solidifcation processing and net-shape materials processing in a single step. An atomized spray of a tool-forming alloy,more » typically a tool steel, is deposited onto an easy-to-form tool pattern to replicate the pattern's shape and surface features. By so doing, the approach eliminates many machining operations in conventional mold making, significantly reducing cost, lead time and energy. Moreover, rapid solidification creates unique microstructural features by suppressing carbide precipitation and growth, and creating metastable phases. This can result in unique material properties following heat treatment. Spray-formed and aged tool steel dies have exhibited extended life compared to conventional dies in many forming operations such as forging, extrusion and die casting. RSP Tooling technolocy was commercialized with the formation of RSP Tooling, LLC in Solon, Oh.« less
Summary of the research and development effort on the supercritical CO2 cycle
NASA Astrophysics Data System (ADS)
Fraas, A. P.
1981-06-01
The supercritical CO2 cycle has the advantage over a conventional closed cycle gas turbine in that the compression work phase of the cycle can be carried out close to the critical point and hence aerodynamic losses in the compressor are reduced and the cycle efficiency increased for a given turbine inlet temperature. However, the practicable turbine inlet temperature is reduced by permissible stresses in the heater tubes because the peak pressure in the cycle must be approx. 260 atm in order to have the compression process take place close to the critical point of the working fluid. The high system pressure also makes the capital cost of the heat exchangers and gas piping higher than that for a conventional closed cycle gas turbine. Further, the waste heat from the cycle must be rejected at too low a temperature for it to be useful for industrial process heat or for district heating systems.
Economic feasibility of irradiation-composting plant of sewage sludge
NASA Astrophysics Data System (ADS)
Hashimoto, S.; Nishimura, K.; Machi, S.
Design and cost analysis were made for a sewage sludge treatment plant (capacity 25 - 200 ton sludge/day) with an electron accelerator. Dewatered sludge is spreaded on a rolling drum through a flat nozzle and disinfected by electron irradiation with a dose of 5 kGy. Composting of the irradiated sludge is also made at the optimum temperature for 3 days. The accelerating voltage of electron and capacity of the accelerator are 1.5 MV and 15 kW, respectively. Total volume of the fermentor is about one third of that of conventional composting process because the irradiation makes the time of composting shorter. The cost of sludge treatment is almost the same as that of conventional method.
Computer software configuration description, 241-AY and 241-AZ tank farm MICON automation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkelman, W.D.
This document describes the configuration process, choices and conventions used during the configuration activities, and issues involved in making changes to the configuration. Includes the master listings of the Tag definitions, which should be revised to authorize any changes. Revision 2 incorporates minor changes to ensure the document setpoints accurately reflect limits (including exhaust stack flow of 800 scfm) established in OSD-T-151-00019. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes.
Verhoef, M J; Rose, M S; White, M; Balneaves, L G
2008-08-01
Several studies have shown that a small but significant percentage of cancer patients decline one or more conventional cancer treatments and use complementary and alternative medicine (CAM) instead. Here, drawing on the literature and on our own ongoing research, we describe why cancer patients decide to decline conventional cancer treatments, who those patients are, and the response by physicians to patients who make such decisions. Poor doctor-patient communication, the emotional impact of the cancer diagnosis, perceived severity of conventional treatment side effects, a high need for decision-making control, and strong beliefs in holistic healing appear to affect the decision by patients to decline some or all conventional cancer treatments. Many patients indicate that they value ongoing follow-up care from their oncologists provided that the oncologists respect their beliefs. Patients declining conventional treatments have a strong sense of internal control and prefer to make the final treatment decisions after considering the opinions of their doctors. Few studies have looked at the response by physicians to patients making such a decision. Where research has been done, it found that a tendency by doctors to dichotomize patient decisions as rational or irrational may interfere with the ability of the doctors to respond with sensitivity and understanding. Declining conventional treatment is not necessarily an indicator of distrust of the medical system, but rather a reflection of many personal factors. Accepting and respecting such decisions may be instrumental in "keeping the door open."
Ngwena, Charles G
2018-01-01
Women and girls with disabilities have historically been denied the freedom to make their own choices in matters relating to their reproduction. In the healthcare sector they experience multiple discriminatory practices. Women and girls with intellectual disabilities are particularly vulnerable to coerced or forced medical interventions. The present article considers the contribution the Convention on the Rights of Persons with Disabilities makes towards affirming the rights of women and girls with disabilities to enjoy reproductive autonomy, including autonomy related to reproductive health, on an equal basis with individuals without disabilities. The Convention is paradigm-setting in its maximal approach to affirming the rights of individuals with disabilities to make autonomous choices under conditions of equality and non-discrimination. The Convention is the first human rights treaty to clearly affirm that impairment of decision-making skills is not a justification for depriving a person with cognitive or intellectual disability of legal capacity. © 2017 International Federation of Gynecology and Obstetrics.
Yau, Jenny; Smetana, Judith G
2003-01-01
Sixty-one Chinese preschoolers from Hong Kong at 2 ages (Ms = 4.36 and 6.00 years) were interviewed about familiar moral, social-conventional, and personal events. Children treated personal events as distinct from moral obligations and conventional regulations. Children judged the child as deciding personal issues, based on personal choice justifications, whereas children judged parents as deciding moral and conventional issues. With age, children granted increased decision-making power to the child. In contrast, children viewed moral transgressions as more serious, generalizably wrong, and wrong independent of authority than other events, based on welfare and fairness. Punishment-avoidance justifications for conventional events decreased with age, whereas conventional justifications increased. Young Chinese preschool children make increasingly differentiated judgments about their social world.
Coveney, John; Herbert, Danielle L; Hill, Kathy; Mow, Karen E; Graves, Nicholas; Barnett, Adrian
2017-01-01
In Australia, the peer review process for competitive funding is usually conducted by a peer review group in conjunction with prior assessment from external assessors. This process is quite mysterious to those outside it. The purpose of this research was to throw light on grant review panels (sometimes called the 'black box') through an examination of the impact of panel procedures, panel composition and panel dynamics on the decision-making in the grant review process. A further purpose was to compare experience of a simplified review process with more conventional processes used in assessing grant proposals in Australia. This project was one aspect of a larger study into the costs and benefits of a simplified peer review process. The Queensland University of Technology (QUT)-simplified process was compared with the National Health and Medical Research Council's (NHMRC) more complex process. Grant review panellists involved in both processes were interviewed about their experience of the decision-making process that assesses the excellence of an application. All interviews were recorded and transcribed. Each transcription was de-identified and returned to the respondent for review. Final transcripts were read repeatedly and coded, and similar codes were amalgamated into categories that were used to build themes. Final themes were shared with the research team for feedback. Two major themes arose from the research: (1) assessing grant proposals and (2) factors influencing the fairness, integrity and objectivity of review. Issues such as the quality of writing in a grant proposal, comparison of the two review methods, the purpose and use of the rebuttal, assessing the financial value of funded projects, the importance of the experience of the panel membership and the role of track record and the impact of group dynamics on the review process were all discussed. The research also examined the influence of research culture on decision-making in grant review panels. One of the aims of this study was to compare a simplified review process with more conventional processes. Generally, participants were supportive of the simplified process. Transparency in the grant review process will result in better appreciation of the outcome. Despite the provision of clear guidelines for peer review, reviewing processes are likely to be subjective to the extent that different reviewers apply different rules. The peer review process will come under more scrutiny as funding for research becomes even more competitive. There is justification for further research on the process, especially of a kind that taps more deeply into the 'black box' of peer review.
NASA Astrophysics Data System (ADS)
Al-Shroofy, Mohanad; Zhang, Qinglin; Xu, Jiagang; Chen, Tao; Kaur, Aman Preet; Cheng, Yang-Tse
2017-06-01
We report a solvent-free dry powder coating process for making LiNi1/3Mn1/3Co1/3O2 (NMC) positive electrodes in lithium-ion batteries. This process eliminates volatile organic compound emission and reduces thermal curing time from hours to minutes. A mixture of NMC, carbon black, and poly(vinylidene difluoride) was electrostatically sprayed onto an aluminum current collector, forming a uniformly distributed electrode with controllable thickness and porosity. Charge/discharge cycling of the dry-powder-coated electrodes in lithium-ion half cells yielded a discharge specific capacity of 155 mAh g-1 and capacity retention of 80% for more than 300 cycles when the electrodes were tested between 3.0 and 4.3 V at a rate of C/5. The long-term cycling performance and durability of dry-powder coated electrodes are similar to those made by the conventional wet slurry-based method. This solvent-free dry powder coating process is a potentially lower-cost, higher-throughput, and more environmentally friendly manufacturing process compared with the conventional wet slurry-based electrode manufacturing method.
Weeks, Laura; Balneaves, Lynda G; Paterson, Charlotte
2014-01-01
Background: Patients with cancer consistently report conflict and anxiety when making decisions about complementary and alternative medicine (CAM) treatment. To design evidence-informed decision-support strategies, a better understanding is needed of how the decision-making process unfolds for these patients during their experience with cancer. We undertook this study to review the research literature regarding CAM-related decisionmaking by patients with cancer within the context of treatment, survivorship, and palliation. We also aimed to summarize emergent concepts within a preliminary conceptual framework. Methods: We conducted an integrative literature review, searching 12 electronic databases for articles published in English that described studies of the process, context, or outcomes of CAM-related decision-making. We summarized descriptive data using frequencies and used a descriptive constant comparative method to analyze statements about original qualitative results, with the goal of identifying distinct concepts pertaining to CAM-related decision-making by patients with cancer and the relationships among these concepts. Results: Of 425 articles initially identified, 35 met our inclusion criteria. Seven unique concepts related to CAM and cancer decision-making emerged: decision-making phases, information-seeking and evaluation, decision-making roles, beliefs, contextual factors, decision-making outcomes, and the relationship between CAM and conventional medical decision-making. CAM decision-making begins with the diagnosis of cancer and encompasses 3 distinct phases (early, mid, and late), each marked by unique aims for CAM treatment and distinct patterns of informationseeking and evaluation. Phase transitions correspond to changes in health status or other milestones within the cancer trajectory. An emergent conceptual framework illustrating relationships among the 7 central concepts is presented. Interpretation: CAM-related decision-making by patients with cancer occurs as a nonlinear, complex, dynamic process. The conceptual framework presented here identifies influential factors within that process, as well as patients' unique needs during different phases. The framework can guide the development and evaluation of theorybased decision-support programs that are responsive to patients' beliefs and preferences. PMID:25009685
Tungsten carbide: Crystals by the ton
NASA Astrophysics Data System (ADS)
Smith, E. N.
1988-06-01
A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.
Oxidative Reactions with Nonaqueous Enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan S. Dordick; Douglas Clark; Brian H Davison
2001-12-30
The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less
Ho, Zheng Jie Marc; Radha Krishna, Lalit Kumar; Yee, Chung Pheng Alethea
2010-12-01
Decision making for an incompetent patient at the end of life is difficult for both family members and physicians alike. Often, palliative care teams are tasked with weaving through opinions, emotions, and goals in search for an amenable solution. Occasionally, these situations get challenging. We present the case of an elderly Chinese Singaporean with metastatic cancer, whose family and physicians had conflicting goals of care. The former was adamant on treating the patient's disease with an untested drug, whereas the latter aimed to treat his symptoms with more conventional medication. Drug-drug interactions prevented treatment with both. Beginning with a discussion of the patient's best interest, we delve into the Singaporean context to show how culture affects medical decision making. Confucianism and filial piety are the values on which this family's workings were based. In an analysis of what this entails, we attempt to explain the significant and assertive family involvement in the decision-making process and their insistence on using novel medications, having exhausted conventional interventions. Within this mix were Western influences, too. Through the Internet, family members have become more informed and empowered in decision making, wresting the traditional paternalistic role of physicians in favor of "patient autonomy." An understanding of such dynamic facets will help better tailor culturally appropriate approaches to such complex situations. Copyright © 2010 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Digital impression and jaw relation record for the fabrication of CAD/CAM custom tray.
Kanazawa, Manabu; Iwaki, Maiko; Arakida, Toshio; Minakuchi, Shunsuke
2018-03-16
This article describes the protocol of a digital impression technique to make an impression and recording of the jaw relationship of edentulous patients for the fabrication of CAD/CAM custom tray using computer-aided design and manufacturing (CAD/CAM) technology. Scan the maxillary and mandibular edentulous jaws using an intraoral scanner. Scan the silicone jig with the maxillary and mandibular jaws while keeping the jig between the jaws. Import the standard tessellation language data of the maxillary and mandibular jaws and jig to make a jaw relation record and fabricate custom trays (CAD/CAM trays) using a rapid prototyping system. Make a definitive impression of the maxillary and mandibular jaws using the CAD/CAM trays. Digitalization of the complete denture fabrication process can simplify the complicated treatment and laboratory process of conventional methods In addition, the proposed method enables quality control regardless of the operator's experience and technique. Copyright © 2018. Published by Elsevier Ltd.
On the lightweighting of automobile engine components : forming sheet metal connecting rod
NASA Astrophysics Data System (ADS)
Date, P. P.; Kasture, R. N.; Kore, A. S.
2017-09-01
Reducing the inertia of the reciprocating engine components can lead to significant savings on fuel. A lighter connecting rod (for the same functionality and performance) with a lower material input would be an advantage to the user (customer) and the manufacturer alike. Light materials will make the connecting rod much more expensive compared to those made from steel. Non-ferrous metals are amenable to cold forging of engine components to achieve lightweighting. Alternately, one can make a hollow connecting rod formed from steel sheet, thereby making it lighter, and with many advantages over the conventionally hot forged product. The present paper describes the process of forming a connecting rod from sheet metal. Cold forming (as opposed to high energy needs, lower tool life and the need for greater number of operations and finishing processes in hot forming) would be expected to reduce the cost of manufacture by cold forming. Work hardening during forming is also expected to enhance the in-service performance of the connecting rod.
Gonzalez, Mariaelena; Green, Lawrence W; Glantz, Stanton A
2011-01-01
Objective To analyse the models Philip Morris (PM) and British American Tobacco (BAT) used internally to understand tobacco control non-governmental organizations (NGOs) and their relationship to the global tobacco control policy-making process that resulted in the Framework Convention for Tobacco Control (FCTC). Methods Analysis of internal tobacco industry documents in the Legacy Tobacco Document Library. Results PM contracted with Mongoven, Biscoe, and Duchin, Inc. (MBD, a consulting firm specialising in NGO surveillance) as advisors. MBD argued that because NGOs are increasingly linked to epistemic communities, NGOs could insert themselves into the global policy-making process and influence the discourse surrounding the treaty-making process. MBD advised PM to insert itself into the policy-making process, mimicking NGO behaviour. BAT’s Consumer and Regulatory Affairs (CORA) department argued that global regulation emerged from the perception (by NGOs and governments) that the industry could not regulate itself, leading to BAT advocating social alignment and self-regulation to minimise the impact of the FCTC. Most efforts to block or redirect the FCTC failed. Conclusions PM and BAT articulated a global policy-making environment in which NGOs are key, non-state stakeholders, and as a result, internationalised some of their previous national-level strategies. After both companies failed to prevent the FCTC, their strategies began to align. Multinational corporations have continued to successfully employ some of the strategies outlined in this paper at the local and national level while being formally excluded from ongoing FCTC negotiations at the global level. PMID:21636611
Khan, Mohammad J.; Chelliah, Shankar; Haron, Mahmod S.; Ahmed, Sahrish
2017-01-01
Travel motivations, perceived risks and travel constraints, along with the attributes and characteristics of medical tourism destinations, are important issues in medical tourism. Although the importance of these factors is already known, a comprehensive theoretical model of the decision-making process of medical tourists has yet to be established, analysing the intricate relationships between the different variables involved. This article examines a large body of literature on both medical and conventional tourism in order to propose a comprehensive theoretical framework of medical tourism decision-making. Many facets of this complex phenomenon require further empirical investigation. PMID:28417022
Khan, Mohammad J; Chelliah, Shankar; Haron, Mahmod S; Ahmed, Sahrish
2017-02-01
Travel motivations, perceived risks and travel constraints, along with the attributes and characteristics of medical tourism destinations, are important issues in medical tourism. Although the importance of these factors is already known, a comprehensive theoretical model of the decision-making process of medical tourists has yet to be established, analysing the intricate relationships between the different variables involved. This article examines a large body of literature on both medical and conventional tourism in order to propose a comprehensive theoretical framework of medical tourism decision-making. Many facets of this complex phenomenon require further empirical investigation.
Smart material screening machines using smart materials and controls
NASA Astrophysics Data System (ADS)
Allaei, Daryoush; Corradi, Gary; Waigand, Al
2002-07-01
The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.
Decision Making and Systems Thinking: Educational Issues
ERIC Educational Resources Information Center
Yurtseven, M. Kudret; Buchanan, Walter W.
2016-01-01
Decision making in most universities is taught within the conventional OR/MS (Operations Research/Management Science) paradigm. This paradigm is known to be "hard" since it is consisted of mathematical tools, and normally suitable for solving structured problems. In complex situations the conventional OR/MS paradigm proves to be…
Optimization and Simulation of Plastic Injection Process using Genetic Algorithm and Moldflow
NASA Astrophysics Data System (ADS)
Martowibowo, Sigit Yoewono; Kaswadi, Agung
2017-03-01
The use of plastic-based products is continuously increasing. The increasing demands for thinner products, lower production costs, yet higher product quality has triggered an increase in the number of research projects on plastic molding processes. An important branch of such research is focused on mold cooling system. Conventional cooling systems are most widely used because they are easy to make by using conventional machining processes. However, the non-uniform cooling processes are considered as one of their weaknesses. Apart from the conventional systems, there are also conformal cooling systems that are designed for faster and more uniform plastic mold cooling. In this study, the conformal cooling system is applied for the production of bowl-shaped product made of PP AZ564. Optimization is conducted to initiate machine setup parameters, namely, the melting temperature, injection pressure, holding pressure and holding time. The genetic algorithm method and Moldflow were used to optimize the injection process parameters at a minimum cycle time. It is found that, an optimum injection molding processes could be obtained by setting the parameters to the following values: T M = 180 °C; P inj = 20 MPa; P hold = 16 MPa and t hold = 8 s, with a cycle time of 14.11 s. Experiments using the conformal cooling system yielded an average cycle time of 14.19 s. The studied conformal cooling system yielded a volumetric shrinkage of 5.61% and the wall shear stress was found at 0.17 MPa. The difference between the cycle time obtained through simulations and experiments using the conformal cooling system was insignificant (below 1%). Thus, combining process parameters optimization and simulations by using genetic algorithm method with Moldflow can be considered as valid.
NASA Astrophysics Data System (ADS)
Kim, Youngkwang; Lee, Hyunjoon; Lim, Taeho; Kim, Hyun-Jong; Kwon, Oh Joong
2017-10-01
With emerging stability issues in fuel cell technology, a non-conventional catalyst not supported on carbon materials has been highlighted because it can avoid negative influences of carbon support materials on the stability, such as carbon corrosion. The nanostructured thin film catalyst is representative of non-conventional catalysts, which shows improved stability, enhanced mass specific activity, and fast mass transfer at high current densities. However, the nanostructured thin film catalyst usually requires multi-step processes for fabrication, making its mass production complex and irreproducible. We introduce a Pt-Cu alloy nanostructured thin film catalyst, which can be simply prepared by electrodeposition. By using hydrogen bubbles as a template, a three-dimensional free-standing foam of Cu was electrodeposited directly on the micro-porous layer/carbon paper and it was then displaced with Pt by simple immersion. The structure characterization revealed that a porous thin Pt-Cu alloy catalyst layer was successfully formed on the micro-porous layer/carbon paper. The synthesized Pt-Cu alloy catalyst exhibited superior durability compared to a conventional Pt/C in single cell test.
Ammann, Klaus
2014-01-25
The regulation of genetically engineered crops, in Europe and within the legislation of the Cartagena biosafety protocol is built on false premises: The claim was (and unfortunately still is) that there is a basic difference between conventional and transgenic crops, this despite the fact that this has been rejected on scientifically solid grounds since many years. This contribution collects some major arguments for a fresh look at regulation of transgenic crops, they are in their molecular processes of creation not basically different from conventional crops, which are based in their breeding methods on natural, sometimes enhanced mutation. But the fascination and euphoria of the discoveries in molecular biology and the new perspectives in plant breeding in the sixties and seventies led to the wrong focus on transgenic plants alone. In a collective framing process the initial biosafety debates focused on the novelty of the process of transgenesis. When early debates on the risk assessment merged into legislative decisions, this wrong focus on transgenesis alone seemed uncontested. The process-focused view was also fostered by a conglomerate of concerned scientists and biotechnology companies, both with a vested interest to at least tolerate the rise of the safety threshold to secure research money and to discourage competitors of all kinds. Policy minded people and opponent activists without deeper insight in the molecular science agreed to those efforts without much resistance. It is interesting to realize, that the focus on processes was uncontested by a majority of regulators, this despite of serious early warnings from important authorities in science, mainly of US origin. It is time to change the regulation of genetically modified (GM) crops toward a more science based process-agnostic legislation. Although this article concentrates on the critique of the process-oriented regulation, including some details about the history behind, there should be no misunderstanding that there are other important factors responsible for the failure of this kind of process-oriented regulation, most importantly: the predominance of politics in the decision making processes combined with the lack of serious scientific debates on regulatory matters within the European Union and also in the Cartagena system, the obscure and much too complex decision making structures within the EU, and the active, professional, negative and intimidating role of fundamental opposition against GM crops on all levels dealing with flawed science, often declared as better parallel science published by 'independent' scientists. Copyright © 2013 Elsevier B.V. All rights reserved.
Gillard, Steven; Borschmann, Rohan; Turner, Kati; Goodrich‐Purnell, Norman; Lovell, Kathleen; Chambers, Mary
2010-01-01
Abstract Background Interest in the involvement of members of the public in health services research is increasingly focussed on evaluation of the impact of involvement on the research process and the production of knowledge about health. Service user involvement in mental health research is well‐established, yet empirical studies into the impact of involvement are lacking. Objective To investigate the potential to provide empirical evidence of the impact of service user researchers (SURs) on the research process. Design The study uses a range of secondary analyses of interview transcripts from a qualitative study of the experiences of psychiatric patients detained under the Mental Health Act (1983) to compare the way in which SURs and conventional university researchers (URs) conduct and analyse qualitative interviews. Results Analyses indicated some differences in the ways in which service user‐ and conventional URs conducted qualitative interviews. SURs were much more likely to code (analyse) interview transcripts in terms of interviewees’ experiences and feelings, while conventional URs coded the same transcripts largely in terms of processes and procedures related to detention. The limitations of a secondary analysis based on small numbers of researchers are identified and discussed. Conclusions The study demonstrates the potential to develop a methodologically robust approach to evaluate empirically the impact of SURs on research process and findings, and is indicative of the potential benefits of collaborative research for informing evidence‐based practice in mental health services. PMID:20536538
Akbas, Hatice Zehra; Aydin, Zeki; Yilmaz, Onur; Turgut, Selvin
2017-01-01
The effects of the homogenization process on the structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics have been investigated using an ultrasonic homogenization and conventional mechanical methods. The reagents were homogenized using an ultrasonic processor with high-intensity ultrasonic waves and using a compact mixer-shaker. The components and crystal types of the powders were determined by Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. The complex permittivity (ε ' , ε″) and AC conductivity (σ') of the samples were analyzed in a wide frequency range of 20Hz to 2MHz at room temperature. The structures and dielectric properties of pure and Nb-doped BaTiO 3 ceramics strongly depend on the homogenization process in a solid-state reaction method. Using an ultrasonic processor with high-intensity ultrasonic waves based on acoustic cavitation phenomena can make a significant improvement in producing high-purity BaTiO 3 ceramics without carbonate impurities with a small dielectric loss. Copyright © 2016 Elsevier B.V. All rights reserved.
Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F
2007-01-01
A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, John S.; Beese, Allison M.; Bourell, David L.
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Carpenter, John S.; Beese, Allison M.; Bourell, David L.; ...
2015-06-26
Additive manufacturing (AM) offers distinct advantages over conventional manufacturing processes including the capability to both build and repair complex part shapes; to integrate and consolidate parts and thus overcome joining concerns; and to locally tailor material compositions as well as properties. Moreover, a variety of fields such as aerospace, military, automotive, and biomedical are employing this manufacturing technique as a way to decrease costs, increase manufacturing agility, and explore novel geometry/functionalities. In order to increase acceptance of AM as a viable processing method, pathways for qualifying both the material and the process need to be developed and, perhaps, standardized. Thismore » symposium was designed to serve as a venue for the international AM community—including government, academia, and industry—to define the fundamental interrelationships between feedstock, processing, microstructure, shape, mechanical behavior/materials properties, and function/performance. Eventually, insight into the connections between processing, microstructure, property, and performance will be achieved through experimental observations, theoretical advances, and computational modeling of physical processes. Finally, once this insight matures, AM will be able to move from the realm of making parts to making qualified materials that are certified for use with minimal need for post-fabrication characterization.« less
Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review
NASA Astrophysics Data System (ADS)
Sree Manu, K. M.; Ajay Raag, L.; Rajan, T. P. D.; Gupta, Manoj; Pai, B. C.
2016-10-01
Metal matrix composites (MMC) are one of the advanced materials widely used for aerospace, automotive, defense, and general engineering applications. MMC can be tailored to have superior properties such as enhanced high-temperature performance, high specific strength and stiffness, increased wear resistance, better thermal and mechanical fatigue, and creep resistance than those of unreinforced alloys. To fabricate such composites with ideal properties, the processing technique has to ensure high volume fraction of reinforcement incorporation, uniform distribution of the reinforcement, and acceptable adhesion between the matrix and the reinforcing phase without unwanted interfacial reactions which degrades the mechanical properties. A number of processing techniques such as stir casting/vortex method, powder metallurgy, infiltration, casting etc. have been developed to synthesize MMC employing a variety of alloy and the reinforcement's combinations. Among these, infiltration process is widely used for making MMC with high volume fraction of reinforcements and offers many more advantages compared to other conventional manufacturing processes. The present paper critically reviews the various infiltration techniques used for making the MMC, their process parameters, characteristics, and selected studies carried out worldwide and by authors on the development of metal ceramic composites by squeeze infiltration process.
Solar greenhouse workshop; video documentary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, B.; Devine B.; Taylor, C.
1980-01-01
A 38 minute video-tape documentary of the building of an attached solar greenhouse is presented. The tape follows the construction process from foundation preparation to greenhouse completion. The tape allows greater outreach to potential builders of solar greenhouses than a conventional construction workshop. It allows viewers to appreciate the simplicity of construction, and encourages, by example, interested people to start building. The process of making the documentary is briefly described, as are its potential uses. Copies of the video-tape are available, for the cost of the tape alone, from Antioch Video, Antioch College, Yellow Springs, Ohio 45387.
Flexible thermoset towpregs by electrostatic powder fusion coating
NASA Technical Reports Server (NTRS)
Yang, Pei-Hua; Varughese, Babu; Muzzy, John D.
1991-01-01
Thermoset prepregs of expoxy and polyimide have been produced by electrostatic deposition of charged fluidized polymer powders on spread continuous fiber tows. The powders are melted onto the fibers by radiant heating to adhere the polymer to the fiber. This process produces towpreg uniformly and rapidly without imposing severe stresses on the fibers. The towpregs produced by this novel process were consolidated to make unidirectional laminates for mechanical testing. Low void content samples have been made and demonstrated by C-scan and scanning electron microscopy. The mechanical properties of unidirectional laminates are equivalent to composites fabricated by conventional techniques.
NASA Technical Reports Server (NTRS)
1994-01-01
During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.
Smith, Anita; Sullivan, Danny
2012-09-01
The United Nations Convention on the Rights of Persons with Disabilities is a powerful international instrument which imposes significant responsibilities on signatories. This column discusses changes in the definition of legal capacity which will have significant impacts on decision-making related to people with dementia. Various restrictions and limitations on personal freedoms are discussed in light of the Convention. The main focus is on challenges to existing paradigms of substitute decision-making, which are in wide use through a guardianship model. Under Art 12 of the Convention, moves to supported decision-making will result in significant changes in ensuring the rights of people with dementia. There are challenges ahead in implementing supported decision-making schemes, not only due to tension with existing practices and legislation, but also the difficulty of developing and resourcing workable schemes. This is particularly so with advanced dementia, which is acknowledged as a pressing issue for Australia due to effective health care, an ageing population and changing expectations.
Beyond Bioethics: A Child Rights-Based Approach to Complex Medical Decision-Making.
Wade, Katherine; Melamed, Irene; Goldhagen, Jeffrey
2016-01-01
This analysis adopts a child rights approach-based on the principles, standards, and norms of child rights and the U.N. Convention on the Rights of the Child (CRC)-to explore how decisions could be made with regard to treatment of a severely impaired infant (Baby G). While a child rights approach does not provide neat answers to ethically complex issues, it does provide a framework for decision-making in which the infant is viewed as an independent rights-holder. The state has obligations to develop the capacity of those who make decisions for infants in such situations to meet their obligations to respect, protect, and fulfill their rights as delineated in the CRC. Furthermore, a child rights approach requires procedural clarity and transparency in decision-making processes. As all rights in the CRC are interdependent and indivisible, all must be considered in the process of ethical decision-making, and the reasons for decisions must be delineated by reference to how these rights were considered. It is also important that decisions that are made in this context be monitored and reviewed to ensure consistency. A rights-based framework ensures decision-making is child-centered and that there are transparent criteria and legitimate procedures for making decisions regarding the child's most basic human right: the right to life, survival, and development.
Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel
2017-01-01
Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.
NASA Astrophysics Data System (ADS)
Rabemananajara, Tanjona R.; Horowitz, W. A.
2017-09-01
To make predictions for the particle physics processes, one has to compute the cross section of the specific process as this is what one can measure in a modern collider experiment such as the Large Hadron Collider (LHC) at CERN. Theoretically, it has been proven to be extremely difficult to compute scattering amplitudes using conventional methods of Feynman. Calculations with Feynman diagrams are realizations of a perturbative expansion and when doing calculations one has to set up all topologically different diagrams, for a given process up to a given order of coupling in the theory. This quickly makes the calculation of scattering amplitudes a hot mess. Fortunately, one can simplify calculations by considering the helicity amplitude for the Maximally Helicity Violating (MHV). This can be extended to the formalism of on-shell recursion, which is able to derive, in a much simpler way the expression of a high order scattering amplitude from lower orders.
Radio-Frequency Applications for Food Processing and Safety.
Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L
2018-03-25
Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...
Code of Federal Regulations, 2013 CFR
2013-07-01
...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...
Code of Federal Regulations, 2012 CFR
2012-07-01
...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...
Code of Federal Regulations, 2010 CFR
2010-07-01
...-Alaskan conventional bottom fish processing subcategory. 408.210 Section 408.210 Protection of Environment... PROCESSING POINT SOURCE CATEGORY Non-Alaskan Conventional Bottom Fish Processing Subcategory § 408.210 Applicability; description of the non-Alaskan conventional bottom fish processing subcategory. The provisions of...
Development of a planar-type high sensitivity metallic contaminant detector
NASA Astrophysics Data System (ADS)
Okabe, Shunsuke; Sasada, Ichiro
2017-05-01
Metallic contaminant detectors based on the balanced coil system are widely used in the food industry. In the balanced coil system, an excitation coil and two identical pickup coils are used in a way that the magnetic coupling of pickup coils to the excitation coil is cancelled with each other when no metallic contaminants present. In a conventional system, the excitation coil and the pickup coil are planar and are parallel, therefore the magnetic coupling is strong even if there is no metallic contaminant. Such strong magnetic coupling makes balancing procedure tedious. In this paper, we introduce a new coil system in which pickup coils are set orthogonal to the excitation coil, making the magnetic coupling much small compared to conventional counterpart. Pickup coils are equipped with thin magnetic cores and placed inside the excitation coil being parallel to the excitation coil plane. The balancing method consists of two steps; the one is geometrical and the other is digital processing including down conversion. Experiments are carried out to show the detection capability of ferromagnetic contaminants and non-magnetic contaminants.
ERIC Educational Resources Information Center
Principal, 2009
2009-01-01
One can't make the trip to New Orleans for NAESP's Annual Convention and Exposition without checking out a few of the historic and cultural attractions that are within a short walk, or streetcar or cab ride, from the Morial Convention Center and the convention hotels. This article presents a taste of what one can explore between convention events.
NASA Astrophysics Data System (ADS)
Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer
2013-05-01
We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.
Economics and siting of Fischer-Tropsch coal liquefaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, J.P. Jr.; Ferreira, J.P.; Benefiel, J.
The capital intensity and low conversion efficiency of Fischer-Tropsch synthesis makes it noncompetitive with conventional petroleum in the midterm (e.g., 5 to 10 years) under normal economic conditions. However, if crude oil prices rise to higher levels (e.g., $25 to $30/bbl), coal liquefaction processes may prove to be economical. It appears that several other processes under development may become economically attractive before Fischer-Tropsch, although Fischer-Tropsch is the only proven commercially feasible venture at present. The above statement is subject, however, to the successful demonstration and commercialization of these alternative processes. Fischer-Tropsch, as a commercially proven process, may be called uponmore » as a backup should petroleum shortages ensue, world oil prices continue to increase dramatically, and alternate coal liquefaction processes fail to fully develop.« less
[Spatial domain display for interference image dataset].
Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia
2011-11-01
The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.
Eating chocolate can significantly protect the skin from UV light.
Williams, Stefanie; Tamburic, Slobodanka; Lally, Carmel
2009-09-01
Cocoa beans fresh from the tree are exceptionally rich in flavanols. Unfortunately, during conventional chocolate making, this high antioxidant capacity is greatly reduced due to manufacturing processes. To evaluate the photoprotective potential of chocolate consumption, comparing a conventional dark chocolate to a specially produced chocolate with preserved high flavanol (HF) levels. A double-blind in vivo study in 30 healthy subjects was conducted. Fifteen subjects each were randomly assigned to either a HF or low flavanol (LF) chocolate group and consumed a 20 g portion of their allocated chocolate daily. The minimal erythema dose (MED) was assessed at baseline and after 12 weeks under standardized conditions. In the HF chocolate group the mean MED more than doubled after 12 weeks of chocolate consumption, while in the LF chocolate group, the MED remained without significant change. Our study demonstrated that regular consumption of a chocolate rich in flavanols confers significant photoprotection and can thus be effective at protecting human skin from harmful UV effects. Conventional chocolate has no such effect.
Configurable analog-digital conversion using the neural engineering framework
Mayr, Christian G.; Partzsch, Johannes; Noack, Marko; Schüffny, Rene
2014-01-01
Efficient Analog-Digital Converters (ADC) are one of the mainstays of mixed-signal integrated circuit design. Besides the conventional ADCs used in mainstream ICs, there have been various attempts in the past to utilize neuromorphic networks to accomplish an efficient crossing between analog and digital domains, i.e., to build neurally inspired ADCs. Generally, these have suffered from the same problems as conventional ADCs, that is they require high-precision, handcrafted analog circuits and are thus not technology portable. In this paper, we present an ADC based on the Neural Engineering Framework (NEF). It carries out a large fraction of the overall ADC process in the digital domain, i.e., it is easily portable across technologies. The analog-digital conversion takes full advantage of the high degree of parallelism inherent in neuromorphic networks, making for a very scalable ADC. In addition, it has a number of features not commonly found in conventional ADCs, such as a runtime reconfigurability of the ADC sampling rate, resolution and transfer characteristic. PMID:25100933
Nwaneshiudu, Ikechukwu C; Ganguly, Indroneil; Pierobon, Francesca; Bowers, Tait; Eastin, Ivan
2016-01-01
Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.
Komeda, Hidetsugu; Osanai, Hidekazu; Yanaoka, Kaichi; Okamoto, Yuko; Fujioka, Toru; Arai, Sumiyoshi; Inohara, Keisuke; Koyasu, Masuo; Kusumi, Takashi; Takiguchi, Shinichiro; Kawatani, Masao; Kumazaki, Hirokazu; Hiratani, Michio; Tomoda, Akemi; Kosaka, Hirotaka
2016-01-01
Autism spectrum disorder (ASD) is characterized by problems with reciprocal social interaction, repetitive behaviours/narrow interests, and impairments in the social cognition and emotional processing necessary for intention-based moral judgements. The aim of this study was to examine the information used by early adolescents with and without ASD when they judge story protagonists as good or bad. We predicted that adolescents with ASD would use protagonists’ behaviour, while typically developing (TD) adolescents would use protagonists’ characteristics when making the judgements. In Experiment 1, we measured sentence by sentence reading times and percentages for good or bad judgements. In Experiment 2, two story protagonists were presented and the participants determined which protagonist was better or worse. Experiment 1 results showed that the adolescents with ASD used protagonist behaviours and outcomes, whereas the TD adolescents used protagonist characteristics, behaviours, and outcomes. In Experiment 2, TD adolescents used characteristics information when making “bad” judgements. Taken together, in situations in which participants cannot go back and assess (Experiment 1), and in comparable situations in which all information is available (Experiment 2), adolescents with ASD do not rely on information about individual characteristics when making moral judgements. PMID:27897213
Kim, Minwoo; Ha, Yoon-Cheol; Nguyen, Truong Nhat; Choi, Hae Young; Kim, Doohun
2013-12-20
We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V(-1) compared to the reported 2.0 nm V(-1) for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ~47 mm in diameter and ~60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.
NASA Astrophysics Data System (ADS)
Kim, Minwoo; Ha, Yoon-Cheol; Nhat Nguyen, Truong; Choi, Hae Young; Kim, Doohun
2013-12-01
We report here a fast and reliable hard anodization process to make asymmetric anodic aluminum oxide (AAO) membranes which can serve as a template for large pitch-distance nanostructures. In order to make larger pitch distances possible, the common burning failure associated with the high current density during the conventional constant voltage hard anodization, especially at a voltage higher than a known limit, i.e., 155 V for oxalic acid, was effectively suppressed by using a burning-protective agent. A new self-ordering regime beyond the voltage limit was observed with a different voltage-interpore distance relationship of 2.2 nm V-1 compared to the reported 2.0 nm V-1 for hard anodization. Combining a sulfuric acid mild anodization with this new regime of hard anodization, we further demonstrate a scalable process to make an asymmetric membrane with size up to ˜47 mm in diameter and ˜60 μm in thickness. This free-standing membrane can be used as a template for novel nanopatterned structures such as arrays of quantum dots, nanowires or nanotubes with diameters of a few tens of nanometers and pitch distance of over 400 nm.
Aluminum alloy AA-6061 and RSA-6061 heat treatment for large mirror applications
NASA Astrophysics Data System (ADS)
Newswander, T.; Crowther, B.; Gubbels, G.; Senden, R.
2013-09-01
Aluminum mirrors and telescopes can be built to perform well if the material is processed correctly and can be relatively low cost and short schedule. However, the difficulty of making high quality aluminum telescopes increases as the size increases, starting with uniform heat treatment through the thickness of large mirror substrates. A risk reduction effort was started to build and test a ½ meter diameter super polished aluminum mirror. Material selection, the heat treatment process and stabilization are the first critical steps to building a successful mirror. In this study, large aluminum blanks of both conventional AA-6061 per AMS-A-22771 and RSA AA-6061 were built, heat treated and stress relieved. Both blanks were destructively tested with a cut through the thickness. Hardness measurements and tensile tests were completed. We present our results in this paper and make suggestions for modification of procedures and future work.
Acoustic barriers obtained from industrial wastes.
Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M
2008-07-01
Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.
Computer software configuration description, 241-AY and 241 AZ tank farm MICON automation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkelman, W.D.
This document describes the configuration process, choices and conventions used during the Micon DCS configuration activities, and issues involved in making changes to the configuration. Includes the master listings of the Tag definitions, which should be revised to authorize any changes. Revision 3 provides additional information on the software used to provide communications with the W-320 project and incorporates minor changes to ensure the document alarm setpoint priorities correctly match operational expectations.
Method of making improved gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN
2002-11-05
A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).
NASA Astrophysics Data System (ADS)
Dietrich, Jörg; Funke, Markus
Integrated water resources management (IWRM) redefines conventional water management approaches through a closer cross-linkage between environment and society. The role of public participation and socio-economic considerations becomes more important within the planning and decision making process. In this paper we address aspects of the integration of catchment models into such a process taking the implementation of the European Water Framework Directive (WFD) as an example. Within a case study situated in the Werra river basin (Central Germany), a systems analytic decision process model was developed. This model uses the semantics of the Unified Modeling Language (UML) activity model. As an example application, the catchment model SWAT and the water quality model RWQM1 were applied to simulate the effect of phosphorus emissions from non-point and point sources on water quality. The decision process model was able to guide the participants of the case study through the interdisciplinary planning and negotiation of actions. Further improvements of the integration framework include tools for quantitative uncertainty analyses, which are crucial for real life application of models within an IWRM decision making toolbox. For the case study, the multi-criteria assessment of actions indicates that the polluter pays principle can be met at larger scales (sub-catchment or river basin) without significantly compromising cost efficiency for the local situation.
Reversing the conventional leather processing sequence for cleaner leather production.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2006-02-01
Conventional leather processing generally involves a combination of single and multistep processes that employs as well as expels various biological, inorganic, and organic materials. It involves nearly 14-15 steps and discharges a huge amount of pollutants. This is primarily due to the fact that conventional leather processing employs a "do-undo" process logic. In this study, the conventional leather processing steps have been reversed to overcome the problems associated with the conventional method. The charges of the skin matrix and of the chemicals and pH profiles of the process have been judiciously used for reversing the process steps. This reversed process eventually avoids several acidification and basification/neutralization steps used in conventional leather processing. The developed process has been validated through various analyses such as chromium content, shrinkage temperature, softness measurements, scanning electron microscopy, and physical testing of the leathers. Further, the performance of the leathers is shown to be on par with conventionally processed leathers through bulk property evaluation. The process enjoys a significant reduction in COD and TS by 53 and 79%, respectively. Water consumption and discharge is reduced by 65 and 64%, respectively. Also, the process benefits from significant reduction in chemicals, time, power, and cost compared to the conventional process.
40 CFR 408.20 - Applicability; description of the conventional blue crab processing subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... conventional blue crab processing subcategory. 408.20 Section 408.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Conventional Blue Crab Processing Subcategory § 408.20 Applicability; description of the conventional blue crab processing subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 408.20 - Applicability; description of the conventional blue crab processing subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... conventional blue crab processing subcategory. 408.20 Section 408.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Conventional Blue Crab Processing Subcategory § 408.20 Applicability; description of the conventional blue crab processing subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 408.20 - Applicability; description of the conventional blue crab processing subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... conventional blue crab processing subcategory. 408.20 Section 408.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Conventional Blue Crab Processing Subcategory § 408.20 Applicability; description of the conventional blue crab processing subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 408.20 - Applicability; description of the conventional blue crab processing subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... conventional blue crab processing subcategory. 408.20 Section 408.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Conventional Blue Crab Processing Subcategory § 408.20 Applicability; description of the conventional blue crab processing subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 408.20 - Applicability; description of the conventional blue crab processing subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... conventional blue crab processing subcategory. 408.20 Section 408.20 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Conventional Blue Crab Processing Subcategory § 408.20 Applicability; description of the conventional blue crab processing subcategory. The provisions of this subpart are applicable to discharges...
Strappini, Francesca; Gilboa, Elad; Pitzalis, Sabrina; Kay, Kendrick; McAvoy, Mark; Nehorai, Arye; Snyder, Abraham Z
2017-03-01
Temporal and spatial filtering of fMRI data is often used to improve statistical power. However, conventional methods, such as smoothing with fixed-width Gaussian filters, remove fine-scale structure in the data, necessitating a tradeoff between sensitivity and specificity. Specifically, smoothing may increase sensitivity (reduce noise and increase statistical power) but at the cost loss of specificity in that fine-scale structure in neural activity patterns is lost. Here, we propose an alternative smoothing method based on Gaussian processes (GP) regression for single subjects fMRI experiments. This method adapts the level of smoothing on a voxel by voxel basis according to the characteristics of the local neural activity patterns. GP-based fMRI analysis has been heretofore impractical owing to computational demands. Here, we demonstrate a new implementation of GP that makes it possible to handle the massive data dimensionality of the typical fMRI experiment. We demonstrate how GP can be used as a drop-in replacement to conventional preprocessing steps for temporal and spatial smoothing in a standard fMRI pipeline. We present simulated and experimental results that show the increased sensitivity and specificity compared to conventional smoothing strategies. Hum Brain Mapp 38:1438-1459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Wei; Nallathamby, Prakash D.; Foster, Carmen M.; Morrell-Falvey, Jennifer L.; Mortensen, Ninell P.; Doktycz, Mitchel J.; Gu, Baohua; Retterer, Scott T.
2013-10-01
A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and a polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or ``free'' surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface-modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems. Electronic supplementary information (ESI) available: Cell culture preparation for dose/response imaging experiments. See DOI: 10.1039/c3nr02639f
Farsalinos, Konstantinos E.; Gillman, I. Gene; Melvin, Matt S.; Paolantonio, Amelia R.; Gardow, Wendy J.; Humphries, Kathy E.; Brown, Sherri E.; Poulas, Konstantinos; Voudris, Vassilis
2015-01-01
Background. Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Methods. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Results. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from −21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200–300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. Conclusions. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2–3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products. PMID:25811768
Farsalinos, Konstantinos E; Gillman, I Gene; Melvin, Matt S; Paolantonio, Amelia R; Gardow, Wendy J; Humphries, Kathy E; Brown, Sherri E; Poulas, Konstantinos; Voudris, Vassilis
2015-03-24
Some electronic cigarette (EC) liquids of tobacco flavour contain extracts of cured tobacco leaves produced by a process of solvent extraction and steeping. These are commonly called Natural Extract of Tobacco (NET) liquids. The purpose of the study was to evaluate nicotine levels and the presence of tobacco-derived toxins in tobacco-flavoured conventional and NET liquids. Twenty-one samples (10 conventional and 11 NET liquids) were obtained from the US and Greek market. Nicotine levels were measured and compared with labelled values. The levels of tobacco-derived chemicals were compared with literature data on tobacco products. Twelve samples had nicotine levels within 10% of the labelled value. Inconsistency ranged from -21% to 22.1%, with no difference observed between conventional and NET liquids. Tobacco-specific nitrosamines (TSNAs) were present in all samples at ng/mL levels. Nitrates were present almost exclusively in NET liquids. Acetaldehyde was present predominantly in conventional liquids while formaldehyde was detected in almost all EC liquids at trace levels. Phenols were present in trace amounts, mostly in NET liquids. Total TSNAs and nitrate, which are derived from the tobacco plant, were present at levels 200-300 times lower in 1 mL of NET liquids compared to 1 gram of tobacco products. NET liquids contained higher levels of phenols and nitrates, but lower levels of acetaldehyde compared to conventional EC liquids. The lower levels of tobacco-derived toxins found in NET liquids compared to tobacco products indicate that the extraction process used to make these products did not transfer a significant amount of toxins to the NET. Overall, all EC liquids contained far lower (by 2-3 orders of magnitude) levels of the tobacco-derived toxins compared to tobacco products.
The performances of different overlay mark types at 65nm node on 300-mm wafers
NASA Astrophysics Data System (ADS)
Tseng, H. T.; Lin, Ling-Chieh; Huang, I. H.; Lin, Benjamin S.; Huang, Chin-Chou K.; Huang, Chien-Jen
2005-05-01
The integrated circuit (IC) manufacturing factories have measured overlay with conventional "box-in-box" (BiB) or "frame-in-frame" (FiF) structures for many years. Since UMC played as a roll of world class IC foundry service provider, tighter and tighter alignment accuracy specs need to be achieved from generation to generation to meet any kind of customers' requirement, especially according to International Technology Roadmap for Semiconductors (ITRS) 2003 METROLOGY section1. The process noises resulting from dishing, overlay mark damaging by chemical mechanism polishing (CMP), and the variation of film thickness during deposition are factors which can be very problematic in mark alignment. For example, the conventional "box-in-box" overlay marks could be damaged easily by CMP, because the less local pattern density and wide feature width of the box induce either dishing or asymmetric damages for the measurement targets, which will make the overlay measurement varied and difficult. After Advanced Imaging Metrology (AIM) overlay targets was introduced by KLA-Tencor, studies in the past shown AIM was more robust in overlay metrology than conventional FiF or BiB targets. In this study, the applications of AIM overlay marks under different process conditions will be discussed and compared with the conventional overlay targets. To evaluate the overlay mark performance against process variation on 65nm technology node in 300-mm wafer, three critical layers were chosen in this study. These three layers were Poly, Contact, and Cu-Metal. The overlay targets used for performance comparison were BiB and Non-Segmented AIM (NS AIM) marks. We compared the overlay mark performance on two main areas. The first one was total measurement uncertainty (TMU)3 related items that include Tool Induced Shift (TIS) variability, precision, and matching. The other area is the target robustness against process variations. Based on the present study AIM mark demonstrated an equal or better performance in the TMU related items under our process conditions. However, when non-optimized tungsten CMP was introduced in the tungsten contact process, due to the dense grating line structure design, we found that AIM mark was much more robust than BiB overlay target.
NASA Astrophysics Data System (ADS)
Zhang, Luhui; Shi, Enzheng; Ji, Chunyan; Li, Zhen; Li, Peixu; Shang, Yuanyuan; Li, Yibin; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Wu, Dehai; Cao, Anyuan
2012-07-01
Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics.Electrode materials are key components for fiber solar cells, and when combined with active layers (for light absorption and charge generation) in appropriate ways, they enable design and fabrication of efficient and innovative device structures. Here, we apply carbon nanotube yarns as counter electrodes in combination with CdSe nanowire-grafted primary electrodes (Ti wire) for making fiber and fabric-shaped photoelectrochemical cells with power conversion efficiencies in the range 1% to 2.9%. The spun-twist long nanotube yarns possess both good electrical conductivity and mechanical flexibility compared to conventional metal wires or carbon fibers, which facilitate fabrication of solar cells with versatile configurations. A unique feature of our process is that instead of making individual fiber cells, we directly weave single or multiple nanotube yarns with primary electrodes into a functional fabric. Our results demonstrate promising applications of semiconducting nanowires and carbon nanotubes in woven photovoltaics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31440a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attota, Ravikiran, E-mail: Ravikiran.attota@nist.gov; Dixson, Ronald G.
We experimentally demonstrate that the three-dimensional (3-D) shape variations of nanometer-scale objects can be resolved and measured with sub-nanometer scale sensitivity using conventional optical microscopes by analyzing 4-D optical data using the through-focus scanning optical microscopy (TSOM) method. These initial results show that TSOM-determined cross-sectional (3-D) shape differences of 30 nm–40 nm wide lines agree well with critical-dimension atomic force microscope measurements. The TSOM method showed a linewidth uncertainty of 1.22 nm (k = 2). Complex optical simulations are not needed for analysis using the TSOM method, making the process simple, economical, fast, and ideally suited for high volume nanomanufacturing process monitoring.
1992-06-25
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
NASA Technical Reports Server (NTRS)
1992-01-01
Zeolites are crystalline aluminosilicates that have complex framework structures. However, there are several features of zeolite crystals that make unequivocal structure determinations difficult. The acquisition of reliable structural information on zeolites is greatly facilitated by the availability of high-quality specimens. For structure determinations by conventional diffraction techniques, large single-crystal specimens are essential. Alternatively, structural determinations by powder profile refinement methods relax the constraints on crystal size, but still require materials with a high degree of crystalline perfection. Studies conducted at CAMMP (Center for Advanced Microgravity Materials Processing) have demonstrated that microgravity processing can produce larger crystal sizes and fewer structural defects relative to terrestrial crystal growth. Principal Investigator: Dr. Albert Sacco
Electron beam welding passes initial test
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sirvy, B.
1979-11-01
Once the new electron-beam welding process is coupled with vertical or J-curve pipelaying techniques, Total-Compagnie Francaise des Petroles (Gestion and Recherches) will be able to offer a system capable of laying up to 36-in. pipe in deep water (1000-9900 ft) at a pace competitive with the best performance of a shallow-water barge: 8200 ft in 24 hr. Electron-beam welding provides the fast, single-station joining needed to make J-curve laying economical. Tests recently demonstrated that this welding technique can join 1.25-in.-wall, 24-in. pipe in less than 3 min; conventional processes require 1-1 1/2 hr.
Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.
Lan, Y
1992-12-01
This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.
NASA Astrophysics Data System (ADS)
Winter, S.; F-X Wagner, M.
2016-03-01
A combination of good ductility and fatigue resistance makes β-titanium alloys interesting for many current and potential future applications. The mechanical behavior is primarily determined by microstructural parameters like (beta phase) grain size, morphology and volume fraction of primary / secondary α-phase precipitates, and this allows changing and optimizing their mechanical properties across a wide range. In this study, we investigate the possibility to modify the microstructure of the high-strength beta titanium alloy Ti-10V-2Fe-3Al, with a special focus on shape and volume fraction of primary α-phase. In addition to the conventional strategy for precipitation of primary α, a special thermo-mechanical processing is performed; this processing route combines the conventional heat treatment with incremental forming during the primary α-phase annealing. After incremental forming, considerable variations in terms of microstructure and mechanical properties can be obtained for different thermo-mechanical processing routes. The microstructures of the deformed samples are characterized by globular as well as lamellar (bimodal) α precipitates, whereas conventional annealing only results in the formation of lamellar precipitates. Because of the smaller size, and the lower amount, of α-phase after incremental forming, tensile strength is not as high as after the conventional strategy. However, high amounts of grain boundary α and lamellar αp-phase in the undeformed samples lead to a significantly lower ductility in comparison to the matrix with bimodal structures obtained by thermo-mechanical processing. These results illustrate the potential of incremental forming during the annealing to modify the microstructure of the beta titanium Ti-10V-2Fe-3Al in a wide range of volume fractions and morphologies of the primary α phase, which in turn leads to considerably changes, and improved, mechanical properties.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-02-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
2000-02-01
control may become more difficult . 8.0.2 The Force Management Process The concept of force management,2 as used in this study, is broader than...advances” was advantageous to the JFC. “Failure to halt an enemy invasion rapidly” would make the joint campaign “much more difficult , lengthy, and... advantage may be obtained by the timely exploitation of a new capability or vulnerability. That advantage , however, will last only a short period of
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2009-11-24
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming maching.
Method and apparatus for semi-solid material processing
Han, Qingyou [Knoxville, TN; Jian, Xiaogang [Knoxville, TN; Xu, Hanbing [Knoxville, TN; Meek, Thomas T [Knoxville, TN
2007-05-15
A method of forming a material includes the steps of: vibrating a molten material at an ultrasonic frequency while cooling the material to a semi-solid state to form non-dendritic grains therein; forming the semi-solid material into a desired shape; and cooling the material to a solid state. The method makes semi-solid castings directly from molten materials (usually a metal), produces grain size usually in the range of smaller than 50 .mu.m, and can be easily retrofitted into existing conventional forming machine.
NASA Technical Reports Server (NTRS)
Rickard, D. A.; Bodenheimer, R. E.
1976-01-01
Digital computer components which perform two dimensional array logic operations (Tse logic) on binary data arrays are described. The properties of Golay transforms which make them useful in image processing are reviewed, and several architectures for Golay transform processors are presented with emphasis on the skeletonizing algorithm. Conventional logic control units developed for the Golay transform processors are described. One is a unique microprogrammable control unit that uses a microprocessor to control the Tse computer. The remaining control units are based on programmable logic arrays. Performance criteria are established and utilized to compare the various Golay transform machines developed. A critique of Tse logic is presented, and recommendations for additional research are included.
Applied photo interpretation for airbrush cartography
NASA Technical Reports Server (NTRS)
Inge, J. L.; Bridges, P. M.
1976-01-01
New techniques of cartographic portrayal have been developed for the compilation of maps of lunar and planetary surfaces. Conventional photo interpretation methods utilizing size, shape, shadow, tone, pattern, and texture are applied to computer processed satellite television images. The variety of the image data allows the illustrator to interpret image details by inter-comparison and intra-comparison of photographs. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The validity of the interpretation process is tested by making a representational drawing by an airbrush portrayal technique. Production controls insure the consistency of a map series. Photo interpretive cartographic portrayal skills are used to prepare two kinds of map series and are adaptable to map products of different kinds and purposes.
Minari, Jusaku; Shirai, Tetsuya; Kato, Kazuto
2014-12-01
As evidenced by high-throughput sequencers, genomic technologies have recently undergone radical advances. These technologies enable comprehensive sequencing of personal genomes considerably more efficiently and less expensively than heretofore. These developments present a challenge to the conventional framework of biomedical ethics; under these changing circumstances, each research project has to develop a pragmatic research policy. Based on the experience with a new large-scale project-the Genome Science Project-this article presents a novel approach to conducting a specific policy for personal genome research in the Japanese context. In creating an original informed-consent form template for the project, we present a two-tiered process: making the draft of the template following an analysis of national and international policies; refining the draft template in conjunction with genome project researchers for practical application. Through practical use of the template, we have gained valuable experience in addressing challenges in the ethical review process, such as the importance of sharing details of the latest developments in genomics with members of research ethics committees. We discuss certain limitations of the conventional concept of informed consent and its governance system and suggest the potential of an alternative process using information technology.
Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo
2018-03-01
Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.
Air impacts from three alternatives for producing JP-8 jet fuel.
Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W
2012-10-01
To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).
High performance, inexpensive solar cell process capable of a high degree of automation
NASA Technical Reports Server (NTRS)
Shah, P.; Fuller, C. R.
1976-01-01
This paper proposes a process for inexpensive high performance solar cell fabrication that can be automated for further cost reduction and higher throughputs. The unique feature of the process is the use of oxides as doping sources for simultaneous n(+) junction formation and back p(+) layer, as a mask for metallization and as an in situ AR coating for spectrum matching. Cost analysis is performed to show that significant cost reductions over the conventional process is possible using the proposed scheme and the cost intensive steps are identified which can be further reduced to make the process compatible with the needed price goals of 50 cents/watt. The process was demonstrated by fabricating n(+)-p cells using Arsenic doped oxides. Simple n(+)-p structure cells showed corrected efficiencies of 14.5% (AMO) and 12% with doped oxide as an in situ antireflection coating.
Utilization of protein-rich residues in biotechnological processes.
Pleissner, Daniel; Venus, Joachim
2016-03-01
A drawback of biotechnological processes, where microorganisms convert biomass constituents, such as starch, cellulose, hemicelluloses, lipids, and proteins, into wanted products, is the economic feasibility. Particularly the cost of nitrogen sources in biotechnological processes can make up a large fraction of total process expenses. To further develop the bioeconomy, it is of considerable interest to substitute cost-intensive by inexpensive nitrogen sources. The aim of this mini-review was to provide a comprehensive insight of utilization methods of protein-rich residues, such as fish waste, green biomass, hairs, and food waste. The methods described include (i) production of enzymes, (ii) recovery of bioactive compounds, and/or (iii) usage as nitrogen source for microorganisms in biotechnological processes. In this aspect, the utilization of protein-rich residues, which are conventionally considered as waste, allows the development of value-adding processes for the production of bioactive compounds, biomolecules, chemicals, and materials.
A decision technology system for health care electronic commerce.
Forgionne, G A; Gangopadhyay, A; Klein, J A; Eckhardt, R
1999-08-01
Mounting costs have escalated the pressure on health care providers and payers to improve decision making and control expenses. Transactions to form the needed decision data will routinely flow, often electronically, between the affected parties. Conventional health care information systems facilitate flow, process transactions, and generate useful decision information. Typically, such support is offered through a series of stand-alone systems that lose much useful decision knowledge and wisdom during health care electronic commerce (e-commerce). Integrating the stand-alone functions can enhance the quality and efficiency of the segmented support, create synergistic effects, and augment decision-making performance and value for both providers and payers. This article presents an information system that can provide complete and integrated support for e-commerce-based health care decision making. The article describes health care e-commerce, presents the system, examines the system's potential use and benefits, and draws implications for health care management and practice.
Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation.
Stringfellow, Erin J
2017-03-01
Innovation will be key to the success of the Grand Challenges Initiative in social work. A structural systems framework based in system dynamics could be useful for considering how to advance innovation. Diagrams using system dynamics conventions were developed to link common themes across concept papers written by social work faculty members and graduate students ( N = 19). Transdisciplinary teams and ethical partnerships with communities and practitioners will be needed to responsibly develop high-quality innovative solutions. A useful next step would be to clarify to what extent factors that could "make or break" these partnerships arise from within versus outside of the field of social work and how this has changed over time. Advancing innovation in social work will mean making decisions in a complex, ever-changing system. Principles and tools from methods that account for complexity, such as system dynamics, can help improve this decision-making process.
Applying Structural Systems Thinking to Frame Perspectives on Social Work Innovation
Stringfellow, Erin J.
2017-01-01
Objective Innovation will be key to the success of the Grand Challenges Initiative in social work. A structural systems framework based in system dynamics could be useful for considering how to advance innovation. Method Diagrams using system dynamics conventions were developed to link common themes across concept papers written by social work faculty members and graduate students (N = 19). Results Transdisciplinary teams and ethical partnerships with communities and practitioners will be needed to responsibly develop high-quality innovative solutions. A useful next step would be to clarify to what extent factors that could “make or break” these partnerships arise from within versus outside of the field of social work and how this has changed over time. Conclusions Advancing innovation in social work will mean making decisions in a complex, ever-changing system. Principles and tools from methods that account for complexity, such as system dynamics, can help improve this decision-making process. PMID:28298877
Synthetic Biology: Mapping the Scientific Landscape
Oldham, Paul; Hall, Stephen; Burton, Geoff
2012-01-01
This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946
Simulation and analysis of differential GPS
NASA Astrophysics Data System (ADS)
Denaro, R. P.
NASA is conducting a research program to evaluate differential Global Positioning System (GPS) concepts for civil helicopter navigation. It is pointed out that the civil helicopter community will probably be an early user of GPS because of the unique mission operations in areas where precise navigation aids are not available. However, many of these applications involve accuracy requirements which cannot be satisfied by conventional GPS. Such applications include remote area search and rescue, offshore oil platform approach, remote area precision landing, and other precise navigation operations. Differential GPS provides a promising approach for meeting very demanding accuracy requirements. The considered procedure eliminates some of the common bias errors experienced by conventional GPS. This is done by making use of a second GPS receiver. A simulation process is developed as a tool for analyzing various scenarios of GPS-referenced civil aircraft navigation.
NASA Astrophysics Data System (ADS)
Ogasawara, Takashi; Tanimoto, Jun; Fukuda, Eriko; Hagishima, Aya; Ikegaya, Naoki
2014-12-01
In 2 × 2 prisoner's dilemma (PD) games, network reciprocity is one mechanism for adding social viscosity, leading to a cooperative equilibrium. In this paper, we explain how gaming neighborhoods and strategy-adaptation neighborhoods affect network reciprocity independently in spatial PD games. We explore an appropriate range of strategy adaptation neighborhoods as opposed to the conventional method of making the gaming and strategy adaptation neighborhoods coincide to enhance the level of cooperation. In cases of expanding gaming neighborhoods, network reciprocity falls to a low level relative to the conventional setting. In the discussion below, which is based on the results of our simulation, we explore how these enhancements come about. Essentially, varying the range of the neighborhoods influences how cooperative clusters form and expand in the evolutionary process.
Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper
NASA Astrophysics Data System (ADS)
Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin
2017-12-01
LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.
Haffeld, Just
2013-11-01
Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities. Copyright © 2013 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Sharif, Thikra; Bugo, John
2015-06-01
The cultural background, religion and societal norms have a huge influence on the decision making process for physicians, patients and their families, when faced with medical ethical dilemmas. While the medical professionals, through their training, can rely on the principles of autonomy, justice, beneficence and non-maleficence to guide them, the patients can only draw from their personal and cultural experiences. To explore some of the challenges that face physicians when presented with ethical dilemmas. A review of the literature on the principles of medical ethics and the cultural practices of the Maasai tribe, as well as, interview, interaction and observation of the patients and family during patient. management. In the Maasai community in Kenya, where family is the center of all attention and decision-making, the listed ethical principles and rules have a very different understanding of the self-determination, and autonomy becomes collective rather than individualistic. Medical practitioners when faced with ethical medical dilemmas are neither comfortable in adopting the conventional bioethical guidelines, nor in offering a health care purely based on cultural and historical practice. In our set up, developing culturally relevant principles of bioethics appears to be the most effective solution in addressing medical ethical dilemmas.
Williamson, J; Ranyard, R; Cuthbert, L
2000-05-01
This study is an evaluation of a process tracing method developed for naturalistic decisions, in this case a consumer choice task. The method is based on Huber et al.'s (1997) Active Information Search (AIS) technique, but develops it by providing spoken rather than written answers to respondents' questions, and by including think aloud instructions. The technique is used within a conversation-based situation, rather than the respondent thinking aloud 'into an empty space', as is conventionally the case in think aloud techniques. The method results in a concurrent verbal protocol as respondents make their decisions, and a retrospective report in the form of a post-decision summary. The method was found to be virtually non-reactive in relation to think aloud, although the variable of Preliminary Attribute Elicitation showed some evidence of reactivity. This was a methodological evaluation, and as such the data reported are essentially descriptive. Nevertheless, the data obtained indicate that the method is capable of producing information about decision processes which could have theoretical importance in terms of evaluating models of decision-making.
NASA Astrophysics Data System (ADS)
Lapshin, Rostislav V.
2016-08-01
A method of distributed calibration of a probe microscope scanner is suggested. The main idea consists in a search for a net of local calibration coefficients (LCCs) in the process of automatic measurement of a standard surface, whereby each point of the movement space of the scanner can be characterized by a unique set of scale factors. Feature-oriented scanning (FOS) methodology is used as a basis for implementation of the distributed calibration permitting to exclude in situ the negative influence of thermal drift, creep and hysteresis on the obtained results. Possessing the calibration database enables correcting in one procedure all the spatial systematic distortions caused by nonlinearity, nonorthogonality and spurious crosstalk couplings of the microscope scanner piezomanipulators. To provide high precision of spatial measurements in nanometer range, the calibration is carried out using natural standards - constants of crystal lattice. One of the useful modes of the developed calibration method is a virtual mode. In the virtual mode, instead of measurement of a real surface of the standard, the calibration program makes a surface image ;measurement; of the standard, which was obtained earlier using conventional raster scanning. The application of the virtual mode permits simulation of the calibration process and detail analysis of raster distortions occurring in both conventional and counter surface scanning. Moreover, the mode allows to estimate the thermal drift and the creep velocities acting while surface scanning. Virtual calibration makes possible automatic characterization of a surface by the method of scanning probe microscopy (SPM).
Gilmour, Joan; Harrison, Christine; Vohra, Sunita
2011-11-01
Our goal for this supplemental issue of Pediatrics was to consider what practitioners, parents, patients, institutions, and policy-makers need to take into account to make good decisions about using complementary and alternative medicine (CAM) to treat children and to develop guidelines for appropriate use. We began by explaining underlying concepts and principles in ethical, legal, and clinical reasoning and then used case scenarios to explore how they apply and identify gaps that remain in practice and policy. In this concluding article, we review our major findings, summarize our recommendations, and suggest further research. We focus on several key areas: practitioner and patient/parent relationships; decision-making; dispute resolution; standards of practice; hospital/health facility policies; patient safety; education; and research. Ethical principles, standards, and rules applicable when making decisions about conventional care for children apply to decision-making about CAM as well. The same is true of legal reasoning. Although CAM use has seldom led to litigation, general legal principles relied on in cases involving conventional medical care provide the starting point for analysis. Similarly, with respect to clinical decision-making, clinicians are guided by clinical judgment and the best interests of their patient. Whether a therapy is CAM or conventional, clinicians must weigh the relative risks and benefits of therapeutic options and take into account their patient's values, beliefs, and preferences. Consequently, many of our observations apply to conventional and CAM care and to both adult and pediatric patients.
Fang, Zhuo; Jung, Wi Hoon; Korczykowski, Marc; Luo, Lijuan; Prehn, Kristin; Xu, Sihua; Detre, John A; Kable, Joseph W; Robertson, Diana C; Rao, Hengyi
2017-08-02
People vary considerably in moral reasoning. According to Kohlberg's theory, individuals who reach the highest level of post-conventional moral reasoning judge moral issues based on deeper principles and shared ideals rather than self-interest or adherence to laws and rules. Recent research has suggested the involvement of the brain's frontostriatal reward system in moral judgments and prosocial behaviors. However, it remains unknown whether moral reasoning level is associated with differences in reward system function. Here, we combined arterial spin labeling perfusion and blood oxygen level-dependent functional magnetic resonance imaging and measured frontostriatal reward system activity both at rest and during a sequential risky decision making task in a sample of 64 participants at different levels of moral reasoning. Compared to individuals at the pre-conventional and conventional level of moral reasoning, post-conventional individuals showed increased resting cerebral blood flow in the ventral striatum and ventromedial prefrontal cortex. Cerebral blood flow in these brain regions correlated with the degree of post-conventional thinking across groups. Post-conventional individuals also showed greater task-induced activation in the ventral striatum during risky decision making. These findings suggest that high-level post-conventional moral reasoning is associated with increased activity in the brain's frontostriatal system, regardless of task-dependent or task-independent states.
NASA Astrophysics Data System (ADS)
Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan
2017-03-01
Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.
Hydratools, a MATLAB® based data processing package for Sontek Hydra data
Martini, M.; Lightsom, F.L.; Sherwood, C.R.; Xu, Jie; Lacy, J.R.; Ramsey, A.; Horwitz, R.
2005-01-01
The U.S. Geological Survey (USGS) has developed a set of MATLAB tools to process and convert data collected by Sontek Hydra instruments to netCDF, which is a format used by the USGS to process and archive oceanographic time-series data. The USGS makes high-resolution current measurements within 1.5 meters of the bottom. These data are used in combination with other instrument data from sediment transport studies to develop sediment transport models. Instrument manufacturers provide software which outputs unique binary data formats. Multiple data formats are cumbersome. The USGS solution is to translate data streams into a common data format: netCDF. The Hydratools toolbox is written to create netCDF format files following EPIC conventions, complete with embedded metadata. Data are accepted from both the ADV and the PCADP. The toolbox will detect and remove bad data, substitute other sources of heading and tilt measurements if necessary, apply ambiguity corrections, calculate statistics, return information about data quality, and organize metadata. Standardized processing and archiving makes these data more easily and routinely accessible locally and over the Internet. In addition, documentation of the techniques used in the toolbox provides a baseline reference for others utilizing the data.
Digital mammography: physical principles and future applications.
Gambaccini, Mauro; Baldelli, Paola
2003-01-01
Mammography is currently considered the best tool for the detection of breast cancer, pathology with a rate of incidence in constant increase. To produce the radiological picture a screen film combination is conventionally used. One of the inherent limitations of screen- film combination is the fact that the detection, display and storage processes are one and the same, making it impossible to separately optimize each stage. These limitations can be overcome with digital systems. In this work we evaluate the main characteristics of digital detectors available on the market and we compare the performance of digital and conventional systems. Digital mammography, due to the possibility to process images, offers many potential advantages, among these the possibility to introduce the dual-energy technique which employs the composition of two digital images obtained with two different energies to enhance the inherent contrast of pathologies by removing the uniform background. This technique was previously tested by using synchrotron monochromatic beam and a digital detector, and then the Senographe 2000D full-field digital system manufactured by GE Medical Systems. In this work we present preliminary results and the future applications of this technique.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
NASA Astrophysics Data System (ADS)
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Fluorescence lifetime as a new parameter in analytical cytology measurements
NASA Astrophysics Data System (ADS)
Steinkamp, John A.; Deka, Chiranjit; Lehnert, Bruce E.; Crissman, Harry A.
1996-05-01
A phase-sensitive flow cytometer has been developed to quantify fluorescence decay lifetimes on fluorochrome-labeled cells/particles. This instrument combines flow cytometry (FCM) and frequency-domain fluorescence spectroscopy measurement principles to provide unique capabilities for making phase-resolved lifetime measurements, while preserving conventional FCM capabilities. Cells are analyzed as they intersect a high-frequency, intensity-modulated (sine wave) laser excitation beam. Fluorescence signals are processed by conventional and phase-sensitive signal detection electronics and displayed as frequency distribution histograms. In this study we describe results of fluorescence intensity and lifetime measurements on fluorescently labeled particles, cells, and chromosomes. Examples of measurements on intrinsic cellular autofluorescence, cells labeled with immunofluorescence markers for cell- surface antigens, mitochondria stains, and on cellular DNA and protein binding fluorochromes will be presented to illustrate unique differences in measured lifetimes and changes caused by fluorescence quenching. This innovative technology will be used to probe fluorochrome/molecular interactions in the microenvironment of cells/chromosomes as a new parameter and thus expand the researchers' understanding of biochemical processes and structural features at the cellular and molecular level.
Ion beam figuring of small optical components
NASA Astrophysics Data System (ADS)
Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.
1995-12-01
Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.
Collectives for Multiple Resource Job Scheduling Across Heterogeneous Servers
NASA Technical Reports Server (NTRS)
Tumer, K.; Lawson, J.
2003-01-01
Efficient management of large-scale, distributed data storage and processing systems is a major challenge for many computational applications. Many of these systems are characterized by multi-resource tasks processed across a heterogeneous network. Conventional approaches, such as load balancing, work well for centralized, single resource problems, but breakdown in the more general case. In addition, most approaches are often based on heuristics which do not directly attempt to optimize the world utility. In this paper, we propose an agent based control system using the theory of collectives. We configure the servers of our network with agents who make local job scheduling decisions. These decisions are based on local goals which are constructed to be aligned with the objective of optimizing the overall efficiency of the system. We demonstrate that multi-agent systems in which all the agents attempt to optimize the same global utility function (team game) only marginally outperform conventional load balancing. On the other hand, agents configured using collectives outperform both team games and load balancing (by up to four times for the latter), despite their distributed nature and their limited access to information.
Ecosystem services as assessment endpoints for ecological risk assessment.
Munns, Wayne R; Rea, Anne W; Suter, Glenn W; Martin, Lawrence; Blake-Hedges, Lynne; Crk, Tanja; Davis, Christine; Ferreira, Gina; Jordan, Steve; Mahoney, Michele; Barron, Mace G
2016-07-01
Ecosystem services are defined as the outputs of ecological processes that contribute to human welfare or have the potential to do so in the future. Those outputs include food and drinking water, clean air and water, and pollinated crops. The need to protect the services provided by natural systems has been recognized previously, but ecosystem services have not been formally incorporated into ecological risk assessment practice in a general way in the United States. Endpoints used conventionally in ecological risk assessment, derived directly from the state of the ecosystem (e.g., biophysical structure and processes), and endpoints based on ecosystem services serve different purposes. Conventional endpoints are ecologically important and susceptible entities and attributes that are protected under US laws and regulations. Ecosystem service endpoints are a conceptual and analytical step beyond conventional endpoints and are intended to complement conventional endpoints by linking and extending endpoints to goods and services with more obvious benefit to humans. Conventional endpoints can be related to ecosystem services even when the latter are not considered explicitly during problem formulation. To advance the use of ecosystem service endpoints in ecological risk assessment, the US Environmental Protection Agency's Risk Assessment Forum has added generic endpoints based on ecosystem services (ES-GEAE) to the original 2003 set of generic ecological assessment endpoints (GEAEs). Like conventional GEAEs, ES-GEAEs are defined by an entity and an attribute. Also like conventional GEAEs, ES-GEAEs are broadly described and will need to be made specific when applied to individual assessments. Adoption of ecosystem services as a type of assessment endpoint is intended to improve the value of risk assessment to environmental decision making, linking ecological risk to human well-being, and providing an improved means of communicating those risks. Integr Environ Assess Manag 2016;12:522-528. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA. Published 2015 SETAC. This article is a US Government work and, as such, is in the public domain in the USA.
Near-Net Forging Technology Demonstration Program
NASA Technical Reports Server (NTRS)
Hall, I. Keith
1996-01-01
Significant advantages in specific mechanical properties, when compared to conventional aluminum (Al) alloys, make aluminum-lithium (Al-Li) alloys attractive candidate materials for use in cryogenic propellant tanks and dry bay structures. However, the cost of Al-Li alloys is typically five times that of 2219 aluminum. If conventional fabrication processes are employed to fabricate launch vehicle structure, the material costs will restrict their utilization. In order to fully exploit the potential cost and performance benefits of Al-Li alloys, it is necessary that near-net manufacturing methods be developed to off-set or reduce raw material costs. Near-net forging is an advanced manufacturing method that uses elevated temperature metal movement (forging) to fabricate a single piece, near-net shape, structure. This process is termed 'near-net' because only a minimal amount of post-forge machining is required. The near-net forging process was developed to reduce the material scrap rate (buy-to-fly ratio) and fabrication costs associated with conventional manufacturing methods. The goal for the near-net forging process, when mature, is to achieve an overall cost reduction of approximately 50 percent compared with conventional manufacturing options for producing structures fabricated from Al-Li alloys. This NASA Marshall Space Flight Center (MSFC) sponsored program has been a part of a unique government / industry partnership, coordinated to develop and demonstrate near-net forging technology. The objective of this program was to demonstrate scale-up of the near-net forging process. This objective was successfully achieved by fabricating four integrally stiffened, 170- inch diameter by 20-inch tall, Al-Li alloy 2195, Y-ring adapters. Initially, two 2195 Al-Li ingots were converted and back extruded to produce four cylindrical blockers. Conventional ring rolling of the blockers was performed to produce ring preforms, which were then contour ring rolled to produce 'contour preforms'. All of the contour preforms on this first-of-a-kind effort were imperfect, and the ingot used to fabricate two of the preforms was of an earlier vintage. As lessons were learned throughout the program, the tooling and procedures evolved, and hence the preform quality. Two of the best contour preforms were near- net forged to produce a process pathfinder Y-ring adapter and a 'mechanical properties pathfinder' Y-ring adapter. At this point, Lockheed Martin Astronautics elected to procure additional 2195 aluminum-lithium ingot of the latest vintage, produce two additional preforms, and substitute them for older vintage material non-perfectly filled preforms already produced on this contract. The existing preforms could have been used to fulfill the requirements of the contract.
Masood, Athar; Stark, Ken D; Salem, Norman
2005-10-01
Conventional sample preparation for fatty acid analysis is a complicated, multiple-step process, and gas chromatography (GC) analysis alone can require >1 h per sample to resolve fatty acid methyl esters (FAMEs). Fast GC analysis was adapted to human plasma FAME analysis using a modified polyethylene glycol column with smaller internal diameters, thinner stationary phase films, increased carrier gas linear velocity, and faster temperature ramping. Our results indicated that fast GC analyses were comparable to conventional GC in peak resolution. A conventional transesterification method based on Lepage and Roy was simplified to a one-step method with the elimination of the neutralization and centrifugation steps. A robotics-amenable method was also developed, with lower methylation temperatures and in an open-tube format using multiple reagent additions. The simplified methods produced results that were quantitatively similar and with similar coefficients of variation as compared with the original Lepage and Roy method. The present streamlined methodology is suitable for the direct fatty acid analysis of human plasma, is appropriate for research studies, and will facilitate large clinical trials and make possible population studies.
Adult soft tissue sarcomas: conventional therapies and molecularly targeted approaches.
Mocellin, Simone; Rossi, Carlo R; Brandes, Alba; Nitti, Donato
2006-02-01
The therapeutic approach to soft tissue sarcomas (STS) has evolved over the past two decades based on the results from randomized controlled trials, which are guiding physicians in the treatment decision-making process. Despite significant improvements in the control of local disease, a significant number of patients ultimately die of recurrent/metastatic disease following radical surgery due to a lack of effective adjuvant treatments. In addition, the characteristic chemoresistance of STS has compromised the therapeutic value of conventional antineoplastic agents in cases of unresectable advanced/metastatic disease. Therefore, novel therapeutic strategies are urgently needed to improve the prognosis of patients with STS. Recent advances in STS biology are paving the way to the development of molecularly targeted therapeutic strategies, the efficacy of which relies not only on the knowledge of the molecular mechanisms underlying cancer development/progression but also on the personalization of the therapeutic regimen according to the molecular features of individual tumours. In this work, we review the state-of-the-art of conventional treatments for STS and summarize the most promising findings in the development of molecularly targeted therapeutic approaches.
Chen, Chao; Zhang, Xiaojian; He, Wenjie; Lu, Wei; Han, Hongda
2007-08-15
Organic matter in source water has presented many challenges in the field of water purification, especially for conventional treatment. A two-year-long pilot test comparing water treatment processes was conducted to enhance organic matter removal. The tested process combinations included the conventional process, conventional plus advanced treatment, pre-oxidation plus conventional process and pre-oxidation plus conventional plus advanced treatment. The efficiency of each kind of process was assayed with the comprehensive indices of COD(Mn), TOC, UV(254), AOC, BDOC, THMs, and HAAs and their formation potential. The results showed that the combination of the conventional process and O(3)-BAC provides integrated removal of organic matter and meets the required standards. It is the best performing treatment tested in this investigation for treating polluted source water in China. Moreover, much attention should be paid to organic removal before disinfection to control DBP formation and preserve biostability. This paper also reports the range of efficiency of each unit process to calculate the total efficiency of different process combinations in order to help choose the appropriate water treatment process.
Technology of High-speed Direct Laser Deposition from Ni-based Superalloys
NASA Astrophysics Data System (ADS)
Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey
Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.
Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy
NASA Astrophysics Data System (ADS)
Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.
2002-01-01
We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.
EEG alpha activity during imagining creative moves in soccer decision-making situations.
Fink, Andreas; Rominger, Christian; Benedek, Mathias; Perchtold, Corinna M; Papousek, Ilona; Weiss, Elisabeth M; Seidel, Anna; Memmert, Daniel
2018-06-01
This study investigated task-related changes of EEG alpha power while participants were imagining creative moves in soccer decision-making situations. After presenting brief video clips of a soccer scene, participants had to imagine themselves as the acting player and to think either of a creative/original or an obvious/conventional move (control condition) that might lead to a goal. Performance of the soccer task generally elicited comparatively strong alpha power decreases at parietal and occipital sites, indicating high visuospatial processing demands. This power decrease was less pronounced in the creative vs. control condition, reflecting a more internally oriented state of information processing characterized by more imaginative mental simulation rather than stimulus-driven bottom-up processing. In addition, more creative task performance in the soccer task was associated with stronger alpha desynchronization at left cortical sites, most prominently over motor related areas. This finding suggests that individuals who generated more creative moves were more intensively engaged in processes related to movement imagery. Unlike the domain-specific creativity measure, individual's trait creative potential, as assessed by a psychometric creativity test, was globally positively associated with alpha power at all cortical sites. In investigating creative processes implicated in complex creative behavior involving more ecologically valid demands, this study showed that thinking creatively in soccer decision-making situations recruits specific brain networks supporting processes related to visuospatial attention and movement imagery, while the relative increase in alpha power in more creative conditions and in individuals with higher creative potential might reflect a pattern relevant across different creativity domains. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
New materials through a variety of sintering methods
NASA Astrophysics Data System (ADS)
Jaworska, L.; Cyboroń, J.; Cygan, S.; Laszkiewicz-Łukasik, J.; Podsiadło, M.; Novak, P.; Holovenko, Y.
2018-03-01
New sintering techniques make it possible to obtain materials with special properties that are impossible to obtain by conventional sintering techniques. This issue is especially important for ceramic materials for application under extreme conditions. Following the tendency to limit critical materials in manufacturing processes, the use of W, Si, B, Co, Cr should be limited, also. One of the cheapest and widely available materials is aluminum oxide, which shows differences in phase composition, grain size, hardness, strain and fracture toughness of the same type of powder, sintered via various methods. In this paper the alumina was sintered using the conventional free sintering process, microwave sintering, Spark Plasma Sintering (SPS), high pressure-high temperature method (HP-HT) and High Pressure Spark Plasma Sintering (HP SPS). Phase composition analysis, by X-ray diffraction of the alumina materials sintered using various methods, was carried out. For the conventional sintering method, compacts are composed of α-Al2O3 and θ-Al2O3. For compacts sintered using SPS, microwave and HP-HT methods, χ-Al2O3 and γ-Al2O3 phases were additionally present. Mechanical and physical properties of the obtained materials were compared between the methods of sintering. On the basis of images from scanning electron microscope quantitative analysis was performed to determine the degree of grain growth of alumina after sintering.
Application of a simple cerebellar model to geologic surface mapping
Hagens, A.; Doveton, J.H.
1991-01-01
Neurophysiological research into the structure and function of the cerebellum has inspired computational models that simulate information processing associated with coordination and motor movement. The cerebellar model arithmetic computer (CMAC) has a design structure which makes it readily applicable as an automated mapping device that "senses" a surface, based on a sample of discrete observations of surface elevation. The model operates as an iterative learning process, where cell weights are continuously modified by feedback to improve surface representation. The storage requirements are substantially less than those of a conventional memory allocation, and the model is extended easily to mapping in multidimensional space, where the memory savings are even greater. ?? 1991.
Nanoimprint lithography for nanodevice fabrication
NASA Astrophysics Data System (ADS)
Barcelo, Steven; Li, Zhiyong
2016-09-01
Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.
Ultrasonically enhanced extraction of bioactive principles from Quillaja Saponaria Molina.
Gaete-Garretón, L; Vargas-Hernández, Yolanda; Cares-Pacheco, María G; Sainz, Javier; Alarcón, John
2011-07-01
A study of ultrasonic enhancement in the extraction of bioactive principles from Quillaja Saponaria Molina (Quillay) is presented. The effects influencing the extraction process were studied through a two-level factorial design. The effects considered in the experimental design were: granulometry, extraction time, acoustic Power, raw matter/solvent ratio (concentration) and acoustic impedance. It was found that for aqueous extraction the main factors affecting the ultrasonically-assisted process were: granulometry, raw matter/solvent ratio and extraction time. The extraction ratio was increased by Ultrasonics effect and a reduction in extraction time was verified without any influence in the product quality. In addition the process can be carried out at lower temperatures than the conventional method. As the process developed uses chips from the branches of trees, and not only the bark, this research contributes to make the saponin exploitation process a sustainable industry. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
López de Ipiña, JM; Vaquero, C.; Gutierrez-Cañas, C.
2017-06-01
It is expected a progressive increase of the industrial processes that manufacture of intermediate (iNEPs) and end products incorporating ENMs (eNEPs) to bring about improved properties. Therefore, the assessment of occupational exposure to airborne NOAA will migrate, from the simple and well-controlled exposure scenarios in research laboratories and ENMs production plants using innovative production technologies, to much more complex exposure scenarios located around processes of manufacture of eNEPs that, in many cases, will be modified conventional production processes. Here will be discussed some of the typical challenging situations in the process of risk assessment of inhalation exposure to NOAA in Multi-Source Industrial Scenarios (MSIS), from the basis of the lessons learned when confronted to those scenarios in the frame of some European and Spanish research projects.
Study of data I/O performance on distributed disk system in mask data preparation
NASA Astrophysics Data System (ADS)
Ohara, Shuichiro; Odaira, Hiroyuki; Chikanaga, Tomoyuki; Hamaji, Masakazu; Yoshioka, Yasuharu
2010-09-01
Data volume is getting larger every day in Mask Data Preparation (MDP). In the meantime, faster data handling is always required. MDP flow typically introduces Distributed Processing (DP) system to realize the demand because using hundreds of CPU is a reasonable solution. However, even if the number of CPU were increased, the throughput might be saturated because hard disk I/O and network speeds could be bottlenecks. So, MDP needs to invest a lot of money to not only hundreds of CPU but also storage and a network device which make the throughput faster. NCS would like to introduce new distributed processing system which is called "NDE". NDE could be a distributed disk system which makes the throughput faster without investing a lot of money because it is designed to use multiple conventional hard drives appropriately over network. NCS studies I/O performance with OASIS® data format on NDE which contributes to realize the high throughput in this paper.
Plant-Based, Shape-Memory Material Could Replace Today’s Conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A novel approach that creates a renewable, leathery material—programmed to remember its shape—may offer a low-cost alternative to conventional conductors for applications in sensors and robotics. To make the bio-based, shape-memory material, Oak Ridge National Laboratory scientists streamlined a solvent-free process that mixes rubber with lignin—the by-product of woody plants used to make biofuels. They fashioned the leathery material into small strips and brushed on a thin layer of silver nanoparticles to activate electrical conductivity. The strips were stretched or curled and then frozen as part of the process to program the material to return to its intended shape, whichmore » occurs after the application of low heat. “The performance of this polymer can be tuned further,” said ORNL’s Amit Naskar. “Variant lignins can be used at different ratios, which determines the material’s pliability.” This research was sponsored by the Department of Energy’s Bioenergy Technologies Office.« less
Navy electroplating pollution control technology assessment manual
NASA Astrophysics Data System (ADS)
Cushnie, G. C., Jr.
1984-02-01
The report provides information on more than 27 separate technologies encompassing conventional treatment, alternate treatment, material recovery techniques and processes and new plating bath formulations. In addition, the incorporation of a section on in-plant process changes enhances the usefulness of the product in that it highlights noncapital-intensive changes to current practices and/or processes that may have significant bearing on reducing overall chemical and water usage costs as well as consequent wastewater treatment needs and disposal costs. This document was prepared as a joint Air Force-Navy effort. It is intended to serve as a guide for technical personnel making decisions on an appropriate means of meeting effluent limits. The selection of any of the described technologies should be done only after a rigorous identification of site requirements has been performed.
A proposal for amending administrative law to facilitate adaptive management
NASA Astrophysics Data System (ADS)
Craig, Robin K.; Ruhl, J. B.; Brown, Eleanor D.; Williams, Byron K.
2017-07-01
In this article we examine how federal agencies use adaptive management. In order for federal agencies to implement adaptive management more successfully, administrative law must adapt to adaptive management, and we propose changes in administrative law that will help to steer the current process out of a dead end. Adaptive management is a form of structured decision making that is widely used in natural resources management. It involves specific steps integrated in an iterative process for adjusting management actions as new information becomes available. Theoretical requirements for adaptive management notwithstanding, federal agency decision making is subject to the requirements of the federal Administrative Procedure Act, and state agencies are subject to the states’ parallel statutes. We argue that conventional administrative law has unnecessarily shackled effective use of adaptive management. We show that through a specialized ‘adaptive management track’ of administrative procedures, the core values of administrative law—especially public participation, judicial review, and finality— can be implemented in ways that allow for more effective adaptive management. We present and explain draft model legislation (the Model Adaptive Management Procedure Act) that would create such a track for the specific types of agency decision making that could benefit from adaptive management.
Role of fMRI in the decision-making process: epilepsy surgery for children.
Liégeois, Frédérique; Cross, J Helen; Gadian, David G; Connelly, Alan
2006-06-01
Functional MRI (fMRI) is increasingly being used to evaluate children and adolescents who are candidates for surgical treatment of intractable epilepsy. It has the advantage of being noninvasive and well tolerated by young people. By identifying important functional regions within the brain, including unpredictable patterns of functional reorganization, it can aid in surgical decision-making. Here we illustrate this using a number of case studies from the pediatric epilepsy surgery program at our institution. We describe how fMRI, used in conjunction with conventional investigative methods such as neuropsychological assessment, MRI, and electrophysiology, can 1) help to improve functional outcome by enabling resective surgery that spares functional cortex, 2) guide surgical intervention by revealing when reorganization of function has occurred, and 3) show when abnormal cortex is also functionally active, and hence that surgery may not be the best option. Altogether, these roles have reduced the need for invasive procedures that can be both risky and distressing for young people with epilepsy. In our experience, fMRI has significantly contributed to the decision-making process, and improved the counseling and management of young people with intractable epilepsy. Copyright 2006 Wiley-Liss, Inc.
A proposal for amending administrative law to facilitate adaptive management
Craig, Robin K.; Ruhl, J.B.; Brown, Eleanor D.; Williams, Byron K.
2017-01-01
In this article we examine how federal agencies use adaptive management. In order for federal agencies to implement adaptive management more successfully, administrative law must adapt to adaptive management, and we propose changes in administrative law that will help to steer the current process out of a dead end. Adaptive management is a form of structured decision making that is widely used in natural resources management. It involves specific steps integrated in an iterative process for adjusting management actions as new information becomes available. Theoretical requirements for adaptive management notwithstanding, federal agency decision making is subject to the requirements of the federal Administrative Procedure Act, and state agencies are subject to the states' parallel statutes. We argue that conventional administrative law has unnecessarily shackled effective use of adaptive management. We show that through a specialized 'adaptive management track' of administrative procedures, the core values of administrative law—especially public participation, judicial review, and finality— can be implemented in ways that allow for more effective adaptive management. We present and explain draft model legislation (the Model Adaptive Management Procedure Act) that would create such a track for the specific types of agency decision making that could benefit from adaptive management.
ERIC Educational Resources Information Center
Clegg, Jennifer M.; Legare, Cristine H.
2016-01-01
Four tasks (N = 191, 3- to 6-year-olds) examined the effect of instrumental versus conventional language cues on children's imitative fidelity of a necklace-making activity, their memory and transmission of the activity, and their perceptions of functional fixedness. Children in the conventional condition imitated with higher fidelity, transmitted…
NASA Technical Reports Server (NTRS)
Angus, J. C.; Coffield, F. E.; Edwards, R. V.; Mann, J. A., Jr.; Rugh, R. W.; Gallagher, N. C.
1977-01-01
Computer-generated reflection holograms hold substantial promise as a means of carrying out complex machining, marking, scribing, welding, soldering, heat treating, and similar processing operations simultaneously and without moving the work piece or laser beam. In the study described, a photographically reduced transparency of a 64 x 64 element Lohmann hologram was used to make a mask which, in turn, was used (with conventional photoresist techniques) to produce a holographic reflector. Images from a commercial CO2 laser (150W TEM(00)) and the holographic reflector are illustrated and discussed.
Chaudhry, Anil R [Xenia, OH; Dzugan, Robert [Cincinnati, OH; Harrington, Richard M [Cincinnati, OH; Neece, Faurice D [Lyndurst, OH; Singh, Nipendra P [Pepper Pike, OH
2011-06-14
A foam material comprises a liquid polymer and a liquid isocyanate which is mixed to make a solution that is poured, injected or otherwise deposited into a corresponding mold. A reaction from the mixture of the liquid polymer and liquid isocyanate inside the mold forms a thermally collapsible foam structure having a shape that corresponds to the inside surface configuration of the mold and a skin that is continuous and unbroken. Once the reaction is complete, the foam pattern is removed from the mold and may be used as a pattern in any number of conventional casting processes.
Current status of biotechnology in Slovakia.
Stuchlík, Stanislav; Turna, Ján
2013-07-01
The United Nations Convention on Biological Diversity defines biotechnology as: 'Any technological application that uses biological systems, living organisms, or derivatives thereof, to make or modify products or processes for specific use.' In other words biotechnology is 'application of scientific and technical advances in life science to develop commercial products' or briefly 'the use of molecular biology for useful purposes'. This short overview is about different branches of biotechnology carried out in Slovakia and it shows that Slovakia has a good potential for further development of modern biotechnologies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Deterministic quantum splitter based on time-reversed Hong-Ou-Mandel interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jun; Lee, Kim Fook; Kumar, Prem
2007-09-15
By utilizing a fiber-based indistinguishable photon-pair source in the 1.55 {mu}m telecommunications band [J. Chen et al., Opt. Lett. 31, 2798 (2006)], we present the first, to the best of our knowledge, deterministic quantum splitter based on the principle of time-reversed Hong-Ou-Mandel quantum interference. The deterministically separated identical photons' indistinguishability is then verified by using a conventional Hong-Ou-Mandel quantum interference, which exhibits a near-unity dip visibility of 94{+-}1%, making this quantum splitter useful for various quantum information processing applications.
ERIC Educational Resources Information Center
McCafferty, Paul
2017-01-01
One of the most frequently cited principles in the 1989 United Nations Convention on the Rights of the Child is Article 12. This article provides a critical analysis of the challenges that child protection social work faces when implementing Article 12 in social work decision-making whilst simultaneously keeping children safe. The article begins…
ERIC Educational Resources Information Center
Bernard, Desiree
A major factor hindering women's human rights has been cultural attitudes based on stereotypical beliefs on the role of women in society, which have resulted in women being denied access to education, health care, property, employment, or involvement in decision-making. This report examines and compares some of the issues affecting the well-being…
Optical fiber sensor having a sol-gel fiber core and a method of making
Tao, Shiquan; Jindal, Rajeev; Winstead, Christopher; Singh, Jagdish P.
2006-06-06
A simple, economic wet chemical procedure is described for making sol-gel fibers. The sol-gel fibers made from this process are transparent to ultraviolet, visible and near infrared light. Light can be guided in these fibers by using an organic polymer as a fiber cladding. Alternatively, air can be used as a low refractive index medium. The sol-gel fibers have a micro pore structure which allows molecules to diffuse into the fiber core from the surrounding environment. Chemical and biochemical reagents can be doped into the fiber core. The sol-gel fiber can be used as a transducer for constructing an optical fiber sensor. The optical fiber sensor having an active sol-gel fiber core is more sensitive than conventional evanescent wave absorption based optical fiber sensors.
Defining Parents, Making Citizens: Nationality and Citizenship in Transnational Surrogacy.
Deomampo, Daisy
2015-01-01
Over the past decade, India has attracted would-be parents from around the globe, many seeking to build their families through gestational surrogacy. Through extensive ethnographic fieldwork in India, I found that issues of nationality and citizenship for babies born via gestational surrogacy were among the most pressing concerns for commissioning parents. In this article, I consider the ways in which states and institutions define parents and make citizens, as well as how families created through surrogacy in India challenge these processes in new ways. By closely interrogating the ways that families, states, and global and local institutions define parenthood and citizenship within the context of transnational surrogacy, I show that while transnational surrogacy may challenge conventional understandings of kinship and family, it simultaneously renaturalizes state definitions of citizenship and motherhood.
NASA Technical Reports Server (NTRS)
1983-01-01
Rockwell International, NASA's prime contractor for the Space Shuttle, asked West Coast Netting (WCN) to develop a safety net for personnel working on the Shuttle Orbiter. This could not be an ordinary net, it had to be relatively small, yet have extraordinary tensile strength. It also had to be fire resistant and resistant to ultraviolet (UV) light. After six months, WCN found the requisite fiber, a polyester-like material called NOMEX. The company was forced to invent a more sophisticated twisting process since conventional methods did not approach specified breaking strength. The resulting product, the Hyperester net, sinks faster and fishes deeper, making it attractive to fishing fleets. A patented treatment for UV protection and greater abrasion resistance make Hyperester nets last longer, and the no-shrink feature is an economic bonus.
Boron-Filled Hybrid Carbon Nanotubes
Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar
2016-01-01
A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526
Dissecting effects of complex mixtures: who's afraid of informative priors?
Thomas, Duncan C; Witte, John S; Greenland, Sander
2007-03-01
Epidemiologic studies commonly investigate multiple correlated exposures, which are difficult to analyze appropriately. Hierarchical modeling provides a promising approach for analyzing such data by adding a higher-level structure or prior model for the exposure effects. This prior model can incorporate additional information on similarities among the correlated exposures and can be parametric, semiparametric, or nonparametric. We discuss the implications of applying these models and argue for their expanded use in epidemiology. While a prior model adds assumptions to the conventional (first-stage) model, all statistical methods (including conventional methods) make strong intrinsic assumptions about the processes that generated the data. One should thus balance prior modeling assumptions against assumptions of validity, and use sensitivity analyses to understand their implications. In doing so - and by directly incorporating into our analyses information from other studies or allied fields - we can improve our ability to distinguish true causes of disease from noise and bias.
Non-Arrhenius protein aggregation.
Wang, Wei; Roberts, Christopher J
2013-07-01
Protein aggregation presents one of the key challenges in the development of protein biotherapeutics. It affects not only product quality but also potentially impacts safety, as protein aggregates have been shown to be linked with cytotoxicity and patient immunogenicity. Therefore, investigations of protein aggregation remain a major focus in pharmaceutical companies and academic institutions. Due to the complexity of the aggregation process and temperature-dependent conformational stability, temperature-induced protein aggregation is often non-Arrhenius over even relatively small temperature windows relevant for product development, and this makes low-temperature extrapolation difficult based simply on accelerated stability studies at high temperatures. This review discusses the non-Arrhenius nature of the temperature dependence of protein aggregation, explores possible causes, and considers inherent hurdles for accurately extrapolating aggregation rates from conventional industrial approaches for selecting accelerated conditions and from conventional or more advanced methods of analyzing the resulting rate data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frye, A.
After decades of diplomatic wrangling, breakthroughs have come on many fronts, both bilateral and multilateral. Not only have Soviets and now Russians joined Americans in agreements to make massive reductions in strategic arms, but the overwhelming majority of nations have signed on to indefinite extension of the Nuclear Nonproliferation Treaty (NPT). Leaders in Ukraine, Kazakstan, and Belarus have greatly contributed to the nonproliferation regime by returning thousands of Soviet nuclear weapons to Russia for safekeeping and elimination, a process to be completed this fall with the departure of the last few warheads from Belarus. The Conventional Forces in Europe Treatymore » has ratified and reinforced the transformation of the military balance on the continent, although the altered political landscape after the collapse of the Soviet empire will require nettlesome changes in its provisions. The long-sought Chemical Weapons Convention should enter into force shortly, and, despite India`s recalcitrance, a comprehensive nuclear test ban enjoys nearly universal support.« less
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-07-14
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.
Domestic and Industrial Water Disinfection Using Boron-Doped Diamond Electrodes
NASA Astrophysics Data System (ADS)
Rychen, Philippe; Provent, Christophe; Pupunat, Laurent; Hermant, Nicolas
This chapter first describes main properties and manufacturing process (production using HF-CVD, quality-control measurements, etc.) of diamond electrodes and more specifically boron-doped diamond (BDD) electrodes. Their exceptional properties make such electrodes particularly suited for many disinfection applications as thanks to their wide working potential window and their high anodic potential, they allow generating a mixture of powerful oxidizing species mainly based on active oxygen and peroxides. Such mixture of disinfecting agents is far more efficient than conventional chemical or physical known techniques. Their efficiency was tested against numerous microorganisms and then proved to be greater than conventional methods. All bacteria and viruses tested up to date were inactivated 3-5 times faster with a treatment based on with BDD electrodes and the DiaCellⓇ technology than with other techniques. Several applications, either industrial or private (wellness and home use), are discussed with a focus on the dedicated products and the main technology advantages.
Class advantage and the gender divide: flexibility on the job and at home.
Gerstel, Naomi; Clawson, Dan
2014-09-01
Using a survey, interviews, and observations, the authors examine inequality in temporal flexibility at home and at work. They focus on four occupations to show that class advantage is deployed in the service of gendered notions of temporal flexibility while class disadvantage makes it difficult to obtain such flexibility. The class advantage of female nurses and male doctors enables them to obtain flexibility in their work hours; they use that flexibility in gendered ways: nurses to prioritize family and physicians to prioritize careers. Female nursing assistants and male emergency medical technicians can obtain little employee-based flexibility and, as a result, have more difficulty meeting conventional gendered expectations. Advantaged occupations "do gender" in conventional ways while disadvantaged occupations "undo gender." These processes operate through organizational rules and cultural schemas that sustain one another but may undermine the gender and class neutrality of family-friendly policies.
Biosimilar therapeutics-what do we need to consider?
Schellekens, Huub
2009-01-01
Patents for the first generation of approved biopharmaceuticals have either expired or are about to expire. Thus the market is opening for generic versions, referred to as 'biosimilars' (European Union) or 'follow-on protein products' (United States). Healthcare professionals need to understand the critical issues surrounding the use of biosimilars to make informed treatment decisions.The complex high-molecular-weight three-dimensional structures of biopharmaceuticals, their heterogeneity and dependence on production in living cells makes them different from classical chemical drugs. Current analytical methods cannot characterize these complex molecules sufficiently to confirm structural equivalence with reference molecules. Verification of the similarity of biosimilars to innovator biopharmaceuticals remains a key challenge. Furthermore, a critical safety issue, the immunogenicity of biopharmaceuticals, has been highlighted in recent years, confirming a need for comprehensive immunogenicity testing prior to approval and extended post-marketing surveillance.Biosimilars present a new set of challenges for regulatory authorities when compared with conventional generics. While the demonstration of a pharmacokinetic similarity is sufficient for conventional, small-molecule generic agents, a number of issues will make the approval of biosimilars more complicated. Documents recently published by the European Medicines Agency (EMEA) outlining requirements for the market approval of biosimilars provide much-needed guidance. The EMEA has approved a number of biosimilar products in a scientifically rigorous and balanced process. Outstanding issues include the interchangeability of biosimilars and innovator products, the possible need for unique naming to differentiate the various biopharmaceutical products, and more comprehensive labelling for biosimilars to include relevant clinical data.
Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E
2016-04-01
In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and superficially porous particles. Copyright © 2016 Elsevier B.V. All rights reserved.
Advanced hole patterning technology using soft spacer materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Park, Jong Keun; Hustad, Phillip D.; Aqad, Emad; Valeri, David; Wagner, Mike D.; Li, Mingqi
2017-03-01
A continuing goal in integrated circuit industry is to increase density of features within patterned masks. One pathway being used by the device manufacturers for patterning beyond the 80nm pitch limitation of 193 immersion lithography is the self-aligned spacer double patterning (SADP). Two orthogonal line space patterns with subsequent SADP can be used for contact holes multiplication. However, a combination of two immersion exposures, two spacer deposition processes, and two etch processes to reach the desired dimensions makes this process expensive and complicated. One alternative technique for contact hole multiplication is the use of an array of pillar patterns. Pillars, imaged with 193 immersion photolithography, can be uniformly deposited with spacer materials until a hole is formed in the center of 4 pillars. Selective removal of the pillar core gives a reversal of phases, a contact hole where there was once a pillar. However, the highly conformal nature of conventional spacer materials causes a problem with this application. The new holes, formed between 4 pillars, by this method have a tendency to be imperfect and not circular. To improve the contact hole circularity, this paper presents the use of both conventional spacer material and soft spacer materials. Application of soft spacer materials can be achieved by an existing coating track without additional cost burden to the device manufacturers.
Field mappers for laser material processing
NASA Astrophysics Data System (ADS)
Blair, Paul; Currie, Matthew; Trela, Natalia; Baker, Howard J.; Murphy, Eoin; Walker, Duncan; McBride, Roy
2016-03-01
The native shape of the single-mode laser beam used for high power material processing applications is circular with a Gaussian intensity profile. Manufacturers are now demanding the ability to transform the intensity profile and shape to be compatible with a new generation of advanced processing applications that require much higher precision and control. We describe the design, fabrication and application of a dual-optic, beam-shaping system for single-mode laser sources, that transforms a Gaussian laser beam by remapping - hence field mapping - the intensity profile to create a wide variety of spot shapes including discs, donuts, XY separable and rotationally symmetric. The pair of optics transform the intensity distribution and subsequently flatten the phase of the beam, with spot sizes and depth of focus close to that of a diffraction limited beam. The field mapping approach to beam-shaping is a refractive solution that does not add speckle to the beam, making it ideal for use with single mode laser sources, moving beyond the limits of conventional field mapping in terms of spot size and achievable shapes. We describe a manufacturing process for refractive optics in fused silica that uses a freeform direct-write process that is especially suited for the fabrication of this type of freeform optic. The beam-shaper described above was manufactured in conventional UV-fused silica using this process. The fabrication process generates a smooth surface (<1nm RMS), leading to laser damage thresholds of greater than 100J/cm2, which is well matched to high power laser sources. Experimental verification of the dual-optic filed mapper is presented.
NASA Astrophysics Data System (ADS)
Carlton, David Bryan
The exponential improvements in speed, energy efficiency, and cost that the computer industry has relied on for growth during the last 50 years are in danger of ending within the decade. These improvements all have relied on scaling the size of the silicon-based transistor that is at the heart of every modern CPU down to smaller and smaller length scales. However, as the size of the transistor reaches scales that are measured in the number of atoms that make it up, it is clear that this scaling cannot continue forever. As a result of this, there has been a great deal of research effort directed at the search for the next device that will continue to power the growth of the computer industry. However, due to the billions of dollars of investment that conventional silicon transistors have received over the years, it is unlikely that a technology will emerge that will be able to beat it outright in every performance category. More likely, different devices will possess advantages over conventional transistors for certain applications and uses. One of these emerging computing platforms is nanomagnetic logic (NML). NML-based circuits process information by manipulating the magnetization states of single-domain nanomagnets coupled to their nearest neighbors through magnetic dipole interactions. The state variable is magnetization direction and computations can take place without passing an electric current. This makes them extremely attractive as a replacement for conventional transistor-based computing architectures for certain ultra-low power applications. In most work to date, nanomagnetic logic circuits have used an external magnetic clocking field to reset the system between computations. The clocking field is then subsequently removed very slowly relative to the magnetization dynamics, guiding the nanomagnetic logic circuit adiabatically into its magnetic ground state. In this dissertation, I will discuss the dynamics behind this process and show that it is greatly influenced by thermal fluctuations. The magnetic ground state containing the answer to the computation is reached by a stochastic process very similar to the thermal annealing of crystalline materials. We will discuss how these dynamics affect the expected reliability, speed, and energy dissipation of NML systems operating under these conditions. Next I will show how a slight change in the properties of the nanomagnets that make up a NML circuit can completely alter the dynamics by which computations take place. The addition of biaxial anisotropy to the magnetic energy landscape creates a metastable state along the hard axis of the nanomagnet. This metastability can be used to remove the stochastic nature of the computation and has large implications for reliability, speed, and energy dissipation which will all be discussed. The changes to NML operation by the addition of biaxial anisotropy introduce new challenges to realizing a commercially viable logic architecture. In the final chapter, I will discuss these challenges and talk about the architectural changes that are necessary to make a working NML circuit based on nanomagnets with biaxial anisotropy.
Application of photogrammetry for analysis of occlusal contacts.
Shigeta, Yuko; Hirabayashi, Rio; Ikawa, Tomoko; Kihara, Takuya; Ando, Eriko; Hirai, Shinya; Fukushima, Shunji; Ogawa, Takumi
2013-04-01
The conventional 2D-analysis methods for occlusal contacts provided limited information on tooth morphology. This present study aims to detect 3D positional information of occlusal contacts from 2D-photos via photogrammetry. We propose an image processing solution for analysis of occlusal contacts and facets via the black silicone method and a photogrammetric technique. The occlusal facets were reconstructed from a 2D-photograph data-set of inter-occlusal records into a 3D image via photogrammetry. The configuration of the occlusal surface was reproduced with polygons. In addition, the textures of the occlusal contacts were mapped to each polygon. DIFFERENCE FROM CONVENTIONAL METHODS: Constructing occlusal facets with 3D polygons from 2D-photos with photogrammetry was a defining characteristic of this image processing technique. It allowed us to better observe findings of the black silicone method. Compared with conventional 3D analysis using a 3D scanner, our 3D models did not reproduce the detail of the anatomical configuration. However, by merging the findings of the inter-occlusal record, the deformation of mandible and the displacement of periodontal ligaments under occlusal force were reflected in our model. EFFECT OR PERFORMANCE: Through the use of polygons in the conversion of 2D images to 3D images, we were able to define the relation between the location and direction of the occlusal contacts and facets, which was difficult to detect via conventional methods. Through our method of making a 3D polygon model, the findings of inter-occlusal records which reflected the jaw/teeth behavior under occlusal force could be observed 3-dimensionally. Copyright © 2012 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Approximating genomic reliabilities for national genomic evaluation
USDA-ARS?s Scientific Manuscript database
With the introduction of standard methods for approximating effective daughter/data contribution by Interbull in 2001, conventional EDC or reliabilities contributed by daughter phenotypes are directly comparable across countries and used in routine conventional evaluations. In order to make publishe...
Production of Green Steel from Red Mud: A Novel Concept
NASA Astrophysics Data System (ADS)
Bhoi, Bhagyadhar; Behera, Pravas Ranjan; Mishra, Chitta Ranjan
Red mud of Indian origin contains around 55% plus of Fe2O3 and is considered as a hazardous waste for the alumina industry. For production of one tone of alumina employing the Bayer's Process, around two tones of red mud is generated from three tones of Bauxite. Conventional process of steel making is not devoid of environmental pollution. In the present investigation, efforts have been made to produce steel from red mud by adopting reduction roasting, magnetic separation and hydrogen plasma smelting route. Magnetic fraction, containing enriched iron oxide and minimal content of alumina, is produced following the first two stages which is then subjected to hydrogen plasma smelting process for production of steel. This novel concept follows a green path way for production of steel free from pollution and is termed as green steel. Further, the only by-product that is produced in the process, is water, which is eco-friendly and recyclable.
Li, Jie; Liang, Xinhua; Liou, Frank; Park, Jonghyun
2018-01-30
This paper presents a new concept for making battery electrodes that can simultaneously control macro-/micro-structures and help address current energy storage technology gaps and future energy storage requirements. Modern batteries are fabricated in the form of laminated structures that are composed of randomly mixed constituent materials. This randomness in conventional methods can provide a possibility of developing new breakthrough processing techniques to build well-organized structures that can improve battery performance. In the proposed processing, an electric field (EF) controls the microstructures of manganese-based electrodes, while additive manufacturing controls macro-3D structures and the integration of both scales. The synergistic control of micro-/macro-structures is a novel concept in energy material processing that has considerable potential for providing unprecedented control of electrode structures, thereby enhancing performance. Electrochemical tests have shown that these new electrodes exhibit superior performance in their specific capacity, areal capacity, and life cycle.
Improved cost-effective fabrication of arbitrarily shaped μIPMC transducers
NASA Astrophysics Data System (ADS)
Feng, Guo-Hua; Chen, Ri-Hong
2008-01-01
Conventional ionic polymer-metal composite (IPMC) production cuts individual transducers from bulk IPMC sheets. This paper presents a novel photolithographic technique that grows a large array of identical devices on a thin (~µm range) parylene diaphragm supported on a perforated substrate of material that is immune to the subsequent processing liquids. In particular, the new technique relies on a unique wax fill-up and removal concept that can produce arbitrarily shaped Nafion films with micron feature size. The developed process is cheap and results in devices of high uniformity and reliability, with greater design flexibility. Microtensile testing characterizes the fracture profiles of the non-electroded Nafion film and IPMC. Young's modulus is characterized, as well as maximum displacement and current consumption under various loading, driving voltages, waveforms and frequencies. High product quality and low process costs make this process of interest for mass production of micromachined IPMC transducers.
Safety assurance of non-deterministic flight controllers in aircraft applications
NASA Astrophysics Data System (ADS)
Noriega, Alfonso
Loss of control is a serious problem in aviation that primarily affects General Aviation. Technological advancements can help mitigate the problem, but the FAA certification process makes certain solutions economically unfeasible. This investigation presents the design of a generic adaptive autopilot that could potentially lead to a single certification for use in several makes and models of aircraft. The autopilot consists of a conventional controller connected in series with a robust direct adaptive model reference controller. In this architecture, the conventional controller is tuned once to provide outer-loop guidance and navigation to a reference model. The adaptive controller makes unknown aircraft behave like the reference model, allowing the conventional controller to successfully provide navigation without the need for retuning. A strong theoretical foundation is presented as an argument for the safety and stability of the controller. The stability proof of direct adaptive controllers require that the plant being controlled has no unstable transmission zeros and has a nonzero high frequency gain. Because most conventional aircraft do not readily meet these requirements, a process known as sensor blending was used. Sensor blending consists of using a linear combination of the plant's outputs that has no unstable transmission zeros and has a nonzero high frequency gain to drive the adaptive controller. Although this method does not present a problem for regulators, it can lead to a steady state error in tracking applications. The sensor blending theory was expanded to take advantage of the system's dynamics to allow for zero steady state error tracking. This method does not need knowledge of the specific system's dynamics, but instead uses the structure of the A and B matrices to perform the blending for the general case. The generic adaptive autopilot was tested in two high-fidelity nonlinear simulators of two typical General Aviation aircraft. The results show that the autopilot was able to adapt appropriately to the different aircraft and was able to perform three-dimensional navigation and an ILS approach, without any modification to the controller. The autopilot was tested in moderate atmospheric turbulence, using consumer-grade sensors and actuators currently available in General Aviation aircraft. The generic adaptive autopilot was shown to be robust to atmospheric turbulence and sensor and actuator random noise. In both aircraft simulators, the autopilot adapted successfully to changes in airspeed, altitude, and configuration. This investigation proves the feasibility of a generic autopilot using direct adaptive controller. The autopilot does not need a priori information of the specific aircraft's dynamics to maintain its safety and stability arguments. Real-time parameter estimation of the aircraft dynamics are not needed. Recommendations for future work are provided.
Implementation of shared decision making in anaesthesia and its influence on patient satisfaction.
Flierler, W J; Nübling, M; Kasper, J; Heidegger, T
2013-07-01
There is a lack of data about the implementation of shared decision making in anaesthesia. To assess patients' preference to be involved in medical decision making and its influence on patient satisfaction, we studied 197 matched pairs (patients and anaesthetists) using two previously validated questionnaires. Before surgery, patients had to decide between general vs regional anaesthesia and, where appropriate, between conventional postoperative pain therapy vs catheter techniques. One hundred and eighty-six patients (94%) wished to be involved in shared decision making. One hundred and twenty-two patients (62%) experienced the exact amount of shared decision making that they wanted; 44 (22%) were slightly more involved and 20 (10%) slightly less involved in shared decision making than they desired. Preferences regarding involvement in shared decision making were similar between patients and anaesthetists with mean (SD) points of 54.1 (16.2) vs 56.4 (27.6) (p=0.244), respectively on a 0-100 scale; however, patients were found to have a stronger preference for a totally balanced shared decision-making process (65% vs 32%). Overall patient satisfaction was high: 88% were very satisfied and 12% satisfied with a mean (SD) value of 96.1 (10.6) on a 0-100 scale. Shared decision making is important for providing high levels of patient satisfaction. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.
NASA Astrophysics Data System (ADS)
Vogt, S.; Neumayer, F. F.; Serkyov, I.; Jesner, G.; Kelsch, R.; Geile, M.; Sommer, A.; Golle, R.; Volk, W.
2017-09-01
Steel is the most common material used in vehicles’ chassis, which makes its research an important topic for the automotive industry. Recently developed ultra-high-strength steels (UHSS) provide extreme tensile strength up to 1,500 MPa and combine great crashworthiness with good weight reduction potential. However, in order to reach the final shape of sheet metal parts additional cutting steps such as trimming and piercing are often required. The final trimming of quenched metal sheets presents a huge challenge to a conventional process, mainly because of the required extreme cutting force. The high cutting impact, due to the materials’ brittleness, causes excessive tool wear or even sudden tool failure. Therefore, a laser is commonly used for the cutting process, which is time and energy consuming. The purpose of this paper is to demonstrate the capability of a conventional blanking tool design in a continuous stroke piercing process using boron steel 22MnB5 sheets. Two different types of tool steel were tested for their suitability as active cutting elements: electro-slag remelted (ESR) cold work tool steel Bohler K340 ISODUR and powder-metallurgic (PM) high speed steel Bohler S390 MICROCLEAN. A FEM study provided information about an optimized punch design, which withstands buckling under high cutting forces. The wear behaviour of the process was assessed by the tool wear of the active cutting elements as well as the quality of cut surfaces.
A similarity-based data warehousing environment for medical images.
Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar
2015-11-01
A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue
2018-03-01
The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leischow, Scott J; Ayo-Yusuf, Olalekan; Backinger, Cathy L
2013-04-01
Much of the research used to support the ratification of the WHO Framework Convention on Tobacco Control (FCTC) was conducted in high-income countries or in highly controlled environments. Therefore, for the global tobacco control community to make informed decisions that will continue to effectively inform policy implementation, it is critical that the tobacco control community, policy makers, and funders have updated information on the state of the science as it pertains to provisions of the FCTC. Following the National Cancer Institute's process model used in identifying the research needs of the U.S. Food and Drug Administration's relatively new tobacco law, a core team of scientists from the Society for Research on Nicotine and Tobacco identified and commissioned internationally recognized scientific experts on the topics covered within the FCTC. These experts analyzed the relevant sections of the FCTC and identified critical gaps in research that is needed to inform policy and practice requirements of the FCTC. This paper summarizes the process and the common themes from the experts' recommendations about the research and related infrastructural needs. Research priorities in common across Articles include improving surveillance, fostering research communication/collaboration across organizations and across countries, and tracking tobacco industry activities. In addition, expanding research relevant to low- and middle-income countries (LMIC), was also identified as a priority, including identification of what existing research findings are transferable, what new country-specific data are needed, and the infrastructure needed to implement and disseminate research so as to inform policy in LMIC.
NASA Astrophysics Data System (ADS)
Hardman, M.; Brodzik, M. J.; Long, D. G.
2017-12-01
Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Historical versions of the gridded passive microwave data sets were produced as flat binary files described in human-readable documentation. This format is error-prone and makes it difficult to reliably include all processing and provenance. Funded by NASA MEaSUREs, we have completely reprocessed the gridded data record that includes SMMR, SSM/I-SSMIS and AMSR-E. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) files are self-describing. Our approach to the new data set was to create netCDF4 files that use standard metadata conventions and best practices to incorporate file-level, machine- and human-readable contents, geolocation, processing and provenance metadata. We followed the flexible and adaptable Climate and Forecast (CF-1.6) Conventions with respect to their coordinate conventions and map projection parameters. Additionally, we made use of Attribute Conventions for Dataset Discovery (ACDD-1.3) that provided file-level conventions with spatio-temporal bounds that enable indexing software to search for coverage. Our CETB files also include temporal coverage and spatial resolution in the file-level metadata for human-readability. We made use of the JPL CF/ACDD Compliance Checker to guide this work. We tested our file format with real software, for example, netCDF Command-line Operators (NCO) power tools for unlimited control on spatio-temporal subsetting and concatenation of files. The GDAL tools understand the CF metadata and produce fully-compliant geotiff files from our data. ArcMap can then reproject the geotiff files on-the-fly and work with other geolocated data such as coastlines, with no special work required. We expect this combination of standards and well-tested interoperability to significantly improve the usability of this important ESDR for the Earth Science community.
NASA Astrophysics Data System (ADS)
Macián-Cervera, Javier; Escuder-Bueno, Ignacio
2017-04-01
One of the main hazards over the water quality in the water supply systems from surface raw water is cryptosporidium, considered by World Health Organization, as the most dangerous emergent pathogen. Analitycal methods for cryptosporidium are expensive, laborious and they do not have enough precission, on the other hand, labs analyze discretal samples, while drinking water production is a continuous process. In that point, the introduction of risk models in necessary to check the ability of safety of the water produced. The advances in tools able to quantify risk applied to conventional treatment drinking water treatment plants is quite useful for the operators, able to assess about decisions in operation and in investments. The model is applied into a real facility. With the results, it's possible to conclude interesting guidelines and policies about improving plant's operation mode. The main conclusion is that conventional treatment is able to work as effective barrier against cryptosporidium, but it is necessary to assess the risk of the plant while it is operating. Taking into account limitations of knowledge, risk estimation can rise non tolerable levels. In that situation, the plant must make investments in the treatment improving the operation, to get tolerable risk levels.
High flux table-top ultrafast soft X-ray source generated by high harmonic generation
NASA Astrophysics Data System (ADS)
Thiré, Nicolas; Schmidt, Bruno E.; Fourmeaux, Sylvain; Beaulieu, Samuel; Cardin, Vincent; Negro, Matteo; Kieffer, Jean-Claude; Vozzi, Caterina; Legare, François
2014-05-01
Generation of ultrafast soft X-ray pulses is a major challenge for conventional laboratories. Using the process of HHG enables generation of such short wavelength photons. Intense laser sources in the infrared are necessary to reach the soft X-ray spectral range as the HHG cut-off scales with Iλ2. However, in the limit of the single atom response, increasing the laser wavelength leads to a significant decrease of the HHG flux. To compensate, one has to increase the number of emitters with high ionization potential. At the Advanced Laser Light Source, we have addressed this challenge by using a new gas cell design and developing a 10 mJ - 30 fs source at 1.8 μm. Using this setup, we have been able to generate harmonics in the water window spectral range for neon and helium with short time duration (<30 fs) in a conventional laboratory. A flux measurement has been performed showing ~ 2 × 105 photons/shot between 280 and 540 eV, making it possible to see the carbon k-edge at 280eV in a single shot manner. This soft X-ray beam is also extremely well collimated (0.1 mrad) making it this table-top beamline ideal for a number of applications.
On-line process analysis innovation: DiComp (tm) shunting dielectric sensor technology
NASA Technical Reports Server (NTRS)
Davis, Craig R.; Waldman, Frank A.
1993-01-01
The DiComp Shunting Dielectric Sensor (SDS) is a new patent-pending technology developed under the Small Business Innovation Research Program (SBIR) for NASA's Kennedy Space Center. The incorporation of a shunt electrode into a conventional fringing field dielectric sensor makes the SDS uniquely sensitive to changes in material dielectric properties in the KHz to MHz range which were previously detectable only at GHz measurement frequencies. The initial NASA application of the SDS for Nutrient Delivery Control has demonstrated SDS capabilities for thickness and concentration measurement of Hoagland nutrient solutions. The commercial introduction of DiComp SDS technology for concentration and percent solids measurements in dispersions, emulsions and solutions represents a new technology for process measurements for liquids in a variety of industries.
Electric measurements of PV heterojunction structures a-SiC/c-Si
NASA Astrophysics Data System (ADS)
Perný, Milan; Šály, Vladimír; Janíček, František; Mikolášek, Miroslav; Váry, Michal; Huran, Jozef
2018-01-01
Due to the particular advantages of amorphous silicon or its alloys with carbon in comparison to conventional crystalline materials makes such a material still interesting for study. The amorphous silicon carbide may be used in a number of micro-mechanical and micro-electronics applications and also for photovoltaic energy conversion devices. Boron doped thin layers of amorphous silicon carbide, presented in this paper, were prepared due to the optimization process for preparation of heterojunction solar cell structure. DC and AC measurement and subsequent evaluation were carried out in order to comprehensively assess the electrical transport processes in the prepared a-SiC/c-Si structures. We have investigated the influence of methane content in deposition gas mixture and different electrode configuration.
Metallic oxide switches using thick film technology
NASA Technical Reports Server (NTRS)
Patel, D. N.; Williams, L., Jr.
1974-01-01
Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-01
Several new turboexpander gas-plant schemes offer two advantages over conventional processes: they can recover over 85% of the natural gas stream's ethane while handling higher inlet CO/sub 2/ concentrations without freezing - this saves considerable costs by allowing smaller CO/sub 2/ removal units or eliminating the need for them entirely, and the liquids recovery system requires no more external horsepower and in many cases, even less; this maximized the quantity of liquids recovered per unit of energy input, thus further lowering costs. The economic benefits associated with the proved plant designs make the processes attractive even for inlet gas streamsmore » containing little or no CO/sub 2/.« less
Evans, Steven T; Stewart, Kevin D; Afdahl, Chris; Patel, Rohan; Newell, Kelcy J
2017-07-14
In this paper, we discuss the optimization and implementation of a high throughput process development (HTPD) tool that utilizes commercially available micro-liter sized column technology for the purification of multiple clinically significant monoclonal antibodies. Chromatographic profiles generated using this optimized tool are shown to overlay with comparable profiles from the conventional bench-scale and clinical manufacturing scale. Further, all product quality attributes measured are comparable across scales for the mAb purifications. In addition to supporting chromatography process development efforts (e.g., optimization screening), comparable product quality results at all scales makes this tool is an appropriate scale model to enable purification and product quality comparisons of HTPD bioreactors conditions. The ability to perform up to 8 chromatography purifications in parallel with reduced material requirements per run creates opportunities for gathering more process knowledge in less time. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Fooks, Gary Jonas; Smith, Julia; Lee, Kelley; Holden, Chris
2017-03-08
The World Health Organization (WHO) Framework Convention on Tobacco Control (FCTC) stands to significantly reduce tobacco-related mortality by accelerating the introduction of evidence-based tobacco control measures. However, the extent to which States Parties have implemented the Convention varies considerably. Article 5.3 of the FCTC, is intended to insulate policy-making from the tobacco industry's political influence, and aims to address barriers to strong implementation of the Convention associated with tobacco industry political activity. This paper quantitatively assesses implementation of Article 5.3's Guidelines for Implementation, evaluates the strength of Parties' efforts to implement specific recommendations, and explores how different approaches to implementation expose the policy process to continuing industry influence. We cross-referenced a broad range of documentary data (including FCTC Party reports and World Bank data on the governance of conflicts of interest in public administration) against Article 5.3 implementation guidelines (n = 24) for 155 Parties, and performed an in-depth thematic analysis to examine the strength of implementation for specific recommendations. Across all Parties, 16% of guideline recommendations reviewed have been implemented. Eighty-three percent of Parties that have taken some action under Article 5.3 have introduced less than a third of the guidelines. Most compliance with the guidelines is achieved through pre-existing policy instruments introduced independently of the FCTC, which rarely cover all relevant policy actors and fall short of the guideline recommendations. Measures introduced in response to the FCTC are typically restricted to health ministries and not explicit about third parties acting on behalf of the industry. Parties systematically overlook recommendations that facilitate industry monitoring. Highly selective and incomplete implementation of specific guideline recommendations facilitates extensive ongoing opportunities for industry policy influence. Stronger commitment to implementation is required to ensure consistently strong compliance with the FCTC internationally.
Cellular intelligence: Microphenomenology and the realities of being.
Ford, Brian J
2017-12-01
Traditions of Eastern thought conceptualised life in a holistic sense, emphasising the processes of maintaining health and conquering sickness as manifestations of an essentially spiritual principle that was of overriding importance in the conduct of living. Western science, which drove the overriding and partial eclipse of Eastern traditions, became founded on a reductionist quest for ultimate realities which, in the modern scientific world, has embraced the notion that every living process can be successfully modelled by a digital computer system. It is argued here that the essential processes of cognition, response and decision-making inherent in living cells transcend conventional modelling, and microscopic studies of organisms like the shell-building amoebae and the rhodophyte alga Antithamnion reveal a level of cellular intelligence that is unrecognized by science and is not amenable to computer analysis. Copyright © 2017. Published by Elsevier Ltd.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO₂ Technique.
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-04-19
Co-plating of Cu-Ni coatings by supercritical CO₂ (sc-CO₂) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO₂ process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO₂ process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO₂ process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO₂ process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content.
Fuzzy MCDM Technique for Planning the Environment Watershed
NASA Astrophysics Data System (ADS)
Chen, Yi-Chun; Lien, Hui-Pang; Tzeng, Gwo-Hshiung; Yang, Lung-Shih; Yen, Leon
In the real word, the decision making problems are very vague and uncertain in a number of ways. The most criteria have interdependent and interactive features so they cannot be evaluated by conventional measures method. Such as the feasibility, thus, to approximate the human subjective evaluation process, it would be more suitable to apply a fuzzy method in environment-watershed plan topic. This paper describes the design of a fuzzy decision support system in multi-criteria analysis approach for selecting the best plan alternatives or strategies in environmentwatershed. The Fuzzy Analytic Hierarchy Process (FAHP) method is used to determine the preference weightings of criteria for decision makers by subjective perception. A questionnaire was used to find out from three related groups comprising fifteen experts. Subjectivity and vagueness analysis is dealt with the criteria and alternatives for selection process and simulation results by using fuzzy numbers with linguistic terms. Incorporated the decision makers’ attitude towards preference, overall performance value of each alternative can be obtained based on the concept of Fuzzy Multiple Criteria Decision Making (FMCDM). This research also gives an example of evaluating consisting of five alternatives, solicited from a environmentwatershed plan works in Taiwan, is illustrated to demonstrate the effectiveness and usefulness of the proposed approach.
Johns, Michelle Marie; Pingel, Emily; Eisenberg, Anna; Santana, Matthew Leslie; Bauermeister, José
2014-01-01
Gender and power are theoretical constructs linked to discussions of sexual transmission of HIV/AIDS among heterosexual couples. Despite the fact that HIV rates are rising among young men who have sex with men (YMSM) in the United States, work examining the role of gender in sexual decision-making of YMSM remains in its infancy. Through qualitative interviews with 34 young gay men (YGM), we seek to contribute to the literature in this area by focusing on the ways that YGM understand and enact sexual positions during anal sex. Our results highlight the diversity of YGM’s sexual preferences, as well as the high degree of sexual fluidity. Ideas of gender appear to inform part of this process; however, YGM critiqued conventional gender norms and emphasized the centrality of relationships (i.e., casual v. romantic) in their sexual decision-making. We discuss the importance of considering gender and interpersonal factors when designing HIV/AIDS prevention messages for YGM. PMID:22843811
Johns, Michelle Marie; Pingel, Emily; Eisenberg, Anna; Santana, Matthew Leslie; Bauermeister, José
2012-11-01
Gender and power are theoretical constructs linked to discussions of sexual transmission of HIV/AIDS among heterosexual couples. Despite the fact that HIV rates are rising among young men who have sex with men in the United States, work examining the role of gender in sexual decision making of young men who have sex with men remains in its infancy. Through qualitative interviews with 34 young gay men (YGM), the authors seek to contribute to the literature in this area by focusing on the ways that YGM understand and enact sexual positions during anal sex. The authors' results highlight the diversity of YGM's sexual preferences, as well as the high degree of sexual fluidity. Ideas of gender appear to inform part of this process; however, YGM critiqued conventional gender norms and emphasized the centrality of relationships (i.e., casual vs. romantic) in their sexual decision making. The authors discuss the importance of considering gender and interpersonal factors when designing HIV/AIDS prevention messages for YGM.
Gross, Alexander; Murthy, Dhiraj
2014-10-01
This paper explores a variety of methods for applying the Latent Dirichlet Allocation (LDA) automated topic modeling algorithm to the modeling of the structure and behavior of virtual organizations found within modern social media and social networking environments. As the field of Big Data reveals, an increase in the scale of social data available presents new challenges which are not tackled by merely scaling up hardware and software. Rather, they necessitate new methods and, indeed, new areas of expertise. Natural language processing provides one such method. This paper applies LDA to the study of scientific virtual organizations whose members employ social technologies. Because of the vast data footprint in these virtual platforms, we found that natural language processing was needed to 'unlock' and render visible latent, previously unseen conversational connections across large textual corpora (spanning profiles, discussion threads, forums, and other social media incarnations). We introduce variants of LDA and ultimately make the argument that natural language processing is a critical interdisciplinary methodology to make better sense of social 'Big Data' and we were able to successfully model nested discussion topics from forums and blog posts using LDA. Importantly, we found that LDA can move us beyond the state-of-the-art in conventional Social Network Analysis techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.
Magnetic carbon nanostructures: microwave energy-assisted pyrolysis vs. conventional pyrolysis.
Zhu, Jiahua; Pallavkar, Sameer; Chen, Minjiao; Yerra, Narendranath; Luo, Zhiping; Colorado, Henry A; Lin, Hongfei; Haldolaarachchige, Neel; Khasanov, Airat; Ho, Thomas C; Young, David P; Wei, Suying; Guo, Zhanhu
2013-01-11
Magnetic carbon nanostructures from microwave assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shells from conventional heating, different carbon shell morphologies including nanotubes, nanoflakes and amorphous carbon were observed. Crystalline iron and cementite were observed in the magnetic core, different from a single cementite phase from the conventional process.
New laser machining processes for shape memory alloys
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Paschko, Stefan; Goede, Martin
2001-04-01
Due to special material properties, shape memory alloys (SMA) are finding increasing attention in micro system technology. However, only a few processes are available for the machining of miniaturized SMA-components. In this connection, laser material processing offers completely new possibilities. This paper describes the actual status of two projects that are being carried out to qualify new methods to machine SMA components by means of laser radiation. Within one project, the laser material ablation process of miniaturized SMA- components using ultra-short laser pulses (pulse duration: approx. 200 fs) in comparison to conventional laser material ablation is being investigated. Especially for SMA micro- sensors and actuators, it is important to minimize the heat affected zone (HAZ) to maintain the special mechanical properties. Light-microscopic investigations of the grain texture of SMA devices processed with ultra-short laser pulses show that the HAZ can be neglected. Presently, the main goal of the project is to qualify this new processing technique for the micro-structuring of complex SMA micro devices with high precision. Within a second project, investigations are being carried out to realize the induction of the two-way memory effect (TWME) into SMA components using laser radiation. By precisely heating SMA components with laser radiation, local tensions remain near the component surface. In connection with the shape memory effect, these tensions can be used to make the components execute complicated movements. Compared to conventional training methods to induce the TWME, this procedure is faster and easier. Furthermore, higher numbers of thermal cycling are expected because of the low dislocation density in the main part of the component.
Shale-oil-recovery systems incorporating ore beneficiation. Final report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.
This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output.more » A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.« less
Ma, Zhenling; Wu, Xiaoliang; Yan, Li; Xu, Zhenliang
2017-01-26
With the development of space technology and the performance of remote sensors, high-resolution satellites are continuously launched by countries around the world. Due to high efficiency, large coverage and not being limited by the spatial regulation, satellite imagery becomes one of the important means to acquire geospatial information. This paper explores geometric processing using satellite imagery without ground control points (GCPs). The outcome of spatial triangulation is introduced for geo-positioning as repeated observation. Results from combining block adjustment with non-oriented new images indicate the feasibility of geometric positioning with the repeated observation. GCPs are a must when high accuracy is demanded in conventional block adjustment; the accuracy of direct georeferencing with repeated observation without GCPs is superior to conventional forward intersection and even approximate to conventional block adjustment with GCPs. The conclusion is drawn that taking the existing oriented imagery as repeated observation enhances the effective utilization of previous spatial triangulation achievement, which makes the breakthrough for repeated observation to improve accuracy by increasing the base-height ratio and redundant observation. Georeferencing tests using data from multiple sensors and platforms with the repeated observation will be carried out in the follow-up research.
Topical Application of Honey on Surgical Wounds: A Randomized Clinical Trial.
Goharshenasan, Peiman; Amini, Shahideh; Atria, Ali; Abtahi, Hamidreza; Khorasani, Ghasemali
2016-01-01
The antimicrobial and anti-inflammatory activity of honey and its ability to accelerate wound healing make it an attractive option in surgical wound care. We performed a randomized clinical trial to compare the efficacy of honey dressing with conventional dressing regarding the aesthetic outcome. Bilateral symmetric incisions in randomly selected plastic surgical patients were randomly covered postoperatively with conventional dressing and honey dressing for five days. The aesthetic outcome of the two sides was rated on a Visual Analog Scale by the surgeon and the patient and compared at month three and six after surgery. Seventy two symmetrical incisions in 52 patients were evaluated during the study. The mean width of the scar after the third and the sixth month was 3.64 +/- 0.83 mm and 3.49 +/- 0.87 mm on the side that received honey dressing and 5.43 +/- 0.05 mm and 5.30+/- 1.35 mm in the control group. Wilcoxon signed-rank test showed significant difference between honey and conventional dressing outcomes at third and sixth month (p < 0.001). The healing process of the surgical wound and its final aesthetic result could be improved by using honey dressing. © 2016 S. Karger GmbH, Freiburg.
NASA Astrophysics Data System (ADS)
Fatiha, M.; Rahmat, A.; Solihat, R.
2017-09-01
The delivery of concepts in studying Biology often represented through a diagram to easily makes student understand about Biology material. One way to knowing the students’ understanding about diagram can be seen from causal relationship that is constructed by student in the propositional network representation form. This research reveal the trend of students’ propositional network representation patterns when confronted with convention diagram. This descriptive research involved 32 students at one of senior high school in Bandung. The research data was acquired by worksheet that was filled by diagram and it was developed according on information processing standards. The result of this research revealed three propositional network representation patterns are linear relationship, simple reciprocal relationship, and complex reciprocal relationship. The dominating pattern is linear form that is simply connect some information components in diagram by 59,4% students, the reciprocal relationship form with medium level by 28,1% students while the complex reciprocal relationship by only 3,1% and the rest was students who failed to connect information components by 9,4%. Based on results, most of student only able to connect information components on the picture in linear form and a few student constructing reciprocal relationship between information components on convention diagram.
A risk assessment methodology using intuitionistic fuzzy set in FMEA
NASA Astrophysics Data System (ADS)
Chang, Kuei-Hu; Cheng, Ching-Hsue
2010-12-01
Most current risk assessment methods use the risk priority number (RPN) value to evaluate the risk of failure. However, conventional RPN methodology has been criticised as having five main shortcomings as follows: (1) the assumption that the RPN elements are equally weighted leads to over simplification; (2) the RPN scale itself has some non-intuitive statistical properties; (3) the RPN elements have many duplicate numbers; (4) the RPN is derived from only three factors mainly in terms of safety; and (5) the conventional RPN method has not considered indirect relations between components. To address the above issues, an efficient and comprehensive algorithm to evaluate the risk of failure is needed. This article proposes an innovative approach, which integrates the intuitionistic fuzzy set (IFS) and the decision-making trial and evaluation laboratory (DEMATEL) approach on risk assessment. The proposed approach resolves some of the shortcomings of the conventional RPN method. A case study, which assesses the risk of 0.15 µm DRAM etching process, is used to demonstrate the effectiveness of the proposed approach. Finally, the result of the proposed method is compared with the listing approaches of risk assessment methods.
Innovations in 3D printing: a 3D overview from optics to organs.
Schubert, Carl; van Langeveld, Mark C; Donoso, Larry A
2014-02-01
3D printing is a method of manufacturing in which materials, such as plastic or metal, are deposited onto one another in layers to produce a three dimensional object, such as a pair of eye glasses or other 3D objects. This process contrasts with traditional ink-based printers which produce a two dimensional object (ink on paper). To date, 3D printing has primarily been used in engineering to create engineering prototypes. However, recent advances in printing materials have now enabled 3D printers to make objects that are comparable with traditionally manufactured items. In contrast with conventional printers, 3D printing has the potential to enable mass customisation of goods on a large scale and has relevance in medicine including ophthalmology. 3D printing has already been proved viable in several medical applications including the manufacture of eyeglasses, custom prosthetic devices and dental implants. In this review, we discuss the potential for 3D printing to revolutionise manufacturing in the same way as the printing press revolutionised conventional printing. The applications and limitations of 3D printing are discussed; the production process is demonstrated by producing a set of eyeglass frames from 3D blueprints.
Conversion of KEGG metabolic pathways to SBGN maps including automatic layout
2013-01-01
Background Biologists make frequent use of databases containing large and complex biological networks. One popular database is the Kyoto Encyclopedia of Genes and Genomes (KEGG) which uses its own graphical representation and manual layout for pathways. While some general drawing conventions exist for biological networks, arbitrary graphical representations are very common. Recently, a new standard has been established for displaying biological processes, the Systems Biology Graphical Notation (SBGN), which aims to unify the look of such maps. Ideally, online repositories such as KEGG would automatically provide networks in a variety of notations including SBGN. Unfortunately, this is non‐trivial, since converting between notations may add, remove or otherwise alter map elements so that the existing layout cannot be simply reused. Results Here we describe a methodology for automatic translation of KEGG metabolic pathways into the SBGN format. We infer important properties of the KEGG layout and treat these as layout constraints that are maintained during the conversion to SBGN maps. Conclusions This allows for the drawing and layout conventions of SBGN to be followed while creating maps that are still recognizably the original KEGG pathways. This article details the steps in this process and provides examples of the final result. PMID:23953132
Bhartia, Bhavesh; Bacher, Nadav; Jayaraman, Sundaramurthy; Khatib, Salam; Song, Jing; Guo, Shifeng; Troadec, Cedric; Puniredd, Sreenivasa Reddy; Srinivasan, Madapusi Palavedu; Haick, Hossam
2015-07-15
Formation of dense monolayers with proven atmospheric stability using simple fabrication conditions remains a major challenge for potential applications such as (bio)sensors, solar cells, surfaces for growth of biological cells, and molecular, organic, and plastic electronics. Here, we demonstrate a single-step modification of organophosphonic acids (OPA) on 1D and 2D structures using supercritical carbon dioxide (SCCO2) as a processing medium, with high stability and significantly shorter processing times than those obtained by the conventional physisorption-chemisorption method (2.5 h vs 48-60 h).The advantages of this approach in terms of stability and atmospheric resistivity are demonstrated on various 2D materials, such as indium-tin-oxide (ITO) and 2D Si surfaces. The advantage of the reported approach on electronic and sensing devices is demonstrated by Si nanowire field effect transistors (SiNW FETs), which have shown a few orders of magnitude higher electrical and sensing performances, compared with devices obtained by conventional approaches. The compatibility of the reported approach with various materials and its simple implementation with a single reactor makes it easily scalable for various applications.
Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes
NASA Astrophysics Data System (ADS)
O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul
2016-08-01
Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.
Linke, Axel; Walther, Thomas; Schuler, Gerhard
2010-03-01
Treatment of aortic stenosis remains challenging in older individuals, as their perioperative mortality for open heart surgery is increased due to comorbidities. Transcatheter aortic valve implantation using the CoreValve ReValving System (Medtronic, Minneapolis, USA) and the Edwards SAPIEN transcatheter heart valve (THV; Edwards Lifescience, Irvine, California, USA) represents an alternative to conventional valve replacement in elderly patients that have a high risk for conventional surgery. This article summarizes the evidence-base from recent clinical trials. The early results of these landmark studies suggest that transcatheter aortic valve implantation with either one of the prosthesis is feasible, safe, improves hemodynamics and, therefore, might be an alternative to conventional aortic valve replacement in very high-risk patients. However, all of the available transcatheter heart valves have certain disadvantages, limiting their use in daily clinical practice. The process of decision making, which valve to use and which access route to choose is illustrated in this article through clinical case scenarios. Additionally, the lessons learned thus far from the European perspective and the potential impact on the future use in the US are discussed. Despite of the progress in this field, we are still lacking an optimal transcatheter heart valve. Once it is available, we can take the plunge to compare transcatheter valve implantation with convention surgery in severe aortic stenosis!
Comparison of fuzzy AHP and fuzzy TODIM methods for landfill location selection.
Hanine, Mohamed; Boutkhoum, Omar; Tikniouine, Abdessadek; Agouti, Tarik
2016-01-01
Landfill location selection is a multi-criteria decision problem and has a strategic importance for many regions. The conventional methods for landfill location selection are insufficient in dealing with the vague or imprecise nature of linguistic assessment. To resolve this problem, fuzzy multi-criteria decision-making methods are proposed. The aim of this paper is to use fuzzy TODIM (the acronym for Interactive and Multi-criteria Decision Making in Portuguese) and the fuzzy analytic hierarchy process (AHP) methods for the selection of landfill location. The proposed methods have been applied to a landfill location selection problem in the region of Casablanca, Morocco. After determining the criteria affecting the landfill location decisions, fuzzy TODIM and fuzzy AHP methods are applied to the problem and results are presented. The comparisons of these two methods are also discussed.
An efficient spectral crystal plasticity solver for GPU architectures
NASA Astrophysics Data System (ADS)
Malahe, Michael
2018-03-01
We present a spectral crystal plasticity (CP) solver for graphics processing unit (GPU) architectures that achieves a tenfold increase in efficiency over prior GPU solvers. The approach makes use of a database containing a spectral decomposition of CP simulations performed using a conventional iterative solver over a parameter space of crystal orientations and applied velocity gradients. The key improvements in efficiency come from reducing global memory transactions, exposing more instruction-level parallelism, reducing integer instructions and performing fast range reductions on trigonometric arguments. The scheme also makes more efficient use of memory than prior work, allowing for larger problems to be solved on a single GPU. We illustrate these improvements with a simulation of 390 million crystal grains on a consumer-grade GPU, which executes at a rate of 2.72 s per strain step.
Nielsen, Patricia Switten; Lindebjerg, Jan; Rasmussen, Jan; Starklint, Henrik; Waldstrøm, Marianne; Nielsen, Bjarne
2010-12-01
Digitization of histologic slides is associated with many advantages, and its use in routine diagnosis holds great promise. Nevertheless, few articles evaluate virtual microscopy in routine settings. This study is an evaluation of the validity and diagnostic performance of virtual microscopy in routine histologic diagnosis of skin tumors. Our aim is to investigate whether conventional microscopy of skin tumors can be replaced by virtual microscopy. Ninety-six skin tumors and skin-tumor-like changes were consecutively gathered over a 1-week period. Specimens were routinely processed, and digital slides were captured on Mirax Scan (Carl Zeiss MicroImaging, Göttingen, Germany). Four pathologists evaluated the 96 virtual slides and the associated 96 conventional slides twice with intermediate time intervals of at least 3 weeks. Virtual slides that caused difficulties were reevaluated to identify possible reasons for this. The accuracy was 89.2% for virtual microscopy and 92.7% for conventional microscopy. All κ coefficients expressed very good intra- and interobserver agreement. The sensitivities were 85.7% (78.0%-91.0%) and 92.0% (85.5%-95.7%) for virtual and conventional microscopy, respectively. The difference between the sensitivities was 6.3% (0.8%-12.6%). The subsequent reevaluation showed that virtual slides were as useful as conventional slides when rendering a diagnosis. Differences seen are presumed to be due to the pathologists' lack of experience using the virtual microscope. We conclude that it is feasible to make histologic diagnosis on the skin tumor types represented in this study using virtual microscopy after pathologists have completed a period of training. Larger studies should be conducted to verify whether virtual microscopy can replace conventional microscopy in routine practice. Copyright © 2010 Elsevier Inc. All rights reserved.
Fuzzy image processing in sun sensor
NASA Technical Reports Server (NTRS)
Mobasser, S.; Liebe, C. C.; Howard, A.
2003-01-01
This paper will describe how the fuzzy image processing is implemented in the instrument. Comparison of the Fuzzy image processing and a more conventional image processing algorithm is provided and shows that the Fuzzy image processing yields better accuracy then conventional image processing.
NREL Researchers Test Solar Thermal Technology
incorporates a number of design and manufacturing modifications that could make the heliostat less costly and make power tower systems cost competitive with conventional sources of electricity. Power towers, a
Guidelines for preparing software user documentation
NASA Technical Reports Server (NTRS)
Miller, Diane F.
1987-01-01
Clear, easy-to-use software user's manuals make strong demands on special technical communication techniques. Principles and guidelines are given for analyzing the audience and dealing with wide-ranging backgrounds of potential users. Types of information to be included in a complete manual are suggested, with a technique for creating a user-oriented rather than process-oriented organization. Accuracy verification is emphasized. Simple tips are gievn for formatting for quick comprehension and reference, for deciding on packaging, for creating helpful illustrations and examples, and for setting up clear and consistent conventions. Simple guidelines are offered for writing clearly and concisely and for editing.
Lightweight Forms for Epoxy/Aramid Ducts
NASA Technical Reports Server (NTRS)
Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.
1986-01-01
Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.
Grossman, Gershon; Perez-Blanco, Horacio
1984-01-01
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Teaching ethical analysis in occupational therapy.
Haddad, A M
1988-05-01
Ethical decision making is a cognitive skill requiring education in ethical principles and an understanding of specific ethical issues. It is also a psychodynamic process involving personalities, values, opinions, and perceptions. This article proposes the use of case studies and role-playing techniques in teaching ethics in occupational therapy to supplement conventional methods of presenting ethical theories and principles. These two approaches invite students to discuss and analyze crucial issues in occupational therapy from a variety of viewpoints. Methodology of developing case studies and role-playing exercises are discussed. The techniques are evaluated and their application to the teaching of ethics is examined.
Yue, Yanfeng; Zhang, Zhiyong; Binder, Andrew J.; ...
2014-11-10
Hierarchically superstructured Prussian blue analogues (hexa- conventional hybrid graphene/MnO 2 nanostructured textiles. cyanoferrate, M = Ni II, Co II and Cu II) are synthesized through Because sodium or potassium ions are involved in energy stor- a spontaneous assembly technique. In sharp contrast to mac- age processes, more environmentally neutral electrolytes can roporous-only Prussian blue analogues, the hierarchically su- be utilized, making the superstructured porous Prussian blue perstructured porous Prussian blue materials are demonstrated analogues a great contender for applications as high-per- to possess a high capacitance, which is similar to those of the formance pseudocapacitors.
Grossman, G.; Perez-Blanco, H.
1983-06-16
An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.
Mutemwa, Richard I
2006-01-01
At the onset of health system decentralization as a primary health care strategy, which constituted a key feature of health sector reforms across the developing world, efficient and effective health management information systems (HMIS) were widely acknowledged and adopted as a critical element of district health management strengthening programmes. The focal concern was about the performance and long-term sustainability of decentralized district health systems. The underlying logic was that effective and efficient HMIS would provide district health managers with the information required to make effective strategic decisions that are the vehicle for district performance and sustainability in these decentralized health systems. However, this argument is rooted in normative management and decision theory without significant unequivocal empirical corroboration. Indeed, extensive empirical evidence continues to indicate that managers' decision-making behaviour and the existence of other forms of information outside the HMIS, within the organizational environment, suggest a far more tenuous relationship between the presence of organizational management information systems (such as HMIS) and effective strategic decision-making. This qualitative comparative case-study conducted in two districts of Zambia focused on investigating the presence and behaviour of five formally identified, different information forms, including that from HMIS, in the strategic decision-making process. The aim was to determine the validity of current arguments for HMIS, and establish implications for current HMIS policies. Evidence from the eight strategic decision-making processes traced in the study confirmed the existence of different forms of information in the organizational environment, including that provided by the conventional HMIS. These information forms attach themselves to various organizational management processes and key aspects of organizational routine. The study results point to the need for a radical re-think of district health management information solutions in ways that account for the existence of other information forms outside the formal HMIS in the district health system.
NASA Astrophysics Data System (ADS)
Hegde, Ananda; Sharma, Sathyashankara
2018-05-01
Austempered Ductile Iron (ADI) is a revolutionary material with high strength and hardness combined with optimum ductility and toughness. The discovery of two step austempering process has lead to the superior combination of all the mechanical properties. However, because of the high strength and hardness of ADI, there is a concern regarding its machinability. In the present study, machinability of ADI produced using conventional and two step heat treatment processes is assessed using tool life and the surface roughness. Speed, feed and depth of cut are considered as the machining parameters in the dry turning operation. The machinability results along with the mechanical properties are compared for ADI produced using both conventional and two step austempering processes. The results have shown that two step austempering process has produced better toughness with good hardness and strength without sacrificing ductility. Addition of 0.64 wt% manganese did not cause any detrimental effect on the machinability of ADI, both in conventional and two step processes. Marginal improvement in tool life and surface roughness were observed in two step process compared to that with conventional process.
The Effect of Surfactant Content over Cu-Ni Coatings Electroplated by the sc-CO2 Technique
Chuang, Ho-Chiao; Sánchez, Jorge; Cheng, Hsiang-Yun
2017-01-01
Co-plating of Cu-Ni coatings by supercritical CO2 (sc-CO2) and conventional electroplating processes was studied in this work. 1,4-butynediol was chosen as the surfactant and the effects of adjusting the surfactant content were described. Although the sc-CO2 process displayed lower current efficiency, it effectively removed excess hydrogen that causes defects on the coating surface, refined grain size, reduced surface roughness, and increased electrochemical resistance. Surface roughness of coatings fabricated by the sc-CO2 process was reduced by an average of 10%, and a maximum of 55%, compared to conventional process at different fabrication parameters. Cu-Ni coatings produced by the sc-CO2 process displayed increased corrosion potential of ~0.05 V over Cu-Ni coatings produced by the conventional process, and 0.175 V over pure Cu coatings produced by the conventional process. For coatings ~10 µm thick, internal stress developed from the sc-CO2 process were ~20 MPa lower than conventional process. Finally, the preferred crystal orientation of the fabricated coatings remained in the (111) direction regardless of the process used or surfactant content. PMID:28772787
Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion.
Papadopoulos, Konstantinos G; Yadav, Praveen K; Margaris, Nikolaos I
2017-09-01
Analytical tuning rules for digital PID type-I controllers are presented regardless of the process complexity. This explicit solution allows control engineers 1) to make an accurate examination of the effect of the controller's sampling time to the control loop's performance both in the time and frequency domain 2) to decide when the control has to be I, PI and when the derivative, D, term has to be added or omitted 3) apply this control action to a series of stable benchmark processes regardless of their complexity. The former advantages are considered critical in industry applications, since 1) most of the times the choice of the digital controller's sampling time is based on heuristics and past criteria, 2) there is little a-priori knowledge of the controlled process making the choice of the type of the controller a trial and error exercise 3) model parameters change often depending on the control loop's operating point making in this way, the problem of retuning the controller's parameter a much challenging issue. Basis of the proposed control law is the principle of the PID tuning via the Magnitude Optimum criterion. The final control law involves the controller's sampling time T s within the explicit solution of the controller's parameters. Finally, the potential of the proposed method is justified by comparing its performance with the conventional PID tuning when controlling the same process. Further investigation regarding the choice of the controller's sampling time T s is also presented and useful conclusions for control engineers are derived. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Falinski, Mark M; Plata, Desiree L; Chopra, Shauhrat S; Theis, Thomas L; Gilbertson, Leanne M; Zimmerman, Julie B
2018-04-30
Engineered nanomaterials (ENMs) and ENM-enabled products have emerged as potentially high-performance replacements to conventional materials and chemicals. As such, there is an urgent need to incorporate environmental and human health objectives into ENM selection and design processes. Here, an adapted framework based on the Ashby material selection strategy is presented as an enhanced selection and design process, which includes functional performance as well as environmental and human health considerations. The utility of this framework is demonstrated through two case studies, the design and selection of antimicrobial substances and conductive polymers, including ENMs, ENM-enabled products and their alternatives. Further, these case studies consider both the comparative efficacy and impacts at two scales: (i) a broad scale, where chemical/material classes are readily compared for primary decision-making, and (ii) within a chemical/material class, where physicochemical properties are manipulated to tailor the desired performance and environmental impact profile. Development and implementation of this framework can inform decision-making for the implementation of ENMs to facilitate promising applications and prevent unintended consequences.
Options in virtual 3D, optical-impression-based planning of dental implants.
Reich, Sven; Kern, Thomas; Ritter, Lutz
2014-01-01
If a 3D radiograph, which in today's dentistry often consists of a CBCT dataset, is available for computerized implant planning, the 3D planning should also consider functional prosthetic aspects. In a conventional workflow, the CBCT is done with a specially produced radiopaque prosthetic setup that makes the desired prosthetic situation visible during virtual implant planning. If an exclusively digital workflow is chosen, intraoral digital impressions are taken. On these digital models, the desired prosthetic suprastructures are designed. The entire datasets are virtually superimposed by a "registration" process on the corresponding structures (teeth) in the CBCTs. Thus, both the osseous and prosthetic structures are visible in one single 3D application and make it possible to consider surgical and prosthetic aspects. After having determined the implant positions on the computer screen, a drilling template is designed digitally. According to this design (CAD), a template is printed or milled in CAM process. This template is the first physically extant product in the entire workflow. The article discusses the options and limitations of this workflow.
NASA Astrophysics Data System (ADS)
Huang, Xiaosong
2014-06-01
Porous separator functions to electrically insulate the negative and positive electrodes yet communicate lithium ions between the two electrodes when infiltrated with a liquid electrolyte. The separator must fulfill numerous requirements (e.g. permeability, wettability, and thermal stability) in order to optimize the abuse tolerance and electrochemical performance of a battery. Non-woven mat separators have advantages such as high porosity and heat resistance. However, their applications in lithium ion batteries are very limited as their inadequate pore structures could cause accelerated battery performance degradation and even internal short. This work features the development of thermally stable non-woven composite separators using a low cost paper-making process. The composite separators offer significantly improved thermal dimensional stability and exhibit superior wettability by the liquid electrolyte compared to a conventional polypropylene separator. The open porous structures of the non-woven composite separators also resulted in high effective ionic conductivities. The electrochemical performance of the composite separators was tested in coin cells. Stable cycle performances and improved rate capabilities have been observed for the coin cells with these composite separators.
Regridding reconstruction algorithm for real-time tomographic imaging
Marone, F.; Stampanoni, M.
2012-01-01
Sub-second temporal-resolution tomographic microscopy is becoming a reality at third-generation synchrotron sources. Efficient data handling and post-processing is, however, difficult when the data rates are close to 10 GB s−1. This bottleneck still hinders exploitation of the full potential inherent in the ultrafast acquisition speed. In this paper the fast reconstruction algorithm gridrec, highly optimized for conventional CPU technology, is presented. It is shown that gridrec is a valuable alternative to standard filtered back-projection routines, despite being based on the Fourier transform method. In fact, the regridding procedure used for resampling the Fourier space from polar to Cartesian coordinates couples excellent performance with negligible accuracy degradation. The stronger dependence of the observed signal-to-noise ratio for gridrec reconstructions on the number of angular views makes the presented algorithm even superior to filtered back-projection when the tomographic problem is well sampled. Gridrec not only guarantees high-quality results but it provides up to 20-fold performance increase, making real-time monitoring of the sub-second acquisition process a reality. PMID:23093766
Biosimilar therapeutics—what do we need to consider?
Schellekens, Huub
2009-01-01
Patents for the first generation of approved biopharmaceuticals have either expired or are about to expire. Thus the market is opening for generic versions, referred to as ‘biosimilars’ (European Union) or ‘follow-on protein products’ (United States). Healthcare professionals need to understand the critical issues surrounding the use of biosimilars to make informed treatment decisions. The complex high-molecular-weight three-dimensional structures of biopharmaceuticals, their heterogeneity and dependence on production in living cells makes them different from classical chemical drugs. Current analytical methods cannot characterize these complex molecules sufficiently to confirm structural equivalence with reference molecules. Verification of the similarity of biosimilars to innovator biopharmaceuticals remains a key challenge. Furthermore, a critical safety issue, the immunogenicity of biopharmaceuticals, has been highlighted in recent years, confirming a need for comprehensive immunogenicity testing prior to approval and extended post-marketing surveillance. Biosimilars present a new set of challenges for regulatory authorities when compared with conventional generics. While the demonstration of a pharmacokinetic similarity is sufficient for conventional, small-molecule generic agents, a number of issues will make the approval of biosimilars more complicated. Documents recently published by the European Medicines Agency (EMEA) outlining requirements for the market approval of biosimilars provide much-needed guidance. The EMEA has approved a number of biosimilar products in a scientifically rigorous and balanced process. Outstanding issues include the interchangeability of biosimilars and innovator products, the possible need for unique naming to differentiate the various biopharmaceutical products, and more comprehensive labelling for biosimilars to include relevant clinical data. PMID:19461855
Numerical investigation of the staged gasification of wet wood
NASA Astrophysics Data System (ADS)
Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.
2017-04-01
Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.
Kumar, Deepak; Singh, Vijay
2016-01-01
Conventional corn dry-grind ethanol production process requires exogenous alpha and glucoamylases enzymes to breakdown starch into glucose, which is fermented to ethanol by yeast. This study evaluates the potential use of new genetically engineered corn and yeast, which can eliminate or minimize the use of these external enzymes, improve the economics and process efficiencies, and simplify the process. An approach of in situ ethanol removal during fermentation was also investigated for its potential to improve the efficiency of high-solid fermentation, which can significantly reduce the downstream ethanol and co-product recovery cost. The fermentation of amylase corn (producing endogenous α-amylase) using conventional yeast and no addition of exogenous α-amylase resulted in ethanol concentration of 4.1 % higher compared to control treatment (conventional corn using exogenous α-amylase). Conventional corn processed with exogenous α-amylase and superior yeast (producing glucoamylase or GA) with no exogenous glucoamylase addition resulted in ethanol concentration similar to control treatment (conventional yeast with exogenous glucoamylase addition). Combination of amylase corn and superior yeast required only 25 % of recommended glucoamylase dose to complete fermentation and achieve ethanol concentration and yield similar to control treatment (conventional corn with exogenous α-amylase, conventional yeast with exogenous glucoamylase). Use of superior yeast with 50 % GA addition resulted in similar increases in yield for conventional or amylase corn of approximately 7 % compared to that of control treatment. Combination of amylase corn, superior yeast, and in situ ethanol removal resulted in a process that allowed complete fermentation of 40 % slurry solids with only 50 % of exogenous GA enzyme requirements and 64.6 % higher ethanol yield compared to that of conventional process. Use of amylase corn and superior yeast in the dry-grind processing industry can reduce the total external enzyme usage by more than 80 %, and combining their use with in situ removal of ethanol during fermentation allows efficient high-solid fermentation.
ERIC Educational Resources Information Center
Watson, Joanne; Wilson, Erin; Hagiliassis, Nick
2017-01-01
Background: The United Nations Convention on the Rights of Persons with Disabilities (UNCRPD) promotes the use of supported decision making in lieu of substitute decision making. To date, there has been a lack of focus on supported decision making for people with severe or profound intellectual disability, including for end of life decisions.…
Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal
NASA Astrophysics Data System (ADS)
Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.
2017-06-01
Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.
NASA Technical Reports Server (NTRS)
Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.
2016-01-01
Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels when compared with conventional metallic manufacturing. The AHP study results revealed that decreased final cylinder mass and improved quality assurance were the most valued benefits of cylinder manufacturing methods, therefore emphasizing the relevance of the benefits achieved with the ANNST process for future projects.
Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China.
Gnansounou, E; Dauriat, A; Wyman, C E
2005-06-01
Reducing the use of non-renewable fossil energy reserves together with improving the environment are two important reasons that drive interest in the use of bioethanol as an automotive fuel. Conversion of sugar and starch to ethanol has been proven at an industrial scale in Brazil and the United States, respectively, and this alcohol has been able to compete with conventional gasoline due to various incentives. In this paper, we examined making ethanol from the sugar extracted from the juice of sweet sorghum and/or from the hemicellulose and cellulose in the residual sorghum bagasse versus selling the sugar from the juice or burning the bagasse to make electricity in four scenarios in the context of North China. In general terms, the production of ethanol from the hemicellulose and cellulose in bagasse was more favorable than burning it to make power, but the relative merits of making ethanol or sugar from the juice was very sensitive to the price of sugar in China. This result was confirmed by both process economics and analysis of opportunity costs. Thus, a flexible plant capable of making both sugar and fuel-ethanol from the juice is recommended. Overall, ethanol production from sorghum bagasse appears very favorable, but other agricultural residues such as corn stover and rice hulls would likely provide a more attractive feedstock for making ethanol in the medium and long term due to their extensive availability in North China and their independence from other markets. Furthermore, the process for residue conversion was based on particular design assumptions, and other technologies could enhance competitiveness while considerations such as perceived risk could impede applications.
Crack identification for rigid pavements using unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Bahaddin Ersoz, Ahmet; Pekcan, Onur; Teke, Turker
2017-09-01
Pavement condition assessment is an essential piece of modern pavement management systems as rehabilitation strategies are planned based upon its outcomes. For proper evaluation of existing pavements, they must be continuously and effectively monitored using practical means. Conventionally, truck-based pavement monitoring systems have been in-use in assessing the remaining life of in-service pavements. Although such systems produce accurate results, their use can be expensive and data processing can be time consuming, which make them infeasible considering the demand for quick pavement evaluation. To overcome such problems, Unmanned Aerial Vehicles (UAVs) can be used as an alternative as they are relatively cheaper and easier-to-use. In this study, we propose a UAV based pavement crack identification system for monitoring rigid pavements’ existing conditions. The system consists of recently introduced image processing algorithms used together with conventional machine learning techniques, both of which are used to perform detection of cracks on rigid pavements’ surface and their classification. Through image processing, the distinct features of labelled crack bodies are first obtained from the UAV based images and then used for training of a Support Vector Machine (SVM) model. The performance of the developed SVM model was assessed with a field study performed along a rigid pavement exposed to low traffic and serious temperature changes. Available cracks were classified using the UAV based system and obtained results indicate it ensures a good alternative solution for pavement monitoring applications.
Ionic Liquids in Biomass Processing
NASA Astrophysics Data System (ADS)
Tan, Suzie Su Yin; Macfarlane, Douglas R.
Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.
Ghaemi, Reza; Selvaganapathy, Ponnambalam R
Drug discovery is a long and expensive process, which usually takes 12-15 years and could cost up to ~$1 billion. Conventional drug discovery process starts with high throughput screening and selection of drug candidates that bind to specific target associated with a disease condition. However, this process does not consider whether the chosen candidate is optimal not only for binding but also for ease of administration, distribution in the body, effect of metabolism and associated toxicity if any. A holistic approach, using model organisms early in the drug discovery process to select drug candidates that are optimal not only in binding but also suitable for administration, distribution and are not toxic is now considered as a viable way for lowering the cost and time associated with the drug discovery process. However, the conventional drug discovery assays using Drosophila are manual and required skill operator, which makes them expensive and not suitable for high-throughput screening. Recently, microfluidics has been used to automate many of the operations (e.g. sorting, positioning, drug delivery) associated with the Drosophila drug discovery assays and thereby increase their throughput. This review highlights recent microfluidic devices that have been developed for Drosophila assays with primary application towards drug discovery for human diseases. The microfluidic devices that have been reviewed in this paper are categorized based on the stage of the Drosophila that have been used. In each category, the microfluidic technologies behind each device are described and their potential biological applications are discussed.
Considerations on the construction of a Powder Bed Fusion platform for Additive Manufacturing
NASA Astrophysics Data System (ADS)
Andersen, Sebastian Aagaard; Nielsen, Karl-Emil; Pedersen, David Bue; Nielsen, Jakob Skov
As the demand for moulds and other tools becomes increasingly specific and complex, an additive manufacturing approach to production is making its way to the industry through laser based consolidation of metal powder particles by a method known as powder bed fusion. This paper concerns a variety of design choices facilitating the development of an experimental powder bed fusion machine tool, capable of manufacturing metal parts with strength matching that of conventional manufactured parts and a complexity surpassing that of subtractive processes. To understand the different mechanisms acting within such an experimental machine tool, a fully open and customizable rig is constructed. Emphasizing modularity in the rig, allows alternation of lasers, scanner systems, optical elements, powder deposition, layer height, temperature, atmosphere, and powder type. Through a custom-made software platform, control of the process is achieved, which extends into a graphical user interface, easing adjustment of process parameters and the job file generation.
NASA Astrophysics Data System (ADS)
Mattei, Jean-Luc; Le, Cong Nha; Chevalier, Alexis; Maalouf, Azar; Noutehou, Nathan; Queffelec, Patrick; Laur, Vincent
2018-04-01
An efficient and inexpensive process is presented that produces highly oriented bulk compacts made of BaM particles. Barium hexaferrite particles (BaM, nominal composition BaFe11O19) were prepared by a chemical coprecipitation method, using different rates and types of precipitating agents (NaOH and Na2CO3). It was demonstrated that when a large excess of Na2CO3 is used, a noteworthy packing of hexagonal BaM platelets is obtained, after mechanical compaction and firing at moderate temperature (1140 °C), without including any more steps than those required for a conventional sintering process. The hysteresis loop displays a very competitive squareness of 0.88 (normalized remanent magnetization) and a coercivity of 215 kA/m, which make this BaM bulk ferrite suitable for self-biased applications.
Using fuzzy rule-based knowledge model for optimum plating conditions search
NASA Astrophysics Data System (ADS)
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
Weiss, W P; Wyatt, D J
2000-02-01
Corn silages were produced from a high oil corn hybrid and from its conventional hybrid counterpart and were harvested with a standard silage chopper or a chopper equipped with a kernel processing unit. High oil silages had higher concentrations of fatty acids (5.5 vs. 3.4% of dry matter) and crude protein (8.4 vs. 7.5% of dry matter) than the conventional hybrid. Processed silage had larger particle size than unprocessed silage, but more starch was found in small particles for processed silage. Dry matter intake was not influenced by treatment (18.4 kg/d), but yield of fat-corrected milk (23.9 vs. 22.6 kg/d) was increased by feeding high oil silage. Overall, processing corn silage did not affect milk production, but cows fed processed conventional silage tended to produce more milk than did cows fed unprocessed conventional silage. Milk protein percent, but not yield, was reduced with high oil silage. Milk fat percent, but not yield, was higher with processed silage. Overall, processed silage had higher starch digestibility, but the response was much greater for the conventional silage hybrid. The concentration of total digestible nutrients (TDN) tended to be higher for diets with high oil silage (71.6 vs. 69.9%) and tended to be higher for processed silage than unprocessed silage (71.7 vs. 69.8%), but an interaction between variety and processing was observed. Processing conventional corn silage increased TDN to values similar to high oil corn silage but processing high oil corn silage did not influence TDN.
Testing the null hypothesis: the forgotten legacy of Karl Popper?
Wilkinson, Mick
2013-01-01
Testing of the null hypothesis is a fundamental aspect of the scientific method and has its basis in the falsification theory of Karl Popper. Null hypothesis testing makes use of deductive reasoning to ensure that the truth of conclusions is irrefutable. In contrast, attempting to demonstrate the new facts on the basis of testing the experimental or research hypothesis makes use of inductive reasoning and is prone to the problem of the Uniformity of Nature assumption described by David Hume in the eighteenth century. Despite this issue and the well documented solution provided by Popper's falsification theory, the majority of publications are still written such that they suggest the research hypothesis is being tested. This is contrary to accepted scientific convention and possibly highlights a poor understanding of the application of conventional significance-based data analysis approaches. Our work should remain driven by conjecture and attempted falsification such that it is always the null hypothesis that is tested. The write up of our studies should make it clear that we are indeed testing the null hypothesis and conforming to the established and accepted philosophical conventions of the scientific method.
Integrated piezoelectric actuators in deep drawing tools to reduce the try-out
NASA Astrophysics Data System (ADS)
Neugebauer, Reimund; Mainda, Patrick; Kerschner, Matthias; Drossel, Welf-Guntram; Roscher, Hans-Jürgen
2011-05-01
Tool making is a very time consuming and expensive operation because many iteration loops are used to manually adjust tool components during the try-out process. That means that trying out deep drawing tools is 30% of the total costs. This is the reason why an active deep drawing tool was developed at the Fraunhofer Institute for Machine Tools and Forming Technology IWU in cooperation with Audi and Volkswagen to reduce the costs and production rates. The main difference between the active and conventional deep drawing tools is using piezoelectric actuators to control the forming process. The active tool idea, which is the main subject of this research, will be presented as well as the findings of experiments with the custom-built deep drawing tool. This experimental tool was designed according to production requirements and has been equipped with piezoelectric actuators that allow active pressure distribution on the sheet metal flange. The disposed piezoelectric elements are similar to those being used in piezo injector systems for modern diesel engines. In order to achieve the required force, the actuators are combined in a cluster that is embedded in the die of the deep drawing tool. One main objective of this work, i.e. reducing the time-consuming try-out-period, has been achieved with the experimental tool which means that the actuators were used to set static pressure distribution between the blankholder and die. We will present the findings of our analysis and the advantages of the active system over a conventional deep drawing tool. In addition to the ability of changing the static pressure distribution, the piezoelectric actuator can also be used to generate a dynamic pressure distribution during the forming process. As a result the active tool has the potential to expand the forming constraints to make it possible to manage forming restrictions caused by light weight materials in future.
Community-based Monitoring of Water Resources in Remote Mountain Regions
NASA Astrophysics Data System (ADS)
Buytaert, W.; Hannah, D. M.; Dewulf, A.; Clark, J.; Zulkafli, Z. D.; Karpouzoglou, T.; Mao, F.; Ochoa-Tocachi, B. F.
2016-12-01
Remote mountain regions are often represented by pockets of poverty combined with accelerated environmental change. The combination of harsh climatic and topographical conditions with limited infrastructure puts severe pressures on local livelihoods, many of which rely strongly on local ecosystem services (ESS) such as agricultural production and water supply. It is therefore paramount to optimise the management of ESS for the benefit of local people. This is hindered by a scarcity of quantitative data about physical processes such as precipitation and river flow as well as qualitative data concerning the management of water and land. National and conventional scientific monitoring networks tend to be insufficient to cover adequately the spatial and temporal gradients. Additionally, the data that are being collected often fail to be converted into locally relevant and actionable knowledge for ESS management. In such conditions, community-based monitoring of natural resources may be an effective way to reduce this knowledge gap. The participatory nature of such monitoring also enhances knowledge co-production and integration in locally-based decision-making processes. Here, we present the results of a 4-year consortium project on the use of citizen science technologies for ecosystem services management (Mountain-EVO). The project analyzed ecosystem service dynamics and decision-making processes and implemented a comparative analysis of experiments with community-based monitoring of water resources in 4 remote mountain regions, i.e. Peru, Nepal, Kyrgyzstan, and Ethiopia. We find that community-based monitoring can have a transformative impact on local ESS management, because of its potential to be more inclusive, polycentric, and context-driven as compared to conventional monitoring. However, the results and effectiveness of community-based approaches depend strongly on the natural and socio-economic boundary conditions. As such, this requires a tailored and bottom-up approach to implementation, which ideally isrooted in locally-based set of actors that can act as catalysts for knowledge co-production between the scientific community and local ESS users.
Nanopatterning of Crystalline Silicon Using Anodized Aluminum Oxide Templates for Photovoltaics
NASA Astrophysics Data System (ADS)
Chao, Tsu-An
A novel thin film anodized aluminum oxide templating process was developed and applied to make nanopatterns on crystalline silicon to enhance the optical properties of silicon. The thin film anodized aluminum oxide was created to improve the conventional thick aluminum templating method with the aim for potential large scale fabrication. A unique two-step anodizing method was introduced to create high quality nanopatterns and it was demonstrated that this process is superior over the original one-step approach. Optical characterization of the nanopatterned silicon showed up to 10% reduction in reflection in the short wavelength range. Scanning electron microscopy was also used to analyze the nanopatterned surface structure and it was found that interpore spacing and pore density can be tuned by changing the anodizing potential.
NASA Astrophysics Data System (ADS)
Boroushaki, Soheil; Malczewski, Jacek
2008-04-01
This paper focuses on the integration of GIS and an extension of the analytical hierarchy process (AHP) using quantifier-guided ordered weighted averaging (OWA) procedure. AHP_OWA is a multicriteria combination operator. The nature of the AHP_OWA depends on some parameters, which are expressed by means of fuzzy linguistic quantifiers. By changing the linguistic terms, AHP_OWA can generate a wide range of decision strategies. We propose a GIS-multicriteria evaluation (MCE) system through implementation of AHP_OWA within ArcGIS, capable of integrating linguistic labels within conventional AHP for spatial decision making. We suggest that the proposed GIS-MCE would simplify the definition of decision strategies and facilitate an exploratory analysis of multiple criteria by incorporating qualitative information within the analysis.
Evans, Jack D; Jelfs, Kim E; Day, Graeme M; Doonan, Christian J
2017-06-06
Composed from discrete units, porous molecular materials (PMMs) possess unique properties not observed for conventional, extended, solids, such as solution processibility and permanent porosity in the liquid phase. However, identifying the origin of porosity is not a trivial process, especially for amorphous or liquid phases. Furthermore, the assembly of molecular components is typically governed by a subtle balance of weak intermolecular forces that makes structure prediction challenging. Accordingly, in this review we canvass the crucial role of molecular simulations in the characterisation and design of PMMs. We will outline strategies for modelling porosity in crystalline, amorphous and liquid phases and also describe the state-of-the-art methods used for high-throughput screening of large datasets to identify materials that exhibit novel performance characteristics.
High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines
NASA Astrophysics Data System (ADS)
Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo
2002-02-01
In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.
Process for making dense thin films
Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.
2005-07-26
Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.
Using Interactive Computing to Expand Intelligence Testing: A Critique and Prospectus.
ERIC Educational Resources Information Center
Hunt, Earl; Pellegrino, James
1985-01-01
There are economic advantages in using microcomputers as automated testing stations for measuring aptitude and intelligence. Microcomputers also make it possible to expand and modify testing procedures for psychological functions included in conventional tests and to test psychological functions not generally assessed by conventional tests, such…
Re-Picturing Photography: A Language in the Making
ERIC Educational Resources Information Center
Navab, Aphrodite Desiree
2001-01-01
For over one hundred and fifty years practitioners, critics, and historians have continuously challenged and added dimensions to the meaning and uses of photography. Yet there has been little challenge to its highly disturbing linguistic conventions. By uncritically accepting and using these conventions, those involved in the culture of…
Selections from the ABC 2009 Annual Convention, Portsmouth, Virginia
ERIC Educational Resources Information Center
Whalen, D. Joel
2010-01-01
The "My Favorite Assignment" Session at the 2009 Association for Business Communication (ABC) annual convention in Portsmouth, Virginia, featured over a dozen teachers sharing pedagogical innovations in a fast-paced, 4-minute format designed by Dan Dietrich. The wide variety of ideas and techniques presented makes these sessions popular…
Wijsman, Liselotte Willemijn; Cachucho, Ricardo; Hoevenaar-Blom, Marieke Peternella; Mooijaart, Simon Pieter; Richard, Edo
2017-01-01
Background Smartphone-assisted technologies potentially provide the opportunity for large-scale, long-term, repeated monitoring of cognitive functioning at home. Objective The aim of this proof-of-principle study was to evaluate the feasibility and validity of performing cognitive tests in people at increased risk of dementia using smartphone-based technology during a 6 months follow-up period. Methods We used the smartphone-based app iVitality to evaluate five cognitive tests based on conventional neuropsychological tests (Memory-Word, Trail Making, Stroop, Reaction Time, and Letter-N-Back) in healthy adults. Feasibility was tested by studying adherence of all participants to perform smartphone-based cognitive tests. Validity was studied by assessing the correlation between conventional neuropsychological tests and smartphone-based cognitive tests and by studying the effect of repeated testing. Results We included 151 participants (mean age in years=57.3, standard deviation=5.3). Mean adherence to assigned smartphone tests during 6 months was 60% (SD 24.7). There was moderate correlation between the firstly made smartphone-based test and the conventional test for the Stroop test and the Trail Making test with Spearman ρ=.3-.5 (P<.001). Correlation increased for both tests when comparing the conventional test with the mean score of all attempts a participant had made, with the highest correlation for Stroop panel 3 (ρ=.62, P<.001). Performance on the Stroop and the Trail Making tests improved over time suggesting a learning effect, but the scores on the Letter-N-back, the Memory-Word, and the Reaction Time tests remained stable. Conclusions Repeated smartphone-assisted cognitive testing is feasible with reasonable adherence and moderate relative validity for the Stroop and the Trail Making tests compared with conventional neuropsychological tests. Smartphone-based cognitive testing seems promising for large-scale data-collection in population studies. PMID:28546139
NASA Astrophysics Data System (ADS)
Azimi, Yousue; Osanloo, Montza; Esfahanipour, Akbar
2012-12-01
Cut-off Grade Strategy (COGS) is a concept that directly influences the financial, technical, economic, environmental, and legal issues in relation to exploitation of a mineral resource. A decision making system is proposed to select the best technically feasible COGS under price uncertainty. In the proposed system both the conventional discounted cash flow and modern simulation based real option valuations are used to evaluate the alternative strategies. Then the conventional expected value criterion and a multiple criteria ranking system were used to rank the strategies based on the two valuation methods. In the multiple criteria ranking system besides the expected value other stochastic orders expressing abilities of strategies in producing extra profits, minimizing losses and achieving the predefined goals of the exploitation strategy are considered. Finally, the best strategy is selected based on the overall average rank of strategies through all ranking systems. The proposed system was examined using the data of Sungun Copper Mine. To assess the merits of the alternatives better, ranking process was done at both high (prevailing economic condition) and low price conditions. Ranking results revealed that at different price conditions and valuation methods, different results would be obtained. It is concluded that these differences are due to the different behavior of the embedded option to close the mine early, which is more likely to be exercised under low price condition rather than high price condition. The proposed system would enhance the quality of decision making process by providing a more informative and certain platform for project evaluation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei; Foster, Carmen M; Morrell-Falvey, Jennifer L
2013-01-01
A new synthesis approach is described that allows the direct incorporation of fluorescent labels into the volume or body of SiO2 nanoparticles. In this process, fluorescent Alexa Fluor dyes with different emission wavelengths were covalently incorporated into the SiO2 nanoparticles during their formation by the hydrolysis of tetraethoxysilane. The dye molecules were homogeneously distributed throughout the SiO2 nanoparticles. The quantum yields of the Alexa Fluor volume-labeled SiO2 nanoparticles were much higher than nanoparticles labeled using conventional organic dyes. The size of the resulting nanoparticles was controlled using microemulsion reaction media with sizes in the range of 20-100 nm and amore » polydispersity of <15%. In comparison with conventional surface tagged particles created by post-synthesis modification, this process maintains the physical and surface chemical properties that have the most pronounced effect on colloidal stability and interactions with their surroundings. These volume-labeled nanoparticles have proven to be extremely robust, showing excellent signal strength, negligible photobleaching, and minimal loss of functional organic components. The native or free surface of the volume-labeled particles can be altered to achieve a specific surface functionality without altering fluorescence. Their utility was demonstrated for visualizing the association of surface modified fluorescent particles with cultured macrophages. Differences in particle agglomeration and cell association were clearly associated with differences in observed nanoparticle toxicity. The capacity to maintain particle fluorescence while making significant changes to surface chemistry makes these particles extremely versatile and useful for studies of particle agglomeration, uptake, and transport in environmental and biological systems.« less
USDA-ARS?s Scientific Manuscript database
Infrared (IR) processing of foods has been gaining popularity over conventional processing in several unit operations, including drying, peeling, baking, roasting, blanching, pasteurization, sterilization, disinfection, disinfestation, cooking, and popping . It has shown advantages over conventional...
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
Heleno, Sandrina A; Diz, Patrícia; Prieto, M A; Barros, Lillian; Rodrigues, Alírio; Barreiro, Maria Filomena; Ferreira, Isabel C F R
2016-04-15
Ergosterol, a molecule with high commercial value, is the most abundant mycosterol in Agaricus bisporus L. To replace common conventional extraction techniques (e.g. Soxhlet), the present study reports the optimal ultrasound-assisted extraction conditions for ergosterol. After preliminary tests, the results showed that solvents, time and ultrasound power altered the extraction efficiency. Using response surface methodology, models were developed to investigate the favourable experimental conditions that maximize the extraction efficiency. All statistical criteria demonstrated the validity of the proposed models. Overall, ultrasound-assisted extraction with ethanol at 375 W during 15 min proved to be as efficient as the Soxhlet extraction, yielding 671.5 ± 0.5mg ergosterol/100 g dw. However, with n-hexane extracts with higher purity (mg ergosterol/g extract) were obtained. Finally, it was proposed for the removal of the saponification step, which simplifies the extraction process and makes it more feasible for its industrial transference. Copyright © 2015 Elsevier Ltd. All rights reserved.
Multi-Agent Methods for the Configuration of Random Nanocomputers
NASA Technical Reports Server (NTRS)
Lawson, John W.
2004-01-01
As computational devices continue to shrink, the cost of manufacturing such devices is expected to grow exponentially. One alternative to the costly, detailed design and assembly of conventional computers is to place the nano-electronic components randomly on a chip. The price for such a trivial assembly process is that the resulting chip would not be programmable by conventional means. In this work, we show that such random nanocomputers can be adaptively programmed using multi-agent methods. This is accomplished through the optimization of an associated high dimensional error function. By representing each of the independent variables as a reinforcement learning agent, we are able to achieve convergence must faster than with other methods, including simulated annealing. Standard combinational logic circuits such as adders and multipliers are implemented in a straightforward manner. In addition, we show that the intrinsic flexibility of these adaptive methods allows the random computers to be reconfigured easily, making them reusable. Recovery from faults is also demonstrated.
NASA Astrophysics Data System (ADS)
Takahashi, Kazuki; Taki, Hirofumi; Onishi, Eiko; Yamauchi, Masanori; Kanai, Hiroshi
2017-07-01
Epidural anesthesia is a common technique for perioperative analgesia and chronic pain treatment. Since ultrasonography is insufficient for depicting the human vertebral surface, most examiners apply epidural puncture by body surface landmarks on the back such as the spinous process and scapulae without any imaging, including ultrasonography. The puncture route to the epidural space at thoracic vertebrae is much narrower than that at lumber vertebrae, and therefore, epidural anesthesia at thoracic vertebrae is difficult, especially for a beginner. Herein, a novel imaging method is proposed based on a bi-static imaging technique by making use of the transmit beam width and direction. In an in vivo experimental study on human thoracic vertebrae, the proposed method succeeded in depicting the vertebral surface clearly as compared with conventional B-mode imaging and the conventional envelope method. This indicates the potential of the proposed method in visualizing the vertebral surface for the proper and safe execution of epidural anesthesia.
Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei
2017-01-01
All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215
NASA Astrophysics Data System (ADS)
Arrotin, Bastien; Jacques, Amory; Devillers, Sébastien; Delhalle, Joseph; Mekhalif, Zineb
2016-05-01
Nickel is commonly used in numerous applications and is one of the few materials that present strong ferromagnetic properties. These make it a suitable material for induction heating which can be used to activate the grafting of organic species such as diazonium salts onto the material. Diazonium compounds are often used for the modification of metals and alloys thanks to their easy chemical reduction onto the substrates and the possibility to apply a one-step in situ generation process of the diazonium species. This work focuses on the grafting of 4-aminocarboxybenzene on nickel substrates in the context of a spontaneous grafting conducted either at room temperature or by thermal assistance through conventional heating and induction heating. These modifications are also carried out with the goal of maintaining the oxides layer as much as possible unaffected. The benefits of using induction heating with respect to conventional heating are an increase of the grafting rate, a better control of the reaction and a slighter impact on the oxides layer.
Innovative manufacturing and materials for low cost lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Steven
2015-12-29
This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability with no shrinkage at up to 220oC. This allows vacuum drying of the dry cell just before filling with the electrolyte and thereby can reduce the size of the cell assembly dry room by 50%. Once the electrode-coated separator is produced, there are many different approaches for adding the metal current collector layers and making and connecting the tabs of the cells. These approaches include: (1) laminating the electrode side of the electrode-coated separator to both sides of a metal current collector; and (2) making a full coated electrode stack by coating or depositing a current collector layer on the electrode side and then coating a second electrode layer onto the current collector. Further cost savings are available from using lower cost and/or thinner and lighter current collectors and from using a separator coating manufacturing process at widths of 1.5 meters (m) or more and at high production line speeds of up to 125 meters per minute (mpm), both of which are well above the conventional coating widths and line speeds presently used in manufacturing electrodes for lithium ion batteries.« less
Microwave processing of gustatory tissues for immunohistochemistry
Bond, Amanda; Kinnamon, John C.
2013-01-01
We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications. PMID:23473796
Ross, Lainie Friedman; Swota, Alissa Hurwitz
2017-01-01
This article explores the intersection of pediatric bioethics and child rights by examining the best interest standard as it operates within the pediatric bioethics framework in the United States and the child rights framework based on the UN 1989 Convention on the Rights of the Child (CRC). While the "best interest of the child" standard is central to both pediatric bioethics and the child rights community, it operates only as a guidance principle, and not as an intervention principle, in decision-making within U.S. pediatric bioethics, whereas it operates as both a guidance and intervention principle in the child rights community. The differences in how the best interest standard is operationalized lead to different roles for the family, the state, and the minor in decision-making processes and outcomes. We examine the recent case of Charlie Gard to illustrate some of these differences.
How we make cell therapy in Italy.
Montemurro, Tiziana; Viganò, Mariele; Budelli, Silvia; Montelatici, Elisa; Lavazza, Cristiana; Marino, Luigi; Parazzi, Valentina; Lazzari, Lorenza; Giordano, Rosaria
2015-01-01
In the 21st century scenario, new therapeutic tools are needed to take up the social and medical challenge posed by the more and more frequent degenerative disorders and by the aging of population. The recent category of advanced therapy medicinal products has been created to comprise cellular, gene therapy, and tissue engineered products, as a new class of drugs. Their manufacture requires the same pharmaceutical framework as for conventional drugs and this means that industrial, large-scale manufacturing process has to be adapted to the peculiar characteristics of cell-containing products. Our hospital took up the challenge of this new path in the early 2000s; and herein we describe the approach we followed to set up a pharmaceutical-grade facility in a public hospital context, with the aim to share the solutions we found to make cell therapy compliant with the requirements for the production and the quality control of a high-standard medicinal product.
Scrambling of quantum information in quantum many-body systems
NASA Astrophysics Data System (ADS)
Iyoda, Eiki; Sagawa, Takahiro
2018-04-01
We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of the integrability of Hamiltonians; TMI can be negative or positive for both integrable and nonintegrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by nonintegrability. Specifically, we argue that there are a few exceptional initial states that do not exhibit scrambling, and show that such exceptional initial states have small effective dimensions. Furthermore, we calculate TMI in the Sachdev-Ye-Kitaev (SYK) model, a fermionic toy model of quantum gravity. We find that disorder does not make scrambling slower but makes it smoother in the SYK model, in contrast to many-body localization in spin chains.
Modelling Errors in Automatic Speech Recognition for Dysarthric Speakers
NASA Astrophysics Data System (ADS)
Caballero Morales, Santiago Omar; Cox, Stephen J.
2009-12-01
Dysarthria is a motor speech disorder characterized by weakness, paralysis, or poor coordination of the muscles responsible for speech. Although automatic speech recognition (ASR) systems have been developed for disordered speech, factors such as low intelligibility and limited phonemic repertoire decrease speech recognition accuracy, making conventional speaker adaptation algorithms perform poorly on dysarthric speakers. In this work, rather than adapting the acoustic models, we model the errors made by the speaker and attempt to correct them. For this task, two techniques have been developed: (1) a set of "metamodels" that incorporate a model of the speaker's phonetic confusion matrix into the ASR process; (2) a cascade of weighted finite-state transducers at the confusion matrix, word, and language levels. Both techniques attempt to correct the errors made at the phonetic level and make use of a language model to find the best estimate of the correct word sequence. Our experiments show that both techniques outperform standard adaptation techniques.
Complementary and Alternative Medicine (CAM) use by Malaysian oncology patients.
Farooqui, Maryam; Hassali, Mohamed Azmi; Abdul Shatar, Aishah Knight; Shafie, Asrul Akmal; Seang, Tan Boon; Farooqui, Muhammad Aslam
2012-05-01
The current study sought to evaluate Malaysian oncology patients' decision making about the use of Complementary and Alternative Medicine (CAM) for the management of their care. Patients were interviewed across three major Malaysian ethnic groups, Malay, Chinese and Indian. Thematic content analysis identified four central themes: Conceptualizing CAM, the decision making process; rationale given for selecting or rejecting CAM and barriers to CAM use. Participants generally used the term 'traditional medicine', referred to locally as 'ubat kampung', meaning medicine derived from 'local traditions'. Mixed reactions were shown concerning the effectiveness of CAM to cure cancer and the slow progression of CAM results and treatment costs were cited as major barriers to CAM use. Concerns regarding safety and efficacy of CAM in ameliorating cancer as well as potential interactions with conventional therapies highlighted the importance of patients' knowledge about cancer treatments. Copyright © 2011 Elsevier Ltd. All rights reserved.
Temperature-Dependent Kinetic Prediction for Reactions Described by Isothermal Mathematics
Dinh, L. N.; Sun, T. C.; McLean, W.
2016-09-12
Most kinetic models are expressed in isothermal mathematics. In addition, this may lead unaware scientists either to the misconception that classical isothermal kinetic models cannot be used for any chemical process in an environment with a time-dependent temperature profile or, even worse, to a misuse of them. In reality, classical isothermal models can be employed to make kinetic predictions for reactions in environments with time-dependent temperature profiles, provided that there is a continuity/conservation in the reaction extent at every temperature–time step. In this article, fundamental analyses, illustrations, guiding tables, and examples are given to help the interested readers using eithermore » conventional isothermal reacted fraction curves or rate equations to make proper kinetic predictions for chemical reactions in environments with temperature profiles that vary, even arbitrarily, with time simply by the requirement of continuity/conservation of reaction extent whenever there is an external temperature change.« less
Hurst, C. J.
1991-01-01
A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273
Ventilation in the patient with unilateral lung disease.
Thomas, A R; Bryce, T L
1998-10-01
Severe ULD presents a challenge in ventilator management because of the marked asymmetry in the mechanics of the two lungs. The asymmetry may result from significant decreases or increases in the compliance of the involved lung. Traditional ventilator support may fail to produce adequate gas exchange in these situations and has the potential to cause further deterioration. Fortunately, conventional techniques can be safely and effectively applied in the majority of cases without having to resort to less familiar and potentially hazardous forms of support. In those circumstances when conventional ventilation is unsuccessful in restoring adequate gas exchange, lateral positioning and ILV have proved effective at improving and maintaining gas exchange. Controlled trials to guide clinical decision making are lacking. In patients who have processes associated with decreased compliance in the involved lung, lateral positioning may be a simple method of improving gas exchange but is associated with many practical limitations. ILV in these patients is frequently successful when differential PEEP is applied with the higher pressure to the involved lung. In patients in whom the pathology results in distribution of ventilation favoring the involved lung, particularly BPF, ILV can be used to supply adequate support while minimizing flow through the fistula and allowing it to close. The application of these techniques should be undertaken with an understanding of the pathophysiology of the underlying process; the reported experience with these techniques, including indications and successfully applied methods; and the potential problems encountered with their use. Fortunately, these modalities are infrequently required, but they provide a critical means of support when conventional techniques fail.
Tabak, Naomi T.; Weisman de Mamani, Amy
2015-01-01
While a growing body of research suggests that religion offers mental health benefits for individuals with schizophrenia, few studies have examined the mechanisms underlying this effect. The present study investigated two potential mediators (seeking social support and meaning-making coping) that may elucidate the nature of this relationship. The sample included 112 individuals with schizophrenia or schizoaffective disorder. Structural equation modeling was used to test whether religion was related to symptom severity and quality of life (QoL), and whether seeking social support and meaning-making coping mediated these effects. As expected, meaning-making coping significantly mediated the effect of intrinsic religion (use of religion as a framework to understand life) on QoL. While extrinsic religion (use of religion as a social convention) was associated with seeking social support, it did not relate to either outcome variable. Findings offer insight into the ways in which religion may improve the mental health of patients with schizophrenia. Results suggest that the adaptive elements of intrinsic religion seen in prior research may be explained by the meaning that religion offers. Clinical interventions that encourage patients to find meaning amidst adversity may improve QoL in this population. Future research would benefit from further investigation of the meaning-making process in individuals with schizophrenia. PMID:23428788
NASA Astrophysics Data System (ADS)
Lee, Seongkon; Mogi, Gento
2017-02-01
The demand of fossil fuels, including oil, gas, and coal has been increasing with the rapid development of developing countries such as China and India. U.S., Japan, EU, and Korea have been making efforts to transfer to low carbon and green growth economics for sustainable development. And they also have been measuring to cope with climate change and the depletion of conventional fuels. Advanced nations implemented strategic energy technology development plans to lead the future energy market. Strategic energy technology development is crucial alternative to address the energy issues. This paper analyze the relative competitiveness of hydrogen energy technologies in case of hydrogen production and storage technologies from 2006 to 2010. Hydrogen energy technology is environmentally clean technology comparing with the previous conventional energy technologies and will play a key role to solve the greenhouse gas effect. Leading nations have increasingly focused on hydrogen technology R&D. This research is carried out the relative competitiveness of hydrogen energy technologies employed by an integrated fuzzy analytic hierarchy process (Fuzzy AHP) and The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) approaches. We make four criteria, accounting for technological status, R&D budget, R&D human resource, and hydrogen infra. This research can be used as fundamental data for implementing national hydrogen energy R&D planning for energy policy-makers.
Berger, Stephanie; Braehler, Elmar; Ernst, Jochen
2012-07-01
To explore differences between conventional medicine (COM) and complementary and alternative medicine (CAM) regarding the attitude toward and the perceived use of shared decision-making (SDM) from the health professional perspective. Thirty guideline-based interviews with German GPs and nonmedical practitioners were conducted using qualitative analysis for interpretation. The health professional-patient-relationship in CAM differs from that in COM, as SDM is perceived more often. Reasons for this include external context variables (e.g., longer consultation time) and internal provider beliefs (e.g., attitude toward SDM). German health care policy was regarded as one of the most critical factors which affected the relationship between GPs and their patients and their practice of SDM. Differences between COM and CAM regarding the attitude toward and the perceived use of SDM are attributable to diverse concepts of medicine, practice context variables and internal provider factors. Therefore, the perceived feasibility of SDM depends on the complexity of different occupational socialization processes and thus, different value systems between COM and CAM. Implementation barriers such as insufficient communication skills, lacking SDM training or obedient patients should be reduced. Especially in COM, contextual variables such as political restrictions need to be eliminated to successfully implement SDM. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Comprehension Process of Second Language Indirect Requests.
ERIC Educational Resources Information Center
Takahashi, Satomi; Roitblat, Herbert L.
1994-01-01
Examines the comprehension of English conventional indirect requests by native English speakers and Japanese learners of English. Subjects read stories inducing either a conventional or a literal interpretation of a priming sentence. Results suggest that both native and nonnative speakers process both meanings of an ambiguous conventional request.…
Decision-making in people who relapsed to driving under the influence of alcohol.
Kasar, Muzaffer; Gleichgerrcht, Ezequiel; Keskinkilic, Cahit; Tabo, Abdulkadir; Manes, Facundo F
2010-12-01
Alcohol use has been previously associated with neurocognitive impairments, especially in decision-making cognition. However, some studies have shown little to no decision-making deficits in relation to different characteristics of people with drinking problems. Relapsing to driving under the influence (DUI) of alcohol is an important issue with legal and psychosocial aspects. We evaluated decision-making performance in second-time DUI offenders by using the Iowa Gambling Task (IGT). Thirty-four male second-time DUI offenders who had been selected for an official psychoeducational rehabilitation program and 31 healthy controls that were matched for age, education, and alcohol use were included. Along with psychiatric assessment, we applied conventional neuropsychological testing comprising cognitive set-shifting, response inhibition, attention, and visuospatial abilities. Also, we used the Temperament and Character Inventory (TCI) to assess personality patterns. A computerized version of IGT was used. No significant differences were found between the groups in regard to sociodemographics and conventional neuropsychological testing. DUI participants had significantly higher scores only in "self-transcendence" subdomain of TCI. On the fifth block of the IGT, DUI participants had significantly lower net scores than controls (U = 380.0, p < 0.05). Also, DUI participants chose significantly more risky decks compared to controls. Our results suggest that there may be subtle decision-making deficits in DUI participants, which goes undetected on conventional neuropsychological testing and which is not correlated with TCI subdomains related with impulsivity patterns. Copyright © 2010 by the Research Society on Alcoholism.
Guibelin, E
2004-01-01
Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.
Mobil-Badger technologies for benzene reduction in gasoline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goelzer, A.R.; Ram, S.; Hernandez, A.
1993-01-01
Many refiners will need to reduce the barrels per day of benzene entering the motor gasoline pool. Mobil and Badger have developed and now jointly license three potential refinery alternatives to conventional benzene hydrosaturation to achieve this: Mobil Benzene Reduction, Ethylbenzene and Cumene. The Mobil Benzene Reduction Process (MBR) uses dilute olefins in FCC offgas to extensively alkylate dilute benzene as found in light reformate, light FCC gasoline, or cyclic C[sub 6] naphtha. MBR raises octanes and lowers C[sub 5]+ olefins. MBR does not involve costly hydrogen addition. The refinery-based Mobil/Badger Ethylbenzene Process reacts chemical-grade benzene extracted from light reformatemore » with dilute ethylene found in treated FCC offgas to make high-purity ethylbenzene. EB is the principal feedstock for the production of styrene. The Mobil/Badger Cumene Process alkylates FCC-derived dilute propylene and extracted benzene to selectively yield isopropyl benzene (cumene). Cumene is the principal feedstock for the production of phenol. All three processes use Mobil developed catalysts.« less
Cost Factors in Scaling in SfM Collections and Processing Solutions
NASA Astrophysics Data System (ADS)
Cherry, J. E.
2015-12-01
In this talk I will discuss the economics of scaling Structure from Motion (SfM)-style collections from 1 km2 and below to 100's and 1000's of square kilometers. Considerations include the costs of the technical equipment: comparisons of small, medium, and large-format camera systems, as well as various GPS-INS systems and their impact on processing accuracy for various Ground Sampling Distances. Tradeoffs between camera formats and flight time are central. Weather conditions and planning high altitude versus low altitude flights are another economic factor, particularly in areas of persistently bad weather and in areas where ground logistics (i.e. hotel rooms and pilot incidentals) are expensive. Unique costs associated with UAS collections and experimental payloads will be discussed. Finally, the costs of equipment and labor differs in SfM processing than in conventional orthomosaic and LiDAR processing. There are opportunities for 'economies of scale' in SfM collections under certain circumstances but whether the accuracy specifications are firm/fixed or 'best effort' makes a difference.
NASA Astrophysics Data System (ADS)
Wahid, A.; Putra, I. G. E. P.
2018-03-01
Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.
Supercritical fluid technology: a promising approach in pharmaceutical research.
Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana
2013-02-01
Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.
Controllable lasing performance in solution-processed organic-inorganic hybrid perovskites.
Kao, Tsung Sheng; Chou, Yu-Hsun; Hong, Kuo-Bin; Huang, Jiong-Fu; Chou, Chun-Hsien; Kuo, Hao-Chung; Chen, Fang-Chung; Lu, Tien-Chang
2016-11-03
Solution-processed organic-inorganic perovskites are fascinating due to their remarkable photo-conversion efficiency and great potential in the cost-effective, versatile and large-scale manufacturing of optoelectronic devices. In this paper, we demonstrate that the perovskite nanocrystal sizes can be simply controlled by manipulating the precursor solution concentrations in a two-step sequential deposition process, thus achieving the feasible tunability of excitonic properties and lasing performance in hybrid metal-halide perovskites. The lasing threshold is at around 230 μJ cm -2 in this solution-processed organic-inorganic lead-halide material, which is comparable to the colloidal quantum dot lasers. The efficient stimulated emission originates from the multiple random scattering provided by the micro-meter scale rugged morphology and polycrystalline grain boundaries. Thus the excitonic properties in perovskites exhibit high correlation with the formed morphology of the perovskite nanocrystals. Compared to the conventional lasers normally serving as a coherent light source, the perovskite random lasers are promising in making low-cost thin-film lasing devices for flexible and speckle-free imaging applications.
Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer
NASA Astrophysics Data System (ADS)
Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo
2017-06-01
To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.
Clothing creator trademark : Business plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, B.
SYMAGERY has developed a patented process to manufacture clothing without direct human labor. This CLOTHING CREATOR{trademark}, will have the ability to produce two (2) perfect garments every 45 seconds or one (1) every 30 seconds. The process will combine Computer Integrated Manufacturing (CIM) technology with heat molding and ultrasonic bonding/cutting techniques. This system for garment production, will have the capacity to produce garments of higher quality and at lower productions costs than convention cut and sew methods. ADVANTAGES of the process include: greatly reduced production costs; increased quality of garments; reduction in lead time; and capacity to make new classmore » of garments. This technology will accommodate a variety of knit, woven and nonwoven materials containing a majority of synthetic fibers. Among the many style of garments that could be manufactured by this process are: work clothing, career apparel, athletic garments, medical disposables, health care products, activewear, haz/mat garments, military clothing, cleanroom clothing, outdoor wear, upholstery, and highly contoured stuffed toy shells. 3 refs.« less
Low cost MATLAB-based pulse oximeter for deployment in research and development applications.
Shokouhian, M; Morling, R C S; Kale, I
2013-01-01
Problems such as motion artifact and effects of ambient lights have forced developers to design different signal processing techniques and algorithms to increase the reliability and accuracy of the conventional pulse oximeter device. To evaluate the robustness of these techniques, they are applied either to recorded data or are implemented on chip to be applied to real-time data. Recorded data is the most common method of evaluating however it is not as reliable as real-time measurements. On the other hand, hardware implementation can be both expensive and time consuming. This paper presents a low cost MATLAB-based pulse oximeter that can be used for rapid evaluation of newly developed signal processing techniques and algorithms. Flexibility to apply different signal processing techniques, providing both processed and unprocessed data along with low implementation cost are the important features of this design which makes it ideal for research and development purposes, as well as commercial, hospital and healthcare application.
Scalable, Economical Fabrication Processes for Ultra-Compact Warm-White LEDs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowes, Ted
Conventional warm-white LED component fabrication consists of a large number of sequential steps which are required to incorporate electrical, mechanical, and optical functionality into the component. Each of these steps presents cost and yield challenges which multiply throughout the entire process. Although there has been significant progress in LED fabrication over the last decade, significant advances are needed to enable further reductions in cost per lumen while not sacrificing efficacy or color quality. Cree conducted a focused 18-month program to develop a new low-cost, high-efficiency light emitting diode (LED) architecture enabled by novel large-area parallel processing technologies, reduced number ofmore » fabrication steps, and minimized raw materials use. This new scheme is expected to enable ultra-compact LED components exhibiting simultaneously high efficacy and high color quality. By the end of the program, Cree fabricated warm-white LEDs with a room-temperature “instant on” efficacy of >135 lm/W at ~3500K and 90 CRI (when driven at the DOE baseline current density of 35 A/cm2). Cree modified the conventional LED fabrication process flow in a manner that is expected to translate into simultaneously high throughput and yield for ultra-compact packages. Building on its deep expertise in LED wafer fabrication, Cree developed these ultra-compact LEDs to have no compromises in color quality or efficacy compared to their conventional counterparts. Despite their very small size, the LEDs will also be robustly electrically integrated into luminaire systems with the same attach yield as conventional packages. The versatility of the prototype high-efficacy LED architecture will likely benefit solid-state lighting (SSL) luminaire platforms ranging from bulbs to troffers. We anticipate that the prototype LEDs will particularly benefit luminaires with large numbers of distributed compact packages, such as linear and area luminaires (e.g. troffers). The fraction of total SSL luminaire cost made up by the LEDs themselves has steadily fallen over the past several years, but can still make up 30% or more of the bill of materials; the new LED design will radically lower this proportion. Ultra-compact, highly efficient LEDs with optimal distribution in the system will further benefit luminaire materials and assembly costs by reducing the complexity and volume of thermal management and optical subsystems.« less
ERIC Educational Resources Information Center
Kaufman, Roger
2010-01-01
With huge financial challenges being imposed on higher education, some react to crises to make changes and meet financial requirements. Changes are made that would be unthinkable without imposed demands. Two examples of universities that successfully responded to limited budgets to make major changes in organization, structure, and programs are…
GENIE: a hybrid genetic algorithm for feature classification in multispectral images
NASA Astrophysics Data System (ADS)
Perkins, Simon J.; Theiler, James P.; Brumby, Steven P.; Harvey, Neal R.; Porter, Reid B.; Szymanski, John J.; Bloch, Jeffrey J.
2000-10-01
We consider the problem of pixel-by-pixel classification of a multi- spectral image using supervised learning. Conventional spuervised classification techniques such as maximum likelihood classification and less conventional ones s uch as neural networks, typically base such classifications solely on the spectral components of each pixel. It is easy to see why: the color of a pixel provides a nice, bounded, fixed dimensional space in which these classifiers work well. It is often the case however, that spectral information alone is not sufficient to correctly classify a pixel. Maybe spatial neighborhood information is required as well. Or maybe the raw spectral components do not themselves make for easy classification, but some arithmetic combination of them would. In either of these cases we have the problem of selecting suitable spatial, spectral or spatio-spectral features that allow the classifier to do its job well. The number of all possible such features is extremely large. How can we select a suitable subset? We have developed GENIE, a hybrid learning system that combines a genetic algorithm that searches a space of image processing operations for a set that can produce suitable feature planes, and a more conventional classifier which uses those feature planes to output a final classification. In this paper we show that the use of a hybrid GA provides significant advantages over using either a GA alone or more conventional classification methods alone. We present results using high-resolution IKONOS data, looking for regions of burned forest and for roads.
MATCON MODIFIED ASPHALT COVER CONTAINMENT SYSTEM DEMONSTRATION
In order to make improvements to conventional paving asphalt to make it more suitable for containment applications, Wilder Construction Co. of Everett, WA offers MatCon, a polymer modified asphalt system comprised of proprietary binder, when coupled with a selected aggregate type...
Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing
NASA Astrophysics Data System (ADS)
Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.
Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.
School Board Meetings. Research Report Number 1976-2.
ERIC Educational Resources Information Center
National School Boards Association, Washington, DC.
This report first explores the conventional wisdom about what makes an effective school board meeting and then views what has been discovered about how boards actually conduct their business. Where it is clear that conventional wisdom and actual practice do not agree, questions are raised. It is recommended that a school board consciously consider…
Everything You Need To Know To Have Successful NACA Conventions/Conferences, But Were Afraid To Ask.
ERIC Educational Resources Information Center
Fogg, Linda
1999-01-01
Campus activities planners are offered strategies to use to make the most of their time attending National Association for Campus Activities (NACA) conventions. Advice includes specific approaches for covering conference sessions and booths, gathering information, planning for campus performances, and having students learn from the convention…
USDA-ARS?s Scientific Manuscript database
Accelerated dilution of engine-lubrication oil is a significant potential issue when fueling with biodiesel. Biodiesel produced from some feedstocks is less volatile than conventional diesel, which makes wall-impingement of liquid fuel more likely, a problem that could be exacerbated by advanced in...
The Contribution of "Around the Dial" to American Music Radio Announcing Culture.
ERIC Educational Resources Information Center
Shields, Steven O.; Ogles, Robert M.
Shared conventions of the modern radio industry should allow radio announcers and other producers of radio content to distinguish "good radio" from "bad radio." To help in making this distinction, a study delineated some of the basic conventions used in the production of radio content and analyzed the frequency of their…
Mandal, Pubali; Dubey, Brajesh K; Gupta, Ashok K
2017-11-01
Various studies on landfill leachate treatment by electrochemical oxidation have indicated that this process can effectively reduce two major pollutants present in landfill leachate; organic matter and ammonium nitrogen. In addition, the process is able to enhance the biodegradability index (BOD/COD) of landfill leachate, which make mature or stabilized landfill leachate suitable for biological treatment. The elevated concentration of ammonium nitrogen especially observed in bioreactor landfill leachate can also be reduced by electrochemical oxidation. The pollutant removal efficiency of the system depends upon the mechanism of oxidation (direct or indirect oxidation) which depends upon the property of anode material. Applied current density, pH, type and concentration of electrolyte, inter-electrode gap, mass transfer mode, total anode area to volume of effluent to be treated ratio, temperature, flow rate or flow velocity, reactor geometry, cathode material and lamp power during photoelectrochemical oxidation may also influence the system performance. In this review paper, past and present scenarios of landfill leachate treatment efficiencies and costs of various lab scale, pilot scale electrochemical oxidation studies asa standalone system or integrated with biological and physicochemical processes have been reviewed with the conclusion that electrochemical oxidation can be employed asa complementary treatment system with biological process for conventional landfill leachate treatment as well asa standalone system for ammonium nitrogen removal from bioreactor landfill leachate. Furthermore, present drawbacks of electrochemical oxidation process asa landfill leachate treatment system and relevance of incorporating life cycle assessment into the decision-making process besides process efficiency and cost, have been discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Garvin-Doxas, Kathy
2008-01-01
While researching student assumptions for the development of the Biology Concept Inventory (BCI; http://bioliteracy.net), we found that a wide class of student difficulties in molecular and evolutionary biology appears to be based on deep-seated, and often unaddressed, misconceptions about random processes. Data were based on more than 500 open-ended (primarily) college student responses, submitted online and analyzed through our Ed's Tools system, together with 28 thematic and think-aloud interviews with students, and the responses of students in introductory and advanced courses to questions on the BCI. Students believe that random processes are inefficient, whereas biological systems are very efficient. They are therefore quick to propose their own rational explanations for various processes, from diffusion to evolution. These rational explanations almost always make recourse to a driver, e.g., natural selection in evolution or concentration gradients in molecular biology, with the process taking place only when the driver is present, and ceasing when the driver is absent. For example, most students believe that diffusion only takes place when there is a concentration gradient, and that the mutational processes that change organisms occur only in response to natural selection pressures. An understanding that random processes take place all the time and can give rise to complex and often counterintuitive behaviors is almost totally absent. Even students who have had advanced or college physics, and can discuss diffusion correctly in that context, cannot make the transfer to biological processes, and passing through multiple conventional biology courses appears to have little effect on their underlying beliefs. PMID:18519614
The new analysis method of PWQ in the DRAM pattern
NASA Astrophysics Data System (ADS)
Han, Daehan; Chang, Jinman; Kim, Taeheon; Lee, Kyusun; Kim, Yonghyeon; Kang, Jinyoung; Hong, Aeran; Choi, Bumjin; Lee, Joosung; Kim, Hyoung Jun; Lee, Kweonjae; Hong, Hyoungsun; Jin, Gyoyoung
2016-03-01
In a sub 2Xnm node process, the feedback of pattern weak points is more and more significant. Therefore, it is very important to extract the systemic defect in Double Patterning Technology(DPT), however, it is impossible to predict exact systemic defect at the recent photo simulation tool.[1] Therefore, the method of Process Window Qualification (PWQ) is very serious and essential these days. Conventional PWQ methods are die to die image comparison by using an e-beam or bright field machine. Results are evaluated by the person, who reviews the images, in some cases. However, conventional die to die comparison method has critical problem. If reference die and comparison die have same problem, such as both of dies have pattern problems, the issue patterns are not detected by current defect detecting approach. Aside from the inspection accuracy, reviewing the wafer requires much effort and time to justify the genuine issue patterns. Therefore, our company adopts die to data based matching PWQ method that is using NGR machine. The main features of the NGR are as follows. First, die to data based matching, second High speed, finally massive data were used for evaluation of pattern inspection.[2] Even though our die to data based matching PWQ method measures the mass data, our margin decision process is based on image shape. Therefore, it has some significant problems. First, because of the long analysis time, the developing period of new device is increased. Moreover, because of the limitation of resources, it may not examine the full chip area. Consequently, the result of PWQ weak points cannot represent the all the possible defects. Finally, since the PWQ margin is not decided by the mathematical value, to make the solid definition of killing defect is impossible. To overcome these problems, we introduce a statistical values base process window qualification method that increases the accuracy of process margin and reduces the review time. Therefore, it is possible to see the genuine margin of the critical pattern issue which we cannot see on our conventional PWQ inspection; hence we can enhance the accuracy of PWQ margin.
Optimization of ultrahigh-speed multiplex PCR for forensic analysis.
Gibson-Daw, Georgiana; Crenshaw, Karin; McCord, Bruce
2018-01-01
In this paper, we demonstrate the design and optimization of an ultrafast PCR amplification technique, used with a seven-locus multiplex that is compatible with conventional capillary electrophoresis systems as well as newer microfluidic chip devices. The procedure involves the use of a high-speed polymerase and a rapid cycling protocol to permit multiplex PCR amplification of forensic short tandem repeat loci in 6.5 min. We describe the selection and optimization of master mix reagents such as enzyme, buffer, MgCl 2 , and dNTPs, as well as primer ratios, total volume, and cycle conditions, in order to get the best profile in the shortest time possible. Sensitivity and reproducibility studies are also described. The amplification process utilizes a small high-speed thermocycler and compact laptop, making it portable and potentially useful for rapid, inexpensive on-site genotyping. The seven loci of the multiplex were taken from conventional STR genotyping kits and selected for their size and lack of overlap. Analysis was performed using conventional capillary electrophoresis and microfluidics with fluorescent detection. Overall, this technique provides a more rapid method for rapid sample screening of suspects and victims. Graphical abstract Rapid amplification of forensic DNA using high speed thermal cycling followed by capillary or microfluidic electrophoresis.
Stapled peptides as a new technology to investigate protein-protein interactions in human platelets.
Iegre, Jessica; Ahmed, Niaz S; Gaynord, Josephine S; Wu, Yuteng; Herlihy, Kara M; Tan, Yaw Sing; Lopes-Pires, Maria E; Jha, Rupam; Lau, Yu Heng; Sore, Hannah F; Verma, Chandra; O' Donovan, Daniel H; Pugh, Nicholas; Spring, David R
2018-05-28
Platelets are blood cells with numerous crucial pathophysiological roles in hemostasis, cardiovascular thrombotic events and cancer metastasis. Platelet activation requires the engagement of intracellular signalling pathways that involve protein-protein interactions (PPIs). A better understanding of these pathways is therefore crucial for the development of selective anti-platelet drugs. New strategies for studying PPIs in human platelets are required to overcome limitations associated with conventional platelet research methods. For example, small molecule inhibitors can lack selectivity and are often difficult to design and synthesise. Additionally, development of transgenic animal models is costly and time-consuming and conventional recombinant techniques are ineffective due to the lack of a nucleus in platelets. Herein, we describe the generation of a library of novel, functionalised stapled peptides and their first application in the investigation of platelet PPIs. Moreover, the use of platelet-permeable stapled Bim BH3 peptides confirms the part of Bim in phosphatidyl-serine (PS) exposure and reveals a role for the Bim protein in platelet activatory processes. Our work demonstrates that functionalised stapled peptides are a complementary alternative to conventional platelet research methods, and could make a significant contribution to the understanding of platelet signalling pathways and hence to the development of anti-platelet drugs.
Googling DNA sequences on the World Wide Web.
Hajibabaei, Mehrdad; Singer, Gregory A C
2009-11-10
New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.
The design of wavefront coded imaging system
NASA Astrophysics Data System (ADS)
Lan, Shun; Cen, Zhaofeng; Li, Xiaotong
2016-10-01
Wavefront Coding is a new method to extend the depth of field, which combines optical design and signal processing together. By using optical design software ZEMAX ,we designed a practical wavefront coded imaging system based on a conventional Cooke triplet system .Unlike conventional optical system, the wavefront of this new system is modulated by a specially designed phase mask, which makes the point spread function (PSF)of optical system not sensitive to defocus. Therefore, a series of same blurred images obtained at the image plane. In addition, the optical transfer function (OTF) of the wavefront coded imaging system is independent of focus, which is nearly constant with misfocus and has no regions of zeros. All object information can be completely recovered through digital filtering at different defocus positions. The focus invariance of MTF is selected as merit function in this design. And the coefficients of phase mask are set as optimization goals. Compared to conventional optical system, wavefront coded imaging system obtains better quality images under different object distances. Some deficiencies appear in the restored images due to the influence of digital filtering algorithm, which are also analyzed in this paper. The depth of field of the designed wavefront coded imaging system is about 28 times larger than initial optical system, while keeping higher optical power and resolution at the image plane.
Brain mechanisms underlying human communication.
Noordzij, Matthijs L; Newman-Norlund, Sarah E; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C; Toni, Ivan
2009-01-01
Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the "mirror neurons system"). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities.
Brain Mechanisms Underlying Human Communication
Noordzij, Matthijs L.; Newman-Norlund, Sarah E.; de Ruiter, Jan Peter; Hagoort, Peter; Levinson, Stephen C.; Toni, Ivan
2009-01-01
Human communication has been described as involving the coding-decoding of a conventional symbol system, which could be supported by parts of the human motor system (i.e. the “mirror neurons system”). However, this view does not explain how these conventions could develop in the first place. Here we target the neglected but crucial issue of how people organize their non-verbal behavior to communicate a given intention without pre-established conventions. We have measured behavioral and brain responses in pairs of subjects during communicative exchanges occurring in a real, interactive, on-line social context. In two fMRI studies, we found robust evidence that planning new communicative actions (by a sender) and recognizing the communicative intention of the same actions (by a receiver) relied on spatially overlapping portions of their brains (the right posterior superior temporal sulcus). The response of this region was lateralized to the right hemisphere, modulated by the ambiguity in meaning of the communicative acts, but not by their sensorimotor complexity. These results indicate that the sender of a communicative signal uses his own intention recognition system to make a prediction of the intention recognition performed by the receiver. This finding supports the notion that our communicative abilities are distinct from both sensorimotor processes and language abilities. PMID:19668699
Development of Mackintosh Probe Extractor
NASA Astrophysics Data System (ADS)
Rahman, Noor Khazanah A.; Kaamin, Masiri; Suwandi, Amir Khan; Sahat, Suhaila; Jahaya Kesot, Mohd
2016-11-01
Dynamic probing is a continuous soil investigation technique, which is one of the simplest soil penetration test. It basically consist of repeatedly driving a metal tipped probe into the ground using a drop weight of fixed mass and travel. Testing was carried out continuously from ground level to the final penetration depth. Once the soil investigation work done, it is difficult to pull out the probe rod from the ground, due to strong soil structure grip against probe cone and prevent the probe rod out from the ground. Thus, in this case, a tool named Extracting Probe was created to assist in the process of retracting the probe rod from the ground. In addition, Extracting Probe also can reduce the time to extract the probe rod from the ground compare with the conventional method. At the same time, it also can reduce manpower cost because only one worker involve to handle this tool compare with conventional method used two or more workers. From experiment that have been done we found that the time difference between conventional tools and extracting probe is significant, average time difference is 155 minutes. In addition the extracting probe can reduce manpower usage, and also labour cost for operating the tool. With all these advantages makes this tool has the potential to be marketed.
NASA Technical Reports Server (NTRS)
Robinson, A. C.; Gorman, H. J.; Hillman, M.; Lawhon, W. T.; Maase, D. L.; Mcclure, T. A.
1976-01-01
The potential U.S. market for tertiary municipal wastewater treatment facilities which make use of water hyacinths was investigated. A baseline design was developed which approximates the "typical" or "average" situation under which hyacinth-based systems can be used. The total market size for tertiary treatment was then estimated for those geographical regions in which hyacinths appear to be applicable. Market penetration of the baseline hyacinth system when competing with conventional chemical and physical processing systems was approximated, based primarily on cost differences. A limited analysis was made of the sensitivity of market penetration to individual changes in these assumptions.
Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale.
Wu, Marcelo; Han, Zhanghua; Van, Vien
2010-05-24
Subwavelength conductor-gap-silicon plasmonic waveguides along with compact S-bends and Y-splitters were theoretically investigated and experimentally demonstrated on a silicon-on-insulator platform. A thin SiO2 gap between the conductor layer and silicon core provides subwavelength confinement of light while a long propagation length of 40 microm was achieved. Coupling of light between the plasmonic and conventional silicon photonic waveguides was also demonstrated with a high efficiency of 80%. The compact sizes, low loss operation, efficient input/output coupling, combined with a CMOS-compatible fabrication process, make these conductor-gap-silicon plasmonic devices a promising platform for realizing densely-integrated plasmonic circuits.
Design and performance of a production-worthy excimer-laser-based stepper
NASA Astrophysics Data System (ADS)
Unger, Robert; Sparkes, Christopher; Disessa, Peter A.; Elliott, David J.
1992-06-01
Excimer-laser-based steppers have matured to a production-worthy state. Widefield high-NA lenses have been developed and characterized for imaging down to 0.35 micron and below. Excimer lasers have attained practical levels of performance capability and stability, reliability, safety, and operating cost. Excimer stepper system integration and control issues such as focus, exposure, and overlay stability have been addressed. Enabling support technologies -- resist systems, resist processing, metrology and conventional mask making -- continue to progress and are becoming available. This paper discusses specific excimer stepper design challenges, and presents characterization data from several field installations of XLSTM deep-UV steppers configured with an advanced lens design.
Accelerating Advanced MRI Reconstructions on GPUs
Stone, S.S.; Haldar, J.P.; Tsao, S.C.; Hwu, W.-m.W.; Sutton, B.P.; Liang, Z.-P.
2008-01-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA’s Quadro FX 5600. The reconstruction of a 3D image with 1283 voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%. PMID:21796230
Accelerating Advanced MRI Reconstructions on GPUs.
Stone, S S; Haldar, J P; Tsao, S C; Hwu, W-M W; Sutton, B P; Liang, Z-P
2008-10-01
Computational acceleration on graphics processing units (GPUs) can make advanced magnetic resonance imaging (MRI) reconstruction algorithms attractive in clinical settings, thereby improving the quality of MR images across a broad spectrum of applications. This paper describes the acceleration of such an algorithm on NVIDIA's Quadro FX 5600. The reconstruction of a 3D image with 128(3) voxels achieves up to 180 GFLOPS and requires just over one minute on the Quadro, while reconstruction on a quad-core CPU is twenty-one times slower. Furthermore, relative to the true image, the error exhibited by the advanced reconstruction is only 12%, while conventional reconstruction techniques incur error of 42%.
Progress and opportunities for tissue-engineered skin
NASA Astrophysics Data System (ADS)
MacNeil, Sheila
2007-02-01
Tissue-engineered skin is now a reality. For patients with extensive full-thickness burns, laboratory expansion of skin cells to achieve barrier function can make the difference between life and death, and it was this acute need that drove the initiation of tissue engineering in the 1980s. A much larger group of patients have ulcers resistant to conventional healing, and treatments using cultured skin cells have been devised to restart the wound-healing process. In the laboratory, the use of tissue-engineered skin provides insight into the behaviour of skin cells in healthy skin and in diseases such as vitiligo, melanoma, psoriasis and blistering disorders.
Misyak, Jennifer; Noguchi, Takao; Chater, Nick
2016-01-01
Humans can communicate even with few existing conventions in common (e.g., when they lack a shared language). We explored what makes this phenomenon possible with a nonlinguistic experimental task requiring participants to coordinate toward a common goal. We observed participants creating new communicative conventions using the most minimal possible signals. These conventions, furthermore, changed on a trial-by-trial basis in response to shared environmental and task constraints. Strikingly, as a result, signals of the same form successfully conveyed contradictory messages from trial to trial. Such behavior is evidence for the involvement of what we term joint inference, in which social interactants spontaneously infer the most sensible communicative convention in light of the common ground between them. Joint inference may help to elucidate how communicative conventions emerge instantaneously and how they are modified and reshaped into the elaborate systems of conventions involved in human communication, including natural languages. PMID:27793986
High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets
NASA Astrophysics Data System (ADS)
Chen, Tai-Liang; Cheng, Ching-Hsue; Teoh, Hia-Jong
2008-02-01
Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.
Implementation of an optimized microfluidic mixer in alumina employing femtosecond laser ablation
NASA Astrophysics Data System (ADS)
Juodėnas, M.; Tamulevičius, T.; Ulčinas, O.; Tamulevičius, S.
2018-01-01
Manipulation of liquids at the lowest levels of volume and dimension is at the forefront of materials science, chemistry and medicine, offering important time and resource saving applications. However, manipulation by mixing is troublesome at the microliter and lower scales. One approach to overcome this problem is to use passive mixers, which exploit structural obstacles within microfluidic channels or the geometry of channels themselves to enforce and enhance fluid mixing. Some applications require the manipulation and mixing of aggressive substances, which makes conventional microfluidic materials, along with their fabrication methods, inappropriate. In this work, implementation of an optimized full scale three port microfluidic mixer is presented in a slide of a material that is very hard to process but possesses extreme chemical and physical resistance—alumina. The viability of the selected femtosecond laser fabrication method as an alternative to conventional lithography methods, which are unable to process this material, is demonstrated. For the validation and optimization of the microfluidic mixer, a finite element method (FEM) based numerical modeling of the influence of the mixer geometry on its mixing performance is completed. Experimental investigation of the laminar flow geometry demonstrated very good agreement with the numerical simulation results. Such a laser ablation microfabricated passive mixer structure is intended for use in a capillary force assisted nanoparticle assembly setup (CAPA).
Automated imprint mask cleaning for step-and-flash imprint lithography
NASA Astrophysics Data System (ADS)
Singh, Sherjang; Chen, Ssuwei; Selinidis, Kosta; Fletcher, Brian; McMackin, Ian; Thompson, Ecron; Resnick, Douglas J.; Dress, Peter; Dietze, Uwe
2009-03-01
Step-and-Flash Imprint Lithography (S-FIL) is a promising lithography strategy for semiconductor manufacturing at device nodes below 32nm. The S-FIL 1:1 pattern transfer technology utilizes a field-by-field ink jet dispense of a low viscosity liquid resist to fill the relief pattern of the device layer etched into the glass mask. Compared to other sub 40nm CD lithography methods, the resulting high resolution, high throughput through clustering, 3D patterning capability, low process complexity, and low cost of ownership (CoO) of S-FIL makes it a widely accepted technology for patterned media as well as a promising mainstream option for future CMOS applications. Preservation of mask cleanliness is essential to avoid risk of repeated printing of defects. The development of mask cleaning processes capable of removing particles adhered to the mask surface without damaging the mask is critical to meet high volume manufacturing requirements. In this paper we have presented various methods of residual (cross-linked) resist removal and final imprint mask cleaning demonstrated on the HamaTech MaskTrack automated mask cleaning system. Conventional and non-conventional (acid free) methods of particle removal have been compared and the effect of mask cleaning on pattern damage and CD integrity is also studied.
NASA Astrophysics Data System (ADS)
Pérez-Aparicio, Elena; Lillo-Bravo, Isidoro; Moreno-Tejera, Sara; Silva-Pérez, Manuel
2017-06-01
Thermal energy for industrial processes can be generated using thermal (ST) or photovoltaic (PV) solar energy. ST energy has traditionally been the most favorable option due to its cost and efficiency. Current costs and efficiencies values make the PV solar energy become an alternative to ST energy as supplier of industrial process heat. The aim of this study is to provide a useful tool to decide in each case which option is economically and environmentally the most suitable alternative. The methodology used to compare ST and PV systems is based on the calculation of the levelized cost of energy (LCOE) and greenhouse gas emissions (GHG) avoided by using renewable technologies instead of conventional sources of energy. In both cases, these calculations depend on costs and efficiencies associated with ST or PV systems and the conversion factor from thermal or electrical energy to GHG. To make these calculations, a series of hypotheses are assumed related to consumer and energy prices, operation, maintenance and replacement costs, lifetime of the system or working temperature of the industrial process. This study applies the methodology at five different sites which have been selected taking into account their radiometric and meteorological characteristics. In the case of ST energy three technologies are taken into account, compound parabolic concentrator (CPC), linear Fresnel collector (LFC) and parabolic trough collector (PTC). The PV option includes two ways of use of generated electricity, an electrical resistance or a combination of an electrical resistance and a heat pump (HP). Current values of costs and efficiencies make ST system remains as the most favorable option. These parameters may vary significantly over time. The evolution of these parameters may convert PV systems into the most favorable option for particular applications.
Wang, Qi; Zhang, Chun; Guo, Fangxia; Li, Zenglan; Liu, Yongdong; Su, Zhiguo
2017-11-15
In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.
Gianico, Andrea; Bertanza, Giorgio; Braguglia, Camilla M; Canato, Matteo; Gallipoli, Agata; Laera, Giuseppe; Levantesi, Caterina; Mininni, Giuseppe
2016-05-01
Sewage sludge processing is a key issue in water resource recovery facilities due to the inefficacy of conventional treatments to produce high quality biosolids to be safely used in agriculture. Under this framework, the performances of several enhanced stabilization processes, namely ultrasound-pretreated Mesophilic Anaerobic Digestion (US+MAD), thermophilic anaerobic digestion (TAD), thermal-pretreated TAD (TH+TAD) and ultrasound-pretreated inverse Temperature Phased Anaerobic Digestion (US+iTPAD) have been investigated. Such enhanced processes resulted in higher biogas yields and higher destruction of pathogens with respect to conventional MAD process, thus suggesting their feasibility in full-scale implementation perspectives. A procedure for technical-economic comparison of new sludge processing lines against conventional ones (benchmarking) was developed, based on the definition of technical issues (e.g. reliability, complexity, etc.) which are rated for each situation. Moreover, capital and operating costs were estimated. The enhanced processes analyzed in this work showed some potentially critical items, mainly related to energy balance and reagent consumption.
Jiang, Ping; Lucy, Charles A
2015-10-15
Electrospray ionization mass spectrometry (ESI-MS) has significantly impacted the analysis of complex biological and petroleum samples. However ESI-MS has limited ionization efficiency for samples in low dielectric and low polarity solvents. Addition of a make-up solvent through a T union or electrospray solvent through continuous flow extractive desorption electrospray ionization (CF-EDESI) enable ionization of analytes in non-ESI friendly solvents. A conventional make-up solvent addition setup was used and a CF-EDESI source was built for ionization of nitrogen-containing standards in hexane or hexane/isopropanol. Factors affecting the performance of both sources have been investigated and optimized. Both the make-up solvent addition and CF-EDESI improve the ionization efficiency for heteroatom compounds in non-ESI friendly solvents. Make-up solvent addition provides higher ionization efficiency than CF-EDESI. Neither the make-up solvent addition nor the CF-EDESI eliminates ionization suppression of nitrogen-containing compounds caused by compounds of the same chemical class. Copyright © 2015 Elsevier B.V. All rights reserved.
Decision-making under surprise and uncertainty: Arsenic contamination of water supplies
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Mozumder, Pallab; Halim, Nafisa
2018-05-01
With ignorance and potential surprise dominating decision making in water resources, a framework for dealing with such uncertainty is a critical need in hydrology. We operationalize the 'potential surprise' criterion proposed by Shackle, Vickers, and Katzner (SVK) to derive decision rules to manage water resources under uncertainty and ignorance. We apply this framework to managing water supply systems in Bangladesh that face severe, naturally occurring arsenic contamination. The uncertainty involved with arsenic in water supplies makes the application of conventional analysis of decision-making ineffective. Given the uncertainty and surprise involved in such cases, we find that optimal decisions tend to favor actions that avoid irreversible outcomes instead of conventional cost-effective actions. We observe that a diversification of the water supply system also emerges as a robust strategy to avert unintended outcomes of water contamination. Shallow wells had a slight higher optimal level (36%) compare to deep wells and surface treatment which had allocation levels of roughly 32% under each. The approach can be applied in a variety of other cases that involve decision making under uncertainty and surprise, a frequent situation in natural resources management.
Thin sectioning and surface replication of ice at low temperature.
Daley, M.A.; Kirby, S.H.
1984-01-01
We have developed a new technique for making thin sections and surface replicas of ice at temperatures well below 273d K. The ability to make thin sections without melting sample material is important in textural and microstructural studies of ice deformed at low temperatures because of annealing effects we have observed during conventional section making.-from Author
Yao, Weikun; Qu, Qiangyong; von Gunten, Urs; Chen, Chao; Yu, Gang; Wang, Yujue
2017-01-01
In this study methylisoborneol (MIB) and geosmin abatement in a surface water by conventional ozonation and the electro-peroxone (E-peroxone) process was compared. Batch tests with addition of ozone (O 3 ) stock solutions and semi-batch tests with continuous O 2 /O 3 gas sparging (simulating real ozone contactors) were conducted to investigate O 3 decomposition, •OH production, MIB and geosmin abatement, and bromate formation during the two processes. Results show that with specific ozone doses typically used in routine drinking water treatment (0.5-1.0 mg O 3 /mg dissolved organic carbon (DOC)), conventional ozonation could not adequately abate MIB and geosmin in a surface water. While increasing the specific ozone doses (1.0-2.5 mg O 3 /mg DOC) could enhance MIB and geosmin abatement by conventional ozonation, this approach resulted in significant bromate formation. By installing a carbon-based cathode to electrochemically produce H 2 O 2 from cathodic oxygen reduction, conventional ozonation can be conveniently upgraded to an E-peroxone process. The electro-generated H 2 O 2 considerably enhanced the kinetics and to a lesser extent the yields of hydroxyl radical (•OH) from O 3 decomposition. Consequently, during the E-peroxone process, abatement of MIB and geosmin occurred at much higher rates than during conventional ozonation. In addition, for a given specific ozone dose, the MIB and geosmin abatement efficiencies increased moderately in the E-peroxone (by ∼8-9% and ∼10-25% in the batch and semi-batch tests, respectively) with significantly lower bromate formation compared to conventional ozonation. These results suggest that the E-peroxone process may serve as an attractive backup of conventional ozonation processes during accidental spills or seasonal events such as algal blooms when high ozone doses are required to enhance MIB and geosmin abatement. Copyright © 2016 Elsevier Ltd. All rights reserved.
A prototype coarse pointing mechanism for laser communication
NASA Astrophysics Data System (ADS)
Miller, Eric D.; DeSpenza, Michael; Gavrilyuk, Ilya; Nelson, Graham; Erickson, Brent; Edwards, Britney; Davis, Ethan; Truscott, Tony
2017-02-01
Laser communication systems promise orders-of-magnitude improvement in data throughput per unit SWaP (size, weight and power) compared to conventional RF systems. However, in order for lasercom to make sense economically as part of a worldwide connectivity solution, the cost per terminal still needs to be significantly reduced. In this paper, we describe a coarse pointing mechanism that has been designed with an emphasis on simplicity, making use of conventional materials and commercial off-the-shelf components wherever possible. An overview of the design architecture and trades is presented, along with various results and practical lessons learned during prototype integration and test.
NASA Astrophysics Data System (ADS)
Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.
2009-12-01
The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This is more than sufficient to resolve aquifer sands in the Potomac Formation ranging from 10 to 20 m thick. The depths of individual reflections are in good agreement with the depths of main lithologic changes seen in cores and geophysical logs at the test hole. The core, geophysical log, and seismic data are being integrated to make a facies classification and facies maps which will contribute to better understand the geometry and distribution of fluid flow pathways, barriers, and ground water resources in northern Delaware.
The Technical Information Library: TIB
NASA Technical Reports Server (NTRS)
Rosemann, Uwe
1994-01-01
The Technische Informationsbibliothek Hannover (TIB) is the German national central library for all areas of technology and related sciences, especially chemistry, computer science, mathematics, and physics. The TIB acquires and makes available a comprehensive collection of conventional and non-conventional literature, especially foreign material, with particular emphasis on specialized new publications which are difficult to obtain or in difficult languages.
ERIC Educational Resources Information Center
Harvey, Brendon
2004-01-01
Contends that the conventions of writing about management inquiry limit the choices for creativity, and potential wider audiences. Using examples taken from teaching and PhD research, critical incidents are explored to demonstrate different forms of writing that offer the potential for alternative ways of sense making. Research indicates the…
Pilot Plant Program for the AED Advanced Coal Cleaning System. Phase II. Interim final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-08-01
Advanced Energy Dynamics, Inc. (AED), has developed a proprietary coal cleaning process which employs a combination of ionization and electrostatic separation to remove both sulfur and ash from dry pulverized coal. The Ohio Department of Energy sponsored the first part of a program to evaluate, develop, and demonstrate the process in a continuous-flow pilot plant. Various coals used by Ohio electric utilities were characterized and classified, and sulfur reduction, ash reduction and Btu recovery were measured. Sulfur removal in various coals ranged from 33 to 68% (on a Btu basis). Ash removal ranged from 17 to 59% (on a Btumore » basis). Ash removal of particles greater than 53 microns ranged from 46 to 88%. Btu recovery ranged from 90 to 97%. These results, especially the large percentage removal of ash particles greater than 53 microns, suggest that the AED system can contribute materially to improved boiler performance and availability. The study indicated the following potential areas for commercial utilization of the AED process: installation between the pulverizer and boiler of conventional coal-fired power utilities; reclamation of fine coal refuse; dry coal cleaning to supplement, and, if necessary, to take the place of conventional coal cleaning; upgrading coal used in: (1) coal-oil mixtures, (2) gasification and liquefaction processes designed to handle pulverized coal; and (3) blast furnaces for making steel, as a fuel supplement to the coke. Partial cleaning of coking coal blends during preheating may also prove economically attractive. Numerous other industrial processes which use pulverized coal such as the production of activated carbon and direct reduction of iron ore may also benefit from the use of AED coal cleaning.« less
Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing
Hryniewicz, Tadeusz; Rokosz, Krzysztof; Filippi, Massimiliano
2009-01-01
The polarisation characteristics of the electropolishing process in a magnetic field (MEP – magnetoelectropolishing), in comparison with those obtained under standard/conventional process (EP) conditions, have been obtained. The occurrence of an EP plateau has been observed in view of the optimization of MEP process. Up-to-date stainless steel surface studies always indicated some amount of free-metal atoms apart from the detected oxides and hydroxides. Such a morphology of the surface film usually affects the thermodynamic stability and corrosion resistance of surface oxide layer and is one of the most important features of stainless steels. With this new MEP process we can improve metal surface properties by making the stainless steel more resistant to halides encountered in a variety of environments. Furthermore, in this paper the stainless steel surface film study results have been presented. The results of the corrosion research carried out by the authors on the behaviour of the most commonly used material − medical grade AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution have been investigated and presented earlier elsewhere, though some of these results, concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this paper an attempt to explain this peculiar performance of 316L stainless steel has been undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP – magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing (MEP) process considerably modifies the morphology and the composition of the surface film, thus leading to improved corrosion resistance of the studied 316L SS.
Make or Buy? That's Really Not the Question
ERIC Educational Resources Information Center
Peurach, Donald J.; Glazer, Joshua L.; Lenhoff, Sarah Winchell
2012-01-01
Conventional thinking holds that districts and schools face a strategic decision between two fundamentally different alternatives: make or buy? The former refers to planning, designing, and enacting school-specific improvement initiatives. The latter refers to contracting with external providers of schoolwide improvement programs. However, there…
Microfluidics: a transformational tool for nanomedicine development and production.
Garg, Shyam; Heuck, Gesine; Ip, Shell; Ramsay, Euan
2016-11-01
Microfluidic devices are mircoscale fluidic circuits used to manipulate liquids at the nanoliter scale. The ability to control the mixing of fluids and the continuous nature of the process make it apt for solvent/antisolvent precipitation of drug-delivery nanoparticles. This review describes the use of numerous microfluidic designs for the formulation and production of lipid nanoparticles, liposomes and polymer nanoparticles to encapsulate and deliver small molecule or genetic payloads. The advantages of microfluidics are illustrated through examples from literature comparing conventional processes such as beaker and T-tube mixing to microfluidic approaches. Particular emphasis is placed on examples of microfluidic nanoparticle formulations that have been tested in vitro and in vivo. Fine control of process parameters afforded by microfluidics, allows unprecedented optimization of nanoparticle quality and encapsulation efficiency. Automation improves the reproducibility and optimization of formulations. Furthermore, the continuous nature of the microfluidic process is inherently scalable, allowing optimization at low volumes, which is advantageous with scarce or costly materials, as well as scale-up through process parallelization. Given these advantages, microfluidics is poised to become the new paradigm for nanomedicine formulation and production.
A new pre-classification method based on associative matching method
NASA Astrophysics Data System (ADS)
Katsuyama, Yutaka; Minagawa, Akihiro; Hotta, Yoshinobu; Omachi, Shinichiro; Kato, Nei
2010-01-01
Reducing the time complexity of character matching is critical to the development of efficient Japanese Optical Character Recognition (OCR) systems. To shorten processing time, recognition is usually split into separate preclassification and recognition stages. For high overall recognition performance, the pre-classification stage must both have very high classification accuracy and return only a small number of putative character categories for further processing. Furthermore, for any practical system, the speed of the pre-classification stage is also critical. The associative matching (AM) method has often been used for fast pre-classification, because its use of a hash table and reliance solely on logical bit operations to select categories makes it highly efficient. However, redundant certain level of redundancy exists in the hash table because it is constructed using only the minimum and maximum values of the data on each axis and therefore does not take account of the distribution of the data. We propose a modified associative matching method that satisfies the performance criteria described above but in a fraction of the time by modifying the hash table to reflect the underlying distribution of training characters. Furthermore, we show that our approach outperforms pre-classification by clustering, ANN and conventional AM in terms of classification accuracy, discriminative power and speed. Compared to conventional associative matching, the proposed approach results in a 47% reduction in total processing time across an evaluation test set comprising 116,528 Japanese character images.
NASA Astrophysics Data System (ADS)
Vieweg, A.; Ressel, G.; Prevedel, P.; Raninger, P.; Panzenböck, M.; Marsoner, S.; Ebner, R.
2016-03-01
The possibility of obtaining similar mechanical properties with faster heating processes than the conventional ones has been of interest for several years. In the present study, investigations were performed in terms of the influences of such fast heat-treatments on the microstructure and mechanical properties of the material. This investigation compares an inductive with a conventional furnace heat treating process of a 50CrMo4 steel, however only the austenitizing treatment was changed and subsequent quenching and tempering was done in the same way. To this end experiments with a middle frequency generator, using different heating rates and austenitizing temperatures, were conducted and followed by oil quenching of the workpieces. The resulting structures were characterized regarding their microstructures and mechanical properties in order to gather a better understanding of the differences between the inductive and the conventional heat treating process. As a main result it was found, that the fast austenitized samples exhibited worse ductility than the conventional treated material.
Realistic decision-making processes in a vaccination game
NASA Astrophysics Data System (ADS)
Iwamura, Yoshiro; Tanimoto, Jun
2018-03-01
Previous studies of vaccination games have nearly always assumed a pairwise comparison between a focal and neighboring player for the strategy updating rule, which comes from numerous compiled studies on spatial versions of 2-player and 2-strategy (2 × 2) games such as the spatial prisoner's dilemma (SPD). We propose, in this study, new update rules because the human decision-making process of whether to commit to a vaccination is obviously influenced by a "sense of crisis" or "fear" urging him/her toward vaccination, otherwise they will likely be infected. The rule assumes that an agent evaluates whether getting a vaccination or trying to free ride should be attempted based on observations of whether neighboring non-vaccinators were able to successfully free ride during the previous time-step. Compared to the conventional updating rule (standard pairwise comparison assuming a Fermi function), the new rules generally realize higher vaccination coverage and smaller final epidemic sizes. One rule in particular shows very good performance with significantly smaller epidemic sizes despite comparable levels of vaccination coverage. This is because the specific update rule helps vaccinators spread widely in the domain, which effectively hampers the spread of epidemics.
Advanced concepts in joining by conventional processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, G.R.; Fasching-James, A.A.; Onsoien, M.I.
1994-12-31
Innovations which can be made to conventional arc welding processes so that advanced materials can be more efficiently joined are considered. Three examples are discussed: (1) GTA welding of iron aluminides, (2) GMA welding of advanced steels, and (3) SMA welding of structural steels. Advanced materials present new challenges for the materials joining specialist. The three examples discussed in this paper demonstrate, however, that modest but creative alterations of conventional GTAW, GMAW, or SMAW processes can provide new and better controls for solving advanced materials joining problems.
USDA-ARS?s Scientific Manuscript database
The effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds were compared. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole a...
Richter Sundberg, Linda; Garvare, Rickard; Nyström, Monica Elisabeth
2017-05-11
The judgment and decision making process during guideline development is central for producing high-quality clinical practice guidelines, but the topic is relatively underexplored in the guideline research literature. We have studied the development process of national guidelines with a disease-prevention scope produced by the National board of Health and Welfare (NBHW) in Sweden. The NBHW formal guideline development model states that guideline recommendations should be based on five decision-criteria: research evidence; curative/preventive effect size, severity of the condition; cost-effectiveness; and ethical considerations. A group of health profession representatives (i.e. a prioritization group) was assigned the task of ranking condition-intervention pairs for guideline recommendations, taking into consideration the multiple decision criteria. The aim of this study was to investigate the decision making process during the two-year development of national guidelines for methods of preventing disease. A qualitative inductive longitudinal case study approach was used to investigate the decision making process. Questionnaires, non-participant observations of nine two-day group meetings, and documents provided data for the analysis. Conventional and summative qualitative content analysis was used to analyse data. The guideline development model was modified ad-hoc as the group encountered three main types of dilemmas: high quality evidence vs. low adoptability of recommendation; insufficient evidence vs. high urgency to act; and incoherence in assessment and prioritization within and between four different lifestyle areas. The formal guideline development model guided the decision-criteria used, but three new or revised criteria were added by the group: 'clinical knowledge and experience', 'potential guideline consequences' and 'needs of vulnerable groups'. The frequency of the use of various criteria in discussions varied over time. Gender, professional status, and interpersonal skills were perceived to affect individuals' relative influence on group discussions. The study shows that guideline development groups make compromises between rigour and pragmatism. The formal guideline development model incorporated multiple aspects, but offered few details on how the different criteria should be handled. The guideline development model devoted little attention to the role of the decision-model and group-related factors. Guideline development models could benefit from clarifying the role of the group-related factors and non-research evidence, such as clinical experience and ethical considerations, in decision-processes during guideline development.
Profit-based conventional resource scheduling with renewable energy penetration
NASA Astrophysics Data System (ADS)
Reddy, K. Srikanth; Panwar, Lokesh Kumar; Kumar, Rajesh; Panigrahi, B. K.
2017-08-01
Technological breakthroughs in renewable energy technologies (RETs) enabled them to attain grid parity thereby making them potential contenders for existing conventional resources. To examine the market participation of RETs, this paper formulates a scheduling problem accommodating energy market participation of wind- and solar-independent power producers (IPPs) treating both conventional and RETs as identical entities. Furthermore, constraints pertaining to penetration and curtailments of RETs are restructured. Additionally, an appropriate objective function for profit incurred by conventional resource IPPs through reserve market participation as a function of renewable energy curtailment is also proposed. The proposed concept is simulated with a test system comprising 10 conventional generation units in conjunction with solar photovoltaic (SPV) and wind energy generators (WEG). The simulation results indicate that renewable energy integration and its curtailment limits influence the market participation or scheduling strategies of conventional resources in both energy and reserve markets. Furthermore, load and reliability parameters are also affected.
Manufacturing Large Membrane Mirrors at Low Cost
NASA Technical Reports Server (NTRS)
2007-01-01
Relatively inexpensive processes have been developed for manufacturing lightweight, wide-aperture mirrors that consist mainly of reflectively coated, edge-supported polyimide membranes. The polyimide and other materials in these mirrors can withstand the environment of outer space, and the mirrors have other characteristics that make them attractive for use on Earth as well as in outer space: With respect to the smoothness of their surfaces and the accuracy with which they retain their shapes, these mirrors approach the optical quality of heavier, more expensive conventional mirrors. Unlike conventional mirrors, these mirrors can be stowed compactly and later deployed to their full sizes. In typical cases, deployment would be effected by inflation. Potential terrestrial and outer-space applications for these mirrors include large astronomical telescopes, solar concentrators for generating electric power and thermal power, and microwave reflectors for communication, radar, and short-distance transmission of electric power. The relatively low cost of manufacturing these mirrors stems, in part, from the use of inexpensive tooling. Unlike in the manufacture of conventional mirrors, there is no need for mandrels or molds that have highly precise surface figures and highly polished surfaces. The surface smoothness is an inherent property of a polyimide film. The shaped area of the film is never placed in contact with a mold or mandrel surface: Instead the shape of a mirror is determined by a combination of (1) the shape of a fixture that holds the film around its edge and (2) control of manufacturing- process parameters. In a demonstration of this manufacturing concept, spherical mirrors having aperture diameters of 0.5 and 1.0 m were fabricated from polyimide films having thicknesses ranging from <20 m to 150 m. These mirrors have been found to maintain their preformed shapes following deployment.
High Tech Decision Making in the Airpower Age
1995-05-01
Note (About Question 1): Current World "All possible question(issues) for further breakup" Break up of the former Soviet Union Megatrends ...nukes, chemical & biological weapons) - also delivery vehicles (for sale on the open market) - advanced conventional weaponry - active/passive...costly to enemy in terms of rebuilding infrastructure, equipment -need to develop countermeasure -may violate the Biological Weapons convention
MEDICAL AND LEGAL ISSUES OF THE DECISIONS RENDERED BY THE EUROPEAN COURT OF HUMAN RIGHTS.
Chakhvadze, B; Chakhvadze, G
2017-01-01
The European Convention on Human rights is a document that protects human rights and fundamental freedoms of individuals, and the European Court of Human Rights and its case-law makes a convention a powerful instrument to meet the new challenges of modernity and protect the principles of rule of law and democracy. This is important, particularly for young democracies, including Georgia. The more that Georgia is a party to this convention. Article 3 of the convention deals with torture, inhuman and degrading treatment, while article 8 deals with private life, home and correspondence. At the same time, the international practice of the European court of human rights shows that these articles are often used with regard to medical rights. The paper highlights the most recent and interesting cases from the case-law of the ECHR, in which the courts conclusions are based solely on the European Convention on Human Rights. In most instances, the European Court of Human Rights uses the principle of democracy with regard to medical rights. The European court of human rights considers medical rights as moral underpinning rights. Particularly in every occasion, the European Court of Human Rights acknowledges an ethical dimension of these rights. In most instances, it does not matter whether a plaintiff is a free person or prisoner, the European court of human rights make decisions based on fundamental human rights and freedoms of individuals.
Takin' Care of Business--Before, during and after the Conference.
ERIC Educational Resources Information Center
Brock, Carol
1993-01-01
Advice is given to student delegates to a campus activities programing convention. Issues discussed include preconference planning and budgeting, responsibilities in the exhibit hall, and postconference activities such as making follow-up or return phone calls, block booking, making appropriate contacts, and communicating clearly and responsibly.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.
NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less
Vijgen, John; Abhilash, P C; Li, Yi Fan; Lal, Rup; Forter, Martin; Torres, Joao; Singh, Nandita; Yunus, Mohammad; Tian, Chongguo; Schäffer, Andreas; Weber, Roland
2011-02-01
Hexachlorocyclohexane (HCH) isomers (α-, β- and γ- (Lindane)) were recently included as new persistent organic pollutants (POPs) in the Stockholm Convention, and therefore, the legacy of HCH and Lindane production became a contemporary topic of global relevance. This article wants to briefly summarise the outcomes of the Stockholm Convention process and make an estimation of the amount of HCH waste generated and dumped in the former Lindane/HCH-producing countries. In a preliminary assessment, the countries and the respective amount of HCH residues stored and deposited from Lindane production are estimated. Between 4 and 7 million tones of wastes of toxic, persistent and bioaccumulative residues (largely consisting of alpha- (approx. 80%) and beta-HCH) are estimated to have been produced and discarded around the globe during 60 years of Lindane production. For approximately 1.9 million tones, information is available regarding deposition. Countries are: Austria, Brazil, China, Czech Republic, France, Germany, Hungary, India, Italy, Japan, Macedonia, Nigeria, Poland, Romania, Slovakia, South Africa, Spain, Switzerland, Turkey, The Netherlands, UK, USA, and former USSR. The paper highlights the environmental relevance of deposited HCH wastes and the related POPs' contaminated sites and provides suggestions for further steps to address the challenge of the legacy of HCH/Lindane production. It can be expected that most locations where HCH waste was discarded/stockpiled are not secured and that critical environmental impacts are resulting from leaching and volatilization. As parties to the Stockholm Convention are legally required to take action to stop further POPs pollution, identification and evaluation of such sites are necessary.
Variations in lay health theories: implications for consumer health care decision making.
Shaw Hughner, Renée; Schultz Kleine, Susan
2008-12-01
Wide variations in how contemporary consumers think about health and make health care decisions often go unrecognized by health care marketers and public policy decision makers. In the current global environment, prevailing Western viewpoints on health and conventional biomedicine are being challenged by a countervailing belief system forming the basis for alternative health care practices. The ways American consumers once thought about health have changed and multiplied in this new era of competing health paradigms. Our study provides empirical evidence for this assertion in two ways. First, it demonstrates that in the current environment consumers think about health and health care in a multiplicity of very different ways, leading to the conclusion that we should not classify health care consumers as either conventional or alternative. Second, the results provide clues as to how individuals holding diverse health theories make health care decisions that impact health behaviors, treatment efficacy, and satisfaction judgments.
United States national security policy making and Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, M.W.
1985-01-01
The United States failed to achieve its goals in waging a war in Vietnam. This thesis endeavors to show that this failure was due to errors in the formulation of American national security policy regarding Vietnam. The policy making process went astray, at least in part, due to a narrowing of the role of senior military officers as national security policy makers. The restricted role of senior officers as national security policy makers adversely affected American policy formulation regarding Vietnam. The United States response to the coup against Diem in 1963 and the deployment of conventional American forces to groundmore » combat in Vietnam, in 1965 were undertaken without a clear recognition of the considerable costs of the commitments being assumed. Senior military officers had prompted such a recognition in similar previous crises but were not in a policy making position to do so concerning Vietnam. The policymaking input that was absent was ethical counsel of a fundamental nature. Clausewitz viewed the mortality of a war as being embodied in the national will to fight that war. The absence of an accurate appreciation of the costs of a military solution in Vietnam denied civilian officials a critical policy making factor and contributed significantly to the defeat of the American purpose there.« less
Valuing flexibilities in the design of urban water management systems.
Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali
2013-12-15
Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.
The potential for advanced computerized aids for comprehensible writing of technical documents
NASA Astrophysics Data System (ADS)
Kieras, D. E.
1985-01-01
It is widely agreed that technical documents for equipment are poorly written and hard to comprehend. This has been a long-standing problem because the information-processing demands of editing and revision are so high that many comprehensibility problems go undetected. However, many of these problems can be detected by computerized systems that scan a document and point out where the writing can be improved. Existing systems of this type are based on conventional writing customs, rather than on the research literature on comprehension, and give poor advice or miss important problems. They also do not process the input document to any depth. An approach to advanced writing aids is described; such a system would base its criticisms on what is known about the cognition psychology of comprehension, and would make use of techniques from artificial intelligence for processing the language. Some examples of the relevant research results are presented, and a demonstration system of this type is briefly described.
The magnetospheric electric field and convective processes as diagnostics of the IMF and solar wind
NASA Technical Reports Server (NTRS)
Kaye, S. M.
1979-01-01
Indirect measurements of the convection field as well as direct of the ionospheric electric field provide a means to at least monitor quanitatively solar wind processes. For instance, asymmetries in the ionospheric electric field and ionospheric Hall currents over the polar cap reflect the solar wind sector polarity. A stronger electric field, and thus convective flow, is found on the side of the polar cap where the y component of the IMF is parallel to the y component of the geomagnetic field. Additionally, the magnitude of the electric field and convective southward B sub Z and/or solar wind velocity, and thus may indicate the arrival at Earth of an interaction region in the solar wind. It is apparent that processes associated with the convention electric field may be used to predict large scale features in the solar wind; however, with present empirical knowledge it is not possible to make quantitative predictions of individual solar wind or IMF parameters.
Processing and Characterization of Peti Composites Fabricated by High Temperature Vartm (Section)
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Smith, Joseph G., Jr.; Loos, Alfred C.; Heider, Dirk
2011-01-01
The use of composites as primary structures on aerospace vehicles has increased dramatically over the past decade, but so have the production costs associated with their fabrication. For certain composites, high temperature vacuum assisted resin transfer molding (HT-VARTM) can offer reduced fabrication costs compared to conventional autoclave techniques. The process has been successfully used with phenylethynyl terminated imide (PETI) resins developed by NASA Langley Research Center (LaRC). In the current study, three PETI resins have been used to make test specimens using HT-VARTM. Based on previous work at NASA LaRC, larger panels with a quasi-isotropic lay-up were fabricated. The resultant composite specimens exhibited void contents of 3% by volume depending on the type of carbon fabric preform used. Mechanical properties of the panels were determined at both room and elevated temperatures. Fabric permeability characterizations and limited process modeling efforts were carried out to determine infusion times and composite panel size limitations. In addition, new PETI based resins were synthesized specifically for HT-VARTM.
Development of the platelet micro-orifice injector. [for liquid propellant rocket engines
NASA Technical Reports Server (NTRS)
La Botz, R. J.
1984-01-01
For some time to come, liquid rocket engines will continue to provide the primary means of propulsion for space transportation. The injector represents a key to the optimization of engine and system performance. The present investigation is concerned with a unique injector design and fabrication process which has demonstrated performance capabilities beyond that achieved with more conventional approaches. This process, which is called the 'platelet process', makes it feasible to fabricate injectors with a pattern an order of magnitude finer than that obtainable by drilling. The fine pattern leads to an achievement of high combustion efficiencies. Platelet injectors have been identified as one of the significant technology advances contributing to the feasibility of advanced dual-fuel booster engines. Platelet injectors are employed in the Space Shuttle Orbit Maneuvering System (OMS) engines. Attention is given to injector design theory as it relates to pattern fineness, a description of platelet injectors, and test data obtained with three different platelet injectors.
A class of compact dwarf galaxies from disruptive processes in galaxy clusters.
Drinkwater, M J; Gregg, M D; Hilker, M; Bekki, K; Couch, W J; Ferguson, H C; Jones, J B; Phillipps, S
2003-05-29
Dwarf galaxies have attracted increased attention in recent years, because of their susceptibility to galaxy transformation processes within rich galaxy clusters. Direct evidence for these processes, however, has been difficult to obtain, with a small number of diffuse light trails and intra-cluster stars being the only signs of galaxy disruption. Furthermore, our current knowledge of dwarf galaxy populations may be very incomplete, because traditional galaxy surveys are insensitive to extremely diffuse or compact galaxies. Aware of these concerns, we recently undertook an all-object survey of the Fornax galaxy cluster. This revealed a new population of compact members, overlooked in previous conventional surveys. Here we demonstrate that these 'ultra-compact' dwarf galaxies are structurally and dynamically distinct from both globular star clusters and known types of dwarf galaxy, and thus represent a new class of dwarf galaxy. Our data are consistent with the interpretation that these are the remnant nuclei of disrupted dwarf galaxies, making them an easily observed tracer of galaxy disruption.
Unstructured Grids for Sonic Boom Analysis and Design
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Nayani, Sudheer N.
2015-01-01
An evaluation of two methods for improving the process for generating unstructured CFD grids for sonic boom analysis and design has been conducted. The process involves two steps: the generation of an inner core grid using a conventional unstructured grid generator such as VGRID, followed by the extrusion of a sheared and stretched collar grid through the outer boundary of the core grid. The first method evaluated, known as COB, automatically creates a cylindrical outer boundary definition for use in VGRID that makes the extrusion process more robust. The second method, BG, generates the collar grid by extrusion in a very efficient manner. Parametric studies have been carried out and new options evaluated for each of these codes with the goal of establishing guidelines for best practices for maintaining boom signature accuracy with as small a grid as possible. In addition, a preliminary investigation examining the use of the CDISC design method for reducing sonic boom utilizing these grids was conducted, with initial results confirming the feasibility of a new remote design approach.
Metallization of Kevlar fibers with gold.
Little, Brian K; Li, Yunfeng; Cammarata, V; Broughton, R; Mills, G
2011-06-01
Electrochemical gold plating processes were examined for the metallization of Kevlar yarn. Conventional Sn(2+)/Pd(2+) surface activation coupled with electroless Ni deposition rendered the fibers conductive enough to serve as cathodes for electrochemical plating. The resulting coatings were quantified gravimetrically and characterized via adhesion tests together with XRD, SEM, TEM; the coatings effect on fiber strength was also probed. XRD data showed that metallic Pd formed during surface activation whereas amorphous phases and trace amounts of pure Ni metal were plated via the electroless process. Electrodeposition in a thiosulfate bath was the most efficient Au coating process as compared with the analogous electroless procedure, and with electroplating using a commercial cyanide method. Strongly adhering coatings resulted upon metallization with three consecutive electrodepositions, which produced conductive fibers able to sustain power outputs in the range of 1 W. On the other hand, metallization affected the tensile strength of the fiber and defects present in the metal deposits make questionable the effectiveness of the coatings as protective barriers. © 2011 American Chemical Society
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers
NASA Astrophysics Data System (ADS)
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-02-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high p_t dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers.
Bury, Marcin; van Hameren, Andreas; Jung, Hannes; Kutak, Krzysztof; Sapeta, Sebastian; Serino, Mirko
2018-01-01
A new calculation using off-shell matrix elements with TMD parton densities supplemented with a newly developed initial state TMD parton shower is described. The calculation is based on the KaTie package for an automated calculation of the partonic process in high-energy factorization, making use of TMD parton densities implemented in TMDlib. The partonic events are stored in an LHE file, similar to the conventional LHE files, but now containing the transverse momenta of the initial partons. The LHE files are read in by the Cascade package for the full TMD parton shower, final state shower and hadronization from Pythia where events in HEPMC format are produced. We have determined a full set of TMD parton densities and developed an initial state TMD parton shower, including all flavors following the TMD distribution. As an example of application we have calculated the azimuthal de-correlation of high [Formula: see text] dijets as measured at the LHC and found very good agreement with the measurement when including initial state TMD parton showers together with conventional final state parton showers and hadronization.
Dual-slit confocal light sheet microscopy for in vivo whole-brain imaging of zebrafish
Yang, Zhe; Mei, Li; Xia, Fei; Luo, Qingming; Fu, Ling; Gong, Hui
2015-01-01
In vivo functional imaging at single-neuron resolution is an important approach to visualize biological processes in neuroscience. Light sheet microscopy (LSM) is a cutting edge in vivo imaging technique that provides micron-scale spatial resolution at high frame rate. Due to the scattering and absorption of tissue, however, conventional LSM is inadequate to resolve cells because of the attenuated signal to noise ratio (SNR). Using dual-beam illumination and confocal dual-slit detection, here a dual-slit confocal LSM is demonstrated to obtain the SNR enhanced images with frame rate twice as high as line confocal LSM method. Through theoretical calculations and experiments, the correlation between the slit’s width and SNR was determined to optimize the image quality. In vivo whole brain structural imaging stacks and the functional imaging sequences of single slice were obtained for analysis of calcium activities at single-cell resolution. A two-fold increase in imaging speed of conventional confocal LSM makes it possible to capture the sequence of the neurons’ activities and help reveal the potential functional connections in the whole zebrafish’s brain. PMID:26137381
Patterning of conjugated polymers for organic optoelectronic devices.
Xu, Youyong; Zhang, Fan; Feng, Xinliang
2011-05-23
Conjugated polymers have been attracting more and more attention because they possess various novel electrical, magnetical, and optical properties, which render them useful in modern organic optoelectronic devices. Due to their organic nature, conjugated polymers are light-weight and can be fabricated into flexible appliances. Significant research efforts have been devoted to developing new organic materials to make them competitive with their conventional inorganic counterparts. It is foreseeable that when large-scale industrial manufacture of the devices made from organic conjugated polymers is feasible, they would be much cheaper and have more functions. On one hand, in order to improve the performance of organic optoelectronic devices, it is essential to tune their surface morphologies by techniques such as patterning. On the other hand, patterning is the routine requirement for device processing. In this review, the recent progress in the patterning of conjugated polymers for high-performance optoelectronic devices is summarized. Patterning based on the bottom-up and top-down methods are introduced. Emerging new patterning strategies and future trends for conventional patterning techniques are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Monthly streamflow forecasting with auto-regressive integrated moving average
NASA Astrophysics Data System (ADS)
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
NASA Astrophysics Data System (ADS)
Ferhati, H.; Djeffal, F.
2017-12-01
In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.
Development of Metallic Sensory Alloys
NASA Technical Reports Server (NTRS)
Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.
2010-01-01
Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.
Naturally stable Sagnac–Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-11-16
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less
Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell
NASA Astrophysics Data System (ADS)
Basu, Rajratan; Lee, Andrew
2017-10-01
A monolayer graphene coated glass slide and an indium tin oxide (ITO) coated glass slide with a planar-aligning polyimide layer were placed together to make a planar hybrid liquid crystal (LC) cell. The free-ion concentration in the LC was found to be significantly reduced in the graphene-ITO hybrid cell compared to that in a conventional ITO-ITO cell. The free-ion concentration was suppressed in the hybrid cell due to the graphene-electrode's ion trapping process. The dielectric anisotropy of the LC was found to increase in the hybrid cell, indicating an increase in the nematic order parameter of the LC due to the reduction of ionic impurities.
[Music therapy as a part of complex healing].
Sliwka, Agnieszka; Jarosz, Anna; Nowobilski, Roman
2006-10-01
Music therapy is a method which takes the adventage of therapeutic influence of musie on psychological and somatic sphere of the human body. Its therapeutic properties are more and more used. Current scientific research have proved its modifying influence on vegetative, circulatory, respiratory and endocrine systems. Works devoted to the effects of musie on the patients' psychological sphere have also confirmed that it reduces psychopathologic symptoms (anxiety and depression), improves self-rating, influences quality and disorders of sleep, reduces pain, improves moral immunity and patients' openness, readiness, co-operation in treatment process. Music therapy is treated as a method which complements conventional treatment and makes up part of an integral whole together with physiotherapy, kinesitherapy and recuperation.
Lightweight Heat Pipes Made from Magnesium
NASA Technical Reports Server (NTRS)
Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale
2010-01-01
Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.
Accurate lithography simulation model based on convolutional neural networks
NASA Astrophysics Data System (ADS)
Watanabe, Yuki; Kimura, Taiki; Matsunawa, Tetsuaki; Nojima, Shigeki
2017-07-01
Lithography simulation is an essential technique for today's semiconductor manufacturing process. In order to calculate an entire chip in realistic time, compact resist model is commonly used. The model is established for faster calculation. To have accurate compact resist model, it is necessary to fix a complicated non-linear model function. However, it is difficult to decide an appropriate function manually because there are many options. This paper proposes a new compact resist model using CNN (Convolutional Neural Networks) which is one of deep learning techniques. CNN model makes it possible to determine an appropriate model function and achieve accurate simulation. Experimental results show CNN model can reduce CD prediction errors by 70% compared with the conventional model.
Super NiCd Open-Circuit Storage and Low Earth Orbit (LEO) Life Test Evaluation
NASA Technical Reports Server (NTRS)
Baer, Jean Marie; Hwang, Warren C.; Ang, Valerie J.; Hayden, Jeff; Rao, Gopalakrishna; Day, John H. (Technical Monitor)
2002-01-01
This presentation discusses Air Force tests performed on super NiCd cells to measure their performance under conditions simulating Low Earth Orbit (LEO) conditions. Super NiCd cells offer potential advantages over existing NiCd cell designs including advanced cell design with improved separator material and electrode making processes, but handling and storage requires active charging. These tests conclude that the super NiCd cells support generic Air Force qualifications for conventional LEO missions (up to five years duration) and that handling and storage may not actually require active charging as previously assumed. Topics covered include: Test Plan, Initial Characterization Tests, Open-Circuit Storage Tests, and post storage capacities.
Modifiable futures: science fiction at the bench.
Milburn, Colin
2010-09-01
Science fiction remains an alien dimension of the history of science. Historical and literary studies of science have become increasingly attentive to various "literary technologies" in scientific practice, the metaphorical features of scientific discourse, and the impact of popular science writing on the social development of scientific knowledge. But the function of science fiction and even literature as such in the history of scientific and technological innovation has often been obscured, misconstrued, or repudiated owing to conventional notions of authorship, influence, and the organic unity of texts. The better to address those close encounters where scientific practice makes use of speculative fiction, this essay proposes that we instead analyze such exchanges as processes of appropriation, remixing, and modification.
A biologically inspired neural network for dynamic programming.
Francelin Romero, R A; Kacpryzk, J; Gomide, F
2001-12-01
An artificial neural network with a two-layer feedback topology and generalized recurrent neurons, for solving nonlinear discrete dynamic optimization problems, is developed. A direct method to assign the weights of neural networks is presented. The method is based on Bellmann's Optimality Principle and on the interchange of information which occurs during the synaptic chemical processing among neurons. The neural network based algorithm is an advantageous approach for dynamic programming due to the inherent parallelism of the neural networks; further it reduces the severity of computational problems that can occur in methods like conventional methods. Some illustrative application examples are presented to show how this approach works out including the shortest path and fuzzy decision making problems.
NASA Technical Reports Server (NTRS)
1993-01-01
MAST is a decision support system to help in the management of dairy herds. Data is collected on dairy herds around the country and processed at regional centers. One center is Cornell University, where Dr. Lawrence Jones and his team developed MAST. The system draws conclusions from the data and summarizes it graphically. CLIPS, which is embedded in MAST, gives the system the ability to make decisions without user interaction. With this technique, dairy managers can identify herd problems quickly, resulting in improved animal health and higher milk quality. CLIPS (C Language Integrated Production System) was developed by NASA's Johnson Space Center. It is a shell for developing expert systems designed to permit research, development and delivery on conventional computers.
Development of digital stethoscope for telemedicine.
Lakhe, Aparna; Sodhi, Isha; Warrier, Jyothi; Sinha, Vineet
2016-01-01
The stethoscope is a medical acoustic device which is used to auscultate internal body sounds, mainly the heart and lungs. A digital stethoscope overcomes the limitations of a conventional stethoscope as the sound data is transformed into electrical signals which can be amplified, stored, replayed and, more importantly, sent for an expert opinion, making it very useful in telemedicine. With the above in view, a low cost digital stethoscope has been developed which is interfaceble with mobile communication devices. In this instrument sounds from various locations can be captured with the help of an electret condenser microphone. Captured sound is filtered, amplified and processed digitally using an adaptive line enhancement technique to obtain audible and distinct heart sounds.
Haggar, A; Flock, J-I; Norrby-Teglund, A
2010-08-01
Extracellular adherence protein (Eap) from Staphylococcus aureus has been reported to have strong anti-inflammatory properties, which make Eap a potential anti-inflammatory agent. However, Eap has also been demonstrated to trigger T-cell activation and to share structural homology with superantigens. In this study, we focused on whether Eap fulfilled the definition criteria for a superantigen. We demonstrate that T-cell activation by Eap is dependent on both major histocompatibility complex class II and intercellular adhesion molecule type 1, that cellular processing is required for Eap to elicit T-cell proliferation, and that the kinetics of proliferation resemble the profile of a conventional antigen and not that of a superantigen.
Linear-quadratic-Gaussian synthesis with reduced parameter sensitivity
NASA Technical Reports Server (NTRS)
Lin, J. Y.; Mingori, D. L.
1992-01-01
We present a method for improving the tolerance of a conventional LQG controller to parameter errors in the plant model. The improvement is achieved by introducing additional terms reflecting the structure of the parameter errors into the LQR cost function, and also the process and measurement noise models. Adjusting the sizes of these additional terms permits a trade-off between robustness and nominal performance. Manipulation of some of the additional terms leads to high gain controllers while other terms lead to low gain controllers. Conditions are developed under which the high-gain approach asymptotically recovers the robustness of the corresponding full-state feedback design, and the low-gain approach makes the closed-loop poles asymptotically insensitive to parameter errors.
Laser cleaning of steel for paint removal
NASA Astrophysics Data System (ADS)
Chen, G. X.; Kwee, T. J.; Tan, K. P.; Choo, Y. S.; Hong, M. H.
2010-11-01
Paint removal is an important part of steel processing for marine and offshore engineering. For centuries, a blasting techniques have been widely used for this surface preparation purpose. But conventional blasting always has intrinsic problems, such as noise, explosion risk, contaminant particles, vibration, and dust. In addition, processing wastes often cause environmental problems. In recent years, laser cleaning has attracted much research effort for its significant advantages, such as precise treatment, and high selectivity and flexibility in comparison with conventional cleaning techniques. In the present study, we use this environmentally friendly technique to overcome the problems of conventional blasting. Processed samples are examined with optical microscopes and other surface characterization tools. Experimental results show that laser cleaning can be a good alternative candidate to conventional blasting.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-08-31
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction.
Li, Yong; Wang, Hanpeng; Zhu, Weishen; Li, Shucai; Liu, Jian
2015-01-01
Fiber Bragg Grating (FBG) sensors are comprehensively recognized as a structural stability monitoring device for all kinds of geo-materials by either embedding into or bonding onto the structural entities. The physical model in geotechnical engineering, which could accurately simulate the construction processes and the effects on the stability of underground caverns on the basis of satisfying the similarity principles, is an actual physical entity. Using a physical model test of underground caverns in Shuangjiangkou Hydropower Station, FBG sensors were used to determine how to model the small displacements of some key monitoring points in the large-scale physical model during excavation. In the process of building the test specimen, it is most successful to embed FBG sensors in the physical model through making an opening and adding some quick-set silicon. The experimental results show that the FBG sensor has higher measuring accuracy than other conventional sensors like electrical resistance strain gages and extensometers. The experimental results are also in good agreement with the numerical simulation results. In conclusion, FBG sensors could effectively measure small displacements of monitoring points in the whole process of the physical model test. The experimental results reveal the deformation and failure characteristics of the surrounding rock mass and make some guidance for the in situ engineering construction. PMID:26404287
Kastner, Kevin W; Izaguirre, Jesús A
2016-10-01
Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Natural leathers from natural materials: progressing toward a new arena in leather processing.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2004-02-01
Globally, the leather industry is currently undergoing radical transformation due to pollution and discharge legislations. Thus, the leather industry is pressurized to look for cleaner options for processing the raw hides and skins. Conventional methods of pre-tanning, tanning and post-tanning processes are known to contribute more than 98% of the total pollution load from the leather processing. The conventional method of the tanning process involves the "do-undo" principle. Furthermore, the conventional methods employed in leather processing subject the skin/ hide to a wide variation in pH (2.8-13.0). This results in the emission of huge amounts of pollution loads such as BOD, COD, TDS, TS, sulfates, chlorides and chromium. In the approach illustrated here, the hair and flesh removal as well as fiber opening have been achieved using biocatalysts at pH 8.0, pickle-free natural tanning employing vegetable tannins, and post-tanning using environmentally friendly chemicals. Hence, this process involves dehairing, fiber opening, and pickle-free natural tanning followed by ecofriendly post-tanning. It has been found that the extent of hair removal and opening up of fiber bundles is comparable to that of conventionally processed leathers. This has been substantiated through scanning electron microscopic analysis and softness measurements. Performance of the leathers is shown to be on par with conventionally chrome-tanned leathers through physical and hand evaluation. The process also exhibits zero metal (chromium) discharge and significant reduction in BOD, COD, TDS, and TS loads by 83, 69, 96, and 96%, respectively. Furthermore, the developed process seems to be economically viable.
Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E
2017-07-01
The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents, especially at high COD concentrations. The plant layouts proposed in this paper are just a sample of the possibilities offered by current technologies. Even so, the library presented here is generic and can be used to construct any other plant layout, provided that a model is available. Copyright © 2017 Elsevier Ltd. All rights reserved.
Citrin, Dennis L; Bloom, Diane L; Grutsch, James F; Mortensen, Sara J; Lis, Christopher G
2012-01-01
Although breast cancer is a highly treatable disease, some women reject conventional treatment opting for unproven "alternative therapy" that may contribute to poor health outcomes. This study sought to understand why some women make this decision and to identify messages that might lead to greater acceptance of evidence-based treatment. This study explored treatment decision making through in-depth interviews with 60 breast cancer patients identified by their treating oncologists. Thirty refused some or all conventional treatment, opting for alternative therapies, whereas 30 accepted both conventional and alternative treatments. All completed the Beck Anxiety Inventory and the Rotter Locus of Control scale. Negative first experiences with "uncaring, insensitive, and unnecessarily harsh" oncologists, fear of side effects, and belief in the efficacy of alternative therapies were key factors in the decision to reject potentially life-prolonging conventional therapy. Refusers differed from controls in their perceptions of the value of conventional treatment, believing that chemotherapy and radiotherapy were riskier (p < .0073) and less beneficial (p < .0001) than did controls. Controls perceived alternative medicine alone as riskier than did refusers because its value for treating cancer is unproven (p < .0001). Refusers believed they could heal themselves naturally from cancer with simple holistic methods like raw fruits, vegetables, and supplements. According to interviewees, a compassionate approach to cancer care plus physicians who acknowledge their fears, communicate hope, educate them about their options, and allow them time to come to terms with their diagnosis before starting treatment might have led them to better treatment choices.
Gather, Jakov
2018-01-01
It is widely accepted among medical ethicists that competence is a necessary condition for informed consent. In this view, if a patient is incompetent to make a particular treatment decision, the decision must be based on an advance directive or made by a substitute decision-maker on behalf of the patient. We call this the competence model. According to a recent report of the United Nations (UN) High Commissioner for Human Rights, article 12 of the UN Convention on the Rights of Persons with Disabilities (CRPD) presents a wholesale rejection of the competence model. The High Commissioner here adopts the interpretation of article 12 proposed by the Committee on the Rights of Persons with Disabilities. On this interpretation, CRPD article 12 renders it impermissible to deny persons with mental disabilities the right to make treatment decisions on the basis of impaired decision-making capacity and demands the replacement of all regimes of substitute decision-making by supported decision-making. In this paper, we explicate six adverse consequences of CRPD article 12 for persons with mental disabilities and propose an alternative way forward. The proposed model combines the strengths of the competence model and supported decision-making. PMID:29070707
Parker, Malcolm
2016-09-01
The United Nations Convention on the Rights of Persons with Disabilities urges and requires changes to how signatories discharge their duties to people with intellectual disabilities, in the direction of their greater recognition as legal persons with expanded decision-making rights. Australian jurisdictions are currently undertaking inquiries and pilot projects that explore how these imperatives should be implemented. One of the important changes advocated is to move from guardianship models to supported or assisted models of decision-making. A driving force behind these developments is a strong allegiance to the social model of disability, in the formulation of the Convention, in inquiries and pilot projects, in implementation and in the related academic literature. Many of these instances suffer from confusing and misleading statements and conceptual misinterpretations of certain elements such as legal capacity, decision-making capacity, and support for decision-making. This paper analyses some of these confusions and their possible negative implications for supported decision-making instruments and those whose interests these instruments would serve, and advises a more incremental development of existing guardianship regimes. This provides a more realistic balance between neglecting the real limits of those with mental disabilities and thereby ignoring their identity and particularity, and continuing to bring them equally and fully into society.
Fiber optic detector and method for using same for detecting chemical species
Baylor, Lewis C.; Buchanan, Bruce R.
1995-01-01
An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.
Large strain dynamic compression for soft materials using a direct impact experiment
NASA Astrophysics Data System (ADS)
Meenken, T.; Hiermaier, S.
2006-08-01
Measurement of strain rate dependent material data of low density low strength materials like polymeric foams and rubbers still poses challenges of a different kind to the experimental set up. For instance, in conventional Split Hopkinson Pressure Bar tests the impedance mismatch between the bars and the specimen makes strain measurement almost impossible. Application of viscoelastic bars poses new problems with wave dispersion. Also, maximum achievable strains and strain rates depend directly on the bar lengths, resulting in large experimental set ups in order to measure relevant data for automobile crash applications. In this paper a modified SHPB will be presented for testing low impedance materials. High strains can be achieved with nearly constant strain rate. A thin film stress measurement has been applied to the specimen/bar interfaces to investigate the initial sample ring up process. The process of stress homogeneity within the sample was investigated on EPDM and PU rubber.
NASA Astrophysics Data System (ADS)
Hwang, Darryl H.; Ma, Kevin; Yepes, Fernando; Nadamuni, Mridula; Nayyar, Megha; Liu, Brent; Duddalwar, Vinay; Lepore, Natasha
2015-12-01
A conventional radiology report primarily consists of a large amount of unstructured text, and lacks clear, concise, consistent and content-rich information. Hence, an area of unmet clinical need consists of developing better ways to communicate radiology findings and information specific to each patient. Here, we design a new workflow and reporting system that combines and integrates advances in engineering technology with those from the medical sciences, the Multidimensional Interactive Radiology Report and Analysis (MIRRA). Until recently, clinical standards have primarily relied on 2D images for the purpose of measurement, but with the advent of 3D processing, many of the manually measured metrics can be automated, leading to better reproducibility and less subjective measurement placement. Hence, we make use this newly available 3D processing in our workflow. Our pipeline is used here to standardize the labeling, tracking, and quantifying of metrics for renal masses.
NASA Astrophysics Data System (ADS)
Goh, Gregory K. L.
2014-06-01
This special issue of the Journal of Solid State Chemistry is a peer-reviewed collection of papers presented at the 7th International Conference on Materials for Advanced Technologies (ICMAT2013), Symposium Q - Innovative processing of inorganic films and nanostructures of functional materials, organised by the Materials Research Society, Singapore and held at the Singapore International Convention & Exhibition Centre, Singapore, from 30 June to 5 July 2013. The symposium focused mainly on films, porous networks and nanostructures formed by innovative processing routes that reduce energy consumption, use new mediums, combine techniques or even innovative synthesis approaches. The understanding of film and nanostructure growth mechanisms and crystal shape control were also discussed. We acknowledge the invaluable contributions of all invited, oral and poster presenters. I also take this opportunity to thank reviewers from all over the world who kindly helped in reviewing the manuscripts and provided valuable comments, making the publication of this high quality issue possible.
Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R
2016-08-01
The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.
NASA Technical Reports Server (NTRS)
Nakhost, Z.; Karel, M.; Krukonis, V. J.
1987-01-01
Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.
NASA Technical Reports Server (NTRS)
Nakhost, Z.; Karel, M.; Krukonis, V. J.
1987-01-01
Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.
The Flight Optimization System Weights Estimation Method
NASA Technical Reports Server (NTRS)
Wells, Douglas P.; Horvath, Bryce L.; McCullers, Linwood A.
2017-01-01
FLOPS has been the primary aircraft synthesis software used by the Aeronautics Systems Analysis Branch at NASA Langley Research Center. It was created for rapid conceptual aircraft design and advanced technology impact assessments. FLOPS is a single computer program that includes weights estimation, aerodynamics estimation, engine cycle analysis, propulsion data scaling and interpolation, detailed mission performance analysis, takeoff and landing performance analysis, noise footprint estimation, and cost analysis. It is well known as a baseline and common denominator for aircraft design studies. FLOPS is capable of calibrating a model to known aircraft data, making it useful for new aircraft and modifications to existing aircraft. The weight estimation method in FLOPS is known to be of high fidelity for conventional tube with wing aircraft and a substantial amount of effort went into its development. This report serves as a comprehensive documentation of the FLOPS weight estimation method. The development process is presented with the weight estimation process.
Short-Term Planning of Hybrid Power System
NASA Astrophysics Data System (ADS)
Knežević, Goran; Baus, Zoran; Nikolovski, Srete
2016-07-01
In this paper short-term planning algorithm for hybrid power system consist of different types of cascade hydropower plants (run-of-the river, pumped storage, conventional), thermal power plants (coal-fired power plants, combined cycle gas-fired power plants) and wind farms is presented. The optimization process provides a joint bid of the hybrid system, and thus making the operation schedule of hydro and thermal power plants, the operation condition of pumped-storage hydropower plants with the aim of maximizing profits on day ahead market, according to expected hourly electricity prices, the expected local water inflow in certain hydropower plants, and the expected production of electrical energy from the wind farm, taking into account previously contracted bilateral agreement for electricity generation. Optimization process is formulated as hourly-discretized mixed integer linear optimization problem. Optimization model is applied on the case study in order to show general features of the developed model.
Diagnostic efficiency of an ability-focused battery.
Miller, Justin B; Fichtenberg, Norman L; Millis, Scott R
2010-05-01
An ability-focused battery (AFB) is a selected group of well-validated neuropsychological measures that assess the conventional range of cognitive domains. This study examined the diagnostic efficiency of an AFB for use in clinical decision making with a mixed sample composed of individuals with neurological brain dysfunction and individuals referred for cognitive assessment without evidence of neurological disorders. Using logistic regression analyses and ROC curve analysis, a five-domain model composed of attention, processing speed, visual-spatial reasoning, language/verbal reasoning, and memory domain scores was fitted that had an AUC of.89 (95% CI =.84-.95). A more parsimonious two-domain model using processing speed and memory was also fitted that had an AUC of.90 (95% confidence interval =.84-.95). A model composed of a global ability score calculated from the mean of the individual domain scores was also fitted with an AUC of.88 (95% CI =.82-.94).
Ultrasonic inspection of carbon fiber reinforced plastic by means of sample-recognition methods
NASA Technical Reports Server (NTRS)
Bilgram, R.
1985-01-01
In the case of carbon fiber reinforced plastic (CFRP), it has not yet been possible to detect nonlocal defects and material degradation related to aging with the aid of nondestructive inspection method. An approach for overcoming difficulties regarding such an inspection involves an extension of the ultrasonic inspection procedure on the basis of a use of signal processing and sample recognition methods. The basic concept involved in this approach is related to the realization that the ultrasonic signal contains information regarding the medium which is not utilized in conventional ultrasonic inspection. However, the analytical study of the phyiscal processes involved is very complex. For this reason, an empirical approach is employed to make use of the information which has not been utilized before. This approach uses reference signals which can be obtained with material specimens of different quality. The implementation of these concepts for the supersonic inspection of CFRP laminates is discussed.
Imaging multiple sclerosis and other neurodegenerative diseases
Inglese, Matilde; Petracca, Maria
2013-01-01
Although the prevalence of neurodegenerative diseases is increasing as a consequence of the growing aging population, the exact pathophysiological mechanisms leading to these diseases remains obscure. Multiple sclerosis (MS), an autoimmune disease of the central nervous system and the most frequent cause of disability among young people after traumatic brain injury, is characterized by inflammatory/demyelinating and neurodegenerative processes that occurr earlier in life. The ability to make an early diagnosis of MS with the support of conventional MRI techniques, provides the opportunity to study neurodegeneration and the underlying pathophysiological processes in earlier stages than in classical neurodegenerative diseases. This review summarizes mechanisms of neurodegeneration common to MS and to Alzheimer disease, Parkinson disease, and amiotrophic lateral sclerosis, and provides a brief overview of the neuroimaging studies employing MRI and PET techniques to investigate and monitor neurodegeneration in both MS and classical neurodegenerative diseases. PMID:23117868
Low energy cyclotron for radiocarbon dating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welch, J.J.
1984-12-01
The measurement of naturally occurring radioisotopes whose half lives are less than a few hundred million years but more than a few years provides information about the temporal behavior of geologic and climatic processes, the temporal history of meteoritic bodies as well as the production mechanisms of these radioisotopes. A new extremely sensitive technique for measuring these radioisotopes at tandem Van de Graaff and cyclotron facilities has been very successful though the high cost and limited availability have been discouraging. We have built and tested a low energy cyclotron for radiocarbon dating similar in size to a conventional mass spectrometer.more » These tests clearly show that with the addition of a conventional ion source, the low energy cyclotron can perform the extremely high sensitivity /sup 14/C measurements that are now done at accelerator facilities. We found that no significant background is present when the cyclotron is tuned to accelerate /sup 14/C negative ions and the transmission efficiency is adequate to perform radiocarbon dating on milligram samples of carbon. The internal ion source used did not produce sufficient current to detect /sup 14/C directly at modern concentrations. We show how a conventional carbon negative ion source, located outside the cyclotron magnet, would produce sufficient beam and provide for quick sampling to make radiocarbon dating milligram samples with a modest laboratory instrument feasible.« less
Vila-Cortavitarte, Marta; Jato-Espino, Daniel; Castro-Fresno, Daniel; Calzada-Pérez, Miguel Á
2018-05-15
Major advances have been achieved in the field of self-healing by magnetic induction in which the addition of metallic particles into asphalt mixtures enables repairing their own cracks. This technology has already been proven to increase the life expectancy of roads. Nevertheless, its higher costs in comparison with conventional maintenance caused by the price of virgin metallic particles still makes it unattractive for investment. This research aimed at making this process economically accessible as well as environmentally efficient. To this end, an intense search for suitable industrial by-products to substitute both the virgin metal particles and the natural aggregates forming asphalt mixtures was conducted. The set of by-products used included sand blasting wastes, stainless shot wastes, and polished wastes as metallic particles and other inert by-products as aggregates. The results demonstrated that the by-products were adequately heated, which leads to satisfactory healing ratios in comparison with the reference mixture.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)
2001-01-01
It is highly desirable to have a non-nuclear power rich option for the human exploration of Mars. Utilizing a Solar Electric Propulsion, SEP, / Power Beaming architecture for a non-nuclear power option for a human Mars base potentially avoids the weather and dust sensitivities of the surface photovoltaic option. Further from Mars areosynchronous orbit near year round power can be provided. Mission analysis, however, concludes that ultra high (245 GHz) frequencies or laser transmission technologies are required for Mars landed mass competitiveness with the surface photovoltaic option if the receiving rectifying antenna "rectenna" is transported from Earth. It is suggested in this paper that producing rectenna in situ on Mars surface might make a more conventional 5.8 GHz system competitive with surface PV. The premium of a competitive, robust, continuous base power might make the development of a 10 plus MWe class SEP for human Mars mission a more attractive non-nuclear option.
Underground Mining Method Selection Using WPM and PROMETHEE
NASA Astrophysics Data System (ADS)
Balusa, Bhanu Chander; Singam, Jayanthu
2018-04-01
The aim of this paper is to represent the solution to the problem of selecting suitable underground mining method for the mining industry. It is achieved by using two multi-attribute decision making techniques. These two techniques are weighted product method (WPM) and preference ranking organization method for enrichment evaluation (PROMETHEE). In this paper, analytic hierarchy process is used for weight's calculation of the attributes (i.e. parameters which are used in this paper). Mining method selection depends on physical parameters, mechanical parameters, economical parameters and technical parameters. WPM and PROMETHEE techniques have the ability to consider the relationship between the parameters and mining methods. The proposed techniques give higher accuracy and faster computation capability when compared with other decision making techniques. The proposed techniques are presented to determine the effective mining method for bauxite mine. The results of these techniques are compared with methods used in the earlier research works. The results show, conventional cut and fill method is the most suitable mining method.
Catalyzed CO.sub.2-transport membrane on high surface area inorganic support
Liu, Wei
2014-05-06
Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO.sub.2 from gas streams such as flue gas streams. High CO.sub.2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO.sub.2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO.sub.2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0.times.10.sup.-6 mol/(m.sup.2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO.sub.2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.
A visualization tool to support decision making in environmental and biological planning
Romañach, Stephanie S.; McKelvy, James M.; Conzelmann, Craig; Suir, Kevin J.
2014-01-01
Large-scale ecosystem management involves consideration of many factors for informed decision making. The EverVIEW Data Viewer is a cross-platform desktop decision support tool to help decision makers compare simulation model outputs from competing plans for restoring Florida's Greater Everglades. The integration of NetCDF metadata conventions into EverVIEW allows end-users from multiple institutions within and beyond the Everglades restoration community to share information and tools. Our development process incorporates continuous interaction with targeted end-users for increased likelihood of adoption. One of EverVIEW's signature features is side-by-side map panels, which can be used to simultaneously compare species or habitat impacts from alternative restoration plans. Other features include examination of potential restoration plan impacts across multiple geographic or tabular displays, and animation through time. As a result of an iterative, standards-driven approach, EverVIEW is relevant to large-scale planning beyond Florida, and is used in multiple biological planning efforts in the United States.
Castro-Fresno, Daniel; Calzada-Pérez, Miguel Á.
2018-01-01
Major advances have been achieved in the field of self-healing by magnetic induction in which the addition of metallic particles into asphalt mixtures enables repairing their own cracks. This technology has already been proven to increase the life expectancy of roads. Nevertheless, its higher costs in comparison with conventional maintenance caused by the price of virgin metallic particles still makes it unattractive for investment. This research aimed at making this process economically accessible as well as environmentally efficient. To this end, an intense search for suitable industrial by-products to substitute both the virgin metal particles and the natural aggregates forming asphalt mixtures was conducted. The set of by-products used included sand blasting wastes, stainless shot wastes, and polished wastes as metallic particles and other inert by-products as aggregates. The results demonstrated that the by-products were adequately heated, which leads to satisfactory healing ratios in comparison with the reference mixture. PMID:29762533
Lupattelli, Angela; Spigset, Olav; Nordeng, Hedvig
2018-06-15
The growing evidence on psychotropic drug safety in pregnancy has been possible thanks to the increasing availability of real-world data, i.e. data not collected in conventional randomised controlled trials. Use of these data is a key to establish psychotropic drug effects on foetal, child, and maternal health. Despite the inherent limitations and pitfalls of observational data, these can still be informative after a critical appraisal of the collective body of evidence has been done. By valuing real-world safety data, and making these a larger part of the regulatory decision-making process, we move toward a modern pregnancy pharmacovigilance. The recent uptake of real-world safety data by health authorities has set the basis for an important paradigm shift, which is integrating such data into drug labelling. The recent safety assessment of sodium valproate in pregnant and childbearing women is probably one of the first examples of modern pregnancy pharmacovigilance.
Design and implement of mobile equipment management system based on QRcode
NASA Astrophysics Data System (ADS)
Yu, Runze; Duan, Xiaohui; Jiao, Bingli
2017-08-01
A mobile equipment management system based on QRcode is proposed for remote and convenient device management. Unlike conventional systems, the system here makes managers accessible to real-time information with smart phones. Compared with the conventional method, which can only be operated with specific devices, this lightweight and efficient tele management mode is conducive to the asset management in multiple scenarios.
Fabrication of amorphous InGaZnO thin-film transistor with solution processed SrZrO3 gate insulator
NASA Astrophysics Data System (ADS)
Takahashi, Takanori; Oikawa, Kento; Hoga, Takeshi; Uraoka, Yukiharu; Uchiyama, Kiyoshi
2017-10-01
In this paper, we describe a method of fabrication of thin film transistors (TFTs) with high dielectric constant (high-k) gate insulator by a solution deposition. We chose a solution processed SrZrO3 as a gate insulator material, which possesses a high dielectric constant of 21 with smooth surface. The IGZO-TFT with solution processed SrZrO3 showed good switching property and enough saturation features, i.e. field effect mobility of 1.7cm2/Vs, threshold voltage of 4.8V, sub-threshold swing of 147mV/decade, and on/off ratio of 2.3×107. Comparing to the TFTs with conventional SiO2 gate insulator, the sub-threshold swing was improved by smooth surface and high field effect due to the high dielectric constant of SrZrO3. These results clearly showed that use of solution processed high-k SrZrO3 gate insulator could improve sub-threshold swing. In addition, the residual carbon originated from organic precursors makes TFT performances degraded.
EMAN2: an extensible image processing suite for electron microscopy.
Tang, Guang; Peng, Liwei; Baldwin, Philip R; Mann, Deepinder S; Jiang, Wen; Rees, Ian; Ludtke, Steven J
2007-01-01
EMAN is a scientific image processing package with a particular focus on single particle reconstruction from transmission electron microscopy (TEM) images. It was first released in 1999, and new versions have been released typically 2-3 times each year since that time. EMAN2 has been under development for the last two years, with a completely refactored image processing library, and a wide range of features to make it much more flexible and extensible than EMAN1. The user-level programs are better documented, more straightforward to use, and written in the Python scripting language, so advanced users can modify the programs' behavior without any recompilation. A completely rewritten 3D transformation class simplifies translation between Euler angle standards and symmetry conventions. The core C++ library has over 500 functions for image processing and associated tasks, and it is modular with introspection capabilities, so programmers can add new algorithms with minimal effort and programs can incorporate new capabilities automatically. Finally, a flexible new parallelism system has been designed to address the shortcomings in the rigid system in EMAN1.
NASA Astrophysics Data System (ADS)
Matveenko, V. P.; Kosheleva, N. A.; Shardakov, I. N.; Voronkov, A. A.
2018-04-01
The presence of process-induced strains induced by various manufacturing and operational factors is one of the characteristics of polymer composite materials (PCM). Conventional methods of registration and evaluation of process-induced strains can be laborious, time-consuming and demanding in terms of technical applications. The employment of embedded fibre-optic strain sensors (FOSS) offers a real prospect of measuring residual strains. This paper demonstrates the potential for using embedded FOSS for recording technological strains in a PCM plate. The PCM plate is manufactured from prepreg, using the direct compression-moulding method. In this method, the prepared reinforcing package is placed inside a mould, heated, and then exposed to compaction pressure. The examined technology can be used for positioning FOSS between the layers of the composite material. Fibre-optic sensors, interacting with the material of the examined object, make it possible to register the evolution of the strain process during all stages of polymer-composite formation. FOSS data were recorded with interrogator ASTRO X 327. The obtained data were processed using specially developed algorithms.
Davis, J P; Akella, S; Waddell, P H
2004-01-01
Having greater computational power on the desktop for processing taxa data sets has been a dream of biologists/statisticians involved in phylogenetics data analysis. Many existing algorithms have been highly optimized-one example being Felsenstein's PHYLIP code, written in C, for UPGMA and neighbor joining algorithms. However, the ability to process more than a few tens of taxa in a reasonable amount of time using conventional computers has not yielded a satisfactory speedup in data processing, making it difficult for phylogenetics practitioners to quickly explore data sets-such as might be done from a laptop computer. We discuss the application of custom computing techniques to phylogenetics. In particular, we apply this technology to speed up UPGMA algorithm execution by a factor of a hundred, against that of PHYLIP code running on the same PC. We report on these experiments and discuss how custom computing techniques can be used to not only accelerate phylogenetics algorithm performance on the desktop, but also on larger, high-performance computing engines, thus enabling the high-speed processing of data sets involving thousands of taxa.
In-vivo optical molecular imaging for laser hyperthermia
NASA Astrophysics Data System (ADS)
Zeng, Shaoqun; Zhang, Zhihong; Zhou, Wei; Luo, Qingming
2002-04-01
Green fluorescent protein (GFP) transfected Hela cell was planted in naked mice, to construct an in vivo model for monitoring the therapeutic effect of laser hyperthermia in real time. A cooled CCD fluorescence imaging system was used to record the tumor fluorescence image during the hyperthermia process. Primary experimental results were presented in this paper. To make sure the fluorescent probe GFP does not have strong effect on the biologic function of the host tumor cell (Hela cell), several conventional biological processes were observed in real time. First, neurons, which are much more tender than tumor cells, were transfected with GFP (cameleons). No morphological inhomogenities were observed, and normal functional responses of the neurons were observed when stimulated with histamine. In the second step, the mitosis process of cultured Hela cell was monitored. The features observed during mitosis confirmed that the transfection does not ruin the mitosis process of the tumor cell. At last, naked mice with tumor cell was constructed, which emit fluorescence in the tumor region when excited with faint laser. This presentation provides an in vivo biological model for quick monitoring of the therapeutic results of tumor hyperthermia.
Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
Techniques for Submitting Successful Proposals for SHAPE America National Conventions
ERIC Educational Resources Information Center
Stevens-Smith, Deborah
2016-01-01
This article covers the basic components of the submission process before submitting a proposal for the SHAPE America national convention. The article discusses various techniques specific to the process, including the unique discipline areas. Other issues addressed include an understanding of the SHAPE America review process and how it works,…
Face processing pattern under top-down perception: a functional MRI study
NASA Astrophysics Data System (ADS)
Li, Jun; Liang, Jimin; Tian, Jie; Liu, Jiangang; Zhao, Jizheng; Zhang, Hui; Shi, Guangming
2009-02-01
Although top-down perceptual process plays an important role in face processing, its neural substrate is still puzzling because the top-down stream is extracted difficultly from the activation pattern associated with contamination caused by bottom-up face perception input. In the present study, a novel paradigm of instructing participants to detect faces from pure noise images is employed, which could efficiently eliminate the interference of bottom-up face perception in topdown face processing. Analyzing the map of functional connectivity with right FFA analyzed by conventional Pearson's correlation, a possible face processing pattern induced by top-down perception can be obtained. Apart from the brain areas of bilateral fusiform gyrus (FG), left inferior occipital gyrus (IOG) and left superior temporal sulcus (STS), which are consistent with a core system in the distributed cortical network for face perception, activation induced by top-down face processing is also found in these regions that include the anterior cingulate gyrus (ACC), right oribitofrontal cortex (OFC), left precuneus, right parahippocampal cortex, left dorsolateral prefrontal cortex (DLPFC), right frontal pole, bilateral premotor cortex, left inferior parietal cortex and bilateral thalamus. The results indicate that making-decision, attention, episodic memory retrieving and contextual associative processing network cooperate with general face processing regions to process face information under top-down perception.
Statistical inference for noisy nonlinear ecological dynamic systems.
Wood, Simon N
2010-08-26
Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.
Cost-benefit analysis of copper recovery in remediation projects: A case study from Sweden.
Volchko, Yevheniya; Norrman, Jenny; Rosén, Lars; Karlfeldt Fedje, Karin
2017-12-15
Contamination resulting from past industrial activity is a problem throughout the world and many sites are severely contaminated by metals. Advances in research in recent years have resulted in the development of technologies for recovering metal from metal-rich materials within the framework of remediation projects. Using cost-benefit analysis (CBA), and explicitly taking uncertainties into account, this paper evaluates the potential social profitability of copper recovery as part of four remediation alternatives at a Swedish site. One alternative involves delivery of copper-rich ash to a metal production company for refining. The other three alternatives involve metal leaching from materials and sale of the resulting metal sludge for its further processing at a metal production company using metallurgical methods. All the alternatives are evaluated relative to the conventional excavation and disposal method. Metal recovery from the ash, metal sludge sale, and disposal of the contaminated soil and the ash residue at the local landfill site, was found to be the best remediation alternative. However, given the present conditions, its economic potential is low relative to the conventional excavation and disposal method but higher than direct disposal of the copper-rich ash for refining. Volatile copper prices, the high cost of processing equipment, the highly uncertain cost of the metal leaching and washing process, coupled with the substantial project risks, contribute most to the uncertainties in the CBA results for the alternatives involving metal leaching prior to refining. However, investment in processing equipment within the framework of a long-term investment project, production of safe, reusable soil residue, and higher copper prices on the metal market, can make metal recovery technology socially profitable. Copyright © 2017 Elsevier B.V. All rights reserved.
Joyner, Helen S; Jones, Kari E; Rasco, Barbara A
2017-10-01
Pasta hydration and cooking requirements make in-package microwave pasteurization of pasta a processing challenge. The objective of this study was to assess instrumental and sensory attributes of microwave-treated pasta in comparison to conventionally cooked pasta. Fettuccine pasta was parboiled for 0, 3, 6, 9, or 12 min, pasteurized by microwaves at 915 MHz, then stored under refrigeration for 1 week. Pastas were evaluated by a trained sensory panel and with rheometry. Total pasta heat treatment affected both rheological and sensory behaviors; these differences were attributed to ultrastructure differences. Significant nonlinear behavior and dominant fluid-like behavior was observed in all pastas at strains >1%. Sensory results suggested microwave pasteurization may intensify the attributes associated with the aging of pasta such as retrogradation. A clear trend between magnitude of heat treatment and attribute intensity was not observed for all sensory attributes tested. The microwave pasta with the longest parboil time showed rheological behavior most similar to conventionally cooked pasta. Principal component analysis revealed that no microwave-treated pasta was similar to the control pasta. However, pasta parboiled for 9 min before microwave treatment had the greatest number of similar sensory attributes, followed by pasta parboiled for 6 or 12 min. Further study is needed to determine overall consumer acceptance of microwave-treated pasta and whether the differences in sensory and rheological behavior would impact consumer liking. The results of this study may be applied to optimize microwave pasteurization processes for cooked pasta and similar products, such as rice. The measurement and analysis procedures can be used to evaluate processing effects on a variety of different foods to determine overall palatability. © 2017 Wiley Periodicals, Inc.
Effects of Annealing Process on the Formability of Friction Stir Welded Al-Li Alloy 2195 Plates
NASA Technical Reports Server (NTRS)
Chen, Po-Shou; Bradford, Vann; Russell, Carolyn
2011-01-01
Large rocket cryogenic tank domes have typically been fabricated using Al-Cu based alloys like Al-Cu alloy 2219. The use of aluminum-lithium based alloys for rocket fuel tank domes can reduce weight because aluminum-lithium alloys have lower density and higher strength than Al-Cu alloy 2219. However, Al-Li alloys have rarely been used to fabricate rocket fuel tank domes because of the inherent low formability characteristic that make them susceptible to cracking during the forming operations. The ability to form metal by stretch forming or spin forming without excessive thinning or necking depends on the strain hardening exponent "n". The stain hardening exponent is a measure of how rapidly a metal becomes stronger and harder. A high strain hardening exponent is beneficial to a material's ability to uniformly distribute the imposed strain. Marshall Space Flight Center has developed a novel annealing process that can achieve a work hardening exponent on the order of 0.27 to 0.29, which is approximately 50% higher than what is typically obtained for Al-Li alloys using the conventional method. The strain hardening exponent of the Al-Li alloy plates or blanks heat treated using the conventional method is typically on the order of 0.17 to 0.19. The effects of this novel annealing process on the formability of friction stir welded Al-Li alloy blanks are being studied at Marshall Space Flight Center. The formability ratings will be generated using the strain hardening exponent, strain rate sensitivity and forming range. The effects of forming temperature on the formability will also be studied. The objective of this work is to study the deformation behavior of the friction stir welded Al-Li alloy 2195 blank and determine the formability enhancement by the new annealing process.
Presidential Green Chemistry Challenge 2004 award winner, Jeneil Biosurfactant Company, makes biobased, rhamnolipid surfactants by fermentation that are less toxic and more biodegradable than conventional surfactants.
Sfakianakis, Panagiotis; Tzia, Constatnina
2014-03-11
Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review.
Sfakianakis, Panagiotis; Tzia, Constatnina
2014-01-01
Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review. PMID:28234312
NASA Astrophysics Data System (ADS)
Cummings, Mary Anne; Johnson, Rolland
Acceptable capital and operating costs of high-power proton accelerators suitable for profitable commercial electric-power and process-heat applications have been demonstrated. However, studies have pointed out that even a few hundred trips of an accelerator lasting a few seconds would lead to unacceptable thermal stresses as each trip causes fission to be turned off in solid fuel structures found in conventional reactors. The newest designs based on the GEM*STAR concept take such trips in stride by using molten-salt fuel, where fuel pin fatigue is not an issue. Other aspects of the GEM*STAR concept which address all historical reactor failures include an internal spallation neutron target and high temperature molten salt fuel with continuous purging of volatile radioactive fission products such that the reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors. GEM*STAR is a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. It will operate without the need for a critical core, fuel enrichment, or reprocessing making it an excellent candidate for export. As a first application, the design for a pilot plant is described for the profitable disposition of surplus weapons-grade plutonium by using process heat to produce green diesel fuel for the Department of Defense (DOD) from natural gas and renewable carbon.
Ribera, G; Clarens, F; Martínez-Lladó, X; Jubany, I; V Martí; Rovira, M
2014-01-01
A combined methodology using life cycle assessment (LCA) and human health risk assessment (HHR) is proposed in order to select the percentage of water in drinking water treatment plants (DWTP) that should be nanofiltered (NF). The methodological approach presented here takes into account environmental and social benefit criteria evaluating the implementation of new processes into conventional ones. The inclusion of NF process improves drinking water quality, reduces HHR but, in turn, increases environmental impacts as a result of energy and material demand. Results from this study lead to balance the increase of the impact in various environmental categories with the reduction in human health risk as a consequence of the respective drinking water production and consumption. From an environmental point of view, the inclusion of NF and recommended pretreatments to produce 43% of the final drinking water means that the environmental impact is nearly doubled in comparison with conventional plant in impact categories severely related with electricity production, like climate change. On the other hand, the carcinogenic risk (HHR) associated to trihalomethane formation potential (THMFP) decreases with the increase in NF percentage use. Results show a reduction of one order of magnitude for the carcinogenic risk index when 100% of drinking water is produced by NF. © 2013. Published by Elsevier B.V. All rights reserved.
Modeling Collaborative Interaction Patterns in a Simulation-Based Task
ERIC Educational Resources Information Center
Andrews, Jessica J.; Kerr, Deirdre; Mislevy, Robert J.; von Davier, Alina; Hao, Jiangang; Liu, Lei
2017-01-01
Simulations and games offer interactive tasks that can elicit rich data, providing evidence of complex skills that are difficult to measure with more conventional items and tests. However, one notable challenge in using such technologies is making sense of the data generated in order to make claims about individuals or groups. This article…
Participation and Service Access Rights for People with Intellectual Disability: A Role for Law?
ERIC Educational Resources Information Center
Carney, Terry
2013-01-01
Background: Supported decision-making and personal budgets for services are the new paradigms. Method: Supported decision-making proposals from the Australian State of Victoria are analysed against international trends to determine the viability of laws reflecting new international norms of the United Nations Convention on the Rights of Persons…
ERIC Educational Resources Information Center
Adams, Carey H.; And Others
1988-01-01
Compares volunteers' and paid employees' attitudes toward their jobs and supervisors. Finds that volunteers are higher in intrinsic motivation and are more satisfied with their supervisors' decision-making. Suggests that supervisors of volunteers should use participative decision-making tactics and employ compliance-gaining behavior strategies…
Learning the Structure of English by Means of Esperanto.
ERIC Educational Resources Information Center
Jones, R. Kent
The Esperanto language was consciously designed as a coherent system, in contrast to the 3000 conventional languages originated by people's cave-dwelling ancestors. The systematic nature of Esperanto makes it ideal as an instructional tool. The amorphous nature of English makes its serious use very difficult for students. Even though they learn to…
Four Ages of Our Relationship with the Reality: An Educationalist Perspective
ERIC Educational Resources Information Center
Matusov, Eugene
2015-01-01
In this article, I try to make sense conventional notions of "premodernism", "modernism" and "postmodernism" as ways of relating to reality, and apply them to education. I argue for the additional notion of "neo-premodernism" to make sense of recent attempts to engineer social reality. Each of these four…
Morrissey, Fiona
2012-12-01
The UN Convention on the Rights of Persons with Disabilities (CRPD) requires us to engage in new approaches to decision-making in mental health law. The reclassification of mental health rights to the realm of disability rights is an important step towards equal treatment for persons with psychosocial disabilities. Law reformers worldwide are beginning to consider the implications of the provisions. Legislators will be required to understand the underlying philosophy of the CRPD to realise the rights set out in it. The CRPD possesses a number of innovative provisions which can transform decision-making in the mental health context. Article 12 provides a new conceptualisation of persons with disabilities and their capacity to participate by requiring support to exercise legal capacity. While good practice exists, the provision has yet to be fully implemented by many State Parties. This article discusses the impact of the CRPD on mental health law, legal capacity law and describes examples of supported decision-making models for mental health care.
8 CFR 204.311 - Convention adoption home study requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 8 Aliens and Nationality 1 2012-01-01 2012-01-01 false Convention adoption home study requirements... IMMIGRANT PETITIONS Intercountry Adoption of a Convention Adoptee § 204.311 Convention adoption home study requirements. (a) Purpose. For immigration purposes, a home study is a process for screening and preparing an...
8 CFR 204.311 - Convention adoption home study requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 8 Aliens and Nationality 1 2013-01-01 2013-01-01 false Convention adoption home study requirements... IMMIGRANT PETITIONS Intercountry Adoption of a Convention Adoptee § 204.311 Convention adoption home study requirements. (a) Purpose. For immigration purposes, a home study is a process for screening and preparing an...
8 CFR 204.311 - Convention adoption home study requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 8 Aliens and Nationality 1 2014-01-01 2014-01-01 false Convention adoption home study requirements... IMMIGRANT PETITIONS Intercountry Adoption of a Convention Adoptee § 204.311 Convention adoption home study requirements. (a) Purpose. For immigration purposes, a home study is a process for screening and preparing an...
Field Observations of Methane Emissions from Unconventional and Conventional Fossil Fuel Exploration
NASA Astrophysics Data System (ADS)
Dubey, M.; Lindenmaier, R.; Arata, C.; Costigan, K. R.; Frankenberg, C.; Kort, E. A.; Rahn, T. A.; Henderson, B. G.; Love, S. P.; Aubrey, A. D.
2013-12-01
Energy from methane (CH4) has lower carbon dioxide and air pollutant emissions per unit energy produced than coal or oil making it a desirable fossil fuel. Hydraulic fracturing is allowing United States to harvest the nation's abundant domestic shale gas reservoirs to achieve energy independence. However, CH4 is a gas that is hard to contain during mining, processing, transport and end-use. Therefore fugitive CH4 leaks occur that are reported in bottom up inventories by the EPA. Recent targeted field observations at selected plays have provided top down CH4 leak estimates that are larger than the reported EPA inventories. Furthermore, no long-term regional baselines are available to delineate leaks from unconventional mining operations from historical conventional mining. We will report and compare observations of fugitive CH4 leaks from conventional and unconventional mining to understand changes from technology shifts. We will report in situ and regional column measurements of CH4, its isotopologue 13CH4 and ethane (C2H6) at our Four Corners site near Farmington, NM. The region has substantial coal bed methane, conventional oil and gas production, processing and distribution with minimal hydraulic fracturing activity. We observe large enhancements in in situ and regional column CH4 with distinct time dependence. Our in situ 13CH4 observations and remote C2H6/CH4 provide strong evidence of thermogenic sources. Comparisons of WRF-simulations with emissions inventory (Edgar) with our observations show that the fugitive CH4 leaks from conventional mining are 3 times greater than reported. We also compare in situ mobile surveys of fugitive CH4 and 13CH4 leak signals in basins with conventional (San Juan) mining and unconventional (Permian and Powder River) mining. A large number of active and closed wells were sampled in these regions. Furthermore, play scale surveys on public roads allowed us to gain a regional perspective. The composition of atmospheric 13CH4 observed in the Powder River basin was lighter than the Permian and San Juan basins indicating a higher microbial generated fraction. More extensive and larger CH4 enhancements were measured in the Permian basin that could be a result of the large expansion of unconventional oil and gas production in this region. However, there are variations amongst wells and plays suggesting that operator practices and reservoir formation play a role in determining the fugitive leaks.
Reassessing policy paradigms: A comparison of the global tobacco and alcohol industries.
Hawkins, Benjamin; Holden, Chris; Eckhardt, Jappe; Lee, Kelley
2018-01-01
Tobacco is widely considered to be a uniquely harmful product for human health. Since the mid-1990s, the strategies of transnational tobacco corporations to undermine effective tobacco control policy has been extensively documented through internal industry documents. Consequently, the sale, use and marketing of tobacco products are subject to extensive regulation and formal measures to exclude the industry from policy-making have been adopted in the Framework Convention on Tobacco Control. In contrast to tobacco, alcohol is subject to less stringent forms of regulation, and the alcohol industry continues to play a central role in policy-making in many countries and at the global level. This article examines whether there is a sufficient rationale for such different regulatory approaches, through a comparative analysis of the political economy of the tobacco and alcohol industries including the structure of the industries, and the market and political strategies they pursue. Despite some important differences, the extensive similarities which exist between the tobacco and alcohol industries in terms of market structure and strategy, and political strategy, call into question the rationale for both the relatively weak regulatory approach taken towards alcohol, and the continued participation of alcohol corporations in policy-making processes.
Tzanetakis, Meropi; Kamphausen, Gerrit; Werse, Bernd; von Laufenberg, Roger
2016-09-01
In recent years, marketplaces in the darknet emerged where vendors and customers can exchange illicit drugs and other goods on digital platforms by using hidden internet services. The main thesis of this paper is that in an online environment, different practices for building trust and reputation emerge that stabilise market processes. Qualitative and quantitative data from a recent German project on conventional (offline) small-scale drug dealing as well as qualitative case studies on four online vendors operating on Agora market are used to explore alternative practices for building trust and reputation. They also explore the use of violence and logistics established on cryptomarkets in comparison to traditional dealing. To analyse the data we applied qualitative content analyses. For conventional commercial illicit drug dealing on various kinds of markets, trust between buyer and seller is a crucial issue, often emphasized by restricting deals to well-known persons. While this typically includes face-to-face contact, the opposite is true with online drug trading. It is characteristic of cryptomarkets that the parties involved in a transaction know neither the personal identity nor the physical location of one another. This is realised by using aliases, anonymising software, and cryptocurrencies for payments. Violence typically only plays a role in traditional drug dealing, but mostly, if at all, just as a latent threat for potential rule-breakers. Processing a transaction anonymously includes escrow services for the buyers, which makes trading more reliable, although they cannot completely prevent scamming. Furthermore, online drug marketplaces usually offer a customer feedback system that allows customers to rate vendors and review products. A positive vendor feedback helps building reputation and trust in such an online environment. With regard to logistics, most conventional small-scale dealers restrict their acts of selling to private surroundings to avoid encounters with law enforcement. In cryptomarkets, the purchased drugs are delivered by traditional postal services, sometimes to false addresses or to someone else's name to conceal the identity and address of the buyer. On virtual drug markets practices of building trust, conflict resolution and logistics is constantly evolving. They offer improved security solutions on the one hand while on the other hand scamming and fraud seem to be widely used on both online and conventional drug markets. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-01
...The Coast Guard proposes to amend the existing regulations that implement the International Convention on Standards of Training, Certification and Watchkeeping for Seafarers, 1978, as amended (STCW Convention), as well as the Seafarer's Training, Certification and Watchkeeping Code (STCW Code). The changes proposed in this Supplemental Notice of Proposed Rulemaking (SNPRM) address the comments received from the public response to the Notice of Proposed Rulemaking (NPRM), in most cases through revisions based on those comments, and propose to incorporate the 2010 amendments to the STCW Convention that will come into force on January 1, 2012. In addition, this SNPRM proposes to make other non-STCW changes necessary to reorganize, clarify, and update these regulations.
Vagadia, Brinda Harish; Raghavan, Vijaya
2018-01-01
Soymilk is lower in calories compared to cow’s milk, since it is derived from a plant source (no cholesterol) and is an excellent source of protein. Despite the beneficial factors, soymilk is considered as one of the most controversial foods in the world. It contains serine protease inhibitors which lower its nutritional value and digestibility. Processing techniques for the elimination of trypsin inhibitors and lipoxygenase, which have shorter processing time and lower production costs are required for the large-scale manufacturing of soymilk. In this study, the suitable conditions of time and temperature are optimized during microwave processing to obtain soymilk with maximum digestibility with inactivation of trypsin inhibitors, in comparison to the conventional thermal treatment. The microwave processing conditions at a frequency of 2.45 GHz and temperatures of 70 °C, 85 °C and 100 °C for 2, 5 and 8 min were investigated and were compared to conventional thermal treatments at the same temperature for 10, 20 and 30 min. Response surface methodology is used to design and optimize the experimental conditions. Thermal processing was able to increase digestibility by 7% (microwave) and 11% (conventional) compared to control, while trypsin inhibitor activity reduced to 1% in microwave processing and 3% in conventional thermal treatment when compared to 10% in raw soybean. PMID:29316679
Properties of frozen dairy desserts processed by microfluidization of their mixes.
Olson, D W; White, C H; Watson, C E
2003-04-01
Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.
Informed consent comprehension and recollection in adult dental patients: A systematic review.
Moreira, Narjara Conduru Fernandes; Pachêco-Pereira, Camila; Keenan, Louanne; Cummings, Greta; Flores-Mir, Carlos
2016-08-01
Patients' ability to recollect and comprehend treatment information plays a fundamental role in their decision making. The authors considered original studies assessing recollection or comprehension of dental informed consent in adults. The authors searched 6 electronic databases and partial gray literature and hand searched and cross-checked reference lists published through April 2015. The authors assessed the risk of bias in the included studies via different validated tools according to the study design. Nineteen studies were included: 5 randomized clinical trials, 8 cross-sectional studies, 3 qualitative studies, 2 mixed-methods studies, and 1 case series. Conventional informed consent processes yielded comprehension results of 27% to 85% and recollection of 20% to 86%, whereas informed consent processes enhanced by additional media ranged from 44% to 93% for comprehension and from 30% to 94% for recollection. Patient self-reported understanding ranged positively, with most patients feeling that they understood all or almost all the information presented. Results of qualitative data analyses indicated that patients did not always understand explanations, although dentists thought they did. Some patients firmly stated that they did not receive any related information. Only a few patients were able to remember complications related to their treatment options. Results of this systematic review should alert dentists that although patients in general report that they understand information given to them, they may have limited comprehension. Additional media may improve conventional informed consent processes in dentistry in a meaningful way. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erga, O.; Finborud, A.
Cost-effective FGD processes with high SO{sub 2} removal efficiencies are required for fossil-fired power plants. With high-sulfur fuel, conventional limestone processes are less ideal, and regenerative processes with SO{sub 2} recovery may offer important advantages. The Elsorb process, which is being developed by the Norwegian company Elkem Technology a.s., is a regenerable SO{sub 2} recovery process which operates on the principle of chemical absorption followed by regeneration by evaporation. The process is based on the use of a chemical stable sodium phosphate buffer in high concentration. It combines high cleaning efficiency with high cyclic absorption capacity, moderate energy requirement, andmore » very little oxidation losses. The process produces SO{sub 2} (g) which can be converted into liquid SO{sub 2}, sulfuric acid or elemental sulfur. The Elsorb process has been pilot tested on flue gas from a coal-fired boiler with very promising results, concerning cleaning efficiency and oxidation losses of SO{sub 2}. The first commercial Elsorb plant has been installed for treating incinerated Claus tail gas. Preliminary data regarding cleaning efficiency are in accordance with the pilot tests. However, unexpected high consumption of make-up chemicals were encountered. The existing incinerator is now to be modified. Complete data for the Elsorb plant should be available later this year. 1 fig.« less