An Evaluation of Wellness Assessment Visualizations for Older Adults
Reeder, Blaine; Yoo, Daisy; Aziz, Rafae; Thompson, Hilaire J.; Demiris, George
2015-01-01
Abstract Background Smart home technologies provide a valuable resource to unobtrusively monitor health and wellness within an older adult population. However, the breadth and density of data available along with aging associated decreases in working memory, prospective memory, spatial cognition, and processing speed can make it challenging to comprehend for older adults. We developed visualizations of smart home health data integrated into a framework of wellness. We evaluated the visualizations through focus groups with older adults and identified recommendations to guide the future development of visualizations. Materials and Methods We conducted four focus groups with older adult participants (n=31) at an independent retirement community. Participants were presented with three different visualizations from a wellness pilot study. A qualitative descriptive analysis was conducted to identify thematic content. Results We identified three themes related to processing and application of visualizations: (1) values of visualizations for wellness assessment, (2) cognitive processing approaches to visualizations, and (3) integration of health data for visualization. In addition, the focus groups highlighted key design considerations of visualizations important towards supporting decision-making and evaluation assessments within integrated health displays. Conclusions Participants found inherent value in having visualizations available to proactively engage with their healthcare provider. Integrating the visualizations into a wellness framework helped reduce the complexity of raw smart home data. There has been limited work on health visualizations from a consumer perspective, in particular for an older adult population. Creating appropriately designed visualizations is valuable towards promoting consumer involvement within the shared decision-making process of care. PMID:25401414
Visual skills involved in decision making by expert referees.
Ghasemi, Abdollah; Momeni, Maryam; Jafarzadehpur, Ebrahim; Rezaee, Meysam; Taheri, Hamid
2011-02-01
Previous studies have compared visual skills of expert and novice athletes; referees' performance has not been addressed. Visual skills of two groups of expert referees, successful and unsuccessful in decision making, were compared. Using video clips of soccer matches to assess decision-making success of 41 national and international referees from 31 to 42 years of age, 10 top referees were selected as the Successful group and 10 as the Unsuccessful group. Visual tests included visual memory, visual reaction time, peripheral vision, recognition speed, saccadic eye movement, and facility of accommodation. The Successful group had better visual skills than the Unsuccessful group. Such visual skills enhance soccer referees' performance and may be recommended for young referees.
ERIC Educational Resources Information Center
Clark, Christine; McDonnell, Andrea P.
2008-01-01
This study examined the effectiveness of an intervention package that included visual accommodations, daily preference assessments, and naturalistic instructional strategies on the accuracy of choice-making responses for three participants with visual impairments and multiple disabilities. It also examined the participants' ability to maintain and…
Public health nurse perceptions of Omaha System data visualization.
Lee, Seonah; Kim, Era; Monsen, Karen A
2015-10-01
Electronic health records (EHRs) provide many benefits related to the storage, deployment, and retrieval of large amounts of patient data. However, EHRs have not fully met the need to reuse data for decision making on follow-up care plans. Visualization offers new ways to present health data, especially in EHRs. Well-designed data visualization allows clinicians to communicate information efficiently and effectively, contributing to improved interpretation of clinical data and better patient care monitoring and decision making. Public health nurse (PHN) perceptions of Omaha System data visualization prototypes for use in EHRs have not been evaluated. To visualize PHN-generated Omaha System data and assess PHN perceptions regarding the visual validity, helpfulness, usefulness, and importance of the visualizations, including interactive functionality. Time-oriented visualization for problems and outcomes and Matrix visualization for problems and interventions were developed using PHN-generated Omaha System data to help PHNs consume data and plan care at the point of care. Eleven PHNs evaluated prototype visualizations. Overall PHNs response to visualizations was positive, and feedback for improvement was provided. This study demonstrated the potential for using visualization techniques within EHRs to summarize Omaha System patient data for clinicians. Further research is needed to improve and refine these visualizations and assess the potential to incorporate visualizations within clinical EHRs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Mental fatigue impairs soccer-specific decision-making skill.
Smith, Mitchell R; Zeuwts, Linus; Lenoir, Matthieu; Hens, Nathalie; De Jong, Laura M S; Coutts, Aaron J
2016-07-01
This study aimed to investigate the impact of mental fatigue on soccer-specific decision-making. Twelve well-trained male soccer players performed a soccer-specific decision-making task on two occasions, separated by at least 72 h. The decision-making task was preceded in a randomised order by 30 min of the Stroop task (mental fatigue) or 30 min of reading from magazines (control). Subjective ratings of mental fatigue were measured before and after treatment, and mental effort (referring to treatment) and motivation (referring to the decision-making task) were measured after treatment. Performance on the soccer-specific decision-making task was assessed using response accuracy and time. Visual search behaviour was also assessed throughout the decision-making task. Subjective ratings of mental fatigue and effort were almost certainly higher following the Stroop task compared to the magazines. Motivation for the upcoming decision-making task was possibly higher following the Stroop task. Decision-making accuracy was very likely lower and response time likely higher in the mental fatigue condition. Mental fatigue had unclear effects on most visual search behaviour variables. The results suggest that mental fatigue impairs accuracy and speed of soccer-specific decision-making. These impairments are not likely related to changes in visual search behaviour.
Stress wave sorting of red maple logs for structural quality
Xiping Wang; Robert J. Ross; David W. Green; Brian Brashaw; Karl Englund; Michael Wolcott
2004-01-01
Existing log grading procedures in the United States make only visual assessments of log quality. These procedures do not incorporate estimates of the modulus of elasticity (MOE) of logs. It is questionable whether the visual grading procedures currently used for logs adequately assess the potential quality of structural products manufactured from them, especially...
Nondestructive evaluation for sorting red maple logs
Xiping Wang; Robert J. Ross; David W. Green; Karl Englund; Michael Wolcott
2000-01-01
Existing log grading procedures in the United States make only visual assessments of log quality. These procedures do not incorporate estimates of the modulus of elasticity (MOE) of logs. It is questionable whether the visual grading procedures currently used for logs adequately assess the potential quality of structural products manufactured from them, especially...
ERIC Educational Resources Information Center
Gallagher, Brian R.; de Oca, Patricia Montes
1998-01-01
Presents guidelines for orientation and mobility instructors and traffic engineers to assess the need for adaptive devices to make crosswalks at signalized intersections accessible to pedestrians with visual impairments. The discussions of audible and tactile pedestrian devices, along with case examples, distinguish when each device should be…
Youth with Visual Impairments: Experiences in General Physical Education
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Robinson, Barbara L.; Rollheiser, Heidi
2006-01-01
The rapid increase in the number of students with visual impairments currently being educated in inclusive general physical education makes it important that physical education instructors know how best to serve them. Assessment of the experiences of students with visual impairments during general physical education classes, knowledge of students'…
Visual Spatial Cognition in Neurodegenerative Disease
Possin, Katherine L.
2011-01-01
Visual spatial impairment is often an early symptom of neurodegenerative disease; however, this multi-faceted domain of cognition is not well-assessed by most typical dementia evaluations. Neurodegenerative diseases cause circumscribed atrophy in distinct neural networks, and accordingly, they impact visual spatial cognition in different and characteristic ways. Anatomically-focused visual spatial assessment can assist the clinician in making an early and accurate diagnosis. This article will review the literature on visual spatial cognition in neurodegenerative disease clinical syndromes, and where research is available, by neuropathologic diagnoses. Visual spatial cognition will be organized primarily according to the following schemes: bottom-up / top-down processing, dorsal / ventral stream processing, and egocentric / allocentric frames of reference. PMID:20526954
Making memories: the development of long-term visual knowledge in children with visual agnosia.
Metitieri, Tiziana; Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment.
Making Memories: The Development of Long-Term Visual Knowledge in Children with Visual Agnosia
Barba, Carmen; Pellacani, Simona; Viggiano, Maria Pia; Guerrini, Renzo
2013-01-01
There are few reports about the effects of perinatal acquired brain lesions on the development of visual perception. These studies demonstrate nonseverely impaired visual-spatial abilities and preserved visual memory. Longitudinal data analyzing the effects of compromised perceptions on long-term visual knowledge in agnosics are limited to lesions having occurred in adulthood. The study of children with focal lesions of the visual pathways provides a unique opportunity to assess the development of visual memory when perceptual input is degraded. We assessed visual recognition and visual memory in three children with lesions to the visual cortex having occurred in early infancy. We then explored the time course of visual memory impairment in two of them at 2 years and 3.7 years from the initial assessment. All children exhibited apperceptive visual agnosia and visual memory impairment. We observed a longitudinal improvement of visual memory modulated by the structural properties of objects. Our findings indicate that processing of degraded perceptions from birth results in impoverished memories. The dynamic interaction between perception and memory during development might modulate the long-term construction of visual representations, resulting in less severe impairment. PMID:24319599
Making a Difference. Visual Health Needs of People with a Learning Disability
ERIC Educational Resources Information Center
McGlade, Anne; Bickerstaff, David; Lindsay, Jennifer; McConkey, Roy; Jackson, Jonathan
2010-01-01
This article discusses the findings from a study to assess the impact of corrective eye treatment in adults with a learning disability. The Special Visual Assessment Clinic (SVAC) is an optometry led multi professional service delivered in a Resource Centre in Belfast, Northern Ireland. The study, which included user and carer input in its design,…
Visual evoked potentials through night vision goggles.
Rabin, J
1994-04-01
Night vision goggles (NVG's) have widespread use in military and civilian environments. NVG's amplify ambient illumination making performance possible when there is insufficient illumination for normal vision. While visual performance through NVG's is commonly assessed by measuring threshold functions such as visual acuity, few attempts have been made to assess vision through NVG's at suprathreshold levels of stimulation. Such information would be useful to better understand vision through NVG's across a range of stimulus conditions. In this study visual evoked potentials (VEP's) were used to evaluate vision through NVG's across a range of stimulus contrasts. The amplitude and latency of the VEP varied linearly with log contrast. A comparison of VEP's recorded with and without NVG's was used to estimate contrast attenuation through the device. VEP's offer an objective, electrophysiological tool to assess visual performance through NVG's at both threshold and suprathreshold levels of visual stimulation.
Modeling human comprehension of data visualizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Haass, Michael Joseph; Divis, Kristin Marie
This project was inspired by two needs. The first is a need for tools to help scientists and engineers to design effective data visualizations for communicating information, whether to the user of a system, an analyst who must make decisions based on complex data, or in the context of a technical report or publication. Most scientists and engineers are not trained in visualization design, and they could benefit from simple metrics to assess how well their visualization's design conveys the intended message. In other words, will the most important information draw the viewer's attention? The second is the need formore » cognition-based metrics for evaluating new types of visualizations created by researchers in the information visualization and visual analytics communities. Evaluating visualizations is difficult even for experts. However, all visualization methods and techniques are intended to exploit the properties of the human visual system to convey information efficiently to a viewer. Thus, developing evaluation methods that are rooted in the scientific knowledge of the human visual system could be a useful approach. In this project, we conducted fundamental research on how humans make sense of abstract data visualizations, and how this process is influenced by their goals and prior experience. We then used that research to develop a new model, the Data Visualization Saliency Model, that can make accurate predictions about which features in an abstract visualization will draw a viewer's attention. The model is an evaluation tool that can address both of the needs described above, supporting both visualization research and Sandia mission needs.« less
Evaluating visual function in cataract.
Elliott, D B
1993-11-01
This paper reviews recent research on the evaluation of visual function in cataract. Visual impairment in cataract is principally caused by increased intraocular forward light scatter. It is assumed that visual acuity (VA) measurements assess the impact of narrow angle light scatter. This also makes the measurement of high spatial frequency contrast sensitivity (CS) unnecessary. However, VA measurements alone are an inadequate assessment of visual impairment in some patients with cataract. In addition, it is suggested that a measurement of wide-angle light scatter is required. This can be evaluated directly using the van den Berg Straylightmeter, or indirectly using low spatial frequency CS or disability glare (DG) tests. The following are discussed: (1) the relative usefulness of these tests; (2) how they can be incorporated into the decision as to when to extract a cataract; and (3) the importance of considering binocular visual function.
Robert G. Ribe
2013-01-01
Perceptions of public forestsâ acceptability can be infl uenced by aesthetic qualities, at both broad and project levels, aff ecting managersâ social license to act. Legal and methodological issues related to measuring and managing forest aesthetics in NEPA and NFMA decision-making are discussed. It is argued that conventional visual impact assessmentsâusing...
Garcia-Retamero, Rocio; Cokely, Edward T
2017-06-01
Background Effective risk communication is essential for informed decision making. Unfortunately, many people struggle to understand typical risk communications because they lack essential decision-making skills. Objective The aim of this study was to review the literature on the effect of numeracy on risk literacy, decision making, and health outcomes, and to evaluate the benefits of visual aids in risk communication. Method We present a conceptual framework describing the influence of numeracy on risk literacy, decision making, and health outcomes, followed by a systematic review of the benefits of visual aids in risk communication for people with different levels of numeracy and graph literacy. The systematic review covers scientific research published between January 1995 and April 2016, drawn from the following databases: Web of Science, PubMed, PsycINFO, ERIC, Medline, and Google Scholar. Inclusion criteria were investigation of the effect of numeracy and/or graph literacy, and investigation of the effect of visual aids or comparison of their effect with that of numerical information. Thirty-six publications met the criteria, providing data on 27,885 diverse participants from 60 countries. Results Transparent visual aids robustly improved risk understanding in diverse individuals by encouraging thorough deliberation, enhancing cognitive self-assessment, and reducing conceptual biases in memory. Improvements in risk understanding consistently produced beneficial changes in attitudes, behavioral intentions, trust, and healthy behaviors. Visual aids were found to be particularly beneficial for vulnerable and less skilled individuals. Conclusion Well-designed visual aids tend to be highly effective tools for improving informed decision making among diverse decision makers. We identify five categories of practical, evidence-based guidelines for heuristic evaluation and design of effective visual aids.
Patterson, Chavis A; Barakat, Lamia P; Henderson, Phyllis K; Nall, Faith; Westin, Anna; Dampier, Carlton D; Hsu, Lewis L
2011-01-01
Communicating risk is an important activity in medical decision-making; yet, numeracy is not a universal skill among the American public. We examined the hypothesis that numerical risk information about the use of hydroxyurea for children with sickle cell disease would elicit different risk assessment responses when visual depictions were used instead of abstract numbers and depending on the disease severity. Parents of 81 children with sickle cell disease participated in a survey in which hydroxyurea was first described as carrying a certain chance of risk for both birth defects and cancer. Then, the parents indicated the highest risk at which they would hypothetically consent to the treatment to help their child. Risk presentations were repeated with abstract numerical, pie graph, and 1000 people histogram formats. The χ analyses comparing high-risk to low-risk assessment across presentation formats showed high consistency between visual depictions but low consistency of abstract numerical with visual depictions. The parents of children with SC and other less severe types of SCD were less willing to accept higher risk than those with SS when the data were presented numerically. Given earlier concerns about poor "numeracy" in the US population, visual depictions of risk could be an effective tool for routine communication in health education and medical decision-making.
Adding Test Generation to the Teaching Machine
ERIC Educational Resources Information Center
Bruce-Lockhart, Michael; Norvell, Theodore; Crescenzi, Pierluigi
2009-01-01
We propose an extension of the Teaching Machine project, called Quiz Generator, that allows instructors to produce assessment quizzes in the field of algorithm and data structures quite easily. This extension makes use of visualization techniques and is based on new features of the Teaching Machine that allow third-party visualizers to be added as…
VELMA (Visualizing Ecosystem Land Management Assessments) is an eco-hydrological model that produces visual simulations of many hydrologic and ecological processes over time periods from hours to days to years. The purpose thus far has been used for predicting effectiveness of g...
Reduction of Cortisol Levels and Participants' Responses Following Art Making
ERIC Educational Resources Information Center
Kaimal, Girija; Ray, Kendra; Muniz, Juan
2016-01-01
This quasi-experimental study investigated the impact of visual art making on the cortisol levels of 39 healthy adults. Participants provided saliva samples to assess cortisol levels before and after 45 minutes of art making. Participants also provided written responses about the experience at the end of the session. Results indicate that art…
Imagination and society: the role of visual sociology.
Cipriani, Roberto; Del Re, Emanuela C
2012-10-01
The paper presents the field of Visual Sociology as an approach that makes use of photographs, films, documentaries, videos, to capture and assess aspects of social life and social signals. It overviews some relevant works in the field, it deals with methodological and epistemological issues, by raising the question of the relation between the observer and the observed, and makes reference to some methods of analysis, such as those proposed by the Grounded Theory, and to some connected tools for automatic qualitative analysis, like NVivo. The relevance of visual sociology to the study of social signals lies in the fact that it can validly integrate the information, introducing a multi-modal approach in the analysis of social signals.
DECISION-COMPONENTS OF NICE'S TECHNOLOGY APPRAISALS ASSESSMENT FRAMEWORK.
de Folter, Joost; Trusheim, Mark; Jonsson, Pall; Garner, Sarah
2018-01-01
Value assessment frameworks have gained prominence recently in the context of U.S. healthcare. Such frameworks set out a series of factors that are considered in funding decisions. The UK's National Institute of Health and Care Excellence (NICE) is an established health technology assessment (HTA) agency. We present a novel application of text analysis that characterizes NICE's Technology Appraisals in the context of the newer assessment frameworks and present the results in a visual way. A total of 243 documents of NICE's medicines guidance from 2007 to 2016 were analyzed. Text analysis was used to identify a hierarchical set of decision factors considered in the assessments. The frequency of decision factors stated in the documents was determined and their association with terms related to uncertainty. The results were incorporated into visual representations of hierarchical factors. We identified 125 decision factors, and hierarchically grouped these into eight domains: Clinical Effectiveness, Cost Effectiveness, Condition, Current Practice, Clinical Need, New Treatment, Studies, and Other Factors. Textual analysis showed all domains appeared consistently in the guidance documents. Many factors were commonly associated with terms relating to uncertainty. A series of visual representations was created. This study reveals the complexity and consistency of NICE's decision-making processes and demonstrates that cost effectiveness is not the only decision-criteria. The study highlights the importance of processes and methodology that can take both quantitative and qualitative information into account. Visualizations can help effectively communicate this complex information during the decision-making process and subsequently to stakeholders.
Comprehensive Trail Making Test
ERIC Educational Resources Information Center
Gray, Rebecca
2006-01-01
The Comprehensive Trail Making Test (CTMT) is designed to be used in neuropsychological assessment for the purposes of detecting effects of brain defects and deficits and in tracking progress in rehabilitation. More specific purposes include the detection of frontal lobe deficits, problems with psychomotor speed, visual search and sequencing,…
Visualizing surgical quality data with treemaps.
Hugine, Akilah L; Guerlain, Stephanie A; Turrentine, Florence E
2014-09-01
Treemaps are space-constrained visualizations for displaying hierarchical data structures using nested rectangles. The visualization allows large amounts of data to be examined in one display. The objective of this research was to examine the effects of using treemap visualizations to help surgeons assess surgical quality data from the American College of Surgeons created the National Surgical Quality Improvement Program database in a quick and timely manner. A controlled human subjects experiment was conducted to assess the ability of individuals to make quick and accurate judgments on surgery data by visualizing a treemap, with data hierarchically displayed by surgeon group, surgeon, and patient. Participants were given 20 task questions to complete involving examining the treemap and comparing surgeons' patients based on outcomes (dead or alive) and length of stay days. The outcomes measured were error (incorrect or correct) and task completion time. 120 participants completed 20 task questions for a total of 2400 responses. The main effects of layout and node size were found to be significant for absolute error, P < 0.0505 and P < 0.0185, respectively. The average judgment time to complete a task was 24 s with an accuracy rate of approximately 68%. This study served as a proof of concept to determine if treemaps could be beneficial in assessing surgical data retrospectively by allowing surgeons and healthcare administrators to make quick visual judgments. The study found that factors about the layout design affect judgment performance. Future research is needed to examine whether implementing the treemap within a dashboard system will improve on judgment accuracy for surgical quality questions. Published by Elsevier Inc.
Holistic and Individualistic Evaluations of Digital Visual Art Portfolios: A Mixed Methods Study
ERIC Educational Resources Information Center
Cavill, William D., Jr.
2017-01-01
The high-stakes nature of portfolio evaluation makes it necessary to perform such assessments in the fairest and most equitable manner possible. Determining whether or not there is a difference between holistically and individualistically derived scores for digital visual art portfolios and how those differences can be explained was the focus of…
Visual Journaling for (Self) Education through Art Education
ERIC Educational Resources Information Center
Todd-Adekanye, Clarissa
2017-01-01
This study was designed to assess the impact of visual journaling in art education as a means for self-reflection and (self) education. Given that art making can be used as a tool for holistic healing, and Stuckey (2010) suggests that by supporting expression through creativity and imagination the formation of identity and reservoirs for healing…
The Relationships between Cognitive Ability and Dynamic Decision Making
ERIC Educational Resources Information Center
Gonzalez, C.; Thomas, R.P.; Vanyukov, P.
2005-01-01
This study investigated the relationships between cognitive ability (as assessed by the Raven Progressive Matrices Test [RPM] and the Visual-Span Test [VSPAN]) and individuals' performance in three dynamic decision making (DDM) tasks (i.e., regular Water Purification Plant [WPP], Team WPP, and Firechief). Participants interacted repeatedly with…
The case for visual analytics of arsenic concentrations in foods.
Johnson, Matilda O; Cohly, Hari H P; Isokpehi, Raphael D; Awofolu, Omotayo R
2010-05-01
Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species.
The Case for Visual Analytics of Arsenic Concentrations in Foods
Johnson, Matilda O.; Cohly, Hari H.P.; Isokpehi, Raphael D.; Awofolu, Omotayo R.
2010-01-01
Arsenic is a naturally occurring toxic metal and its presence in food could be a potential risk to the health of both humans and animals. Prolonged ingestion of arsenic contaminated water may result in manifestations of toxicity in all systems of the body. Visual Analytics is a multidisciplinary field that is defined as the science of analytical reasoning facilitated by interactive visual interfaces. The concentrations of arsenic vary in foods making it impractical and impossible to provide regulatory limit for each food. This review article presents a case for the use of visual analytics approaches to provide comparative assessment of arsenic in various foods. The topics covered include (i) metabolism of arsenic in the human body; (ii) arsenic concentrations in various foods; (ii) factors affecting arsenic uptake in plants; (ii) introduction to visual analytics; and (iv) benefits of visual analytics for comparative assessment of arsenic concentration in foods. Visual analytics can provide an information superstructure of arsenic in various foods to permit insightful comparative risk assessment of the diverse and continually expanding data on arsenic in food groups in the context of country of study or origin, year of study, method of analysis and arsenic species. PMID:20623005
How Dynamic Visualization Technology can Support Molecular Reasoning
NASA Astrophysics Data System (ADS)
Levy, Dalit
2013-10-01
This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and gas. They interact with the visualizations and carry out inquiry activities to make and refine connections between observable phenomena and atomic level processes related to phase change. The explanations proposed by 300 pairs of students in response to pre/post-assessment items have been analyzed using a scale for measuring the level of molecular reasoning. Results indicate that from pretest to posttest, students make progress in their level of molecular reasoning and are better able to connect intermolecular forces and phase change in their explanations. The paper presents the results through the lens of improvement patterns and the metaphor of the "ladder of molecular reasoning," and discusses how this adds to our understanding of the benefits of interacting with dynamic molecular visualizations.
Hout, Michael C; Goldinger, Stephen D
2015-01-01
When people look for things in the environment, they use target templates-mental representations of the objects they are attempting to locate-to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers' templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search.
Hout, Michael C.; Goldinger, Stephen D.
2014-01-01
When people look for things in the environment, they use target templates—mental representations of the objects they are attempting to locate—to guide attention and to assess incoming visual input as potential targets. However, unlike laboratory participants, searchers in the real world rarely have perfect knowledge regarding the potential appearance of targets. In seven experiments, we examined how the precision of target templates affects the ability to conduct visual search. Specifically, we degraded template precision in two ways: 1) by contaminating searchers’ templates with inaccurate features, and 2) by introducing extraneous features to the template that were unhelpful. We recorded eye movements to allow inferences regarding the relative extents to which attentional guidance and decision-making are hindered by template imprecision. Our findings support a dual-function theory of the target template and highlight the importance of examining template precision in visual search. PMID:25214306
Marsden, Janet
2016-09-21
Rationale and key points An objective assessment of the patient's vision is important to assess variation from 'normal' vision in acute and community settings, to establish a baseline before examination and treatment in the emergency department, and to assess any changes during ophthalmic outpatient appointments. » Vision is one of the essential senses that permits people to make sense of the world. » Visual assessment does not only involve measuring central visual acuity, it also involves assessing the consequences of reduced vision. » Assessment of vision in children is crucial to identify issues that might affect vision and visual development, and to optimise lifelong vision. » Untreatable loss of vision is not an inevitable consequence of ageing. » Timely and repeated assessment of vision over life can reduce the incidence of falls, prevent injury and optimise independence. Reflective activity 'How to' articles can help update you practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. How this article might change your practice when assessing people holistically. 2. How you could use this article to educate your colleagues in the assessment of vision.
King, Andy J; Jensen, Jakob D; Davis, LaShara A; Carcioppolo, Nick
2014-01-01
There is a paucity of research on the visual images used in health communication messages and campaign materials. Even though many studies suggest further investigation of these visual messages and their features, few studies provide specific constructs or assessment tools for evaluating the characteristics of visual messages in health communication contexts. The authors conducted 2 studies to validate a measure of perceived visual informativeness (PVI), a message construct assessing visual messages presenting statistical or indexical information. In Study 1, a 7-item scale was created that demonstrated good internal reliability (α = .91), as well as convergent and divergent validity with related message constructs such as perceived message quality, perceived informativeness, and perceived attractiveness. PVI also converged with a preference for visual learning but was unrelated to a person's actual vision ability. In addition, PVI exhibited concurrent validity with a number of important constructs including perceived message effectiveness, decisional satisfaction, and three key public health theory behavior predictors: perceived benefits, perceived barriers, and self-efficacy. Study 2 provided more evidence that PVI is an internally reliable measure and demonstrates that PVI is a modifiable message feature that can be tested in future experimental work. PVI provides an initial step to assist in the evaluation and testing of visual messages in campaign and intervention materials promoting informed decision making and behavior change.
NASA Astrophysics Data System (ADS)
Panulla, Brian J.; More, Loretta D.; Shumaker, Wade R.; Jones, Michael D.; Hooper, Robert; Vernon, Jeffrey M.; Aungst, Stanley G.
2009-05-01
Rapid improvements in communications infrastructure and sophistication of commercial hand-held devices provide a major new source of information for assessing extreme situations such as environmental crises. In particular, ad hoc collections of humans can act as "soft sensors" to augment data collected by traditional sensors in a net-centric environment (in effect, "crowd-sourcing" observational data). A need exists to understand how to task such soft sensors, characterize their performance and fuse the data with traditional data sources. In order to quantitatively study such situations, as well as study distributed decision-making, we have developed an Extreme Events Laboratory (EEL) at The Pennsylvania State University. This facility provides a network-centric, collaborative situation assessment and decision-making capability by supporting experiments involving human observers, distributed decision making and cognition, and crisis management. The EEL spans the information chain from energy detection via sensors, human observations, signal and image processing, pattern recognition, statistical estimation, multi-sensor data fusion, visualization and analytics, and modeling and simulation. The EEL command center combines COTS and custom collaboration tools in innovative ways, providing capabilities such as geo-spatial visualization and dynamic mash-ups of multiple data sources. This paper describes the EEL and several on-going human-in-the-loop experiments aimed at understanding the new collective observation and analysis landscape.
Modeling and evaluating user behavior in exploratory visual analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reda, Khairi; Johnson, Andrew E.; Papka, Michael E.
Empirical evaluation methods for visualizations have traditionally focused on assessing the outcome of the visual analytic process as opposed to characterizing how that process unfolds. There are only a handful of methods that can be used to systematically study how people use visualizations, making it difficult for researchers to capture and characterize the subtlety of cognitive and interaction behaviors users exhibit during visual analysis. To validate and improve visualization design, however, it is important for researchers to be able to assess and understand how users interact with visualization systems under realistic scenarios. This paper presents a methodology for modeling andmore » evaluating the behavior of users in exploratory visual analysis. We model visual exploration using a Markov chain process comprising transitions between mental, interaction, and computational states. These states and the transitions between them can be deduced from a variety of sources, including verbal transcripts, videos and audio recordings, and log files. This model enables the evaluator to characterize the cognitive and computational processes that are essential to insight acquisition in exploratory visual analysis, and reconstruct the dynamics of interaction between the user and the visualization system. We illustrate this model with two exemplar user studies, and demonstrate the qualitative and quantitative analytical tools it affords.« less
Milazzo, Nicolas; Farrow, Damian; Fournier, Jean F
2016-08-01
This study investigated the effect of a 12-session, implicit perceptual-motor training program on decision-making skills and visual search behavior of highly skilled junior female karate fighters (M age = 15.7 years, SD = 1.2). Eighteen participants were required to make (physical or verbal) reaction decisions to various attacks within different fighting scenarios. Fighters' performance and eye movements were assessed before and after the intervention, and during acquisition through the use of video-based and on-mat decision-making tests. The video-based test revealed that following training, only the implicit perceptual-motor group (n = 6) improved their decision-making accuracy significantly compared to a matched motor training (placebo, n = 6) group and a control group (n = 6). Further, the implicit training group significantly changed their visual search behavior by focusing on fewer locations for longer durations. In addition, the session-by-session analysis showed no significant improvement in decision accuracy between training session 1 and all the other sessions, except the last one. Coaches should devote more practice time to implicit learning approaches during perceptual-motor training program to achieve significant decision-making improvements and more efficient visual search strategy with elite athletes. © The Author(s) 2016.
Tandonnet, Christophe; Garry, Michael I; Summers, Jeffery J
2013-07-01
To make a decision may rely on accumulating evidence in favor of one alternative until a threshold is reached. Sequential-sampling models differ by the way of accumulating evidence and the link with action implementation. Here, we tested a model's prediction of an early action implementation specific to potential actions. We assessed the dynamics of action implementation in go/no-go and between-hand choice tasks by transcranial magnetic stimulation of the motor cortex (single- or paired-pulse TMS; 3-ms interstimulus interval). Prior to implementation of the selected action, the amplitude of the motor evoked potential first increased whatever the visual stimulus but only for the hand potentially involved in the to-be-produced action. These findings suggest that visual stimuli can trigger an early motor activation specific to potential actions, consistent with race-like models with continuous transmission between decision making and action implementation. Copyright © 2013 Society for Psychophysiological Research.
A Method to Quantify Visual Information Processing in Children Using Eye Tracking
Kooiker, Marlou J.G.; Pel, Johan J.M.; van der Steen-Kant, Sanny P.; van der Steen, Johannes
2016-01-01
Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child. PMID:27500922
A Method to Quantify Visual Information Processing in Children Using Eye Tracking.
Kooiker, Marlou J G; Pel, Johan J M; van der Steen-Kant, Sanny P; van der Steen, Johannes
2016-07-09
Visual problems that occur early in life can have major impact on a child's development. Without verbal communication and only based on observational methods, it is difficult to make a quantitative assessment of a child's visual problems. This limits accurate diagnostics in children under the age of 4 years and in children with intellectual disabilities. Here we describe a quantitative method that overcomes these problems. The method uses a remote eye tracker and a four choice preferential looking paradigm to measure eye movement responses to different visual stimuli. The child sits without head support in front of a monitor with integrated infrared cameras. In one of four monitor quadrants a visual stimulus is presented. Each stimulus has a specific visual modality with respect to the background, e.g., form, motion, contrast or color. From the reflexive eye movement responses to these specific visual modalities, output parameters such as reaction times, fixation accuracy and fixation duration are calculated to quantify a child's viewing behavior. With this approach, the quality of visual information processing can be assessed without the use of communication. By comparing results with reference values obtained in typically developing children from 0-12 years, the method provides a characterization of visual information processing in visually impaired children. The quantitative information provided by this method can be advantageous for the field of clinical visual assessment and rehabilitation in multiple ways. The parameter values provide a good basis to: (i) characterize early visual capacities and consequently to enable early interventions; (ii) compare risk groups and follow visual development over time; and (iii), construct an individual visual profile for each child.
Krupp, Daniel Brian
2008-02-01
Information is crucial to decision-making, including mate choice decisions. Perceptual systems, such as attention, evolved in part to forage for reproductive information; consequently, these systems can be used to reveal mate preferences. Here, I consider the place of visual information in human mate choice and provide a rationale for pressing into service methods drawn from the attention literature for the study of mate choice decisions. Because visual attention is allocated automatically and selectively, it may be used to complement common methods of mate preference assessment, such as self-report questionnaires and measures of genital arousal, while avoiding some of the pitfalls of these methods. Beyond the utility of increasing confidence in extant research findings by employing relatively unobtrusive methods, visual attention paradigms can also allow researchers to explore a variety of questions that are rarely asked, such as those concerned with signal efficiency and tradeoffs in the assessment of mate value.
Sensky, Tom; Büchi, Stefan
2016-01-01
PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell's seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg 'my illness') to a subject (eg 'myself') in a defined context (eg 'my life at the moment'). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions.
Computer assisted screening, correction, and analysis of historical weather measurements
NASA Astrophysics Data System (ADS)
Burnette, Dorian J.; Stahle, David W.
2013-04-01
A computer program, Historical Observation Tools (HOB Tools), has been developed to facilitate many of the calculations used by historical climatologists to develop instrumental and documentary temperature and precipitation datasets and makes them readily accessible to other researchers. The primitive methodology used by the early weather observers makes the application of standard techniques difficult. HOB Tools provides a step-by-step framework to visually and statistically assess, adjust, and reconstruct historical temperature and precipitation datasets. These routines include the ability to check for undocumented discontinuities, adjust temperature data for poor thermometer exposures and diurnal averaging, and assess and adjust daily precipitation data for undercount. This paper provides an overview of the Visual Basic.NET program and a demonstration of how it can assist in the development of extended temperature and precipitation datasets using modern and early instrumental measurements from the United States.
Comparing capacity coefficient and dual task assessment of visual multitasking workload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaha, Leslie M.
Capacity coefficient analysis could offer a theoretically grounded alternative approach to subjective measures and dual task assessment of cognitive workload. Workload capacity or workload efficiency is a human information processing modeling construct defined as the amount of information that can be processed by the visual cognitive system given a specified of amount of time. In this paper, I explore the relationship between capacity coefficient analysis of workload efficiency and dual task response time measures. To capture multitasking performance, I examine how the relatively simple assumptions underlying the capacity construct generalize beyond the single visual decision making tasks. The fundamental toolsmore » for measuring workload efficiency are the integrated hazard and reverse hazard functions of response times, which are defined by log transforms of the response time distribution. These functions are used in the capacity coefficient analysis to provide a functional assessment of the amount of work completed by the cognitive system over the entire range of response times. For the study of visual multitasking, capacity coefficient analysis enables a comparison of visual information throughput as the number of tasks increases from one to two to any number of simultaneous tasks. I illustrate the use of capacity coefficients for visual multitasking on sample data from dynamic multitasking in the modified Multi-attribute Task Battery.« less
High-Resolution Climate Data Visualization through GIS- and Web-based Data Portals
NASA Astrophysics Data System (ADS)
WANG, X.; Huang, G.
2017-12-01
Sound decisions on climate change adaptation rely on an in-depth assessment of potential climate change impacts at regional and local scales, which usually requires finer resolution climate projections at both spatial and temporal scales. However, effective downscaling of global climate projections is practically difficult due to the lack of computational resources and/or long-term reference data. Although a large volume of downscaled climate data has been make available to the public, how to understand and interpret the large-volume climate data and how to make use of the data to drive impact assessment and adaptation studies are still challenging for both impact researchers and decision makers. Such difficulties have become major barriers preventing informed climate change adaptation planning at regional scales. Therefore, this research will explore new GIS- and web-based technologies to help visualize the large-volume regional climate data with high spatiotemporal resolutions. A user-friendly public data portal, named Climate Change Data Portal (CCDP, http://ccdp.network), will be established to allow intuitive and open access to high-resolution regional climate projections at local scales. The CCDP offers functions of visual representation through geospatial maps and data downloading for a variety of climate variables (e.g., temperature, precipitation, relative humidity, solar radiation, and wind) at multiple spatial resolutions (i.e., 25 - 50 km) and temporal resolutions (i.e., annual, seasonal, monthly, daily, and hourly). The vast amount of information the CCDP encompasses can provide a crucial basis for assessing impacts of climate change on local communities and ecosystems and for supporting better decision making under a changing climate.
Participation of the elderly after vision loss.
Alma, Manna A; van der Mei, Sijrike F; Melis-Dankers, Bart J M; van Tilburg, Theo G; Groothoff, Johan W; Suurmeijer, Theo P B M
2011-01-01
To assess the degree of participation of the visually impaired elderly and to make a comparison with population-based reference data. This cross-sectional study included visually impaired elderly persons (≥55 years; n = 173) who were referred to a low-vision rehabilitation centre. Based on the International Classification of Functioning, Disability and Health (ICF) participation in: (1) domestic life, (2) interpersonal interactions and relationships, (3) major life areas, and (4) community, social and civic life was assessed by means of telephone interviews. In addition, we assessed perceived participation restrictions. Comparison with reference data of the elderly showed that visually impaired elderly persons participated less in heavy household activities, recreational activities and sports activities. No differences were found for the interpersonal interactions and relationships domain. Participants experienced restrictions in household activities (84%), socializing (53%), paid or voluntary work (92%), and leisure activities (88%). Visually impaired elderly persons participate in society, but they participate less than their peers. They experience restrictions as a result of vision loss. These findings are relevant, since participation is an indicator for successful aging and has a positive influence on health and subjective well-being.
Ontai, Lenna L; Sitnick, Stephanie L; Shilts, Mical K; Townsend, Marilyn S
2016-04-01
The importance of caregiver feeding styles on children's dietary outcomes is well documented. However, the instruments used to assess feeding style are limited by high literacy demands, making selfassessment with low-income audiences challenging. The purpose of the current study is to report on the development of My Child at Mealtime (MCMT), a self-assessment tool with reduced literacy demands, designed to measure feeding styles with parents of preschool-aged children. Cognitive interviews were conducted with 44 Head Start parents of 2-5 year old children to develop question wording and identify appropriate visuals. The resulting tool was administered to 119 ethnically diverse, low-income parents of 2-5 year old children. Factor analysis resulted in a two-factor structure that reflects responsiveness and demandingness in a manner consistent with existing assessment tools. Results indicate the final visually enhanced MCMT self-assessment tool provides a measure of parenting style consistent with existing measures, while reducing the literacy demand. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual Attention and Applications in Multimedia Technologies
Le Callet, Patrick; Niebur, Ernst
2013-01-01
Making technological advances in the field of human-machine interactions requires that the capabilities and limitations of the human perceptual system are taken into account. The focus of this report is an important mechanism of perception, visual selective attention, which is becoming more and more important for multimedia applications. We introduce the concept of visual attention and describe its underlying mechanisms. In particular, we introduce the concepts of overt and covert visual attention, and of bottom-up and top-down processing. Challenges related to modeling visual attention and their validation using ad hoc ground truth are also discussed. Examples of the usage of visual attention models in image and video processing are presented. We emphasize multimedia delivery, retargeting and quality assessment of image and video, medical imaging, and the field of stereoscopic 3D images applications. PMID:24489403
A Spectral Method for Color Quantitation of a Protein Drug Solution.
Swartz, Trevor E; Yin, Jian; Patapoff, Thomas W; Horst, Travis; Skieresz, Susan M; Leggett, Gordon; Morgan, Charles J; Rahimi, Kimia; Marhoul, Joseph; Kabakoff, Bruce
2016-01-01
Color is an important quality attribute for biotherapeutics. In the biotechnology industry, a visual method is most commonly utilized for color characterization of liquid drug protein solutions. The color testing method is used for both batch release and on stability testing for quality control. Using that method, an analyst visually determines the color of the sample by choosing the closest matching European Pharmacopeia reference color solution. The requirement to judge the best match makes it a subjective method. Furthermore, the visual method does not capture data on hue or chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we describe a quantitative method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. Following color industry standards established by International Commission on Illumination, this method converts a protein solution's visible absorption spectra to L*a*b* color space. Color matching is achieved within the L*a*b* color space, a practice that is already widely used in other industries. The work performed here is to facilitate the adoption and transition for the traditional visual assessment method to a quantitative spectral method. We describe here the algorithm used such that the quantitative spectral method correlates with the currently used visual method. In addition, we provide the L*a*b* values for the European Pharmacopeia reference color solutions required for the quantitative method. We have determined these L*a*b* values by gravimetrically preparing and measuring multiple lots of the reference color solutions. We demonstrate that the visual assessment and the quantitative spectral method are comparable using both low- and high-concentration antibody solutions and solutions with varying turbidity. In the biotechnology industry, a visual assessment is the most commonly used method for color characterization, batch release, and stability testing of liquid protein drug solutions. Using this method, an analyst visually determines the color of the sample by choosing the closest match to a standard color series. This visual method can be subjective because it requires an analyst to make a judgment of the best match of color of the sample to the standard color series, and it does not capture data on hue and chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we developed a quantitative spectral method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. The details of the spectral quantitative method are described. A comparison between the visual assessment method and spectral quantitative method is presented. This study supports the transition to a quantitative spectral method from the visual assessment method for quality testing of protein solutions. © PDA, Inc. 2016.
ERIC Educational Resources Information Center
Teubert, Manuel; Lohaus, Arnold; Fassbender, Ina; Vöhringer, Isabel A.; Suhrke, Janina; Poloczek, Sonja; Freitag, Claudia; Lamm, Bettina; Teiser, Johanna; Keller, Heidi; Knopf, Monika; Schwarzer, Gudrun
2015-01-01
The objective of this study was to examine the role of the stimulus material for the prediction of later IQ by early learning measures in the Visual Expectation Paradigm (VExP). The VExP was assessed at 9?months using two types of stimuli, Greebles and human faces. Greebles were assumed to be associated with a higher load on working memory in…
Lozano, I; Saunier, J B; Panhard, S; Loussouarn, G
2017-02-01
To study (i) the diversity of the natural colour of the human hair through both visual assessment of hair tone levels and colorimetric measurements of hair strands collected from 2057 human male and female volunteers, from 23 regions of the world and (ii) the correlation between visual assessments and colorimetric measurements. Hair strands were analysed by a spectrocolorimeter under the L*, a*, b* referential system and scored in vivo by experts before sampling, through standardized visual reference scales based on a 1-10 range. Results show that from a typological aspect, black or dark brown hairs largely predominate among studied ethnic groups, whereas Caucasian or derived populations exhibit the widest palette of medium to fair shades, partly explaining some past interbreeding among populations. Instrumental measurements clearly confirm that a given colour of a pigmented hair, at the exclusion of red hairs, is mostly governed by two components, L* and b*, from the L*, a*, b* reference system. The comparisons between visual assessments and instrumental data show that these appear closely linked. Darker hairs show close or subtle variations in L*, a*, b* parameters, making their individual colour differentiation calling for technical improvements in colorimetric measurements. The latter are likely governed by other physical factors such as shape, diameter and shine. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
NASA Astrophysics Data System (ADS)
Khan, Shadab; Mahara, Aditya; Hyams, Elias S.; Schned, Alan; Halter, Ryan
2015-03-01
Prostate cancer (PCa) has a high 10-year recurrence rate, making PCa the second leading cause of cancer-specific mortality among men in the USA. PCa recurrences are often predicted by assessing the status of surgical margins (SM) with positive surgical margins (PSM) increasing the chances of biochemical recurrence by 2-4 times. To this end, an SM assessment system using Electrical Impedance Spectroscopy (EIS) was developed with a microendoscopic probe. This system measures the tissue bioimpedance over a range of frequencies (1 kHz to 1MHz), and computes a Composite Impedance Metric (CIM). CIM can be used to classify tissue as benign or cancerous. The system was used to collect the impedance spectra from excised prostates, which were obtained from men undergoing radical prostatectomy. The data revealed statistically significant (p<0.05) differences in the impedance properties of the benign and tumorous tissues, and between different tissue morphologies. To visualize the results of SM-assessment, a visualization tool using da Vinci stereo laparoscope is being developed. Together with the visualization tool, the EIS-based SM assessment system can be potentially used to intraoperatively classify tissues and display the results on the surgical console with a video feed of the surgical site, thereby augmenting a surgeon's view of the site and providing a potential solution to the intraoperative SM assessment needs.
TVA-Based Assessment of Visual Attention Using Line-Drawings of Fruits and Vegetables
Wang, Tianlu; Gillebert, Celine R.
2018-01-01
Visuospatial attention and short-term memory allow us to prioritize, select, and briefly maintain part of the visual information that reaches our senses. These cognitive abilities are quantitatively accounted for by Bundesen’s theory of visual attention (TVA; Bundesen, 1990). Previous studies have suggested that TVA-based assessments are sensitive to inter-individual differences in spatial bias, visual short-term memory capacity, top-down control, and processing speed in healthy volunteers as well as in patients with various neurological and psychiatric conditions. However, most neuropsychological assessments of attention and executive functions, including TVA-based assessment, make use of alphanumeric stimuli and/or are performed verbally, which can pose difficulties for individuals who have troubles processing letters or numbers. Here we examined the reliability of TVA-based assessments when stimuli are used that are not alphanumeric, but instead based on line-drawings of fruits and vegetables. We compared five TVA parameters quantifying the aforementioned cognitive abilities, obtained by modeling accuracy data on a whole/partial report paradigm using conventional alphabet stimuli versus the food stimuli. Significant correlations were found for all TVA parameters, indicating a high parallel-form reliability. Split-half correlations assessing internal reliability, and correlations between predicted and observed data assessing goodness-of-fit were both significant. Our results provide an indication that line-drawings of fruits and vegetables can be used for a reliable assessment of attention and short-term memory. PMID:29535660
Loneliness and self-management abilities in the visually impaired elderly.
Alma, Manna A; Van der Mei, Sijrike F; Feitsma, W Nathalie; Groothoff, Johan W; Van Tilburg, Theo G; Suurmeijer, Theo P B M
2011-08-01
To describe the degree of loneliness among the visually impaired elderly and to make a comparison with a matched reference group of the normally sighted elderly. In addition, we examined self-management abilities (SMAs) as determinants of loneliness among the visually impaired elderly. In a cross-sectional study, 173 visually impaired elderly persons completed telephone interviews. Loneliness and SMAs were assessed with the Loneliness Scale of De Jong Gierveld and the SMAS-30, respectively. The prevalence of loneliness among the visually impaired elderly was higher compared with the reference group (50% vs. 29%; p < .001). Multivariate hierarchical regression analysis showed that the SMA self-efficacy, partner status, and self-esteem were determinants of loneliness. Severity and duration of visual impairment had no effect on loneliness. The relationship between SMAs (i.e., self-efficacy) and loneliness is promising, as SMAs can be learned through training. Consequently, self-management training may reduce feelings of loneliness.
NASA Astrophysics Data System (ADS)
Balbin, Jessie R.; Dela Cruz, Jennifer C.; Camba, Clarisse O.; Gozo, Angelo D.; Jimenez, Sheena Mariz B.; Tribiana, Aivje C.
2017-06-01
Acne vulgaris, commonly called as acne, is a skin problem that occurs when oil and dead skin cells clog up in a person's pores. This is because hormones change which makes the skin oilier. The problem is people really do not know the real assessment of sensitivity of their skin in terms of fluid development on their faces that tends to develop acne vulgaris, thus having more complications. This research aims to assess Acne Vulgaris using luminescent visualization system through optical imaging and integration of image processing algorithms. Specifically, this research aims to design a prototype for facial fluid analysis using luminescent visualization system through optical imaging and integration of fluorescent imaging system, and to classify different facial fluids present in each person. Throughout the process, some structures and layers of the face will be excluded, leaving only a mapped facial structure with acne regions. Facial fluid regions are distinguished from the acne region as they are characterized differently.
NASA Astrophysics Data System (ADS)
Yang, Xinyan; Zhao, Wei; Ye, Long; Zhang, Qin
2017-07-01
This paper proposes a no-reference objective stereoscopic video quality assessment method with the motivation that making the effect of objective experiments close to that of subjective way. We believe that the image regions with different visual salient degree should not have the same weights when designing an assessment metric. Therefore, we firstly use GBVS algorithm to each frame pairs and separate both the left and right viewing images into the regions with strong, general and week saliency. Besides, local feature information like blockiness, zero-crossing and depth are extracted and combined with a mathematical model to calculate a quality assessment score. Regions with different salient degree are assigned with different weights in the mathematical model. Experiment results demonstrate the superiority of our method compared with the existed state-of-the-art no-reference objective Stereoscopic video quality assessment methods.
Quinn, Terence J; Livingstone, Iain; Weir, Alexander; Shaw, Robert; Breckenridge, Andrew; McAlpine, Christine; Tarbert, Claire M
2018-01-01
Visual impairment affects up to 70% of stroke survivors. We designed an app (StrokeVision) to facilitate screening for common post stroke visual issues (acuity, visual fields, and visual inattention). We sought to describe the test time, feasibility, acceptability, and accuracy of our app-based digital visual assessments against (a) current methods used for bedside screening and (b) gold standard measures. Patients were prospectively recruited from acute stroke settings. Index tests were app-based assessments of fields and inattention performed by a trained researcher. We compared against usual clinical screening practice of visual fields to confrontation, including inattention assessment (simultaneous stimuli). We also compared app to gold standard assessments of formal kinetic perimetry (Goldman or Octopus Visual Field Assessment); and pencil and paper-based tests of inattention (Albert's, Star Cancelation, and Line Bisection). Results of inattention and field tests were adjudicated by a specialist Neuro-ophthalmologist. All assessors were masked to each other's results. Participants and assessors graded acceptability using a bespoke scale that ranged from 0 (completely unacceptable) to 10 (perfect acceptability). Of 48 stroke survivors recruited, the complete battery of index and reference tests for fields was successfully completed in 45. Similar acceptability scores were observed for app-based [assessor median score 10 (IQR: 9-10); patient 9 (IQR: 8-10)] and traditional bedside testing [assessor 10 (IQR: 9-10); patient 10 (IQR: 9-10)]. Median test time was longer for app-based testing [combined time to completion of all digital tests 420 s (IQR: 390-588)] when compared with conventional bedside testing [70 s, (IQR: 40-70)], but shorter than gold standard testing [1,260 s, (IQR: 1005-1,620)]. Compared with gold standard assessments, usual screening practice demonstrated 79% sensitivity and 82% specificity for detection of a stroke-related field defect. This compares with 79% sensitivity and 88% specificity for StrokeVision digital assessment. StrokeVision shows promise as a screening tool for visual complications in the acute phase of stroke. The app is at least as good as usual screening and offers other functionality that may make it attractive for use in acute stroke. https://ClinicalTrials.gov/ct2/show/NCT02539381.
Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J; Tales, Andrea
2017-01-01
This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders.
Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J.; Tales, Andrea
2017-01-01
This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders. PMID:28984584
Setting visual pre-placement testing in a technology manufacturing environment.
Gowan, Nancy J
2014-01-01
Every day we use our eyes to perform activities of daily living and work. Aging changes as well as health conditions can impact an individual's visual function, making it more difficult to accurately perform work activities. Occupational therapists work closely with optometrists and employers to develop ways to accommodate for these changes so that the employee can continue to perform the work tasks. This manuscript outlines a case study of systematically developing visual demands analyses and pre-placement vision screening assessment protocols for individuals completing quality inspection positions. When the vision screening was completed, it was discovered that over 20% of the employees had visual deficits that were correctable. This screening process yielded improved quality results but also identification of previously undetected visual deficits. Further development of vision screening in the workplace is supported.
Wren, Patricia A; Musch, David C; Janz, Nancy K; Niziol, Leslie M; Guire, Kenneth E; Gillespie, Brenda W
2009-01-01
To compare 2 vision-specific functional status measures to each other and to clinical parameters in the Collaborative Initial Glaucoma Treatment Study (CIGTS). CIGTS participants completed the Visual Activities Questionnaire (VAQ) and the National Eye Institute-Visual Function Questionnaire (NEI-VFQ) and were tested for visual field (VF) and visual acuity (VA). In all, 426 subjects contributed the VAQ and NEI-VFQ scores at 54 months. Pearson correlations were used to assess associations. The VAQ subscales (range, 0 to 100) that assessed light-dark adaptation (mean=66.1), glare disability (66.4), and acuity/spatial vision (67.7) indicated vision-related functions that CIGTS participants found most difficult. On the NEI-VFQ, subjects reported high levels of visual functioning, with mean >/=90 (out of 100) on the total score and in 9 of 12 subscales. General vision (mean=82.6) received the lowest subscale score. Two subscales common to both questionnaires were highly correlated: VA (r=0.68) and peripheral vision (r=0.77) (both P<0.0001). Correlations between participants' perceptions and clinical measures of visual function were in the expected direction, but weaker. Stronger associations were found between clinical measures and the NEI-VFQ than the VAQ. Better eye VF and worse eye VA had the highest number of significant correlations with subjects' perceptions of their visual function. Increasing VF loss was associated with a significant decrease in the overall and peripheral vision subscale scores from both questionnaires, and also several other subscales. CIGTS patients reported excellent visual function on both the NEI-VFQ and VAQ. These findings will help researchers interested in assessing patients' perceptions of their visual function make an informed selection when choosing between the VAQ and the NEI-VFQ.
Toolkit of Available EPA Green Infrastructure Modeling ...
This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).
Shichinohe, Natsuko; Akao, Teppei; Kurkin, Sergei; Fukushima, Junko; Kaneko, Chris R S; Fukushima, Kikuro
2009-06-11
Cortical motor areas are thought to contribute "higher-order processing," but what that processing might include is unknown. Previous studies of the smooth pursuit-related discharge of supplementary eye field (SEF) neurons have not distinguished activity associated with the preparation for pursuit from discharge related to processing or memory of the target motion signals. Using a memory-based task designed to separate these components, we show that the SEF contains signals coding retinal image-slip-velocity, memory, and assessment of visual motion direction, the decision of whether to pursue, and the preparation for pursuit eye movements. Bilateral muscimol injection into SEF resulted in directional errors in smooth pursuit, errors of whether to pursue, and impairment of initial correct eye movements. These results suggest an important role for the SEF in memory and assessment of visual motion direction and the programming of appropriate pursuit eye movements.
Sensky, Tom; Büchi, Stefan
2016-01-01
Background PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. Methods A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Results Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell’s seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. Discussion This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg ‘my illness’) to a subject (eg ‘myself’) in a defined context (eg ‘my life at the moment’). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions. PMID:27214024
mHealth Clinic Appointment PC Tablet: Implementation, Challenges and Solutions
Smith, Carol E.; Spaulding, Ryan; Piamjariyakul, Ubolrat; Werkowitch, Marilyn; Yadrich, Donna Macan; Hooper, Dedrick; Moore, Tyson; Gilroy, Richard
2015-01-01
Background Patients requiring daily intravenous (IV) home parenteral nutrition (HPN) would benefit from in-home professional observation to improve self-care, to assess, detect and prevent serious complications. Aims The study aims are to assess the viability and utility of conducting mobile healthcare (mHealth) videoconference assessments with patients managing lifelong daily 12-hour IV nutrition infusions in their homes. The challenges and solutions to implementing mobile personal computer (PC) tablet based clinic appointments are described. Methods A wireless Apple iPad Mini™ mobile touch-screen tablet computer with 5 mega-pixel camera was loaned to patients. Each tablet had Polycom RealPresence software and a fourth generation (4G) mobile telecommunications data plan. These supported audio-visual mobile videoconferencing encrypted connections between health professionals in their offices and HPN patients and their family members in their homes. Patients’ and professionals’ evaluations of their mHealth clinic experiences are collected. Results Patients (mean age = 41.9, SD = 2.8 years) had been prescribed 12-hour home parenteral nutrition (HPN) infusions daily due short bowel disorders. Patients had been on HPN from 1 to 10 years (M=4, SD=3.6). Evaluation of clinic appointments revealed that 100% of the patients (n=45) and the professionals (n=6) indicated that they can clearly hear and easily see one another. The mHealth audio-visual interactions were highly rated by patients and family members. Professionals highly rated their ability to obtain a medical history and visual inspection of patients. Several challenges were identified and recommendations for resolutions are described. Discussion All patients and professionals highly rated the iPad mHealth clinic appointments for convenience and ease of communicating between homes and offices. An important challenge for all mHealth visits is the clinical professional’s ability to make clinically accurate judgments about what they observed and heard from the patients. Following our solutions for obtaining clear visuals with the iPad can improve ability to make clinical assessments. PMID:26604991
NASA Technical Reports Server (NTRS)
Hosman, R. J. A. W.; Vandervaart, J. C.
1984-01-01
An experiment to investigate visual roll attitude and roll rate perception is described. The experiment was also designed to assess the improvements of perception due to cockpit motion. After the onset of the motion, subjects were to make accurate and quick estimates of the final magnitude of the roll angle step response by pressing the appropriate button of a keyboard device. The differing time-histories of roll angle, roll rate and roll acceleration caused by a step response stimulate the different perception processes related the central visual field, peripheral visual field and vestibular organs in different, yet exactly known ways. Experiments with either of the visual displays or cockpit motion and some combinations of these were run to asses the roles of the different perception processes. Results show that the differences in response time are much more pronounced than the differences in perception accuracy.
Phonetic Detail in the Developing Lexicon
ERIC Educational Resources Information Center
Swingley, Daniel
2003-01-01
Although infants show remarkable sensitivity to linguistically relevant phonetic variation in speech, young children sometimes appear not to make use of this sensitivity. Here, children' s knowledge of the sound-forms of familiar words was assessed using a visual fixation task. Dutch 19-month-olds were shown pairs of pictures and heard correct…
NASA Astrophysics Data System (ADS)
Omine, Yukio; Sakai, Masaki; Aoki, Yoshimitsu; Takagi, Mikio
2004-10-01
In recent years, crisis management in response to terrorist attacks and natural disasters, as well as accelerating rescue operations has become an important issue. Rescue operations greatly influence human lives, and require the ability to accurately and swiftly communicate information as well as assess the status of the site. Currently, considerable amount of research is being conducted for assisting rescue operations, with the application of various engineering techniques such as information technology and radar technology. In the present research, we believe that assessing the status of the site is most crucial in rescue and firefighting operations at a fire disaster site, and aim to visualize the space that is smothered with dense smoke. In a space filled with dense smoke, where visual or infrared sensing techniques are not feasible, three-dimensional measurements can be realized using a compact millimeter wave radar device combined with directional information from a gyro sensor. Using these techniques, we construct a system that can build and visualize a three-dimensional geometric model of the space. The final objective is to implement such a system on a wearable computer, which will improve the firefighters' spatial perception, assisting them in the baseline assessment and the decision-making process. In the present paper, we report the results of the basic experiments on three-dimensional measurement and visualization of a space that is smoke free, using a millimeter wave radar.
PROCRU: A model for analyzing crew procedures in approach to landing
NASA Technical Reports Server (NTRS)
Baron, S.; Muralidharan, R.; Lancraft, R.; Zacharias, G.
1980-01-01
A model for analyzing crew procedures in approach to landing is developed. The model employs the information processing structure used in the optimal control model and in recent models for monitoring and failure detection. Mechanisms are added to this basic structure to model crew decision making in this multi task environment. Decisions are based on probability assessments and potential mission impact (or gain). Sub models for procedural activities are included. The model distinguishes among external visual, instrument visual, and auditory sources of information. The external visual scene perception models incorporate limitations in obtaining information. The auditory information channel contains a buffer to allow for storage in memory until that information can be processed.
Xiaodan, Wang; Xianghao, Zhong; Pan, Gao
2010-10-01
Regional eco-security assessment is an intricate, challenging task. In previous studies, the integration of eco-environmental models and geographical information systems (GIS) usually takes two approaches: loose coupling and tight coupling. However, the present study used a full coupling approach to develop a GIS-based regional eco-security assessment decision support system (ESDSS). This was achieved by merging the pressure-state-response (PSR) model and the analytic hierarchy process (AHP) into ArcGIS 9 as a dynamic link library (DLL) using ArcObjects in ArcGIS and Visual Basic for Applications. Such an approach makes it easy to capitalize on the GIS visualization and spatial analysis functions, thereby significantly supporting the dynamic estimation of regional eco-security. A case study is presented for the Tibetan Plateau, known as the world's "third pole" after the Arctic and Antarctic. Results verified the usefulness and feasibility of the developed method. As a useful tool, the ESDSS can also help local managers to make scientifically-based and effective decisions about Tibetan eco-environmental protection and land use. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Building conservation base on assessment of facade quality on Basuki Rachmat Street, Malang
NASA Astrophysics Data System (ADS)
Kurniawan, E. B.; Putri, R. Y. A.; Wardhani, D. K.
2017-06-01
Visual quality covers aspects of imageability which is associated with visual system and the element of distinction. Within a visual system of specific area, the physical quality may lead to a strong image. Here, the physical quality is one of important that make urban aesthetic. Build a discussion toward visual system of urban area, this paper aim is to identify the influencing factors in defining the façade’s visual quality of heritage buildings at Jend. Basuki Rahmat Street, Malang City, East Java-Indonesia. This Street is a main road of Malang city center that was built by Dutch colonial government. It was designed by IR. Thomas Kartsten. It was known as one of Malang area that have good visual quality. In order to idenfity the influencing factors, this paper conducts Multiple linear regression as a tools of analysis. The examined potential factors are resulted from of architecture and urban design expert’s assessment to each building’s segment at Jend. Basuki Rahmat. Finally, this paper reveals that the influencing factors are color, rhythm, and proportion. This is demonstrated by the results model: Visual quality (Y) = 0.304 + 0.21 Colors(X5) + 0.221 rhythm (X6) + 0.304 proportion (X7). Furthermore, the recommendation of the building facade will be made based on this model and study of historical and typology building in Basuki Rachmat Street.
Rolfs, Martin; Carrasco, Marisa
2012-01-01
Humans and other animals with foveate vision make saccadic eye movements to prioritize the visual analysis of behaviorally relevant information. Even before movement onset, visual processing is selectively enhanced at the target of a saccade, presumably gated by brain areas controlling eye movements. Here we assess concurrent changes in visual performance and perceived contrast before saccades, and show that saccade preparation enhances perception rapidly, altering early visual processing in a manner akin to increasing the physical contrast of the visual input. Observers compared orientation and contrast of a test stimulus, appearing briefly before a saccade, to a standard stimulus, presented previously during a fixation period. We found simultaneous progressive enhancement in both orientation discrimination performance and perceived contrast as time approached saccade onset. These effects were robust as early as 60 ms after the eye movement was cued, much faster than the voluntary deployment of covert attention (without eye movements), which takes ~300 ms. Our results link the dynamics of saccade preparation, visual performance, and subjective experience and show that upcoming eye movements alter visual processing by increasing the signal strength. PMID:23035086
Evaluation of angiogram visualization methods for fast and reliable aneurysm diagnosis
NASA Astrophysics Data System (ADS)
Lesar, Žiga; Bohak, Ciril; Marolt, Matija
2015-03-01
In this paper we present the results of an evaluation of different visualization methods for angiogram volumetric data-ray casting, marching cubes, and multi-level partition of unity implicits. There are several options available with ray-casting: isosurface extraction, maximum intensity projection and alpha compositing, each producing fundamentally different results. Different visualization methods are suitable for different needs, so this choice is crucial in diagnosis and decision making processes. We also evaluate visual effects such as ambient occlusion, screen space ambient occlusion, and depth of field. Some visualization methods include transparency, so we address the question of relevancy of this additional visual information. We employ transfer functions to map data values to color and transparency, allowing us to view or hide particular tissues. All the methods presented in this paper were developed using OpenCL, striving for real-time rendering and quality interaction. An evaluation has been conducted to assess the suitability of the visualization methods. Results show superiority of isosurface extraction with ambient occlusion effects. Visual effects may positively or negatively affect perception of depth, motion, and relative positions in space.
Schulz, Christian M; Schneider, Erich; Kohlbecher, Stefan; Hapfelmeier, Alexander; Heuser, Fabian; Wagner, Klaus J; Kochs, Eberhard F; Schneider, Gerhard
2014-10-01
Development of accurate Situation Awareness (SA) depends on experience and may be impaired during excessive workload. In order to gain adequate SA for decision making and performance, anaesthetists need to distribute visual attention effectively. Therefore, we hypothesized that in more experienced anaesthetists performance is better and increase of physiological workload is less during critical incidents. Additionally, we investigated the relation between physiological workload indicators and distribution of visual attention. In fifteen anaesthetists, the increase of pupil size and heart rate was assessed in course of a simulated critical incident. Simulator log files were used for performance assessment. An eye-tracking device (EyeSeeCam) provided data about the anaesthetists' distribution of visual attention. Performance was assessed as time until definitive treatment. T tests and multivariate generalized linear models (MANOVA) were used for retrospective statistical analysis. Mean pupil diameter increase was 8.1% (SD ± 4.3) in the less experienced and 15.8% (±10.4) in the more experienced subjects (p = 0.191). Mean heart rate increase was 10.2% (±6.7) and 10.5% (±8.3, p = 0.956), respectively. Performance did not depend on experience. Pupil diameter and heart rate increases were associated with a shift of visual attention from monitoring towards manual tasks (not significant). For the first time, the following four variables were assessed simultaneously: physiological workload indicators, performance, experience, and distribution of visual attention between "monitoring" and "manual" tasks. However, we were unable to detect significant interactions between these variables. This experimental model could prove valuable in the investigation of gaining and maintaining SA in the operation theatre.
Rosa, Pedro J; Gamito, Pedro; Oliveira, Jorge; Morais, Diogo; Pavlovic, Matthew; Smyth, Olivia; Maia, Inês; Gomes, Tiago
2017-03-23
An adequate behavioral response depends on attentional and mnesic processes. When these basic cognitive functions are impaired, the use of non-immersive Virtual Reality Applications (VRAs) can be a reliable technique for assessing the level of impairment. However, most non-immersive VRAs use indirect measures to make inferences about visual attention and mnesic processes (e.g., time to task completion, error rate). To examine whether the eye movement analysis through eye tracking (ET) can be a reliable method to probe more effectively where and how attention is deployed and how it is linked with visual working memory during comparative visual search tasks (CVSTs) in non-immersive VRAs. The eye movements of 50 healthy participants were continuously recorded while CVSTs, selected from a set of cognitive tasks in the Systemic Lisbon Battery (SLB). Then a VRA designed to assess of cognitive impairments were randomly presented. The total fixation duration, the number of visits in the areas of interest and in the interstimulus space, along with the total execution time was significantly different as a function of the Mini Mental State Examination (MMSE) scores. The present study demonstrates that CVSTs in SLB, when combined with ET, can be a reliable and unobtrusive method for assessing cognitive abilities in healthy individuals, opening it to potential use in clinical samples.
[Loneliness and self-management abilities in the visually impaired elderly].
Alma, M A; Van der Mei, S F; Feitsma, W N; Groothoff, J W; Van Tilburg, T G; Suurmeijer, T P B M
2013-06-01
To describe the degree of loneliness among the visually impaired elderly and to make a comparison with a matched reference group of the normally sighted elderly. In addition, we examined self-management abilities (SMAs) as determinants of loneliness among the visually impaired elderly. In a cross-sectional study, 173 visually impaired elderly persons completed telephone interviews. Loneliness and SMAs were assessed with the Loneliness Scale of De Jong Gierveld and the SMAS-30, respectively. The prevalence of loneliness among the visually impaired elderly was higher compared to the reference group (50% vs 29%; p < .001). Multivariate hierarchical regression analysis showed that the SMA self-efficacy, partner status, and self-esteem were determinants of loneliness. Severity and duration of visual impairment had no effect on loneliness. The relationship between SMAs (i.e., self-efficacy) and loneliness is promising, since SMAs can be learned through training. Consequently, self-management training may reduce feelings of loneliness. An adapted version of this paper was published in Journal of Aging and Health, doi: 10.1177/0898264311399758.
Tebbutt, G; Bell, V; Aislabie, J
2007-04-01
The aim of this study was to determine whether or not the assessment of surface cleanliness could make a contribution to visual inspections of food premises. Forty-five premises were studied with both rapid (ATP) and traditional microbiological swabbing being used to test surfaces that either come into direct contact with prepared foods or were likely to be touched by hands during food preparation. A significant link was found between aerobic colony counts and ATP measurements. In most cases, the visual appearance of surfaces could not be used to accurately predict either microbial or ATP results. This study suggests that ATP testing is a useful indicator of surface cleanliness and could be helpful to local authority officers as part of risk assessment inspections. This study provides further evidence that visual inspection alone may not always be adequate to assess surface cleanliness. In high-risk premises, ATP could, if appropriately targeted, help identify potential problem areas. The results are available at the time of the inspection and can be used as an on-the-spot teaching aid.
Overbeek, Mathilde M; Sterkenburg, Paula S; Kef, Sabina; Schuengel, Carlo
2015-09-09
Visual or visual-and-intellectual disabilities of children make daily interactions more difficult for their parents and may impact the quality of the parent-child relationship. To support these parents, an existing intervention (Video-feedback Intervention to promote Positive Parenting; VIPP; Juffer F, Bakermans-Kranenburg MJ, van IJzendoorn MH, 2008. Promoting positive parenting; an attachment-based intervention. Mahwah, NJ: Lawrence Erlbaum Associates; 2008) was adapted for use with parents of children with a visual or visual-and-intellectual disability (VIPP-V). This attachment-based intervention was hypothesized to support parents' interpretation and understanding of the behavior of their child with a visual or visual-and-intellectual disability and respond to their child's signals in a sensitive way to improve parent-child interaction quality. A randomized controlled trial (RCT) will be conducted to assess the effectiveness of the adapted intervention VIPP-V (Video-feedback Intervention to promote Positive Parenting in parents of children with Visual or visual-and-intellectual disabilities). Parent-child dyads will be randomized into two groups: 50 dyads will receive VIPP-V in combination with care-as-usual and 50 dyads will receive care-as-usual. Families with a child (1-5 years of age) with a visual or visual-and-intellectual disability will be recruited for participation in the study. Primary outcome measures are parental sensitivity and the quality of parent-child interaction. Secondary outcome measures are parental self-efficacy, and parenting stress. To assess feasibility of implementation of the intervention the experiences of early intervention workers with regard to using VIPP-V are assessed. Moderator variables are the child's developmental age, working alliance between parent and VIPP-V intervention worker and empathy of the VIPP-V intervention worker. Data will be collected approximately one week before the intervention starts (T1), one week (T2) and three months (T3) after the intervention. Parent-child dyads in the care-as-usual-only condition will be assessed at the same time points. Both intention-to-treat and completer analyses will be performed. Descriptive findings in pilot cases suggest benefits from VIPP-V, and compatibility with existing services for parents of children with a visual or visual-and-intellectual disability. The current study will provide insight into the effectiveness of this intervention for parents of children with a visual or visual-and-intellectual disability, and, if the intervention is effective, prepare the field for broad-scale implementation. Nederlands Trial Register NTR4306 (registered 5 December 2013).
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-06-01
A soccer player's capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players' motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key pointsDifferent exercise intensity modes did not affect the accuracy of motor response.Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise.Further research should focus on the assessment of VMRT from a player's real - field position view rather than a perspective view.
Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.
2009-01-01
Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (< 50 years) normally sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732
Congdon, Nathan; Yan, Xixi; Lansingh, Van; Sisay, Alemayehu; Müller, Andreas; Chan, Ving; Jin, Ling; Meltzer, Mirjam E; Karumanchi, Sasipriya M; Guan, Chunhong; Vuong, Quy; Rivera, Nelson; McCleod-Omawale, Joan; He, Mingguang
2013-07-01
Poor follow-up after cataract surgery in developing countries makes assessment of operative quality uncertain. We aimed to assess two strategies to measure visual outcome: recording the visual acuity of all patients 3 or fewer days postoperatively (early postoperative assessment), and recording that of only those patients who returned for the final follow-up examination after 40 or more days without additional prompting. Each of 40 centres in ten countries in Asia, Africa, and Latin America recruited 40-120 consecutive surgical cataract patients. Operative-eye best-corrected visual acuity and uncorrected visual acuity were recorded before surgery, 3 or fewer days postoperatively, and 40 or more days postoperatively. Clinics logged whether each patient had returned for the final follow-up examination without additional prompting, had to be actively encouraged to return, or had to be examined at home. Visual outcome for each centre was defined as the proportion of patients with uncorrected visual acuity of 6/18 or better minus the proportion with uncorrected visual acuity of 6/60 or worse, and was calculated for each participating hospital with results from the early assessment of all patients and the late assessment of only those returning unprompted, with results from the final follow-up assessment for all patients used as the standard. Of 3708 participants, 3441 (93%) had final follow-up vision data recorded 40 or more days after surgery, 1831 of whom (51% of the 3581 total participants for whom mode of follow-up was recorded) had returned to the clinic without additional prompting. Visual outcome by hospital from early postoperative and final follow-up assessment for all patients were highly correlated (Spearman's rs=0·74, p<0·0001). Visual outcome from final follow-up assessment for all patients and for only those who returned without additional prompting were also highly correlated (rs=0·86, p<0·0001), even for the 17 hospitals with unprompted return rates of less than 50% (rs=0·71, p=0·002). When we divided hospitals into top 25%, middle 50%, and bottom 25% by visual outcome, classification based on final follow-up assessment for all patients was the same as that based on early postoperative assessment for 27 (68%) of 40 centres, and the same as that based on data from patients who returned without additional prompting in 31 (84%) of 37 centres. Use of glasses to optimise vision at the time of the early and late examinations did not further improve the correlations. Early vision assessment for all patients and follow-up assessment only for patients who return to the clinic without prompting are valid measures of operative quality in settings where follow-up is poor. ORBIS International, Fred Hollows Foundation, Helen Keller International, International Association for the Prevention of Blindness Latin American Office, Aravind Eye Care System. Copyright © 2013 Congdon et al. Open Access article distributed under the terms of CC BY. Published by .. All rights reserved.
Evaluating the decision accuracy and speed of clinical data visualizations.
Pieczkiewicz, David S; Finkelstein, Stanley M
2010-01-01
Clinicians face an increasing volume of biomedical data. Assessing the efficacy of systems that enable accurate and timely clinical decision making merits corresponding attention. This paper discusses the multiple-reader multiple-case (MRMC) experimental design and linear mixed models as means of assessing and comparing decision accuracy and latency (time) for decision tasks in which clinician readers must interpret visual displays of data. These tools can assess and compare decision accuracy and latency (time). These experimental and statistical techniques, used extensively in radiology imaging studies, offer a number of practical and analytic advantages over more traditional quantitative methods such as percent-correct measurements and ANOVAs, and are recommended for their statistical efficiency and generalizability. An example analysis using readily available, free, and commercial statistical software is provided as an appendix. While these techniques are not appropriate for all evaluation questions, they can provide a valuable addition to the evaluative toolkit of medical informatics research.
A new multimodal interactive way of subjective scoring of 3D video quality of experience
NASA Astrophysics Data System (ADS)
Kim, Taewan; Lee, Kwanghyun; Lee, Sanghoon; Bovik, Alan C.
2014-03-01
People that watch today's 3D visual programs, such as 3D cinema, 3D TV and 3D games, experience wide and dynamically varying ranges of 3D visual immersion and 3D quality of experience (QoE). It is necessary to be able to deploy reliable methodologies that measure each viewers subjective experience. We propose a new methodology that we call Multimodal Interactive Continuous Scoring of Quality (MICSQ). MICSQ is composed of a device interaction process between the 3D display and a separate device (PC, tablet, etc.) used as an assessment tool, and a human interaction process between the subject(s) and the device. The scoring process is multimodal, using aural and tactile cues to help engage and focus the subject(s) on their tasks. Moreover, the wireless device interaction process makes it possible for multiple subjects to assess 3D QoE simultaneously in a large space such as a movie theater, and at di®erent visual angles and distances.
Viangteeravat, Teeradache; Nagisetty, Naga Satya V Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses.
Viangteeravat, Teeradache; Nagisetty, Naga Satya V. Rao
2014-01-01
Secondary use of large and open data sets provides researchers with an opportunity to address high-impact questions that would otherwise be prohibitively expensive and time consuming to study. Despite the availability of data, generating hypotheses from huge data sets is often challenging, and the lack of complex analysis of data might lead to weak hypotheses. To overcome these issues and to assist researchers in building hypotheses from raw data, we are working on a visual and analytical platform called PRD Pivot. PRD Pivot is a de-identified pediatric research database designed to make secondary use of rich data sources, such as the electronic health record (EHR). The development of visual analytics using Microsoft Live Labs Pivot makes the process of data elaboration, information gathering, knowledge generation, and complex information exploration transparent to tool users and provides researchers with the ability to sort and filter by various criteria, which can lead to strong, novel hypotheses. PMID:24808811
Berg, Britt-Isabelle; Dagassan-Berndt, Dorothea; Goldblum, David; Kunz, Christoph
2015-04-01
The aim of this study was to investigate the feasibility and effectiveness of cone-beam computed tomography (CBCT) in the planning, assessment, and follow-up for osteo-odonto-keratoprosthesis (OOKP). Six OOKP patients received a CBCT scan. CBCT scans were performed before and/or between ∼5 and 504 months after the primary OOKP intervention. Preoperative and postoperative results of the CBCT were assessed, regarding the available teeth and to assess the loss of bone in 1 patient, respectively. Resorption of the osteo-odonto-lamina was measured and graded. Five different measurements (I-V) were performed in the coronal and transversal views of CBCT. Four CBCT scans were performed preoperatively and 4 postoperatively. The follow-up time of the patients is between ∼1 to 528 months. Visualization of the potential donor teeth resulted in accurate 3-dimensional visualization of the tooth-lamina-bone complex. CBCT was found to help in the preoperative decision-making process (diameter of optical implant) and in enabling accurate postoperative evaluation of the bone volume and resorption zones of the OOKP. Loss of bone could be measured in a precise range and showed in the completed cases an average loss of 20.2%. The use of CBCT simplifies the preoperative decision making and ordering process. It also helps in determining the postoperative structure and resorption of the prosthesis.
Qualitative evaluation of water displacement in simulated analytical breaststroke movements.
Martens, Jonas; Daly, Daniel
2012-05-01
One purpose of evaluating a swimmer is to establish the individualized optimal technique. A swimmer's particular body structure and the resulting movement pattern will cause the surrounding water to react in differing ways. Consequently, an assessment method based on flow visualization was developed complimentary to movement analysis and body structure quantification. A fluorescent dye was used to make the water displaced by the body visible on video. To examine the hypothesis on the propulsive mechanisms applied in breaststroke swimming, we analyzed the movements of the surrounding water during 4 analytical breaststroke movements using the flow visualization technique.
Nakhaeizadeh, Sherry; Hanson, Ian; Dozzi, Nathalie
2014-09-01
The potential for contextual information to bias assessments in the forensic sciences has been demonstrated, in several forensic disiplines. In this paper, biasability potential within forensic anthropology was examined by analyzing the effects of external manipulations on judgments and decision-making in visual trauma assessment. Three separate websites were created containing fourteen identical images. Participants were randomly assigned to one website. Each website provided different contextual information, to assess variation of interpretation of the same images between contexts. The results indicated a higher scoring of trauma identification responses for the Mass grave context. Furthermore, a significant biasing effect was detected in the interpretation of four images. Less experienced participants were more likely to indicate presence of trauma. This research demonstrates bias impact in forensic anthropological trauma assessments and highlights the importance of recognizing and limiting cognitive vulnerabilities that forensic anthropologists might bring to the analysis. © 2014 American Academy of Forensic Sciences.
Active and passive spatial learning in human navigation: acquisition of survey knowledge.
Chrastil, Elizabeth R; Warren, William H
2013-09-01
It seems intuitively obvious that active exploration of a new environment would lead to better spatial learning than would passive visual exposure. It is unclear, however, which components of active learning contribute to spatial knowledge, and previous literature is decidedly mixed. This experiment tests the contributions of 4 components to metric survey knowledge: visual, vestibular, and podokinetic information and cognitive decision making. In the learning phase, 6 groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking, (b) being pushed in a wheelchair, or (c) watching a video, crossed with (1) making decisions about their path or (2) being guided through the maze. In the test phase, survey knowledge was assessed by having participants walk a novel shortcut from a starting object to the remembered location of a test object, with the maze removed. Performance was slightly better than chance in the passive video condition. The addition of vestibular information did not improve performance in the wheelchair condition, but the addition of podokinetic information significantly improved angular accuracy in the walking condition. In contrast, there was no effect of decision making in any condition. The results indicate that visual and podokinetic information significantly contribute to survey knowledge, whereas vestibular information and decision making do not. We conclude that podokinetic information is the primary component of active learning for the acquisition of metric survey knowledge. PsycINFO Database Record (c) 2013 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Asal, F. F.
2012-07-01
Digital elevation data obtained from different Engineering Surveying techniques is utilized in generating Digital Elevation Model (DEM), which is employed in many Engineering and Environmental applications. This data is usually in discrete point format making it necessary to utilize an interpolation approach for the creation of DEM. Quality assessment of the DEM is a vital issue controlling its use in different applications; however this assessment relies heavily on statistical methods with neglecting the visual methods. The research applies visual analysis investigation on DEMs generated using IDW interpolator of varying powers in order to examine their potential in the assessment of the effects of the variation of the IDW power on the quality of the DEMs. Real elevation data has been collected from field using total station instrument in a corrugated terrain. DEMs have been generated from the data at a unified cell size using IDW interpolator with power values ranging from one to ten. Visual analysis has been undertaken using 2D and 3D views of the DEM; in addition, statistical analysis has been performed for assessment of the validity of the visual techniques in doing such analysis. Visual analysis has shown that smoothing of the DEM decreases with the increase in the power value till the power of four; however, increasing the power more than four does not leave noticeable changes on 2D and 3D views of the DEM. The statistical analysis has supported these results where the value of the Standard Deviation (SD) of the DEM has increased with increasing the power. More specifically, changing the power from one to two has produced 36% of the total increase (the increase in SD due to changing the power from one to ten) in SD and changing to the powers of three and four has given 60% and 75% respectively. This refers to decrease in DEM smoothing with the increase in the power of the IDW. The study also has shown that applying visual methods supported by statistical analysis has proven good potential in the DEM quality assessment.
Spatiotemporal Visualization of Tsunami Waves Using Kml on Google Earth
NASA Astrophysics Data System (ADS)
Mohammadi, H.; Delavar, M. R.; Sharifi, M. A.; Pirooz, M. D.
2017-09-01
Disaster risk is a function of hazard and vulnerability. Risk is defined as the expected losses, including lives, personal injuries, property damages, and economic disruptions, due to a particular hazard for a given area and time period. Risk assessment is one of the key elements of a natural disaster management strategy as it allows for better disaster mitigation and preparation. It provides input for informed decision making, and increases risk awareness among decision makers and other stakeholders. Virtual globes such as Google Earth can be used as a visualization tool. Proper spatiotemporal graphical representations of the concerned risk significantly reduces the amount of effort to visualize the impact of the risk and improves the efficiency of the decision-making process to mitigate the impact of the risk. The spatiotemporal visualization of tsunami waves for disaster management process is an attractive topic in geosciences to assist investigation of areas at tsunami risk. In this paper, a method for coupling virtual globes with tsunami wave arrival time models is presented. In this process we have shown 2D+Time of tsunami waves for propagation and inundation of tsunami waves, both coastal line deformation, and the flooded areas. In addition, the worst case scenario of tsunami on Chabahar port derived from tsunami modelling is also presented using KML on google earth.
Visual-spatial cognition in children using aided communication.
Stadskleiv, Kristine; Batorowicz, Beata; Massaro, Munique; van Balkom, Hans; von Tetzchner, Stephen
2018-03-01
Children with severe motor impairments are restricted in their manipulation and exploration of objects, but little is known about how such limitations influence cognitive development. This study investigated visual-constructional abilities in 75 children and adolescents, aged 5;0-15;11 (years;months), with severe speech impairments and no intellectual disabilities (aided group) and in 56 children and adolescents with typical development (reference group). Verbal comprehension, non-verbal reasoning, and visual-spatial perception were assessed with standardized tests. The task of the participants was to verbally instruct communication partners to make physical constructions identical to models that the partner could not see. In the aided group, 55.7% of the constructions were identical to the models participants described, compared to 91.3% in the reference group. In the aided group, test results explained 51.4% of the variance in construction errors. The results indicate that the participants' language skills were decisive for construction success. Visual-perceptual challenges were common among the aided communicators, and their instructions included little information about size and spatial relations. This may reflect less experience with object manipulation and construction than children with typical development, and using aided communication to instruct others to make three-dimensional constructions. The results imply a need for interventions that compensate for the lack of relevant experience.
Spatial identification of tributary impacts in river networks
Christian E. Torgersen; Robert E. Gresswell; Douglas S. Bateman; Kelly M. Burnett
2008-01-01
The ability to assess spatial patterns of ecological conditions in river networks has been confounded by difficulties of measuring and perceiving features that are essentially invisible to observers on land and to aircraft and satellites from above. The nature of flowing water, which is opaque or at best semi-transparent, makes it difficult to visualize fine-scale...
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Risk assessment in the 21st century: roadmap and matrix.
Embry, Michelle R; Bachman, Ammie N; Bell, David R; Boobis, Alan R; Cohen, Samuel M; Dellarco, Michael; Dewhurst, Ian C; Doerrer, Nancy G; Hines, Ronald N; Moretto, Angelo; Pastoor, Timothy P; Phillips, Richard D; Rowlands, J Craig; Tanir, Jennifer Y; Wolf, Douglas C; Doe, John E
2014-08-01
Abstract The RISK21 integrated evaluation strategy is a problem formulation-based exposure-driven risk assessment roadmap that takes advantage of existing information to graphically represent the intersection of exposure and toxicity data on a highly visual matrix. This paper describes in detail the process for using the roadmap and matrix. The purpose of this methodology is to optimize the use of prior information and testing resources (animals, time, facilities, and personnel) to efficiently and transparently reach a risk and/or safety determination. Based on the particular problem, exposure and toxicity data should have sufficient precision to make such a decision. Estimates of exposure and toxicity, bounded by variability and/or uncertainty, are plotted on the X- and Y-axes of the RISK21 matrix, respectively. The resulting intersection is a highly visual representation of estimated risk. Decisions can then be made to increase precision in the exposure or toxicity estimates or declare that the available information is sufficient. RISK21 represents a step forward in the goal to introduce new methodologies into 21st century risk assessment. Indeed, because of its transparent and visual process, RISK21 has the potential to widen the scope of risk communication beyond those with technical expertise.
Streaming Visual Analytics Workshop Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Kristin A.; Burtner, Edwin R.; Kritzstein, Brian P.
How can we best enable users to understand complex emerging events and make appropriate assessments from streaming data? This was the central question addressed at a three-day workshop on streaming visual analytics. This workshop was organized by Pacific Northwest National Laboratory for a government sponsor. It brought together forty researchers and subject matter experts from government, industry, and academia. This report summarizes the outcomes from that workshop. It describes elements of the vision for a streaming visual analytic environment and set of important research directions needed to achieve this vision. Streaming data analysis is in many ways the analysis andmore » understanding of change. However, current visual analytics systems usually focus on static data collections, meaning that dynamically changing conditions are not appropriately addressed. The envisioned mixed-initiative streaming visual analytics environment creates a collaboration between the analyst and the system to support the analysis process. It raises the level of discourse from low-level data records to higher-level concepts. The system supports the analyst’s rapid orientation and reorientation as situations change. It provides an environment to support the analyst’s critical thinking. It infers tasks and interests based on the analyst’s interactions. The system works as both an assistant and a devil’s advocate, finding relevant data and alerts as well as considering alternative hypotheses. Finally, the system supports sharing of findings with others. Making such an environment a reality requires research in several areas. The workshop discussions focused on four broad areas: support for critical thinking, visual representation of change, mixed-initiative analysis, and the use of narratives for analysis and communication.« less
Recommendations for benefit-risk assessment methodologies and visual representations.
Hughes, Diana; Waddingham, Ed; Mt-Isa, Shahrul; Goginsky, Alesia; Chan, Edmond; Downey, Gerald F; Hallgreen, Christine E; Hockley, Kimberley S; Juhaeri, Juhaeri; Lieftucht, Alfons; Metcalf, Marilyn A; Noel, Rebecca A; Phillips, Lawrence D; Ashby, Deborah; Micaleff, Alain
2016-03-01
The purpose of this study is to draw on the practical experience from the PROTECT BR case studies and make recommendations regarding the application of a number of methodologies and visual representations for benefit-risk assessment. Eight case studies based on the benefit-risk balance of real medicines were used to test various methodologies that had been identified from the literature as having potential applications in benefit-risk assessment. Recommendations were drawn up based on the results of the case studies. A general pathway through the case studies was evident, with various classes of methodologies having roles to play at different stages. Descriptive and quantitative frameworks were widely used throughout to structure problems, with other methods such as metrics, estimation techniques and elicitation techniques providing ways to incorporate technical or numerical data from various sources. Similarly, tree diagrams and effects tables were universally adopted, with other visualisations available to suit specific methodologies or tasks as required. Every assessment was found to follow five broad stages: (i) Planning, (ii) Evidence gathering and data preparation, (iii) Analysis, (iv) Exploration and (v) Conclusion and dissemination. Adopting formal, structured approaches to benefit-risk assessment was feasible in real-world problems and facilitated clear, transparent decision-making. Prior to this work, no extensive practical application and appraisal of methodologies had been conducted using real-world case examples, leaving users with limited knowledge of their usefulness in the real world. The practical guidance provided here takes us one step closer to a harmonised approach to benefit-risk assessment from multiple perspectives. Copyright © 2016 John Wiley & Sons, Ltd.
A CNN based neurobiology inspired approach for retinal image quality assessment.
Mahapatra, Dwarikanath; Roy, Pallab K; Sedai, Suman; Garnavi, Rahil
2016-08-01
Retinal image quality assessment (IQA) algorithms use different hand crafted features for training classifiers without considering the working of the human visual system (HVS) which plays an important role in IQA. We propose a convolutional neural network (CNN) based approach that determines image quality using the underlying principles behind the working of the HVS. CNNs provide a principled approach to feature learning and hence higher accuracy in decision making. Experimental results demonstrate the superior performance of our proposed algorithm over competing methods.
ERIC Educational Resources Information Center
Rau, Martina A.
2018-01-01
To learn content knowledge in science, technology, engineering, and math domains, students need to make connections among visual representations. This article considers two kinds of connection-making skills: (1) "sense-making skills" that allow students to verbally explain mappings among representations and (2) "perceptual…
Visualizing Decision-making Behaviours in Agent-based Autonomous Spacecraft
NASA Technical Reports Server (NTRS)
North, Steve; Hennessy, Joseph F. (Technical Monitor)
2003-01-01
The authors will report initial progress on the PIAudit project as a Research Resident Associate Program. The objective of this research is to prototype a tool for visualizing decision-making behaviours in autonomous spacecraft. This visualization will serve as an information source for human analysts. The current visualization prototype for PIAudit combines traditional Decision Trees with Weights of Evidence.
Kelley, Amanda M; Ranes, Bethany M; Estrada, Art; Grandizio, Catherine M
2015-01-01
Several important factors must be considered when deciding to return a soldier to duty after a traumatic brain injury (TBI). Premature return increases risk for not only second-impact syndrome during the acute phase but also permanent changes from repetitive concussions. Thus, there is a critical need for return-to-duty (RTD) assessment criteria that encompass the spectrum of injury and disease experienced by US soldiers, particularly TBI. To provide evidence-based standards to eventually serve as criteria for operational competence and performance of a soldier after injury. Specifically, the relationships between clinical assessments and novel military-specific tasks were evaluated. Exploratory analyses (including nonparametric tests and Spearman rank correlations) of an archived database. A total of 79 patients with TBI who participated in an RTD assessment program at a US Army rehabilitation and recovery center. Military Functional Assessment Program (to determine a soldier's operational competence and performance after TBI) tasks; Dizziness Handicap Inventory; Dynamic Visual Acuity (vestibular function); Sensory Organization Test (postural control); Repeatable Battery for the Assessment of Neuropsychological Status (neuropsychological screening test); Beck Depression Inventory-II; Beck Anxiety Inventory; Comprehensive Trail Making Test (visual search and sequencing); posttraumatic stress disorder checklist military version; Alcohol Use Disorders Identification Test; Epworth Sleepiness Scale; Patient Health Questionnaire; and Military Acute Concussion Evaluation. Selected military operational assessment tasks correlated significantly with clinical measures of vestibular function, psychological well-being, and cognitive function. Differences on occupational therapy assessments, a concussion screening tool, and a self-report health questionnaire were seen between those who passed and those who failed the RTD assessment. Specifically, those who passed the RTD assessment scored more favorably on these clinical assessments. This study demonstrated convergent validity between Military Functional Assessment Program tasks and clinical assessment scores. The Military Functional Assessment Program shows promise for augmenting decision making related to RTD and soldier skills. Additional research is needed to determine the effectiveness of this program in predicting RTD success.
Influence of Coactors on Saccadic and Manual Responses
Niehorster, Diederick C.; Jarodzka, Halszka; Holmqvist, Kenneth
2017-01-01
Two experiments were conducted to investigate the effects of coaction on saccadic and manual responses. Participants performed the experiments either in a solitary condition or in a group of coactors who performed the same tasks at the same time. In Experiment 1, participants completed a pro- and antisaccade task where they were required to make saccades towards (prosaccades) or away (antisaccades) from a peripheral visual stimulus. In Experiment 2, participants performed a visual discrimination task that required both making a saccade towards a peripheral stimulus and making a manual response in reaction to the stimulus’s orientation. The results showed that performance of stimulus-driven responses was independent of the social context, while volitionally controlled responses were delayed by the presence of coactors. These findings are in line with studies assessing the effect of attentional load on saccadic control during dual-task paradigms. In particular, antisaccades – but not prosaccades – were influenced by the type of social context. Additionally, the number of coactors present in the group had a moderating effect on both saccadic and manual responses. The results support an attentional view of social influences. PMID:28321288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minelli, Annalisa, E-mail: Annalisa.Minelli@univ-brest.fr; Marchesini, Ivan, E-mail: Ivan.Marchesini@irpi.cnr.it; Taylor, Faith E., E-mail: Faith.Taylor@kcl.ac.uk
Although there are clear economic and environmental incentives for producing energy from solar and wind power, there can be local opposition to their installation due to their impact upon the landscape. To date, no international guidelines exist to guide quantitative visual impact assessment of these facilities, making the planning process somewhat subjective. In this paper we demonstrate the development of a method and an Open Source GIS tool to quantitatively assess the visual impact of these facilities using line-of-site techniques. The methods here build upon previous studies by (i) more accurately representing the shape of energy producing facilities, (ii) takingmore » into account the distortion of the perceived shape and size of facilities caused by the location of the observer, (iii) calculating the possible obscuring of facilities caused by terrain morphology and (iv) allowing the combination of various facilities to more accurately represent the landscape. The tool has been applied to real and synthetic case studies and compared to recently published results from other models, and demonstrates an improvement in accuracy of the calculated visual impact of facilities. The tool is named r.wind.sun and is freely available from GRASS GIS AddOns. - Highlights: • We develop a tool to quantify wind turbine and photovoltaic panel visual impact. • The tool is freely available to download and edit as a module of GRASS GIS. • The tool takes into account visual distortion of the shape and size of objects. • The accuracy of calculation of visual impact is improved over previous methods.« less
Effect of virtual reality on cognition in stroke patients.
Kim, Bo Ryun; Chun, Min Ho; Kim, Lee Suk; Park, Ji Young
2011-08-01
To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients.
A Voice-Based E-Examination Framework for Visually Impaired Students in Open and Distance Learning
ERIC Educational Resources Information Center
Azeta, Ambrose A.; Inam, Itorobong A.; Daramola, Olawande
2018-01-01
Voice-based systems allow users access to information on the internet over a voice interface. Prior studies on Open and Distance Learning (ODL) e-examination systems that make use of voice interface do not sufficiently exhibit intelligent form of assessment, which diminishes the rigor of examination. The objective of this paper is to improve on…
Two Parts Reflection, One Part Selfie: A Visual Alternative to the Minute Paper
ERIC Educational Resources Information Center
Meehlhause, Kellie
2016-01-01
For almost 40 years, the Minute Paper has been a quick and easy means of learning assessment, both in the college classroom and in library instruction. More recently, the use of social media, particularly selfies, has gained popularity by connecting with students through the technology with which they are most familiar. This article makes the case…
ERIC Educational Resources Information Center
Lancioni, Giulio E.; O'Reilly, Mark F.; Singh, Nirbhay N.; Sigafoos, Jeff; Oliva, Doretta; Alberti, Gloria; Lang, Russell
2011-01-01
This study extended the assessment of a newly developed computer-aided telephone system with two participants (adults) who presented with blindness or severe visual impairment and motor or motor and intellectual disabilities. For each participant, the study was carried out according to an ABAB design, in which the A represented baseline phases and…
Age Changes in Attention Control: Assessing the Role of Stimulus Contingencies
ERIC Educational Resources Information Center
Brodeur, Darlene A.
2004-01-01
Children (ages 5, 7, and 9 years) and young adults completed two visual attention tasks that required them to make a forced choice identification response to a target shape presented in the center of a computer screen. In the first task (high correlation condition) each target was flanked with the same distracters on 80% of the trials (valid…
Lin, Ying Ling; Guerguerian, Anne-Marie; Tomasi, Jessica; Laussen, Peter; Trbovich, Patricia
2017-08-14
Intensive care clinicians use several sources of data in order to inform decision-making. We set out to evaluate a new interactive data integration platform called T3™ made available for pediatric intensive care. Three primary functions are supported: tracking of physiologic signals, displaying trajectory, and triggering decisions, by highlighting data or estimating risk of patient instability. We designed a human factors study to identify interface usability issues, to measure ease of use, and to describe interface features that may enable or hinder clinical tasks. Twenty-two participants, consisting of bedside intensive care physicians, nurses, and respiratory therapists, tested the T3™ interface in a simulation laboratory setting. Twenty tasks were performed with a true-to-setting, fully functional, prototype, populated with physiological and therapeutic intervention patient data. Primary data visualization was time series and secondary visualizations were: 1) shading out-of-target values, 2) mini-trends with exaggerated maxima and minima (sparklines), and 3) bar graph of a 16-parameter indicator. Task completion was video recorded and assessed using a use error rating scale. Usability issues were classified in the context of task and type of clinician. A severity rating scale was used to rate potential clinical impact of usability issues. Time series supported tracking a single parameter but partially supported determining patient trajectory using multiple parameters. Visual pattern overload was observed with multiple parameter data streams. Automated data processing using shading and sparklines was often ignored but the 16-parameter data reduction algorithm, displayed as a persistent bar graph, was visually intuitive. However, by selecting or automatically processing data, triggering aids distorted the raw data that clinicians use regularly. Consequently, clinicians could not rely on new data representations because they did not know how they were established or derived. Usability issues, observed through contextual use, provided directions for tangible design improvements of data integration software that may lessen use errors and promote safe use. Data-driven decision making can benefit from iterative interface redesign involving clinician-users in simulated environments. This study is a first step in understanding how software can support clinicians' decision making with integrated continuous monitoring data. Importantly, testing of similar platforms by all the different disciplines who may become clinician users is a fundamental step necessary to understand the impact on clinical outcomes of decision aids.
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-01-01
A soccer player’s capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players’ motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key points Different exercise intensity modes did not affect the accuracy of motor response. Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise. Further research should focus on the assessment of VMRT from a player’s real - field position view rather than a perspective view. PMID:27274671
Hassan, Shirin E
2012-05-04
The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times.
Hassan, Shirin E.
2012-01-01
Purpose. The purpose of this study is to measure the accuracy and reliability of normally sighted, visually impaired, and blind pedestrians at making street crossing decisions using visual and/or auditory information. Methods. Using a 5-point rating scale, safety ratings for vehicular gaps of different durations were measured along a two-lane street of one-way traffic without a traffic signal. Safety ratings were collected from 12 normally sighted, 10 visually impaired, and 10 blind subjects for eight different gap times under three sensory conditions: (1) visual plus auditory information, (2) visual information only, and (3) auditory information only. Accuracy and reliability in street crossing decision-making were calculated for each subject under each sensory condition. Results. We found that normally sighted and visually impaired pedestrians were accurate and reliable in their street crossing decision-making ability when using either vision plus hearing or vision only (P > 0.05). Under the hearing only condition, all subjects were reliable (P > 0.05) but inaccurate with their street crossing decisions (P < 0.05). Compared to either the normally sighted (P = 0.018) or visually impaired subjects (P = 0.019), blind subjects were the least accurate with their street crossing decisions under the hearing only condition. Conclusions. Our data suggested that visually impaired pedestrians can make accurate and reliable street crossing decisions like those of normally sighted pedestrians. When using auditory information only, all subjects significantly overestimated the vehicular gap time. Our finding that blind pedestrians performed significantly worse than either the normally sighted or visually impaired subjects under the hearing only condition suggested that they may benefit from training to improve their detection ability and/or interpretation of vehicular gap times. PMID:22427593
Color-coded visualization of magnetic resonance imaging multiparametric maps
NASA Astrophysics Data System (ADS)
Kather, Jakob Nikolas; Weidner, Anja; Attenberger, Ulrike; Bukschat, Yannick; Weis, Cleo-Aron; Weis, Meike; Schad, Lothar R.; Zöllner, Frank Gerrit
2017-01-01
Multiparametric magnetic resonance imaging (mpMRI) data are emergingly used in the clinic e.g. for the diagnosis of prostate cancer. In contrast to conventional MR imaging data, multiparametric data typically include functional measurements such as diffusion and perfusion imaging sequences. Conventionally, these measurements are visualized with a one-dimensional color scale, allowing only for one-dimensional information to be encoded. Yet, human perception places visual information in a three-dimensional color space. In theory, each dimension of this space can be utilized to encode visual information. We addressed this issue and developed a new method for tri-variate color-coded visualization of mpMRI data sets. We showed the usefulness of our method in a preclinical and in a clinical setting: In imaging data of a rat model of acute kidney injury, the method yielded characteristic visual patterns. In a clinical data set of N = 13 prostate cancer mpMRI data, we assessed diagnostic performance in a blinded study with N = 5 observers. Compared to conventional radiological evaluation, color-coded visualization was comparable in terms of positive and negative predictive values. Thus, we showed that human observers can successfully make use of the novel method. This method can be broadly applied to visualize different types of multivariate MRI data.
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
Bray, Mark-Anthony; Carpenter, Anne E
2015-11-04
Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.
Validation of a Spectral Method for Quantitative Measurement of Color in Protein Drug Solutions.
Yin, Jian; Swartz, Trevor E; Zhang, Jian; Patapoff, Thomas W; Chen, Bartolo; Marhoul, Joseph; Shih, Norman; Kabakoff, Bruce; Rahimi, Kimia
2016-01-01
A quantitative spectral method has been developed to precisely measure the color of protein solutions. In this method, a spectrophotometer is utilized for capturing the visible absorption spectrum of a protein solution, which can then be converted to color values (L*a*b*) that represent human perception of color in a quantitative three-dimensional space. These quantitative values (L*a*b*) allow for calculating the best match of a sample's color to a European Pharmacopoeia reference color solution. In order to qualify this instrument and assay for use in clinical quality control, a technical assessment was conducted to evaluate the assay suitability and precision. Setting acceptance criteria for this study required development and implementation of a unique statistical method for assessing precision in 3-dimensional space. Different instruments, cuvettes, protein solutions, and analysts were compared in this study. The instrument accuracy, repeatability, and assay precision were determined. The instrument and assay are found suitable for use in assessing color of drug substances and drug products and is comparable to the current European Pharmacopoeia visual assessment method. In the biotechnology industry, a visual assessment is the most commonly used method for color characterization, batch release, and stability testing of liquid protein drug solutions. Using this method, an analyst visually determines the color of the sample by choosing the closest match to a standard color series. This visual method can be subjective because it requires an analyst to make a judgment of the best match of color of the sample to the standard color series, and it does not capture data on hue and chroma that would allow for improved product characterization and the ability to detect subtle differences between samples. To overcome these challenges, we developed a quantitative spectral method for color determination that greatly reduces the variability in measuring color and allows for a more precise understanding of color differences. In this study, we established a statistical method for assessing precision in 3-dimensional space and demonstrated that the quantitative spectral method is comparable with respect to precision and accuracy to the current European Pharmacopoeia visual assessment method. © PDA, Inc. 2016.
Molecular Imaging in the Era of Personalized Medicine
Jung, Kyung-Ho; Lee, Kyung-Han
2015-01-01
Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging. PMID:25812652
Molecular imaging in the era of personalized medicine.
Jung, Kyung-Ho; Lee, Kyung-Han
2015-01-01
Clinical imaging creates visual representations of the body interior for disease assessment. The role of clinical imaging significantly overlaps with that of pathology, and diagnostic workflows largely depend on both fields. The field of clinical imaging is presently undergoing a radical change through the emergence of a new field called molecular imaging. This new technology, which lies at the intersection between imaging and molecular biology, enables noninvasive visualization of biochemical processes at the molecular level within living bodies. Molecular imaging differs from traditional anatomical imaging in that biomarkers known as imaging probes are used to visualize target molecules-of-interest. This ability opens up exciting new possibilities for applications in oncologic, neurological and cardiovascular diseases. Molecular imaging is expected to make major contributions to personalized medicine by allowing earlier diagnosis and predicting treatment response. The technique is also making a huge impact on pharmaceutical development by optimizing preclinical and clinical tests for new drug candidates. This review will describe the basic principles of molecular imaging and will briefly touch on three examples (from an immense list of new techniques) that may contribute to personalized medicine: receptor imaging, angiogenesis imaging, and apoptosis imaging.
Dual-Image Videoangiography During Intracranial Microvascular Surgery.
Feletti, Alberto; Wang, Xiangdong; Tanaka, Riki; Yamada, Yasuhiro; Suyama, Daisuke; Kawase, Tsukasa; Sano, Hirotoshi; Kato, Yoko
2017-03-01
Indocyanine green videoangiography (ICG-VA) is a valuable tool to assess vessel and aneurysm patency during neurovascular surgical procedures. However, ICG-VA highlights vascular structures, which appear white over a black background. Anatomic relationships are sometimes difficult to understand at first glance. Dual-image videoangiography (DIVA) enables simultaneous visualization of light and near-infrared fluorescence images of ICG-VA. The DIVA system was mounted on an OPMI Pentero Flow 800 intraoperative microscope. DIVA was used during microsurgical procedures on 5 patients who were operated for aneurysm clipping and superficial temporal artery-middle cerebral artery bypass. DIVA provides real-time simultaneous visualization of aneurysm and vessels and surrounding structures including brain, nerves, and surgical clips. Although visual contrast between vessels and background is higher with standard black-and-white imaging, DIVA makes it easier to understand anatomic relationships between intracranial structures. DIVA also provides better vision of the depth of field. DIVA has the potential to become a widely used intraoperative tool to check patency of intracranial vessels. It should be considered as an adjunct to standard ICG-VA for better understanding of vascular anatomy in relation to surrounding structures and can have an impact on decision making during surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
A cognitive prosthesis for complex decision-making.
Tremblay, Sébastien; Gagnon, Jean-François; Lafond, Daniel; Hodgetts, Helen M; Doiron, Maxime; Jeuniaux, Patrick P J M H
2017-01-01
While simple heuristics can be ecologically rational and effective in naturalistic decision making contexts, complex situations require analytical decision making strategies, hypothesis-testing and learning. Sub-optimal decision strategies - using simplified as opposed to analytic decision rules - have been reported in domains such as healthcare, military operational planning, and government policy making. We investigate the potential of a computational toolkit called "IMAGE" to improve decision-making by developing structural knowledge and increasing understanding of complex situations. IMAGE is tested within the context of a complex military convoy management task through (a) interactive simulations, and (b) visualization and knowledge representation capabilities. We assess the usefulness of two versions of IMAGE (desktop and immersive) compared to a baseline. Results suggest that the prosthesis helped analysts in making better decisions, but failed to increase their structural knowledge about the situation once the cognitive prosthesis is removed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visualizing unstructured patient data for assessing diagnostic and therapeutic history.
Deng, Yihan; Denecke, Kerstin
2014-01-01
Having access to relevant patient data is crucial for clinical decision making. The data is often documented in unstructured texts and collected in the electronic health record. In this paper, we evaluate an approach to visualize information extracted from clinical documents by means of tag cloud. Tag clouds will be generated using a bag of word approach and by exploiting part of speech tags. For a real word data set comprising radiological reports, pathological reports and surgical operation reports, tag clouds are generated and a questionnaire-based study is conducted as evaluation. Feedback from the physicians shows that the tag cloud visualization is an effective and rapid approach to represent relevant parts of unstructured patient data. To handle the different medical narratives, we have summarized several possible improvements according to the user feedback and evaluation results.
Dichotic and dichoptic digit perception in normal adults.
Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T
2011-06-01
Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a greater extent than in the visual modality. The right-ear advantage observed in the dichotic-digits task was most evident when reproduction mediated response selection was used in conjunction with three-digit pairs. This effect implies that factors such as "speech related output mechanisms" and digit-span length (working memory) contribute to laterality effects in dichotic listening performance with traditional paradigms. Thus, the use of multiple-digit pairs to avoid ceiling effects and the application of verbal reproduction as a means of response selection may accentuate the role of nonperceptual factors in performance. Ideally, tests of perceptual abilities should be relatively free of such effects. American Academy of Audiology.
Exploring Metacogntive Visual Literacy Tasks for Teaching Astronomy
NASA Astrophysics Data System (ADS)
Slater, Timothy F.; Slater, S.; Dwyer, W.
2010-01-01
Undoubtedly, astronomy is a scientific enterprise which often results in colorful and inspirational images of the cosmos that naturally capture our attention. Students encountering astronomy in the college classroom are often bombarded with images, movies, simulations, conceptual cartoons, graphs, and charts intended to convey the substance and technological advancement inherent in astronomy. For students who self-identify themselves as visual learners, this aspect can make the science of astronomy come alive. For students who naturally attend to visual aesthetics, this aspect can make astronomy seem relevant. In other words, the visual nature that accompanies much of the scientific realm of astronomy has the ability to connect a wide range of students to science, not just those few who have great abilities and inclinations toward the mathematical analysis world. Indeed, this is fortunate for teachers of astronomy, who actively try to find ways to connect and build astronomical understanding with a broad range of student interests, motivations, and abilities. In the context of learning science, metacognition describes students’ self-monitoring, -regulation, and -awareness when thinking about learning. As such, metacognition is one of the foundational pillars supporting what we know about how people learn. Yet, the astronomy teaching and learning community knows very little about how to operationalize and support students’ metacognition in the classroom. In response, the Conceptual Astronomy, Physics and Earth sciences Research (CAPER) Team is developing and pilot-testing metacogntive tasks in the context of astronomy that focus on visual literacy of astronomical phenomena. In the initial versions, students are presented with a scientifically inaccurate narrative supposedly describing visual information, including images and graphical information, and asked to assess and correct the narrative, in the form of peer evaluation. To guide student thinking, students are provided with a scaffolded series of multiple-choice questions highlighting conceptual aspects of the prompt.
Task-Driven Evaluation of Aggregation in Time Series Visualization
Albers, Danielle; Correll, Michael; Gleicher, Michael
2014-01-01
Many visualization tasks require the viewer to make judgments about aggregate properties of data. Recent work has shown that viewers can perform such tasks effectively, for example to efficiently compare the maximums or means over ranges of data. However, this work also shows that such effectiveness depends on the designs of the displays. In this paper, we explore this relationship between aggregation task and visualization design to provide guidance on matching tasks with designs. We combine prior results from perceptual science and graphical perception to suggest a set of design variables that influence performance on various aggregate comparison tasks. We describe how choices in these variables can lead to designs that are matched to particular tasks. We use these variables to assess a set of eight different designs, predicting how they will support a set of six aggregate time series comparison tasks. A crowd-sourced evaluation confirms these predictions. These results not only provide evidence for how the specific visualizations support various tasks, but also suggest using the identified design variables as a tool for designing visualizations well suited for various types of tasks. PMID:25343147
Seminar in Flow Visualization at Lafayette College: Variations on the Hertzberg Effect
NASA Astrophysics Data System (ADS)
Rossmann, Jenn Stroud
2013-11-01
Flow visualization reveals an invisible world of fluid dynamics, blending scientific investigation and artistic exploration. The resulting images have inspired, and in some cases themselves become appreciated as, art. At Lafayette College, a sophomore-level seminar in The Art and Science of Flow Visualization exposes students to these techniques and the science of fluid mechanics, and to the photographic methods needed to create effective images that are successful both scientifically and artistically. Unlike other courses in flow visualization, this course assumes no a priori familiarity with fluid flow or with photography. The fundamentals of both are taught and practiced in a studio setting. Students are engaged in an interdisciplinary discourse about fluids and physics, photography, scientific ethics, and historical societal responses to science and art. Relevant texts from several disciplines are read, discussed, and responded to in student writing. This seminar approach makes flow visualization and fluid dynamics a natural part of a liberal education. The development, implementation, and assessment of this team-taught course at Lafayette College will be discussed. Support provided by National Science Foundation.
Developing and evaluating a target-background similarity metric for camouflage detection.
Lin, Chiuhsiang Joe; Chang, Chi-Chan; Liu, Bor-Shong
2014-01-01
Measurement of camouflage performance is of fundamental importance for military stealth applications. The goal of camouflage assessment algorithms is to automatically assess the effect of camouflage in agreement with human detection responses. In a previous study, we found that the Universal Image Quality Index (UIQI) correlated well with the psychophysical measures, and it could be a potentially camouflage assessment tool. In this study, we want to quantify the camouflage similarity index and psychophysical results. We compare several image quality indexes for computational evaluation of camouflage effectiveness, and present the results of an extensive human visual experiment conducted to evaluate the performance of several camouflage assessment algorithms and analyze the strengths and weaknesses of these algorithms. The experimental data demonstrates the effectiveness of the approach, and the correlation coefficient result of the UIQI was higher than those of other methods. This approach was highly correlated with the human target-searching results. It also showed that this method is an objective and effective camouflage performance evaluation method because it considers the human visual system and image structure, which makes it consistent with the subjective evaluation results.
Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.
Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil
2017-01-19
Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.
Learning style, judgements of learning, and learning of verbal and visual information.
Knoll, Abby R; Otani, Hajime; Skeel, Reid L; Van Horn, K Roger
2017-08-01
The concept of learning style is immensely popular despite the lack of evidence showing that learning style influences performance. This study tested the hypothesis that the popularity of learning style is maintained because it is associated with subjective aspects of learning, such as judgements of learning (JOLs). Preference for verbal and visual information was assessed using the revised Verbalizer-Visualizer Questionnaire (VVQ). Then, participants studied a list of word pairs and a list of picture pairs, making JOLs (immediate, delayed, and global) while studying each list. Learning was tested by cued recall. The results showed that higher VVQ verbalizer scores were associated with higher immediate JOLs for words, and higher VVQ visualizer scores were associated with higher immediate JOLs for pictures. There was no association between VVQ scores and recall or JOL accuracy. As predicted, learning style was associated with subjective aspects of learning but not objective aspects of learning. © 2016 The British Psychological Society.
David, R.; Stoessel, A.; Berthoz, A.; Spoor, F.; Bennequin, D.
2016-01-01
The semicircular duct system is part of the sensory organ of balance and essential for navigation and spatial awareness in vertebrates. Its function in detecting head rotations has been modelled with increasing sophistication, but the biomechanics of actual semicircular duct systems has rarely been analyzed, foremost because the fragile membranous structures in the inner ear are hard to visualize undistorted and in full. Here we present a new, easy-to-apply and non-invasive method for three-dimensional in-situ visualization and quantification of the semicircular duct system, using X-ray micro tomography and tissue staining with phosphotungstic acid. Moreover, we introduce Ariadne, a software toolbox which provides comprehensive and improved morphological and functional analysis of any visualized duct system. We demonstrate the potential of these methods by presenting results for the duct system of humans, the squirrel monkey and the rhesus macaque, making comparisons with past results from neurophysiological, oculometric and biomechanical studies. Ariadne is freely available at http://www.earbank.org. PMID:27604473
Almeida, Diogo; Poeppel, David; Corina, David
The human auditory system distinguishes speech-like information from general auditory signals in a remarkably fast and efficient way. Combining psychophysics and neurophysiology (MEG), we demonstrate a similar result for the processing of visual information used for language communication in users of sign languages. We demonstrate that the earliest visual cortical responses in deaf signers viewing American Sign Language (ASL) signs show specific modulations to violations of anatomic constraints that would make the sign either possible or impossible to articulate. These neural data are accompanied with a significantly increased perceptual sensitivity to the anatomical incongruity. The differential effects in the early visual evoked potentials arguably reflect an expectation-driven assessment of somatic representational integrity, suggesting that language experience and/or auditory deprivation may shape the neuronal mechanisms underlying the analysis of complex human form. The data demonstrate that the perceptual tuning that underlies the discrimination of language and non-language information is not limited to spoken languages but extends to languages expressed in the visual modality.
Support for fast comprehension of ICU data: visualization using metaphor graphics.
Horn, W; Popow, C; Unterasinger, L
2001-01-01
The time-oriented analysis of electronic patient records on (neonatal) intensive care units is a tedious and time-consuming task. Graphic data visualization should make it easier for physicians to assess the overall situation of a patient and to recognize essential changes over time. Metaphor graphics are used to sketch the most relevant parameters for characterizing a patient's situation. By repetition of the graphic object in 24 frames the situation of the ICU patient is presented in one display, usually summarizing the last 24 h. VIE-VISU is a data visualization system which uses multiples to present the change in the patient's status over time in graphic form. Each multiple is a highly structured metaphor graphic object. Each object visualizes important ICU parameters from circulation, ventilation, and fluid balance. The design using multiples promotes a focus on stability and change. A stable patient is recognizable at first sight, continuous improvement or worsening condition are easy to analyze, drastic changes in the patient's situation get the viewers attention immediately.
Individual Differences in Learning and Cognitive Abilities
1989-09-15
conducted by Sir Francis Galton . Galton’s view of intelligence was that it distinguished those individuals who had genius (e.g., demonstrated by making...genius must have more refined sensory and motor faculties. Thus, Galton argued, intelligence could be measured by assessing constructs such as visual...block number) FIELD GROUP SUB-GROUP Learning, individual differences, cognitive abilities, 05 09 intelligence , skill acquisition, perceptual speed, - i
Changes in the distribution of sustained attention alter the perceived structure of visual space.
Fortenbaugh, Francesca C; Robertson, Lynn C; Esterman, Michael
2017-02-01
Visual spatial attention is a critical process that allows for the selection and enhanced processing of relevant objects and locations. While studies have shown attentional modulations of perceived location and the representation of distance information across multiple objects, there remains disagreement regarding what influence spatial attention has on the underlying structure of visual space. The present study utilized a method of magnitude estimation in which participants must judge the location of briefly presented targets within the boundaries of their individual visual fields in the absence of any other objects or boundaries. Spatial uncertainty of target locations was used to assess perceived locations across distributed and focused attention conditions without the use of external stimuli, such as visual cues. Across two experiments we tested locations along the cardinal and 45° oblique axes. We demonstrate that focusing attention within a region of space can expand the perceived size of visual space; even in cases where doing so makes performance less accurate. Moreover, the results of the present studies show that when fixation is actively maintained, focusing attention along a visual axis leads to an asymmetrical stretching of visual space that is predominantly focused across the central half of the visual field, consistent with an expansive gradient along the focus of voluntary attention. These results demonstrate that focusing sustained attention peripherally during active fixation leads to an asymmetrical expansion of visual space within the central visual field. Published by Elsevier Ltd.
Cognitive and psychological science insights to improve climate change data visualization
NASA Astrophysics Data System (ADS)
Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.
2016-12-01
Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.
Reduction of Cortisol Levels and Participants' Responses Following Art Making.
Kaimal, Girija; Ray, Kendra; Muniz, Juan
2016-04-02
This quasi-experimental study investigated the impact of visual art making on the cortisol levels of 39 healthy adults. Participants provided saliva samples to assess cortisol levels before and after 45 minutes of art making. Participants also provided written responses about the experience at the end of the session. Results indicate that art making resulted in statistically significant lowering of cortisol levels. Participants' written responses indicated that they found the art-making session to be relaxing, enjoyable, helpful for learning about new aspects of self, freeing from constraints, an evolving process of initial struggle to later resolution, and about flow/losing themselves in the work. They also reflected that the session evoked a desire to make art in the future. There were weak associations between changes in cortisol level and age, time of day, and participant responses related to learning about one's self and references to an evolving process in art making. There were no significant differences in outcomes based on prior experiences with art making, media choice, or gender.
Memory for Details with Self-Referencing
Serbun, Sarah J.; Shih, Joanne Y.; Gutchess, Angela H.
2011-01-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgments in reference to the self, a close other (one’s mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). Results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can disproportionately improve memory for specific internal source details as well. PMID:22092106
[The features of opisthorchiasis papillitis diagnosis].
Onishchenko, S V; Darvin, V V; Klimova, N V; Krasnov, E A
2018-01-01
To develop an optimal diagnostic algorithm in order to the most reliable decrease of inflammatory changes severity in large duodenal papilla in patients with chronic opisthorchiasis. Medical reports of 384 patients with opisthorchiasis-induced cholangitis have been analyzed. Diagnostic methods were abdominal ultrasound, endoscopic ultrasound of terminal common bile duct, CT scans, MRI of abdominal organs including magnetic resonance cholangiopancreatography and esophagogastroduodenoscopy with biopsy of the papilla, ERCP and PTHC. Comprehensive general and individual analysis of each of them has determined their advantages and disadvantages. Examination should by comprehensive to evaluate visual appearance of large duodenal papilla, lumen dimensions, state of its walls with histological research. Imaging tests are favorable to determine the diagnosis of papillitis due to possible assessment of lumen dimensions and state of the walls. While making a choice the priority should be given to endoscopic ultrasound examination. It allows visual inspection, assessment of the lumen, the walls of papilla and provides biopsy of deep structures.
Memory for details with self-referencing.
Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H
2011-11-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.
Coastal On-line Assessment and Synthesis Tool 2.0
NASA Technical Reports Server (NTRS)
Brown, Richard; Navard, Andrew; Nguyen, Beth
2011-01-01
COAST (Coastal On-line Assessment and Synthesis Tool) is a 3D, open-source Earth data browser developed by leveraging and enhancing previous NASA open-source tools. These tools use satellite imagery and elevation data in a way that allows any user to zoom from orbit view down into any place on Earth, and enables the user to experience Earth terrain in a visually rich 3D view. The benefits associated with taking advantage of an open-source geo-browser are that it is free, extensible, and offers a worldwide developer community that is available to provide additional development and improvement potential. What makes COAST unique is that it simplifies the process of locating and accessing data sources, and allows a user to combine them into a multi-layered and/or multi-temporal visual analytical look into possible data interrelationships and coeffectors for coastal environment phenomenology. COAST provides users with new data visual analytic capabilities. COAST has been upgraded to maximize use of open-source data access, viewing, and data manipulation software tools. The COAST 2.0 toolset has been developed to increase access to a larger realm of the most commonly implemented data formats used by the coastal science community. New and enhanced functionalities that upgrade COAST to COAST 2.0 include the development of the Temporal Visualization Tool (TVT) plug-in, the Recursive Online Remote Data-Data Mapper (RECORD-DM) utility, the Import Data Tool (IDT), and the Add Points Tool (APT). With these improvements, users can integrate their own data with other data sources, and visualize the resulting layers of different data types (such as spatial and spectral, for simultaneous visual analysis), and visualize temporal changes in areas of interest.
Effect of Virtual Reality on Cognition in Stroke Patients
Kim, Bo Ryun; Kim, Lee Suk; Park, Ji Young
2011-01-01
Objective To investigate the effect of virtual reality on the recovery of cognitive impairment in stroke patients. Method Twenty-eight patients (11 males and 17 females, mean age 64.2) with cognitive impairment following stroke were recruited for this study. All patients were randomly assigned to one of two groups, the virtual reality (VR) group (n=15) or the control group (n=13). The VR group received both virtual reality training and computer-based cognitive rehabilitation, whereas the control group received only computer-based cognitive rehabilitation. To measure, activity of daily living cognitive and motor functions, the following assessment tools were used: computerized neuropsychological test and the Tower of London (TOL) test for cognitive function assessment, Korean-Modified Barthel index (K-MBI) for functional status evaluation, and the motricity index (MI) for motor function assessment. All recruited patients underwent these evaluations before rehabilitation and four weeks after rehabilitation. Results The VR group showed significant improvement in the K-MMSE, visual and auditory continuous performance tests (CPT), forward digit span test (DST), forward and backward visual span tests (VST), visual and verbal learning tests, TOL, K-MBI, and MI scores, while the control group showed significant improvement in the K-MMSE, forward DST, visual and verbal learning tests, trail-making test-type A, TOL, K-MBI, and MI scores after rehabilitation. The changes in the visual CPT and backward VST in the VR group after rehabilitation were significantly higher than those in the control group. Conclusion Our findings suggest that virtual reality training combined with computer-based cognitive rehabilitation may be of additional benefit for treating cognitive impairment in stroke patients. PMID:22506159
Ramanujan, Devarajan; Bernstein, William Z; Chandrasegaran, Senthil K; Ramani, Karthik
2017-01-01
The rapid rise in technologies for data collection has created an unmatched opportunity to advance the use of data-rich tools for lifecycle decision-making. However, the usefulness of these technologies is limited by the ability to translate lifecycle data into actionable insights for human decision-makers. This is especially true in the case of sustainable lifecycle design (SLD), as the assessment of environmental impacts, and the feasibility of making corresponding design changes, often relies on human expertise and intuition. Supporting human sense-making in SLD requires the use of both data-driven and user-driven methods while exploring lifecycle data. A promising approach for combining the two is through the use of visual analytics (VA) tools. Such tools can leverage the ability of computer-based tools to gather, process, and summarize data along with the ability of human-experts to guide analyses through domain knowledge or data-driven insight. In this paper, we review previous research that has created VA tools in SLD. We also highlight existing challenges and future opportunities for such tools in different lifecycle stages-design, manufacturing, distribution & supply chain, use-phase, end-of-life, as well as life cycle assessment. Our review shows that while the number of VA tools in SLD is relatively small, researchers are increasingly focusing on the subject matter. Our review also suggests that VA tools can address existing challenges in SLD and that significant future opportunities exist.
Comparative analysis and visualization of multiple collinear genomes
2012-01-01
Background Genome browsers are a common tool used by biologists to visualize genomic features including genes, polymorphisms, and many others. However, existing genome browsers and visualization tools are not well-suited to perform meaningful comparative analysis among a large number of genomes. With the increasing quantity and availability of genomic data, there is an increased burden to provide useful visualization and analysis tools for comparison of multiple collinear genomes such as the large panels of model organisms which are the basis for much of the current genetic research. Results We have developed a novel web-based tool for visualizing and analyzing multiple collinear genomes. Our tool illustrates genome-sequence similarity through a mosaic of intervals representing local phylogeny, subspecific origin, and haplotype identity. Comparative analysis is facilitated through reordering and clustering of tracks, which can vary throughout the genome. In addition, we provide local phylogenetic trees as an alternate visualization to assess local variations. Conclusions Unlike previous genome browsers and viewers, ours allows for simultaneous and comparative analysis. Our browser provides intuitive selection and interactive navigation about features of interest. Dynamic visualizations adjust to scale and data content making analysis at variable resolutions and of multiple data sets more informative. We demonstrate our genome browser for an extensive set of genomic data sets composed of almost 200 distinct mouse laboratory strains. PMID:22536897
Retinal and visual system: occupational and environmental toxicology.
Fox, Donald A
2015-01-01
Occupational chemical exposure often results in sensory systems alterations that occur without other clinical signs or symptoms. Approximately 3000 chemicals are toxic to the retina and central visual system. Their dysfunction can have immediate, long-term, and delayed effects on mental health, physical health, and performance and lead to increased occupational injuries. The aims of this chapter are fourfold. First, provide references on retinal/visual system structure, function, and assessment techniques. Second, discuss the retinal features that make it especially vulnerable to toxic chemicals. Third, review the clinical and corresponding experimental data regarding retinal/visual system deficits produced by occupational toxicants: organic solvents (carbon disulfide, trichloroethylene, tetrachloroethylene, styrene, toluene, and mixtures) and metals (inorganic lead, methyl mercury, and mercury vapor). Fourth, discuss occupational and environmental toxicants as risk factors for late-onset retinal diseases and degeneration. Overall, the toxicants altered color vision, rod- and/or cone-mediated electroretinograms, visual fields, spatial contrast sensitivity, and/or retinal thickness. The findings elucidate the importance of conducting multimodal noninvasive clinical, electrophysiologic, imaging and vision testing to monitor toxicant-exposed workers for possible retinal/visual system alterations. Finally, since the retina is a window into the brain, an increased awareness and understanding of retinal/visual system dysfunction should provide additional insight into acquired neurodegenerative disorders. © 2015 Elsevier B.V. All rights reserved.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Visual form-processing deficits: a global clinical classification.
Unzueta-Arce, J; García-García, R; Ladera-Fernández, V; Perea-Bartolomé, M V; Mora-Simón, S; Cacho-Gutiérrez, J
2014-10-01
Patients who have difficulties recognising visual form stimuli are usually labelled as having visual agnosia. However, recent studies let us identify different clinical manifestations corresponding to discrete diagnostic entities which reflect a variety of deficits along the continuum of cortical visual processing. We reviewed different clinical cases published in medical literature as well as proposals for classifying deficits in order to provide a global perspective of the subject. Here, we present the main findings on the neuroanatomical basis of visual form processing and discuss the criteria for evaluating processing which may be abnormal. We also include an inclusive diagram of visual form processing deficits which represents the different clinical cases described in the literature. Lastly, we propose a boosted decision tree to serve as a guide in the process of diagnosing such cases. Although the medical community largely agrees on which cortical areas and neuronal circuits are involved in visual processing, future studies making use of new functional neuroimaging techniques will provide more in-depth information. A well-structured and exhaustive assessment of the different stages of visual processing, designed with a global view of the deficit in mind, will give a better idea of the prognosis and serve as a basis for planning personalised psychostimulation and rehabilitation strategies. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
"The Gallery": An Experiential Approach to Visual Aid Construction and Analysis in the Classroom
ERIC Educational Resources Information Center
Tyma, Adam W.
2008-01-01
When working with students to prepare oral presentations, the question--"What makes an effective visual aid?"--often arises. Most teachers realize the value of visual aids, but what makes them effective is sometimes unclear. There seems to be a disconnect between what the teacher, the textbook, and the student actually perceive to be a "good"…
Presentation-Oriented Visualization Techniques.
Kosara, Robert
2016-01-01
Data visualization research focuses on data exploration and analysis, yet the vast majority of visualizations people see were created for a different purpose: presentation. Whether we are talking about charts showing data to help make a presenter's point, data visuals created to accompany a news story, or the ubiquitous infographics, many more people consume charts than make them. Traditional visualization techniques treat presentation as an afterthought, but are there techniques uniquely suited to data presentation but not necessarily ideal for exploration and analysis? This article focuses on presentation-oriented techniques, considering their usefulness for presentation first and any other purposes as secondary.
Ueda, Jun; Yoshimura, Hajime; Shimizu, Keiji; Hino, Megumu; Kohara, Nobuo
2017-07-01
Visual and semi-quantitative assessments of 123 I-FP-CIT single-photon emission computed tomography (SPECT) are useful for the diagnosis of dopaminergic neurodegenerative diseases (dNDD), including Parkinson's disease, dementia with Lewy bodies, progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. However, the diagnostic value of combined visual and semi-quantitative assessment in dNDD remains unclear. Among 239 consecutive patients with a newly diagnosed possible parkinsonian syndrome who underwent 123 I-FP-CIT SPECT in our medical center, 114 patients with a disease duration less than 7 years were diagnosed as dNDD with the established criteria or as non-dNDD according to clinical judgment. We retrospectively examined their clinical characteristics and visual and semi-quantitative assessments of 123 I-FP-CIT SPECT. The striatal binding ratio (SBR) was used as a semi-quantitative measure of 123 I-FP-CIT SPECT. We calculated the sensitivity and specificity of visual assessment alone, semi-quantitative assessment alone, and combined visual and semi-quantitative assessment for the diagnosis of dNDD. SBR was correlated with visual assessment. Some dNDD patients with a normal visual assessment had an abnormal SBR, and vice versa. There was no statistically significant difference between sensitivity of the diagnosis with visual assessment alone and semi-quantitative assessment alone (91.2 vs. 86.8%, respectively, p = 0.29). Combined visual and semi-quantitative assessment demonstrated superior sensitivity (96.7%) to visual assessment (p = 0.03) or semi-quantitative assessment (p = 0.003) alone with equal specificity. Visual and semi-quantitative assessments of 123 I-FP-CIT SPECT are helpful for the diagnosis of dNDD, and combined visual and semi-quantitative assessment shows superior sensitivity with equal specificity.
Gillis, Julia M.; Laman, Timothy G.
2017-01-01
The distinctive and divergent courtship phenotypes of the birds-of-paradise make them an important group for gaining insights into the evolution of sexually selected phenotypic evolution. The genus Astrapia includes five long-tailed species that inhabit New Guinea’s montane forests. The visual and acoustic components of courtship among Astrapia species are very poorly known. In this study, we use audiovisual data from a natural history collection of animal behavior to fill gaps in knowledge about the visual and acoustic components of Astrapia courtship. We report seven distinct male behaviors and two female specific behaviors along with distinct vocalizations and wing-produced sonations for all five species. These results provide the most complete assessment of courtship in the genus Astrapia to date and provide a valuable baseline for future research, including comparative and evolutionary studies among these and other bird-of-paradise species. PMID:29134145
ERIC Educational Resources Information Center
Tobin, Michael J.; Hill, Eileen W.
2011-01-01
The article discusses some problems confronting teachers and psychologists when making decisions as to how to use the currently available test procedures. It reports data gathered on three separate occasions on the performance of a group of blind and partially sighted children on the Williams Intelligence Test which is the only specialist IQ test…
Lee, Sukwon; Kim, Sung-Hee; Hung, Ya-Hsin; Lam, Heidi; Kang, Youn-ah; Yi, Ji Soo
2016-01-01
In this paper, we would like to investigate how people make sense of unfamiliar information visualizations. In order to achieve the research goal, we conducted a qualitative study by observing 13 participants when they endeavored to make sense of three unfamiliar visualizations (i.e., a parallel-coordinates plot, a chord diagram, and a treemap) that they encountered for the first time. We collected data including audio/video record of think-aloud sessions and semi-structured interview; and analyzed the data using the grounded theory method. The primary result of this study is a grounded model of NOvice's information Vlsualization Sensemaking (NOVIS model), which consists of the five major cognitive activities: 1 encountering visualization, 2 constructing a frame, 3 exploring visualization, 4 questioning the frame, and 5 floundering on visualization. We introduce the NOVIS model by explaining the five activities with representative quotes from our participants. We also explore the dynamics in the model. Lastly, we compare with other existing models and share further research directions that arose from our observations.
A localized model of spatial cognition in chemistry
NASA Astrophysics Data System (ADS)
Stieff, Mike
This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role, however, in problem solving on a select group of chemistry tasks that require students to translate molecular representations or fundamentally alter the morphology of a molecule. Ultimately, this dissertation calls into question the assumption that individual differences in visuo-spatial ability play a critical role in determining who succeeds in chemistry. The results of this work establish a foundation for defining the precise manner in which visualization tools can best support problem solving.
Wang, Xin; Deng, Zhongliang
2017-01-01
In order to recognize indoor scenarios, we extract image features for detecting objects, however, computers can make some unexpected mistakes. After visualizing the histogram of oriented gradient (HOG) features, we find that the world through the eyes of a computer is indeed different from human eyes, which assists researchers to see the reasons that cause a computer to make errors. Additionally, according to the visualization, we notice that the HOG features can obtain rich texture information. However, a large amount of background interference is also introduced. In order to enhance the robustness of the HOG feature, we propose an improved method for suppressing the background interference. On the basis of the original HOG feature, we introduce a principal component analysis (PCA) to extract the principal components of the image colour information. Then, a new hybrid feature descriptor, which is named HOG–PCA (HOGP), is made by deeply fusing these two features. Finally, the HOGP is compared to the state-of-the-art HOG feature descriptor in four scenes under different illumination. In the simulation and experimental tests, the qualitative and quantitative assessments indicate that the visualizing images of the HOGP feature are close to the observation results obtained by human eyes, which is better than the original HOG feature for object detection. Furthermore, the runtime of our proposed algorithm is hardly increased in comparison to the classic HOG feature. PMID:28677635
ERIC Educational Resources Information Center
Campbell, Emily; Cuba, Melissa
2015-01-01
The goal of this action research is to increase student awareness of context clues, with an emphasis on student use of visual cues in making predictions. Visual cues in the classroom were used to differentiate according to the needs of student demographics (Herrera, Perez, & Escamilla, 2010). The purpose of this intervention was to improve…
Hitchcock, Elaine R.; Ferron, John
2017-01-01
Purpose Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of Type I error. In masked visual analysis (MVA), response-guided decisions are made by a researcher who is blinded to participants' identities and treatment assignments. MVA also makes it possible to conduct a hypothesis test assessing the significance of treatment effects. Method This tutorial describes the principles of MVA, including both how experiments can be set up and how results can be used for hypothesis testing. We then report a case study showing how MVA was deployed in a multiple-baseline across-subjects study investigating treatment for residual errors affecting rhotics. Strengths and weaknesses of MVA are discussed. Conclusions Given their important role in the evidence base that informs clinical decision making, it is critical for single-case experimental studies to be conducted in a way that allows researchers to draw valid inferences. As a method that can increase the rigor of single-case studies while preserving the benefits of a response-guided approach, MVA warrants expanded attention from researchers in communication disorders. PMID:28595354
NASA Astrophysics Data System (ADS)
Tost, Jordi; Ehmel, Fabian; Heidmann, Frank; Olen, Stephanie M.; Bookhagen, Bodo
2018-05-01
The assessment of natural hazards and risk has traditionally been built upon the estimation of threat maps, which are used to depict potential danger posed by a particular hazard throughout a given area. But when a hazard event strikes, infrastructure is a significant factor that can determine if the situation becomes a disaster. The vulnerability of the population in a region does not only depend on the area's local threat, but also on the geographical accessibility of the area. This makes threat maps by themselves insufficient for supporting real-time decision-making, especially for those tasks that involve the use of the road network, such as management of relief operations, aid distribution, or planning of evacuation routes, among others. To overcome this problem, this paper proposes a multidisciplinary approach divided in two parts. First, data fusion of satellite-based threat data and open infrastructure data from OpenStreetMap, introducing a threat-based routing service. Second, the visualization of this data through cartographic generalization and schematization. This emphasizes critical areas along roads in a simple way and allows users to visually evaluate the impact natural hazards may have on infrastructure. We develop and illustrate this methodology with a case study of landslide threat for an area in Colombia.
Byun, Tara McAllister; Hitchcock, Elaine R; Ferron, John
2017-06-10
Single-case experimental designs are widely used to study interventions for communication disorders. Traditionally, single-case experiments follow a response-guided approach, where design decisions during the study are based on participants' observed patterns of behavior. However, this approach has been criticized for its high rate of Type I error. In masked visual analysis (MVA), response-guided decisions are made by a researcher who is blinded to participants' identities and treatment assignments. MVA also makes it possible to conduct a hypothesis test assessing the significance of treatment effects. This tutorial describes the principles of MVA, including both how experiments can be set up and how results can be used for hypothesis testing. We then report a case study showing how MVA was deployed in a multiple-baseline across-subjects study investigating treatment for residual errors affecting rhotics. Strengths and weaknesses of MVA are discussed. Given their important role in the evidence base that informs clinical decision making, it is critical for single-case experimental studies to be conducted in a way that allows researchers to draw valid inferences. As a method that can increase the rigor of single-case studies while preserving the benefits of a response-guided approach, MVA warrants expanded attention from researchers in communication disorders.
Using Knowledge Space Theory To Assess Student Understanding of Stoichiometry
NASA Astrophysics Data System (ADS)
Arasasingham, Ramesh D.; Taagepera, Mare; Potter, Frank; Lonjers, Stacy
2004-10-01
Using the concept of stoichiometry we examined the ability of beginning college chemistry students to make connections among the molecular, symbolic, and graphical representations of chemical phenomena, as well as to conceptualize, visualize, and solve numerical problems. Students took a test designed to follow conceptual development; we then analyzed student responses and the connectivities of their responses, or the cognitive organization of the material or thinking patterns, applying knowledge space theory (KST). The results reveal that the students' logical frameworks of conceptual understanding were very weak and lacked an integrated understanding of some of the fundamental aspects of chemical reactivity. Analysis of response states indicates that the overall thinking patterns began with symbolic representations, moved to numerical problem solving, and then lastly to visualization: the acquisition of visualization skills comes later in the knowledge structure. The results strongly suggest the need for teaching approaches that help students integrate their knowledge by emphasizing the relationships between the different representations and presenting them concurrently during instruction. Also, the results indicate that KST is a useful tool for revealing various aspects of students' cognitive structure in chemistry and can be used as an assessment tool or as a pedagogical tool to address a number of student-learning issues.
Seiple, William; Szlyk, Janet P; Paliga, Jennifer; Rabb, Maurice F
2006-04-01
To quantify the extent of visual function losses in patients with North Carolina Macular Dystrophy (NCMD) and to demonstrate the importance of accounting for eccentric fixation when making comparisons with normal data. Five patients with NCMD who were from a single family were examined. Multifocal electroretinograms (mfERGs) and psychophysical assessments of acuity and luminance visual field sensitivities were measured throughout the central retina. Comparisons of responses from equivalent retinal areas were accomplished by shifting normal templates to be centered at the locus of fixation for each patient. Losses of psychophysically measured visual function in patients with NCMD extend to areas adjacent to the locations of visible lesions. The multifocal ERG amplitude was reduced only within the area of visible lesion. Multifocal ERG implicit times were delayed throughout the entire central retinal area assessed. ERG timing is a sensitive assay of retinal function, and our results indicate that NCMD has a widespread effect at the level of the mid and outer retina. The findings also demonstrated that it is necessary to account for fixation locus and to ensure that equivalent retinal areas are compared when testing patients with macular disease who have eccentric fixation.
Backward Registration Based Aspect Ratio Similarity (ARS) for Image Retargeting Quality Assessment.
Zhang, Yabin; Fang, Yuming; Lin, Weisi; Zhang, Xinfeng; Li, Leida
2016-06-28
During the past few years, there have been various kinds of content-aware image retargeting operators proposed for image resizing. However, the lack of effective objective retargeting quality assessment metrics limits the further development of image retargeting techniques. Different from traditional Image Quality Assessment (IQA) metrics, the quality degradation during image retargeting is caused by artificial retargeting modifications, and the difficulty for Image Retargeting Quality Assessment (IRQA) lies in the alternation of the image resolution and content, which makes it impossible to directly evaluate the quality degradation like traditional IQA. In this paper, we interpret the image retargeting in a unified framework of resampling grid generation and forward resampling. We show that the geometric change estimation is an efficient way to clarify the relationship between the images. We formulate the geometric change estimation as a Backward Registration problem with Markov Random Field (MRF) and provide an effective solution. The geometric change aims to provide the evidence about how the original image is resized into the target image. Under the guidance of the geometric change, we develop a novel Aspect Ratio Similarity metric (ARS) to evaluate the visual quality of retargeted images by exploiting the local block changes with a visual importance pooling strategy. Experimental results on the publicly available MIT RetargetMe and CUHK datasets demonstrate that the proposed ARS can predict more accurate visual quality of retargeted images compared with state-of-the-art IRQA metrics.
What makes a visualization memorable?
Borkin, Michelle A; Vo, Azalea A; Bylinskii, Zoya; Isola, Phillip; Sunkavalli, Shashank; Oliva, Aude; Pfister, Hanspeter
2013-12-01
An ongoing debate in the Visualization community concerns the role that visualization types play in data understanding. In human cognition, understanding and memorability are intertwined. As a first step towards being able to ask questions about impact and effectiveness, here we ask: 'What makes a visualization memorable?' We ran the largest scale visualization study to date using 2,070 single-panel visualizations, categorized with visualization type (e.g., bar chart, line graph, etc.), collected from news media sites, government reports, scientific journals, and infographic sources. Each visualization was annotated with additional attributes, including ratings for data-ink ratios and visual densities. Using Amazon's Mechanical Turk, we collected memorability scores for hundreds of these visualizations, and discovered that observers are consistent in which visualizations they find memorable and forgettable. We find intuitive results (e.g., attributes like color and the inclusion of a human recognizable object enhance memorability) and less intuitive results (e.g., common graphs are less memorable than unique visualization types). Altogether our findings suggest that quantifying memorability is a general metric of the utility of information, an essential step towards determining how to design effective visualizations.
Effects of Visual, Auditory, and Tactile Alerts on Platoon Leader Performance and Decision Making
2005-12-01
Effects of Visual, Auditory, and Tactile Alerts on Platoon Leader Performance and Decision Making by Andrea S . Krausman, Linda R. Elliott...Tactile Alerts on Platoon Leader Performance and Decision Making Andrea S . Krausman, Linda R. Elliott, and Rodger A. Pettitt Human Research and...Platoon Leader Performance and Decision Making 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 62716AH70 5e. TASK NUMBER 6. AUTHOR( S
Visual Word Recognition Across the Adult Lifespan
Cohen-Shikora, Emily R.; Balota, David A.
2016-01-01
The current study examines visual word recognition in a large sample (N = 148) across the adult lifespan and across a large set of stimuli (N = 1187) in three different lexical processing tasks (pronunciation, lexical decision, and animacy judgments). Although the focus of the present study is on the influence of word frequency, a diverse set of other variables are examined as the system ages and acquires more experience with language. Computational models and conceptual theories of visual word recognition and aging make differing predictions for age-related changes in the system. However, these have been difficult to assess because prior studies have produced inconsistent results, possibly due to sample differences, analytic procedures, and/or task-specific processes. The current study confronts these potential differences by using three different tasks, treating age and word variables as continuous, and exploring the influence of individual differences such as vocabulary, vision, and working memory. The primary finding is remarkable stability in the influence of a diverse set of variables on visual word recognition across the adult age spectrum. This pattern is discussed in reference to previous inconsistent findings in the literature and implications for current models of visual word recognition. PMID:27336629
Plastic Bags and Environmental Pollution
ERIC Educational Resources Information Center
Sang, Anita Ng Heung
2010-01-01
The "Hong Kong Visual Arts Curriculum Guide," covering Primary 1 to Secondary 3 grades (Curriculum Development Committee, 2003), points to three domains of learning in visual arts: (1) visual arts knowledge; (2) visual arts appreciation and criticism; and (3) visual arts making. The "Guide" suggests learning should develop…
Developing and Evaluating a Target-Background Similarity Metric for Camouflage Detection
Lin, Chiuhsiang Joe; Chang, Chi-Chan; Liu, Bor-Shong
2014-01-01
Background Measurement of camouflage performance is of fundamental importance for military stealth applications. The goal of camouflage assessment algorithms is to automatically assess the effect of camouflage in agreement with human detection responses. In a previous study, we found that the Universal Image Quality Index (UIQI) correlated well with the psychophysical measures, and it could be a potentially camouflage assessment tool. Methodology In this study, we want to quantify the camouflage similarity index and psychophysical results. We compare several image quality indexes for computational evaluation of camouflage effectiveness, and present the results of an extensive human visual experiment conducted to evaluate the performance of several camouflage assessment algorithms and analyze the strengths and weaknesses of these algorithms. Significance The experimental data demonstrates the effectiveness of the approach, and the correlation coefficient result of the UIQI was higher than those of other methods. This approach was highly correlated with the human target-searching results. It also showed that this method is an objective and effective camouflage performance evaluation method because it considers the human visual system and image structure, which makes it consistent with the subjective evaluation results. PMID:24498310
Functional vision in children with perinatal brain damage.
Alimović, Sonja; Jurić, Nikolina; Bošnjak, Vlatka Mejaški
2014-09-01
Many authors have discussed the effects of visual stimulations on visual functions, but there is no research about the effects on using vision in everyday activities (i.e. functional vision). Children with perinatal brain damage can develop cerebral visual impairment with preserved visual functions (e.g. visual acuity, contrast sensitivity) but poor functional vision. Our aim was to discuss the importance of assessing and stimulating functional vision in children with perinatal brain damage. We assessed visual functions (grating visual acuity, contrast sensitivity) and functional vision (the ability of maintaining visual attention and using vision in communication) in 99 children with perinatal brain damage and visual impairment. All children were assessed before and after the visual stimulation program. Our first assessment results showed that children with perinatal brain damage had significantly more problems in functional vision than in basic visual functions. During the visual stimulation program both variables of functional vision and contrast sensitivity improved significantly, while grating acuity improved only in 2.7% of children. We also found that improvement of visual attention significantly correlated to improvement on all other functions describing vision. Therefore, functional vision assessment, especially assessment of visual attention is indispensable in early monitoring of child with perinatal brain damage.
Evidence of different underlying processes in pattern recall and decision-making.
Gorman, Adam D; Abernethy, Bruce; Farrow, Damian
2015-01-01
The visual search characteristics of expert and novice basketball players were recorded during pattern recall and decision-making tasks to determine whether the two tasks shared common visual-perceptual processing strategies. The order in which participants entered the pattern elements in the recall task was also analysed to further examine the nature of the visual-perceptual strategies and the relative emphasis placed upon particular pattern features. The experts demonstrated superior performance across the recall and decision-making tasks [see also Gorman, A. D., Abernethy, B., & Farrow, D. (2012). Classical pattern recall tests and the prospective nature of expert performance. The Quarterly Journal of Experimental Psychology, 65, 1151-1160; Gorman, A. D., Abernethy, B., & Farrow, D. (2013a). Is the relationship between pattern recall and decision-making influenced by anticipatory recall? The Quarterly Journal of Experimental Psychology, 66, 2219-2236)] but a number of significant differences in the visual search data highlighted disparities in the processing strategies, suggesting that recall skill may utilize different underlying visual-perceptual processes than those required for accurate decision-making performance in the natural setting. Performance on the recall task was characterized by a proximal-to-distal order of entry of the pattern elements with participants tending to enter the players located closest to the ball carrier earlier than those located more distal to the ball carrier. The results provide further evidence of the underlying perceptual processes employed by experts when extracting visual information from complex and dynamic patterns.
Characteristics of an actuator-driven pulsed water jet generator to dissecting soft tissue.
Seto, Takeshi; Yamamoto, Hiroaki; Takayama, Kazuyoshi; Nakagawa, Atsuhiro; Tominaga, Teiji
2011-05-01
This paper reports characteristics of an actuator-driven pulsed water jet generator applied, in particular, to dissect soft tissues. Results of experiments, by making use of high speed recording of optical visualization and varying nozzle diameter, actuator time interval, and their effects on dissection performance are presented. Jet penetration characteristics are compared with continuous water jet and hence potential assessment of pulsed water jets to clinical applications is performed.
The Doctor Is In! Diagnostic Analysis.
Jupiter, Daniel C
To make meaningful inferences based on our regression models, we must ensure that we have met the necessary assumptions of these tests. In this commentary, we review these assumptions and those for the t-test and analysis of variance, and introduce a variety of methods, formal and informal, numeric and visual, for assessing conformity with the assumptions. Copyright © 2018 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Lee, Jae Eun; Fos, Peter J; Zuniga, Miguel A; Kastl, Peter R; Sung, Jung Hye
2003-07-01
This study was conducted to assess the presence and/or absence of cross-cultural differences or similarities between Korean and United States cataract patients. A systematic assessment was performed using utility and psychometric measures in the study population. A cross-sectional study design was used to examine the comparison of preoperative outcomes measures in cataract patients in Korea and the United States. Study subjects were selected using non-probabilistic methods and included 132 patients scheduled for cataract surgery in one eye. Subjects were adult cataract patients at Samsung and Kunyang General Hospital in Seoul, Korea, and Tulane University Hospital and Clinics in New Orleans, Louisiana. Preoperative utility was assessed using the verbal rating scale and standard reference gamble techniques. Current preoperative health status was assessed using the SF-36 and VF-14 surveys. Current preoperative Snellen visual acuity was used as a clinical measure of vision status. Korean patients were more likely to be younger (p = 0.001), less educated (p = 0.001), and to have worse Snellen visual acuity (p = 0.002) than United States patients. Multivariate analysis of variance (MANOVA) revealed that in contrast to Korean patients, United States patients were assessed to have higher scoring in general health, vitality, VF-14, and verbal rating for visual health. This higher scoring trend persisted after controlling for age, gender, education and Snellen visual acuity. The difference in health-related quality of life (HRQOL) between the two countries was quite clear, especially in the older age and highly educated group. Subjects in Korea and the United States were significantly different in quality of life, functional status and clinical outcomes. Subjects in the United States had more favorable health outcomes than those in Korea. These differences may be caused by multiple factors, including country-specific differences in economic status, health care system, cultural value system, and health policy. Cross-cultural differences should be considered when making international comparisons of quality of life.
Making data matter: Voxel printing for the digital fabrication of data across scales and domains.
Bader, Christoph; Kolb, Dominik; Weaver, James C; Sharma, Sunanda; Hosny, Ahmed; Costa, João; Oxman, Neri
2018-05-01
We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing, our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions, through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data sets to boundary representations, preventing alteration of data and loss of information in the produced physicalizations. Therefore, it bridges the gap between digital information representation and physical material composition. We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the production of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales, disciplines, and problem domains.
Integrated data visualisation: an approach to capture older adults’ wellness
Wilamowska, Katarzyna; Demiris, George; Thompson, Hilaire
2013-01-01
Informatics tools can help support the health and independence of older adults. In this paper, we present an approach towards integrating health-monitoring data and describe several techniques for the assessment and visualisation of integrated health and well-being of older adults. We present three different visualisation techniques to provide distinct alternatives towards display of the same information, focusing on reducing the cognitive load of data interpretation. We demonstrate the feasibility of integrating health-monitoring information into a comprehensive measure of wellness, while also highlighting the challenges of designing visual displays targeted at multiple user groups. These visual displays of wellness can be incorporated into personal health records and can be an effective support for informed decision-making. PMID:23079025
Making sense of personal health information: challenges for information visualization.
Faisal, Sarah; Blandford, Ann; Potts, Henry W W
2013-09-01
This article presents a systematic review of the literature on information visualization for making sense of personal health information. Based on this review, five application themes were identified: treatment planning, examination of patients' medical records, representation of pedigrees and family history, communication and shared decision making, and life management and health monitoring. While there are recognized design challenges associated with each of these themes, such as how best to represent data visually and integrate qualitative and quantitative information, other challenges and opportunities have received little attention to date. In this article, we highlight, in particular, the opportunities for supporting people in better understanding their own illnesses and making sense of their health conditions in order to manage them more effectively.
Hetrick, Evan M; Vannoy, Jeffrey; Montgomery, Laura L; Pack, Brian W
2013-08-01
The color of pharmaceutical dosage forms can be an important aspect of product branding and patient compliance with a dosing regimen. During the development of drug products, it is important to understand the stability of not only the active pharmaceutical ingredient but also the color and appearance of the tablet or capsule. Currently, the most common method to ensure color stability is to conduct a visual test throughout a stability study. This visual test is subjective and can be expensive, especially if there is a failure late in development or after marketing approval. This work describes a series of studies using accelerated conditions (i.e., heat, humidity, and light) and logistic regression analyses that have been developed to determine the relative stability ranking of multiple color coatings early in development to provide an increased probability of technical success on long-term stability studies and to avoid coatings whose visual appearance may change over time. Once this relative stability ranking has been established, the stability advantages can be assessed versus any manufacturing/processing liabilities of the selected coating in order to make a data-driven decision around coating selection. This work reviews the basic fundamentals of colorimetry, followed by the description of a consistent experimental approach to correlate a visual rating with an instrumental measurement (e.g., dE(*) from a colorimeter) to remove the subjectivity from the assessment. This approach represents a novel strategy for establishing a probabilized correlation between the quantitative instrumental color measurement and the visual rating of the same color change. Copyright © 2013 Wiley Periodicals, Inc.
No Bored Babies: A Guide for Making Developmental Toys.
ERIC Educational Resources Information Center
Shea, Jan Fisher
This booklet was designed to aid parents in making things at home to develop their newborn to 2-year-old children's skills. Suggested are easy-to-make visual stimuli for infants up to 6 weeks of age and 6 weeks to 3 months of age. For the latter, tactile stimuli also are considered. For infants 3 to 6 months of age, objects providing visual,…
Development of an Electromechanical Grade to Assess Human Knee Articular Cartilage Quality.
Sim, Sotcheadt; Hadjab, Insaf; Garon, Martin; Quenneville, Eric; Lavigne, Patrick; Buschmann, Michael D
2017-10-01
Quantitative assessments of articular cartilage function are needed to aid clinical decision making. Our objectives were to develop a new electromechanical grade to assess quantitatively cartilage quality and test its reliability. Electromechanical properties were measured using a hand-held electromechanical probe on 200 human articular surfaces from cadaveric donors and osteoarthritic patients. These data were used to create a reference electromechanical property database and to compare with visual arthroscopic International Cartilage Repair Society (ICRS) grading of cartilage degradation. The effect of patient-specific and location-specific characteristics on electromechanical properties was investigated to construct a continuous and quantitative electromechanical grade analogous to ICRS grade. The reliability of this novel grade was assessed by comparing it with ICRS grades on 37 human articular surfaces. Electromechanical properties were not affected by patient-specific characteristics for each ICRS grade, but were significantly different across the articular surface. Electromechanical properties varied linearly with ICRS grade, leading to a simple linear transformation from one scale to the other. The electromechanical grade correlated strongly with ICRS grade (r = 0.92, p < 0.0001). Additionally, the electromechanical grade detected lesions that were not found visually. This novel grade can assist the surgeon in assessing human knee cartilage by providing a quantitative and reliable grading system.
Real-time decoding of the direction of covert visuospatial attention
NASA Astrophysics Data System (ADS)
Andersson, Patrik; Ramsey, Nick F.; Raemaekers, Mathijs; Viergever, Max A.; Pluim, Josien P. W.
2012-08-01
Brain-computer interfaces (BCIs) make it possible to translate a person’s intentions into actions without depending on the muscular system. Brain activity is measured and classified into commands, thereby creating a direct link between the mind and the environment, enabling, e.g., cursor control or navigation of a wheelchair or robot. Most BCI research is conducted with scalp EEG but recent developments move toward intracranial electrodes for paralyzed people. The vast majority of BCI studies focus on the motor system as the appropriate target for recording and decoding movement intentions. However, properties of the visual system may make the visual system an attractive and intuitive alternative. We report on a study investigating feasibility of decoding covert visuospatial attention in real time, exploiting the full potential of a 7 T MRI scanner to obtain the necessary signal quality, capitalizing on earlier fMRI studies indicating that covert visuospatial attention changes activity in the visual areas that respond to stimuli presented in the attended area of the visual field. Healthy volunteers were instructed to shift their attention from the center of the screen to one of four static targets in the periphery, without moving their eyes from the center. During the first part of the fMRI-run, the relevant brain regions were located using incremental statistical analysis. During the second part, the activity in these regions was extracted and classified, and the subject was given visual feedback of the result. Performance was assessed as the number of trials where the real-time classifier correctly identified the direction of attention. On average, 80% of trials were correctly classified (chance level <25%) based on a single image volume, indicating very high decoding performance. While we restricted the experiment to five attention target regions (four peripheral and one central), the number of directions can be higher provided the brain activity patterns can be distinguished. In summary, the visual system promises to be an effective target for BCI control.
An Empirical Study on Using Visual Embellishments in Visualization.
Borgo, R; Abdul-Rahman, A; Mohamed, F; Grant, P W; Reppa, I; Floridi, L; Chen, Min
2012-12-01
In written and spoken communications, figures of speech (e.g., metaphors and synecdoche) are often used as an aid to help convey abstract or less tangible concepts. However, the benefits of using rhetorical illustrations or embellishments in visualization have so far been inconclusive. In this work, we report an empirical study to evaluate hypotheses that visual embellishments may aid memorization, visual search and concept comprehension. One major departure from related experiments in the literature is that we make use of a dual-task methodology in our experiment. This design offers an abstraction of typical situations where viewers do not have their full attention focused on visualization (e.g., in meetings and lectures). The secondary task introduces "divided attention", and makes the effects of visual embellishments more observable. In addition, it also serves as additional masking in memory-based trials. The results of this study show that visual embellishments can help participants better remember the information depicted in visualization. On the other hand, visual embellishments can have a negative impact on the speed of visual search. The results show a complex pattern as to the benefits of visual embellishments in helping participants grasp key concepts from visualization.
NASA Astrophysics Data System (ADS)
Szatmári, Gábor; Pásztor, László
2016-04-01
Uncertainty is a general term expressing our imperfect knowledge in describing an environmental process and we are aware of it (Bárdossy and Fodor, 2004). Sampling, laboratory measurements, models and so on are subject to uncertainty. Effective quantification and visualization of uncertainty would be indispensable to stakeholders (e.g. policy makers, society). Soil related features and their spatial models should be stressfully targeted to uncertainty assessment because their inferences are further used in modelling and decision making process. The aim of our present study was to assess and effectively visualize the local uncertainty of the countrywide soil organic matter (SOM) spatial distribution model of Hungary using geostatistical tools and concepts. The Hungarian Soil Information and Monitoring System's SOM data (approximately 1,200 observations) and environmental related, spatially exhaustive secondary information (i.e. digital elevation model, climatic maps, MODIS satellite images and geological map) were used to model the countrywide SOM spatial distribution by regression kriging. It would be common to use the calculated estimation (or kriging) variance as a measure of uncertainty, however the normality and homoscedasticity hypotheses have to be refused according to our preliminary analysis on the data. Therefore, a normal score transformation and a sequential stochastic simulation approach was introduced to be able to model and assess the local uncertainty. Five hundred equally probable realizations (i.e. stochastic images) were generated. The number of the stochastic images is fairly enough to provide a model of uncertainty at each location, which is a complete description of uncertainty in geostatistics (Deutsch and Journel, 1998). Furthermore, these models can be applied e.g. to contour the probability of any events, which can be regarded as goal oriented digital soil maps and are of interest for agricultural management and decision making as well. A standardized measure of the local entropy was used to visualize uncertainty, where entropy values close to 1 correspond to high uncertainty, whilst values close to 0 correspond low uncertainty. The advantage of the usage of local entropy in this context is that it combines probabilities from multiple members into a single number for each location of the model. In conclusion, it is straightforward to use a sequential stochastic simulation approach to the assessment of uncertainty, when normality and homoscedasticity are violated. The visualization of uncertainty using the local entropy is effective and communicative to stakeholders because it represents the uncertainty through a single number within a [0, 1] scale. References: Bárdossy, Gy. & Fodor, J., 2004. Evaluation of Uncertainties and Risks in Geology. Springer-Verlag, Berlin Heidelberg. Deutsch, C.V. & Journel, A.G., 1998. GSLIB: geostatistical software library and user's guide. Oxford University Press, New York. Acknowledgement: Our work was supported by the Hungarian National Scientific Research Foundation (OTKA, Grant No. K105167).
Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-01-01
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information. PMID:29513219
Groen, Iris Ia; Greene, Michelle R; Baldassano, Christopher; Fei-Fei, Li; Beck, Diane M; Baker, Chris I
2018-03-07
Inherent correlations between visual and semantic features in real-world scenes make it difficult to determine how different scene properties contribute to neural representations. Here, we assessed the contributions of multiple properties to scene representation by partitioning the variance explained in human behavioral and brain measurements by three feature models whose inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of scene similarity reflected unique contributions from a functional feature model indicating potential actions in scenes as well as high-level visual features from a deep neural network (DNN). In contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid- and high-level DNN features only, while an object label model did not contribute uniquely to either domain. The striking dissociation between functional and DNN features in their contribution to behavioral and brain representations of scenes indicates that scene-selective cortex represents only a subset of behaviorally relevant scene information.
A web-based screening tool for near-port air quality assessments
Isakov, Vlad; Barzyk, Timothy M.; Smith, Elizabeth R.; Arunachalam, Saravanan; Naess, Brian; Venkatram, Akula
2018-01-01
The Community model for near-PORT applications (C-PORT) is a screening tool with an intended purpose of calculating differences in annual averaged concentration patterns and relative contributions of various source categories over the spatial domain within about 10 km of the port. C-PORT can inform decision-makers and concerned citizens about local air quality due to mobile source emissions related to commercial port activities. It allows users to visualize and evaluate different planning scenarios, helping them identify the best alternatives for making long-term decisions that protect community health and sustainability. The web-based, easy-to-use interface currently includes data from 21 seaports primarily in the Southeastern U.S., and has a map-based interface based on Google Maps. The tool was developed to visualize and assess changes in air quality due to changes in emissions and/or meteorology in order to analyze development scenarios, and is not intended to support or replace any regulatory models or programs. PMID:29681760
[Environmental impact assessment based on planning support system].
Chen, Wen-Bo; Carsjens, Gerrit-Jan
2011-02-01
How to assess environmental impact is one of the keys in land use planning. This article described in detail the concepts of activities, impact zones, functions, and sensitivities, as well as the development of STEPP (strategic tool for integrating environmental aspects in planning procedures) based on Avenue, the secondary developing language of ArcView GIS. The system makes it convenient for planning practitioners exchanging information, and can spatially, visually and quantitatively describe environmental impact and its change. In this study, the urban-rural combination area located between EDE and Veenendaal of The Netherlands was taken as case, and the results indicated that the environment was incorporated well in the planning procedure based on the concepts, and could also demonstrate the effects of planning measures on environment spatially, explicitly, and in real-time, facilitating the participation of planning practitioners and decision-making. Some proposals of how to promote STEEP application in China were suggested.
Learning and Treatment of Anaphylaxis by Laypeople: A Simulation Study Using Pupilar Technology
Fernandez-Mendez, Felipe; Barcala-Furelos, Roberto; Padron-Cabo, Alexis; Garcia-Magan, Carlos; Moure-Gonzalez, Jose; Contreras-Jordan, Onofre; Rodriguez-Nuñez, Antonio
2017-01-01
An anaphylactic shock is a time-critical emergency situation. The decision-making during emergencies is an important responsibility but difficult to study. Eye-tracking technology allows us to identify visual patterns involved in the decision-making. The aim of this pilot study was to evaluate two training models for the recognition and treatment of anaphylaxis by laypeople, based on expert assessment and eye-tracking technology. A cross-sectional quasi-experimental simulation study was made to evaluate the identification and treatment of anaphylaxis. 50 subjects were randomly assigned to four groups: three groups watching different training videos with content supervised by sanitary personnel and one control group who received face-to-face training during paediatric practice. To evaluate the learning, a simulation scenario represented by an anaphylaxis' victim was designed. A device capturing eye movement as well as expert valuation was used to evaluate the performance. The subjects that underwent paediatric face-to-face training achieved better and faster recognition of the anaphylaxis. They also used the adrenaline injector with better precision and less mistakes, and they needed a smaller number of visual fixations to recognise the anaphylaxis and to make the decision to inject epinephrine. Analysing the different video formats, mixed results were obtained. Therefore, they should be tested to evaluate their usability before implementation. PMID:28758128
Learning and Treatment of Anaphylaxis by Laypeople: A Simulation Study Using Pupilar Technology.
Fernandez-Mendez, Felipe; Saez-Gallego, Nieves Maria; Barcala-Furelos, Roberto; Abelairas-Gomez, Cristian; Padron-Cabo, Alexis; Perez-Ferreiros, Alexandra; Garcia-Magan, Carlos; Moure-Gonzalez, Jose; Contreras-Jordan, Onofre; Rodriguez-Nuñez, Antonio
2017-01-01
An anaphylactic shock is a time-critical emergency situation. The decision-making during emergencies is an important responsibility but difficult to study. Eye-tracking technology allows us to identify visual patterns involved in the decision-making. The aim of this pilot study was to evaluate two training models for the recognition and treatment of anaphylaxis by laypeople, based on expert assessment and eye-tracking technology. A cross-sectional quasi-experimental simulation study was made to evaluate the identification and treatment of anaphylaxis. 50 subjects were randomly assigned to four groups: three groups watching different training videos with content supervised by sanitary personnel and one control group who received face-to-face training during paediatric practice. To evaluate the learning, a simulation scenario represented by an anaphylaxis' victim was designed. A device capturing eye movement as well as expert valuation was used to evaluate the performance. The subjects that underwent paediatric face-to-face training achieved better and faster recognition of the anaphylaxis. They also used the adrenaline injector with better precision and less mistakes, and they needed a smaller number of visual fixations to recognise the anaphylaxis and to make the decision to inject epinephrine. Analysing the different video formats, mixed results were obtained. Therefore, they should be tested to evaluate their usability before implementation.
Visualizing Matrix Multiplication
ERIC Educational Resources Information Center
Daugulis, Peteris; Sondore, Anita
2018-01-01
Efficient visualizations of computational algorithms are important tools for students, educators, and researchers. In this article, we point out an innovative visualization technique for matrix multiplication. This method differs from the standard, formal approach by using block matrices to make computations more visual. We find this method a…
Cataract Surgery Outcomes in Uveitis: The Multicenter Uveitis Steroid Treatment Trial.
Sen, H Nida; Abreu, Francis M; Louis, Thomas A; Sugar, Elizabeth A; Altaweel, Michael M; Elner, Susan G; Holbrook, Janet T; Jabs, Douglas A; Kim, Rosa Y; Kempen, John H
2016-01-01
To assess the visual outcomes of cataract surgery in eyes that received fluocinolone acetonide implant or systemic therapy with oral corticosteroids and immunosuppression during the Multicenter Uveitis Steroid Treatment (MUST) Trial. Nested prospective cohort study of patients enrolled in a randomized clinical trial. Patients that underwent cataract surgery during the first 2 years of follow-up in the MUST Trial. Visual outcomes of cataract surgery were evaluated 3, 6, and 9 months after surgery using logarithmic visual acuity charts. Change in visual acuity over time was assessed using a mixed-effects model. Best-corrected visual acuity. After excluding eyes that underwent cataract surgery simultaneously with implant surgery, among the 479 eyes in the MUST Trial, 117 eyes (28 eyes in the systemic, 89 in the implant group) in 82 patients underwent cataract surgery during the first 2 years of follow-up. Overall, visual acuity increased by 23 letters from the preoperative visit to the 3-month visit (95% confidence interval [CI], 17-29 letters; P < 0.001) and was stable through 9 months of follow-up. Eyes presumed to have a more severe cataract, as measured by inability to grade vitreous haze, gained an additional 42 letters (95% CI, 34-56 letters; P < 0.001) beyond the 13-letter gain in eyes that had gradable vitreous haze before surgery (95% CI, 9-18 letters; P < 0.001) 3 months after surgery, making up for an initial difference of -45 letters at the preoperative visit (95% CI, -56 to -34 letters; P < 0.001). Black race, longer time from uveitis onset, and hypotony were associated with worse preoperative visual acuity (P < 0.05), but did not affect postsurgical recovery (P > 0.05, test of interaction). After adjusting for other risk factors, there was no significant difference in the improvement in visual acuity between the 2 treatment groups (implant vs. systemic therapy, 2 letters; 95% CI, -10 to 15 letters; P = 0.70). Cataract surgery resulted in substantial, sustained, and similar visual acuity improvement in the eyes of patients with uveitis treated with the fluocinolone acetonide implant or standard systemic therapy. Published by Elsevier Inc.
Helping Children with Visual and Motor Impairments Make the Most of Their Visual Abilities.
ERIC Educational Resources Information Center
Amerson, Marie J.
1999-01-01
Lists strategies for promoting functional vision use in children with visual and motor impairments, including providing postural stability, presenting visual attention tasks when energy level is the highest, using a slanted work surface, placing target items in varied locations within reach, and determining the most effective visual adaptations.…
ERIC Educational Resources Information Center
Stofer, Kathryn A.
2013-01-01
Data visualizations designed for academic scientists are not immediately meaningful to everyday scientists. Communicating between a specialized, expert audience and a general, novice public is non-trivial; it requires careful translation. However, more widely available visualization technologies and platforms, including new three-dimensional…
Endoscopic Evacuation of Subdural Collections.
Boyaci, Suat; Gumustas, Oguzhan Guven; Korkmaz, Serdar; Aksoy, Kaya
2016-01-01
Intraoperative use of the endoscope is a hot topic in neurosurgery and it gives broader visualization of critical and hardlyreached areas. Endoscope-assisted surgical approach to chronic subdural haematoma (SDH) is a minimally invasive technique and may give an expansion to the regular method of burr-hole haematoma drainage. Endoscope-assisted haematoma drainage with mini-craniotomy was performed over a 24-month period, and prospectively collected data is reviewed. A total of 10 procedures (8 patients) were performed using the endoscopeassisted technique. Four of them were chronic SDH and six were subacute SDH. Procedures were extended 20 minutes in average because of endoscopic intervention. There was no extra-morbidity through the study as a consequence of endoscopic assessment. Endoscope-assisted techniques can make the operation safe in selected circumstances with improved intraoperative visualization. It may likewise take into consideration the identification and destruction of neo-membranes, septums and solid clots. In addition, the source of bleeding can be easily coagulated. The endoscope-assisted techniques, with all of these features, can alter the pre- and intra-operative decision-making for selected patients.
On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?
Wolf, Tanja; Chuang, Wen-Ching; McGregor, Glenn
2015-10-23
Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action.
Development of a battery of functional tests for low vision.
Dougherty, Bradley E; Martin, Scott R; Kelly, Corey B; Jones, Lisa A; Raasch, Thomas W; Bullimore, Mark A
2009-08-01
We describe the development and evaluation of a battery of tests of functional visual performance of everyday tasks intended to be suitable for assessment of low vision patients. The functional test battery comprises-Reading rate: reading aloud 20 unrelated words for each of four print sizes (8, 4, 2, & 1 M); Telephone book: finding a name and reading the telephone number; Medicine bottle label: reading the name and dosing; Utility bill: reading the due date and amount due; Cooking instructions: reading cooking time on a food package; Coin sorting: making a specified amount from coins placed on a table; Playing card recognition: identifying denomination and suit; and Face recognition: identifying expressions of printed, life-size faces at 1 and 3 m. All tests were timed except face and playing card recognition. Fourteen normally sighted and 24 low vision subjects were assessed with the functional test battery. Visual acuity, contrast sensitivity, and quality of life (National Eye Institute Visual Function Questionnaire 25 [NEI-VFQ 25]) were measured and the functional tests repeated. Subsequently, 23 low vision patients participated in a pilot randomized clinical trial with half receiving low vision rehabilitation and half a delayed intervention. The functional tests were administered at enrollment and 3 months later. Normally sighted subjects could perform all tasks but the proportion of trials performed correctly by the low vision subjects ranged from 35% for face recognition at 3 m, to 95% for the playing card identification. On average, low vision subjects performed three times slower than the normally sighted subjects. Timed tasks with a visual search component showed poorer repeatability. In the pilot clinical trial, low vision rehabilitation produced the greatest improvement for the medicine bottle and cooking instruction tasks. Performance of patients on these functional tests has been assessed. Some appear responsive to low vision rehabilitation.
Geessink, Noralie H; Schoon, Yvonne; Olde Rikkert, Marcel Gm; van Goor, Harry
2017-01-01
Treatment decision-making in older patients with colorectal (CRC) or pancreatic cancer (PC) needs improvement. We introduced the EASYcare in Geriatric Onco-surgery (EASY-GO) intervention to optimize the shared decision-making (SDM) process among these patients. The EASY-GO intervention comprised a working method with geriatric assessment and SDM training for surgeons. A non-equivalent control group design was used. Newly diagnosed CRC/PC patients aged ≥65 years were included. Primary patient-reported experiences were the quality of SDM (SDM-Q-9, range 0-100), involvement in decision-making (Visual Analog Scale for Involvement in the decision-making process [range 0-10]), satisfaction about decision-making (Visual Analog Scale for Satisfaction concerning the decision-making process [range 0-10]), and decisional regret (Decisional Regret Scale [DRS], range 0-100). Only for DRS, lower scores are better. A total of 71.4% of the involved consultants and 42.9% of the involved residents participated in the EASY-GO training. Only 4 trained surgeons consulted patients both before (n=19) and after (n=19) training and were consequently included in the analyses. All patient-reported experience measures showed a consistent but non-significant change in the direction of improved decision-making after training. According to surgeons, decisions were significantly more often made together with the patient after training (before, 38.9% vs after, 73.7%, p =0.04). Sub-analyses per diagnosis showed that patient experiences among older PC patients consistent and clinically relevant changed in the direction of improved decision-making after training (SDM-Q-9 +13.4 [95% CI -7.9; 34.6], VAS-I +0.27 [95% CI -1.1; 1.6], VAS-S +0.88 [95% CI -0.5; 2.2], DRS -10.3 [95% CI -27.8; 7.1]). This pilot study strengthens the practical potential of the intervention's concept among older surgical cancer patients.
Reliability, validity and sensitivity of a computerized visual analog scale measuring state anxiety.
Abend, Rany; Dan, Orrie; Maoz, Keren; Raz, Sivan; Bar-Haim, Yair
2014-12-01
Assessment of state anxiety is frequently required in clinical and research settings, but its measurement using standard multi-item inventories entails practical challenges. Such inventories are increasingly complemented by paper-and-pencil, single-item visual analog scales measuring state anxiety (VAS-A), which allow rapid assessment of current anxiety states. Computerized versions of VAS-A offer additional advantages, including facilitated and accurate data collection and analysis, and applicability to computer-based protocols. Here, we establish the psychometric properties of a computerized VAS-A. Experiment 1 assessed the reliability, convergent validity, and discriminant validity of the computerized VAS-A in a non-selected sample. Experiment 2 assessed its sensitivity to increase in state anxiety following social stress induction, in participants with high levels of social anxiety. Experiment 1 demonstrated the computerized VAS-A's test-retest reliability (r = .44, p < .001); convergent validity with the State-Trait Anxiety Inventory's state subscale (STAI-State; r = .60, p < .001); and discriminant validity as indicated by significantly lower correlations between VAS-A and different psychological measures relative to the correlation between VAS-A and STAI-State. Experiment 2 demonstrated the VAS-A's sensitivity to changes in state anxiety via a significant pre- to during-stressor rise in VAS-A scores (F(1,48) = 25.13, p < .001). Set-order administration of measures, absence of clinically-anxious population, and gender-unbalanced samples. The adequate psychometric characteristics, combined with simple and rapid administration, make the computerized VAS-A a valuable self-rating tool for state anxiety. It may prove particularly useful for clinical and research settings where multi-item inventories are less applicable, including computer-based treatment and assessment protocols. The VAS-A is freely available: http://people.socsci.tau.ac.il/mu/anxietytrauma/visual-analog-scale/. Copyright © 2014 Elsevier Ltd. All rights reserved.
The climate visualizer: Sense-making through scientific visualization
NASA Astrophysics Data System (ADS)
Gordin, Douglas N.; Polman, Joseph L.; Pea, Roy D.
1994-12-01
This paper describes the design of a learning environment, called the Climate Visualizer, intended to facilitate scientific sense-making in high school classrooms by providing students the ability to craft, inspect, and annotate scientific visualizations. The theoretical back-ground for our design presents a view of learning as acquiring and critiquing cultural practices and stresses the need for students to appropriate the social and material aspects of practice when learning an area. This is followed by a description of the design of the Climate Visualizer, including detailed accounts of its provision of spatial and temporal context and the quantitative and visual representations it employs. A broader context is then explored by describing its integration into the high school science classroom. This discussion explores how visualizations can promote the creation of scientific theories, especially in conjunction with the Collaboratory Notebook, an embedded environment for creating and critiquing scientific theories and visualizations. Finally, we discuss the design trade-offs we have made in light of our theoretical orientation, and our hopes for further progress.
Flex Robotic System in transoral robotic surgery: The first 40 patients.
Mattheis, Stefan; Hasskamp, Pia; Holtmann, Laura; Schäfer, Christina; Geisthoff, Urban; Dominas, Nina; Lang, Stephan
2017-03-01
The Flex Robotic System is a new robotic device specifically developed for transoral robotic surgery (TORS). We performed a prospective clinical study, assessing the safety and efficacy of the Medrobotics Flex Robotic System. A total of 40 patients required a surgical procedure for benign lesions (n = 30) or T1 and T2 carcinomas (n = 10). Access and visualization of different anatomic subsites were individually graded by the surgeon. Setup times, access and visualization times, surgical results, as well as adverse events were documented intraoperatively. The lesions could be exposed and visualized properly in 38 patients (95%) who went on to have a surgical procedure performed with the Flex Robotic System, which were intraoperatively evaluated as successful. No serious adverse events occurred. Lesions in the oropharynx, hypopharynx, or supraglottic larynx could be successfully resected using the Flex Robotic System, thus making the system a safe and effective tool in transoral robotic surgery. © 2016 Wiley Periodicals, Inc. Head Neck 39: 471-475, 2017. © 2016 Wiley Periodicals, Inc.
Big data and visual analytics in anaesthesia and health care.
Simpao, A F; Ahumada, L M; Rehman, M A
2015-09-01
Advances in computer technology, patient monitoring systems, and electronic health record systems have enabled rapid accumulation of patient data in electronic form (i.e. big data). Organizations such as the Anesthesia Quality Institute and Multicenter Perioperative Outcomes Group have spearheaded large-scale efforts to collect anaesthesia big data for outcomes research and quality improvement. Analytics--the systematic use of data combined with quantitative and qualitative analysis to make decisions--can be applied to big data for quality and performance improvements, such as predictive risk assessment, clinical decision support, and resource management. Visual analytics is the science of analytical reasoning facilitated by interactive visual interfaces, and it can facilitate performance of cognitive activities involving big data. Ongoing integration of big data and analytics within anaesthesia and health care will increase demand for anaesthesia professionals who are well versed in both the medical and the information sciences. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Reif, David M; Sypa, Myroslav; Lock, Eric F; Wright, Fred A; Wilson, Ander; Cathey, Tommy; Judson, Richard R; Rusyn, Ivan
2013-02-01
Scientists and regulators are often faced with complex decisions, where use of scarce resources must be prioritized using collections of diverse information. The Toxicological Prioritization Index (ToxPi™) was developed to enable integration of multiple sources of evidence on exposure and/or safety, transformed into transparent visual rankings to facilitate decision making. The rankings and associated graphical profiles can be used to prioritize resources in various decision contexts, such as testing chemical toxicity or assessing similarity of predicted compound bioactivity profiles. The amount and types of information available to decision makers are increasing exponentially, while the complex decisions must rely on specialized domain knowledge across multiple criteria of varying importance. Thus, the ToxPi bridges a gap, combining rigorous aggregation of evidence with ease of communication to stakeholders. An interactive ToxPi graphical user interface (GUI) application has been implemented to allow straightforward decision support across a variety of decision-making contexts in environmental health. The GUI allows users to easily import and recombine data, then analyze, visualize, highlight, export and communicate ToxPi results. It also provides a statistical metric of stability for both individual ToxPi scores and relative prioritized ranks. The ToxPi GUI application, complete user manual and example data files are freely available from http://comptox.unc.edu/toxpi.php.
Hearing gestures, seeing music: vision influences perceived tone duration.
Schutz, Michael; Lipscomb, Scott
2007-01-01
Percussionists inadvertently use visual information to strategically manipulate audience perception of note duration. Videos of long (L) and short (S) notes performed by a world-renowned percussionist were separated into visual (Lv, Sv) and auditory (La, Sa) components. Visual components contained only the gesture used to perform the note, auditory components the acoustic note itself. Audio and visual components were then crossed to create realistic musical stimuli. Participants were informed of the mismatch, and asked to rate note duration of these audio-visual pairs based on sound alone. Ratings varied based on visual (Lv versus Sv), but not auditory (La versus Sa) components. Therefore while longer gestures do not make longer notes, longer gestures make longer sounding notes through the integration of sensory information. This finding contradicts previous research showing that audition dominates temporal tasks such as duration judgment.
Kaplan, Johanna S; Erickson, Kristine; Luckenbaugh, David A; Weiland-Fiedler, Petra; Geraci, Marilla; Sahakian, Barbara J; Charney, Dennis; Drevets, Wayne C; Neumeister, Alexander
2006-10-01
Neuropsychological studies have provided evidence for deficits in psychiatric disorders, such as schizophrenia and mood disorders. However, neuropsychological function in Panic Disorder (PD) or PD with a comorbid diagnosis of Major Depressive Disorder (MDD) has not been comprehensively studied. The present study investigated neuropsychological functioning in patients with PD and PD + MDD by focusing on tasks that assess attention, psychomotor speed, executive function, decision-making, and affective processing. Twenty-two unmedicated patients with PD, eleven of whom had a secondary diagnosis of MDD, were compared to twenty-two healthy controls, matched for gender, age, and intelligence on tasks of attention, memory, psychomotor speed, executive function, decision-making, and affective processing from the Cambridge Neuropsychological Test Automated Battery (CANTAB), Cambridge Gamble Task, and Affective Go/No-go Task. Relative to matched healthy controls, patients with PD + MDD displayed an attentional bias toward negatively-valenced verbal stimuli (Affective Go/No-go Task) and longer decision-making latencies (Cambridge Gamble Task). Furthermore, the PD + MDD group committed more errors on a task of memory and visual discrimination compared to their controls. In contrast, no group differences were found for PD patients relative to matched control subjects. The sample size was limited, however, all patients were drug-free at the time of testing. The PD + MDD patients demonstrated deficits on a task involving visual discrimination and working memory, and an attentional bias towards negatively-valenced stimuli. In addition, patients with comorbid depression provided qualitatively different responses in the areas of affective and decision-making processes.
Design and implementation of visualization methods for the CHANGES Spatial Decision Support System
NASA Astrophysics Data System (ADS)
Cristal, Irina; van Westen, Cees; Bakker, Wim; Greiving, Stefan
2014-05-01
The CHANGES Spatial Decision Support System (SDSS) is a web-based system aimed for risk assessment and the evaluation of optimal risk reduction alternatives at local level as a decision support tool in long-term natural risk management. The SDSS use multidimensional information, integrating thematic, spatial, temporal and documentary data. The role of visualization in this context becomes of vital importance for efficiently representing each dimension. This multidimensional aspect of the required for the system risk information, combined with the diversity of the end-users imposes the use of sophisticated visualization methods and tools. The key goal of the present work is to exploit efficiently the large amount of data in relation to the needs of the end-user, utilizing proper visualization techniques. Three main tasks have been accomplished for this purpose: categorization of the end-users, the definition of system's modules and the data definition. The graphical representation of the data and the visualization tools were designed to be relevant to the data type and the purpose of the analysis. Depending on the end-users category, each user should have access to different modules of the system and thus, to the proper visualization environment. The technologies used for the development of the visualization component combine the latest and most innovative open source JavaScript frameworks, such as OpenLayers 2.13.1, ExtJS 4 and GeoExt 2. Moreover, the model-view-controller (MVC) pattern is used in order to ensure flexibility of the system at the implementation level. Using the above technologies, the visualization techniques implemented so far offer interactive map navigation, querying and comparison tools. The map comparison tools are of great importance within the SDSS and include the following: swiping tool for comparison of different data of the same location; raster subtraction for comparison of the same phenomena varying in time; linked views for comparison of data from different locations and a time slider tool for monitoring changes in spatio-temporal data. All these techniques are part of the interactive interface of the system and make use of spatial and spatio-temporal data. Further significant aspects of the visualization component include conventional cartographic techniques and visualization of non-spatial data. The main expectation from the present work is to offer efficient visualization of risk-related data in order to facilitate the decision making process, which is the final purpose of the CHANGES SDSS. This work is part of the "CHANGES" project, funded by the European Community's 7th Framework Programme.
The locus of impairment in English developmental letter position dyslexia
Kezilas, Yvette; Kohnen, Saskia; McKague, Meredith; Castles, Anne
2014-01-01
Many children with reading difficulties display phonological deficits and struggle to acquire non-lexical reading skills. However, not all children with reading difficulties have these problems, such as children with selective letter position dyslexia (LPD), who make excessive migration errors (such as reading slime as “smile”). Previous research has explored three possible loci for the deficit – the phonological output buffer, the orthographic input lexicon, and the orthographic-visual analysis stage of reading. While there is compelling evidence against a phonological output buffer and orthographic input lexicon deficit account of English LPD, the evidence in support of an orthographic-visual analysis deficit is currently limited. In this multiple single-case study with three English-speaking children with developmental LPD, we aimed to both replicate and extend previous findings regarding the locus of impairment in English LPD. First, we ruled out a phonological output buffer and an orthographic input lexicon deficit by administering tasks that directly assess phonological processing and lexical guessing. We then went on to directly assess whether or not children with LPD have an orthographic-visual analysis deficit by modifying two tasks that have previously been used to localize processing at this level: a same-different decision task and a non-word reading task. The results from these tasks indicate that LPD is most likely caused by a deficit specific to the coding of letter positions at the orthographic-visual analysis stage of reading. These findings provide further evidence for the heterogeneity of dyslexia and its underlying causes. PMID:24917802
Manolov, Rumen; Jamieson, Matthew; Evans, Jonathan J; Sierra, Vicenta
2015-09-01
Single-case data analysis still relies heavily on visual inspection, and, at the same time, it is not clear to what extent the results of different quantitative procedures converge in identifying an intervention effect and its magnitude when applied to the same data; this is the type of evidence provided here for two procedures. One of the procedures, included due to the importance of providing objective criteria to visual analysts, is a visual aid fitting and projecting split-middle trend while taking into account data variability. The other procedure converts several different metrics into probabilities making their results comparable. In the present study, we expore to what extend these two procedures coincide in the magnitude of intervention effect taking place in a set of studies stemming from a recent meta-analysis. The procedures concur to a greater extent with the values of the indices computed and with each other and, to a lesser extent, with our own visual analysis. For distinguishing smaller from larger effects, the probability-based approach seems somewhat better suited. Moreover, the results of the field test suggest that the latter is a reasonably good mechanism for translating different metrics into similar labels. User friendly R code is provided for promoting the use of the visual aid, together with a quantification based on nonoverlap and the label provided by the probability approach. © The Author(s) 2015.
Peterson, Curtis W; Rose, Donny; Mink, Jonah; Levitz, David
2016-05-16
In many developing nations, cervical cancer screening is done by visual inspection with acetic acid (VIA). Monitoring and evaluation (M&E) of such screening programs is challenging. An enhanced visual assessment (EVA) system was developed to augment VIA procedures in low-resource settings. The EVA System consists of a mobile colposcope built around a smartphone, and an online image portal for storing and annotating images. A smartphone app is used to control the mobile colposcope, and upload pictures to the image portal. In this paper, a new app feature that documents clinical decisions using an integrated job aid was deployed in a cervical cancer screening camp in Kenya. Six organizations conducting VIA used the EVA System to screen 824 patients over the course of a week, and providers recorded their diagnoses and treatments in the application. Real-time aggregated statistics were broadcast on a public website. Screening organizations were able to assess the number of patients screened, alongside treatment rates, and the patients who tested positive and required treatment in real time, which allowed them to make adjustments as needed. The real-time M&E enabled by "smart" diagnostic medical devices holds promise for broader use in screening programs in low-resource settings.
Shiri, Shimon; Feintuch, Uri; Lorber-Haddad, Adi; Moreh, Elior; Twito, Dvora; Tuchner-Arieli, Maya; Meiner, Zeev
2012-01-01
To introduce the rationale of a novel virtual reality system based on self-face viewing and mirror visual feedback, and to examine its feasibility as a rehabilitation tool for poststroke patients. A novel motion capture virtual reality system integrating online self-face viewing and mirror visual feedback has been developed for stroke rehabilitation.The system allows the replacement of the impaired arm by a virtual arm. Upon making small movements of the paretic arm, patients view themselves virtually performing healthy full-range movements. A sample of 6 patients in the acute poststroke phase received the virtual reality treatment concomitantly with conservative rehabilitation treatment. Feasibility was assessed during 10 sessions for each participant. All participants succeeded in operating the system, demonstrating its feasibility in terms of adherence and improvement in task performance. Patients' performance within the virtual environment and a set of clinical-functional measures recorded before the virtual reality treatment, at 1 week, and after 3 months indicated neurological status and general functioning improvement. These preliminary results indicate that this newly developed virtual reality system is safe and feasible. Future randomized controlled studies are required to assess whether this system has beneficial effects in terms of enhancing upper limb function and quality of life in poststroke patients.
Inhibitory control differentiates rare target search performance in children.
Li, Hongting; Chan, John S Y; Cheung, Sui-Yin; Yan, Jin H
2012-02-01
Age-related differences in rare-target search are primarily explained by the speed-accuracy trade-off, primed responses, or decision making. The goal was to examine how motor inhibition influences visual search. Children pressed a key when a rare target was detected. On no-target trials, children withheld reactions. Response time (RT), hits, misses, correct rejection, and false alarms were measured. Tapping tests assessed motor control. Older children tapped faster, were more sensitive to rare targets (higher d'), and reacted more slowly than younger ones. Girls outperformed boys in search sensitivity but not in RT. Motor speed was closely associated with hit rate and RT. Results suggest that development of inhibitory control plays a key role in visual detection. The potential implications for cognitive-motor development and individual differences are discussed.
Stevens, John R; Jones, Todd R; Lefevre, Michael; Ganesan, Balasubramanian; Weimer, Bart C
2017-01-01
Microbial community analysis experiments to assess the effect of a treatment intervention (or environmental change) on the relative abundance levels of multiple related microbial species (or operational taxonomic units) simultaneously using high throughput genomics are becoming increasingly common. Within the framework of the evolutionary phylogeny of all species considered in the experiment, this translates to a statistical need to identify the phylogenetic branches that exhibit a significant consensus response (in terms of operational taxonomic unit abundance) to the intervention. We present the R software package SigTree , a collection of flexible tools that make use of meta-analysis methods and regular expressions to identify and visualize significantly responsive branches in a phylogenetic tree, while appropriately adjusting for multiple comparisons.
Egorova, T S; Smirnova, T S; Romashin, O V; Egorova, I V
2016-01-01
Complicated high myopia is one of the leading causes responsible for the disablement in the children associated with visual impairment especially when it is combined with other pathological conditions and abnormalities among which are disorders of the musculoskeletal system. In the present study, we for the first time examined visually impaired schoolchildren (n=44) who suffered from high myopia complications making use of the computed optical topographer for the evaluation of the state of their vertebral column. The control group consisted of 60 children attending a secondary school. The study revealed various deformations of the musculoskeletal system including scoliosis, misalignment of the pelvis, kyphosis, hyperlordosis, torsion, platypodia, deformation of the lower extremities and the chest. These deformations were more pronounced in the visually impaired schoolchildren in comparison with the children of the same age comprising the control group (p<0,05). It is concluded that the assessment of the state of the vertebral column with the use of the apparatus yields an important information for the elaboration and application of a series of measures for the timely provision of medical assistance needed for the comprehensive rehabilitation of the visually impaired schoolchildren presenting with high myopia complications.
Visual impact assessment in British oil and gas developments
Dennis F. Gillespie; Brian D. Clark
1979-01-01
Development of oil and gas resource in the North Sea has led to the application of visual impact assessment techniques to onshore oil and gas developments in the United Kingdom. Formal visual impact assessment methods are needed to supplement landscape evaluations and site selection studies. Three major orientations of British visual impact assessments are: the...
Poplu, Gérald; Ripoll, Hubert; Mavromatis, Sébastien; Baratgin, Jean
2008-09-01
The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants were given either realistic (digital photos) or abstract (three-dimensional schematic representations) soccer game patterns. The results showed that the experts benefited from priming effects regardless of how abstract the stimuli were. This suggests that an abstract representation of a realistic pattern (i.e., one that does not include visual information related to the players'physical characteristics) is sufficient to activate experts'specific knowledge during decision making. These results seem to show that expert soccer players encode and store abstract representations of visual patterns in memory.
Active and passive spatial learning in human navigation: acquisition of graph knowledge.
Chrastil, Elizabeth R; Warren, William H
2015-07-01
It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge-the exploration-specific learning hypothesis. Previously, we found that idiothetic information during walking is the primary active contributor to metric survey knowledge (Chrastil & Warren, 2013). In this study, we test the contributions of 3 components to topological graph and route knowledge: visual information, idiothetic information, and cognitive decision making. Four groups of participants learned the locations of 8 objects in a virtual hedge maze by (a) walking or (b) watching a video, crossed with (1) either making decisions about their path or (2) being guided through the maze. Route and graph knowledge were assessed by walking in the maze corridors from a starting object to the remembered location of a test object, with frequent detours. Decision making during exploration significantly contributed to subsequent route finding in the walking condition, whereas idiothetic information did not. Participants took novel routes and the metrically shortest routes on the majority of both direct and barrier trials, indicating that labeled graph knowledge-not merely route knowledge-was acquired. We conclude that, consistent with the exploration-specific learning hypothesis, decision making is the primary component of active learning for the acquisition of topological graph knowledge, whereas idiothetic information is the primary component for metric survey knowledge. (c) 2015 APA, all rights reserved.
Making Pictures as a Method of Teaching Art History
ERIC Educational Resources Information Center
Martikainen, Jari
2017-01-01
Inspired by the affective and sensory turns in the paradigm of art history, this article discusses making pictures as a method of teaching art history in Finnish Upper Secondary Vocational Education and Training (Qualification in Visual Expression, Study Programmes in Visual and Media Arts and Photography). A total of 25 students majoring in…
ERIC Educational Resources Information Center
Steinman, Bernard A.; Kwan, Ngai; Boeltzig-Brown, Heike; Haines, Kelly; Halliday, John; Foley, Susan M.
2013-01-01
Introduction: We hypothesized that consumers who are blind or visually impaired (that is, those who have low vision) who were served by state vocational rehabilitation agencies with decision-making control over administrative functions would experience better vocational rehabilitation outcomes than consumers served by vocational rehabilitation…
Web-Based Tools for Data Visualization and Decision Support for South Asia
NASA Astrophysics Data System (ADS)
Jones, N.; Nelson, J.; Pulla, S. T.; Ames, D. P.; Souffront, M.; David, C. H.; Zaitchik, B. F.; Gatlin, P. N.; Matin, M. A.
2017-12-01
The objective of the NASA SERVIR project is to assist developing countries in using information provided by Earth observing satellites to assess and manage climate risks, land use, and water resources. We present a collection of web apps that integrate earth observations and in situ data to facilitate deployment of data and water resources models as decision-making tools in support of this effort. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated for many of the regional SERVIR hubs where both financial and technical capacity may be limited. All that is needed to use the system is an Internet connection and a web browser. We take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization make results intuitive and information derived actionable. We also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This makes our tools interoperable and extensible via application programming interfaces (APIs) so that tools and data from other projects can both consume and share the tools developed in our project. Our approach enables the integration of multiple types of data and models, thus facilitating collaboration between science teams in SERVIR. The apps developed thus far by our team process time-varying netCDF files from Earth observations and large-scale computer simulations and allow visualization and exploration via raster animation and extraction of time series at selected points and/or regions.
Visual anticipation biases conscious decision making but not bottom-up visual processing.
Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F M J
2014-01-01
Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself.
Virtual Reality: Visualization in Three Dimensions.
ERIC Educational Resources Information Center
McLellan, Hilary
Virtual reality is a newly emerging tool for scientific visualization that makes possible multisensory, three-dimensional modeling of scientific data. While the emphasis is on visualization, the other senses are added to enhance what the scientist can visualize. Researchers are working to extend the sensory range of what can be perceived in…
Zhang, Nan; Membreno, Edward; Raj, Susan; Zhang, Hongjie; Khan, Liakot A; Gobel, Verena
2017-10-03
The four C. elegans excretory canals are narrow tubes extended through the length of the animal from a single cell, with almost equally far extended intracellular endotubes that build and stabilize the lumen with a membrane and submembraneous cytoskeleton of apical character. The excretory cell expands its length approximately 2,000 times to generate these canals, making this model unique for the in vivo assessment of de novo polarized membrane biogenesis, intracellular lumen morphogenesis and unicellular tubulogenesis. The protocol presented here shows how to combine standard labeling, gain- and loss-of-function genetic or RNA interference (RNAi)-, and microscopic approaches to use this model to visually dissect and functionally analyze these processes on a molecular level. As an example of a labeling approach, the protocol outlines the generation of transgenic animals with fluorescent fusion proteins for live analysis of tubulogenesis. As an example of a genetic approach, it highlights key points of a visual RNAi-based interaction screen designed to modify a gain-of-function cystic canal phenotype. The specific methods described are how to: label and visualize the canals by expressing fluorescent proteins; construct a targeted RNAi library and strategize RNAi screening for the molecular analysis of canal morphogenesis; visually assess modifications of canal phenotypes; score them by dissecting fluorescence microscopy; characterize subcellular canal components at higher resolution by confocal microscopy; and quantify visual parameters. The approach is useful for the investigator who is interested in taking advantage of the C. elegans excretory canal for identifying and characterizing genes involved in the phylogenetically conserved processes of intracellular lumen and unicellular tube morphogenesis.
Nemes, Szilard; Rolfson, Ola; Garellick, Göran
2018-02-01
Clinicians considering improvements in health-related quality of life (HRQoL) after total hip replacement (THR) must account for multiple pieces of information. Evidence-based decisions are important to best assess the effect of THR on HRQoL. This work aims at constructing a shared decision-making tool that helps clinicians assessing the future benefits of THR by offering predictions of 1-year postoperative HRQoL of THR patients. We used data from the Swedish Hip Arthroplasty Register. Data from 2008 were used as training set and data from 2009 to 2012 as validation set. We adopted two approaches. First, we assumed a continuous distribution for the EQ-5D index and modelled the postoperative EQ-5D index with regression models. Second, we modelled the five dimensions of the EQ-5D and weighted together the predictions using the UK Time Trade-Off value set. As predictors, we used preoperative EQ-5D dimensions and the EQ-5D index, EQ visual analogue scale, visual analogue scale pain, Charnley classification, age, gender, body mass index, American Society of Anesthesiologists, surgical approach and prosthesis type. Additionally, the tested algorithms were combined in a single predictive tool by stacking. Best predictive power was obtained by the multivariate adaptive regression splines (R 2 = 0.158). However, this was not significantly better than the predictive power of linear regressions (R 2 = 0.157). The stacked model had a predictive power of 17%. Successful implementation of a shared decision-making tool that can aid clinicians and patients in understanding expected improvement in HRQoL following THR would require higher predictive power than we achieved. For a shared decision-making tool to succeed, further variables, such as socioeconomics, need to be considered. © 2016 John Wiley & Sons, Ltd.
Design features of graphs in health risk communication: a systematic review.
Ancker, Jessica S; Senathirajah, Yalini; Kukafka, Rita; Starren, Justin B
2006-01-01
This review describes recent experimental and focus group research on graphics as a method of communication about quantitative health risks. Some of the studies discussed in this review assessed effect of graphs on quantitative reasoning, others assessed effects on behavior or behavioral intentions, and still others assessed viewers' likes and dislikes. Graphical features that improve the accuracy of quantitative reasoning appear to differ from the features most likely to alter behavior or intentions. For example, graphs that make part-to-whole relationships available visually may help people attend to the relationship between the numerator (the number of people affected by a hazard) and the denominator (the entire population at risk), whereas graphs that show only the numerator appear to inflate the perceived risk and may induce risk-averse behavior. Viewers often preferred design features such as visual simplicity and familiarity that were not associated with accurate quantitative judgments. Communicators should not assume that all graphics are more intuitive than text; many of the studies found that patients' interpretations of the graphics were dependent upon expertise or instruction. Potentially useful directions for continuing research include interactions with educational level and numeracy and successful ways to communicate uncertainty about risk.
NASA Astrophysics Data System (ADS)
Themistocleous, Kyriacos; Neocleous, Kyriacos; Pilakoutas, Kypros; Hadjimitsis, Diofantos G.
2014-08-01
The predominant approach for conducting road condition surveys and analyses is still largely based on extensive field observations. However, visual assessment alone cannot identify the actual extent and severity of damage. New non-invasive and cost-effective non-destructive (NDT) remote sensing technologies can be used to monitor road pavements across their life cycle, including remotely sensed aerial and satellite visual and thermal image (AI) data, Unmanned Aerial Vehicles (UAVs), Spectroscopy and Ground Penetrating Radar (GRP). These non-contact techniques can be used to obtain surface and sub-surface information about damage in road pavements, including the crack depth, and in-depth structural failure. Thus, a smart and cost-effective methodology is required that integrates several of these non-destructive/ no-contact techniques for the damage assessment and monitoring at different levels. This paper presents an overview of how an integration of the above technologies can be used to conduct detailed road condition surveys. The proposed approach can also be used to predict the future needs for road maintenance; this information is proven to be valuable to a strategic decision making tools that optimizes maintenance based on resources and environmental issues.
Graph-based inductive reasoning.
Boumans, Marcel
2016-10-01
This article discusses methods of inductive inferences that are methods of visualizations designed in such a way that the "eye" can be employed as a reliable tool for judgment. The term "eye" is used as a stand-in for visual cognition and perceptual processing. In this paper "meaningfulness" has a particular meaning, namely accuracy, which is closeness to truth. Accuracy consists of precision and unbiasedness. Precision is dealt with by statistical methods, but for unbiasedness one needs expert judgment. The common view at the beginning of the twentieth century was to make the most efficient use of this kind of judgment by representing the data in shapes and forms in such a way that the "eye" can function as a reliable judge to reduce bias. The need for judgment of the "eye" is even more necessary when the background conditions of the observations are heterogeneous. Statistical procedures require a certain minimal level of homogeneity, but the "eye" does not. The "eye" is an adequate tool for assessing topological similarities when, due to heterogeneity of the data, metric assessment is not possible. In fact, graphical assessments precedes measurement, or to put it more forcefully, the graphic method is a necessary prerequisite for measurement. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Y.; Zhang, W.; Yan, C.
2012-07-01
Presently, planning and assessment in maintenance, renewal and decision-making for watershed hydrology, water resource management and water quality assessment are evolving toward complex, spatially explicit regional environmental assessments. These problems have to be addressed with object-oriented spatio-temporal data models that can restore, manage, query and visualize various historic and updated basic information concerning with watershed hydrology, water resource management and water quality as well as compute and evaluate the watershed environmental conditions so as to provide online forecasting to police-makers and relevant authorities for supporting decision-making. The extensive data requirements and the difficult task of building input parameter files, however, has long been an obstacle to use of such complex models timely and effectively by resource managers. Success depends on an integrated approach that brings together scientific, education and training advances made across many individual disciplines and modified to fit the needs of the individuals and groups who must write, implement, evaluate, and adjust their watershed management plans. The centre for Hydro-science Research, Nanjing University, in cooperation with the relevant watershed management authorities, has developed a WebGIS management platform to facilitate this complex process. Improve the management of watersheds over the Huaihe basin through the development, promotion and use of a web-based, user-friendly, geospatial watershed management data and decision support system (WMDDSS) involved many difficulties for the development of this complicated System. In terms of the spatial and temporal characteristics of historic and currently available information on meteorological, hydrological, geographical, environmental and other relevant disciplines, we designed an object-oriented spatiotemporal data model that combines spatial, attribute and temporal information to implement the management system. Using this system, we can update, query and analyze environmental information as well as manage historical data, and a visualization tool was provided to help the user interpret results so as to provide scientific support for decision-making. The utility of the system has been demonstrated its values by being used in watershed management and environmental assessments.
NASA Astrophysics Data System (ADS)
Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd
2009-05-01
Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.
Mirel, Barbara; Görg, Carsten
2014-04-26
A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists' analytical workflows and their implications for tool design.
2014-01-01
A common class of biomedical analysis is to explore expression data from high throughput experiments for the purpose of uncovering functional relationships that can lead to a hypothesis about mechanisms of a disease. We call this analysis expression driven, -omics hypothesizing. In it, scientists use interactive data visualizations and read deeply in the research literature. Little is known, however, about the actual flow of reasoning and behaviors (sense making) that scientists enact in this analysis, end-to-end. Understanding this flow is important because if bioinformatics tools are to be truly useful they must support it. Sense making models of visual analytics in other domains have been developed and used to inform the design of useful and usable tools. We believe they would be helpful in bioinformatics. To characterize the sense making involved in expression-driven, -omics hypothesizing, we conducted an in-depth observational study of one scientist as she engaged in this analysis over six months. From findings, we abstracted a preliminary sense making model. Here we describe its stages and suggest guidelines for developing visualization tools that we derived from this case. A single case cannot be generalized. But we offer our findings, sense making model and case-based tool guidelines as a first step toward increasing interest and further research in the bioinformatics field on scientists’ analytical workflows and their implications for tool design. PMID:24766796
An integrated theory of attention and decision making in visual signal detection.
Smith, Philip L; Ratcliff, Roger
2009-04-01
The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved
Lee, S W; Jeong, B S; Choi, J; Kim, J-W
2015-01-01
Men tend to have greater positive responses than women to explicit visual erotic stimuli (EVES). However, it remains unclear, which brain network makes men more sensitive to EVES and which factors contribute to the brain network activity. In this study, we aimed to assess the effect of sex difference on brain connectivity patterns by EVES. We also investigated the association of testosterone with brain connection that showed the effects of sex difference. During functional magnetic resonance imaging scans, 14 males and 14 females were asked to see alternating blocks of pictures that were either erotic or non-erotic. Psychophysiological interaction analysis was performed to investigate the functional connectivity of the nucleus accumbens (NA) as it related to EVES. Men showed significantly greater EVES-specific functional connection between the right NA and the right lateral occipital cortex (LOC). In addition, the right NA and the right LOC network activity was positively correlated with the plasma testosterone level in men. Our results suggest that the reason men are sensitive to EVES is the increased interaction in the visual reward networks, which is modulated by their plasma testosterone level.
Vasconcellos, Luiz Felipe; Pereira, João Santos; Adachi, Marcelo; Greca, Denise; Cruz, Manuela; Malak, Ana Lara; Charchat-Fichman, Helenice; Spitz, Mariana
2017-01-01
Few studies have evaluated magnetic resonance imaging (MRI) visual scales in Parkinson's disease-Mild Cognitive Impairment (PD-MCI). We selected 79 PD patients and 92 controls (CO) to perform neurologic and neuropsychological evaluation. Brain MRI was performed to evaluate the following scales: Global Cortical Atrophy (GCA), Fazekas, and medial temporal atrophy (MTA). The analysis revealed that both PD groups (amnestic and nonamnestic) showed worse performance on several tests when compared to CO. Memory, executive function, and attention impairment were more severe in amnestic PD-MCI group. Overall analysis of frequency of MRI visual scales by MCI subtype did not reveal any statistically significant result. Statistically significant inverse correlation was observed between GCA scale and Mini-Mental Status Examination (MMSE), Montreal Cognitive Assessment (MoCA), semantic verbal fluency, Stroop test, figure memory test, trail making test (TMT) B, and Rey Auditory Verbal Learning Test (RAVLT). The MTA scale correlated with Stroop test and Fazekas scale with figure memory test, digit span, and Stroop test according to the subgroup evaluated. Visual scales by MRI in MCI should be evaluated by cognitive domain and might be more useful in more severely impaired MCI or dementia patients.
Healthy choice?: Exploring how children evaluate the healthfulness of packaged foods.
Elliott, Charlene; Brierley, Meaghan
2012-11-06
Today's supermarket contains hundreds of packaged foods specifically targeted at children. Yet research has shown that children are confused by the various visual messages found on packaged food products. This study explores children's nutrition knowledge with regard to packaged food products, to uncover strengths and difficulties they have in evaluating the healthfulness of these foods. Focus groups were conducted with children (grades 1-6). Particular attention was paid to the ways children made use of what they know about nutrition when faced with the visual elements and appeals presented on food packaging. Children relied heavily on packages' written and visual aspects--including colour, images, spokes-characters, front-of-package claims--to assess the healthfulness of a food product. These elements interfere with children's ability to make healthy choices when it comes to packaged foods. Choosing healthy packaged foods is challenging for children due to competing sets of knowledge: one pertains to their understanding of visual, associational cues; the other, to translating their understanding of nutrition to packaged foods. Canada's Food Guide, along with the curriculum taught to Canadian children at schools, does not appear to provide children with the tools necessary to navigate a food environment dominated by packaged foods.
Audio-visual speech perception: a developmental ERP investigation
Knowland, Victoria CP; Mercure, Evelyne; Karmiloff-Smith, Annette; Dick, Fred; Thomas, Michael SC
2014-01-01
Being able to see a talking face confers a considerable advantage for speech perception in adulthood. However, behavioural data currently suggest that children fail to make full use of these available visual speech cues until age 8 or 9. This is particularly surprising given the potential utility of multiple informational cues during language learning. We therefore explored this at the neural level. The event-related potential (ERP) technique has been used to assess the mechanisms of audio-visual speech perception in adults, with visual cues reliably modulating auditory ERP responses to speech. Previous work has shown congruence-dependent shortening of auditory N1/P2 latency and congruence-independent attenuation of amplitude in the presence of auditory and visual speech signals, compared to auditory alone. The aim of this study was to chart the development of these well-established modulatory effects over mid-to-late childhood. Experiment 1 employed an adult sample to validate a child-friendly stimulus set and paradigm by replicating previously observed effects of N1/P2 amplitude and latency modulation by visual speech cues; it also revealed greater attenuation of component amplitude given incongruent audio-visual stimuli, pointing to a new interpretation of the amplitude modulation effect. Experiment 2 used the same paradigm to map cross-sectional developmental change in these ERP responses between 6 and 11 years of age. The effect of amplitude modulation by visual cues emerged over development, while the effect of latency modulation was stable over the child sample. These data suggest that auditory ERP modulation by visual speech represents separable underlying cognitive processes, some of which show earlier maturation than others over the course of development. PMID:24176002
Environmental influences on neural systems of relational complexity
Kalbfleisch, M. Layne; deBettencourt, Megan T.; Kopperman, Rebecca; Banasiak, Meredith; Roberts, Joshua M.; Halavi, Maryam
2013-01-01
Constructivist learning theory contends that we construct knowledge by experience and that environmental context influences learning. To explore this principle, we examined the cognitive process relational complexity (RC), defined as the number of visual dimensions considered during problem solving on a matrix reasoning task and a well-documented measure of mature reasoning capacity. We sought to determine how the visual environment influences RC by examining the influence of color and visual contrast on RC in a neuroimaging task. To specify the contributions of sensory demand and relational integration to reasoning, our participants performed a non-verbal matrix task comprised of color, no-color line, or black-white visual contrast conditions parametrically varied by complexity (relations 0, 1, 2). The use of matrix reasoning is ecologically valid for its psychometric relevance and for its potential to link the processing of psychophysically specific visual properties with various levels of RC during reasoning. The role of these elements is important because matrix tests assess intellectual aptitude based on these seemingly context-less exercises. This experiment is a first step toward examining the psychophysical underpinnings of performance on these types of problems. The importance of this is increased in light of recent evidence that intelligence can be linked to visual discrimination. We submit three main findings. First, color and black-white visual contrast (BWVC) add demand at a basic sensory level, but contributions from color and from BWVC are dissociable in cortex such that color engages a “reasoning heuristic” and BWVC engages a “sensory heuristic.” Second, color supports contextual sense-making by boosting salience resulting in faster problem solving. Lastly, when visual complexity reaches 2-relations, color and visual contrast relinquish salience to other dimensions of problem solving. PMID:24133465
Rethinking Visual Analytics for Streaming Data Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouser, R. Jordan; Franklin, Lyndsey; Cook, Kris
In the age of data science, the use of interactive information visualization techniques has become increasingly ubiquitous. From online scientific journals to the New York Times graphics desk, the utility of interactive visualization for both storytelling and analysis has become ever more apparent. As these techniques have become more readily accessible, the appeal of combining interactive visualization with computational analysis continues to grow. Arising out of a need for scalable, human-driven analysis, primary objective of visual analytics systems is to capitalize on the complementary strengths of human and machine analysis, using interactive visualization as a medium for communication between themore » two. These systems leverage developments from the fields of information visualization, computer graphics, machine learning, and human-computer interaction to support insight generation in areas where purely computational analyses fall short. Over the past decade, visual analytics systems have generated remarkable advances in many historically challenging analytical contexts. These include areas such as modeling political systems [Crouser et al. 2012], detecting financial fraud [Chang et al. 2008], and cybersecurity [Harrison et al. 2012]. In each of these contexts, domain expertise and human intuition is a necessary component of the analysis. This intuition is essential to building trust in the analytical products, as well as supporting the translation of evidence into actionable insight. In addition, each of these examples also highlights the need for scalable analysis. In each case, it is infeasible for a human analyst to manually assess the raw information unaided, and the communication overhead to divide the task between a large number of analysts makes simple parallelism intractable. Regardless of the domain, visual analytics tools strive to optimize the allocation of human analytical resources, and to streamline the sensemaking process on data that is massive, complex, incomplete, and uncertain in scenarios requiring human judgment.« less
Foerster, Rebecca M.; Poth, Christian H.; Behler, Christian; Botsch, Mario; Schneider, Werner X.
2016-01-01
Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen’s visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions. PMID:27869220
Foerster, Rebecca M; Poth, Christian H; Behler, Christian; Botsch, Mario; Schneider, Werner X
2016-11-21
Neuropsychological assessment of human visual processing capabilities strongly depends on visual testing conditions including room lighting, stimuli, and viewing-distance. This limits standardization, threatens reliability, and prevents the assessment of core visual functions such as visual processing speed. Increasingly available virtual reality devices allow to address these problems. One such device is the portable, light-weight, and easy-to-use Oculus Rift. It is head-mounted and covers the entire visual field, thereby shielding and standardizing the visual stimulation. A fundamental prerequisite to use Oculus Rift for neuropsychological assessment is sufficient test-retest reliability. Here, we compare the test-retest reliabilities of Bundesen's visual processing components (visual processing speed, threshold of conscious perception, capacity of visual working memory) as measured with Oculus Rift and a standard CRT computer screen. Our results show that Oculus Rift allows to measure the processing components as reliably as the standard CRT. This means that Oculus Rift is applicable for standardized and reliable assessment and diagnosis of elementary cognitive functions in laboratory and clinical settings. Oculus Rift thus provides the opportunity to compare visual processing components between individuals and institutions and to establish statistical norm distributions.
Ouellet, Julien; McGirr, Alexander; Van den Eynde, Frederique; Jollant, Fabrice; Lepage, Martin; Berlim, Marcelo T
2015-10-01
Decision-making and impulse control (both cognitive and motor) are complex interrelated processes which rely on a distributed neural network that includes multiple cortical and subcortical regions. Among them, the orbitofrontal cortex (OFC) seems to be particularly relevant as demonstrated by several neuropsychological and neuroimaging investigations. In the present study we assessed whether transcranial direct current stimulation (tDCS) applied bilaterally over the OFC is able to modulate decision-making and cognitive impulse control. More specifically, 45 healthy subjects were randomized to receive a single 30-min session of active or sham anodal tDCS (1.5 mA) applied over either the left or the right OFC (coupled with contralateral cathodal tDCS). They were also assessed pre- and post-tDCS with a battery of computerized tasks. Our results show that participants who received active anodal tDCS (irrespective of laterality), vs. those who received sham tDCS, displayed more advantageous decision-making (i.e., increased Iowa Gambling Task "net scores" [p = 0.04]), as well as improved cognitive impulse control (i.e., decreased "interference" in the Stroop Word-Colour Task [p = 0.007]). However, we did not observe tDCS-related effects on mood (assessed by visual analogue scales), attentional levels (assessed by the Continuous Performance Task) or motor impulse control (assessed by the Stop-Signal Task). Our study potentially serves as a key translational step towards the development of novel non-invasive neuromodulation-based therapeutic interventions directly targeting vulnerability factors for psychiatric conditions such as suicidal behaviour and addiction. Copyright © 2015 Elsevier Ltd. All rights reserved.
Visual assessment of CPR quality during pediatric cardiac arrest: does point of view matter?
Jones, Angela; Lin, Yiqun; Nettel-Aguirre, Alberto; Gilfoyle, Elaine; Cheng, Adam
2015-05-01
In many clinical settings, providers rely on visual assessment when delivering feedback on CPR quality. Little is known about the accuracy of visual assessment of CPR quality. We aimed to determine how accurate pediatric providers are in their visual assessment of CPR quality and to identify the optimal position relative to the patient for accurate CPR assessment. We videotaped high-quality CPR (based on 2010 American Heart Association guidelines) and 3 variations of poor quality CPR in a simulated resuscitation, filmed from the foot, head and the side of the manikin. Participants watched 12 videos and completed a questionnaire to assess CPR quality. One hundred and twenty-five participants were recruited. The overall accuracy of visual assessment of CPR quality was 65.6%. Accuracy was better from the side (70.8%) and foot (68.8%) of the bed when compared to the head of the bed (57.2%; p<0.001). The side was the best position for assessing depth (p<0.001). Rate assessment was equivalent between positions (p=0.58). The side and foot of the bed were superior to the head when assessing chest recoil (p<0.001). Factors associated with increased accuracy in visual assessment of CPR quality included recent CPR course completion (p=0.034) and involvement in more cardiac arrests as a team member (p=0.003). Healthcare providers struggle to accurately assess the quality of CPR using visual assessment. If visual assessment is being used, providers should stand at the side of the bed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Trief, Ellen; Bruce, Susan M.; Cascella, Paul W.
2010-01-01
Tangible symbols are objects or partial objects that can be physically manipulated and that share a perceptual relationship with what they represent, known as the referent. They make fewer demands on memory and representational ability, making them an appropriate expressive form of communication for individuals with visual impairments and…
ERIC Educational Resources Information Center
Kell, Clare; Sweet, John
2017-01-01
This paper shows how peer observation of learning and teaching (POLT) discussions can be augmented through the use of a dynamic visual notation that makes visible for interpretation, elements of teacher-learner and learner-earner nonverbal interactions. Making visible the nonverbal, physical, spatial and kinesics (eye-based) elements of…
Mbagwu, Michael; French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-05-04
Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org.
French, Dustin D; Gill, Manjot; Mitchell, Christopher; Jackson, Kathryn; Kho, Abel; Bryar, Paul J
2016-01-01
Background Visual acuity is the primary measure used in ophthalmology to determine how well a patient can see. Visual acuity for a single eye may be recorded in multiple ways for a single patient visit (eg, Snellen vs. Jäger units vs. font print size), and be recorded for either distance or near vision. Capturing the best documented visual acuity (BDVA) of each eye in an individual patient visit is an important step for making electronic ophthalmology clinical notes useful in research. Objective Currently, there is limited methodology for capturing BDVA in an efficient and accurate manner from electronic health record (EHR) notes. We developed an algorithm to detect BDVA for right and left eyes from defined fields within electronic ophthalmology clinical notes. Methods We designed an algorithm to detect the BDVA from defined fields within 295,218 ophthalmology clinical notes with visual acuity data present. About 5668 unique responses were identified and an algorithm was developed to map all of the unique responses to a structured list of Snellen visual acuities. Results Visual acuity was captured from a total of 295,218 ophthalmology clinical notes during the study dates. The algorithm identified all visual acuities in the defined visual acuity section for each eye and returned a single BDVA for each eye. A clinician chart review of 100 random patient notes showed a 99% accuracy detecting BDVA from these records and 1% observed error. Conclusions Our algorithm successfully captures best documented Snellen distance visual acuity from ophthalmology clinical notes and transforms a variety of inputs into a structured Snellen equivalent list. Our work, to the best of our knowledge, represents the first attempt at capturing visual acuity accurately from large numbers of electronic ophthalmology notes. Use of this algorithm can benefit research groups interested in assessing visual acuity for patient centered outcome. All codes used for this study are currently available, and will be made available online at https://phekb.org. PMID:27146002
Using Visualization in Cockpit Decision Support Systems
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2005-01-01
In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.
Mental workload while driving: effects on visual search, discrimination, and decision making.
Recarte, Miguel A; Nunes, Luis M
2003-06-01
The effects of mental workload on visual search and decision making were studied in real traffic conditions with 12 participants who drove an instrumented car. Mental workload was manipulated by having participants perform several mental tasks while driving. A simultaneous visual-detection and discrimination test was used as performance criteria. Mental tasks produced spatial gaze concentration and visual-detection impairment, although no tunnel vision occurred. According to ocular behavior analysis, this impairment was due to late detection and poor identification more than to response selection. Verbal acquisition tasks were innocuous compared with production tasks, and complex conversations, whether by phone or with a passenger, are dangerous for road safety.
Development of the Preverbal Visual Assessment (PreViAs) questionnaire.
Pueyo, Victoria; García-Ormaechea, Inés; González, Inmaculada; Ferrer, Concepción; de la Mata, Guillermo; Duplá, María; Orós, Pedro; Andres, Eva
2014-04-01
Visual cognitive functions of preverbal infants are evaluated by means of a behavioral assessment. Parents or primary caregivers may be appropriate to certify the acquisition of certain abilities. To develop the PreViAs (Preverbal Visual Assessment) questionnaire to assess visual behavior of infants under 24 months of age and to assess the normative outcomes for each item at each age. The process was divided into three phases: scale development (items and domains generation), pilot testing, and exploratory analysis. The final version of the PreViAs questionnaire consisted of 30 items, each related to one or more of four domains (visual attention, visual communication, visual-motor coordination, and visual processing). For the exploratory analysis, 298 children (159 boys and 139 girls) were recruited. Their ages ranged from 0.1 to 24 months (mean, 11.2 months). Internal consistency of the questionnaire was high for all domains (Cronbach's α coefficients of 0.85-0.94). The PreViAs questionnaire is a useful scale for assessing visual cognitive abilities of infants under 24 months of age. It is easy and feasible to complete by primary caregivers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Renfroe, Jenna B; Turner, Travis H; Hinson, Vanessa K
2017-02-01
Judgment of Line Orientation (JOLO) test is widely used in assessing visuospatial deficits in Parkinson's disease (PD). The neuropsychological assessment battery (NAB) offers the Visual Discrimination test, with age and education correction, parallel forms, and co-normed standardization sample for comparisons within and between domains. However, NAB Visual Discrimination has not been validated in PD, and may not measure the same construct as JOLO. A heterogeneous sample of 47 PD patients completed the JOLO and NAB Visual Discrimination within a broader neuropsychological evaluation. Pearson correlations assessed relationships between JOLO and NAB Visual Discrimination performances. Raw and demographically corrected scores from JOLO and Visual Discrimination were only weakly correlated. NAB Visual Discrimination subtest was moderately correlated with overall cognitive functioning, whereas the JOLO was not. Despite apparent virtues, results do not support NAB Visual Discrimination as an alternative to JOLO in assessing visuospatial functioning in PD. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Visual Aids for Improving Patient Decision Making in Severe Symptomatic Carotid Stenosis.
Fridman, Sebastian; Saposnik, Gustavo; Sposato, Luciano A
2017-12-01
Because of the large amount of information to process and the limited time of a clinical consult, choosing between carotid endarterectomy (CEA) and carotid angioplasty with stenting (CAS) can be confusing for patients with severe symptomatic internal carotid stenosis (ICA). We aim to develop a visual aid tool to help clinicians and patients in the decision-making process of selecting between CEA and CAS. Based on pooled analysis from randomized controlled trials including patients with symptomatic and severe ICA (SSICA), we generated visual plots comparing CEA with CAS for 3 prespecified postprocedural time points: (1) any stroke or death at 4 months, and (2) any stroke or death in the first 30 days and ipsilateral stroke thereafter at 5 years and (3) at 10 years. A total of 4574 participants (2393 assigned to CAS, and 2361 to CEA) were included in the analyses. For every 100 patients with SSICA, 6 would develop any stroke or death in the CEA group compared with 9 undergoing CAS at 4 months (hazard ratio [HR] 1.53; 95%CI 1.20-1.95). At 5 years, 7 patients in the CEA group would develop any periprocedural stroke or death and ipsilateral stroke thereafter versus 12 undergoing CAS (HR 1.72; 95%CI 1.24-2.39), compared with 10 patients in the CEA and 13 in the CAS groups at 10 years (HR 1.17; 95%CI 0.82-1.66). Visual aids presented in this study could potentially help patients with severe symptomatic internal carotid stenosis to better weigh the risks and benefits of CEA versus CAS as a function of time, allowing for the prioritization of personal preferences, and should be prospectively assessed. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Naturalistic Decision Making for Power System Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greitzer, Frank L.; Podmore, Robin; Robinson, Marck
2010-02-01
Motivation – Investigations of large-scale outages in the North American interconnected electric system often attribute the causes to three T’s: Trees, Training and Tools. To document and understand the mental processes used by expert operators when making critical decisions, a naturalistic decision making (NDM) model was developed. Transcripts of conversations were analyzed to reveal and assess NDM-based performance criteria. Findings/Design – An item analysis indicated that the operators’ Situation Awareness Levels, mental models, and mental simulations can be mapped at different points in the training scenario. This may identify improved training methods or analytical/ visualization tools. Originality/Value – This studymore » applies for the first time, the concepts of Recognition Primed Decision Making, Situation Awareness Levels and Cognitive Task Analysis to training of electric power system operators. Take away message – The NDM approach provides a viable framework for systematic training management to accelerate learning in simulator-based training scenarios for power system operators and teams.« less
Audio-visual interactions in environment assessment.
Preis, Anna; Kociński, Jędrzej; Hafke-Dys, Honorata; Wrzosek, Małgorzata
2015-08-01
The aim of the study was to examine how visual and audio information influences audio-visual environment assessment. Original audio-visual recordings were made at seven different places in the city of Poznań. Participants of the psychophysical experiments were asked to rate, on a numerical standardized scale, the degree of comfort they would feel if they were in such an environment. The assessments of audio-visual comfort were carried out in a laboratory in four different conditions: (a) audio samples only, (b) original audio-visual samples, (c) video samples only, and (d) mixed audio-visual samples. The general results of this experiment showed a significant difference between the investigated conditions, but not for all the investigated samples. There was a significant improvement in comfort assessment when visual information was added (in only three out of 7 cases), when conditions (a) and (b) were compared. On the other hand, the results show that the comfort assessment of audio-visual samples could be changed by manipulating the audio rather than the video part of the audio-visual sample. Finally, it seems, that people could differentiate audio-visual representations of a given place in the environment based rather of on the sound sources' compositions than on the sound level. Object identification is responsible for both landscape and soundscape grouping. Copyright © 2015. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Newcomb, Sandra
2010-01-01
Children who are identified as visually impaired frequently have a functional vision assessment as one way to determine how their visual impairment affects their educational performance. The CVI Range is a functional vision assessment for children with cortical visual impairment. The purpose of the study presented here was to examine the…
Spatial attention during saccade decisions.
Jonikaitis, Donatas; Klapetek, Anna; Deubel, Heiner
2017-07-01
Behavioral measures of decision making are usually limited to observations of decision outcomes. In the present study, we made use of the fact that oculomotor and sensory selection are closely linked to track oculomotor decision making before oculomotor responses are made. We asked participants to make a saccadic eye movement to one of two memorized target locations and observed that visual sensitivity increased at both the chosen and the nonchosen saccade target locations, with a clear bias toward the chosen target. The time course of changes in visual sensitivity was related to saccadic latency, with the competition between the chosen and nonchosen targets resolved faster before short-latency saccades. On error trials, we observed an increased competition between the chosen and nonchosen targets. Moreover, oculomotor selection and visual sensitivity were influenced by top-down and bottom-up factors as well as by selection history and predicted the direction of saccades. Our findings demonstrate that saccade decisions have direct visual consequences and show that decision making can be traced in the human oculomotor system well before choices are made. Our results also indicate a strong association between decision making, saccade target selection, and visual sensitivity. NEW & NOTEWORTHY We show that saccadic decisions can be tracked by measuring spatial attention. Spatial attention is allocated in parallel to the two competing saccade targets, and the time course of spatial attention differs for fast-slow and for correct-erroneous decisions. Saccade decisions take the form of a competition between potential saccade goals, which is associated with spatial attention allocation to those locations. Copyright © 2017 the American Physiological Society.
On the Science-Policy Bridge: Do Spatial Heat Vulnerability Assessment Studies Influence Policy?
Wolf, Tanja; Chuang, Wen-Ching; McGregor, Glenn
2015-01-01
Human vulnerability to heat varies at a range of spatial scales, especially within cities where there can be noticeable intra-urban differences in heat risk factors. Mapping and visualizing intra-urban heat vulnerability offers opportunities for presenting information to support decision-making. For example the visualization of the spatial variation of heat vulnerability has the potential to enable local governments to identify hot spots of vulnerability and allocate resources and increase assistance to people in areas of greatest need. Recently there has been a proliferation of heat vulnerability mapping studies, all of which, to varying degrees, justify the process of vulnerability mapping in a policy context. However, to date, there has not been a systematic review of the extent to which the results of vulnerability mapping studies have been applied in decision-making. Accordingly we undertook a comprehensive review of 37 recently published papers that use geospatial techniques for assessing human vulnerability to heat. In addition, we conducted an anonymous survey of the lead authors of the 37 papers in order to establish the level of interaction between the researchers as science information producers and local authorities as information users. Both paper review and author survey results show that heat vulnerability mapping has been used in an attempt to communicate policy recommendations, raise awareness and induce institutional networking and learning, but has not as yet had a substantive influence on policymaking or preventive action. PMID:26512681
The angular gyrus and visuospatial attention in decision-making under risk.
Studer, Bettina; Cen, Danlu; Walsh, Vincent
2014-12-01
Recent neuroimaging studies on decision-making under risk indicate that the angular gyrus (AG) is sensitive to the probability and variance of outcomes during choice. A separate body of research has established the AG as a key area in visual attention. The current study used repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers to test whether the causal contribution of the AG to decision-making is independent of or linked to the guidance of visuospatial attention. A within-subject design compared decision making on a laboratory gambling task under three conditions: following rTMS to the AG, following rTMS to the premotor cortex (PMC, as an active control condition) and without TMS. The task presented two different trial types, 'visual' and 'auditory' trials, which entailed a high versus minimal demand for visuospatial attention, respectively. Our results showed a systematic effect of rTMS to the AG upon decision-making behavior in visual trials. Without TMS and following rTMS to the control region, decision latencies reflected the odds of winning; this relationship was disrupted by rTMS to the AG. In contrast, no significant effects of rTMS to the AG (or to the PMC) upon choice behavior in auditory trials were found. Thus, rTMS to the AG affected decision-making only in the task condition requiring visuospatial attention. The current findings suggest that the AG contributes to decision-making by guiding attention to relevant information about reward and punishment in the visual environment. Copyright © 2014. Published by Elsevier Inc.
Remote sensing image denoising application by generalized morphological component analysis
NASA Astrophysics Data System (ADS)
Yu, Chong; Chen, Xiong
2014-12-01
In this paper, we introduced a remote sensing image denoising method based on generalized morphological component analysis (GMCA). This novel algorithm is the further extension of morphological component analysis (MCA) algorithm to the blind source separation framework. The iterative thresholding strategy adopted by GMCA algorithm firstly works on the most significant features in the image, and then progressively incorporates smaller features to finely tune the parameters of whole model. Mathematical analysis of the computational complexity of GMCA algorithm is provided. Several comparison experiments with state-of-the-art denoising algorithms are reported. In order to make quantitative assessment of algorithms in experiments, Peak Signal to Noise Ratio (PSNR) index and Structural Similarity (SSIM) index are calculated to assess the denoising effect from the gray-level fidelity aspect and the structure-level fidelity aspect, respectively. Quantitative analysis on experiment results, which is consistent with the visual effect illustrated by denoised images, has proven that the introduced GMCA algorithm possesses a marvelous remote sensing image denoising effectiveness and ability. It is even hard to distinguish the original noiseless image from the recovered image by adopting GMCA algorithm through visual effect.
Cruwys, Tegan; Steffens, Niklas K; Haslam, S Alexander; Haslam, Catherine; Jetten, Jolanda; Dingle, Genevieve A
2016-12-01
In this research, we introduce Social Identity Mapping (SIM) as a method for visually representing and assessing a person's subjective network of group memberships. To provide evidence of its utility, we report validating data from three studies (two longitudinal), involving student, community, and clinical samples, together comprising over 400 participants. Results indicate that SIM is easy to use, internally consistent, with good convergent and discriminant validity. Each study also illustrates the ways that SIM can be used to address a range of novel research questions. Study 1 shows that multiple positive group memberships are a particularly powerful predictor of well-being. Study 2 shows that social support is primarily given and received within social groups and that only in-group support is beneficial for well-being. Study 3 shows that improved mental health following a social group intervention is attributable to an increase in group compatibility. In this way, the studies demonstrate the capacity for SIM to make a contribution both to the development of social-psychological theory and to its practical application. © 2016 The British Psychological Society.
Factors influencing self-reported vision-related activity limitation in the visually impaired.
Tabrett, Daryl R; Latham, Keziah
2011-07-15
The use of patient-reported outcome (PRO) measures to assess self-reported difficulty in visual activities is common in patients with impaired vision. This study determines the visual and psychosocial factors influencing patients' responses to self-report measures, to aid in understanding what is being measured. One hundred visually impaired participants completed the Activity Inventory (AI), which assesses self-reported, vision-related activity limitation (VRAL) in the task domains of reading, mobility, visual information, and visual motor tasks. Participants also completed clinical tests of visual function (distance visual acuity and near reading performance both with and without low vision aids [LVAs], contrast sensitivity, visual fields, and depth discrimination), and questionnaires assessing depressive symptoms, social support, adjustment to visual loss, and personality. Multiple regression analyses identified that an acuity measure (distance or near), and, to a lesser extent, near reading performance without LVAs, visual fields, and contrast sensitivity best explained self-reported VRAL (28%-50% variance explained). Significant psychosocial correlates were depression and adjustment, explaining an additional 6% to 19% unique variance. Dependent on task domain, the parameters assessed explained 59% to 71% of the variance in self-reported VRAL. Visual function, most notably acuity without LVAs, is the best predictor of self-reported VRAL assessed by the AI. Depression and adjustment to visual loss also significantly influence self-reported VRAL, largely independent of the severity of visual loss and most notably in the less vision-specific tasks. The results suggest that rehabilitation strategies addressing depression and adjustment could improve perceived visual disability.
Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.
Loria, Tristan; de Grosbois, John; Tremblay, Luc
2016-09-01
At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.
Beyond Our Fears: Conversations with Veteran Artists about Their Dedication to Visual Art Making
ERIC Educational Resources Information Center
Puffer, Kristine Widmer
2011-01-01
This study examines the reactions of veteran artists to some issues associated with the process of creating visual art that can cause fear, fear significant enough to derail many professional artists and cause them to quit making art altogether. Based on the writings of Bayles and Orland and enhanced by J. M. Erikson, this study provides insight…
ERIC Educational Resources Information Center
Poplu, Gerald; Ripoll, Hubert; Mavromatis, Sebastien; Baratgin, Jean
2008-01-01
The aim of this study was to determine what visual information expert soccer players encode when they are asked to make a decision. We used a repetition-priming paradigm to test the hypothesis that experts encode a soccer pattern's structure independently of the players' physical characteristics (i.e., posture and morphology). The participants…
Simultaneous Visualization of Different Utility Networks for Disaster Management
NASA Astrophysics Data System (ADS)
Semm, S.; Becker, T.; Kolbe, T. H.
2012-07-01
Cartographic visualizations of crises are used to create a Common Operational Picture (COP) and enforce Situational Awareness by presenting and representing relevant information. As nearly all crises affect geospatial entities, geo-data representations have to support location-specific decision-making throughout the crises. Since, Operator's attention span and their working memory are limiting factors for the process of getting and interpreting information; the cartographic presentation has to support individuals in coordinating their activities and with handling highly dynamic situations. The Situational Awareness of operators in conjunction with a COP are key aspects of the decision making process and essential for coming to appropriate decisions. Utility networks are one of the most complex and most needed systems within a city. The visualization of utility infrastructure in crisis situations is addressed in this paper. The paper will provide a conceptual approach on how to simplify, aggregate, and visualize multiple utility networks and their components to meet the requirements of the decision-making process and to support Situational Awareness.
Medical review licensing outcomes in drivers with visual field loss in Victoria, Australia
Muir, Carlyn; Charlton, Judith L; Odell, Morris; Keeffe, Jill; Wood, Joanne; Bohensky, Megan; Fildes, Brian; Oxley, Jennifer; Bentley, Sharon; Rizzo, Matthew
2017-01-01
Background Good vision is essential for safe driving and studies have associated visual impairment with an increased crash risk. Currently, there is little information about the medical review of drivers with visual field loss. This study examines the prevalence of visual field loss among drivers referred for medical review in one Australian jurisdiction and investigates factors associated with licence outcome in this group. Methods A random sample of 10,000 (31.25 per cent) medical review cases was extracted for analysis from the Victorian licensing authority. Files were screened for the presence of six visual field-related medical conditions. Data were captured on a range of variables, including referral source, age, gender, health status, crash history and licence outcome. Prevalence analyses were univariate and descriptive. Logistic regression was used to assess factors associated with licence outcomes in the visual field loss group. Results Approximately 1.9 per cent of the 10,000 medical review cases screened had a visual field loss condition identified (n=194). Among the visual field loss group, 57.2 per cent were permitted to continue driving (conditional/unconditional licence). Primary referral sources were the police, self-referrals and general medical practitioners. Key factors associated with licence test outcomes were visual field condition, age group, crash involvement and referral to the Driver Licensing Authority’s Medical Advisors. Those who were younger had a crash involvement triggering referral and those who were referred to the Medical Advisors were more likely to have a positive licensing outcome. Conclusion The evidence base for making licensing decisions is complicated by the variable causes, patterns, progressions and measuring technologies for visual field loss. This study highlighted that the involvement of an expert medical advisory service in Victoria resulted in an increased likelihood that drivers with visual field loss will be allowed to continue driving. Further research is warranted to explore issues relating to severity of field loss and the capacity for compensation. PMID:27530283
Salomon, G; Parving, A
1985-01-01
It is reasoned that for compensation or epidemiological studies an evaluation of hearing disability and the concomitant handicap must include the ability to perceive visual cues. A scaling procedure for hearing- and audiovisual communication handicap is presented. The procedure deviates in two ways from previous handicap assessments: (1) It is based on individual self-assessment of semantic speech perception but can be implemented by means of professional audiological test procedures. (2) The system does not make use of pure-tone auditory thresholds as a predominant audiological principle, but is based on speech perception. The interrelationship between auditory and audiovisual handicap is evaluated. A total score including audio- and audiovisual perception handicap is proposed and a suggestion for disability percentages is presented.
Web-GIS-based SARS epidemic situation visualization
NASA Astrophysics Data System (ADS)
Lu, Xiaolin
2004-03-01
In order to research, perform statistical analysis and broadcast the information of SARS epidemic situation according to the relevant spatial position, this paper proposed a unified global visualization information platform for SARS epidemic situation based on Web-GIS and scientific virtualization technology. To setup the unified global visual information platform, the architecture of Web-GIS based interoperable information system is adopted to enable public report SARS virus information to health cure center visually by using the web visualization technology. A GIS java applet is used to visualize the relationship between spatial graphical data and virus distribution, and other web based graphics figures such as curves, bars, maps and multi-dimensional figures are used to visualize the relationship between SARS virus tendency with time, patient number or locations. The platform is designed to display the SARS information in real time, simulate visually for real epidemic situation and offer an analyzing tools for health department and the policy-making government department to support the decision-making for preventing against the SARS epidemic virus. It could be used to analyze the virus condition through visualized graphics interface, isolate the areas of virus source, and control the virus condition within shortest time. It could be applied to the visualization field of SARS preventing systems for SARS information broadcasting, data management, statistical analysis, and decision supporting.
Brain activity during driving with distraction: an immersive fMRI study
Schweizer, Tom A.; Kan, Karen; Hung, Yuwen; Tam, Fred; Naglie, Gary; Graham, Simon J.
2013-01-01
Introduction: Non-invasive measurements of brain activity have an important role to play in understanding driving ability. The current study aimed to identify the neural underpinnings of human driving behavior by visualizing the areas of the brain involved in driving under different levels of demand, such as driving while distracted or making left turns at busy intersections. Materials and Methods: To capture brain activity during driving, we placed a driving simulator with a fully functional steering wheel and pedals in a 3.0 Tesla functional magnetic resonance imaging (fMRI) system. To identify the brain areas involved while performing different real-world driving maneuvers, participants completed tasks ranging from simple (right turns) to more complex (left turns at busy intersections). To assess the effects of driving while distracted, participants were asked to perform an auditory task while driving analogous to speaking on a hands-free device and driving. Results: A widely distributed brain network was identified, especially when making left turns at busy intersections compared to more simple driving tasks. During distracted driving, brain activation shifted dramatically from the posterior, visual and spatial areas to the prefrontal cortex. Conclusions: Our findings suggest that the distracted brain sacrificed areas in the posterior brain important for visual attention and alertness to recruit enough brain resources to perform a secondary, cognitive task. The present findings offer important new insights into the scientific understanding of the neuro-cognitive mechanisms of driving behavior and lay down an important foundation for future clinical research. PMID:23450757
Abrams, Katie M; Evans, Caitlin; Duff, Brittany R L
2015-04-01
With growing scrutiny over how the food industry advertises products aimed toward children and fewer consumers using nutrition facts panels and ingredient lists, the fronts of food packages have become an increasingly important marketing tool to understand. Front-of-package (FOP) visual and verbal claims play a critical role in capturing consumers' attention and helping them choose foods that fit their goals. Due to only possessing emergent literacy skills, preschool children are attuned to FOP visuals while parents are able to use the visuals in combination with verbal claims to make food choices for their children. The purpose of this focus group study was to explore how parents of preschool children make sense of FOP visual and verbal claims on packaged food products that are intended for their children. Thematic analysis revealed that parents associated aspects that most appeal to their preschool children - the characters and other playful visuals - with higher sugar content and artificial ingredients. However, parents were also easily led to believe the product was healthier based on visuals of fruit, more realistic pictures, health claims, cross-branding with healthier foods, and visuals suggesting the product is more natural. While parents recognized that the health claims and some visuals may not truly mean the food is healthier, they agreed that they rarely think beyond their initial impression. The food industry needs better regulatory guidance on how to communicate flavors and ingredients on package fronts in a way that helps consumers - particularly parents wanting to encourage healthy eating habits for their young children - better match their nutrition goals. Published by Elsevier Ltd.
Listeners' expectation of room acoustical parameters based on visual cues
NASA Astrophysics Data System (ADS)
Valente, Daniel L.
Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audio-visual study, in which participants are instructed to make spatial congruency and quantity judgments in dynamic cross-modal environments. The results of these psychophysical tests suggest the importance of consilient audio-visual presentation to the legibility of an auditory scene. Several studies have looked into audio-visual interaction in room perception in recent years, but these studies rely on static images, speech signals, or photographs alone to represent the visual scene. Building on these studies, the aim is to propose a testing method that uses monochromatic compositing (blue-screen technique) to position a studio recording of a musical performance in a number of virtual acoustical environments and ask subjects to assess these environments. In the first experiment of the study, video footage was taken from five rooms varying in physical size from a small studio to a small performance hall. Participants were asked to perceptually align two distinct acoustical parameters---early-to-late reverberant energy ratio and reverberation time---of two solo musical performances in five contrasting visual environments according to their expectations of how the room should sound given its visual appearance. In the second experiment in the study, video footage shot from four different listening positions within a general-purpose space was coupled with sounds derived from measured binaural impulse responses (IRs). The relationship between the presented image, sound, and virtual receiver position was examined. It was found that many visual cues caused different perceived events of the acoustic environment. This included the visual attributes of the space in which the performance was located as well as the visual attributes of the performer. The addressed visual makeup of the performer included: (1) an actual video of the performance, (2) a surrogate image of the performance, for example a loudspeaker's image reproducing the performance, (3) no visual image of the performance (empty room), or (4) a multi-source visual stimulus (actual video of the performance coupled with two images of loudspeakers positioned to the left and right of the performer). For this experiment, perceived auditory events of sound were measured in terms of two subjective spatial metrics: Listener Envelopment (LEV) and Apparent Source Width (ASW) These metrics were hypothesized to be dependent on the visual imagery of the presented performance. Data was also collected by participants matching direct and reverberant sound levels for the presented audio-visual scenes. In the final experiment, participants judged spatial expectations of an ensemble of musicians presented in the five physical spaces from Experiment 1. Supporting data was accumulated in two stages. First, participants were given an audio-visual matching test, in which they were instructed to align the auditory width of a performing ensemble to a varying set of audio and visual cues. In the second stage, a conjoint analysis design paradigm was explored to extrapolate the relative magnitude of explored audio-visual factors in affecting three assessed response criteria: Congruency (the perceived match-up of the auditory and visual cues in the assessed performance), ASW and LEV. Results show that both auditory and visual factors affect the collected responses, and that the two sensory modalities coincide in distinct interactions. This study reveals participant resiliency in the presence of forced auditory-visual mismatch: Participants are able to adjust the acoustic component of the cross-modal environment in a statistically similar way despite randomized starting values for the monitored parameters. Subjective results of the experiments are presented along with objective measurements for verification.
Inferential reasoning by exclusion in great apes, lesser apes, and spider monkeys.
Hill, Andrew; Collier-Baker, Emma; Suddendorf, Thomas
2011-02-01
Using the cups task, in which subjects are presented with limited visual or auditory information that can be used to deduce the location of a hidden reward, Call (2004) found prima facie evidence of inferential reasoning by exclusion in several great ape species. One bonobo (Pan paniscus) and two gorillas (Gorilla gorilla) appeared to make such inferences in both the visual and auditory domains. However, common chimpanzees (Pan troglodytes) were successful only in the visual domain, and Bornean orangutans (Pongo pygmaeus) in neither. The present research built on this paradigm, and Experiment 1 yielded prima facie evidence of inference by exclusion in both domains for two common chimpanzees, and in the visual domain for two Sumatran orangutans (Pongo abelii). Experiments 2 and 3 demonstrated that two specific associative learning explanations could not readily account for these results. Because an important focus of the program of research was to assess the cognitive capacities of lesser apes (family Hylobatidae), we modified Call's original procedures to better suit their attentional and dispositional characteristics. In Experiment 1, testing was also attempted with three gibbon genera (Symphalangus, Nomascus, Hylobates), but none of the subjects completed the standard task. Further testing of three siamangs (Symphalangus syndactylus) and a spider monkey (Ateles geoffroyi) using a faster method yielded prima facie evidence of inferential reasoning by exclusion in the visual domain among the siamangs (Experiment 4).
Brief Report: Autism-Like Traits Are Associated with Enhanced Ability to Disembed Visual Forms
ERIC Educational Resources Information Center
Sabatino DiCriscio, Antoinette; Troiani, Vanessa
2017-01-01
Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of…
Laser Optometric Assessment Of Visual Display Viewability
NASA Astrophysics Data System (ADS)
Murch, Gerald M.
1983-08-01
Through the technique of laser optometry, measurements of a display user's visual accommodation and binocular convergence were used to assess the visual impact of display color, technology, contrast, and work time. The studies reported here indicate the potential of visual-function measurements as an objective means of improving the design of visual displays.
Scaffolding Learning from Molecular Visualizations
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Linn, Marcia C.
2013-01-01
Powerful online visualizations can make unobservable scientific phenomena visible and improve student understanding. Instead, they often confuse or mislead students. To clarify the impact of molecular visualizations for middle school students we explored three design variations implemented in a Web-based Inquiry Science Environment (WISE) unit on…
Yuzawa, Mitsuko; Ishibashi, Tatsuro; Honda, Yoshihito; Kubota, Nobue
2010-09-01
To resolve the problems of visual acuity assessment in grading the vision of the physically handicapped as proposed by the Subcommittee for Promoting the Realization of a Cohesive Society with the Visually Disabled, Science Council of Japan, a method suitable for assessing visual disturbances, and the relationship between the degree of visual disturbances and the degree of difficulty in activities of daily life are clarified. 151 persons with age-related macular degeneration were studied. Examination methods for measuring visual acuity and reading performance were studied, and interviews using the daily living task dependent on vision (DLTV) questionnaire were performed. The correlations between total DLTV score and each examination method were analyzed. The median total DLTV score for each grade of visual acuity of the better eye was calculated. Spearman's correlation coefficient between distance corrected visual acuity of the better eye and total DLTV score was 0.76. Median DLTV scores for visual acuities (better eye) of 0.2, 0.3, 0.4, 0.5 were 65, 73.5, 62, 79 respectively. Visual acuity can be assessed by measuring distant corrected visual acuity of the better eye and setting the upper limit of visual disturbance at either 0.3 or 0.4.
Rodkey, Elissa N
2015-01-01
Eleanor Gibson and Richard Walk's famous visual cliff experiment is one of psychology's classic studies, included in most introductory textbooks. Yet the famous version which centers on babies is actually a simplification, the result of disciplinary myth-making. In fact the visual cliff's first subjects were rats, and a wide range of animals were tested on the cliff, including chicks, turtles, lambs, kid goats, pigs, kittens, dogs, and monkeys. The visual cliff experiment was more accurately a series of experiments, employing varying methods and a changing apparatus, modified to test different species. This paper focuses on the initial, nonhuman subjects of the visual cliff, resituating the study in its original experimental logic, connecting it to the history of comparative psychology, Gibson's interest in comparative psychology, as well as gender-based discrimination. Recovering the visual cliff's forgotten menagerie helps to counter the romanticization of experimentation by focusing on the role of extrascientific factors, chance, complexity, and uncertainty in the experimental process. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Caglayan, Günhan
2015-08-01
Despite few limitations, GeoGebra as a dynamic geometry software stood as a powerful instrument in helping university math majors understand, explore, and gain experiences in visualizing the limits of functions and the ɛ - δ formalism. During the process of visualizing a theorem, the order mattered in the sequence of constituents. Students made use of such rich constituents as finger-hand gestures and cursor gestures in an attempt to keep a record of visual demonstration in progress, while being aware of the interrelationships among these constituents and the transformational aspect of the visually proving process. Covariational reasoning along with interval mapping structures proved to be the key constituents in the visualizing and sense-making of a limit theorem using the delta-epsilon formalism. Pedagogical approaches and teaching strategies based on experimental mathematics - mindtool - consituential visual proofs trio would permit students to study, construct, and meaningfully connect the new knowledge to the previously mastered concepts and skills in a manner that would make sense for them.
Ehlers, Justis P; Goshe, Jeff; Dupps, William J; Kaiser, Peter K; Singh, Rishi P; Gans, Richard; Eisengart, Jonathan; Srivastava, Sunil K
2015-10-01
Optical coherence tomography (OCT) has transformed the clinical management of a myriad of ophthalmic conditions. Applying OCT to ophthalmic surgery may have implications for surgical decision making and patient outcomes. To assess the feasibility and effect on surgical decision making of a microscope-integrated intraoperative OCT (iOCT) system. Report highlighting the 1-year results (March 2014-February 2015) of the RESCAN 700 portion of the DISCOVER (Determination of Feasibility of Intraoperative Spectral Domain Microscope Combined/Integrated OCT Visualization During En Face Retinal and Ophthalmic Surgery) study, a single-site, multisurgeon, prospective consecutive case series regarding this investigational device. Participants included patients undergoing ophthalmic surgery. Data on clinical characteristics were collected, and iOCT was performed during surgical milestones, as directed by the operating surgeon. A surgeon questionnaire was issued to each surgeon and was completed after each case to evaluate the role of iOCT during surgery and its particular role in select surgical procedures. Percentage of cases with successful acquisition of iOCT (ie, feasibility). Percentage of cases in which iOCT altered surgical decision making (ie, utility). During year 1 of the DISCOVER study, a total of 227 eyes (91 anterior segment cases and 136 posterior segment cases) underwent imaging with the RESCAN 700 system. Successful imaging (eg, the ability to acquire an OCT image of the tissue of interest) was obtained for 224 of 227 eyes (99% [95% CI, 98%-100%]). During lamellar keratoplasty, the iOCT data provided information that altered the surgeon's decision making in 38% of the cases (eg, complete graft apposition when the surgeon believed there was interface fluid). In membrane peeling procedures, iOCT information was discordant with the surgeon's impression of membrane peel completeness in 19% of cases (eg, lack of residual membrane or presence of occult membrane), thus affecting additional surgical maneuvers. The DISCOVER study demonstrates the feasibility of real-time iOCT with a microscope-integrated iOCT system for ophthalmic surgery. The information gained from iOCT appears to allow surgeons to assess subtle details in a unique perspective from standard en face visualization, which can affect surgical decision making some of the time, although the effect of these changes in decision making on outcomes remains unknown. A prospective randomized masked trial is needed to confirm these results.
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Stamps, D. S.
2017-12-01
Visualizing societally relevant data in easy to comprehend formats is necessary for making informed decisions by non-scientist stakeholders. Despite scientists' efforts to inform the public, there continues to be a disconnect in information between stakeholders and scientists. Closing the gap in knowledge requires increased communication between the two groups facilitated by models and data visualizations. In this work we use real-time streaming data from TZVOLCANO, a network of GNSS/GPS sensors that monitor the active volcano Ol Doinyo Lengai in Tanzania, as a test-case for visualizing societally relevant data. Real-time data from TZVOLCANO is streamed into the US NSF Geodesy Facility UNAVCO archive (www.unavco.org) from which data are made available through the EarthCube cyberinfrastructure CHORDS (Cloud-Hosted Real-Time Data Services for the geosciences). CHORDS uses InfluxDB to make streaming data accessible in Grafana: an open source software that specializes in the display of time series analysis. With over 350 downloadable "dashboards", Grafana serves as an emerging software for data visualizations. Creating user-friendly visualizations ("dashboards") for the TZVOLCANO GNSS/GPS data in Tanzania can help scientists and stakeholders communicate effectively so informed decisions can be made about volcanic hazards during a time-sensitive crisis. Our use of Grafana's dashboards for one specific case-study provides an example for other geoscientists to develop analogous visualizations with the objectives of increasing the knowledge of the general public and facilitating a more informed decision-making process.
Climate Science Communications - Video Visualization Techniques
NASA Astrophysics Data System (ADS)
Reisman, J. P.; Mann, M. E.
2010-12-01
Communicating Climate science is challenging due to it's complexity. But as they say, a picture is worth a thousand words. Visualization techniques can be merely graphical or combine multimedia so as to make graphs come alive in context with other visual and auditory cues. This can also make the information come alive in a way that better communicates what the science is all about. What types of graphics to use depends on your audience, some graphs are great for scientists but if you are trying to communicate to a less sophisticated audience, certain visuals translate information in a more easily perceptible manner. Hollywood techniques and style can be applied to these graphs to give them even more impact. Video is one of the most powerful communication tools in its ability to combine visual and audio through time. Adding music and visual cues such as pans and zooms can greatly enhance the ability to communicate your concepts. Video software ranges from relatively simple to very sophisticated. In reality, you don't need the best tools to get your point across. In fact, with relatively inexpensive software, you can put together powerful videos that more effectively convey the science you are working on with greater sophistication, and in an entertaining way. We will examine some basic techniques to increase the quality of video visualization to make it more effective in communicating complexity. If a picture is worth a thousand words, a decent video with music, and a bit of narration is priceless.
Cognitive Virtualization: Combining Cognitive Models and Virtual Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; David I. Gertman; Donald D. Dudenhoeffer
2007-08-01
3D manikins are often used in visualizations to model human activity in complex settings. Manikins assist in developing understanding of human actions, movements and routines in a variety of different environments representing new conceptual designs. One such environment is a nuclear power plant control room, here they have the potential to be used to simulate more precise ergonomic assessments of human work stations. Next generation control rooms will pose numerous challenges for system designers. The manikin modeling approach by itself, however, may be insufficient for dealing with the desired technical advancements and challenges of next generation automated systems. Uncertainty regardingmore » effective staffing levels; and the potential for negative human performance consequences in the presence of advanced automated systems (e.g., reduced vigilance, poor situation awareness, mistrust or blind faith in automation, higher information load and increased complexity) call for further research. Baseline assessment of novel control room equipment(s) and configurations needs to be conducted. These design uncertainties can be reduced through complementary analysis that merges ergonomic manikin models with models of higher cognitive functions, such as attention, memory, decision-making, and problem-solving. This paper will discuss recent advancements in merging a theoretical-driven cognitive modeling framework within a 3D visualization modeling tool to evaluate of next generation control room human factors and ergonomic assessment. Though this discussion primary focuses on control room design, the application for such a merger between 3D visualization and cognitive modeling can be extended to various areas of focus such as training and scenario planning.« less
The attentive brain: insights from developmental cognitive neuroscience.
Amso, Dima; Scerif, Gaia
2015-10-01
Visual attention functions as a filter to select environmental information for learning and memory, making it the first step in the eventual cascade of thought and action systems. Here, we review studies of typical and atypical visual attention development and explain how they offer insights into the mechanisms of adult visual attention. We detail interactions between visual processing and visual attention, as well as the contribution of visual attention to memory. Finally, we discuss genetic mechanisms underlying attention disorders and how attention may be modified by training.
Nunez, Michael D.; Vandekerckhove, Joachim; Srinivasan, Ramesh
2016-01-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects. PMID:28435173
Nunez, Michael D; Vandekerckhove, Joachim; Srinivasan, Ramesh
2017-02-01
Perceptual decision making can be accounted for by drift-diffusion models, a class of decision-making models that assume a stochastic accumulation of evidence on each trial. Fitting response time and accuracy to a drift-diffusion model produces evidence accumulation rate and non-decision time parameter estimates that reflect cognitive processes. Our goal is to elucidate the effect of attention on visual decision making. In this study, we show that measures of attention obtained from simultaneous EEG recordings can explain per-trial evidence accumulation rates and perceptual preprocessing times during a visual decision making task. Models assuming linear relationships between diffusion model parameters and EEG measures as external inputs were fit in a single step in a hierarchical Bayesian framework. The EEG measures were features of the evoked potential (EP) to the onset of a masking noise and the onset of a task-relevant signal stimulus. Single-trial evoked EEG responses, P200s to the onsets of visual noise and N200s to the onsets of visual signal, explain single-trial evidence accumulation and preprocessing times. Within-trial evidence accumulation variance was not found to be influenced by attention to the signal or noise. Single-trial measures of attention lead to better out-of-sample predictions of accuracy and correct reaction time distributions for individual subjects.
Roca-Pardiñas, Javier; Cadarso-Suárez, Carmen; Pardo-Vazquez, Jose L; Leboran, Victor; Molenberghs, Geert; Faes, Christel; Acuña, Carlos
2011-06-30
It is well established that neural activity is stochastically modulated over time. Therefore, direct comparisons across experimental conditions and determination of change points or maximum firing rates are not straightforward. This study sought to compare temporal firing probability curves that may vary across groups defined by different experimental conditions. Odds-ratio (OR) curves were used as a measure of comparison, and the main goal was to provide a global test to detect significant differences of such curves through the study of their derivatives. An algorithm is proposed that enables ORs based on generalized additive models, including factor-by-curve-type interactions to be flexibly estimated. Bootstrap methods were used to draw inferences from the derivatives curves, and binning techniques were applied to speed up computation in the estimation and testing processes. A simulation study was conducted to assess the validity of these bootstrap-based tests. This methodology was applied to study premotor ventral cortex neural activity associated with decision-making. The proposed statistical procedures proved very useful in revealing the neural activity correlates of decision-making in a visual discrimination task. Copyright © 2011 John Wiley & Sons, Ltd.
Visual Motion Prediction and Verbal False Memory Performance in Autistic Children.
Tewolde, Furtuna G; Bishop, Dorothy V M; Manning, Catherine
2018-03-01
Recent theoretical accounts propose that atypical predictive processing can explain the diverse cognitive and behavioral features associated with autism, and that difficulties in making predictions may be related to reduced contextual processing. In this pre-registered study, 30 autistic children aged 6-14 years and 30 typically developing children matched in age and non-verbal IQ completed visual extrapolation and false memory tasks to assess predictive abilities and contextual processing, respectively. In the visual extrapolation tasks, children were asked to predict when an occluded car would reach the end of a road and when an occluded set of lights would fill up a grid. Autistic children made predictions that were just as precise as those made by typically developing children, across a range of occlusion durations. In the false memory task, autistic and typically developing children did not differ significantly in their discrimination between items presented in a list and semantically related, non-presented items, although the data were insensitive, suggesting the need for larger samples. Our findings help to refine theoretical accounts by challenging the notion that autism is caused by pervasively disordered prediction abilities. Further studies will be required to assess the relationship between predictive processing and context use in autism, and to establish the conditions under which predictive processing may be impaired. Autism Res 2018, 11: 509-518. © 2017 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc. It has been suggested that autistic individuals have difficulties making predictions and perceiving the overall gist of things. Yet, here we found that autistic children made similar predictions about hidden objects as non-autistic children. In a memory task, autistic children were slightly less confused about whether they had heard a word before, when words were closely related in meaning. We conclude that autistic children do not show difficulties with this type of prediction. © 2017 The Authors Autism Research published by International Society for Autism Research and Wiley Periodicals, Inc.
Temporal visual field defects are associated with monocular inattention in chiasmal pathology.
Fledelius, Hans C
2009-11-01
Chiasmal lesions have been shown to give rise occasionally to uni-ocular temporal inattention, which cannot be compensated for by volitional eye movement. This article describes the assessments of 46 such patients with chiasmal pathology. It aims to determine the clinical spectrum of this disorder, including interference with reading. Retrospective consecutive observational clinical case study over a 7-year period comprising 46 patients with chiasmal field loss of varying degrees. Observation of reading behaviour during monocular visual acuity testing ascertained from consecutive patients who appeared unable to read optotypes on the temporal side of the chart. Visual fields were evaluated by kinetic (Goldmann) and static (Octopus) techniques. Five patients who clearly manifested this condition are presented in more detail. The results of visual field testing were related to absence or presence of uni-ocular visual inattentive behaviour for distance visual acuity testing and/or reading printed text. Despite normal eye movements, the 46 patients making up the clinical series perceived only optotypes in the nasal part of the chart, in one eye or in both, when tested for each eye in turn. The temporal optotypes were ignored, and this behaviour persisted despite instruction to search for any additional letters temporal to those, which had been seen. This phenomenon of unilateral visual inattention held for both eyes in 18 and was unilateral in the remaining 28 patients. Partial or full reversibility after treatment was recorded in 21 of the 39 for whom reliable follow-up data were available. Reading a text was affected in 24 individuals, and permanently so in six. A neglect-like spatial unawareness and a lack of cognitive compensation for varying degrees of temporal visual field loss were present in all the patients observed. Not only is visual field loss a feature of chiasmal pathology, but the higher visual function of affording attention within the temporal visual field by means of using conscious thought to invoke appropriate compensatory eye movement was also absent. This suggests the possibility of 'trans-synaptic dysfunction' caused by loss of visual input to higher visual centres. When inattention to the temporal side is manifest on monocular visual testing it should raise the suspicion of chiasmal pathology.
Differential verbal, visual, and spatial working memory in written language production.
Raulerson, Bascom A; Donovan, Michael J; Whiteford, Alison P; Kellogg, Ronald T
2010-02-01
The contributions of verbal, visual, and spatial working memory to written language production were investigated. Participants composed definitions for nouns while concurrently performing a task which required updating, storing, and retrieving information coded either verbally, visually, or spatially. The present study extended past findings by showing the linguistic encoding of planned conceptual content makes its largest demand on verbal working memory for both low and high frequency nouns. Kellogg, Olive, and Piolat in 2007 found that concrete nouns place substantial demands on visual working memory when imaging the nouns' referents during planning, whereas abstract nouns make no demand. The current study further showed that this pattern was not an artifact of visual working memory being sensitive to manipulation of just any lexical property of the noun prompts. In contrast to past results, writing made a small but detectible demand on spatial working memory.
Non-provocative diagnostics of photosensitivity using visual evoked potentials.
Vermeulen, Joost; Kalitzin, Stiliyan; Parra, Jaime; Dekker, Erwin; Vossepoel, Albert; da Silva, Fernando Lopes
2008-04-01
Photosensitive epilepsy (PSE) is the most common form of reflex epilepsy. Usually, to find out whether a patient is sensitive, he/she is stimulated visually with, e.g. a stroboscopic light stimulus at variable frequency and intensity until a photo paroxysmal response (PPR) occurs. The research described in this work aims to find whether photosensitivity can be detected without provoking a PPR. Twenty-two subjects, 15 with known photosensitivity, were stimulated with visual stimuli that did not provoke a PPR. Using an "evoked response representation", 18 features were analytically derived from EEG signals. Single- and multi-feature classification paradigms were applied to extract those features that separate best subjects with PSE from controls. Two variables in the "evoked response representation", a frequency term and a goodness of fit term to a particular template, appeared to be best suited to make a prediction about the photosensitivity of a subject. Evoked responses appear to carry information about potential PSE. This result can be useful for screening patients for photosensitivity and it may also help to assess in a quantitative way the effectiveness of medical therapy.
NASA Astrophysics Data System (ADS)
Kayastha, Shilva; Kunimoto, Ryo; Horvath, Dragos; Varnek, Alexandre; Bajorath, Jürgen
2017-11-01
The analysis of structure-activity relationships (SARs) becomes rather challenging when large and heterogeneous compound data sets are studied. In such cases, many different compounds and their activities need to be compared, which quickly goes beyond the capacity of subjective assessments. For a comprehensive large-scale exploration of SARs, computational analysis and visualization methods are required. Herein, we introduce a two-layered SAR visualization scheme specifically designed for increasingly large compound data sets. The approach combines a new compound pair-based variant of generative topographic mapping (GTM), a machine learning approach for nonlinear mapping, with chemical space networks (CSNs). The GTM component provides a global view of the activity landscapes of large compound data sets, in which informative local SAR environments are identified, augmented by a numerical SAR scoring scheme. Prioritized local SAR regions are then projected into CSNs that resolve these regions at the level of individual compounds and their relationships. Analysis of CSNs makes it possible to distinguish between regions having different SAR characteristics and select compound subsets that are rich in SAR information.
ERIC Educational Resources Information Center
Chen, Zhongzhou; Gladding, Gary
2014-01-01
Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition,…
Overview of Human-Centric Space Situational Awareness Science and Technology
2012-09-01
AGI), the developers of Satellite Tool Kit ( STK ), has provided demonstrations of innovative SSA visualization concepts that take advantage of the...needs inherent with SSA. RH has conducted CTAs and developed work-centered human-computer interfaces, visualizations , and collaboration technologies...all end users. RH’s Battlespace Visualization Branch researches methods to exploit the visual channel primarily to improve decision making and
Validation of the Preverbal Visual Assessment (PreViAs) questionnaire.
García-Ormaechea, Inés; González, Inmaculada; Duplá, María; Andres, Eva; Pueyo, Victoria
2014-10-01
Visual cognitive integrative functions need to be evaluated by a behavioral assessment, which requires an experienced evaluator. The Preverbal Visual Assessment (PreViAs) questionnaire was designed to evaluate these functions, both in general pediatric population or in children with high risk of visual cognitive problems, through primary caregivers' answers. We aimed to validate the PreViAs questionnaire by comparing caregiver reports with results from a comprehensive clinical protocol. A total of 220 infants (<2 years old) were divided into two groups according to visual development, as determined by the clinical protocol. Their primary caregivers completed the PreViAs questionnaire, which consists of 30 questions related to one or more visual domains: visual attention, visual communication, visual-motor coordination, and visual processing. Questionnaire answers were compared with results of behavioral assessments performed by three pediatric ophthalmologists. Results of the clinical protocol classified 128 infants as having normal visual maturation, and 92 as having abnormal visual maturation. The specificity of PreViAs questionnaire was >80%, and sensitivity was 64%-79%. More than 80% of the infants were correctly classified, and test-retest reliability exceeded 0.9 for all domains. The PreViAs questionnaire is useful to detect abnormal visual maturation in infants from birth to 24months of age. It improves the anamnesis process in infants at risk of visual dysfunctions. Copyright © 2014. Published by Elsevier Ireland Ltd.
ERIC Educational Resources Information Center
Brisco, Nicole
2011-01-01
Build, create, make, blog, develop, organize, structure, perform. These are just a few verbs that illustrate the visual world. These words create images that allow students to respond to their environment. Visual culture studies recognize the predominance of visual forms of media, communication, and information in the postmodern world. This…
Ganglion Cell Loss and Age-Related Visual Loss: A Cortical Pooling Analysis
SCHMIDT, LAURA A.; LY-SCHROEDER, EMILY; SWANSON, WILLIAM H.
2006-01-01
Purpose To evaluate the ability of the cortical pooling model to predict the effects of random, mild ganglion cell loss, we compared the predictions of the model with the age-related loss and variability in achromatic and chromatic contrast sensitivity. Methods The relative sensitivity to small (0.5°) and large (3.0°) stimuli was compared in older (mean = 67 years, n = 27) and younger (mean = 23 years, n = 32) adults. Contrast sensitivity for modulations along the luminance, equiluminant L-cone, and equiluminant S-cone axes was assessed at the fovea and at four peripheral locations (12°). Results When the stimuli were large, threshold measurements obtained from all participants were reliable and well within the range of modulations along the chromatic axes that could be produced by the phosphors of the CRT. For the large stimuli, neither long- nor short-term variability increased as a function of age. Increasing the size of the stimulus did not decrease the magnitude of the age-related losses when the stimulus was chromatic, and visual losses observed with large chromatic stimuli were not different from those obtained with small achromatic stimuli. Moreover, chromatic contrast sensitivity assessments identified significant visual losses in four individuals who were not identified by achromatic contrast sensitivity assessments and only missed identifying one individual with significant losses in achromatic contrast sensitivity. Conclusions The declines in achromatic and chromatic sensitivity as a function of age (0.4 – 0.7 dB per decade) were similar to those obtained in previous studies of achromatic and chromatic perimetry and are consistent with the loss of retinal ganglion cells reported in histologic studies. The results of this study are consistent with the predictions the cortical pooling model makes for both variability and contrast sensitivity. These findings emphasize that selective visual impairments do not necessarily reflect preferential damage to a single ganglion cell class and that it is important to include the influence of higher cortical processing when quantifying the relation between ganglion cells and visual function. PMID:16840870
Visual function of children with visual and other disabilities in Oman: A case series.
Gogri, Urmi; Khandekar, Rajiv; Al Harby, Salah
2016-12-01
We assessed the visual functioning of the children with special needs in Oman between 2009 and 2012. We present the methods of assessing different visual functions, outcomes, and interventions carried out to improve their functioning. Optometrists assessed visual functions of children of "Day care centres" in Oman. Experts further assessed them and provided low vision care. Ocular movements, refractive corrections, near, distance, contrast color, motion, field of vision, and cognitive visual function test results were noted. Feedback to caregivers was given to improve visual functioning of these children. We grouped 321 participants, (196 [61.1%] boys, age range of 3-18 years) into 61; Down syndrome (DS), 72 with intellectual disabilities (IDs), 67; hearing impaired and 121 with other conditions. Refractive error and lag of accommodation were 26 (42.6%) and 14 (22.6%) among children with DS. Contrast sensitivity was impaired in 8 (12.7%) among hearing impaired children. Defective distant and near vision was in 162 (70%) and 104 (42%) of our cohort. Children with ID were most difficult to assess. Children in a group of other disabilities had a higher proportion of impaired visual functioning. They were given low vision aids (telescopes [22], filters [7], and magnifiers [3]) in large numbers compared to those in other groups. Visual functioning of children with other disabilities show great variation and difficult to group. The care, therefore, should be at individual level. All visual functions cannot be assessed at one time.
DEEP MOTIF DASHBOARD: VISUALIZING AND UNDERSTANDING GENOMIC SEQUENCES USING DEEP NEURAL NETWORKS.
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2017-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence's saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them.
Deep Motif Dashboard: Visualizing and Understanding Genomic Sequences Using Deep Neural Networks
Lanchantin, Jack; Singh, Ritambhara; Wang, Beilun; Qi, Yanjun
2018-01-01
Deep neural network (DNN) models have recently obtained state-of-the-art prediction accuracy for the transcription factor binding (TFBS) site classification task. However, it remains unclear how these approaches identify meaningful DNA sequence signals and give insights as to why TFs bind to certain locations. In this paper, we propose a toolkit called the Deep Motif Dashboard (DeMo Dashboard) which provides a suite of visualization strategies to extract motifs, or sequence patterns from deep neural network models for TFBS classification. We demonstrate how to visualize and understand three important DNN models: convolutional, recurrent, and convolutional-recurrent networks. Our first visualization method is finding a test sequence’s saliency map which uses first-order derivatives to describe the importance of each nucleotide in making the final prediction. Second, considering recurrent models make predictions in a temporal manner (from one end of a TFBS sequence to the other), we introduce temporal output scores, indicating the prediction score of a model over time for a sequential input. Lastly, a class-specific visualization strategy finds the optimal input sequence for a given TFBS positive class via stochastic gradient optimization. Our experimental results indicate that a convolutional-recurrent architecture performs the best among the three architectures. The visualization techniques indicate that CNN-RNN makes predictions by modeling both motifs as well as dependencies among them. PMID:27896980
Dyslexia and reasoning: the importance of visual processes.
Bacon, Alison M; Handley, Simon J
2010-08-01
Recent research has suggested that individuals with dyslexia rely on explicit visuospatial representations for syllogistic reasoning while most non-dyslexics opt for an abstract verbal strategy. This paper investigates the role of visual processes in relational reasoning amongst dyslexic reasoners. Expt 1 presents written and verbal protocol evidence to suggest that reasoners with dyslexia generate detailed representations of relational properties and use these to make a visual comparison of objects. Non-dyslexics use a linear array of objects to make a simple transitive inference. Expt 2 examined evidence for the visual-impedance effect which suggests that visual information detracts from reasoning leading to longer latencies and reduced accuracy. While non-dyslexics showed the impedance effects predicted, dyslexics showed only reduced accuracy on problems designed specifically to elicit imagery. Expt 3 presented problems with less semantically and visually rich content. The non-dyslexic group again showed impedance effects, but dyslexics did not. Furthermore, in both studies, visual memory predicted reasoning accuracy for dyslexic participants, but not for non-dyslexics, particularly on problems with highly visual content. The findings are discussed in terms of the importance of visual and semantic processes in reasoning for individuals with dyslexia, and we argue that these processes play a compensatory role, offsetting phonological and verbal memory deficits.
Ossification center of the infant hip: sonographic and radiographic correlation.
Harcke, H T; Lee, M S; Sinning, L; Clarke, N M; Borns, P F; MacEwen, G D
1986-08-01
A new sonographic technique for evaluating the ossification center of the infant's hip allowed identification of the ossific nucleus before it could be visualized radiographically. With this technique, delay in ossification associated with hip pathology can also be recognized. Proper assessment of the size of the ossific nucleus requires scanning in orthogonal planes. Acoustic shadowing causes the growing ossification center to appear curved and may make the medial acetabulum and triradiate cartilage difficult to identify. Sonographic hip evaluation usually ceases to be reliable in children over 1 year old.
Investigation of injury data at a detonator facility
Cournoyer, Michael E.; Apodaca, Marylou; Bustamante, Robert A.; ...
2016-05-01
This paper focuses on the collection of injury data; incorporation of this information into a visual format that DET management uses to make decisions to improving operations. Results from this 1 study include of the following: chemical exposure cases have declined because the Hazard Assessment of each DET operation has been formally reviewed; Slip/Trip/Fall factors have decreased due to Slip Simulator training; and work station evaluations have led to fewer injuries with Lift/Push/Pull factors. Rotation of employees, ergonomically friendly balances, automatic powder dispensers, and other equipment procurements will lower ergonomic injuries.
Investigation of injury data at a detonator facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, Michael E.; Apodaca, Marylou; Bustamante, Robert A.
This paper focuses on the collection of injury data; incorporation of this information into a visual format that DET management uses to make decisions to improving operations. Results from this 1 study include of the following: chemical exposure cases have declined because the Hazard Assessment of each DET operation has been formally reviewed; Slip/Trip/Fall factors have decreased due to Slip Simulator training; and work station evaluations have led to fewer injuries with Lift/Push/Pull factors. Rotation of employees, ergonomically friendly balances, automatic powder dispensers, and other equipment procurements will lower ergonomic injuries.
Brief Report: Autism-like Traits are Associated With Enhanced Ability to Disembed Visual Forms.
Sabatino DiCriscio, Antoinette; Troiani, Vanessa
2017-05-01
Atypical visual perceptual skills are thought to underlie unusual visual attention in autism spectrum disorders. We assessed whether individual differences in visual processing skills scaled with quantitative traits associated with the broader autism phenotype (BAP). Visual perception was assessed using the Figure-ground subtest of the Test of visual perceptual skills-3rd Edition (TVPS). In a large adult cohort (n = 209), TVPS-Figure Ground scores were positively correlated with autistic-like social features as assessed by the Broader autism phenotype questionnaire. This relationship was gender-specific, with males showing a correspondence between visual perceptual skills and autistic-like traits. This work supports the link between atypical visual perception and autism and highlights the importance in characterizing meaningful individual differences in clinically relevant behavioral phenotypes.
Disaster Emergency Rapid Assessment Based on Remote Sensing and Background Data
NASA Astrophysics Data System (ADS)
Han, X.; Wu, J.
2018-04-01
The period from starting to the stable conditions is an important stage of disaster development. In addition to collecting and reporting information on disaster situations, remote sensing images by satellites and drones and monitoring results from disaster-stricken areas should be obtained. Fusion of multi-source background data such as population, geography and topography, and remote sensing monitoring information can be used in geographic information system analysis to quickly and objectively assess the disaster information. According to the characteristics of different hazards, the models and methods driven by the rapid assessment of mission requirements are tested and screened. Based on remote sensing images, the features of exposures quickly determine disaster-affected areas and intensity levels, and extract key disaster information about affected hospitals and schools as well as cultivated land and crops, and make decisions after emergency response with visual assessment results.
Hagiya, A S; Etman, A; Siddiqi, I N; Cen, S; Matcuk, G R; Brynes, R K; Salama, M E
2018-04-01
Evaluation of cellularity is an essential component of bone marrow trephine biopsy examination. The standard practice is to report the results as visual estimates (VE). Digital image analysis (DIA) offers the promise of more objective measurements of cellularity. Adult bone marrow trephine biopsy sections were assessed for cellularity by VE. Sections were scanned using an Aperio AT2 Scanscope and analyzed using a Cytonuclear (version 1.4) algorithm on halo software. Intraclass correlation (ICC) was used to assess relatedness between VE and DIA, and between MRI and DIA for a separate subset of patients. Trephine biopsy sections from a subset of patients with bone marrow biopsies uninvolved by malignancy were assessed for age-related changes. Interobserver VE agreement was good to excellent. The ICC value was 0.81 for VE and DIA, and 0.50 for MRI and DIA. Linearity studies showed no statistically significant trend for age-related changes in cellularity in our cohort (r = -.29, P = .06). Agreement was good between VE and DIA. It may be possible to use DIA or VE to measure cellularity in the appropriate clinical scenario. The limited sample size precludes similar determinations for MRI calculations. Further studies examining healthy donors are necessary before making definitive conclusions regarding age and cellularity. © 2017 John Wiley & Sons Ltd.
Moving to Capture Children's Attention: Developing a Methodology for Measuring Visuomotor Attention.
Hill, Liam J B; Coats, Rachel O; Mushtaq, Faisal; Williams, Justin H G; Aucott, Lorna S; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child's development. However, methodological limitations currently make large-scale assessment of children's attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of 'Visual Motor Attention' (VMA)-a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method's core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults' attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruotolo, Francesco, E-mail: francesco.ruotolo@unina2.it; Maffei, Luigi, E-mail: luigi.maffei@unina2.it; Di Gabriele, Maria, E-mail: maria.digabriele@unina2.it
Several international studies have shown that traffic noise has a negative impact on people's health and that people's annoyance does not depend only on noise energetic levels, but rather on multi-perceptual factors. The combination of virtual reality technology and audio rendering techniques allow us to experiment a new approach for environmental noise assessment that can help to investigate in advance the potential negative effects of noise associated with a specific project and that in turn can help designers to make educated decisions. In the present study, the audio–visual impact of a new motorway project on people has been assessed bymore » means of immersive virtual reality technology. In particular, participants were exposed to 3D reconstructions of an actual landscape without the projected motorway (ante operam condition), and of the same landscape with the projected motorway (post operam condition). Furthermore, individuals' reactions to noise were assessed by means of objective cognitive measures (short term verbal memory and executive functions) and subjective evaluations (noise and visual annoyance). Overall, the results showed that the introduction of a projected motorway in the environment can have immediate detrimental effects of people's well-being depending on the distance from the noise source. In particular, noise due to the new infrastructure seems to exert a negative influence on short term verbal memory and to increase both visual and noise annoyance. The theoretical and practical implications of these findings are discussed. -- Highlights: ► Impact of traffic noise on people's well-being depends on multi-perceptual factors. ► A multisensory virtual reality technology is used to simulate a projected motorway. ► Effects on short-term memory and auditory and visual subjective annoyance were found. ► The closer the distance from the motorway the stronger was the effect. ► Multisensory virtual reality methodologies can be used to study environmental impact.« less
ERIC Educational Resources Information Center
Ryoo, Kihyun; Linn, Marcia C.
2012-01-01
Dynamic visualizations have the potential to make abstract scientific phenomena more accessible and visible to students, but they can also be confusing and difficult to comprehend. This research investigates how dynamic visualizations, compared to static illustrations, can support middle school students in developing an integrated understanding of…
Guiding Visual Attention in Decision Making--Verbal Instructions versus Flicker Cueing
ERIC Educational Resources Information Center
Canal-Bruland, Rouwen
2009-01-01
Perceptual-cognitive processes play an important role in open, fast-paced, interceptive sports such as tennis, basketball, and soccer. Visual information processing has been shown to distinguish skilled from less skilled athletes. Research on the perceptual demands of sports performance has raised questions regarding athletes' visual information…
Can Visualizing Document Space Improve Users' Information Foraging?
ERIC Educational Resources Information Center
Song, Min
1998-01-01
This study shows how users access relevant information in a visualized document space and determine whether BiblioMapper, a visualization tool, strengthens an information retrieval (IR) system and makes it more usable. BiblioMapper, developed for a CISI collection, was evaluated by accuracy, time, and user satisfaction. Users' navigation…
Using Scientific Visualization to Represent Soil Hydrology Dynamics
ERIC Educational Resources Information Center
Dolliver, H. A. S.; Bell, J. C.
2006-01-01
Understanding the relationships between soil, landscape, and hydrology is important for making sustainable land management decisions. In this study, scientific visualization was explored as a means to visually represent the complex spatial and temporal variations in the hydrologic status of soils. Soil hydrology data was collected at seven…
Learning from Chemical Visualizations: Comparing Generation and Selection
ERIC Educational Resources Information Center
Zhang, Zhihui Helen; Linn, Marcia C.
2013-01-01
Dynamic visualizations can make unseen phenomena such as chemical reactions visible but students need guidance to benefit from them. This study explores the value of generating drawings versus selecting among alternatives to guide students to learn chemical reactions from a dynamic visualization of hydrogen combustion as part of an online inquiry…
Frida Kahlo: Visual Articulations of Suffering and Loss.
ERIC Educational Resources Information Center
Nixon, Lois LaCivita
1996-01-01
Illustrates the value of interdisciplinary approaches to patient care by exploring visual articulations of suffering as rendered by one artist. Makes general observations about the nature of humanities courses offered to medical students and depicts a visual portrayal of an illness story representing personal perspectives about patient suffering…
Multimedia Visualizer: An Animated, Object-Based OPAC.
ERIC Educational Resources Information Center
Lee, Newton S.
1991-01-01
Describes the Multimedia Visualizer, an online public access catalog (OPAC) that uses animated visualizations to make it more user friendly. Pictures of the system are shown that illustrate the interactive objects that patrons can access, including card catalog drawers, librarian desks, and bookshelves; and access to multimedia items is described.…
Eco-Visualization: Promoting Environmental Stewardship in the Museum
ERIC Educational Resources Information Center
Holmes, Tiffany
2007-01-01
Eco-visualizations are artworks that reinterpret environmental data with custom software to promote stewardship. Eco-visualization technology offers a new way to dynamically picture environmental data and make it meaningful to a museum population. The questions are: How might museums create new projects and programs around place-based information?…
Directional asymmetries in human smooth pursuit eye movements.
Ke, Sally R; Lam, Jessica; Pai, Dinesh K; Spering, Miriam
2013-06-27
Humans make smooth pursuit eye movements to bring the image of a moving object onto the fovea. Although pursuit accuracy is critical to prevent motion blur, the eye often falls behind the target. Previous studies suggest that pursuit accuracy differs between motion directions. Here, we systematically assess asymmetries in smooth pursuit. In experiment 1, binocular eye movements were recorded while observers (n = 20) tracked a small spot of light moving along one of four cardinal or diagonal axes across a featureless background. We analyzed pursuit latency, acceleration, peak velocity, gain, and catch-up saccade latency, number, and amplitude. In experiment 2 (n = 22), we examined the effects of spatial location and constrained stimulus motion within the upper or lower visual field. Pursuit was significantly faster (higher acceleration, peak velocity, and gain) and smoother (fewer and later catch-up saccades) in response to downward versus upward motion in both the upper and the lower visual fields. Pursuit was also more accurate and smoother in response to horizontal versus vertical motion. CONCLUSIONS. Our study is the first to report a consistent up-down asymmetry in human adults, regardless of visual field. Our findings suggest that pursuit asymmetries are adaptive responses to the requirements of the visual context: preferred motion directions (horizontal and downward) are more critical to our survival than nonpreferred ones.
Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole
2011-09-01
We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.
Yoon, Ki Woong; Song, Ji Soo; Han, Young Min
2014-01-01
To estimate the diagnostic accuracy of the sum of relative enhancement ratio (sRER) in making a differential diagnosis of hepatocellular carcinoma (HCC) from benign cirrhosis-related nodules. Eighteen benign cirrhosis-related nodules and 18 HCCs were evaluated. Three radiologists independently reviewed computed tomography images using visual assessment and sRER. sRER was estimated by adding region-of-interest measurement in the arterial phase and the delayed phase. Diagnostic performance and accuracy were evaluated. The mean values of sRER were significantly higher in HCCs than in benign cirrhosis-related nodules. The sRER method improved diagnostic accuracy of differentiating HCCs from benign cirrhosis-related nodules. Copyright © 2014 Elsevier Inc. All rights reserved.
Pre-Occupancy Evaluation of Patient Satisfaction in Hospitals.
van der Zwart, Johan; van der Voordt, Theo J M
2015-01-01
To explore analytical drawing techniques as a means to assess the attainment of preset objectives in the design phase of hospital buildings and to test ex ante if the building fits with these objectives, with a focus on view on nature, wayfinding, daylight, visibility of patient areas from reception desks, privacy, and communication between medical staff and patients, and noise reduction. The impact of the build environment on user value is at the core of evidence-based design, but these values are normally only experienced by users after the building is constructed. Therefore, assessment of these values during the design phase could improve the outcome for patients. An analysis of available assessment tools showed that research by drawing and the use of space syntax methods is an adequate means to visualize the strengths and weaknesses of floor plans in relation to spatial user experience. This approach is illustrated by an assessment of a nursing ward of the Deventer hospital in the Netherlands. Floor plan analysis by using space syntax techniques makes it possible to visualize various aspects of user value and supports the incorporation of usability issues in the discussion between the designer, the client, and the users during the design process. It is recommended to test the findings of the design assessment by a post-occupancy evaluation of the building-in-use and to conduct similar studies in other hospitals, as a means to build a body of knowledge for user-oriented design and management of hospital buildings. © The Author(s) 2015.
Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model
NASA Astrophysics Data System (ADS)
Shijuan, Li; Yeping, Zhu
Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.
Visualization and Analysis for Near-Real-Time Decision Making in Distributed Workflows
Pugmire, David; Kress, James; Choi, Jong; ...
2016-08-04
Data driven science is becoming increasingly more common, complex, and is placing tremendous stresses on visualization and analysis frameworks. Data sources producing 10GB per second (and more) are becoming increasingly commonplace in both simulation, sensor and experimental sciences. These data sources, which are often distributed around the world, must be analyzed by teams of scientists that are also distributed. Enabling scientists to view, query and interact with such large volumes of data in near-real-time requires a rich fusion of visualization and analysis techniques, middleware and workflow systems. Here, this paper discusses initial research into visualization and analysis of distributed datamore » workflows that enables scientists to make near-real-time decisions of large volumes of time varying data.« less
7 Key Challenges for Visualization in Cyber Network Defense
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best, Daniel M.; Endert, Alexander; Kidwell, Dan
In this paper we present seven challenges, informed by two user studies, to be considered when developing a visualization for cyber security purposes. Cyber security visualizations must go beyond isolated solutions and “pretty picture” visualizations in order to make impact to users. We provide an example prototype that addresses the challenges with a description of how they are met. Our aim is to assist in increasing utility and adoption rates for visualization capabilities in cyber security.
A visual-environment simulator with variable contrast
NASA Astrophysics Data System (ADS)
Gusarova, N. F.; Demin, A. V.; Polshchikov, G. V.
1987-01-01
A visual-environment simulator is proposed in which the image contrast can be varied continuously up to the reversal of the image. Contrast variability can be achieved by using two independently adjustable light sources to simultaneously illuminate the carrier of visual information (e.g., a slide or a cinematographic film). It is shown that such a scheme makes it possible to adequately model a complex visual environment.
ERIC Educational Resources Information Center
West, Thomas G.
This book presents research on how some innovations in computer visualization are making work and education more favorable to visual thinking. The book exposes many popular myths about conventional intelligence through an examination of the role of visual-spatial strengths and verbal weaknesses in the lives of 11 gifted individuals, including…
Evidence Relating Subjective Contours and Interpretations Involving Occlusion.
1981-06-01
This article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretations and is unable to see subjective...article describes a patient with visual agnosia who is both unable to make the usual occlusion interpretions and is unable to see subjective contours...Dr. Howard Gardner for providing access to the facilities at Boston Veterans Administration Hospital for examination of the agnosia patient J.R. Also
Making sense from space-time data in laboratory experiments on space plasma processes
NASA Technical Reports Server (NTRS)
Gekelman, Walter; Bamber, James; Leneman, David; Vincena, Steve; Maggs, James; Rosenberg, Steve
1995-01-01
A number of visualization techniques are discussed in a laboratory experiment designed to study phenomena that occur in space. Visualization tools are used to design the apparatus, collect data, and make one-, two-, and three-dimensional plots of the results. These tools are an indispensable part of the experiment because the data sets are hundreds of megabytes in size and rapid turnaround is required.
NASA Technical Reports Server (NTRS)
Bourquin, K.; Palmer, E. A.; Cooper, G.; Gerdes, R. M.
1973-01-01
A preliminary assessment was made of the adequacy of a simple head up display (HUD) for providing vertical guidance for flying noise abatement and standard visual approaches in a jet transport. The HUD featured gyro-stabilized approach angle scales which display the angle of declination to any point on the ground and a horizontal flight path bar which aids the pilot in his control of the aircraft flight path angle. Thirty-three standard and noise abatement approaches were flown in a Boeing 747 aircraft equipped with a head up display. The HUD was also simulated in a research simulator. The simulator was used to familiarize the pilots with the display and to determine the most suitable way to use the HUD for making high capture noise abatement approaches. Preliminary flight and simulator data are presented and problem areas that require further investigation are identified.
First impressions: gait cues drive reliable trait judgements.
Thoresen, John C; Vuong, Quoc C; Atkinson, Anthony P
2012-09-01
Personality trait attribution can underpin important social decisions and yet requires little effort; even a brief exposure to a photograph can generate lasting impressions. Body movement is a channel readily available to observers and allows judgements to be made when facial and body appearances are less visible; e.g., from great distances. Across three studies, we assessed the reliability of trait judgements of point-light walkers and identified motion-related visual cues driving observers' judgements. The findings confirm that observers make reliable, albeit inaccurate, trait judgements, and these were linked to a small number of motion components derived from a Principal Component Analysis of the motion data. Parametric manipulation of the motion components linearly affected trait ratings, providing strong evidence that the visual cues captured by these components drive observers' trait judgements. Subsequent analyses suggest that reliability of trait ratings was driven by impressions of emotion, attractiveness and masculinity. Copyright © 2012 Elsevier B.V. All rights reserved.
Looking inward and back: Real-time monitoring of visual working memories.
Suchow, Jordan W; Fougnie, Daryl; Alvarez, George A
2017-04-01
Confidence in our memories is influenced by many factors, including beliefs about the perceptibility or memorability of certain kinds of objects and events, as well as knowledge about our skill sets, habits, and experiences. Notoriously, our knowledge and beliefs about memory can lead us astray, causing us to be overly confident in eyewitness testimony or to overestimate the frequency of recent experiences. Here, using visual working memory as a case study, we stripped away all these potentially misleading cues, requiring observers to make confidence judgments by directly assessing the quality of their memory representations. We show that individuals can monitor the status of information in working memory as it degrades over time. Our findings suggest that people have access to information reflecting the existence and quality of their working memories, and furthermore, that they can use this information to guide their behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
A visualization environment for supercomputing-based applications in computational mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlakos, C.J.; Schoof, L.A.; Mareda, J.F.
1993-06-01
In this paper, we characterize a visualization environment that has been designed and prototyped for a large community of scientists and engineers, with an emphasis in superconducting-based computational mechanics. The proposed environment makes use of a visualization server concept to provide effective, interactive visualization to the user`s desktop. Benefits of using the visualization server approach are discussed. Some thoughts regarding desirable features for visualization server hardware architectures are also addressed. A brief discussion of the software environment is included. The paper concludes by summarizing certain observations which we have made regarding the implementation of such visualization environments.
O'Neill, Samuel; McAndrew, Darryl J
2016-04-01
The assessment of visual acuity is indicated in a number of clinical circumstances. It is commonly conducted through the use of a Snellen wall chart. Mobile technology developments and adoption rates by clinicians may potentially provide more convenient methods of assessing visual acuity. Limited data exist on the validity of these devices and applications. The objective of this study was to evaluate the assessment of distance visual acuity using mobile technology devices against the commonly used 3-metre Snellen chart in a primary care setting. A prospective quantitative comparative study was conducted at a regional medical practice. The visual acuity of 60 participants was assessed on a Snellen wall chart and two mobile technology devices (iPhone, iPad). Visual acuity intervals were converted to logarithm of minimum angle of resolution (logMAR) scores and subjected to intraclass correlation coefficient (ICC) assessment. The results show a high level of general agreement between testing modality (ICC 0.917 with a 95% confidence interval of 0.887-0.940). The high level of agreement of visual acuity results between the Snellen wall chart and both mobile technology devices suggests that clinicians can use this technology with confidence in the primary care setting.
The Use of Dynamic Visual Acuity as a Functional Test of Gaze Stabilization Following Space Flight
NASA Technical Reports Server (NTRS)
Peters, B. T.; Mulavara, A. P.; Brady, R.; Miller, C. A.; Richards, J. T.; Warren, L. E.; Cohen, H. S.; Bloomberg, J. J.
2006-01-01
After prolonged exposure to a given gravitational environment the transition to another is accompanied by adaptations in the sensorimotor subsystems, including the vestibular system. Variation in the adaptation time course of these subsystems, and the functional redundancies that exist between them make it difficult to accurately assess the functional capacity and physical limitations of astro/cosmonauts using tests on individual subsystems. While isolated tests of subsystem performance may be the only means to address where interventions are required, direct measures of performance may be more suitable for assessing the operational consequences of incomplete adaptation to changes in the gravitational environment. A test of dynamic visual acuity (DVA) is currently being used in the JSC Neurosciences Laboratory as part of a series of measures to assess the efficacy of a countermeasure to mitigate postflight locomotor dysfunction. In the current protocol, subjects visual acuity is determined using Landolt ring optotypes presented sequentially on a computer display. Visual acuity assessments are made both while standing and while walking at 1.8 m/s on a motorized treadmill. The use of a psychophysical threshold detection algorithm reduces the required number of optotype presentations and the results can be presented immediately after the test. The difference between the walking and standing acuity measures provides a metric of the change in the subject s ability to maintain gaze fixation on the visual target while walking. This functional consequence is observable regardless of the underlying subsystem most responsible for the change. Data from 15 cosmo/astronauts have been collected following long-duration (approx. 6 months) stays in space using a visual target viewing distance of 4.0 meters. An investigation of the group mean shows a change in DVA soon after the flight that asymptotes back to baseline approximately one week following their return to earth. The performance of some subjects nicely parallels the stereotypical recovery curve observed in the group mean data. Others show dramatic changes in DVA from one test day to another. These changes may be indicative of a re-adaptation process that is not characterized by a steady improvement with the passage of time, but is instead a dynamic search for appropriate coordinative strategy to achieve the desired gaze stabilization goal. Ground-based data have been collected in our lab using DVA with one of the goals being to improve the DVA test itself. In one of these studies, the DVA test was repeated using a visual target viewing distance of 0.5 meters. While walking, the relative contributions of the otoliths and semi-circular canals that are required to stabilize gaze are affected by visual target viewing distance. It may be possible to exploit this using the current treadmill DVA test to differentially assess changes in these vestibular subsystems. The postflight DVA evaluations currently used have been augmented to include the near target version of the test. Preliminary results from these assessments, as well as the results from the ground-based tests will also be reported. DVA provides a direct measure of a subject's ability to see clearly in the presence of self-motion. The use of the current tests for providing a functionally relevant metric is evident. However, it is possible to expand the scope of DVA testing to include scenarios other than walking. A facility for measuring DVA in the presence of passive movements is being created. Using a mechanized platform to provide the perturbation, it should be possible to simulate aircraft and automobile vibration profiles. Used in conjunction with the far and near visual displays this facility should be able to assess a subject s ability to clearly see distant objects as well as those that appear on the dashboard or instrument control panel during functionally relevant situations.
Selamat, Rusidah; Zain, Fuziah; Raib, Junidah; Zakaria, Rosini; Marzuki, Mohd Shaffari; Ibrahim, Taziah Fatimah
2011-12-01
To study the validity of the visual clinical assessment of weight relative to length and length relative to age as compared to the World Health Organization (WHO) 2006 standard and National Center for Health Statistics (NCHS) 1977 reference in asssessing the physical growth of children younger than 1 year. A prospective cohort study was carried out among 684 infants attending goverment health clinics in 2 states in Malaysia. Body weight, length, and clinical assessment were measured on the same day for 9 visits, scheduled every month until 6 months of age and every 2 months until 12 months of age. All of the 3 z-scores for weight for age (WAZ), length for age (HAZ), and weight for length (WHZ) were calculated using WHO Anthro for Personal Computers software. The average sensitivity and specificity for the visual clinical assessment for the detection of thinness were higher using the WHO 2006 standard as compared with using NCHS 1977. However, the overall sensitivity of the visual clinical assessment for the detection of thin and lean children was lower from 1 month of age until a year as compared with the WHO 2006 standard and NCHS 1977 reference. The positive predictive value (PPV) for the visual clinical assessment versus the WHO 2006 standard was almost doubled as compared with the PPV of visual clinical assessment versus the NCHS 1977 reference. The overall average sensitivity, specificity, PPV, and negative predictive value for the detection of stunting was higher for visual clinical assessment versus the WHO 2006 standard as compared with visual clinical assessment versus the NCHS 1977 reference. The sensitivity and specificity of visual clinical assessment for the detection of wasting and stunting among infants are better for the WHO 2006 standard than the NCHS 1977 reference.
Effects of ensemble and summary displays on interpretations of geospatial uncertainty data.
Padilla, Lace M; Ruginski, Ian T; Creem-Regehr, Sarah H
2017-01-01
Ensemble and summary displays are two widely used methods to represent visual-spatial uncertainty; however, there is disagreement about which is the most effective technique to communicate uncertainty to the general public. Visualization scientists create ensemble displays by plotting multiple data points on the same Cartesian coordinate plane. Despite their use in scientific practice, it is more common in public presentations to use visualizations of summary displays, which scientists create by plotting statistical parameters of the ensemble members. While prior work has demonstrated that viewers make different decisions when viewing summary and ensemble displays, it is unclear what components of the displays lead to diverging judgments. This study aims to compare the salience of visual features - or visual elements that attract bottom-up attention - as one possible source of diverging judgments made with ensemble and summary displays in the context of hurricane track forecasts. We report that salient visual features of both ensemble and summary displays influence participant judgment. Specifically, we find that salient features of summary displays of geospatial uncertainty can be misunderstood as displaying size information. Further, salient features of ensemble displays evoke judgments that are indicative of accurate interpretations of the underlying probability distribution of the ensemble data. However, when participants use ensemble displays to make point-based judgments, they may overweight individual ensemble members in their decision-making process. We propose that ensemble displays are a promising alternative to summary displays in a geospatial context but that decisions about visualization methods should be informed by the viewer's task.
Visual communication materials for rural audiences: re-orienting artists and copy-writers.
Chen, P
1989-01-01
An agency of the Indian government cooperated with a United Nations Children Fund to produce posters for the child survival and development program in India. To make the posters and other visual communications more effective a workshop was planned for the artists, visualizers, and copywriters. Previous experience had shown that some visual materials were not always oriented to the local contexts and villages often misinterpreted the messages of these materials. The 12 day workshop was designed to assist artists to better understand the audiences needs. there had been little pretesting of art work for health communication and no consideration of the visual literacy of the audience. The first project in the workshop consisted of artists and copywriters visiting villages to pretest posters presently in circulation. After some reservations they quickly found that the villagers perception of the posters was entirely different than the message being conveyed. By going back and getting the villagers perceptions of common sights related to maternal and child health, the artist could better prepare communication materials. They also collected basic sociological data at each village. New posters were then prepared with the help of inputs from midwives, nurses, and other health care workers. By pretesting these materials again they were able to clarify the messages, and repeated testing showed the posters were more understandable. The participants in the workshop found that visual communications materials demand proper understanding of the subject matter and the audience. Pretesting of materials is necessary before production, and changes should be made to reflect the local culture and surroundings. Posters for rural illiterate audiences should have the minimum written text needed and visual literacy must be assessed.
Reeder, B; Chung, J; Le, T; Thompson, H; Demiris, G
2014-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Using Data from Ambient Assisted Living and Smart Homes in Electronic Health Records". Our objectives were to: 1) characterize older adult participants' perceived usefulness of in-home sensor data and 2) develop novel visual displays for sensor data from Ambient Assisted Living environments that can become part of electronic health records. Semi-structured interviews were conducted with community-dwelling older adult participants during three and six-month visits. We engaged participants in two design iterations by soliciting feedback about display types and visual displays of simulated data related to a fall scenario. Interview transcripts were analyzed to identify themes related to perceived usefulness of sensor data. Thematic analysis identified three themes: perceived usefulness of sensor data for managing health; factors that affect perceived usefulness of sensor data and; perceived usefulness of visual displays. Visual displays were cited as potentially useful for family members and health care providers. Three novel visual displays were created based on interview results, design guidelines derived from prior AAL research, and principles of graphic design theory. Participants identified potential uses of personal activity data for monitoring health status and capturing early signs of illness. One area for future research is to determine how visual displays of AAL data might be utilized to connect family members and health care providers through shared understanding of activity levels versus a more simplified view of self-management. Connecting informal and formal caregiving networks may facilitate better communication between older adults, family members and health care providers for shared decision-making.
Clinical evaluation of concussion: the evolving role of oculomotor assessments.
Sussman, Eric S; Ho, Allen L; Pendharkar, Arjun V; Ghajar, Jamshid
2016-04-01
Sports-related concussion is a change in brain function following a direct or an indirect force to the head, identified in awake individuals and accounting for a considerable proportion of mild traumatic brain injury. Although the neurological signs and symptoms of concussion can be subtle and transient, there can be persistent sequelae, such as impaired attention and balance, that make affected patients particularly vulnerable to further injury. Currently, there is no accepted definition or diagnostic criteria for concussion, and there is no single assessment that is accepted as capable of identifying all patients with concussion. In this paper, the authors review the available screening tools for concussion, with particular emphasis on the role of visual function testing. In particular, they discuss the oculomotor assessment tools that are being investigated in the setting of concussion screening.
The effect of texture granularity on texture synthesis quality
NASA Astrophysics Data System (ADS)
Golestaneh, S. Alireza; Subedar, Mahesh M.; Karam, Lina J.
2015-09-01
Natural and artificial textures occur frequently in images and in video sequences. Image/video coding systems based on texture synthesis can make use of a reliable texture synthesis quality assessment method in order to improve the compression performance in terms of perceived quality and bit-rate. Existing objective visual quality assessment methods do not perform satisfactorily when predicting the synthesized texture quality. In our previous work, we showed that texture regularity can be used as an attribute for estimating the quality of synthesized textures. In this paper, we study the effect of another texture attribute, namely texture granularity, on the quality of synthesized textures. For this purpose, subjective studies are conducted to assess the quality of synthesized textures with different levels (low, medium, high) of perceived texture granularity using different types of texture synthesis methods.
Evaluating the Quality of Life of Glaucoma Patients Using the State-Trait Anxiety Inventory.
Otori, Yasumasa; Takahashi, Genichiro; Urashima, Mitsuyoshi; Kuwayama, Yasuaki
2017-11-01
To evaluate anxiety felt by glaucoma patients. In total, 472 glaucoma patients responded to a questionnaire on anxiety, subjective symptoms, and vision-related quality of life (VR-QOL) associated with glaucoma. Anxiety was evaluated using the State-Trait Anxiety Inventory (STAI), state anxiety (STAI-State) subscale along with our novel questionnaire, assessing visual function and subjective symptoms, specialized for glaucoma. VR-QOL was evaluated using 5 subitems from the 25-item National Eye Institute Visual Function Questionnaire (VFQ-25). Adherence to ophthalmic antiglaucoma agents was confirmed. As indexes of visual function, corrected visual acuity (measured by eye chart), mean deviation (MD) score (measured with static perimetry), and 4 thresholds at the center of vision were determined. Stages were classified according to the Aulhorn Classification. From the STAI-State scores, the prevalence of anxiety in glaucoma patients was evaluated. We analyzed the correlation between the STAI-State and VFQ-25, anxiety, subjective symptoms, adherence, and visual function indexes. In total, 78% of glaucoma patients experienced at least an intermediate level of anxiety. The STAI-State correlated significantly with anxiety and subjective symptoms as measured by our novel questionnaire, particularly for questions "current anxiety about loss of vision" and "current anxiety in life" (r=0.468 and 0.500; both P<0.0001). However, STAI-State correlated weakly with VFQ-25, and not at all with visual function indexes and adherence. Many glaucoma patients feel anxiety. The STAI-State is correlated with the VR-QOL and anxiety in glaucoma patients, making it useful for understanding the anxiety present in glaucoma patients.
Tuikkala, Johannes; Vähämaa, Heidi; Salmela, Pekka; Nevalainen, Olli S; Aittokallio, Tero
2012-03-26
Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications.
Heravian, Javad; Saghafi, Massoud; Shoeibi, Naser; Hassanzadeh, Samira; Shakeri, Mohammad Taghi; Sharepoor, Maria
2011-08-01
Ocular toxicity from hydroxychloroquine (HCQ) is rare, but its potential permanence and severity makes it imperative to employ measures and screening protocols to minimize its occurrence. This study was performed to assess the usefulness of color vision, photo stress recovery time (PSRT), and visual evoked potentials (VEP) in early detection of ocular toxicity of HCQ, in patients with rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). 86 patients were included in the study and divided into three groups: (1) with history of HCQ use: interventional 1 (Int.1) without fundoscopic changes and Int.2 with fundoscopic changes; and (2) without history of HCQ use, as control. Visual field, color vision, PSRT and VEP results were recorded for all patients and the effect of age, disease duration, treatment duration and cumulative dose of HCQ on each test was assessed in each group. There was a significant relationship among PSRT and age, treatment duration, cumulative dose of HCQ and disease duration (P<0.001 for all). Color vision was normal in all the cases. P100 amplitude was not different between the three groups (P=0.846), but P100 latency was significantly different (P=0.025) and for Int.2 it was greater than the others. The percentage of abnormal visual fields for Int.2 was more than Int.1 and control groups (P=0.002 and P=0.005 respectively), but Int.1 and control groups were not significantly different (P>0.50). In the early stages of maculopathy, P100 latencies of VEP and PSRT are useful predictors of HCQ ocular toxicity. In patients without ocular symptoms and fundoscopic changes, the P100 latency of VEP predicts more precisely than the others.
Stanley, Jennifer; Hollands, Mark
2014-07-01
The current study aimed to quantitatively assess differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility during a virtual walking paradigm. The gaze behaviour of nine young adults, seven older adults with a relatively low risk of falling and seven older adults with a relatively higher risk of falling was measured while they watched five first-person perspective movies representing the viewpoint of a pedestrian walking through various environments. Participants also completed a number of cognitive tests: Stroop task, visual search, trail making task, Mini Mental Status Examination, and reaction time, visual tests (visual acuity and contrast sensitivity) and assessments of balance (Activities Balance Confidence Scale and Berg Balance Scale) to aid in the interpretation of differences in gaze behaviour. The high risk older adult group spent significantly more time fixating aspects of the travel path than the low risk and young adult groups. High risk older adults were also significantly slower in performing a number of the cognitive tasks than young adults. Correlations were conducted to compare the extent to which travel path fixation durations co-varied with scores on the tests of visual search, motor, and cognitive function. A positive significant correlation was found between the speed of response to the incongruent Stroop task and travel path fixation duration r21 = 0.44, p < 0.05. The results indicate that our movie-viewing paradigm can identify differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility and that these differences are associated with cognitive decline. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Digital-Visual-Sensory-Design Anthropology: Ethnography, Imagination and Intervention
ERIC Educational Resources Information Center
Pink, Sarah
2014-01-01
In this article I outline how a digital-visual-sensory approach to anthropological ethnography might participate in the making of relationship between design and anthropology. While design anthropology is itself coming of age, the potential of its relationship with applied visual anthropology methodology and theory has not been considered in the…
Visualization experiences and issues in Deep Space Exploration
NASA Technical Reports Server (NTRS)
Wright, John; Burleigh, Scott; Maruya, Makoto; Maxwell, Scott; Pischel, Rene
2003-01-01
The panelists will discuss their experiences in collecting data in deep space, transmitting it to Earth, processing and visualizing it here, and using the visualization to drive the continued mission. This closes the loop, making missions more responsive to their environment, particularly in-situ operations on planetary surfaces and within planetary atmospheres.
Anticipation in Real-world Scenes: The Role of Visual Context and Visual Memory
ERIC Educational Resources Information Center
Coco, Moreno I.; Keller, Frank; Malcolm, George L.
2016-01-01
The human sentence processor is able to make rapid predictions about upcoming linguistic input. For example, upon hearing the verb eat, anticipatory eye-movements are launched toward edible objects in a visual scene (Altmann & Kamide, 1999). However, the cognitive mechanisms that underlie anticipation remain to be elucidated in ecologically…
Visual Impairment and Self-Esteem: What Makes a Difference?
ERIC Educational Resources Information Center
Bowen, Jayne
2010-01-01
This account follows on from the research report "Visual impairment and its impact on self-esteem" (Bowen, 2010) published in this journal. The original article reported the results of an investigation of self-esteem levels amongst a sample group of 60 children with visual impairment. Four children, whose self-esteem was measured as…
Picturing German: Teaching Language and Literature through Visual Art
ERIC Educational Resources Information Center
Knapp, Thyra E.
2012-01-01
This article examines the importance of visual culture with regard to its pedagogical applications in the German language classroom. I begin by outlining the benefits and concerns associated with making visual art a part of the curriculum. Next, practical ideas are presented for using paintings in beginning, intermediate, and advanced courses.…
Perception of Elementary Students of Visuals on the Web.
ERIC Educational Resources Information Center
El-Tigi, Manal A.; And Others
The way information is visually designed and synthesized greatly affects how people understand and use that information. Increased use of the World Wide Web as a teaching tool makes it imperative to question how visual/verbal information presented via the Web can increase or restrict understanding. The purpose of this study was to examine…
Draw Me an Enthymeme: Visual Pedagogy and Verbal Organization.
ERIC Educational Resources Information Center
Danis, M. Francine
Both enthymemes and visual pedagogy speak to the capacity--and the need--of humans to make a coherent story out of the scraps of information they possess. Three possibilities exist for building on the connection between enthymemes and pictures when teaching argumentative writing--using visual aids to help students: generate material, suggest a…
Applying Visual Metaphors to Career Transitions
ERIC Educational Resources Information Center
Barner, Robert William
2011-01-01
This article makes use of a case study involving two career professionals to show how visual metaphors can be used as an important part of a constructivist approach to career counseling. It discusses how visual metaphors can serve as an effective methodology for encouraging adults to engage in the self-review of career transitions, discusses…
The Preference of Visualization in Teaching and Learning Absolute Value
ERIC Educational Resources Information Center
Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge
2012-01-01
Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…
Oculomotor guidance and capture by irrelevant faces.
Devue, Christel; Belopolsky, Artem V; Theeuwes, Jan
2012-01-01
Even though it is generally agreed that face stimuli constitute a special class of stimuli, which are treated preferentially by our visual system, it remains unclear whether faces can capture attention in a stimulus-driven manner. Moreover, there is a long-standing debate regarding the mechanism underlying the preferential bias of selecting faces. Some claim that faces constitute a set of special low-level features to which our visual system is tuned; others claim that the visual system is capable of extracting the meaning of faces very rapidly, driving attentional selection. Those debates continue because many studies contain methodological peculiarities and manipulations that prevent a definitive conclusion. Here, we present a new visual search task in which observers had to make a saccade to a uniquely colored circle while completely irrelevant objects were also present in the visual field. The results indicate that faces capture and guide the eyes more than other animated objects and that our visual system is not only tuned to the low-level features that make up a face but also to its meaning.
Yamagata, Yoshitaka; Terada, Yuko; Suzuki, Atsushi; Mimura, Osamu
2010-01-01
The visual efficiency scale currently adopted to determine the legal grade of visual disability associated with visual field loss in Japan is not appropriate for the evaluation of disability regarding daily living activities. We investigated whether Esterman disability score (EDS) is suitable for the assessment of mobility difficulty in patients with visual field loss. The correlation between the EDS calculated from Goldmann's kinetic visual field and the degree of subjective mobility difficulty determined by a questionnaire was investigated in 164 patients with visual field loss. The correlation between the EDS determined using a program built into the Humphrey field analyzer and that calculated from Goldmann's kinetic visual field was also investigated. The EDS based on the kinetic visual field was correlated well with the degree of subjective mobility difficulty, and the EDS measured using the Humphrey field analyzer could be estimated from the kinetic visual field-based EDS. Instead of the currently adopted visual efficiency scale, EDS should be employed for the assessment of mobility difficulty in patients with visual field loss, also to establish new judgment criteria concerning the visual field.
The Mission Planning Lab: A Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.; Cervantes, Benjamin W.
2009-01-01
Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).
Vision in two cyprinid fish: implications for collective behavior
Moore, Bret A.; Tyrrell, Luke P.; Fernández-Juricic, Esteban
2015-01-01
Many species of fish rely on their visual systems to interact with conspecifics and these interactions can lead to collective behavior. Individual-based models have been used to predict collective interactions; however, these models generally make simplistic assumptions about the sensory systems that are applied without proper empirical testing to different species. This could limit our ability to predict (and test empirically) collective behavior in species with very different sensory requirements. In this study, we characterized components of the visual system in two species of cyprinid fish known to engage in visually dependent collective interactions (zebrafish Danio rerio and golden shiner Notemigonus crysoleucas) and derived quantitative predictions about the positioning of individuals within schools. We found that both species had relatively narrow binocular and blind fields and wide visual coverage. However, golden shiners had more visual coverage in the vertical plane (binocular field extending behind the head) and higher visual acuity than zebrafish. The centers of acute vision (areae) of both species projected in the fronto-dorsal region of the visual field, but those of the zebrafish projected more dorsally than those of the golden shiner. Based on this visual sensory information, we predicted that: (a) predator detection time could be increased by >1,000% in zebrafish and >100% in golden shiners with an increase in nearest neighbor distance, (b) zebrafish schools would have a higher roughness value (surface area/volume ratio) than those of golden shiners, (c) and that nearest neighbor distance would vary from 8 to 20 cm to visually resolve conspecific striping patterns in both species. Overall, considering between-species differences in the sensory system of species exhibiting collective behavior could change the predictions about the positioning of individuals in the group as well as the shape of the school, which can have implications for group cohesion. We suggest that more effort should be invested in assessing the role of the sensory system in shaping local interactions driving collective behavior. PMID:26290783
Graphic Representations as Tools for Decision Making.
ERIC Educational Resources Information Center
Howard, Judith
2001-01-01
Focuses on the use of graphic representations to enable students to improve their decision making skills in the social studies. Explores three visual aids used in assisting students with decision making: (1) the force field; (2) the decision tree; and (3) the decision making grid. (CMK)
The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria; Sloan, Caroline
2014-01-01
The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…
NASA Technical Reports Server (NTRS)
Feather, Martin S.; Kiper, James D.; Menzies, Tim
2005-01-01
Key decisions are made in the early stages of planning and management of software developments. The information basis for these decisions is often a mix of analogy with past developments, and the best judgments of domain experts. Visualization of this information can support to such decision making by clarifying the status of the information and yielding insights into the ramifications of that information vis-a-vis decision alternatives.
Ferlazzo, Fabio; Fagioli, Sabrina; Di Nocera, Francesco; Sdoia, Stefano
2008-11-01
In three experiments, participants performed two tasks concurrently during driving. In the peripheral detection task, they responded manually to visual stimuli delivered through a LED placed on the internal rear mirror; in the conversation task, they were engaged in a conversation with a passenger, or through earphone-operated, loudspeaker-operated, or hand-held cell phones. Results showed that drivers were slower at responding to the visual stimuli when conversing through a hand-held cell phone or an earphone-operated cell phone than when conversing through a loudspeaker-operated cell phone or with a passenger. These results suggest that due to the brain coding the space into multiple representations, devices that make phone conversations taking place in the near, personal space make drivers slower at responding to visual stimuli, compared to devices that make the conversation occurring in a far space.
Krajbich, Ian; Rangel, Antonio
2011-08-16
How do we make decisions when confronted with several alternatives (e.g., on a supermarket shelf)? Previous work has shown that accumulator models, such as the drift-diffusion model, can provide accurate descriptions of the psychometric data for binary value-based choices, and that the choice process is guided by visual attention. However, the computational processes used to make choices in more complicated situations involving three or more options are unknown. We propose a model of trinary value-based choice that generalizes what is known about binary choice, and test it using an eye-tracking experiment. We find that the model provides a quantitatively accurate description of the relationship between choice, reaction time, and visual fixation data using the same parameters that were estimated in previous work on binary choice. Our findings suggest that the brain uses similar computational processes to make binary and trinary choices.
Butensky, Samuel D; Sloan, Andrew P; Meyers, Eric; Carmel, Jason B
2017-07-15
Hand function is critical for independence, and neurological injury often impairs dexterity. To measure hand function in people or forelimb function in animals, sensors are employed to quantify manipulation. These sensors make assessment easier and more quantitative and allow automation of these tasks. While automated tasks improve objectivity and throughput, they also produce large amounts of data that can be burdensome to analyze. We created software called Dexterity that simplifies data analysis of automated reaching tasks. Dexterity is MATLAB software that enables quick analysis of data from forelimb tasks. Through a graphical user interface, files are loaded and data are identified and analyzed. These data can be annotated or graphed directly. Analysis is saved, and the graph and corresponding data can be exported. For additional analysis, Dexterity provides access to custom scripts created by other users. To determine the utility of Dexterity, we performed a study to evaluate the effects of task difficulty on the degree of impairment after injury. Dexterity analyzed two months of data and allowed new users to annotate the experiment, visualize results, and save and export data easily. Previous analysis of tasks was performed with custom data analysis, requiring expertise with analysis software. Dexterity made the tools required to analyze, visualize and annotate data easy to use by investigators without data science experience. Dexterity increases accessibility to automated tasks that measure dexterity by making analysis of large data intuitive, robust, and efficient. Copyright © 2017 Elsevier B.V. All rights reserved.
Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)
NASA Astrophysics Data System (ADS)
Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.
2016-03-01
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a significantly worse prognosis than other forms of pulmonary fibrosis (3-year survival rate of 50%). Distinguishing IPF from other fibrotic diseases is essential to patient care because it stratifies prognosis and therapeutic decision-making. However, making the diagnosis often requires invasive, high-risk surgical procedures to look for microscopic features not seen on chest CT, such as characteristic cystic honeycombing in the peripheral lung. Optical coherence tomography (OCT) provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We aim to determine whether bronchoscopic OCT can provide a low-risk, non-surgical method for IPF diagnosis. We have developed bronchoscopic OCT catheters that access the peripheral lung and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We also conducted bronchoscopic OCT in ex vivo lung from pulmonary fibrosis patients, including IPF, to determine if OCT could successfully visualize features of IPF through the peripheral airways. Our results demonstrate that OCT is able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (< 1 mm diameter) not visible by CT, dense peripheral fibrosis, and spatial disease heterogeneity. We also found that OCT has potential to distinguish mimickers of IPF honeycombing, such as traction bronchiectasis and emphysema, from true honeycombing. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.
... Doing AMIGAS Stay Informed Cancer Home Uterine Cancer Statistics Language: English (US) Español (Spanish) Recommend on Facebook ... the most commonly diagnosed gynecologic cancer. U.S. Cancer Statistics Data Visualizations Tool The Data Visualizations tool makes ...
Removing Visual Bias in Filament Identification: A New Goodness-of-fit Measure
NASA Astrophysics Data System (ADS)
Green, C.-E.; Cunningham, M. R.; Dawson, J. R.; Jones, P. A.; Novak, G.; Fissel, L. M.
2017-05-01
Different combinations of input parameters to filament identification algorithms, such as disperse and filfinder, produce numerous different output skeletons. The skeletons are a one-pixel-wide representation of the filamentary structure in the original input image. However, these output skeletons may not necessarily be a good representation of that structure. Furthermore, a given skeleton may not be as good of a representation as another. Previously, there has been no mathematical “goodness-of-fit” measure to compare output skeletons to the input image. Thus far this has been assessed visually, introducing visual bias. We propose the application of the mean structural similarity index (MSSIM) as a mathematical goodness-of-fit measure. We describe the use of the MSSIM to find the output skeletons that are the most mathematically similar to the original input image (the optimum, or “best,” skeletons) for a given algorithm, and independently of the algorithm. This measure makes possible systematic parameter studies, aimed at finding the subset of input parameter values returning optimum skeletons. It can also be applied to the output of non-skeleton-based filament identification algorithms, such as the Hessian matrix method. The MSSIM removes the need to visually examine thousands of output skeletons, and eliminates the visual bias, subjectivity, and limited reproducibility inherent in that process, representing a major improvement upon existing techniques. Importantly, it also allows further automation in the post-processing of output skeletons, which is crucial in this era of “big data.”
Multispectral image analysis for object recognition and classification
NASA Astrophysics Data System (ADS)
Viau, C. R.; Payeur, P.; Cretu, A.-M.
2016-05-01
Computer and machine vision applications are used in numerous fields to analyze static and dynamic imagery in order to assist or automate decision-making processes. Advancements in sensor technologies now make it possible to capture and visualize imagery at various wavelengths (or bands) of the electromagnetic spectrum. Multispectral imaging has countless applications in various fields including (but not limited to) security, defense, space, medical, manufacturing and archeology. The development of advanced algorithms to process and extract salient information from the imagery is a critical component of the overall system performance. The fundamental objective of this research project was to investigate the benefits of combining imagery from the visual and thermal bands of the electromagnetic spectrum to improve the recognition rates and accuracy of commonly found objects in an office setting. A multispectral dataset (visual and thermal) was captured and features from the visual and thermal images were extracted and used to train support vector machine (SVM) classifiers. The SVM's class prediction ability was evaluated separately on the visual, thermal and multispectral testing datasets.
Jeffs, Janelle; Ichida, Jennifer M.; Federer, Frederick
2009-01-01
In primates, a split of the horizontal meridian (HM) representation at the V2 rostral border divides this area into dorsal (V2d) and ventral (V2v) halves (representing lower and upper visual quadrants, respectively), causing retinotopically neighboring loci across the HM to be distant within V2. How is perceptual continuity maintained across this discontinuous HM representation? Injections of neuroanatomical tracers in marmoset V2d demonstrated that cells near the V2d rostral border can maintain retinotopic continuity within their classical and extra-classical receptive field (RF), by making both local and long-range intra- and interareal connections with ventral cortex representing the upper visual quadrant. V2d neurons located <0.9–1.3 mm from the V2d rostral border, whose RFs presumably do not cross the HM, make nonretinotopic horizontal connections with V2v neurons in the supra- and infragranular layers. V2d neurons located <0.6–0.9 mm from the border, whose RFs presumably cross the HM, in addition make retinotopic local connections with V2v neurons in layer 4. V2d neurons also make interareal connections with upper visual field regions of extrastriate cortex, but not of MT or MTc outside the foveal representation. Labeled connections in ventral cortex appear to represent the “missing” portion of the connectional fields in V2d across the HM. We conclude that connections between dorsal and ventral cortex can create visual field continuity within a second-order discontinuous visual topography. PMID:18755777
NASA Technical Reports Server (NTRS)
Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.
2012-01-01
This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/ deviation so that further analysis can be directed and corrective actions followed.
NASA Technical Reports Server (NTRS)
Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.
2012-01-01
This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.
Visual anticipation biases conscious decision making but not bottom-up visual processing
Mathews, Zenon; Cetnarski, Ryszard; Verschure, Paul F. M. J.
2015-01-01
Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself. PMID:25741290
Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M
2008-12-01
Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.
The Role of Cognitive Factors in Predicting Balance and Fall Risk in a Neuro-Rehabilitation Setting.
Saverino, A; Waller, D; Rantell, K; Parry, R; Moriarty, A; Playford, E D
2016-01-01
There is a consistent body of evidence supporting the role of cognitive functions, particularly executive function, in the elderly and in neurological conditions which become more frequent with ageing. The aim of our study was to assess the role of different domains of cognitive functions to predict balance and fall risk in a sample of adults with various neurological conditions in a rehabilitation setting. This was a prospective, cohort study conducted in a single centre in the UK. 114 participants consecutively admitted to a Neuro-Rehabilitation Unit were prospectively assessed for fall accidents. Baseline assessment included a measure of balance (Berg Balance Scale) and a battery of standard cognitive tests measuring executive function, speed of information processing, verbal and visual memory, visual perception and intellectual function. The outcomes of interest were the risk of becoming a faller, balance and fall rate. Two tests of executive function were significantly associated with fall risk, the Stroop Colour Word Test (IRR 1.01, 95% CI 1.00-1.03) and the number of errors on part B of the Trail Making Test (IRR 1.23, 95% CI 1.03-1.49). Composite scores of executive function, speed of information processing and visual memory domains resulted in 2 to 3 times increased likelihood of having better balance (OR 2.74 95% CI 1.08 to 6.94, OR 2.72 95% CI 1.16 to 6.36 and OR 2.44 95% CI 1.11 to 5.35 respectively). Our results show that specific subcomponents of executive functions are able to predict fall risk, while a more global cognitive dysfunction is associated with poorer balance.
The Role of Cognitive Factors in Predicting Balance and Fall Risk in a Neuro-Rehabilitation Setting
Saverino, A.; Waller, D.; Rantell, K.; Parry, R.; Moriarty, A.; Playford, E. D.
2016-01-01
Introduction There is a consistent body of evidence supporting the role of cognitive functions, particularly executive function, in the elderly and in neurological conditions which become more frequent with ageing. The aim of our study was to assess the role of different domains of cognitive functions to predict balance and fall risk in a sample of adults with various neurological conditions in a rehabilitation setting. Methods This was a prospective, cohort study conducted in a single centre in the UK. 114 participants consecutively admitted to a Neuro-Rehabilitation Unit were prospectively assessed for fall accidents. Baseline assessment included a measure of balance (Berg Balance Scale) and a battery of standard cognitive tests measuring executive function, speed of information processing, verbal and visual memory, visual perception and intellectual function. The outcomes of interest were the risk of becoming a faller, balance and fall rate. Results Two tests of executive function were significantly associated with fall risk, the Stroop Colour Word Test (IRR 1.01, 95% CI 1.00–1.03) and the number of errors on part B of the Trail Making Test (IRR 1.23, 95% CI 1.03–1.49). Composite scores of executive function, speed of information processing and visual memory domains resulted in 2 to 3 times increased likelihood of having better balance (OR 2.74 95% CI 1.08 to 6.94, OR 2.72 95% CI 1.16 to 6.36 and OR 2.44 95% CI 1.11 to 5.35 respectively). Conclusions Our results show that specific subcomponents of executive functions are able to predict fall risk, while a more global cognitive dysfunction is associated with poorer balance. PMID:27115880
TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits.
Farabella, Irene; Vasishtan, Daven; Joseph, Agnel Praveen; Pandurangan, Arun Prasad; Sahota, Harpal; Topf, Maya
2015-08-01
Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.
Eye movement-invariant representations in the human visual system.
Nishimoto, Shinji; Huth, Alexander G; Bilenko, Natalia Y; Gallant, Jack L
2017-01-01
During natural vision, humans make frequent eye movements but perceive a stable visual world. It is therefore likely that the human visual system contains representations of the visual world that are invariant to eye movements. Here we present an experiment designed to identify visual areas that might contain eye-movement-invariant representations. We used functional MRI to record brain activity from four human subjects who watched natural movies. In one condition subjects were required to fixate steadily, and in the other they were allowed to freely make voluntary eye movements. The movies used in each condition were identical. We reasoned that the brain activity recorded in a visual area that is invariant to eye movement should be similar under fixation and free viewing conditions. In contrast, activity in a visual area that is sensitive to eye movement should differ between fixation and free viewing. We therefore measured the similarity of brain activity across repeated presentations of the same movie within the fixation condition, and separately between the fixation and free viewing conditions. The ratio of these measures was used to determine which brain areas are most likely to contain eye movement-invariant representations. We found that voxels located in early visual areas are strongly affected by eye movements, while voxels in ventral temporal areas are only weakly affected by eye movements. These results suggest that the ventral temporal visual areas contain a stable representation of the visual world that is invariant to eye movements made during natural vision.
A novel visual hardware behavioral language
NASA Technical Reports Server (NTRS)
Li, Xueqin; Cheng, H. D.
1992-01-01
Most hardware behavioral languages just use texts to describe the behavior of the desired hardware design. This is inconvenient for VLSI designers who enjoy using the schematic approach. The proposed visual hardware behavioral language has the ability to graphically express design information using visual parallel models (blocks), visual sequential models (processes) and visual data flow graphs (which consist of primitive operational icons, control icons, and Data and Synchro links). Thus, the proposed visual hardware behavioral language can not only specify hardware concurrent and sequential functionality, but can also visually expose parallelism, sequentiality, and disjointness (mutually exclusive operations) for the hardware designers. That would make the hardware designers capture the design ideas easily and explicitly using this visual hardware behavioral language.
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation
Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B.
2016-01-01
Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field. PMID:27853419
Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation.
Liu, Qian; Pineda-García, Garibaldi; Stromatias, Evangelos; Serrano-Gotarredona, Teresa; Furber, Steve B
2016-01-01
Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure and function, have been successfully applied to visual recognition and classification tasks. In addition, implementations on neuromorphic hardware have enabled large-scale networks to run in (or even faster than) real time, making spike-based neural vision processing accessible on mobile robots. Neuromorphic sensors such as silicon retinas are able to feed such mobile systems with real-time visual stimuli. A new set of vision benchmarks for spike-based neural processing are now needed to measure progress quantitatively within this rapidly advancing field. We propose that a large dataset of spike-based visual stimuli is needed to provide meaningful comparisons between different systems, and a corresponding evaluation methodology is also required to measure the performance of SNN models and their hardware implementations. In this paper we first propose an initial NE (Neuromorphic Engineering) dataset based on standard computer vision benchmarksand that uses digits from the MNIST database. This dataset is compatible with the state of current research on spike-based image recognition. The corresponding spike trains are produced using a range of techniques: rate-based Poisson spike generation, rank order encoding, and recorded output from a silicon retina with both flashing and oscillating input stimuli. In addition, a complementary evaluation methodology is presented to assess both model-level and hardware-level performance. Finally, we demonstrate the use of the dataset and the evaluation methodology using two SNN models to validate the performance of the models and their hardware implementations. With this dataset we hope to (1) promote meaningful comparison between algorithms in the field of neural computation, (2) allow comparison with conventional image recognition methods, (3) provide an assessment of the state of the art in spike-based visual recognition, and (4) help researchers identify future directions and advance the field.
Kitsos, Gemma; Harris, Dawn; Pollack, Michael; Hubbard, Isobel J
2011-01-01
In Australia, stroke is the leading cause of adult disability. For most stroke survivors, the recovery process is challenging, and in the first few weeks their recovery is supported with stroke rehabilitation services. Stroke clinicians are expected to apply an evidence-based approach to stroke rehabilitation and, in turn, use standardised and validated assessments to monitor stroke recovery. In 2008, the National Stroke Foundation conducted the first national audit of Australia's post acute stroke rehabilitation services and findings identified a vast array of assessments being used by clinicians. This study undertook a sub-analysis of the audit's assessment tools data with the aim of making clinically relevant recommendations concerning the validity of the most frequently selected assessments. Data reduction ranked the most frequently selected assessments across a series of sub-categories. A serial systematic review of relevant literature using Medline and the Cumulative Index to Nursing and Allied Health Literature identified post-stroke validity ranking. The study found that standardised and non-standardised assessments are currently in use in stroke rehabilitation. It recommends further research in the sub-categories of strength, visual acuity, dysphagia, continence and nutrition and found strengths in the sub-categories of balance and mobility, upper limb function and mood. This is the first study to map national usage of post-stroke assessments and review that usage against the evidence. It generates new knowledge concerning what assessments we currently use post stroke, what we should be using and makes some practical post stroke clinical recommendations.
On compensatory strategies and computational models: the case of pure alexia.
Shallice, Tim
2014-01-01
The article is concerned with inferences from the behaviour of neurological patients to models of normal function. It takes the letter-by-letter reading strategy common in pure alexic patients as an example of the methodological problems involved in making such inferences that compensatory strategies produce. The evidence is discussed on the possible use of three ways the letter-by-letter reading process might operate: "reversed spelling"; the use of the phonological input buffer as a temporary holding store during word building; and the use of serial input to the visual word-form system entirely within the visual-orthographic domain such as in the model of Plaut [1999. A connectionist approach to word reading and acquired dyslexia: Extension to sequential processing. Cognitive Science, 23, 543-568]. The compensatory strategy used by, at least, one pure alexic patient does not fit with the third of these possibilities. On the more general question, it is argued that even if compensatory strategies are being used, the behaviour of neurological patients can be useful for the development and assessment of first-generation information-processing models of normal function, but they are not likely to be useful for the development and assessment of second-generation computational models.
Model-Based Analysis of Flow-Mediated Dilation and Intima-Media Thickness
Bartoli, G.; Menegaz, G.; Lisi, M.; Di Stolfo, G.; Dragoni, S.; Gori, T.
2008-01-01
We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness (IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline model (deformable template) is fitted to the data to detect the artery boundaries and track them all along the video sequence. The a priori knowledge about the image features and its content is exploited. Preprocessing is performed to improve both the visual quality of video frames for visual inspection and the performance of the segmentation algorithm without affecting the accuracy of the measurements. The system allows real-time processing as well as a high level of interactivity with the user. This is obtained by a graphical user interface (GUI) enabling the cardiologist to supervise the whole process and to eventually reset the contour extraction at any point in time. The system was validated and the accuracy, reproducibility, and repeatability of the measurements were assessed with extensive in vivo experiments. Jointly with the user friendliness, low cost, and robustness, this makes the system suitable for both research and daily clinical use. PMID:19360110
NMF-Based Image Quality Assessment Using Extreme Learning Machine.
Wang, Shuigen; Deng, Chenwei; Lin, Weisi; Huang, Guang-Bin; Zhao, Baojun
2017-01-01
Numerous state-of-the-art perceptual image quality assessment (IQA) algorithms share a common two-stage process: distortion description followed by distortion effects pooling. As for the first stage, the distortion descriptors or measurements are expected to be effective representatives of human visual variations, while the second stage should well express the relationship among quality descriptors and the perceptual visual quality. However, most of the existing quality descriptors (e.g., luminance, contrast, and gradient) do not seem to be consistent with human perception, and the effects pooling is often done in ad-hoc ways. In this paper, we propose a novel full-reference IQA metric. It applies non-negative matrix factorization (NMF) to measure image degradations by making use of the parts-based representation of NMF. On the other hand, a new machine learning technique [extreme learning machine (ELM)] is employed to address the limitations of the existing pooling techniques. Compared with neural networks and support vector regression, ELM can achieve higher learning accuracy with faster learning speed. Extensive experimental results demonstrate that the proposed metric has better performance and lower computational complexity in comparison with the relevant state-of-the-art approaches.
Lancioni, Giulio E; O'Reilly, Mark F; Singh, Nirbhay N; Sigafoos, Jeff; Oliva, Doretta; Alberti, Gloria; Lang, Russell
2011-01-01
This study extended the assessment of a newly developed computer-aided telephone system with two participants (adults) who presented with blindness or severe visual impairment and motor or motor and intellectual disabilities. For each participant, the study was carried out according to an ABAB design, in which the A represented baseline phases and the B represented intervention phases, during which the special telephone system was available. The system involved among others a net-book computer provided with specific software, a global system for mobile communication modem, and a microswitch. Both participants learned to use the system very rapidly and managed to make phone calls independently to a variety of partners such as family members, friends and staff personnel. The results were discussed in terms of the technology under investigation (its advantages, drawbacks, and need of improvement) and the social-communication impact it can make for persons with multiple disabilities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Charles B. Yuill; Spencer A. Joyner Jr.
1979-01-01
In response to urbanization pressures on the New England landscape, researchers at the University of Massachusetts have developed and tested two visual landscape assessment procedures as part of a comprehensive research project in landscape planning. The first procedure identifies those visually significant and unique areas within a town or region that warrant public...
Maier, T; Flaig, M J; Ruzicka, T; Berking, C; Pavicic, T
2015-03-01
After permanent make-up treatments, eczematous and granulomatous reactions may occur which need anti-inflammatory treatment. For the definite diagnosis oftentimes biopsies are recommended. In vivo imaging such as reflectance confocal microscopy (RCM) and high-definition optical coherence tomography (HD-OCT) has been successfully used in the non-invasive diagnosis of various dermatoses before. Here, we report on non-invasive imaging of a reaction towards permanent make-up in a 40-year-old woman by using HD-OCT and RCM. Both in HD-OCT and in RCM subepidermal pigment and granulomatous changes could be visualized and correlated with the histopathological findings. Regression of the lesions in response to topical steroids and intralesional injections of steroids and 5-fluorouracil is reported and treatment options are discussed. Non-invasive imaging techniques such as HD-OCT and RCM allow the visualization and localization of exogenous pigment and help in the evaluation of adverse reactions due to permanent make-up tattooing. © 2014 European Academy of Dermatology and Venereology.
How To Control Color Appearance With Instrumentation
NASA Astrophysics Data System (ADS)
Burns, Margaret E.
1980-05-01
Colorimetry, as defined by the International Commission on Illumination, is the measurement of colors, made possible by the properties of the eye and based on a set of conventions. Instrumentation for measuring object color, therefore, must be based on a human observer. The intent is to design an instrument that in effect responds as a person would, so that research development, production control and quality control areas have some means of assessing the acceptability of the appearance of a product. Investigations of a human observer's psychological response to color, and the manner in which visual observations are made, give the instrument designer and manufacturer data necessary to answer two questions: a. How can we put numbers (instrument read-out) on a perception that occurs in the brain of the observer? b. What can we learn from examination of a visual observing situation that will guide us in our design of an instrumental simulation of this situation? Involving as it does our own daily, almost unconscious, practice of making judgments concerning the things we see, the design and manufacture of color measurement instruments is an exceedingly interesting field. The advances being made concurrently today in research concerning human color vision and in optical and electronic technology will make possible increasingly useful instrumentation for quality control of product color.
Midline thalamic reuniens lesions improve executive behaviors.
Prasad, J A; Abela, A R; Chudasama, Y
2017-03-14
The role of the thalamus in complex cognitive behavior is a topic of increasing interest. Here we demonstrate that lesions of the nucleus reuniens (NRe), a midline thalamic nucleus interconnected with both hippocampal and prefrontal circuitry, lead to enhancement of executive behaviors typically associated with the prefrontal cortex. Rats were tested on four behavioral tasks: (1) the combined attention-memory (CAM) task, which simultaneously assessed attention to a visual target and memory for that target over a variable delay; (2) spatial memory using a radial arm maze, (3) discrimination and reversal learning using a touchscreen operant platform, and (4) decision-making with delayed outcomes. Following NRe lesions, the animals became more efficient in their performance, responding with shorter reaction times but also less impulsively than controls. This change, combined with a decrease in perseverative responses, led to focused attention in the CAM task and accelerated learning in the visual discrimination task. There were no observed changes in tasks involving either spatial memory or value-based decision making. These data complement ongoing efforts to understand the role of midline thalamic structures in human cognition, including the development of thalamic stimulation as a therapeutic strategy for acquired cognitive disabilities (Schiff, 2008; Mair et al., 2011), and point to the NRe as a potential target for clinical intervention. Published by Elsevier Ltd.
Płotek, Włodzimierz; Łyskawa, Wojciech; Kluzik, Anna; Grześkowiak, Małgorzata; Podlewski, Roland; Żaba, Zbigniew; Drobnik, Leon
2014-02-03
Human cognitive functioning can be assessed using different methods of testing. Age, level of education, and gender may influence the results of cognitive tests. The well-known Trail Making Test (TMT), which is often used to measure the frontal lobe function, and the experimental test of Interval Timing (IT) were compared. The methods used in IT included reproduction of auditory and visual stimuli, with the subsequent production of the time intervals of 1-, 2-, 5-, and 7-seconds durations with no pattern. Subjects included 64 healthy adult volunteers aged 18-63 (33 women, 31 men). Comparisons were made based on age, education, and gender. TMT was performed quickly and was influenced by age, education, and gender. All reproduced visual and produced intervals were shortened and the reproduction of auditory stimuli was more complex. Age, education, and gender have more pronounced impact on the cognitive test than on the interval timing test. The reproduction of the short auditory stimuli was more accurate in comparison to other modalities used in the IT test. The interval timing, when compared to the TMT, offers an interesting possibility of testing. Further studies are necessary to confirm the initial observation.
Making Voices Visible: Using Visual Data in Teacher Education and Research
ERIC Educational Resources Information Center
Murphy, Debra
2016-01-01
This chapter describes changes in the thinking and practice of eight early-childhood teachers after they used visual data to complete a teacher research assignment in a community college teacher-education course.
ERIC Educational Resources Information Center
Gholam, Alain
2017-01-01
Visual thinking routines are principles based on several theories, approaches, and strategies. Such routines promote thinking skills, call for collaboration and sharing of ideas, and above all, make thinking and learning visible. Visual thinking routines were implemented in the teaching methodology graduate course at the American University in…
Kids, Take a Look at This! Visual Literacy Skills in the School Curriculum
ERIC Educational Resources Information Center
Vermeersch, Lode; Vandenbroucke, Anneloes
2015-01-01
Although the paradigm of visual literacy (VL) is rapidly emerging, the construct itself still lacks operational specificity. Based on a semiotic understanding of visual culture as an ongoing process of "making meaning", we present in this study a skill-based classification of VL, differentiating four sets of VL skills: perception;…
A Review of Research on the Literacy of Students with Visual Impairments and Additional Disabilities
ERIC Educational Resources Information Center
Parker, Amy T.; Pogrund, Rona L.
2009-01-01
Research on the development of literacy in children with visual impairments and additional disabilities is minimal even though these children make up approximately 65% of the population of children with visual impairments. This article reports on emerging themes that were explored after a review of the literature revealed nine literacy studies…
Library Automation Design for Visually Impaired People
ERIC Educational Resources Information Center
Yurtay, Nilufer; Bicil, Yucel; Celebi, Sait; Cit, Guluzar; Dural, Deniz
2011-01-01
Speech synthesis is a technology used in many different areas in computer science. This technology can bring a solution to reading activity of visually impaired people due to its text to speech conversion. Based on this problem, in this study, a system is designed needed for a visually impaired person to make use of all the library facilities in…
Climate Modeling Computing Needs Assessment
NASA Astrophysics Data System (ADS)
Petraska, K. E.; McCabe, J. D.
2011-12-01
This paper discusses early findings of an assessment of computing needs for NASA science, engineering and flight communities. The purpose of this assessment is to document a comprehensive set of computing needs that will allow us to better evaluate whether our computing assets are adequately structured to meet evolving demand. The early results are interesting, already pointing out improvements we can make today to get more out of the computing capacity we have, as well as potential game changing innovations for the future in how we apply information technology to science computing. Our objective is to learn how to leverage our resources in the best way possible to do more science for less money. Our approach in this assessment is threefold: Development of use case studies for science workflows; Creating a taxonomy and structure for describing science computing requirements; and characterizing agency computing, analysis, and visualization resources. As projects evolve, science data sets increase in a number of ways: in size, scope, timelines, complexity, and fidelity. Generating, processing, moving, and analyzing these data sets places distinct and discernable requirements on underlying computing, analysis, storage, and visualization systems. The initial focus group for this assessment is the Earth Science modeling community within NASA's Science Mission Directorate (SMD). As the assessment evolves, this focus will expand to other science communities across the agency. We will discuss our use cases, our framework for requirements and our characterizations, as well as our interview process, what we learned and how we plan to improve our materials after using them in the first round of interviews in the Earth Science Modeling community. We will describe our plans for how to expand this assessment, first into the Earth Science data analysis and remote sensing communities, and then throughout the full community of science, engineering and flight at NASA.
Assessing Functional Vision Using Microcomputers.
ERIC Educational Resources Information Center
Spencer, Simon; Ross, Malcolm
1989-01-01
The paper describes a software system which uses microcomputers to aid in the assessment of functional vision in visually impaired students. The software also aims to be visually stimulating and to develop hand-eye coordination, visual memory, and cognitive abilities. (DB)
Simulation and visualization of fundamental optics phenomenon by LabVIEW
NASA Astrophysics Data System (ADS)
Lyu, Bohan
2017-08-01
Most instructors teach complex phenomenon by equation and static illustration without interactive multimedia. Students usually memorize phenomenon by taking note. However, only note or complex formula can not make user visualize the phenomenon of the photonics system. LabVIEW is a good tool for in automatic measurement. However, the simplicity of coding in LabVIEW makes it not only suit for automatic measurement, but also suitable for simulation and visualization of fundamental optics phenomenon. In this paper, five simple optics phenomenon will be discuss and simulation with LabVIEW. They are Snell's Law, Hermite-Gaussian beam transverse mode, square and circular aperture diffraction, polarization wave and Poincare sphere, and finally Fabry-Perrot etalon in spectrum domain.
2015-06-01
Hadoop Distributed File System (HDFS) without any integration with Accumulo-based Knowledge Stores based on OWL/RDF. 4. Cloud Based The Apache Software...BTW, 7(12), pp. 227–241. Godin, A. & Akins, D. (2014). Extending DCGS-N naval tactical clouds from in-storage to in-memory for the integrated fires...VISUALIZATIONS: A TOOL TO ACHIEVE OPTIMIZED OPERATIONAL DECISION MAKING AND DATA INTEGRATION by Paul C. Hudson Jeffrey A. Rzasa June 2015 Thesis
Tamis, Jacqueline E; de Vries, Pepijn; Jongbloed, Ruud H; Lagerveld, Sander; Jak, Robbert G; Karman, Chris C; Van der Wal, Jan Tjalling; Slijkerman, Diana Me; Klok, Chris
2016-10-01
With a foreseen increase in maritime activities, and driven by new policies and conventions aiming at sustainable management of the marine ecosystem, spatial management at sea is of growing importance. Spatial management should ensure that the collective pressures caused by anthropogenic activities on the marine ecosystem are kept within acceptable levels. A multitude of approaches to environmental assessment are available to provide insight for sustainable management, and there is a need for a harmonized and integrated environmental assessment approach that can be used for different purposes and variable levels of detail. This article first provides an overview of the main types of environmental assessments: "environmental impact assessment" (EIA), "strategic environmental assessment" (SEA), "cumulative effect assessment" (CEA), and "environmental (or ecological) risk assessment" (ERA). Addressing the need for a conceptual "umbrella" for the fragmented approaches, a generic framework for environmental assessment is proposed: cumulative effects of offshore activities (CUMULEO). CUMULEO builds on the principle that activities cause pressures that may lead to adverse effects on the ecosystem. Basic elements and variables are defined that can be used consistently throughout sequential decision-making levels and diverse methodological implementations. This enables environmental assessment to start at a high strategic level (i.e., plan and/or program level), resulting in early environmental awareness and subsequently more informed, efficient, and focused project-level assessments, which has clear benefits for both industry and government. Its main strengths are simplicity, transparency, flexibility (allowing the use of both qualitative and quantitative data), and visualization, making it a powerful framework to support discussions with experts, stakeholders, and policymakers. Integr Environ Assess Manag 2016;12:632-642. © 2015 SETAC. © 2015 SETAC.
A new system for quantitative evaluation of infant gaze capabilities in a wide visual field.
Pratesi, Andrea; Cecchi, Francesca; Beani, Elena; Sgandurra, Giuseppina; Cioni, Giovanni; Laschi, Cecilia; Dario, Paolo
2015-09-07
The visual assessment of infants poses specific challenges: many techniques that are used on adults are based on the patient's response, and are not suitable for infants. Significant advances in the eye-tracking have made this assessment of infant visual capabilities easier, however, eye-tracking still requires the subject's collaboration, in most cases and thus limiting the application in infant research. Moreover, there is a lack of transferability to clinical practice, and thus it emerges the need for a new tool to measure the paradigms and explore the most common visual competences in a wide visual field. This work presents the design, development and preliminary testing of a new system for measuring infant's gaze in the wide visual field called CareToy C: CareToy for Clinics. The system is based on a commercial eye tracker (SmartEye) with six cameras running at 60 Hz, suitable for measuring an infant's gaze. In order to stimulate the infant visually and audibly, a mechanical structure has been designed to support five speakers and five screens at a specific distance (60 cm) and angle: one in the centre, two on the right-hand side and two on the left (at 30° and 60° respectively). Different tasks have been designed in order to evaluate the system capability to assess the infant's gaze movements during different conditions (such as gap, overlap or audio-visual paradigms). Nine healthy infants aged 4-10 months were assessed as they performed the visual tasks at random. We developed a system able to measure infant's gaze in a wide visual field covering a total visual range of ±60° from the centre with an intermediate evaluation at ±30°. Moreover, the same system, thanks to different integrated software, was able to provide different visual paradigms (as gap, overlap and audio-visual) assessing and comparing different visual and multisensory sub-competencies. The proposed system endowed the integration of a commercial eye-tracker into a purposive setup in a smart and innovative way. The proposed system is suitable for measuring and evaluating infant's gaze capabilities in a wide visual field, in order to provide quantitative data that can enrich the clinical assessment.
Wright, C Y; Reeder, A I; Gray, A R; Hammond, V A
2015-11-01
Skin color is related to human health outcomes, including the risks of skin cancer and vitamin D insufficiency. Self-perceptions of skin color may influence health behaviours, including the adoption of practices protective against harmful solar ultraviolet radiation levels. Misperception of personal risk may have negative health implications. The aim of this study is to determine whether Munsell(®) color chart assessments align with child self-reported skin color. Two-trained investigators, with assessed color acuity, visually classified student inner upper arm constitutive skin color. The Munsell(®) classifications obtained were converted to Individual Typology Angle (ITA) values and respective Del Bino skin color categories after spectrocolorimeter measurements based on published values/data. As part of a written questionnaire on sun protection knowledge, attitudes, and behaviours, self-completed in class time, students classified their end of winter skin color. Student self-reports were compared with the ITA-based Del Bino classifications. A total of 477 New Zealand primary students attending 27 randomly selected schools from five geographic regions. The main measures were self-reported skin color and visually observed skin color. A monotonic association was observed between the distribution of spectrophotometer ITA scores obtained for Munsell(®) tiles and child self-reports of skin color, providing some evidence for the validity of self-report among New Zealand primary school children, although the lighter colored ITA defined groups were most numerous in this study sample. Statistically significant differences in ITA scores were found by ethnicity, self-reported skin color, and geographic residence (P < 0.001). Certain Munsell(®) color tiles were frequently selected as providing a best match to skin color. Assessment using Munsell(®) color charts was simple, inexpensive, and practical for field use and acceptable to children. The results suggest that this method may prove useful for making comparisons with other studies using visual tools to assess skin color. Alignment between the ITA distribution derived from the Munsell(®) assessment and child skin color self-reports could probably be improved, particularly with the addition of another 'light'/'white' color category in the self-report instrument. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Dynamic visualizations as tools for supporting cosmological literacy
NASA Astrophysics Data System (ADS)
Buck, Zoe Elizabeth
My dissertation research is designed to improve access to STEM content through the development of cosmology visualizations that support all learners as they engage in cosmological sense-making. To better understand how to design visualizations that work toward breaking cycles of power and access in the sciences, I orient my work to following "meta-question": How might educators use visualizations to support diverse ways of knowing and learning in order to expand access to cosmology, and to science? In this dissertation, I address this meta-question from a pragmatic epistemological perspective, through a sociocultural lens, following three lines of inquiry: experimental methods (Creswell, 2003) with a focus on basic visualization design, activity analysis (Wells, 1996; Ash, 2001; Rahm, 2012) with a focus on culturally and linguistically diverse learners, and case study (Creswell, 2000) with a focus on expansive learning at a planetarium (Engestrom, 2001; Ash, 2014). My research questions are as follows, each of which corresponds to a self contained course of inquiry with its own design, data, analysis and results: 1) Can mediational cues like color affect the way learners interpret the content in a cosmology visualization? 2) How do cosmology visualizations support cosmological sense-making for diverse students? 3) What are the shared objects of dynamic networks of activity around visualization production and use in a large, urban planetarium and how do they affect learning? The result is a mixed-methods design (Sweetman, Badiee & Creswell, 2010) where both qualitative and quantitative data are used when appropriate to address my research goals. In the introduction I begin by establishing a theoretical framework for understanding visualizations within cultural historical activity theory (CHAT) and situating the chapters that follow within that framework. I also introduce the concept of cosmological literacy, which I define as the set of conceptual, semiotic and cognitive resources required to understand the scientific Universe on a cosmological scale. In the first chapter I use quantitative methods to investigate how 122 postsecondary learners relied on mediational cues like color to interpret dark matter in a cosmology visualization. My results show that color can have a profound effect on the way that audiences interpret a dynamic cosmology visualization, suggesting a closer look at learning activity. Thus in the second chapter I look at how the visualizations are used by small groups of community college students to make sense of cosmology visualizations. I present evidence that when we look past linguistic fluency, visualizations can scaffold cosmological sense-making, which I define as engaging in object-oriented learning activity mediated by concepts and practices associated with cosmological literacy. In the third chapter I present a case study of an urban planetarium trying to define its goals at a time of transition, during and after the development of a visualization-based planetarium show. My analysis reveals several historical contradictions that appear to impel a shift toward affective goals within the institution, and driving the implementation of visualizations, particularly in the context of immersive planetarium shows. I problematize this result by repositioning the shift toward affective goals in the context of equity and diversity. Finally in my conclusion I present broad recommendations for visualization design and implementation based on my findings.
Parkin, Beth L; Walsh, Vincent
2017-01-01
Having investigated the decision making of world class elite and subelite athletes (see Parkin and Walsh, 2017; Parkin et al., 2017), here the abilities of those at the earliest stage of entry to elite sport are examined. Junior elite athletes have undergone initial national selection and are younger than athletes examined previously (mean age 13 years). Decision making under mental pressure is explored in this sample. During performance an athlete encounters a wide array of mental pressures; these include the psychological impact of errors, negative feedback, and requirements for sustained attention in a dynamic environment (Anshel and Wells, 2000; Mellalieu et al., 2009). Such factors increase the cognitive demands of the athletes, inducing distracting anxiety-related thoughts known as rumination (Beilock and Gray, 2007). Mental pressure has been shown to reduce performance of decision-making tasks where reward and loss contingencies are explicit, with a shift toward increased risk taking (Pabst et al., 2013; Starcke et al., 2011). Mental pressure has been shown to be detrimental to decision-making speed in comparison to physical stress, highlighting the importance of considering a range of different pressures encountered by athletes (Hepler, 2015). To investigate the influence of mental pressure on key indicators of decision making in junior elite athletes. This chapter concludes a wider project examining decision making across developmental stages in elite sport. The work further explores how psychological insights can be applied in an elite sporting environment and in particular tailored to the requirements of junior athletes. Seventeen junior elite athletes (10 males, mean age: 13.80 years) enrolled on a national youth athletic development program participated in the study. Performance across three categories of decision making was assessed under conditions of low and high mental pressure. Decision making under risk was measured via the Cambridge Gambling Task (CGT; Rogers et al., 1999), decision making under uncertainty via the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), and fast reactive responses to perceptual stimuli via the Visual Search Task (Treisman, 1982). Mental pressure was induced with the addition of a concurrent verbal memory task, used to increase cognitive load and mimic the distracting effects of anxiety-related rumination. In junior elite athletes, fast reactive responses to perceptual stimuli (on the Visual Search Task) were slower under conditions of mental pressure. For decision making under risk there was an interaction of mental pressure and gender on the amount of points gambled, under pressure there was a higher level of risk taking in male athletes compared to females. There was no influence of mental pressure on decision making under uncertainity. There were no significant correlations in the degree to which individual's responses changed under pressure across the three measures of decision making. When assessing the applicability of results based on group averages there were no junior elite athletes who showed an "average" response (within 1SD of the mean) to mental pressure across all the three decision-making tasks. Mental pressure affects decision making in a sample of junior elite athletes, with a slowing of response times, and modulations to performance of decision making under risk that have a high requirement for working memory. In relation to sport, these findings suggest that novel situations that place high cognitive demands on the athlete may be particularly influenced by mental pressure. The application of this work in junior elite athletes included the feedback of individual results and the implementation of a decision-making taxonomy. © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholtz, Jean; Burtner, Edwin R.; Cook, Kristin A.
This course will introduce the field of Visual Analytics to HCI researchers and practitioners highlighting the contributions they can make to this field. Topics will include a definition of visual analytics along with examples of current systems, types of tasks and end users, issues in defining user requirements, design of visualizations and interactions, guidelines and heuristics, the current state of user-centered evaluations, and metrics for evaluation. We encourage designers, HCI researchers, and HCI practitioners to attend to learn how their skills can contribute to advancing the state of the art of visual analytics
NASA Astrophysics Data System (ADS)
Auermuller, L. M.; Gatto, J.; Huch, C.
2015-12-01
The highly developed nature of New Jersey's coastline, barrier island and lagoon communities make them particularly vulnerable to storm surge, sea level rise and flooding. The impacts of Hurricane Sandy have enlightened coastal communities to these realities. Recognizing these vulnerabilities, the Jacques Cousteau National Research Reserve (JC NERR), Rutgers Center for Remote Sensing and Spatial Analysis (CRSSA), Rutgers Bloustein School and the Barnegat Bay Partnership (BBP) have developed web-based tools to assist NJ's coastal communities in visualizing and planning for future local impacts. NJFloodMapper and NJAdapt are two complementary interactive mapping websites that visualize different current and future flood hazards. These hazard layers can be combined with additional data including critical facilities, evacuation routes, socioeconomic and environmental data. Getting to Resilience is an online self-assessment tool developed to assist communities reduce vulnerability and increase preparedness by linking planning, mitigation, and adaptation. Through this interactive process communities will learn how their preparedness can yield valuable points through voluntary programs like FEMA's Community Rating System and Sustainable Jersey. The assessment process can also increase the community's understanding of where future vulnerabilities should be addressed through hazard mitigation planning. Since Superstorm Sandy, more than thirty communities in New Jersey have been provided technical assistance in assessing their risks and vulnerabilities to coastal hazards, and have begun to understand how to better plan and prepare for short and long-term changes along their shorelines.
Physical Activity Is Positively Associated with Episodic Memory in Aging.
Hayes, Scott M; Alosco, Michael L; Hayes, Jasmeet P; Cadden, Margaret; Peterson, Kristina M; Allsup, Kelly; Forman, Daniel E; Sperling, Reisa A; Verfaellie, Mieke
2015-11-01
Aging is associated with performance reductions in executive function and episodic memory, although there is substantial individual variability in cognition among older adults. One factor that may be positively associated with cognition in aging is physical activity. To date, few studies have objectively assessed physical activity in young and older adults, and examined whether physical activity is differentially associated with cognition in aging. Young (n=29, age 18-31 years) and older adults (n=31, ages 55-82 years) completed standardized neuropsychological testing to assess executive function and episodic memory capacities. An experimental face-name relational memory task was administered to augment assessment of episodic memory. Physical activity (total step count and step rate) was objectively assessed using an accelerometer, and hierarchical regressions were used to evaluate relationships between cognition and physical activity. Older adults performed more poorly on tasks of executive function and episodic memory. Physical activity was positively associated with a composite measure of visual episodic memory and face-name memory accuracy in older adults. Physical activity associations with cognition were independent of sedentary behavior, which was negatively correlated with memory performance. Physical activity was not associated with cognitive performance in younger adults. Physical activity is positively associated with episodic memory performance in aging. The relationship appears to be strongest for face-name relational memory and visual episodic memory, likely attributable to the fact that these tasks make strong demands on the hippocampus. The results suggest that physical activity relates to cognition in older, but not younger adults.
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Slower saccadic reading in Parkinson’s disease
Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen
2018-01-01
Idiopathic Parkinson’s Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson’s Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p < 0.02), and both groups read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients but significantly correlated with age, duration of disease, and VFQ-25 scores. The presence of convergence insufficiency did not significantly correlate with reading time in PD patients, although on average there was slower reading time in those with convergence insufficiency by 8 s (p = 0.2613). We propose that a simple reading task using 120 single-digit numbers can be used as a screening tool in the clinical setting to assess functional ocular motor difficulties in Parkinson’s disease that can have a profound impact on quality of life. PMID:29364897
Slower saccadic reading in Parkinson's disease.
Jehangir, Naz; Yu, Caroline Yizhu; Song, Jeehey; Shariati, Mohammad Ali; Binder, Steven; Beyer, Jill; Santini, Veronica; Poston, Kathleen; Liao, Yaping Joyce
2018-01-01
Idiopathic Parkinson's Disease (PD) is characterized by degeneration of dopaminergic and other neurons, leading to motor and non-motor deficits. Abnormal eye movements in PD, including fixations, saccades, and convergence, are well described. However, saccadic reading, which requires serial and alternating saccades and fixations, is not well studied, despite its obvious impact on the quality of life. In this study, we assessed saccadic reading using variations of the King-Devick (KD) test, a rapid single digit number naming test, as a way to assess the ability to make serial left-to-right ocular motor movements necessary for reading. We recruited 42 treated PD patients and 80 age-matched controls and compared their reading times with a variety of measures, including age, duration of disease, Unified Parkinson's Disease Rating Scale (UPDRS), the National Eye Institute 25-Item Visual Functioning Questionnaire 25 (VFQ-25), and Montreal Cognitive assessment (MoCA) test. The subjects performed 4 trials of reading 120 single digit numbers aloud as fast as possible without making errors. In each trial, they read 3 pages (KD1, KD2, and KD3), and each page contained 40 numbers per page in 8 lines with 5 numbers/line. We found that PD patients read about 20% slower than controls on all tests (KD1, 2, and 3 tests) (p < 0.02), and both groups read irregularly spaced numbers slower than regularly spaced numbers. Having lines between numbers to guide reading (KD1 tests) did not impact reading time in both PD and controls, but increased visual crowding as a result of decreased spacing between numbers (KD3 tests) was associated with significantly slower reading times in both PD and control groups. Our study revealed that saccadic reading is slower in PD, but controls and PD patients are both impacted by visuospatial planning challenges posed by increased visual crowding and irregularity of number spacing. Reading time did not correlate with UPDRS or MoCA scores in PD patients but significantly correlated with age, duration of disease, and VFQ-25 scores. The presence of convergence insufficiency did not significantly correlate with reading time in PD patients, although on average there was slower reading time in those with convergence insufficiency by 8 s (p = 0.2613). We propose that a simple reading task using 120 single-digit numbers can be used as a screening tool in the clinical setting to assess functional ocular motor difficulties in Parkinson's disease that can have a profound impact on quality of life.
Visual functions and disability in diabetic retinopathy patients
Shrestha, Gauri Shankar; Kaiti, Raju
2013-01-01
Purpose This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. Method A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. Result The majority of subjects (42.1%) were of the age group 60–70 years. Best corrected visual acuity was found to be 0.73 ± 0.2 in the better eye and 0.93 ± 0.27 in the worse eye, which was significantly different at p = 0.002. Visual disability scores were significantly higher for legibility of letters (1.2 ± 0.3) and sentences (1.4 ± 0.4), and least for clothing (0.7 ± 0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Conclusion Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. PMID:24646899
Vision In Stroke cohort: Profile overview of visual impairment.
Rowe, Fiona J
2017-11-01
To profile the full range of visual disorders from a large prospective observation study of stroke survivors referred by stroke multidisciplinary teams to orthoptic services with suspected visual problems. Multicenter prospective study undertaken in 20 acute Trust hospitals. Standardized screening/referral forms and investigation forms documented data on referral signs and symptoms plus type and extent of visual impairment. Of 1,345 patients referred with suspected visual impairment, 915 were recruited (59% men; mean age at stroke onset 69 years [SD 14]). Initial visual assessment was at median 22 days post stroke onset. Eight percent had normal visual assessment. Of 92% with confirmed visual impairment, 24% had reduced central visual acuity <0.3 logMAR and 13.5% <0.5 logMAR. Acquired strabismus was noted in 16% and acquired ocular motility disorders in 68%. Peripheral visual field loss was present in 52%, most commonly homonymous hemianopia. Fifteen percent had visual inattention and 4.6% had other visual perceptual disorders. Overall 84% were visually symptomatic with visual field loss the most common complaint followed by blurred vision, reading difficulty, and diplopia. Treatment options were provided to all with confirmed visual impairment. Targeted advice was most commonly provided along with refraction, prisms, and occlusion. There are a wide range of visual disorders that occur following stroke and, frequently, with visual symptoms. There are equally a wide variety of treatment options available for these individuals. All stroke survivors require screening for visual impairment and warrant referral for specialist assessment and targeted treatment specific to the type of visual impairment.
Visual functions and disability in diabetic retinopathy patients.
Shrestha, Gauri Shankar; Kaiti, Raju
2014-01-01
This study was undertaken to find correlations between visual functions and visual disabilities in patients with diabetic retinopathy. A cross-sectional study was carried out among 38 visually impaired diabetic retinopathy subjects at the Low Vision Clinic of B.P. Koirala Lions Centre for Ophthalmic Studies, Kathmandu. The subjects underwent assessment of distance and near visual acuity, objective and subjective refraction, contrast sensitivity, color vision, and central and peripheral visual fields. The visual disabilities of each subject in their daily lives were evaluated using a standard questionnaire. Multiple regression analysis between visual functions and visual disabilities index was assessed. The majority of subjects (42.1%) were of the age group 60-70 years. Best corrected visual acuity was found to be 0.73±0.2 in the better eye and 0.93±0.27 in the worse eye, which was significantly different at p=0.002. Visual disability scores were significantly higher for legibility of letters (1.2±0.3) and sentences (1.4±0.4), and least for clothing (0.7±0.3). Visual disability index for legibility of letters and sentences was significantly correlated with near visual acuity and peripheral visual field. Contrast sensitivity was also significantly correlated with the visual disability index, and total scores. Impairment of near visual acuity, contrast sensitivity, and peripheral visual field correlated significantly with different types of visual disability. Hence, these clinical tests should be an integral part of the visual assessment of diabetic eyes. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Using Visual Assessments and Tutorials to Teach Solar System Concepts in Introductory Astronomy
ERIC Educational Resources Information Center
LoPresto, Michael C.
2010-01-01
Visual assessments and tutorials are instruments that rely on student construction and/or examination of pictures and/or diagrams rather than multiple choice and/or short answer questions. Being a very visual subject, astronomy lends itself to assessments and tutorials of this type. What follows is a report on the results of the use of visual…
Improvement of Fine Motor Skills in Children with Visual Impairment: An Explorative Study
ERIC Educational Resources Information Center
Reimer, A. M.; Cox, R. F. A.; Nijhuis-Van der Sanden, M. W. G.; Boonstra, F. N.
2011-01-01
In this study we analysed the potential spin-off of magnifier training on the fine-motor skills of visually impaired children. The fine-motor skills of 4- and 5-year-old visually impaired children were assessed using the manual skills test for children (6-12 years) with a visual impairment (ManuVis) and movement assessment for children (Movement…
ERIC Educational Resources Information Center
Bogon, Johanna; Finke, Kathrin; Schulte-Körne, Gerd; Müller, Hermann J.; Schneider, Werner X.; Stenneken, Prisca
2014-01-01
People with developmental dyslexia (DD) have been shown to be impaired in tasks that require the processing of multiple visual elements in parallel. It has been suggested that this deficit originates from disturbed visual attentional functions. The parameter-based assessment of visual attention based on Bundesen's (1990) theory of visual…
Unfolding Visual Lexical Decision in Time
Barca, Laura; Pezzulo, Giovanni
2012-01-01
Visual lexical decision is a classical paradigm in psycholinguistics, and numerous studies have assessed the so-called “lexicality effect" (i.e., better performance with lexical than non-lexical stimuli). Far less is known about the dynamics of choice, because many studies measured overall reaction times, which are not informative about underlying processes. To unfold visual lexical decision in (over) time, we measured participants' hand movements toward one of two item alternatives by recording the streaming x,y coordinates of the computer mouse. Participants categorized four kinds of stimuli as “lexical" or “non-lexical:" high and low frequency words, pseudowords, and letter strings. Spatial attraction toward the opposite category was present for low frequency words and pseudowords. Increasing the ambiguity of the stimuli led to greater movement complexity and trajectory attraction to competitors, whereas no such effect was present for high frequency words and letter strings. Results fit well with dynamic models of perceptual decision-making, which describe the process as a competition between alternatives guided by the continuous accumulation of evidence. More broadly, our results point to a key role of statistical decision theory in studying linguistic processing in terms of dynamic and non-modular mechanisms. PMID:22563419
Visual Representations of DNA Replication: Middle Grades Students' Perceptions and Interpretations
NASA Astrophysics Data System (ADS)
Patrick, Michelle D.; Carter, Glenda; Wiebe, Eric N.
2005-09-01
Visual representations play a critical role in the communication of science concepts for scientists and students alike. However, recent research suggests that novice students experience difficulty extracting relevant information from representations. This study examined students' interpretations of visual representations of DNA replication. Each of the four steps of DNA replication included in the instructional presentation was represented as a text slide, a simple 2D graphic, and a rich 3D graphic. Participants were middle grade girls ( n = 21) attending a summer math and science program. Students' eye movements were measured as they viewed the representations. Participants were interviewed following instruction to assess their perceived salient features. Eye tracking fixation counts indicated that the same features (look zones) in the corresponding 2D and 3D graphics had different salience. The interviews revealed that students used different characteristics such as color, shape, and complexity to make sense of the graphics. The results of this study have implications for the design of instructional representations. Since many students have difficulty distinguishing between relevant and irrelevant information, cueing and directing student attention through the instructional representation could allow cognitive resources to be directed to the most relevant material.
Magnostics: Image-Based Search of Interesting Matrix Views for Guided Network Exploration.
Behrisch, Michael; Bach, Benjamin; Hund, Michael; Delz, Michael; Von Ruden, Laura; Fekete, Jean-Daniel; Schreck, Tobias
2017-01-01
In this work we address the problem of retrieving potentially interesting matrix views to support the exploration of networks. We introduce Matrix Diagnostics (or Magnostics), following in spirit related approaches for rating and ranking other visualization techniques, such as Scagnostics for scatter plots. Our approach ranks matrix views according to the appearance of specific visual patterns, such as blocks and lines, indicating the existence of topological motifs in the data, such as clusters, bi-graphs, or central nodes. Magnostics can be used to analyze, query, or search for visually similar matrices in large collections, or to assess the quality of matrix reordering algorithms. While many feature descriptors for image analyzes exist, there is no evidence how they perform for detecting patterns in matrices. In order to make an informed choice of feature descriptors for matrix diagnostics, we evaluate 30 feature descriptors-27 existing ones and three new descriptors that we designed specifically for MAGNOSTICS-with respect to four criteria: pattern response, pattern variability, pattern sensibility, and pattern discrimination. We conclude with an informed set of six descriptors as most appropriate for Magnostics and demonstrate their application in two scenarios; exploring a large collection of matrices and analyzing temporal networks.
Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.
Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N
2017-08-01
Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.
Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil
2015-01-01
The medical curriculum is the main tool representing the entire undergraduate medical education. Due to its complexity and multilayered structure it is of limited use to teachers in medical education for quality improvement purposes. In this study we evaluated three visualizations of curriculum data from a pilot course, using teachers from an undergraduate medical program and applying visual analytics methods. We found that visual analytics can be used to positively impacting analytical reasoning and decision making in medical education through the realization of variables capable to enhance human perception and cognition on complex curriculum data. The positive results derived from our evaluation of a medical curriculum and in a small scale, signify the need to expand this method to an entire medical curriculum. As our approach sustains low levels of complexity it opens a new promising direction in medical education informatics research.
[Cortical potentials evoked to response to a signal to make a memory-guided saccade].
Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V
2010-01-01
The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.
Hamm, Julian; Atwal, Anita
2017-01-01
Background In the field of occupational therapy, the assistive equipment provision process (AEPP) is a prominent preventive strategy used to promote independent living and to identify and alleviate fall risk factors via the provision of assistive equipment within the home environment. Current practice involves the use of paper-based forms that include 2D measurement guidance diagrams that aim to communicate the precise points and dimensions that must be measured in order to make AEPP assessments. There are, however, issues such as “poor fit” of equipment due to inaccurate measurements taken and recorded, resulting in more than 50% of equipment installed within the home being abandoned by patients. This paper presents a novel 3D measurement aid prototype (3D-MAP) that provides enhanced measurement and assessment guidance to patients via the use of 3D visualization technologies. Objective The purpose of this study was to explore the perceptions of older adults with regard to the barriers and opportunities of using the 3D-MAP application as a tool that enables patient self-delivery of the AEPP. Methods Thirty-three community-dwelling older adults participated in interactive sessions with a bespoke 3D-MAP application utilizing the retrospective think-aloud protocol and semistructured focus group discussions. The system usability scale (SUS) questionnaire was used to evaluate the application’s usability. Thematic template analysis was carried out on the SUS item discussions, think-aloud, and semistructured focus group data. Results The quantitative SUS results revealed that the application may be described as having “marginal-high” and “good” levels of usability, along with strong agreement with items relating to the usability (P=.004) and learnability (P<.001) of the application. Four high-level themes emerged from think-aloud and focus groups discussions: (1) perceived usefulness (PU), (2) perceived ease of use (PEOU), (3) application use (AU) and (4) self-assessment (SA). The application was seen as a useful tool to enhance visualization of measurement guidance and also to promote independent living, ownership of care, and potentially reduce waiting times. Several design and functionality recommendations emerged from the study, such as a need to manipulate the view and position of the 3D furniture models, and a need for clearer visual prompts and alternative keyboard interface for measurement entry. Conclusions Participants perceived the 3D-MAP application as a useful tool that has the potential to make significant improvements to the AEPP, not only in terms of accuracy of measurement, but also by potentially enabling older adult patients to carry out the data collection element of the AEPP themselves. Further research is needed to further adapt the 3D-MAP application in line with the study outcomes and to establish its clinical utility with regards to effectiveness, efficiency, accuracy, and reliability of measurements that are recorded using the application and to compare it with 2D measurement guidance leaflets. PMID:28630034
Colorimetric evaluation of iPhone apps for colour vision tests based on the Ishihara test.
Dain, Stephen J; AlMerdef, Ali
2016-05-01
Given the versatility of smart phone displays, it was inevitable that applications (apps) providing colour vision testing would appear as an option. In this study, the colorimetric characteristics of five available iPhone apps for colour vision testing are assessed as a prequel to possible clinical evaluation. The colours of the displays produced by the apps are assessed with reference to the colours of a printed Ishihara test. The visual task is assessed on the basis of the colour differences and the alignment to the dichromatic confusion lines. The apps vary in quality and while some are colorimetrically acceptable, there are also some problems with their construction in making them a clinically useful app rather than curiosity driven self-testing. There is no reason why, in principle, a suitable test cannot be designed for smart phones. © 2016 Optometry Australia.
The case against specialized visual-spatial short-term memory.
Morey, Candice C
2018-05-24
The dominant paradigm for understanding working memory, or the combination of the perceptual, attentional, and mnemonic processes needed for thinking, subdivides short-term memory (STM) according to whether memoranda are encoded in aural-verbal or visual formats. This traditional dissociation has been supported by examples of neuropsychological patients who seem to selectively lack STM for either aural-verbal, visual, or spatial memoranda, and by experimental research using dual-task methods. Though this evidence is the foundation of assumptions of modular STM systems, the case it makes for a specialized visual STM system is surprisingly weak. I identify the key evidence supporting a distinct verbal STM system-patients with apparent selective damage to verbal STM and the resilience of verbal short-term memories to general dual-task interference-and apply these benchmarks to neuropsychological and experimental investigations of visual-spatial STM. Contrary to the evidence on verbal STM, patients with apparent visual or spatial STM deficits tend to experience a wide range of additional deficits, making it difficult to conclude that a distinct short-term store was damaged. Consistently with this, a meta-analysis of dual-task visual-spatial STM research shows that robust dual-task costs are consistently observed regardless of the domain or sensory code of the secondary task. Together, this evidence suggests that positing a specialized visual STM system is not necessary. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Learning feedback and feedforward control in a mirror-reversed visual environment.
Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn
2015-10-01
When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.
Learning feedback and feedforward control in a mirror-reversed visual environment
Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi
2015-01-01
When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313
Chase, H W; Fournier, J C; Bertocci, M A; Greenberg, T; Aslam, H; Stiffler, R; Lockovich, J; Graur, S; Bebko, G; Forbes, E E; Phillips, M L
2017-01-01
High trait impulsive sensation seeking (ISS) is common in 18–25-year olds, and is associated with risky decision-making and deleterious outcomes. We examined relationships among: activity in reward regions previously associated with ISS during an ISS-relevant context, uncertain reward expectancy (RE), using fMRI; ISS impulsivity and sensation-seeking subcomponents; and risky decision-making in 100, transdiagnostically recruited 18–25-year olds. ISS, anhedonia, anxiety, depression and mania were measured using self-report scales; clinician-administered scales also assessed the latter four. A post-scan risky decision-making task measured ‘risky' (possible win/loss/mixed/neutral) fMRI-task versus ‘sure thing' stimuli. ‘Bias' reflected risky over safe choices. Uncertain RE-related activity in left ventrolateral prefrontal cortex and bilateral ventral striatum was positively associated with an ISS composite score, comprising impulsivity and sensation-seeking–fun-seeking subcomponents (ISSc; P⩽0.001). Bias positively associated with sensation seeking–experience seeking (ES; P=0.003). This relationship was moderated by ISSc (P=0.009): it was evident only in high ISSc individuals. Whole-brain analyses showed a positive relationship between: uncertain RE-related left ventrolateral prefrontal cortical activity and ISSc; uncertain RE-related visual attention and motor preparation neural network activity and ES; and uncertain RE-related dorsal anterior cingulate cortical activity and bias, specifically in high ISSc participants (all ps<0.05, peak-level, family-wise error corrected). We identify an indirect pathway linking greater levels of uncertain RE-related activity in reward, visual attention and motor networks with greater risky decision-making, via positive relationships with impulsivity, fun seeking and ES. These objective neural markers of high ISS can guide new treatment developments for young adults with high levels of this debilitating personality trait. PMID:28418404
PATTERNS OF CLINICALLY SIGNIFICANT COGNITIVE IMPAIRMENT IN HOARDING DISORDER.
Mackin, R Scott; Vigil, Ofilio; Insel, Philip; Kivowitz, Alana; Kupferman, Eve; Hough, Christina M; Fekri, Shiva; Crothers, Ross; Bickford, David; Delucchi, Kevin L; Mathews, Carol A
2016-03-01
The cognitive characteristics of individuals with hoarding disorder (HD) are not well understood. Existing studies are relatively few and somewhat inconsistent but suggest that individuals with HD may have specific dysfunction in the cognitive domains of categorization, speed of information processing, and decision making. However, there have been no studies evaluating the degree to which cognitive dysfunction in these domains reflects clinically significant cognitive impairment (CI). Participants included 78 individuals who met DSM-V criteria for HD and 70 age- and education-matched controls. Cognitive performance on measures of memory, attention, information processing speed, abstract reasoning, visuospatial processing, decision making, and categorization ability was evaluated for each participant. Rates of clinical impairment for each measure were compared, as were age- and education-corrected raw scores for each cognitive test. HD participants showed greater incidence of CI on measures of visual memory, visual detection, and visual categorization relative to controls. Raw-score comparisons between groups showed similar results with HD participants showing lower raw-score performance on each of these measures. In addition, in raw-score comparisons HD participants also demonstrated relative strengths compared to control participants on measures of verbal and visual abstract reasoning. These results suggest that HD is associated with a pattern of clinically significant CI in some visually mediated neurocognitive processes including visual memory, visual detection, and visual categorization. Additionally, these results suggest HD individuals may also exhibit relative strengths, perhaps compensatory, in abstract reasoning in both verbal and visual domains. © 2015 Wiley Periodicals, Inc.
Moving to Capture Children’s Attention: Developing a Methodology for Measuring Visuomotor Attention
Coats, Rachel O.; Mushtaq, Faisal; Williams, Justin H. G.; Aucott, Lorna S.; Mon-Williams, Mark
2016-01-01
Attention underpins many activities integral to a child’s development. However, methodological limitations currently make large-scale assessment of children’s attentional skill impractical, costly and lacking in ecological validity. Consequently we developed a measure of ‘Visual Motor Attention’ (VMA)—a construct defined as the ability to sustain and adapt visuomotor behaviour in response to task-relevant visual information. In a series of experiments, we evaluated the capability of our method to measure attentional processes and their contributions in guiding visuomotor behaviour. Experiment 1 established the method’s core features (ability to track stimuli moving on a tablet-computer screen with a hand-held stylus) and demonstrated its sensitivity to principled manipulations in adults’ attentional load. Experiment 2 standardised a format suitable for use with children and showed construct validity by capturing developmental changes in executive attention processes. Experiment 3 tested the hypothesis that children with and without coordination difficulties would show qualitatively different response patterns, finding an interaction between the cognitive and motor factors underpinning responses. Experiment 4 identified associations between VMA performance and existing standardised attention assessments and thereby confirmed convergent validity. These results establish a novel approach to measuring childhood attention that can produce meaningful functional assessments that capture how attention operates in an ecologically valid context (i.e. attention's specific contribution to visuomanual action). PMID:27434198
Effects of a Blacklight Visual Field on Eye-Contact Training of Spastic Cerebral Palsied Children.
ERIC Educational Resources Information Center
Poland, D. J.; Doebler, L, K.
1980-01-01
Four subjects, aged six to seven, identified as visually impaired, were given training in making eye contact with a stimulus under both white and black light visual field. All subjects performed better under the black light condition, even overcoming the expected practice effect when white light training followed black light training. (Author/SJL)
A Board Game about Space and Solar System for Primary School Students
ERIC Educational Resources Information Center
Kirikkaya, Esma Bulus; Iseri, Sebnem; Vurkaya, Gurbet
2010-01-01
Visual elements that used in lessons are necessary because they make learning more permanent. Also the visuals that used in evaluation part of the lesson should decrease the anxiety of students and provide them with correct evaluation. The board games among the visuals which can be used in evaluation part are quite effective for getting feedback…
ERIC Educational Resources Information Center
Johnson, Wendell G.
2008-01-01
The visual instruction movement was a constituent part of the field of visual education, which began in the early 1900s. With the further development of sound films and radio, it became audiovisual education; by the 1950s the field was known as instructional technology and today is often labeled educational technology (Butler, 1995). Anna Verona…
ERIC Educational Resources Information Center
Eckhoff, Angela
2013-01-01
In many early childhood classrooms, visual arts experiences occur around a communal arts table. A shared workspace allows for spontaneous conversation and exploration of the art-making process of peers and teachers. In this setting, conversation can play an important role in visual arts experiences as children explore new media, skills, and ideas.…
Survey of Network Visualization Tools
2007-12-01
Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to
XML-Based Visual Specification of Multidisciplinary Applications
NASA Technical Reports Server (NTRS)
Al-Theneyan, Ahmed; Jakatdar, Amol; Mehrotra, Piyush; Zubair, Mohammad
2001-01-01
The advancements in the Internet and Web technologies have fueled a growing interest in developing a web-based distributed computing environment. We have designed and developed Arcade, a web-based environment for designing, executing, monitoring, and controlling distributed heterogeneous applications, which is easy to use and access, portable, and provides support through all phases of the application development and execution. A major focus of the environment is the specification of heterogeneous, multidisciplinary applications. In this paper we focus on the visual and script-based specification interface of Arcade. The web/browser-based visual interface is designed to be intuitive to use and can also be used for visual monitoring during execution. The script specification is based on XML to: (1) make it portable across different frameworks, and (2) make the development of our tools easier by using the existing freely available XML parsers and editors. There is a one-to-one correspondence between the visual and script-based interfaces allowing users to go back and forth between the two. To support this we have developed translators that translate a script-based specification to a visual-based specification, and vice-versa. These translators are integrated with our tools and are transparent to users.
Bohm's Quantum Potential and the Visualization of Molecular Structure
NASA Technical Reports Server (NTRS)
Levit, Creon; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.
2012-01-01
Background Graph drawing is an integral part of many systems biology studies, enabling visual exploration and mining of large-scale biological networks. While a number of layout algorithms are available in popular network analysis platforms, such as Cytoscape, it remains poorly understood how well their solutions reflect the underlying biological processes that give rise to the network connectivity structure. Moreover, visualizations obtained using conventional layout algorithms, such as those based on the force-directed drawing approach, may become uninformative when applied to larger networks with dense or clustered connectivity structure. Methods We implemented a modified layout plug-in, named Multilevel Layout, which applies the conventional layout algorithms within a multilevel optimization framework to better capture the hierarchical modularity of many biological networks. Using a wide variety of real life biological networks, we carried out a systematic evaluation of the method in comparison with other layout algorithms in Cytoscape. Results The multilevel approach provided both biologically relevant and visually pleasant layout solutions in most network types, hence complementing the layout options available in Cytoscape. In particular, it could improve drawing of large-scale networks of yeast genetic interactions and human physical interactions. In more general terms, the biological evaluation framework developed here enables one to assess the layout solutions from any existing or future graph drawing algorithm as well as to optimize their performance for a given network type or structure. Conclusions By making use of the multilevel modular organization when visualizing biological networks, together with the biological evaluation of the layout solutions, one can generate convenient visualizations for many network biology applications. PMID:22448851
Reifman, Jaques; Kumar, Kamal; Khitrov, Maxim Y; Liu, Jianbo; Ramakrishnan, Sridhar
2018-07-01
The psychomotor vigilance task (PVT) has been widely used to assess the effects of sleep deprivation on human neurobehavioral performance. To facilitate research in this field, we previously developed the PC-PVT, a freely available software system analogous to the "gold-standard" PVT-192 that, in addition to allowing for simple visual reaction time (RT) tests, also allows for near real-time PVT analysis, prediction, and visualization in a personal computer (PC). Here we present the PC-PVT 2.0 for Windows 10 operating system, which has the capability to couple PVT tests of a study protocol with the study's sleep/wake and caffeine schedules, and make real-time individualized predictions of PVT performance for such schedules. We characterized the accuracy and precision of the software in measuring RT, using 44 distinct combinations of PC hardware system configurations. We found that 15 system configurations measured RTs with an average delay of less than 10 ms, an error comparable to that of the PVT-192. To achieve such small delays, the system configuration should always use a gaming mouse as the means to respond to visual stimuli. We recommend using a discrete graphical processing unit for desktop PCs and an external monitor for laptop PCs. This update integrates a study's sleep/wake and caffeine schedules with the testing software, facilitating testing and outcome visualization, and provides near-real-time individualized PVT predictions for any sleep-loss condition considering caffeine effects. The software, with its enhanced PVT analysis, visualization, and prediction capabilities, can be freely downloaded from https://pcpvt.bhsai.org. Published by Elsevier B.V.
Junior doctors' extended work hours and the effects on their performance: the Irish case.
Flinn, Fiona; Armstrong, Claire
2011-04-01
To explore the relationship between junior doctors' long working hours and their performance in a variety of cognitive and clinical decision-making tests. Also, to consider the implications of performance decrements in such tests for healthcare quality. A within-subject design was used to eliminate variation related to individual differences. Each participant was tested twice, once post call and once rested. At each session, participants were tested on cognitive functioning and clinical decision-making. The study was based on six acute Irish hospitals during 2008. Thirty junior hospital doctors, ages ranged from 23 to 30 years; of them, 17 of the participants were female and 13 were male. Measures Cognitive functioning was measured by the MindStreams Global Assessment Battery (NeuroTrax Corp., NY, USA). This is a set of computerized tests, designed for use in medical settings, that assesses performance in memory, executive function, visual spatial perception, verbal function, attention, information processing speed and motor skills. Clinical decision-making was tested using Key Features Problems. Each Key Features Problem consists of a case scenario and then three to four questions about this scenario. In an effort to make it more realistic, the speed with which participants completed the three problems was also recorded. Participants' global cognitive scores, attention, information processing speed and motor skills were significantly worse post call than when rested. They also took longer to complete clinical decision-making questions in the post-call condition and obtained lower scores than when rested. There are significant negative changes in doctors' cognitive functioning and clinical decision-making performance that appear to be attributable to long working hours. This therefore raises the important question of whether working long hours decreases healthcare quality and compromises patient safety.
Deal, Samantha; Wambaugh, John; Judson, Richard; Mosher, Shad; Radio, Nick; Houck, Keith; Padilla, Stephanie
2016-09-01
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Development of a microfluidic device for simultaneous mixing and pumping
NASA Astrophysics Data System (ADS)
Kim, Byoung Jae; Yoon, Sang Youl; Lee, Kyung Heon; Sung, Hyung Jin
2009-01-01
We conducted experimental and numerical studies aimed at developing a microfluidic device capable of simultaneous mixing while pumping. The proposed multifunctional device makes use of alternating current electroosmotic flow and adopts an array of planar asymmetric microelectrodes with a diagonal or herringbone shape. The pumping performance was assessed in terms of the fluid velocity at the center of the microchannel, obtained by micro PIV. To assess the mixing, flow visualizations were carried out over the electrodes to verify the lateral flows. The mixing degree was quantified in terms of a mixing efficiency obtained by three-dimensional numerical simulations. The results showed that simultaneous mixing and pumping was achieved in the channels with diagonal or herringbone electrode configurations. A herringbone electrode configuration showed better pumping compared with a reference, as well as enhanced mixing.
NASA Technical Reports Server (NTRS)
Gage, Mark; Dehoff, Ronald
1991-01-01
This system architecture task (1) analyzed the current process used to make an assessment of engine and component health after each test or flight firing of an SSME, (2) developed an approach and a specific set of objectives and requirements for automated diagnostics during post fire health assessment, and (3) listed and described the software applications required to implement this system. The diagnostic system described is a distributed system with a database management system to store diagnostic information and test data, a CAE package for visual data analysis and preparation of plots of hot-fire data, a set of procedural applications for routine anomaly detection, and an expert system for the advanced anomaly detection and evaluation.
Split-brain reveals separate but equal self-recognition in the two cerebral hemispheres.
Uddin, Lucina Q; Rayman, Jan; Zaidel, Eran
2005-09-01
To assess the ability of the disconnected cerebral hemispheres to recognize images of the self, a split-brain patient (an individual who underwent complete cerebral commissurotomy to relieve intractable epilepsy) was tested using morphed self-face images presented to one visual hemifield (projecting to one hemisphere) at a time while making "self/other" judgments. The performance of the right and left hemispheres of this patient as assessed by a signal detection method was not significantly different, though a measure of bias did reveal hemispheric differences. The right and left hemispheres of this patient independently and equally possessed the ability to self-recognize, but only the right hemisphere could successfully recognize familiar others. This supports a modular concept of self-recognition and other-recognition, separately present in each cerebral hemisphere.
Beyond simple charts: Design of visualizations for big health data
Ola, Oluwakemi; Sedig, Kamran
2016-01-01
Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data’s utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data. PMID:28210416
Dasgupta, Aritra; Lee, Joon-Yong; Wilson, Ryan; Lafrance, Robert A; Cramer, Nick; Cook, Kristin; Payne, Samuel
2017-01-01
Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.
Beyond simple charts: Design of visualizations for big health data.
Ola, Oluwakemi; Sedig, Kamran
2016-01-01
Health data is often big data due to its high volume, low veracity, great variety, and high velocity. Big health data has the potential to improve productivity, eliminate waste, and support a broad range of tasks related to disease surveillance, patient care, research, and population health management. Interactive visualizations have the potential to amplify big data's utilization. Visualizations can be used to support a variety of tasks, such as tracking the geographic distribution of diseases, analyzing the prevalence of disease, triaging medical records, predicting outbreaks, and discovering at-risk populations. Currently, many health visualization tools use simple charts, such as bar charts and scatter plots, that only represent few facets of data. These tools, while beneficial for simple perceptual and cognitive tasks, are ineffective when dealing with more complex sensemaking tasks that involve exploration of various facets and elements of big data simultaneously. There is need for sophisticated and elaborate visualizations that encode many facets of data and support human-data interaction with big data and more complex tasks. When not approached systematically, design of such visualizations is labor-intensive, and the resulting designs may not facilitate big-data-driven tasks. Conceptual frameworks that guide the design of visualizations for big data can make the design process more manageable and result in more effective visualizations. In this paper, we demonstrate how a framework-based approach can help designers create novel, elaborate, non-trivial visualizations for big health data. We present four visualizations that are components of a larger tool for making sense of large-scale public health data.
RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT
Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...
An Integrated Web-based Decision Support System in Disaster Risk Management
NASA Astrophysics Data System (ADS)
Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.
2012-04-01
Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact-probability matrix in terms of socio-economic dimension.
Improving lip wrinkles: lipstick-related image analysis.
Ryu, Jong-Seong; Park, Sun-Gyoo; Kwak, Taek-Jong; Chang, Min-Youl; Park, Moon-Eok; Choi, Khee-Hwan; Sung, Kyung-Hye; Shin, Hyun-Jong; Lee, Cheon-Koo; Kang, Yun-Seok; Yoon, Moung-Seok; Rang, Moon-Jeong; Kim, Seong-Jin
2005-08-01
The appearance of lip wrinkles is problematic if it is adversely influenced by lipstick make-up causing incomplete color tone, spread phenomenon and pigment remnants. It is mandatory to develop an objective assessment method for lip wrinkle status by which the potential of wrinkle-improving products to lips can be screened. The present study is aimed at finding out the useful parameters from the image analysis of lip wrinkles that is affected by lipstick application. The digital photograph image of lips before and after lipstick application was assessed from 20 female volunteers. Color tone was measured by Hue, Saturation and Intensity parameters, and time-related pigment spread was calculated by the area over vermilion border by image-analysis software (Image-Pro). The efficacy of wrinkle-improving lipstick containing asiaticoside was evaluated from 50 women by using subjective and objective methods including image analysis in a double-blind placebo-controlled fashion. The color tone and spread phenomenon after lipstick make-up were remarkably affected by lip wrinkles. The level of standard deviation by saturation value of image-analysis software was revealed as a good parameter for lip wrinkles. By using the lipstick containing asiaticoside for 8 weeks, the change of visual grading scores and replica analysis indicated the wrinkle-improving effect. As the depth and number of wrinkles were reduced, the lipstick make-up appearance by image analysis also improved significantly. The lip wrinkle pattern together with lipstick make-up can be evaluated by the image-analysis system in addition to traditional assessment methods. Thus, this evaluation system is expected to test the efficacy of wrinkle-reducing lipstick that was not described in previous dermatologic clinical studies.
NASA Astrophysics Data System (ADS)
Zhang, Wenlan; Luo, Ting; Jiang, Gangyi; Jiang, Qiuping; Ying, Hongwei; Lu, Jing
2016-06-01
Visual comfort assessment (VCA) for stereoscopic images is a particularly significant yet challenging task in 3D quality of experience research field. Although the subjective assessment given by human observers is known as the most reliable way to evaluate the experienced visual discomfort, it is time-consuming and non-systematic. Therefore, it is of great importance to develop objective VCA approaches that can faithfully predict the degree of visual discomfort as human beings do. In this paper, a novel two-stage objective VCA framework is proposed. The main contribution of this study is that the important visual attention mechanism of human visual system is incorporated for visual comfort-aware feature extraction. Specifically, in the first stage, we first construct an adaptive 3D visual saliency detection model to derive saliency map of a stereoscopic image, and then a set of saliency-weighted disparity statistics are computed and combined to form a single feature vector to represent a stereoscopic image in terms of visual comfort. In the second stage, a high dimensional feature vector is fused into a single visual comfort score by performing random forest algorithm. Experimental results on two benchmark databases confirm the superior performance of the proposed approach.
Scene and human face recognition in the central vision of patients with glaucoma
Aptel, Florent; Attye, Arnaud; Guyader, Nathalie; Boucart, Muriel; Chiquet, Christophe; Peyrin, Carole
2018-01-01
Primary open-angle glaucoma (POAG) firstly mainly affects peripheral vision. Current behavioral studies support the idea that visual defects of patients with POAG extend into parts of the central visual field classified as normal by static automated perimetry analysis. This is particularly true for visual tasks involving processes of a higher level than mere detection. The purpose of this study was to assess visual abilities of POAG patients in central vision. Patients were assigned to two groups following a visual field examination (Humphrey 24–2 SITA-Standard test). Patients with both peripheral and central defects and patients with peripheral but no central defect, as well as age-matched controls, participated in the experiment. All participants had to perform two visual tasks where low-contrast stimuli were presented in the central 6° of the visual field. A categorization task of scene images and human face images assessed high-level visual recognition abilities. In contrast, a detection task using the same stimuli assessed low-level visual function. The difference in performance between detection and categorization revealed the cost of high-level visual processing. Compared to controls, patients with a central visual defect showed a deficit in both detection and categorization of all low-contrast images. This is consistent with the abnormal retinal sensitivity as assessed by perimetry. However, the deficit was greater for categorization than detection. Patients without a central defect showed similar performances to the controls concerning the detection and categorization of faces. However, while the detection of scene images was well-maintained, these patients showed a deficit in their categorization. This suggests that the simple loss of peripheral vision could be detrimental to scene recognition, even when the information is displayed in central vision. This study revealed subtle defects in the central visual field of POAG patients that cannot be predicted by static automated perimetry assessment using Humphrey 24–2 SITA-Standard test. PMID:29481572
NASA Astrophysics Data System (ADS)
de Jesús-Crespo, Rebeca; Ramirez, Alonso
The growing need to protect stream ecosystems in Puerto Rico requires the development of monitoring procedures that help determine management priorities. Physical habitat assessments have been used to make quick evaluations that are cost efficient and easy conduct, yet they need to be studied further to understand their accuracy at predicting stream health. This study evaluated the efficiency of the Hawaii Stream Visual Assessment Protocol (HSVAP) at determining integrity of streams within the highly urbanized Rio Piedras watershed in Puerto Rico. To validate the protocol we compared results from HSVAP assessments conducted at 16 reaches with water quality and macroinvertebrate data collected at the same sites. Results from linear regressions between the water quality measures and HSVAP scores showed that there was no significant relationships ( R2 = 0.48; p = 0.08). This implies that the protocol is not supported by the water quality data. However, results from regressions between macroinvertebrate diversity and the number of families per site showed a significant positive relation with HSVAP scores ( R2 = 0.30; p = 0.02; R2 = 0.24; p = 0.05). In addition, a significant negative relation was observed between HSVAP scores and the Family Biotic Index (FBI) ( R2 = 0.32; p = 0.02). Comparisons between ratings obtained from the FBI and HSVAP scores suggest that the HSVAP classified sites as having higher quality than the biological metric. Based on these results, it can be concluded that the HSVAP is a good tool for a general assessment of the physical characteristics of a stream, but it needs modifications to accurately assess ecological quality of streams in Puerto Rico.
Getts, Katherine M; Quinn, Emilee L; Johnson, Donna B; Otten, Jennifer J
2017-11-01
Measuring food waste (ie, plate waste) in school cafeterias is an important tool to evaluate the effectiveness of school nutrition policies and interventions aimed at increasing consumption of healthier meals. Visual assessment methods are frequently applied in plate waste studies because they are more convenient than weighing. The visual quarter-waste method has become a common tool in studies of school meal waste and consumption, but previous studies of its validity and reliability have used correlation coefficients, which measure association but not necessarily agreement. The aims of this study were to determine, using a statistic measuring interrater agreement, whether the visual quarter-waste method is valid and reliable for assessing food waste in a school cafeteria setting when compared with the gold standard of weighed plate waste. To evaluate validity, researchers used the visual quarter-waste method and weighed food waste from 748 trays at four middle schools and five high schools in one school district in Washington State during May 2014. To assess interrater reliability, researcher pairs independently assessed 59 of the same trays using the visual quarter-waste method. Both validity and reliability were assessed using a weighted κ coefficient. For validity, as compared with the measured weight, 45% of foods assessed using the visual quarter-waste method were in almost perfect agreement, 42% of foods were in substantial agreement, 10% were in moderate agreement, and 3% were in slight agreement. For interrater reliability between pairs of visual assessors, 46% of foods were in perfect agreement, 31% were in almost perfect agreement, 15% were in substantial agreement, and 8% were in moderate agreement. These results suggest that the visual quarter-waste method is a valid and reliable tool for measuring plate waste in school cafeteria settings. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Data Presentation and Visualization (DPV) Interface Control Document
NASA Technical Reports Server (NTRS)
Mazzone, Rebecca A.; Conroy, Michael P.
2015-01-01
Data Presentation and Visualization (DPV) is a subset of the modeling and simulation (M&S) capabilities at Kennedy Space Center (KSC) that endeavors to address the challenges of how to present and share simulation output for analysts, stakeholders, decision makers, and other interested parties. DPV activities focus on the development and provision of visualization tools to meet the objectives identified above, as well as providing supporting tools and capabilities required to make its visualization products available and accessible across NASA.
ERIC Educational Resources Information Center
Wilder, Anna; Brinkerhoff, Jonathan
2007-01-01
This study assessed the effectiveness of computer-based biomolecular visualization activities on the development of high school biology students' representational competence as a means of understanding and visualizing protein structure/function relationships. Also assessed were students' attitudes toward these activities. Sixty-nine students…
Multicomponent analysis of a digital Trail Making Test.
Fellows, Robert P; Dahmen, Jessamyn; Cook, Diane; Schmitter-Edgecombe, Maureen
2017-01-01
The purpose of the current study was to use a newly developed digital tablet-based variant of the TMT to isolate component cognitive processes underlying TMT performance. Similar to the paper-based trail making test, this digital variant consists of two conditions, Part A and Part B. However, this digital version automatically collects additional data to create component subtest scores to isolate cognitive abilities. Specifically, in addition to the total time to completion and number of errors, the digital Trail Making Test (dTMT) records several unique components including the number of pauses, pause duration, lifts, lift duration, time inside each circle, and time between circles. Participants were community-dwelling older adults who completed a neuropsychological evaluation including measures of processing speed, inhibitory control, visual working memory/sequencing, and set-switching. The abilities underlying TMT performance were assessed through regression analyses of component scores from the dTMT with traditional neuropsychological measures. Results revealed significant correlations between paper and digital variants of Part A (r s = .541, p < .001) and paper and digital versions of Part B (r s = .799, p < .001). Regression analyses with traditional neuropsychological measures revealed that Part A components were best predicted by speeded processing, while inhibitory control and visual/spatial sequencing were predictors of specific components of Part B. Exploratory analyses revealed that specific dTMT-B components were associated with a performance-based medication management task. Taken together, these results elucidate specific cognitive abilities underlying TMT performance, as well as the utility of isolating digital components.
Berghmans, Johan M; Poley, Marten J; van der Ende, Jan; Weber, Frank; Van de Velde, Marc; Adriaenssens, Peter; Himpe, Dirk; Verhulst, Frank C; Utens, Elisabeth
2017-09-01
The modified Yale Preoperative Anxiety Scale is widely used to assess children's anxiety during induction of anesthesia, but requires training and its administration is time-consuming. A Visual Analog Scale, in contrast, requires no training, is easy-to-use and quickly completed. The aim of this study was to evaluate a Visual Analog Scale as a tool to assess anxiety during induction of anesthesia and to determine cut-offs to distinguish between anxious and nonanxious children. Four hundred and one children (1.5-16 years) scheduled for daytime surgery were included. Children's anxiety during induction was rated by parents and anesthesiologists on a Visual Analog Scale and by a trained observer on the modified Yale Preoperative Anxiety Scale. Psychometric properties assessed were: (i) concurrent validity (correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores); (ii) construct validity (differences between subgroups according to the children's age and the parents' anxiety as assessed by the State-Trait Anxiety Inventory); (iii) cross-informant agreement using Bland-Altman analysis; (iv) cut-offs to distinguish between anxious and nonanxious children (reference: modified Yale Preoperative Anxiety Scale ≥30). Correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores were strong (0.68 and 0.73, respectively). Visual Analog Scale scores were higher for children ≤5 years compared to children aged ≥6. Visual Analog Scale scores of children of high-anxious parents were higher than those of low-anxious parents. The mean difference between parents' and anesthesiologists' Visual Analog Scale scores was 3.6, with 95% limits of agreement (-56.1 to 63.3). To classify anxious children, cut-offs for parents (≥37 mm) and anesthesiologists (≥30 mm) were established. The present data provide preliminary data for the validity of a Visual Analog Scale to assess children's anxiety during induction. © 2017 John Wiley & Sons Ltd.
Comparing visual search and eye movements in bilinguals and monolinguals
Hout, Michael C.; Walenchok, Stephen C.; Azuma, Tamiko; Goldinger, Stephen D.
2017-01-01
Recent research has suggested that bilinguals show advantages over monolinguals in visual search tasks, although these findings have been derived from global behavioral measures of accuracy and response times. In the present study we sought to explore the bilingual advantage by using more sensitive eyetracking techniques across three visual search experiments. These spatially and temporally fine-grained measures allowed us to carefully investigate any nuanced attentional differences between bilinguals and monolinguals. Bilingual and monolingual participants completed visual search tasks that varied in difficulty. The experiments required participants to make careful discriminations in order to detect target Landolt Cs among similar distractors. In Experiment 1, participants performed both feature and conjunction search. In Experiments 2 and 3, participants performed visual search while making different types of speeded discriminations, after either locating the target or mentally updating a constantly changing target. The results across all experiments revealed that bilinguals and monolinguals were equally efficient at guiding attention and generating responses. These findings suggest that the bilingual advantage does not reflect a general benefit in attentional guidance, but could reflect more efficient guidance only under specific task demands. PMID:28508116
A new approach to subjectively assess quality of plenoptic content
NASA Astrophysics Data System (ADS)
Viola, Irene; Řeřábek, Martin; Ebrahimi, Touradj
2016-09-01
Plenoptic content is becoming increasingly popular thanks to the availability of acquisition and display devices. Thanks to image-based rendering techniques, a plenoptic content can be rendered in real time in an interactive manner allowing virtual navigation through the captured scenes. This way of content consumption enables new experiences, and therefore introduces several challenges in terms of plenoptic data processing, transmission and consequently visual quality evaluation. In this paper, we propose a new methodology to subjectively assess the visual quality of plenoptic content. We also introduce a prototype software to perform subjective quality assessment according to the proposed methodology. The proposed methodology is further applied to assess the visual quality of a light field compression algorithm. Results show that this methodology can be successfully used to assess the visual quality of plenoptic content.
Providing Epistemic Support For Assessments Through Mobile-Supported Sharing Activities1
Raclaw, Joshua; Robles, Jessica S.; DiDomenico, Stephen M.
2017-01-01
This paper examines how participants in face-to-face conversation employ mobile phones as a resource for social action. We focus on what we call mobile-supported sharing activities, in which participants use a mobile phone to share text or images with others by voicing text aloud from their mobile or providing others with visual access to the device’s display screen. Drawing from naturalistic video recordings, we focus on how mobile-supported sharing activities invite assessments by providing access to an object that is not locally accessible to the participants. Such practices make relevant co-participants’ assessment of these objects and allow for different forms of co-participation across sequence types. We additionally examine how the organization of assessments during these sharing activities displays sensitivity to preference structure. The analysis illustrates the relevance of embodiment, local objects, and new communicative technologies to the production of action in co-present interaction. Data are in American English. PMID:28936031
Active-duty military service members’ visual representations of PTSD and TBI in masks
Walker, Melissa S.; Kaimal, Girija; Gonzaga, Adele M. L.; Myers-Coffman, Katherine A.; DeGraba, Thomas J.
2017-01-01
ABSTRACT Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery. PMID:28452610
Rhesus Monkeys Behave As If They Perceive the Duncker Illusion
Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.
2008-01-01
The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233
Astroaccesible: Bringing the study of the Universe to the visually impaired
NASA Astrophysics Data System (ADS)
Pérez-Montero, E.; García Gómez-Caro, E.; Sánchez Molina, Y.; Ortiz-Gil, A.; López de Lacalle, S.; Tamayo, A.
2017-03-01
Astroaccesible is an outreach project carried out in collaboration with the IAA-CSIC and ONCE to make astronomy more accessible to the visually impaired people so the main source of information is not based on the use of images. The activities of the project started in 2014 and since then it has received financial support from SEA in 2015 and from FECYT in 2016 making possible to extend the activity for many ONCE centres in Spain. The activities include in-person classes using adequate descriptions, high-contrast images for those people with visual remain and touching material representing basic concepts about sizes, scales and distances of astronomical bodies. To maximize the impact of the contents of the project many of the contents, summary of activities, links to resources are available through the web page of the project. This project focused on astronomy is also intended to make the scientific community more sensitive to perform more accessible explanations of their results.
Active-duty military service members' visual representations of PTSD and TBI in masks.
Walker, Melissa S; Kaimal, Girija; Gonzaga, Adele M L; Myers-Coffman, Katherine A; DeGraba, Thomas J
2017-12-01
Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery.
Gamito, Pedro; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Rosa, Pedro; Sousa, Tatiana; Maia, Ines; Morais, Diogo; Lopes, Paulo; Brito, Rodrigo
2017-01-01
Ecological validity should be the cornerstone of any assessment of cognitive functioning. For this purpose, we have developed a preliminary study to test the Art Gallery Test (AGT) as an alternative to traditional neuropsychological testing. The AGT involves three visual search subtests displayed in a virtual reality (VR) art gallery, designed to assess visual attention within an ecologically valid setting. To evaluate the relation between AGT and standard neuropsychological assessment scales, data were collected on a normative sample of healthy adults ( n = 30). The measures consisted of concurrent paper-and-pencil neuropsychological measures [Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB), and Color Trails Test (CTT)] along with the outcomes from the three subtests of the AGT. The results showed significant correlations between the AGT subtests describing different visual search exercises strategies with global and specific cognitive measures. Comparative visual search was associated with attention and cognitive flexibility (CTT); whereas visual searches involving pictograms correlated with global cognitive function (MoCA).
Use of ultrasonography to make management decisions
USDA-ARS?s Scientific Manuscript database
Transrectal ultrasonography has been available for making management decisions since the mid 1980’s. This technology allows for the real-time visualization of internal structures (i.e. ovary and fetus) that are otherwise difficult to evaluate. The use of this technology in making reproductive manag...
Demehri, S; Muhit, A; Zbijewski, W; Stayman, J W; Yorkston, J; Packard, N; Senn, R; Yang, D; Foos, D; Thawait, G K; Fayad, L M; Chhabra, A; Carrino, J A; Siewerdsen, J H
2015-06-01
To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. • CBCT provided adequate image quality for diagnostic tasks in extremity imaging. • CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. • CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Xie, Weilong; Yu, Kangfu; Pauls, K Peter; Navabi, Alireza
2012-04-01
The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.
Peretti, Charles-Siegfried; Peretti, Charles Roger; Kozora, Elizabeth; Papathanassiou, Dimitri; Chouinard, Virginie-Anne; Chouinard, Guy
2012-01-01
Systemic lupus erythematosus (SLE) is known to induce psychiatric disorders, from psychoses to maladaptive coping. Brain autoantibodies were proposed to explain SLE neuropsychiatric disorders and found to be elevated before the onset of clinical symptoms. We assessed cognition in Caucasian SLE women with elevated autoantibodies without overt neuropsychiatric syndromes, in conjunction with single photon emission computerized tomography (SPECT). 31 women meeting SLE criteria of the American College of Rheumatology (ACR) were included. Patients who met the ACR neuropsychiatric definition were excluded. Matched controls were 23 healthy women from the Champagne-Ardenne region, France. Participants completed neuropsychological and autoantibodies measurements, and 19 completed SPECT. 61% (19/31) of women with SLE and 53% (9/17) of those with normal SPECT had significant global cognitive impairment defined as 4 T-scores <40 in cognitive tests, compared to 0% (0/23) of controls. SLE women also had significantly greater cognitive dysfunction (mean T-score) on the Wechsler Adult Intelligence Scale (WAIS) visual backspan, Trail Making Test A and B, WAIS Digit Symbol Substitution Test and Stroop Interference, compared to controls. Elevated antinuclear antibody correlated with impairment in the WAIS visual span, WAIS visual backspan, and cancellation task; elevated anti-double-stranded DNA antibody and anticardiolipin correlated respectively with impairment in the Trail Making Test A and WAIS auditive backspan. Two SLE women had abnormal SPECT. A high prevalence of cognitive deficits was found in Caucasian SLE women compared to normal women, which included impairment in cognitive domains important for daily activities. Elevated autoantibodies tended to correlate with cognitive dysfunction. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Duttmann, Rainer; Kuhwald, Michael; Nolde, Michael
2015-04-01
Soil compaction is one of the main threats to cropland soils in present days. In contrast to easily visible phenomena of soil degradation, soil compaction, however, is obscured by other signals such as reduced crop yield, delayed crop growth, and the ponding of water, which makes it difficult to recognize and locate areas impacted by soil compaction directly. Although it is known that trafficking intensity is a key factor for soil compaction, until today only modest work has been concerned with the mapping of the spatially distributed patterns of field traffic and with the visual representation of the loads and pressures applied by farm traffic within single fields. A promising method for for spatial detection and mapping of soil compaction risks of individual fields is to process dGPS data, collected from vehicle-mounted GPS receivers and to compare the soil stress induced by farm machinery to the load bearing capacity derived from given soil map data. The application of position-based machinery data enables the mapping of vehicle movements over time as well as the assessment of trafficking intensity. It also facilitates the calculation of the trafficked area and the modeling of the loads and pressures applied to soil by individual vehicles. This paper focuses on the modeling and mapping of the spatial patterns of traffic intensity in silage maize fields during harvest, considering the spatio-temporal changes in wheel load and ground contact pressure along the loading sections. In addition to scenarios calculated for varying mechanical soil strengths, an example for visualizing the three-dimensional stress propagation inside the soil will be given, using the Visualization Toolkit (VTK) to construct 2D or 3D maps supporting to decision making due to sustainable field traffic management.
NASA Astrophysics Data System (ADS)
Dong, Jing; Gora, Michalina J.; Beaulieu-Ouellet, Emilie; Queneherve, Lucille H.; Grant, Catriona N.; Rosenberg, Mireille; Nishioka, Norman S.; Fasano, Alessio; Tearney, Guillermo J.
2017-02-01
Celiac disease (CD) affects around 1% of the global population and can cause serious long-term symptoms including malnutrition, fatigue, and diarrhea, amongst others. Despite this, it is often left undiagnosed. Currently, a tissue diagnosis of CD is made by random endoscopic biopsy of the duodenum to confirm the existence of microscopic morphologic alterations in the intestinal mucosa. However, duodenal endoscopic biopsy is problematic because the morphological changes can be focal and endoscopic biopsy is plagued by sampling error. Additionally, tissue artifacts can also an issue because cuts in the transverse plane can make duodenal villi appear artifactually shortened and can bias the assessment of intraepithelial inflammation. Moreover, endoscopic biopsy is costly and poorly tolerated as the patient needs to be sedated to perform the procedure. Our lab has previously developed technology termed tethered capsule OCT endomicroscopy (TCE) to overcome these diagnostic limitations of endoscopy. TCE involves swallowing an optomechanically-engineered pill that generates 3D images of the GI tract as it traverses the lumen of the organ via peristalsis, assisted by gravity. In several patients we have demonstrated TCE imaging of duodenal villi, however the current TCE device design is not optimal for CD diagnosis as the villi compress when in contact with the smooth capsule's wall. In this work, we present methods for structuring the outer surface of the capsule to improve the visualization of the villi height and crypt depth. Preliminary results in humans suggest that new TCE capsule enables better visualization of villous architecture, making it possibly to comprehensively scan the entire duodenum to obtain a more accurate tissue diagnosis of CD.
Paediatric Refractive Errors in an Eye Clinic in Osogbo, Nigeria.
Michaeline, Isawumi; Sheriff, Agboola; Bimbo, Ayegoro
2016-03-01
Paediatric ophthalmology is an emerging subspecialty in Nigeria and as such there is paucity of data on refractive errors in the country. This study set out to determine the pattern of refractive errors in children attending an eye clinic in South West Nigeria. A descriptive study of 180 consecutive subjects seen over a 2-year period. Presenting complaints, presenting visual acuity (PVA), age and sex were recorded. Clinical examination of the anterior and posterior segments of the eyes, extraocular muscle assessment and refraction were done. The types of refractive errors and their grades were determined. Corrected VA was obtained. Data was analysed using descriptive statistics in proportions, chi square with p value <0.05. The age range of subjects was between 3 and 16 years with mean age = 11.7 and SD = 0.51; with males making up 33.9%.The commonest presenting complaint was blurring of distant vision (40%), presenting visual acuity 6/9 (33.9%), normal vision constituted >75.0%, visual impairment20% and low vision 23.3%. Low grade spherical and cylindrical errors occurred most frequently (35.6% and 59.9% respectively). Regular astigmatism was significantly more common, P <0.001. The commonest diagnosis was simple myopic astigmatism (41.1%). Four cases of strabismus were seen. Simple spherical and cylindrical errors were the commonest types of refractive errors seen. Visual impairment and low vision occurred and could be a cause of absenteeism from school. Low-cost spectacle production or dispensing unit and health education are advocated for the prevention of visual impairment in a hospital set-up.
ERIC Educational Resources Information Center
Mitchell, Claudia
2008-01-01
At the risk of seeming to make exaggerated claims for visual methodologies, what I set out to do is lay bare some of the key elements of working with the visual as a set of methodologies and practices. In particular, I address educational research in South Africa at a time when questions of the social responsibility of the academic researcher…
Visual Analysis as a design and decision-making tool in the development of a quarry
Randall Boyd Fitzgerald
1979-01-01
In order to obtain local and state government approvals, an environmental impact analysis of the mining and reclamation of a proposed hard rock quarry was required. High visibility of the proposed mining area from the adjacent community required a visual impact analysis in the planning and design of the project. The Visual Analysis defined design criteria for the...
ERIC Educational Resources Information Center
Brugar, Kristy A.
2012-01-01
This is a quasi-experimental mixed methods study of a curriculum intervention focused on the interdisciplinary teaching of history, literacy, and the visual arts. In this study I address three questions: (1) How does students' learning in history change following their participation in an interdisciplinary history-literacy-visual arts…
ERIC Educational Resources Information Center
Evagorou, Maria; Erduran, Sibel; Mäntylä, Terhi
2015-01-01
Background: The use of visual representations (i.e., photographs, diagrams, models) has been part of science, and their use makes it possible for scientists to interact with and represent complex phenomena, not observable in other ways. Despite a wealth of research in science education on visual representations, the emphasis of such research has…
Assessing visual function in children with complex disabilities: the Bradford visual function box.
Pilling, Rachel F; Outhwaite, Louise; Bruce, Alison
2016-08-01
Assessment of children with complex and severe learning disabilities is challenging and the children may not respond to the monochrome stimuli of traditional tests. The International Association of Scientific Studies on Intellectual Disability recommends that visual function assessment in poorly or non-cooperative children should be undertaken in an objective manner. We have developed a functional visual assessment tool to assess vision in children with complex and multiple disabilities. The Bradford visual function box (BVFB) comprises a selection of items (small toys) of different size and colour, which are presented to the child and the response observed. The aim of this study is to establish its intertester validity in children with severe learning disability. The visual function of 22 children with severe learning disability was assessed using the BVFB. The children were assessed by experienced practitioners on two separate occasions. The assessors were unaware of each other's findings. In 15/22 of the children, no difference was found in the results of the two assessors. The test was shown to have a good intertester agreement, weighted κ=0.768. The results of this clinical study show that the BVFB is a reliable tool for assessing the visual function in children with severe learning disability in whom other tests fail to elicit a response. The need for a tool which is quick to administer and portable has previously been highlighted. The BVFB offers an option for children for whom other formal tests are unsuccessful in eliciting a response. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Assessment of visual communication by information theory
NASA Astrophysics Data System (ADS)
Huck, Friedrich O.; Fales, Carl L.
1994-01-01
This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.
Biochemical Visual Literacy with Constructive Alignment: Outcomes, Assessment, and Activities
ERIC Educational Resources Information Center
Herraez, Angel; Costa, Manuel Joao
2013-01-01
Several contributions in "Biochemistry and Molecular Biology Education" have highlighted the role of visualization tools and the importance of developing students' visual literacy in biochemistry education. In this forum, the authors suggest that more focus is needed on the assessment of student learning, and they advance…
Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.
Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L
2010-01-01
The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.
Accuracy of quantitative visual soil assessment
NASA Astrophysics Data System (ADS)
van Leeuwen, Maricke; Heuvelink, Gerard; Stoorvogel, Jetse; Wallinga, Jakob; de Boer, Imke; van Dam, Jos; van Essen, Everhard; Moolenaar, Simon; Verhoeven, Frank; Stoof, Cathelijne
2016-04-01
Visual soil assessment (VSA) is a method to assess soil quality visually, when standing in the field. VSA is increasingly used by farmers, farm organisations and companies, because it is rapid and cost-effective, and because looking at soil provides understanding about soil functioning. Often VSA is regarded as subjective, so there is a need to verify VSA. Also, many VSAs have not been fine-tuned for contrasting soil types. This could lead to wrong interpretation of soil quality and soil functioning when contrasting sites are compared to each other. We wanted to assess accuracy of VSA, while taking into account soil type. The first objective was to test whether quantitative visual field observations, which form the basis in many VSAs, could be validated with standardized field or laboratory measurements. The second objective was to assess whether quantitative visual field observations are reproducible, when used by observers with contrasting backgrounds. For the validation study, we made quantitative visual observations at 26 cattle farms. Farms were located at sand, clay and peat soils in the North Friesian Woodlands, the Netherlands. Quantitative visual observations evaluated were grass cover, number of biopores, number of roots, soil colour, soil structure, number of earthworms, number of gley mottles and soil compaction. Linear regression analysis showed that four out of eight quantitative visual observations could be well validated with standardized field or laboratory measurements. The following quantitative visual observations correlated well with standardized field or laboratory measurements: grass cover with classified images of surface cover; number of roots with root dry weight; amount of large structure elements with mean weight diameter; and soil colour with soil organic matter content. Correlation coefficients were greater than 0.3, from which half of the correlations were significant. For the reproducibility study, a group of 9 soil scientists and 7 farmers carried out quantitative visual observations all independently from each other. All observers assessed five sites, having a sand, peat or clay soil. For almost all quantitative visual observations the spread of observed values was low (coefficient of variation < 1.0), except for the number of biopores and gley mottles. Furthermore, farmers' observed mean values were significantly higher than soil scientists' mean values, for soil structure, amount of gley mottles and compaction. This study showed that VSA could be a valuable tool to assess soil quality. Subjectivity, due to the background of the observer, might influence the outcome of visual assessment of some soil properties. In countries where soil analyses can easily be carried out, VSA might be a good replenishment to available soil chemical analyses, and in countries where it is not feasible to carry out soil analyses, VSA might be a good start to assess soil quality.
NASA Astrophysics Data System (ADS)
Becker, T.; König, G.
2015-10-01
Cartographic visualizations of crises are used to create a Common Operational Picture (COP) and enforce Situational Awareness by presenting relevant information to the involved actors. As nearly all crises affect geospatial entities, geo-data representations have to support location-specific analysis throughout the decision-making process. Meaningful cartographic presentation is needed for coordinating the activities of crisis manager in a highly dynamic situation, since operators' attention span and their spatial memories are limiting factors during the perception and interpretation process. Situational Awareness of operators in conjunction with a COP are key aspects in decision-making process and essential for making well thought-out and appropriate decisions. Considering utility networks as one of the most complex and particularly frequent required systems in urban environment, meaningful cartographic presentation of multiple utility networks with respect to disaster management do not exist. Therefore, an optimized visualization of utility infrastructure for emergency response procedures is proposed. The article will describe a conceptual approach on how to simplify, aggregate, and visualize multiple utility networks and their components to meet the requirements of the decision-making process and to support Situational Awareness.
Mraity, Hussien A A B; England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter
2016-01-01
The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality.
England, Andrew; Cassidy, Simon; Eachus, Peter; Dominguez, Alejandro; Hogg, Peter
2016-01-01
Objective: The aim of this article was to apply psychometric theory to develop and validate a visual grading scale for assessing the visual perception of digital image quality anteroposterior (AP) pelvis. Methods: Psychometric theory was used to guide scale development. Seven phantom and seven cadaver images of visually and objectively predetermined quality were used to help assess scale reliability and validity. 151 volunteers scored phantom images, and 184 volunteers scored cadaver images. Factor analysis and Cronbach's alpha were used to assess scale validity and reliability. Results: A 24-item scale was produced. Aggregated mean volunteer scores for each image correlated with the rank order of the visually and objectively predetermined image qualities. Scale items had good interitem correlation (≥0.2) and high factor loadings (≥0.3). Cronbach's alpha (reliability) revealed that the scale has acceptable levels of internal reliability for both phantom and cadaver images (α = 0.8 and 0.9, respectively). Factor analysis suggested that the scale is multidimensional (assessing multiple quality themes). Conclusion: This study represents the first full development and validation of a visual image quality scale using psychometric theory. It is likely that this scale will have clinical, training and research applications. Advances in knowledge: This article presents data to create and validate visual grading scales for radiographic examinations. The visual grading scale, for AP pelvis examinations, can act as a validated tool for future research, teaching and clinical evaluations of image quality. PMID:26943836
Cognitive performance predicts treatment decisional abilities in mild to moderate dementia.
Gurrera, R J; Moye, J; Karel, M J; Azar, A R; Armesto, J C
2006-05-09
To examine the contribution of neuropsychological test performance to treatment decision-making capacity in community volunteers with mild to moderate dementia. The authors recruited volunteers (44 men, 44 women) with mild to moderate dementia from the community. Subjects completed a battery of 11 neuropsychological tests that assessed auditory and visual attention, logical memory, language, and executive function. To measure decision making capacity, the authors administered the Capacity to Consent to Treatment Interview, the Hopemont Capacity Assessment Interview, and the MacCarthur Competence Assessment Tool--Treatment. Each of these instruments individually scores four decisional abilities serving capacity: understanding, appreciation, reasoning, and expression of choice. The authors used principal components analysis to generate component scores for each ability across instruments, and to extract principal components for neuropsychological performance. Multiple linear regression analyses demonstrated that neuropsychological performance significantly predicted all four abilities. Specifically, it predicted 77.8% of the common variance for understanding, 39.4% for reasoning, 24.6% for appreciation, and 10.2% for expression of choice. Except for reasoning and appreciation, neuropsychological predictor (beta) profiles were unique for each ability. Neuropsychological performance substantially and differentially predicted capacity for treatment decisions in individuals with mild to moderate dementia. Relationships between elemental cognitive function and decisional capacity may differ in individuals whose decisional capacity is impaired by other disorders, such as mental illness.
Novel flood risk assessment framework for rapid decision making
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Koursari, Eftychia; Solley, Mark
2016-04-01
The impacts of catastrophic flooding, have significantly increased over the last few decades. This is due to primarily the increased urbanisation in ever-expanding mega-cities as well as due to the intensification both in magnitude and frequency of extreme hydrologic events. Herein a novel conceptual framework is presented that incorporates the use of real-time information to inform and update low dimensionality hydraulic models, to allow for rapid decision making towards preventing loss of life and safeguarding critical infrastructure. In particular, a case study from the recent UK floods in the area of Whitesands (Dumfries), is presented to demonstrate the utility of this approach. It is demonstrated that effectively combining a wealth of readily available qualitative information (such as crowdsourced visual documentation or using live data from sensing techniques), with existing quantitative data, can help appropriately update hydraulic models and reduce modelling uncertainties in future flood risk assessments. This approach is even more useful in cases where hydraulic models are limited, do not exist or were not needed before unpredicted dynamic modifications to the river system took place (for example in the case of reduced or eliminated hydraulic capacity due to blockages). The low computational cost and rapid assessment this framework offers, render it promising for innovating in flood management.
Visualization Beyond the Map: The Challenges of Managing Data for Re-Use
NASA Astrophysics Data System (ADS)
Allison, M. D.; Groman, R. C.; Chandler, C. L.; Galvarino, C. R.; Wiebe, P. H.; Glover, D. M.
2012-12-01
The Biological and Chemical Oceanography Data Management Office (BCO-DMO) makes data publicly accessible via both a text-based and a geospatial interface, the latter using the Open Geospatial Consortium (OGC) compliant open-source MapServer software originally from the University of Minnesota. Making data available for reuse by the widest variety of users is one of the overriding goals of BCO-DMO and one of our greatest challenges. The biogeochemical, ecological and physical data we manage are extremely heterogeneous. Although it is not possible to be all things to all people, we are actively working on ways to make the data re-usable by the most people. Looking at data in a different way is one of the underpinnings of data re-use and the easier we can make data accessible, the more the community of users will benefit. We can help the user determine usefulness by providing some specific tools. Sufficiently well-informed metadata can often be enough to determine fitness for purpose, but many times our geospatial interface to the data and metadata is more compelling. Displaying the data visually in as many ways as possible enables the scientist, teacher or manager to decide if the data are useful and then being able to download the data right away with no login required is very attractive. We will present ways of visualizing different kinds of data and discuss using metadata to drive the visualization tools. We will also discuss our attempts to work with data providers to organize their data in ways to make them reusable to the largest audience and to solicit input from data users about the effectiveness of our solutions.
Visual thinking in action: visualizations as used on whiteboards.
Walny, Jagoda; Carpendale, Sheelagh; Riche, Nathalie Henry; Venolia, Gina; Fawcett, Philip
2011-12-01
While it is still most common for information visualization researchers to develop new visualizations from a data- or taskdriven perspective, there is growing interest in understanding the types of visualizations people create by themselves for personal use. As part of this recent direction, we have studied a large collection of whiteboards in a research institution, where people make active use of combinations of words, diagrams and various types of visuals to help them further their thought processes. Our goal is to arrive at a better understanding of the nature of visuals that are created spontaneously during brainstorming, thinking, communicating, and general problem solving on whiteboards. We use the qualitative approaches of open coding, interviewing, and affinity diagramming to explore the use of recognizable and novel visuals, and the interplay between visualization and diagrammatic elements with words, numbers and labels. We discuss the potential implications of our findings on information visualization design. © 2011 IEEE
Use of ultrasonography to make reproductive management decisions
USDA-ARS?s Scientific Manuscript database
Transrectal ultrasonography has been available for making management decisions since the mid 1980’s. This technology allows for the real-time visualization of internal structures (i.e. ovary and fetus) that are otherwise difficult to evaluate. The use of this technology in making reproductive manag...
Measuring Decision-Making During Thyroidectomy: Validity Evidence for a Web-Based Assessment Tool.
Madani, Amin; Gornitsky, Jordan; Watanabe, Yusuke; Benay, Cassandre; Altieri, Maria S; Pucher, Philip H; Tabah, Roger; Mitmaker, Elliot J
2018-02-01
Errors in judgment during thyroidectomy can lead to recurrent laryngeal nerve injury and other complications. Despite the strong link between patient outcomes and intraoperative decision-making, methods to evaluate these complex skills are lacking. The purpose of this study was to develop objective metrics to evaluate advanced cognitive skills during thyroidectomy and to obtain validity evidence for them. An interactive online learning platform was developed ( www.thinklikeasurgeon.com ). Trainees and surgeons from four institutions completed a 33-item assessment, developed based on a cognitive task analysis and expert Delphi consensus. Sixteen items required subjects to make annotations on still frames of thyroidectomy videos, and accuracy scores were calculated based on an algorithm derived from experts' responses ("visual concordance test," VCT). Seven items were short answer (SA), requiring users to type their answers, and scores were automatically calculated based on their similarity to a pre-populated repertoire of correct responses. Test-retest reliability, internal consistency, and correlation of scores with self-reported experience and training level (novice, intermediate, expert) were calculated. Twenty-eight subjects (10 endocrine surgeons and otolaryngologists, 18 trainees) participated. There was high test-retest reliability (intraclass correlation coefficient = 0.96; n = 10) and internal consistency (Cronbach's α = 0.93). The assessment demonstrated significant differences between novices, intermediates, and experts in total score (p < 0.01), VCT score (p < 0.01) and SA score (p < 0.01). There was high correlation between total case number and total score (ρ = 0.95, p < 0.01), between total case number and VCT score (ρ = 0.93, p < 0.01), and between total case number and SA score (ρ = 0.83, p < 0.01). This study describes the development of novel metrics and provides validity evidence for an interactive Web-based platform to objectively assess decision-making during thyroidectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Yan; Guo, Zhi; Zhu, Tong
2015-09-14
Singlet fission presents an attractive solution to overcome the Shockley–Queisser limit by generating two triplet excitons from one singlet exciton. Although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. We report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. Moreover, these measurements revealmore » a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.« less
Malojcic, Branko; Mubrin, Zdenko; Coric, Bojana; Susnic, Mirica; Spilich, George J
2008-01-01
In this investigation, we explored the impact of mild traumatic brain injury (mTBI) upon short term or working memory and attention. The performance of 37 individuals with mTBI was compared with that of 53 age, sex and education-matched controls. All participants were staff members or individuals seeking medical care at a University hospital serving a large metropolitan area. A battery of computerized tests measured sustained visual attention, short-term memory (STM), simple reaction time, and decision time. Individuals with mTBI showed a performance deficit at sustained visual attention, STM scanning and a trend towards slowing in choice decision making. These observed changes in the cognitive performance of mTBI individuals are hypothesized to be a consequence of impaired central information processing. Our results suggest that mTBI can elicit meaningful cognitive deficits for several months post-injury. Additionally, we believe that the tasks employed in the current investigation demonstrate their utility for understanding cognitive deficits in mTBI individuals.
NASA Astrophysics Data System (ADS)
Wan, Yan; Guo, Zhi; Zhu, Tong; Yan, Suxia; Johnson, Justin; Huang, Libai
2015-10-01
Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.
Visualization of Radiation Environment on Mars: Assessment with MARIE Measurements
NASA Technical Reports Server (NTRS)
Saganti, P.; Cucinotta, F.; Zeitlin, C.; Cleghorn, T.; Flanders, J.; Riman, F.; Hu, X.; Pinsky, L.; Lee, K.; Anderson, V.;
2003-01-01
For a given GCR (Galactic Cosmic Ray) environment at Mars, particle flux of protons, alpha particles, and heavy ions, are also needed on the surface of Mars for future human exploration missions. For the past twelve months, the MARJE (Martian Radiation Environment Experiment) instrument onboard the 200J Mars Odyssey has been providing the radiation measurements from the Martian orbit. These measurements are well correlated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations during these specific GCR environment conditions are now extended and transported through the CO2 atmosphere onto the Martian surface. These calculated pa11icle flux distributions are presented as a function of the Martian topography making use of the MOLA (Mars Orbiter Laser Altimeter) data from the MGS (Mars Global Surveyor). Also, particle flux calculations are presented with visualization in the human body from skin depth to the internal organs including the blood-forming organs.
Using visual aids to improve communication of risks about health: a review.
Garcia-Retamero, Rocio; Okan, Yasmina; Cokely, Edward T
2012-01-01
Recent research has shown that patients frequently experience difficulties understanding health-relevant numerical concepts. A prominent example is denominator neglect, or the tendency to pay too much attention to numerators in ratios (e.g., number of treated patients who died) with insufficient attention to denominators (e.g., overall number of treated patients). Denominator neglect can lead to inaccurate assessments of treatment risk reduction and thus can have important consequences for decisions about health. Here, we reviewed a series of studies investigating (1) different factors that can influence patients' susceptibility to denominator neglect in medical decision making--including numerical or language-related abilities; (2) the extent to which denominator neglect can be attenuated by using visual aids; and (3) a factor that moderates the effectiveness of such aids (i.e., graph literacy). The review spans probabilistic national U.S. and German samples, as well as immigrant (i.e., Polish people living in the United Kingdom) and undergraduate samples in Spain. Theoretical and prescriptive implications are discussed.
The new patient with a first seizure.
King, Mark
2003-04-01
First seizures are common, with one in 20 people suffering a seizure at some time in their life. This article aims to outline the assessment of patients with a first seizure, including making an accurate diagnosis of both seizure type and an epilepsy syndrome, if present. Seizures are classified into generalised and partial (arising from a focal region in the brain) based on clinical and electroencephalogram findings. However, as a partial seizure may proceed to a tonic clonic phase, differentiation may be difficult. Inquiring directly about 'minor' epileptic symptoms before the episode such as absences, myoclonic jerks, visual or auditory hallucinations or feelings of déjà vu, is needed to attempt to make a epilepsy syndrome diagnosis, as this has practical implications for treatment, prognosis and genetic counselling. Generalised epilepsies should be treated initially with valproate, while partial epilepsies should be treated with carbamazepine and switched to newer agents if intolerance occurs.
Design of an activity landscape view taking compound-based feature probabilities into account.
Zhang, Bijun; Vogt, Martin; Bajorath, Jürgen
2014-09-01
Activity landscapes (ALs) of compound data sets are rationalized as graphical representations that integrate similarity and potency relationships between active compounds. ALs enable the visualization of structure-activity relationship (SAR) information and are thus computational tools of interest for medicinal chemistry. For AL generation, similarity and potency relationships are typically evaluated in a pairwise manner and major AL features are assessed at the level of compound pairs. In this study, we add a conditional probability formalism to AL design that makes it possible to quantify the probability of individual compounds to contribute to characteristic AL features. Making this information graphically accessible in a molecular network-based AL representation is shown to further increase AL information content and helps to quickly focus on SAR-informative compound subsets. This feature probability-based AL variant extends the current spectrum of AL representations for medicinal chemistry applications.
Visualizing Elections Using Saari Triangles
ERIC Educational Resources Information Center
Alfaro, Ricardo; Han, Lixing; Schilling, Kenneth; Birgen, Mariah
2010-01-01
Students sometimes have difficulty calculating the result of a voting system applied to a particular set of voter preference lists. Saari triangles offer a way to visualize the result of an election and make this calculation easier in the case of several important voting systems.
Interactive metagenomic visualization in a Web browser.
Ondov, Brian D; Bergman, Nicholas H; Phillippy, Adam M
2011-09-30
A critical output of metagenomic studies is the estimation of abundances of taxonomical or functional groups. The inherent uncertainty in assignments to these groups makes it important to consider both their hierarchical contexts and their prediction confidence. The current tools for visualizing metagenomic data, however, omit or distort quantitative hierarchical relationships and lack the facility for displaying secondary variables. Here we present Krona, a new visualization tool that allows intuitive exploration of relative abundances and confidences within the complex hierarchies of metagenomic classifications. Krona combines a variant of radial, space-filling displays with parametric coloring and interactive polar-coordinate zooming. The HTML5 and JavaScript implementation enables fully interactive charts that can be explored with any modern Web browser, without the need for installed software or plug-ins. This Web-based architecture also allows each chart to be an independent document, making them easy to share via e-mail or post to a standard Web server. To illustrate Krona's utility, we describe its application to various metagenomic data sets and its compatibility with popular metagenomic analysis tools. Krona is both a powerful metagenomic visualization tool and a demonstration of the potential of HTML5 for highly accessible bioinformatic visualizations. Its rich and interactive displays facilitate more informed interpretations of metagenomic analyses, while its implementation as a browser-based application makes it extremely portable and easily adopted into existing analysis packages. Both the Krona rendering code and conversion tools are freely available under a BSD open-source license, and available from: http://krona.sourceforge.net.
Apes, skulls and drums: using images to make ethnographic knowledge in imperial Germany.
Petrou, Marissa H
2018-03-01
In this paper, I discuss the development and use of images employed by the Dresden Royal Museum for Zoology, Anthropology and Ethnography to resolve debates about how to use visual representation as a means of making ethnographic knowledge. Through experimentation with techniques of visual representation, the founding director, A.B. Meyer (1840-1911), proposed a historical, non-essentialist approach to understanding racial and cultural difference. Director Meyer's approach was inspired by the new knowledge he had gained through field research in Asia-Pacific as well as new forms of imaging that made highly detailed representations of objects possible. Through a combination of various techniques, he developed new visual methods that emphasized intimate familiarity with variations within any one ethnic group, from skull shape to material ornamentation, as integral to the new disciplines of physical and cultural anthropology. It is well known that photographs were a favoured form of visual documentation among the anthropological and ethnographic sciences at the fin de siècle. However, in the scholarly journals of the Dresden museum, photographs, drawings, tables and etchings were frequently displayed alongside one another. Meyer sought to train the reader's eye through organized arrangements that represented objects from multiple angles and at various levels of magnification. Focusing on chimpanzees, skulls and kettledrums from Asia-Pacific, I track the development of new modes of making and reading images, from zoology and physical anthropology to ethnography, to demonstrate how the museum visually historicized humankind.
Bosen, Adam K.; Fleming, Justin T.; Brown, Sarah E.; Allen, Paul D.; O'Neill, William E.; Paige, Gary D.
2016-01-01
Vision typically has better spatial accuracy and precision than audition, and as a result often captures auditory spatial perception when visual and auditory cues are presented together. One determinant of visual capture is the amount of spatial disparity between auditory and visual cues: when disparity is small visual capture is likely to occur, and when disparity is large visual capture is unlikely. Previous experiments have used two methods to probe how visual capture varies with spatial disparity. First, congruence judgment assesses perceived unity between cues by having subjects report whether or not auditory and visual targets came from the same location. Second, auditory localization assesses the graded influence of vision on auditory spatial perception by having subjects point to the remembered location of an auditory target presented with a visual target. Previous research has shown that when both tasks are performed concurrently they produce similar measures of visual capture, but this may not hold when tasks are performed independently. Here, subjects alternated between tasks independently across three sessions. A Bayesian inference model of visual capture was used to estimate perceptual parameters for each session, which were compared across tasks. Results demonstrated that the range of audio-visual disparities over which visual capture was likely to occur were narrower in auditory localization than in congruence judgment, which the model indicates was caused by subjects adjusting their prior expectation that targets originated from the same location in a task-dependent manner. PMID:27815630
Multifield-graphs: an approach to visualizing correlations in multifield scalar data.
Sauber, Natascha; Theisel, Holger; Seidel, Hans-Peter
2006-01-01
We present an approach to visualizing correlations in 3D multifield scalar data. The core of our approach is the computation of correlation fields, which are scalar fields containing the local correlations of subsets of the multiple fields. While the visualization of the correlation fields can be done using standard 3D volume visualization techniques, their huge number makes selection and handling a challenge. We introduce the Multifield-Graph to give an overview of which multiple fields correlate and to show the strength of their correlation. This information guides the selection of informative correlation fields for visualization. We use our approach to visually analyze a number of real and synthetic multifield datasets.
Comparing visual and objective skin assessment with pressure injury risk.
Borzdynski, Caroline J; McGuiness, William; Miller, Charne
2016-08-01
Contemporary approaches to pressure injury (PI) risk identification rely on the use of risk assessment tools and visual skin assessment. Objective biophysical measures that assess skin hydration, melanin, erythema and lipids have not been traditionally used in PI risk; however, these may prove useful as a risk assessment tool. The relationship between subjective visual assessments of skin condition, biophysical measures and PI risk warrants investigation. This study used a descriptive correlational design to examine the relationship between measures of skin hydration, colour (melanin and erythema) and lipids at PI-prone areas amongst geriatric persons (n = 38), obtained using biophysical skin measures and visual skin assessment. Twice daily measures of epidermal hydration, colour and lipids were assessed using the SD202 Skin Diagnostic (Courage + Khazaka GmBH, Cologne, Germany) over pressure-prone areas of the body of study participants over seven consecutive days. Concurrent visual assessment of skin hydration and colour was performed. Results obtained using the SD202 Skin Diagnostic were compared with results gathered from visual assessment and examined for their association with participants' PI risk based on scores of the Norton Risk Assessment Scale. While epidermal hydration and skin colour reading scores did not vary significantly over the data collection period, lipid readings could not be registered on any occasion. With the exception of skin dryness, skin parameters via both objective and subjective means had significant, positive correlations. Statistically significant correlations emerged between visual assessment of skin wetness at the sacrum (r = -0·441, P < 0·01) and ischia (r = -0·468, P < 0·01) and Norton Risk Assessment Scale scores. It was found that the objective assessment of epidermal hydration (skin wetness) was also significantly associated with PI risk at the sacrum (r = -0·528, P < 0·01), as well as the right ischia (r = -0·410, P < 0·05) and left ischia (r = -0·407, P < 0·05). Erythema, when assessed objectively, was significantly correlated with PI risk at the sacrum (r = -0·322, P < 0·05). Such findings indicating that the finer measures afforded by the SD202 Skin Diagnostic in the assessment of the subtle red hues displayed in erythematous skin may provide an additional advantage over traditional, clinician assessment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
The role of central and peripheral vision in expert decision making.
Ryu, Donghyun; Abernethy, Bruce; Mann, David L; Poolton, Jamie M; Gorman, Adam D
2013-01-01
The purpose of this study was to investigate the role of central and peripheral vision in expert decision making. A gaze-contingent display was used to selectively present information to the central and peripheral areas of the visual field while participants performed a decision-making task. Eleven skilled and eleven less-skilled male basketball players watched video clips of basketball scenarios in three different viewing conditions: full-image control, moving window (central vision only), and moving mask (peripheral vision only). At the conclusion of each clip participants were required to decide whether it was more appropriate for the ball-carrier to pass the ball or to drive to the basket. The skilled players showed significantly higher response accuracy and faster response times compared with their lesser-skilled counterparts in all three viewing conditions, demonstrating superiority in information extraction that held irrespective of whether they were using central or peripheral vision. The gaze behaviour of the skilled players was less influenced by the gaze-contingent manipulations, suggesting they were better able to use the remaining information to sustain their normal gaze behaviour. The superior capacity of experts to interpret dynamic visual information is evident regardless of whether the visual information is presented across the whole visual field or selectively to either central or peripheral vision alone.
Visual Representations on High School Biology, Chemistry, Earth Science, and Physics Assessments
ERIC Educational Resources Information Center
LaDue, Nicole D.; Libarkin, Julie C.; Thomas, Stephen R.
2015-01-01
The pervasive use of visual representations in textbooks, curricula, and assessments underscores their importance in K-12 science education. For example, visual representations figure prominently in the recent publication of the Next Generation Science Standards (NGSS Lead States in Next generation science standards: for states, by states.…