Ranking malaria risk factors to guide malaria control efforts in African highlands.
Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc
2009-11-25
Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.
Modelling malaria control by introduction of larvivorous fish.
Lou, Yijun; Zhao, Xiao-Qiang
2011-10-01
Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host-vector interaction and the predator-prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.
Malaria among gold miners in southern Pará, Brazil: estimates of determinants and individual costs.
Vosti, S A
1990-01-01
As malaria grows more prevalent in the Amazon frontier despite increased expenditures by disease control authorities, national and regional tropical disease control strategies are being called into question. The current crisis involving traditional control/eradication methods has broadened the search for feasible and effective malaria control strategies--a search that necessarily includes an investigation of the roles of a series of individual and community-level socioeconomic characteristics in determining malaria prevalence rates, and the proper methods of estimating these links. In addition, social scientists and policy makers alike know very little about the economic costs associated with malarial infections. In this paper, I use survey data from several Brazilian gold mining areas to (a) test the general reliability of malaria-related questionnaire response data, and suggest categorization methods to minimize the statistical influence of exaggerated responses, (b) estimate three statistical models aimed at detecting the socioeconomic determinants of individual malaria prevalence rates, and (c) calculate estimates of the average cost of a single bout of malaria. The results support the general reliability of survey response data gathered in conjunction with malaria research. Once the effects of vector exposure were controlled for, individual socioeconomic characteristics were only weakly linked to malaria prevalence rates in these very special miners' communities. Moreover, the socioeconomic and exposure links that were significant did not depend on the measure of malaria adopted. Finally, individual costs associated with malarial infections were found to be a significant portion of miners' incomes.
Water resources implications of integrating malaria control into the operation of an Ethiopian dam
NASA Astrophysics Data System (ADS)
Reis, Julia; Culver, Teresa B.; McCartney, Matthew; Lautze, Jonathan; Kibret, Solomon
2011-09-01
This paper investigates the water resources implications of using a method of hydrological control to reduce malaria around the Koka reservoir in central Ethiopia. This method is based on recent findings that malaria is transmitted from the shoreline of the Koka reservoir, and on a similar method that was used to control malaria some 80 yr ago in the United States. To assess the feasibility of implementing hydrological control at Koka, we considered the potential impact of the modified management regime on the benefits derived from current uses of the reservoir water (i.e., hydropower, irrigation, flood control, water supply, and downstream environmental flows). We used the HEC-ResSim model to simulate lowering the reservoir by a rate designed to disrupt larval development, which is expected to reduce the abundance of adult mosquito vectors and therefore reduce malaria transmission during the season in which transmission of the disease peaks. A comparison was made of major reservoir uses with and without the malaria control measure. In the 26-yr simulation, application of the malaria control measure increased total average annual electricity generation from 87.6 GWh × y-1 to 92.2 GWh × y-1 (i.e., a 5.3% increase) but resulted in a small decline in firm power generation (i.e., guaranteed at 99.5% reliability) from 4.16 MW to 4.15 MW (i.e., a 0.2% decrease). Application of the malaria control measure did not impact the ability of the reservoir to meet downstream irrigation demand and reduced the number of days of downstream flooding from 28 to 24 d. These results indicate that targeted use of hydrological control for malaria vector management could be undertaken without sacrificing the key benefits of reservoir operation.
Cost effective malaria risk control using remote sensing and environmental data
NASA Astrophysics Data System (ADS)
Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid
2012-06-01
Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.
Optimal control for Malaria disease through vaccination
NASA Astrophysics Data System (ADS)
Munzir, Said; Nasir, Muhammad; Ramli, Marwan
2018-01-01
Malaria is a disease caused by an amoeba (single-celled animal) type of plasmodium where anopheles mosquito serves as the carrier. This study examines the optimal control problem of malaria disease spread based on Aron and May (1982) SIR type models and seeks the optimal solution by minimizing the prevention of the spreading of malaria by vaccine. The aim is to investigate optimal control strategies on preventing the spread of malaria by vaccination. The problem in this research is solved using analytical approach. The analytical method uses the Pontryagin Minimum Principle with the symbolic help of MATLAB software to obtain optimal control result and to analyse the spread of malaria with vaccination control.
Msyamboza, K; Senga, E; Tetteh-Ashong, E; Kazembe, P; Brabin, B J
2007-04-01
The evaluation of the effectiveness of antimalarial drugs and bed net use in pregnant women is an important aspect of monitoring and surveillance of malaria control in pregnancy. In principle the screening method for assessing vaccine efficacy can be applied in non-vaccine settings for assessing interventions for malaria control in pregnancy. In this analysis field data on the proportion of placental malaria cases treated with two doses of sulphadoxine-pyrimethamine (SP) and the uptake of two doses of SP in the antenatal clinic was used in a case-coverage method to assess the protective effectiveness (PE) of intermittent preventive treatment with SP for malaria control in pregnancy. PE was assessed using placental malaria, low birthweight and maternal anaemia at delivery as outcome variables. The method was also applied to an evaluation of the protective effectiveness of self-reported use of impregnated bed nets (ITNs). Effectiveness was highest for reduction of low birthweight in multigravidae (87.2%, 95% CI, 83.2-91.3%). PE was lower for placental malaria (61.6% primigravidae, 28.5% multigravidae), and maternal anaemia (Hb < 8.0 g/dl, 37.8% primigravidae, 29.6% multigravidae). Estimates for PE of self-reported use of ITNs gave values for all three outcome parameters that were much lower than for SP use. For women of all parties effectiveness estimates for reduction of low birthweight were 22% (95% CI, 17.7-26.4), prevention of placental malaria (all types) 7.1% (95% CI, 4.4-9.8), prevention of active placental infection 38.9% (95% CI, 27.4-50.4), and for maternal anaemia 8.8% (95% CI, 0-20.0). The case-coverage method could provide a useful and practical approach to routine monitoring and evaluation of drug interventions to control malaria in pregnancy and has potentially wide applications. Effectiveness estimates related to reported ITN use in pregnancy may be less reliable. The method should be further evaluated using currently available data sets.
International Advocacy against DDT and Other Public Health Insecticides for Malaria Control
2011-01-19
compared with controls. This was true across all eight countries. Broad use of antimalarial drugs was the primary method of malaria suppression in...eight countries. Broad use of antimalarial drugs was the primary method of malaria suppression in the eight countries, but this method was not a GEF...Available evidence suggests the NMCPs did their work regardless of the presence or absence of GEF project personnel. Thus, antimalarial treatment (the
Escalante, Ananias A.; Ferreira, Marcelo U.; Vinetz, Joseph M.; Volkman, Sarah K.; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J.; Barry, Alyssa E.; Carlton, Jane M.; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Andreina Pacheco, M.; Vallejo, Andres F.; Herrera, Socrates; Felger, Ingrid
2015-01-01
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. PMID:26259945
Malaria Distribution, Prevalence, Drug Resistance and Control in Indonesia
Elyazar, Iqbal R.F.; Hay, Simon I.; Baird, J. Kevin
2011-01-01
Approximately 230 million people live in Indonesia. The country is also home to over 20 anopheline vectors of malaria which transmit all four of the species of Plasmodium that routinely infect humans. A complex mosaic of risk of infection across this 5000-km-long archipelago of thousands of islands and distinctive habitats seriously challenges efforts to control malaria. Social, economic and political dimensions contribute to these complexities. This chapter examines malaria and its control in Indonesia, from the earliest efforts by malariologists of the colonial Netherlands East Indies, through the Global Malaria Eradication Campaign of the 1950s, the tumult following the coup d’état of 1965, the global resurgence of malaria through the 1980s and 1990s and finally through to the decentralization of government authority following the fall of the authoritarian Soeharto regime in 1998. We detail important methods of control and their impact in the context of the political systems that supported them. We examine prospects for malaria control in contemporary decentralized and democratized Indonesia with multidrug-resistant malaria and greatly diminished capacities for integrated malaria control management programs. PMID:21295677
The Anopheles gambiae transcriptome - a turning point for malaria control.
Domingos, A; Pinheiro-Silva, R; Couto, J; do Rosário, V; de la Fuente, J
2017-04-01
Mosquitoes are important vectors of several pathogens and thereby contribute to the spread of diseases, with social, economic and public health impacts. Amongst the approximately 450 species of Anopheles, about 60 are recognized as vectors of human malaria, the most important parasitic disease. In Africa, Anopheles gambiae is the main malaria vector mosquito. Current malaria control strategies are largely focused on drugs and vector control measures such as insecticides and bed-nets. Improvement of current, and the development of new, mosquito-targeted malaria control methods rely on a better understanding of mosquito vector biology. An organism's transcriptome is a reflection of its physiological state and transcriptomic analyses of different conditions that are relevant to mosquito vector competence can therefore yield important information. Transcriptomic analyses have contributed significant information on processes such as blood-feeding parasite-vector interaction, insecticide resistance, and tissue- and stage-specific gene regulation, thereby facilitating the path towards the development of new malaria control methods. Here, we discuss the main applications of transcriptomic analyses in An. gambiae that have led to a better understanding of mosquito vector competence. © 2017 The Royal Entomological Society.
Current vector control challenges in the fight against malaria.
Benelli, Giovanni; Beier, John C
2017-10-01
The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance, presence of behavioral avoidance, high vector biodiversity, competitive and food web interactions, lack of insights on mosquito dispersal and mating behavior, and the impact of environmental changes on mosquito ecological traits. Overall, the trans-disciplinary cooperation among parasitologists and entomologists is crucial to ensure proper evaluation of the epidemiological impact triggered by novel mosquito vector control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.
Escalante, Ananias A; Ferreira, Marcelo U; Vinetz, Joseph M; Volkman, Sarah K; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J; Barry, Alyssa E; Carlton, Jane M; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Pacheco, M Andreina; Vallejo, Andres F; Herrera, Socrates; Felger, Ingrid
2015-09-01
Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. © The American Society of Tropical Medicine and Hygiene.
How well are malaria maps used to design and finance malaria control in Africa?
Omumbo, Judy A; Noor, Abdisalan M; Fall, Ibrahima S; Snow, Robert W
2013-01-01
Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria control.
Hemingway, Janet; Shretta, Rima; Wells, Timothy N. C.; Bell, David; Djimdé, Abdoulaye A.; Achee, Nicole; Qi, Gao
2016-01-01
Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication. PMID:26934361
Hemingway, Janet; Shretta, Rima; Wells, Timothy N C; Bell, David; Djimdé, Abdoulaye A; Achee, Nicole; Qi, Gao
2016-03-01
Progress made in malaria control during the past decade has prompted increasing global dialogue on malaria elimination and eradication. The product development pipeline for malaria has never been stronger, with promising new tools to detect, treat, and prevent malaria, including innovative diagnostics, medicines, vaccines, vector control products, and improved mechanisms for surveillance and response. There are at least 25 projects in the global malaria vaccine pipeline, as well as 47 medicines and 13 vector control products. In addition, there are several next-generation diagnostic tools and reference methods currently in development, with many expected to be introduced in the next decade. The development and adoption of these tools, bolstered by strategies that ensure rapid uptake in target populations, intensified mechanisms for information management, surveillance, and response, and continued financial and political commitment are all essential to achieving global eradication.
Malaria in Sucre State, Venezuela.
Zimmerman, R H
2000-01-01
The author reviews the malaria research program in Sucre State, Venezuela, taking an ecosystem approach. The goal was to determine which methods could have been introduced at the onset that would have made the study more ecological and interdisciplinary. Neither an ecosystem approach nor integrated disease control were in place at the time of the study. This study began to introduce an ecosystem approach when two contrasting ecosystems in Sucre State were selected for study and vector control methods were implemented based on research results. The need to have a health policy in place with an eco-health approach is crucial to the success of research and control. The review suggests that sustainability is low when not all the stakeholders are involved in the design and implementation of the research and control strategy development. The lack of community involvement makes sustainability doubtful. The author concludes that there were two interdependent challenges for malaria control: development of an ecosystem approach for malaria research and control, and the implementation of an integrated disease control strategy, with malaria as one of the important health issues.
Jackson, Sukhan; Sleigh, Adrian C.; Liu, Xi-Li
2002-01-01
OBJECTIVE: To assist with strategic planning for the eradication of malaria in Henan Province, China, which reached the consolidation phase of malaria control in 1992, when only 318 malaria cases were reported. METHODS: We conducted a prospective two-year study of the costs for Henan's malaria control programme. We used a cost model that could also be applied to other malaria programmes in mainland China, and analysed the cost of the three components of Henan's malaria programme: suspected malaria case management, vector surveillance, and population blood surveys. Primary cost data were collected from the government, and data on suspected malaria patients were collected in two malaria counties (population 2 093 100). We enlisted the help of 260 village doctors in six townships or former communes (population 247 762), and studied all 12 325 reported cases of suspected malaria in their catchment areas in 1994 and 1995. FINDINGS: The average annual government investment in malaria control was estimated to be US$ 111 516 (case-management 59%; active blood surveys 25%; vector surveillance 12%; and contingencies and special projects 4%). The average cost (direct and indirect) for patients seeking treatment for suspected malaria was US$ 3.48, equivalent to 10 days' income for rural residents. Each suspected malaria case cost the government an average of US$ 0.78. CONCLUSION: Further cuts in government funding will increase future costs when epidemic malaria returns; investment in malaria control should therefore continue at least at current levels of US$ 0.03 per person at risk. PMID:12219157
Lessons from malaria control to help meet the rising challenge of dengue.
Anders, Katherine L; Hay, Simon I
2012-12-01
Achievements in malaria control could inform efforts to control the increasing global burden of dengue. Better methods for quantifying dengue endemicity-equivalent to parasite prevalence surveys and endemicity mapping used for malaria-would help target resources, monitor progress, and advocate for investment in dengue prevention. Success in controlling malaria has been attributed to widespread implementation of interventions with proven efficacy. An improved evidence base is needed for large-scale delivery of existing and novel interventions for vector control, alongside continued investment in dengue drug and vaccine development. Control of dengue is unlikely to be achieved without coordinated international financial and technical support for national programmes, which has proven effective in reducing the global burden of malaria. Copyright © 2012 Elsevier Ltd. All rights reserved.
Musoke, David; Miiro, George; Karani, George; Morris, Keith; Kasasa, Simon; Ndejjo, Rawlance; Nakiyingi-Miiro, Jessica; Guwatudde, David; Musoke, Miph Boses
2015-01-01
Background The World Health Organization recommends use of multiple approaches to control malaria. The integrated approach to malaria prevention advocates the use of several malaria prevention methods in a holistic manner. This study assessed perceptions and practices on integrated malaria prevention in Wakiso district, Uganda. Methods A clustered cross-sectional survey was conducted among 727 households from 29 villages using both quantitative and qualitative methods. Assessment was done on awareness of various malaria prevention methods, potential for use of the methods in a holistic manner, and reasons for dislike of certain methods. Households were classified as using integrated malaria prevention if they used at least two methods. Logistic regression was used to test for factors associated with the use of integrated malaria prevention while adjusting for clustering within villages. Results Participants knew of the various malaria prevention methods in the integrated approach including use of insecticide treated nets (97.5%), removing mosquito breeding sites (89.1%), clearing overgrown vegetation near houses (97.9%), and closing windows and doors early in the evenings (96.4%). If trained, most participants (68.6%) would use all the suggested malaria prevention methods of the integrated approach. Among those who would not use all methods, the main reasons given were there being too many (70.2%) and cost (32.0%). Only 33.0% households were using the integrated approach to prevent malaria. Use of integrated malaria prevention by households was associated with reading newspapers (AOR 0.34; 95% CI 0.22 –0.53) and ownership of a motorcycle/car (AOR 1.75; 95% CI 1.03 – 2.98). Conclusion Although knowledge of malaria prevention methods was high and perceptions on the integrated approach promising, practices on integrated malaria prevention was relatively low. The use of the integrated approach can be improved by promoting use of multiple malaria prevention methods through various communication channels such as mass media. PMID:25837978
Preventing malaria in the Peruvian Amazon: a qualitative study in Iquitos, Peru.
Newell, Ian; Wiskin, Connie; Anthoney, James; Meza, Graciela; de Wildt, Gilles
2018-01-16
In Peru, despite decades of concerted control efforts, malaria remains a significant public health burden. Peru has recently exhibited a dramatic rise in malaria incidence, impeding South America's progress towards malaria elimination. The Amazon basin, in particular the Loreto region of Peru, has been identified as a target for the implementation of intensified control strategies, aiming for elimination. No research has addressed why vector control strategies in Loreto have had limited impact in the past, despite vector control elsewhere being highly effective in reducing malaria transmission. This study employed qualitative methods to explore factors limiting the success of vector control strategies in the region. Twenty semi-structured interviews were conducted among adults attending a primary care centre in Iquitos, Peru, together with 3 interviews with key informants (health care professionals). The interviews focussed on how local knowledge, together with social and cultural attitudes, determined the use of vector control methods. Five themes emerged. (a) Participants believed malaria to be embedded within their culture, and commonly blamed this for a lack of regard for prevention. (b) They perceived a shift in mosquito biting times to early evening, rendering night-time use of bed nets less effective. (c) Poor preventive practices were compounded by a consensus that malaria prevention was the government's responsibility, and that this reduced motivation for personal prevention. (d) Participants confused the purpose of space-spraying. (e) Participants' responses also exposed persisting misconceptions, mainly concerning the cause of malaria and best practices for its prevention. To eliminate malaria from the Americas, region-specific strategies need to be developed that take into account the local social and cultural contexts. In Loreto, further research is needed to explore the potential shift in biting behaviour of Anopheles darlingi, and how this interacts with the population's social behaviours and current use of preventive measures. Attitudes concerning personal responsibility for malaria prevention and long-standing misconceptions as to the cause of malaria and best preventive practices also need to be addressed.
Averting a malaria disaster: will insecticide resistance derail malaria control?
Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas
2016-04-23
World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe. Copyright © 2016 Elsevier Ltd. All rights reserved.
Malaria resurgence: a systematic review and assessment of its causes
2012-01-01
Background Considerable declines in malaria have accompanied increased funding for control since the year 2000, but historical failures to maintain gains against the disease underscore the fragility of these successes. Although malaria transmission can be suppressed by effective control measures, in the absence of active intervention malaria will return to an intrinsic equilibrium determined by factors related to ecology, efficiency of mosquito vectors, and socioeconomic characteristics. Understanding where and why resurgence has occurred historically can help current and future malaria control programmes avoid the mistakes of the past. Methods A systematic review of the literature was conducted to identify historical malaria resurgence events. All suggested causes of these events were categorized according to whether they were related to weakened malaria control programmes, increased potential for malaria transmission, or technical obstacles like resistance. Results The review identified 75 resurgence events in 61 countries, occurring from the 1930s through the 2000s. Almost all resurgence events (68/75 = 91%) were attributed at least in part to the weakening of malaria control programmes for a variety of reasons, of which resource constraints were the most common (39/68 = 57%). Over half of the events (44/75 = 59%) were attributed in part to increases in the intrinsic potential for malaria transmission, while only 24/75 (32%) were attributed to vector or drug resistance. Conclusions Given that most malaria resurgences have been linked to weakening of control programmes, there is an urgent need to develop practical solutions to the financial and operational threats to effectively sustaining today’s successful malaria control programmes. PMID:22531245
Determinants of household demand for bed nets in a rural area of southern Mozambique
Chase, Claire; Sicuri, Elisa; Sacoor, Charfudin; Nhalungo, Delino; Nhacolo, Ariel; Alonso, Pedro L; Menéndez, Clara
2009-01-01
Background A key to making insecticide-treated nets (ITNs) a long-term, sustainable solution to the spread of malaria is understanding what drives their purchase and use. Few studies have analysed the determinants of demand for bed nets for malaria prevention at the household level, and in particular, how demand for nets compares with demand for other mosquito prevention methods. Methods This study uses a household survey to assess the determinants of demand for bed nets in an area of endemic malaria transmission in rural, southern Mozambique. The study looks at willingness to pay (WTP) for bed nets, net ownership, usage, and past purchase behaviour, alongside expenditure and frequency of use of alternate methods for malaria prevention. Results While overall net ownership in the sample is low, the evidence fails to suggest that poorer households are less likely to own bed nets, when controlling for covariates, nor does the likelihood of receiving a free net depend on socioeconomic status (SES). Formal schooling and market knowledge seem to indicate higher average willingness to pay, while use of alternate methods for malaria prevention, and receipt of Indoor Residual Spraying (IRS) are found to decrease demand for bed nets. Conclusion For long-term sustainability of ITNs to be realized, results suggest that either full or partial subsidies may be necessary in some contexts to encourage households to obtain and use nets. Given the possible substitution effects of combined malaria control interventions, and the danger of not taking into consideration household preferences for malaria prevention, successful malaria control campaigns should invest a portion of their funds towards educating recipients of IRS and users of other preventive methods on the importance of net use even in the absence of mosquitoes. PMID:19527505
Using a geographical information system to plan a malaria control programme in South Africa.
Booman, M.; Durrheim, D. N.; La Grange, K.; Martin, C.; Mabuza, A. M.; Zitha, A.; Mbokazi, F. M.; Fraser, C.; Sharp, B. L.
2000-01-01
INTRODUCTION: Sustainable control of malaria in sub-Saharan Africa is jeopardized by dwindling public health resources resulting from competing health priorities that include an overwhelming acquired immunodeficiency syndrome (AIDS) epidemic. In Mpumalanga province, South Africa, rational planning has historically been hampered by a case surveillance system for malaria that only provided estimates of risk at the magisterial district level (a subdivision of a province). METHODS: To better map control programme activities to their geographical location, the malaria notification system was overhauled and a geographical information system implemented. The introduction of a simplified notification form used only for malaria and a carefully monitored notification system provided the good quality data necessary to support an effective geographical information system. RESULTS: The geographical information system displays data on malaria cases at a village or town level and has proved valuable in stratifying malaria risk within those magisterial districts at highest risk, Barberton and Nkomazi. The conspicuous west-to-east gradient, in which the risk rises sharply towards the Mozambican border (relative risk = 4.12, 95% confidence interval = 3.88-4.46 when the malaria risk within 5 km of the border was compared with the remaining areas in these two districts), allowed development of a targeted approach to control. DISCUSSION: The geographical information system for malaria was enormously valuable in enabling malaria risk at town and village level to be shown. Matching malaria control measures to specific strata of endemic malaria has provided the opportunity for more efficient malaria control in Mpumalanga province. PMID:11196490
He, Chang-hua; Hu, Xi-min; Wang, Guang-ze; Zhao, Wei; Sun, Ding-wei; Li, Yu-chun; Chen, Chun-xiang; Du, Jian-wei; Wang, Shan-qing
2014-07-13
In the island of Hainan, the great majority of malaria cases occur in mountain worker populations. Using the behavioral change communication (BCC) strategy, an interventional study was conducted to promote mountain worker malaria prevention at a test site. This study found the methods and measures that are suitable for malaria prevention among mountain worker populations. During the Plasmodium falciparum elimination stage in Hainan, a representative sampling method was used to establish testing and control sites in areas of Hainan that were both affected by malaria and had a relatively high density of mountain workers. Two different methods were used: a BCC strategy and a conventional strategy as a control. Before and after the intervention, house visits, core group discussions, and structural surveys were utilized to collect qualitative and quantitative data regarding mountain worker populations (including knowledge, attitudes, and practices [KAPs]; infection status; and serological data), and these data from the testing and control areas were compared to evaluate the effectiveness of BCC strategies in the prevention of malaria. In the BCC malaria prevention strategy testing areas, the accuracy rates of malaria-related KAP were significantly improved among mountain worker populations. The accuracy rates in the 3 aspects of malaria-related KAP increased from 37.73%, 37.00%, and 43.04% to 89.01%, 91.53%, and 92.25%, respectively. The changes in all 3 aspects of KAP were statistically significant (p < 0.01). In the control sites, the changes in the indices were not as marked as in the testing areas, and the change was not statistically significant (p > 0.05). Furthermore, in the testing areas, both the percentage testing positive in the serum malaria indirect fluorescent antibody test (IFAT) and the number of people inflicted decreased more significantly than in the control sites (p < 0.01). The use of the BCC strategy significantly improved the ability of mountain workers in Hainan to avoid malarial infection. Educational and promotional materials and measures were developed and selected in the process, and hands-on experience was gained that will help achieve the goal of total malaria elimination in Hainan.
Revisiting the Basic Reproductive Number for Malaria and Its Implications for Malaria Control
Smith, David L; McKenzie, F. Ellis; Snow, Robert W; Hay, Simon I
2007-01-01
The prospects for the success of malaria control depend, in part, on the basic reproductive number for malaria, R 0. Here, we estimate R 0 in a novel way for 121 African populations, and thereby increase the number of R 0 estimates for malaria by an order of magnitude. The estimates range from around one to more than 3,000. We also consider malaria transmission and control in finite human populations, of size H. We show that classic formulas approximate the expected number of mosquitoes that could trace infection back to one mosquito after one parasite generation, Z 0(H), but they overestimate the expected number of infected humans per infected human, R 0(H). Heterogeneous biting increases R 0 and, as we show, Z 0(H), but we also show that it sometimes reduces R 0(H); those who are bitten most both infect many vectors and absorb infectious bites. The large range of R 0 estimates strongly supports the long-held notion that malaria control presents variable challenges across its transmission spectrum. In populations where R 0 is highest, malaria control will require multiple, integrated methods that target those who are bitten most. Therefore, strategic planning for malaria control should consider R 0, the spatial scale of transmission, human population density, and heterogeneous biting. PMID:17311470
2011-01-01
Background In Ethiopia, malaria transmission is seasonal and unstable, with both Plasmodium falciparum and Plasmodium vivax endemic. Such spatial and temporal clustering of malaria only serves to underscore the importance of regularly collecting up-to-date malaria surveillance data to inform decision-making in malaria control. Cross-sectional school-based malaria surveys were conducted across Oromia Regional State to generate up-to-date data for planning malaria control interventions, as well as monitoring and evaluation of operational programme implementation. Methods Two hundred primary schools were randomly selected using a stratified and weighted sampling frame; 100 children aged five to 18 years were then randomly chosen within each school. Surveys were carried out in May 2009 and from October to December 2009, to coincide with the peak of malaria transmission in different parts of Oromia. Each child was tested for malaria by expert microscopy, their haemoglobin measured and a simple questionnaire completed. Satellite-derived environmental data were used to assess ecological correlates of Plasmodium infection; Bayesian geostatistical methods and Kulldorff's spatial scan statistic were employed to investigate spatial heterogeneity. Results A total 20,899 children from 197 schools provided blood samples, two selected schools were inaccessible and one school refused to participate. The overall prevalence of Plasmodium infection was found to be 0.56% (95% CI: 0.46-0.67%), with 53% of infections due to P. falciparum and 47% due to P. vivax. Of children surveyed, 17.6% (95% CI: 17.0-18.1%) were anaemic, while 46% reported sleeping under a mosquito net the previous night. Malaria was found at 30 (15%) schools to a maximum elevation of 2,187 metres, with school-level Plasmodium prevalence ranging between 0% and 14.5%. Although environmental variables were only weakly associated with P. falciparum and P. vivax infection, clusters of infection were identified within Oromia. Conclusion These findings demonstrate the marked spatial heterogeneity of malaria in Oromia and, in general, Ethiopia, and provide a strong epidemiological basis for planning as well as monitoring and evaluating malaria control in a setting with seasonal and unstable malaria transmission. PMID:21288368
Changing strategy in malaria control
Pampana, E. J.
1954-01-01
Residual-insecticide spraying methods may lead to the eradication of malaria from a country or from an area of it, and therefore to the possibility that the spraying campaign may eventually be discontinued. This is the final target to be aimed at in planning national malaria-control campaigns. As it is now known that some anopheline vector species may develop resistance to insecticides, a plea is made that control programmes should be planned to cover such large areas and with such criteria of efficiency as to eradicate malaria and to enable the campaign to be discontinued before resistance may have developed. PMID:13209311
The economics of malaria control and elimination: a systematic review.
Shretta, Rima; Avanceña, Anton L V; Hatefi, Arian
2016-12-12
Declining donor funding and competing health priorities threaten the sustainability of malaria programmes. Elucidating the cost and benefits of continued investments in malaria could encourage sustained political and financial commitments. The evidence, although available, remains disparate. This paper reviews the existing literature on the economic and financial cost and return of malaria control, elimination and eradication. A review of articles that were published on or before September 2014 on the cost and benefits of malaria control and elimination was performed. Studies were classified based on their scope and were analysed according to two major categories: cost of malaria control and elimination to a health system, and cost-benefit studies. Only studies involving more than two control or elimination interventions were included. Outcomes of interest were total programmatic cost, cost per capita, and benefit-cost ratios (BCRs). All costs were converted to 2013 US$ for standardization. Of the 6425 articles identified, 54 studies were included in this review. Twenty-two were focused on elimination or eradication while 32 focused on intensive control. Forty-eight per cent of studies included in this review were published on or after 2000. Overall, the annual per capita cost of malaria control to a health system ranged from $0.11 to $39.06 (median: $2.21) while that for malaria elimination ranged from $0.18 to $27 (median: $3.00). BCRs of investing in malaria control and elimination ranged from 2.4 to over 145. Overall, investments needed for malaria control and elimination varied greatly amongst the various countries and contexts. In most cases, the cost of elimination was greater than the cost of control. At the same time, the benefits of investing in malaria greatly outweighed the costs. While the cost of elimination in most cases was greater than the cost of control, the benefits greatly outweighed the cost. Information from this review provides guidance to national malaria programmes on the cost and benefits of malaria elimination in the absence of data. Importantly, the review highlights the need for more robust economic analyses using standard inputs and methods to strengthen the evidence needed for sustained financing for malaria elimination.
Moore, Sarah J; Min, Xia; Hill, Nigel; Jones, Caroline; Zaixing, Zhang; Cameron, Mary M
2008-10-01
Malaria control in remote, forested areas of the Mekong region relies on personal protection from mosquito bites. Uptake of these methods may be limited by knowledge of the link between mosquitoes and malaria as well as social and economic aspects. Understanding barriers to uptake will inform malaria control programmes on targets for improvement of delivery. A total 748 key respondents: health providers and village heads, from 187 villages and 25 different ethnic groups, were interviewed using structured questionnaires. Differences in use of personal protection, and knowledge of malaria between groups were analysed using chi-square; and binary logistic regression used for multivariate analysis. Malaria knowledge was poor with 19.4% of women and 37.5% of men linking mosquitoes with malaria, although 95.6% knew one or more methods of mosquito control. Virtually all respondents used personal protection at some time during the year; and understanding of malaria transmission was strongly associated with bednet use. Those working in forest agriculture were significantly more likely to know that mosquitoes transmit malaria but this did not translate into a significantly greater likelihood of using bednets. Furthermore, use of personal protection while woing outdoors was rare, and less than 3% of respondents knew about the insecticide impregnation of bednets. The use of bednets, synthetic repellents and mosquito coils varied between ethnic groups, but was significantly more frequent among those with higher income, more years of education and permanent housing. The reported use of repellents and coils was also more common among women despite their low knowledge of malaria transmission, and low likelihood of having heard information on malaria within the last year. The use of personal protection must be increased, particularly among outdoor workers that have higher malaria risk. However, personal protection is widely used and widely accepted to prevent nuisance biting mosquitoes, with the major barrier to use being affordability. Therefore, social marketing campaigns aimed at women and those that work outdoors that provide highly subsidised products, especially insecticide impregnation kits for bednets and hammock nets are most likely to succeed in lowering malaria morbidity among non Han-Chinese groups in rural China.
Human movement data for malaria control and elimination strategic planning.
Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J
2012-06-18
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.
Human movement data for malaria control and elimination strategic planning
2012-01-01
Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements. PMID:22703541
Malaria control in South Sudan, 2006–2013: strategies, progress and challenges
2013-01-01
Background South Sudan has borne the brunt of years of chronic warfare and probably has the highest malaria burden in sub-Saharan Africa. However, effective malaria control in post-conflict settings is hampered by a multiplicity of challenges. This manuscript reports on the strategies, progress and challenges of malaria control in South Sudan and serves as an example epitome for programmes operating in similar environments and provides a window for leveraging resources. Case description To evaluate progress and challenges of the national malaria control programme an in-depth appraisal was undertaken according to the World Health Organization standard procedures for malaria programme performance review. Methodical analysis of published and unpublished documents on malaria control in South Sudan was conducted. To ensure completeness, findings of internal thematic desk assessments were triangulated in the field and updated by external review teams. Discussion and evaluation South Sudan has strived to make progress in implementing the WHO recommended malaria control interventions as set out in the 2006–2013 National Malaria Strategic Plan. The country has faced enormous programmatic constraints including infrastructure, human and financial resource and a weak health system compounded by an increasing number of refugees, returnees and internally displaced people. The findings present a platform on which to tailor an evidence-based 2014–2018 national malaria strategic plan for the country and a unique opportunity for providing a model for countries in a post-conflict situation. Conclusions The prospects for effective malaria control and elimination are huge in South Sudan. Nevertheless, strengthened coordination, infrastructure and human resource capacity, monitoring and evaluation are required. To achieve all this, allocation of adequate local funding would be critical. PMID:24160336
Aggressive active case detection: a malaria control strategy based on the Brazilian model.
Macauley, Cameron
2005-02-01
Since 1996, the Brazilian Ministry of Health has adopted a malaria control strategy known as aggressive active case detection (AACD) in which most or all members of every community are tested and treated for malaria on a monthly basis. The strategy attempts to identify and treat cases of asymptomatic malaria, which, if untreated, continue to transmit the infection. Malaria remains uncontrolled because almost all health care systems in the world rely on passive case detection: the treatment of only symptomatic cases of malaria. Research has shown conclusively that asymptomatic cases exist in any population where malaria transmission is stable and incidence is high: therefore passive case detection simply will not succeed in breaking the cycle of transmission. Numerous case studies show that malaria has been successfully controlled on a regional or national level by mass blood surveys. AACD is an effective malaria control strategy if used in conjunction with other methods, especially when (1) an effective treatment exists, (2) influx of potential carriers of the infection can be monitored, and (3) people are inclined to cooperate with monthly blood testing. AACD requires access to rapid diagnostic tests (RDTs), microscopy supplies, extensive human resources, and prompt, affordable, and effective treatment. AACD is compared to PCD in terms of clinical efficacy and cost effectiveness in a case study of malaria in the Brazilian Yanomami Indians. Where it is feasible, AACD could drastically reduce the incidence of malaria and should be an integral part of the World Health Organization's Roll Back Malaria strategy.
Using Decision Analysis to Improve Malaria Control Policy Making
Kramer, Randall; Dickinson, Katherine L.; Anderson, Richard M.; Fowler, Vance G.; Miranda, Marie Lynn; Mutero, Clifford M.; Saterson, Kathryn A.; Wiener, Jonathan B.
2013-01-01
Malaria and other vector-borne diseases represent a significant and growing burden in many tropical countries. Successfully addressing these threats will require policies that expand access to and use of existing control methods, such as insecticide-treated bed nets and artemesinin combination therapies for malaria, while weighing the costs and benefits of alternative approaches over time. This paper argues that decision analysis provides a valuable framework for formulating such policies and combating the emergence and re-emergence of malaria and other diseases. We outline five challenges that policy makers and practitioners face in the struggle against malaria, and demonstrate how decision analysis can help to address and overcome these challenges. A prototype decision analysis framework for malaria control in Tanzania is presented, highlighting the key components that a decision support tool should include. Developing and applying such a framework can promote stronger and more effective linkages between research and policy, ultimately helping to reduce the burden of malaria and other vector-borne diseases. PMID:19356821
Application of loop analysis for evaluation of malaria control interventions
2014-01-01
Background Despite continuous efforts and recent rapid expansion in the financing and implementation of malaria control interventions, malaria still remains one of the most devastating global health issues. Even in countries that have been successful in reducing the incidence of malaria, malaria control is becoming more challenging because of the changing epidemiology of malaria and waning community participation in control interventions. In order to improve the effectiveness of interventions and to promote community understanding of the necessity of continued control efforts, there is an urgent need to develop new methodologies that examine the mechanisms by which community-based malaria interventions could reduce local malaria incidence. Methods This study demonstrated how the impact of community-based malaria control interventions on malaria incidence can be examined in complex systems by qualitative analysis combined with an extensive review of literature. First, sign digraphs were developed through loop analysis to analyse seven interventions: source reduction, insecticide/larvicide use, biological control, treatment with anti-malarials, insecticide-treated mosquito net/long-lasting insecticidal net, non-chemical personal protection measures, and educational intervention. Then, for each intervention, the sign digraphs and literature review were combined to analyse a variety of pathways through which the intervention can influence local malaria incidence as well as interactions between variables involved in the system. Through loop analysis it is possible to see whether increases in one variable qualitatively increases or decreases other variables or leaves them unchanged and the net effect of multiple, interacting variables. Results Qualitative analysis, specifically loop analysis, can be a useful tool to examine the impact of community-based malaria control interventions. Without relying on numerical data, the analysis was able to describe pathways through which each intervention could influence malaria incidence on the basis of the qualitative patterns of the interactions between variables in complex systems. This methodology is generalizable to various disease control interventions at different levels, and can be utilized by a variety of stakeholders such as researchers, community leaders and policy makers to better plan and evaluate their community-based disease control interventions. PMID:24713031
Keiser, J; Utzinger, J; Premji, Z; Yamagata, Y; Singer, B H
2002-10-01
One hundred years ago, Giemsa's stain was employed for the first time for malaria diagnosis. Giemsa staining continues to be the method of choice in most malarious countries, although, in the recent past, several alternatives have been developed that exhibit some advantages. Considerable progress has been made with fluorescent dyes, particularly with Acridine Orange (AO). The literature on the discovery, development and validation of the AO method for malaria diagnosis is reviewed here. Compared with conventional Giemsa staining, AO shows a good diagnostic performance, with sensitivities of 81.3%-100% and specificities of 86.4%-100%. However, sensitivities decrease with lower parasite densities, and species differentiation may occasionally be difficult. The most notable advantage of the AO method over Giemsa staining is its promptness; results are readily available within 3-10 min, whereas Giemsa staining may take 45 min or even longer. This is an important advantage for the organization of health services and the provision of effective treatment of malaria cases. The national malaria control programme of Tanzania, together with the Japan International Co-operation Agency, began to introduce the AO method in Tanzania in 1994. So far, AO staining has been introduced in 70 regional and district hospitals, and 400 laboratory technicians have been trained to use the method. The results of this introduction, which are reviewed here and have several important implications, indicate that AO is a viable alternative technique for the laboratory diagnosis of malaria in highly endemic countries.
Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C
2000-05-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.
Funding for malaria control 2006–2010: A comprehensive global assessment
2012-01-01
Background The last decade has seen a dramatic increase in international and domestic funding for malaria control, coupled with important declines in malaria incidence and mortality in some regions of the world. As the ongoing climate of financial uncertainty places strains on investment in global health, there is an increasing need to audit the origin, recipients and geographical distribution of funding for malaria control relative to populations at risk of the disease. Methods A comprehensive review of malaria control funding from international donors, bilateral sources and national governments was undertaken to reconstruct total funding by country for each year 2006 to 2010. Regions at risk from Plasmodium falciparum and/or Plasmodium vivax transmission were identified using global risk maps for 2010 and funding was assessed relative to populations at risk. Those nations with unequal funding relative to a regional average were identified and potential explanations highlighted, such as differences in national policies, government inaction or donor neglect. Results US$8.9 billion was disbursed for malaria control and elimination programmes over the study period. Africa had the largest levels of funding per capita-at-risk, with most nations supported primarily by international aid. Countries of the Americas, in contrast, were supported typically through national government funding. Disbursements and government funding in Asia were far lower with a large variation in funding patterns. Nations with relatively high and low levels of funding are discussed. Conclusions Global funding for malaria control is substantially less than required. Inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination. Efforts to sustain and increase international investment in malaria control should be informed by evidence-based assessment of funding equity. PMID:22839432
NASA Astrophysics Data System (ADS)
Gianotti, Rebecca L.; Bomblies, Arne; Eltahir, Elfatih A. B.
2009-08-01
This paper describes the first use of Hydrology-Entomology and Malaria Transmission Simulator (HYDREMATS), a physically based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The investigation showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season, by altering pool basin microtopography, could reduce the pool persistence time to less than the time needed for establishment of mosquito breeding, approximately 7 days. Undertaking soil surface plowing can also reduce pool persistence time by increasing the infiltration rate through an existing pool basin. Reduction of the pool persistence time to less than the rainfall interstorm period increases the frequency of pool drying events, removing habitat for subadult mosquitoes. Both management approaches could potentially be considered within a given context. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control in water-limited, Sahelian Africa.
Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai
2014-01-01
Background Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011. Methods Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson’s correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey. Results Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The ‘hotspot’ analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem. Conclusion Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It has been argued that identifying the key environmental conditions favourable for the occurrence and spread of malaria must be integrated and documented to aid future predictions of malaria in Chennai. PMID:24400592
Semakula, Henry M; Song, Guobao; Zhang, Shushen; Achuu, Simon P
2015-09-01
The increasing protection gaps of insecticide-treated nets and indoor-residual spraying methods against malaria have led to an emergence of residual transmission in sub-Saharan Africa and thus, supplementary strategies to control mosquitoes are urgently required. To assess household environmental resources and practices that increase or reduce malaria risk among children under-five years of age in order to identify those aspects that can be adopted to control residual transmission. Household environmental resources, practices and malaria test results were extracted from Malaria Indicators Survey datasets for Tanzania, Burundi, Malawi and Liberia with 16,747 children from 11,469 households utilised in the analysis. Logistic regressions were performed to quantify the contribution of each factor to malaria occurrence. Cattle rearing reduced malaria risk between 26%-49% while rearing goats increased the risk between 26%-32%. All piped-water systems reduced malaria risk between 30%-87% (Tanzania), 48%-95% (Burundi), 67%-77% (Malawi) and 58%-73 (Liberia). Flush toilets reduced malaria risk between 47%-96%. Protected-wells increased malaria risk between 19%-44%. Interestingly, boreholes increased malaria risk between 19%-75%. Charcoal use reduced malaria risk between 11%-49%. Vector control options for tackling mosquitoes were revealed based on their risk levels. These included cattle rearing, installation of piped-water systems and flush toilets as well as use of smokeless fuels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yhdego, M.; Majura, P.
A review of the malaria control programs and the problem encountered in the United Republic of Tanzania since 1945 to the year 1986 is discussed. Buguruni, one of the squatter areas in the city of Dar es Salaam, is chosen as a case study in order to evaluate the economic advantage of engineering methods for the control of malaria infection. Although the initial capital cost of engineering methods may be high, the cost effectiveness requires a much lower financial burden of only about Tshs. 3 million compared with the conventional methods of larviciding and insecticiding which requires more than Tshs.more » 10 million. Finally, recommendations for the adoption of engineering methods are made concerning the upgrading of existing roads and footpaths in general with particular emphasis on drainage of large pools of water which serve as breeding sites for mosquitoes.« less
Sharma, V. P.
2012-01-01
Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1.5 billion in the coming years against the annual requirement of US$ 5 billion. While appreciating the foreign assistance, we wish to highlight the fact that unless we have internal strength of resources and manpower, sustained battles against malaria may face serious problems in achieving the final goal of malaria elimination. PMID:23391787
Sharma, V P
2012-12-01
Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1.5 billion in the coming years against the annual requirement of US$ 5 billion. While appreciating the foreign assistance, we wish to highlight the fact that unless we have internal strength of resources and manpower, sustained battles against malaria may face serious problems in achieving the final goal of malaria elimination.
2010-01-01
Background Despite Vietnam's success in reducing malaria mortality and morbidity over the last decade, malaria persists in the forested and mountainous areas of the central and southern provinces, where more than 50% of the clinical cases and 90% of severe cases and malaria deaths occur. Methods Between July 2005 and September 2006, a multi-method study, triangulating a malariometric cross-sectional survey and qualitative data from focused ethnography, was carried out among the Ra-glai ethnic minority in the hilly forested areas of south-central Vietnam. Results Despite the relatively high malaria burden among the Ra-glai and their general awareness that mosquitoes can transmit an unspecific kind of fever (84.2%), the use of bed nets, distributed free of charge by the national malaria control programme, remains low at the farmers' forest fields where the malaria risk is the highest. However, to meet work requirements during the labour intensive malaria transmission and rainy season, Ra-glai farmers combine living in government supported villages along the road with a second home or shelter at their slash and burn fields located in the forest. Bed net use was 84.6% in the villages but only 52.9% at the forest fields; 20.6% of the respondents slept unprotected in both places. Such low use may be explained by the low perception of the risk for malaria, decreasing the perceived need to sleep protected. Several reasons may account for this: (1) only 15.6% acknowledged the higher risk of contracting malaria in the forest than in the village; (2) perceived mosquito biting times only partially coincided with Anopheles dirus ss and Anopheles minimus A true biting times; (3) the disease locally identified as 'malaria' was hardly perceived as having an impact on forest farmers' daily lives as they were unaware of the specific kind of fevers from which they had suffered even after being diagnosed with malaria at the health centre (20.9%). Conclusions The progressive confinement of malaria to minority groups and settings in the Greater Mekong sub-region implies that further success in malaria control will be linked to research into these specific socio-cultural contexts. Findings highlight the need for context sensitive malaria control policies; not only to reduce the local malaria burden but also to minimize the risk of malaria spreading to other areas where transmission has virtually ceased. PMID:20089152
Amadi, Jacinter A; Olago, Daniel O; Ong'amo, George O; Oriaso, Silas O; Nyamongo, Isaac K; Estambale, Benson B A
2018-05-09
The decline in global malaria cases is attributed to intensified utilization of primary vector control interventions and artemisinin-based combination therapies (ACTs). These strategies are inadequate in many rural areas, thus adopting locally appropriate integrated malaria control strategies is imperative in these heterogeneous settings. This study aimed at investigating trends and local knowledge on malaria and to develop a framework for malaria control for communities in Baringo, Kenya. Clinical malaria cases obtained from four health facilities in the riverine and lowland zones were used to analyse malaria trends for the 2005-2014 period. A mixed method approach integrating eight focus group discussions, 12 key informant interviews, 300 survey questionnaires and two stakeholders' consultative forums were used to assess local knowledge on malaria risk and develop a framework for malaria reduction. Malaria cases increased significantly during the 2005-2014 period (tau = 0.352; p < 0.001) in the riverine zone. March, April, May, June and October showed significant increases compared to other months. Misconceptions about the cause and mode of malaria transmission existed. Gender-segregated outdoor occupation such as social drinking, farm activities, herding, and circumcision events increased the risk of mosquito bites. A positive relationship occurred between education level and opinion on exposure to malaria risk after dusk (χ 2 = 2.70, p < 0.05). There was over-reliance on bed nets, yet only 68% (204/300) of respondents owned at least one net. Complementary malaria control measures were under-utilized, with 90% of respondents denying having used either sprays, repellents or burnt cow dung or plant leaves over the last one year before the study was conducted. Baraza, radios, and mobile phone messages were identified as effective media for malaria information exchange. Supplementary strategies identified included unblocking canals, clearing Prosopis bushes, and use of community volunteers and school clubs to promote social behaviour change. The knowledge gap on malaria transmission should be addressed to minimize the impacts and enhance uptake of appropriate malaria management mechanisms. Implementing community-based framework can support significant reductions in malaria prevalence by minimizing both indoor and outdoor malaria transmissions.
Oladeinde, Bankole Henry; Omoregie, Richard; Odia, Ikponmwosa; Oladeinde, Oladapo Babatunde
2012-01-01
Objectives To determine the prevalence of malaria and anemia among pregnant women attending a traditional birth center as well as the effect of herbal remedies, gravidity, age, educational background and malaria prevention methods on their prevalence. Methods Blood specimens were collected from 119 pregnant women attending a Traditional Birth Home in Benin City, Nigeria. Malaria parasitemia was diagnosed by microscopy while anemia was defined as hemoglobin concentration <11 g/dL. Results The prevalence of malaria infection was (OR=4.35 95% CI=1.213, 15.600; p=0.016) higher among primigravidae (92.1%). Pregnant women (38.5%) with tertiary level of education had significantly lower prevalence of malaria infection (p=0.002). Malaria significantly affected the prevalence of anemia (p<0.05). Anemia was associated with consumption of herbal remedies (OR=2.973; 95% CI=1.206, 7.330; p=0.017). The prevalence of malaria parasitemia and anemia were not affected by malaria prevention methods used by the participants. Conclusion The overall prevalence of malaria infection and anemia observed in this study were 78.9% and 46.2%, respectively. Higher prevalence of malaria infection was associated with primigravidae and lower prevalence with tertiary education of subjects. Anemia was associated with consumption of herbal remedies. There is urgent need to control the prevalence of malaria and anemia among pregnant women attending traditional birth homes. PMID:22811774
Mobile phones improve case detection and management of malaria in rural Bangladesh
2013-01-01
Background The recent introduction of mobile phones into the rural Bandarban district of Bangladesh provided a resource to improve case detection and treatment of patients with malaria. Methods During studies to define the epidemiology of malaria in villages in south-eastern Bangladesh, an area with hypoendemic malaria, the project recorded 986 mobile phone calls from families because of illness suspected to be malaria between June 2010 and June 2012. Results Based on phone calls, field workers visited the homes with ill persons, and collected blood samples for malaria on 1,046 people. 265 (25%) of the patients tested were positive for malaria. Of the 509 symptomatic malaria cases diagnosed during this study period, 265 (52%) were detected because of an initial mobile phone call. Conclusion Mobile phone technology was found to be an efficient and effective method for rapidly detecting and treating patients with malaria in this remote area. This technology, when combined with local knowledge and field support, may be applicable to other hard-to-reach areas to improve malaria control. PMID:23374585
2012-01-01
Backgound Treatment of confirmed malaria patients with Artemisinin-based Combination Therapy (ACT) at remote areas is the goal of many anti-malaria programs. Introduction of effective and affordable malaria Rapid Diagnosis Test (RDT) in remote areas could be an alternative tool for malaria case management. This study aimed to assess performance of the OptiMAL dipstick for rapid malaria diagnosis in children under five. Methods Malaria symptomatic and asymptomatic children were recruited in a passive manner in two community clinics (CCs). Malaria diagnosis by microscopy and RDT were performed. Performance of the tests was determined. Results RDT showed similar ability (61.2%) to accurately diagnose malaria as microscopy (61.1%). OptiMAL showed a high level of sensitivity and specificity, compared with microscopy, during both transmission seasons (high & low), with a sensitivity of 92.9% vs. 74.9% and a specificity of 77.2% vs. 87.5%. Conclusion By improving the performance of the test through accurate and continuous quality control of the device in the field, OptiMAL could be suitable for use at CCs for the management and control of malaria. PMID:22647557
Laurens, Matthew B; Duncan, Christopher J; Epstein, Judith E; Hill, Adrian V; Komisar, Jack L; Lyke, Kirsten E; Ockenhouse, Christian F; Richie, Thomas L; Roestenberg, Meta; Sauerwein, Robert W; Spring, Michele D; Talley, Angela K; Moorthy, Vasee S
2012-08-03
Early clinical investigations of candidate malaria vaccines and antimalarial medications increasingly employ an established model of controlled human malaria infection (CHMI). Study results are used to guide further clinical development of vaccines and antimalarial medications as CHMI results to date are generally predictive of efficacy in malaria-endemic areas. The urgency to rapidly develop an efficacious malaria vaccine has increased demand for efficacy studies that include CHMI and the need for comparability of study results among the different centres conducting CHMI. An initial meeting with the goal to optimize and standardise CHMI procedures was held in 2009 with follow-up meetings in March and June 2010 to harmonise methods used at different centres. The end result is a standardised document for the design and conduct of CHMI and a second document for the microscopy methods used to determine the patency endpoint. These documents will facilitate high accuracy and comparability of CHMI studies and will be revised commensurate with advances in the field. Copyright © 2012. Published by Elsevier Ltd.. All rights reserved.
KILLEEN, GERRY F.; McKENZIE, F. ELLIS; FOY, BRIAN D.; SCHIEFFELIN, CATHERINE; BILLINGSLEY, PETER F.; BEIER, JOHN C.
2008-01-01
We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas. PMID:11289662
A refined estimate of the malaria burden in Niger.
Doudou, Maimouna Halidou; Mahamadou, Aboubacar; Ouba, Ibrahim; Lazoumar, Ramatoulaye; Boubacar, Binta; Arzika, Ibrahim; Zamanka, Halima; Ibrahim, Maman L; Labbo, Rabiou; Maiguizo, Seydou; Girond, Florian; Guillebaud, Julia; Maazou, Abani; Fandeur, Thierry
2012-03-27
The health authorities of Niger have implemented several malaria prevention and control programmes in recent years. These interventions broadly follow WHO guidelines and international recommendations and are based on interventions that have proved successful in other parts of Africa. Most performance indicators are satisfactory but, paradoxically, despite the mobilization of considerable human and financial resources, the malaria-fighting programme in Niger seems to have stalled, as it has not yet yielded the expected significant decrease in malaria burden. Indeed, the number of malaria cases reported by the National Health Information System has actually increased by a factor of five over the last decade, from about 600,000 in 2000 to about 3,000,000 in 2010. One of the weaknesses of the national reporting system is that the recording of malaria cases is still based on a presumptive diagnosis approach, which overestimates malaria incidence. An extensive nationwide survey was carried out to determine by microscopy and RDT testing, the proportion of febrile patients consulting at health facilities for suspected malaria actually suffering from the disease, as a means of assessing the magnitude of this problem and obtaining a better estimate of malaria morbidity in Niger. In total, 12,576 febrile patients were included in this study; 57% of the slides analysed were positive for the malaria parasite during the rainy season, when transmission rates are high, and 9% of the slides analysed were positive during the dry season, when transmission rates are lower. The replacement of microscopy methods by rapid diagnostic tests resulted in an even lower rate of confirmation, with only 42% of cases testing positive during the rainy season, and 4% during the dry season. Fever alone has a low predictive value, with a low specificity and sensitivity. These data highlight the absolute necessity of confirming all reported malaria cases by biological diagnosis methods, to increase the accuracy of the malaria indicators used in monitoring and evaluation processes and to improve patient care in the more remote areas of Niger. This country extends over a large range of latitudes, resulting in the existence of three major bioclimatic zones determining vector distribution and endemicity. This survey showed that the number of cases of presumed malaria reported in health centres in Niger is largely overestimated. The results highlight inadequacies in the description of the malaria situation and disease risk in Niger, due to the over-diagnosis of malaria in patients with simple febrile illness. They point out the necessity of confirming all cases of suspected malaria by biological diagnosis methods and the need to take geographic constraints into account more effectively, to improve malaria control and to adapt the choice of diagnostic method to the epidemiological situation in the area concerned. Case confirmation will thus also require a change in behaviour, through the training of healthcare staff, the introduction of quality control, greater supervision of the integrated health centres, the implementation of good clinical practice and a general optimization of the use of available diagnostic methods.
Vector control for malaria and other mosquito-borne diseases. Report of a WHO study group.
1995-01-01
Since the Ministerial Conference on Malaria in 1992, which acknowledged the urgent need for worldwide commitment to malaria control, efforts have been directed to implementation of a Global Malaria Control Strategy. Vector control, an essential component of malaria control, has become less effective in recent years, partly as a result of poor use of alternative control tools, inappropriate use of insecticides, lack of an epidemiological basis for interventions, inadequate resources and infrastructure, and weak management. Changing environmental conditions, the behavioural characteristics of certain vectors, and resistance to insecticides have added to the difficulties. This report of a WHO Study Group provides guidelines for the planning, implementation and evaluation of cost-effective and sustainable vector control in the context of the Global Malaria Control Strategy. It reviews the available methods - indoor residual spraying, personal protection, larval control and environmental management - stressing the need for selective and flexible use of interventions according to local conditions. Requirements for data collection and the appropriate use of entomological parameters and techniques are discussed and priorities identified for the development of local capacity for vector control and for operational research. Emphasis is placed both on the monitoring and evaluation of vector control to ensure cost-effectiveness and on the development of strong managerial structures, which can support community participation and intersectoral collaboration and accommodate the control of other vector-borne diseases. The report concludes with recommendations aimed at promoting the targeted and efficient use of vector control in preventing and controlling malaria, thereby reducing the threat to health and socioeconomic development in many tropical countries.
[Application of health education of house-to-house visit in malaria prevention and control].
Zhou, Wen-gang; Qu, Yan; Wang, Wen-guang; Tang, Song-yuan
2014-10-01
To evaluate the effects of health education of house-to-house visit in malaria prevention and control in the border and minority areas. A health education of house-to-house visit in malaria prevention and control was carried out, and baseline and follow up surveys were conducted by qualitative and quantitative methods to document the changes of local villagers' knowledge, attitudes and behaviors (KAP) of malaria prevention and control in 2 counties of Yunnan Province, and the results before and after the interventions were analyzed and compared. After the intervention, the cognition rates about malaria symptoms and signs, transmission mode, preventive measures and health-seeking behaviors were 99.3%, 98.9%, 79.9% and 99.3% respectively in the local residents, and those were 39.2%, 8.2%, 47.0% and 49.9% respectively before the intervention, and all the differences were statistically significant (P all < 0.01). KAP related to malaria among the targeting population has improved after the interventions and the house-to-house visit is an effective community-based health education approach.
Factors Contributing to Urban Malaria Transmission in Sub-Saharan Africa: A Systematic Review
De Silva, Prathiba M.; Marshall, John M.
2012-01-01
Sub-Saharan Africa suffers by far the greatest malaria burden worldwide and is currently undergoing a profound demographic change, with a growing proportion of its population moving to urban areas. Urbanisation is generally expected to reduce malaria transmission; however the disease still persists in African cities, in some cases at higher levels than in nearby rural areas. Objective. This paper aims to collate and analyse risk factors for urban malaria transmission throughout sub-Saharan Africa and to discuss their implications for control. Methods. A systematic search on malaria and urbanisation was carried out focusing on sub-Saharan Africa. Particular interest was taken in vector breeding sites in urban and periurban areas. Results. A variety of urban vector breeding sites were catalogued, the majority of which were artificial, including urban agriculture, tyre tracks, and ditches. Natural breeding sites varied according to location. Low socioeconomic status was a significant risk factor for malaria, often present in peri-urban areas. A worrying trend was seen in the adaptation of malaria vector species to the urban environment. Urban malaria is highly focused and control programs should reflect this. Conclusion. As urbanisation continues and vector species adapt, continued monitoring and control of urban malaria in sub-Saharan Africa is essential. PMID:23125863
Malaria in India: The Center for the Study of Complex Malaria in India
Das, Aparup; Anvikar, Anupkumar R.; Cator, Lauren J.; Dhiman, Ramesh C.; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N.; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F.; Sharma, Surya K.; Singh, Om P.; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C.; Sullivan, Steven A.; Sutton, Patrick L.; Thomas, Matthew B.; Carlton, Jane M.; Valecha, Neena
2012-01-01
Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. PMID:22142788
Perceptions of malaria and vaccines in Kenya.
Ojakaa, David; Yamo, Emmanuel; Collymore, Yvette; Ba-Nguz, Antoinette; Bingham, Allison
2011-10-01
Malaria is a leading cause of morbidity and mortality in Kenya. To confront malaria, the Government of Kenya has been implementing and coordinating three approaches - vector control by distributing insecticide-treated bed nets and indoor residual spraying, case management, and the management of malaria during pregnancy. Immunization is recognized as one of the most cost-effective public health interventions. Efforts are underway to develop a malaria vaccine. The most advanced (RTS,S), is currently going through phase 3 trials. Although recent studies show the overwhelming support in the community for the introduction of a malaria vaccine, two issues - culture and the delivery of child immunization services - need to be considered. Alongside the modern methods of malaria control described above, traditional methods coexist and act as barriers to attainment of universal immunization. The gender dimension of the immunization programme (where women are the main child caretakers) will also need to be addressed. There is an age dimension to child immunization programmes. Two age cohorts of parents, caregivers, or family members deserve particular attention. These are the youth who are about to initiate childbearing, and the elderly (particularly mother-in-laws who often play a role in child-rearing). Mothers who are less privileged and socially disadvantaged need particular attention when it comes to child immunization. Access to immunization services is often characterized in some Kenyan rural communities in terms of living near the main road, or in the remote inaccessible areas. Should a malaria vaccine become available in the future, a strategy to integrate it into the immunization programme in Kenya should take into account at least two issues. First, it must address the fact that alongside the formal approach in malaria control, there exist the informal traditional practices among communities. Secondly, it must address particular issues in the delivery of immunization services.
Microsporidians as evolution-proof agents of malaria control?
Koella, Jacob C; Lorenz, Lena; Bargielowski, Irka
2009-01-01
Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need not be.
Olalekan, Adebimpe W; Adebukola, Adebimpe M
2015-10-01
Malaria is endemic in Nigeria, with significant records of mortality and morbidity. Adequate community involvement is central to a successful implementation of malaria control programs. This study assessed the effects of a training programme on knowledge of malaria prevention and control among community role model care givers. A descriptive cross sectional study of a pre-and post-test design method was conducted among 400 eligible community members in Osun State. Training was given in the form of organized lectures, health education and practical demonstration sessions. Scores of pre-test and post-test conducted after four months interval were compared. Multistage sampling method was adopted in selecting study participants, while data was analyzed using the SPSS software version 17.0. Mean age was 43.8 (±1.4) years. Average knowledge score of cause, transmission, risk factors and consequences, awareness of common symptoms and preventive practices improved during post-training test when compared with pr-training test. The overall descriptive mean knowledge score in pre-test and post-test were 2.1 and 3.5 respectively out of an average maximum score of 5.0, giving an increment of 66.7%. Role model care givers with formal education were twice and three times more likely to know about disease 'transmission' (OR 1.9, 95%CI 0.11-0.19, p=0.002) and 'consequences' (OR 2.9, 95%CI 0.25-0.65, p=0.040) respectively compared to those without formal education. Training on malaria improved the knowledge of malaria prevention and control among role model community care givers towards a successful implementation of malaria control programmes.
2012-01-01
Background Malaria remains a serious epidemic threat in Mpumalanga Province. In order to appropriately target interventions to achieve substantial reduction in the burden of malaria and ultimately eliminate the disease, there is a need to track progress of malaria control efforts by assessing the time trends and evaluating the impact of current control interventions. This study aimed to assess the changes in the burden of malaria in Mpumalanga Province during the past eight malaria seasons (2001/02 to 2008/09) and whether indoor residual spraying (IRS) and climate variability had an effect on these changes. Methods This is a descriptive retrospective study based on the analysis of secondary malaria surveillance data (cases and deaths) in Mpumalanga Province. Data were extracted from the Integrated Malaria Information System. Time series model (Autoregressive Integrated Moving Average) was used to assess the association between climate and malaria. Results Within the study period, a total of 35,191 cases and 164 deaths due to malaria were notified in Mpumalanga Province. There was a significant decrease in the incidence of malaria from 385 in 2001/02 to 50 cases per 100,000 population in 2008/09 (P < 0.005). The incidence and case fatality (CFR) rates for the study period were 134 cases per 100,000 and 0.54%, respectively. Mortality due to malaria was lower in infants and children (CFR < 0.5%) and higher in those >65 years, with the mean CFR of 2.1% as compared to the national target of 0.5%. A distinct seasonal transmission pattern was found to be significantly related to changes in rainfall patterns (P = 0.007). A notable decline in malaria case notification was observed following apparent scale-up of IRS coverage from 2006/07 to 2008/09 malaria seasons. Conclusions Mpumalanga Province has achieved the goal of reducing malaria morbidity and mortality by over 70%, partly as a result of scale-up of IRS intervention in combination with other control strategies. These results highlight the need to continue with IRS together with other control strategies until interruption in local malaria transmission is completely achieved. However, the goal to eliminate malaria as a public health problem requires efforts to be directed towards the control of imported malaria cases; development of strategies to interrupt local transmission; and maintaining high quality surveillance and reporting system. PMID:22239855
NASA Astrophysics Data System (ADS)
Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis
2018-02-01
Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting the possibility of developing models for malaria early warning based on vector habitat suitability.
Keys to success for a school-based malaria control program in primary schools in Thailand.
Okabayashi, Hironori; Thongthien, Pimpimon; Singhasvanon, Pratap; Waikagul, Jitra; Looareesuwan, Sornchai; Jimba, Masamine; Kano, Shigeyuki; Kojima, Somei; Takeuchi, Tsutomu; Kobayashi, Jun; Tateno, Seiki
2006-06-01
School-based malaria control has been recognized as a new approach for the control of this disease in the Greater Mekong Subregion since 2000. We evaluated a school-based malaria control program near the western border of Thailand using a before-after intervention study. The major intervention activities included teacher training with specialized malaria teaching materials and participatory learning methods. The target population was 17 school principals, 111 teachers and 852 schoolchildren of grade 3, 4, and 5 in 17 schools. After the intervention, the teachers taught about malaria more actively than before. The teachers who could design a lesson plan on malaria increased from 30.7% to 47.7% (p=0.015) and the teachers who had taught about malaria increased from 71.9% to 84.3% (p=0.035). As a result of the program, the schoolchildren changed their behavior positively towards malaria prevention with significant difference in 6 of 7 questions. For example, the schoolchildren 'who always took care of mosquito bites' increased from 42.7% to 62.1% (p<0.001) and the schoolchildren 'who always reported their parents or teachers when they had fever' increased from 36.0% to 56.0% (p<0.001). In conclusion, the keys to a successful intervention lie in good teaching materials and a participatory approach utilizing the well-established Thailand's school health system. Beyond Thailand, school-based malaria control could be applied to other Greater Mekong Subregion countries with careful analysis of school health context in each country.
Malaria vaccine: the pros and cons.
Saleh, J A; Yusuph, H; Zailani, S B; Aji, B
2010-01-01
Malaria is an important parasitic disease of humans caused by infection with a parasite of the genus Polasmodium and transmitted by female anopheles. Infection caused by P. falciparum is the most serious of all the other species (P. ovale, P. vivax and P. malariae) especially in terms of morbidity and mortality hence the reason why most of the research has been focussed on this species. The disease affects up to about 40 per cent of the world's population with around 300-500 million people currently infected and mainly in the tropics. It has a high morbidity and mortality especially in resource-poor tropical and subtropical regions with an economic fall of about US$ 12 billion annually in Africa alone. relevant literatures were reviewed from medical journals, library search and internet source. Other relevant websites like PATH, Malaria Vaccine Initiative and Global Fund were also visited to source for information. The key words employed were: malaria, vaccine, anopheles mosquito, insecticide treated bed-nets, pyrethroids and Plasmodium. several studies have underscored the need to develop an effective human malaria vaccine for the control and possible eradication of malaria across the globe with the view to reduce the morbidity and mortality associated with the disease, improve on the social and economic losses and also protect those at risk. It is very obvious that the need for effective human malaria vaccine is not only to serve those living in malaria endemic regions but also the non-immune travellers especially those travelling to malaria endemic areas; this would offer cost effective means of preventing the disease, reducing the morbidity and mortality associated with it in addition to closing the gap left by other control measures. It is very obvious that there is no single control measure known to be effective in the control of malaria, hence the need for combination of more than one method with the aim of achieving synergy in the total control and possible eradication of the disease. It suffices to say that despite the use of combination of more than one method (e.g., drugs treating patients, breaking the life cycle of the vector mosquito using larvicides, clearing swamps and other mosquito breeding sites), no much progress was made towards achieving this goal, hence the renewed interest especially with regards to vaccine development.
Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells
Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki
2016-01-01
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328
Bisanzio, Donal; Mutuku, Francis; LaBeaud, Angelle D; Mungai, Peter L; Muinde, Jackson; Busaidy, Hajara; Mukoko, Dunstan; King, Charles H; Kitron, Uriel
2015-12-01
Malaria in coastal Kenya shows spatial heterogeneity and seasonality, which are important factors to account for when planning an effective control system. Routinely collected data at health facilities can be used as a cost-effective method to acquire information on malaria risk for large areas. Here, data collected at one specific hospital in coastal Kenya were used to assess the ability of such passive surveillance to capture spatiotemporal heterogeneity of malaria and effectiveness of an augmented control system. Fever cases were tested for malaria at Msambweni sub-County Referral Hospital, Kwale County, Kenya, from October 2012 to March 2015. Remote sensing data were used to classify the development level of each monitored community and to identify the presence of rice fields nearby. An entomological study was performed to acquire data on the seasonality of malaria vectors in the study area. Rainfall data were obtained from a weather station located in proximity of the study area. Spatial analysis was applied to investigate spatial patterns of malarial and non-malarial fever cases. A space-time Bayesian model was performed to evaluate risk factors and identify locations at high malaria risk. Vector seasonality was analysed using a generalized additive mixed model (GAMM). Among the 25,779 tested febrile cases, 28.7 % were positive for Plasmodium infection. Malarial and non-malarial fever cases showed a marked spatial heterogeneity. High risk of malaria was linked to patient age, community development level and presence of rice fields. The peak of malaria prevalence was recorded close to rainy seasons, which correspond to periods of high vector abundance. Results from the Bayesian model identified areas with significantly high malaria risk. The model also showed that the low prevalence of malaria recorded during late 2012 and early 2013 was associated with a large-scale bed net distribution initiative in the study area during mid-2012. The results indicate that the use of passive surveillance was an effective method to detect spatiotemporal patterns of malaria risk in coastal Kenya. Furthermore, it was possible to estimate the impact of extensive bed net distribution on malaria prevalence among local fever cases over time. Passive surveillance based on georeferenced malaria testing is an important tool that control agencies can use to improve the effectiveness of interventions targeting malaria (and other causes of fever) in such high-risk locations.
Gyuse, Abraham N.; Etokidem, Aniekan J.
2010-01-01
ABSTRACT Background Malaria prevention and treatment constitute an unbearable economic burden to most African countries, especially south of the Sahara, where about 500 million cases occur annually. The problem of malaria among adolescents has largely been overshadowed by the huge burden of the disease among young children. Attention to malaria among adolescents has also been diverted by the huge burden of HIV/AIDS among adolescents. Some surveys reveal a lack of knowledge and many misconceptions about the transmission and treatment of malaria, which could adversely affect malaria control measures and antimalarial therapy. Such a knowledge gap could have an adverse effect on school children, who could be used as change agents and as role models for their siblings and peers in the malaria control strategy. Objectives To determine the malaria prevention practices of school adolescents in the coastal community of Calabar, Nigeria. Method This was a cross-sectional survey involving secondary schools in southern Calabar. Four hundred adolescents were randomly selected from the 4565 learners in 5 out of 17 secondary schools in southern Calabar, Cross River State, Nigeria. A self-administered, semi-structured questionnaire was administered to the respondents. Results Most respondents (77.5%) were aware that the vector transmits the malaria parasite through biting. Fewer respondents would prevent malaria attacks by clearing the vegetation in the peri-domestic environment (13.5%), filling up potholes (16.9%), opening up drainage (11%), using insecticide-treated nets (25.7%) or using antimalarial drugs (11.2%). Less than one-tenth (8%) would use various other methods such as not accepting unscreened blood, while only 11% obtained the information from their teachers. Conclusion The study identified knowledge gaps among school children. There is a need to empower teachers with information about the cause of malaria and prevention strategies.
Malaria in India: the center for the study of complex malaria in India.
Das, Aparup; Anvikar, Anupkumar R; Cator, Lauren J; Dhiman, Ramesh C; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F; Sharma, Surya K; Singh, Om P; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C; Sullivan, Steven A; Sutton, Patrick L; Thomas, Matthew B; Carlton, Jane M; Valecha, Neena
2012-03-01
Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ∼1.6 million cases and ∼1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. Copyright © 2011 Elsevier B.V. All rights reserved.
Progress towards malaria control targets in relation to national malaria programme funding
2013-01-01
Background Malaria control has been dramatically scaled up the past decade, mainly thanks to increasing international donor financing since 2003. This study assessed progress up to 2010 towards global malaria impact targets, in relation to Global Fund, other donor and domestic malaria programme financing over 2003 to 2009. Methods Assessments used domestic malaria financing reported by national programmes, and Global Fund/OECD data on donor financing for 90 endemic low- and middle-income countries, WHO estimates of households owning one or more insecticide-treated mosquito net (ITN) for countries in sub-Saharan Africa, and WHO-estimated malaria case incidence and deaths in countries outside sub-Saharan Africa. Results Global Fund and other donor funding is concentrated in a subset of the highest endemic African countries. Outside Africa, donor funding is concentrated in those countries with highest malaria mortality and case incidence rates over the years 2000 to 2003. ITN coverage in 2010 in Africa, and declines in case and death rates per person at risk over 2004 to 2010 outside Africa, were greatest in countries with highest donor funding per person at risk, and smallest in countries with lowest donor malaria funding per person at risk. Outside Africa, all-source malaria programme funding over 2003 to 2009 per case averted ($56-5,749) or per death averted ($58,000-3,900,000) over 2004 to 2010 tended to be lower (more favourable) in countries with higher donor malaria funding per person at risk. Conclusions Increases in malaria programme funding are associated with accelerated progress towards malaria control targets. Associations between programme funding per person at risk and ITN coverage increases and declines in case and death rates suggest opportunities to maximize the impact of donor funding, by strategic re-allocation to countries with highest continued need. PMID:23317000
Abeyasinghe, Rabindra R.; Galappaththy, Gawrie N. L.; Smith Gueye, Cara; Kahn, James G.; Feachem, Richard G. A.
2012-01-01
Background Sri Lanka has a long history of malaria control, and over the past decade has had dramatic declines in cases amid a national conflict. A case study of Sri Lanka's malaria programme was conducted to characterize the programme and explain recent progress. Methods The case study employed qualitative and quantitative methods. Data were collected from published and grey literature, district-level and national records, and thirty-three key informant interviews. Expenditures in two districts for two years – 2004 and 2009 – were compiled. Findings Malaria incidence in Sri Lanka has declined by 99.9% since 1999. During this time, there were increases in the proportion of malaria infections due to Plasmodium vivax, and the proportion of infections occurring in adult males. Indoor residual spraying and distribution of long-lasting insecticide-treated nets have likely contributed to the low transmission. Entomological surveillance was maintained. A strong passive case detection system captures infections and active case detection was introduced. When comparing conflict and non-conflict districts, vector control and surveillance measures were maintained in conflict areas, often with higher coverage reported in conflict districts. One of two districts in the study reported a 48% decline in malaria programme expenditure per person at risk from 2004 to 2009. The other district had stable malaria spending. Conclusions/Significance Malaria is now at low levels in Sri Lanka – 124 indigenous cases were found in 2011. The majority of infections occur in adult males and are due to P. vivax. Evidence-driven policy and an ability to adapt to new circumstances contributed to this decline. Malaria interventions were maintained in the conflict districts despite an ongoing war. Sri Lanka has set a goal of eliminating malaria by the end of 2014. Early identification and treatment of infections, especially imported ones, together with effective surveillance and response, will be critical to achieving this goal. PMID:22952642
Human ecology and behaviour in malaria control in tropical Africa
MacCormack, C. P.
1984-01-01
Since about 250 BC, human modification of African environments has created increasingly favourable breeding conditions for Anopheles gambiae. Subsequent adaptations to the increased malaria risk are briefly described and reference is made to Macdonald's mathematical model for the disease. Since values for the variables in that model are high in tropical Africa, there is little possibility that simple, inexpensive, self-help primary health care initiatives can control malaria in the region. However, in combination with more substantial public health initiatives, simple primary health care activities might be done by communities to (1) prevent mosquitos from feeding on people, (2) prevent or reduce mosquito breeding, (3) destroy adult mosquitos, and (4) eliminate malaria parasites from human hosts. Lay methods of protection and self-care are examined and some topics for further research are indicated. Culturally appropriate health education methods are also suggested. PMID:6335685
Kobayashi, Tamaki; Gamboa, Dionicia; Ndiaye, Daouda; Cui, Liwang; Sutton, Patrick L.; Vinetz, Joseph M.
2015-01-01
Diagnosis is “the act of identifying a disease, illness, or problem by examining someone or something.” When an individual with acute fever presents for clinical attention, accurate diagnosis leading to specific, prompt treatment often saves lives. As applied to malaria, not only individual patient diagnosis is important but also assessing population-level malaria prevalence using appropriate diagnostic methods is essential for public health purposes. Similarly, identifying (diagnosing) fake antimalarial medications prevents the use of counterfeit drugs that can have disastrous effects. Therefore, accurate diagnosis in broad areas related to malaria is fundamental to improving health-care delivery, informing funding agencies of current malaria situations, and aiding in the prioritization of regional and national control efforts. The International Centers of Excellence for Malaria Research (ICEMR), supported by the U.S. National Institute of Allergy and Infectious Diseases, has collaborated on global efforts to improve malaria diagnostics by working to harmonize and systematize procedures across different regions where endemicity and financial resources vary. In this article, the different diagnostic methods used across each ICEMR are reviewed and challenges are discussed. PMID:26259937
Toward Malaria Risk Prediction in Afghanistan Using Remote Sensing
NASA Technical Reports Server (NTRS)
Safi, N.; Adimi, F.; Soebiyanto, R. P.; Kiang, R. K.
2010-01-01
Malaria causes more than one million deaths every year worldwide, with most of the mortality in Sub-Saharan Africa. It is also a significant public health concern in Afghanistan, with approximately 60% of the population, or nearly 14 million people, living in a malaria-endemic area. Malaria transmission has been shown to be dependent on a number of environmental and meteorological variables. For countries in the tropics and the subtropics, rainfall is normally the most important variable, except for regions with high altitude where temperature may also be important. Afghanistan s diverse landscape contributes to the heterogeneous malaria distribution. Understanding the environmental effects on malaria transmission is essential to the effective control of malaria in Afghanistan. Provincial malaria data gathered by Health Posts in 23 provinces during 2004-2007 are used in this study. Remotely sensed geophysical parameters, including precipitation from TRMM, and surface temperature and vegetation index from MODIS are used to derive the empirical relationship between malaria cases and these geophysical parameters. Both neural network methods and regression analyses are used to examine the environmental dependency of malaria transmission. And the trained models are used for predicting future transmission. While neural network methods are intrinsically more adaptive for nonlinear relationship, the regression approach lends itself in providing statistical significance measures. Our results indicate that NDVI is the strongest predictor. This reflects the role of irrigation, instead of precipitation, in Afghanistan for agricultural production. The second strongest prediction is surface temperature. Precipitation is not shown as a significant predictor, contrary to other malarious countries in the tropics or subtropics. With the regression approach, the malaria time series are modelled well, with average R2 of 0.845. For cumulative 6-month prediction of malaria cases, the average provincial accuracy reaches 91%. The developed predictive and early warning capabilities support the Third Strategic Approach of the WHO EMRO Malaria Control and Elimination Plan.
Kabula, Bilali; Derua, Yahya A; Tungui, Patrick; Massue, Dennis J; Sambu, Edward; Stanley, Grades; Mosha, Franklin W; Kisinza, William N
2011-12-01
In Sub Saharan Africa where most of the malaria cases and deaths occur, members of the Anopheles gambiae species complex and Anophelesfunestus species group are the important malaria vectors. Control efforts against these vectors in Tanzania like in most other Sub Saharan countries have failed to achieve the set objectives of eliminating transmission due to scarcity of information about the enormous diversity of Anopheles mosquito species and their susceptibility status to insecticides used for malaria vector control. Understanding the diversity and insecticide susceptibility status of these vectors and other factors relating to their importance as vectors (such as malaria transmission dynamics, vector biology, ecology, behaviour and population genetics) is crucial to developing a better and sound intervention strategies that will reduce man-vector contact and also manage the emergency of insecticide resistance early and hence .a success in malaria control. The objective of this review was therefore to obtain the information from published and unpublished documents on spatial distribution and composition of malaria vectors, key features of their behaviour, transmission indices and susceptibility status to insecticides in Tanzania. All data available were collated into a database. Details recorded for each data source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, species identification methods, insecticide resistance status, including evidence of the kdr allele, and Plasmodium falciparum sporozoite rate. This collation resulted in a total of 368 publications, encompassing 806,273 Anopheles mosquitoes from 157 georeferenced locations being collected and identified across Tanzania from 1950s to 2010. Overall, the vector species most often reported included An. gambiae complex (66.8%), An. funestus complex (21.8%), An. gambiae s.s. (2.1%) and An. arabiensis (9%). A variety of sampling/ collection and species identification methods were used with an increase in molecular techniques in recent decades. Only 32.2% and 8.4% of the data sets reported on sporozoite analysis and entomological inoculation rate (EIR), respectively which highlights the paucity of such important information in the country. Studies demonstrated efficacy of all four major classes of insecticides against malaria vectors in Tanzania with focal points showing phenotypic resistance. About 95% of malaria entomological data was obtained from northeastern Tanzania. This shows the disproportionate nature of the available information with the western part of the country having none. Therefore it is important for the country to establish entomological surveillance system with state of the art to capture all vitally important entomological indices including vector bionomics in areas of Tanzania where very few or no studies have been done. This is vital in planning and implementing evidence based malaria vector control programmes as well as in monitoring the current malaria control interventions.
2014-01-01
Background Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals. Methods This observational qualitative case study employed semi-structured key informant interviews to describe partnerships between the Malaysian Malaria Control Programme (MCP), and private palm oil, rubber and acacia plantations in the state of Sabah. Semi-structured interview guides were used to examine resource commitments, incentives, challenges, and successes of the collaborations. Results Interviews with workers from private plantations and the state of Sabah MCP indicated that partnerships with the commercial sector had contributed to decreases in incidence at plantation sites since 1991. Several plantations contribute financial and human resources toward malaria control efforts and all plantations frequently communicate with the MCP to help monitor the malaria situation on-site. Management of partnerships between private corporations and government entities can be challenging, as prioritization of malaria control may change with annual profits or arrival of new management. Conclusions Partnering with the commercial sector has been an essential operational strategy to support malaria elimination in Sabah. The successes of these partnerships rely on a common understanding that elimination will be a mutually beneficial outcome for employers and the general public. Best practices included consistent communication, developing government-staffed subsector offices for malaria control on-site, engaging commercial plantations to provide financial and human resources for malaria control activities, and the development of new worker screening programmes. The successes and challenges associated with partnerships between the public and commercial sector can serve as an example for other malaria-eliminating countries with large plantation sectors, and may also be applied to other sectors that employ migrant workers or have commercial enterprises in hard to reach areas. PMID:24443824
Ingabire, Chantal Marie; Hakizimana, Emmanuel; Kateera, Fredrick; Rulisa, Alexis; Van Den Borne, Bart; Nieuwold, Ingmar; Muvunyi, Claude; Koenraadt, Constantianus J M; Van Vugt, Michele; Mutesa, Leon; Alaii, Jane
2016-12-16
Active community participation in malaria control is key to achieving malaria pre-elimination in Rwanda. This paper describes development, implementation and evaluation of a community-based malaria elimination project in Ruhuha sector, Bugesera district, Eastern province of Rwanda. Guided by an intervention mapping approach, a needs assessment was conducted using household and entomological surveys and focus group interviews. Data related to behavioural, epidemiological, entomological and economical aspects were collected. Desired behavioural and environmental outcomes were identified concurrently with behavioural and environmental determinants. Theoretical methods and their practical applications were enumerated to guide programme development and implementation. An operational plan including the scope and sequence as well as programme materials was developed. Two project components were subsequently implemented following community trainings: (1) community malaria action teams (CMATs) were initiated in mid-2014 as platforms to deliver malaria preventive messages at village level, and (2) a mosquito larval source control programme using biological substances was deployed for a duration of 6 months, implemented from January to July 2015. Process and outcome evaluation has been conducted for both programme components to inform future scale up. The project highlighted malaria patterns in the area and underpinned behavioural and environmental factors contributing to malaria transmission. Active involvement of the community in collaboration with CMATs contributed to health literacy, particularly increasing ability to make knowledgeable decisions in regards to malaria prevention and control. A follow up survey conducted six months following the establishment of CMATs reported a reduction of presumed malaria cases at the end of 2014. The changes were related to an increase in the acceptance and use of available preventive measures, such as indoor residual spraying and increase in community-based health insurance membership, also considered as a predictor of prompt and adequate care. The innovative larval source control intervention contributed to reduction in mosquito density and nuisance bites, increased knowledge and skills for malaria control as well as programme ownership. This community-based programme demonstrated the feasibility and effectiveness of active community participation in malaria control activities, which largely contributed to community empowerment and reduction of presumed malaria in the area. Further studies should explore how gains may be sustained to achieve the goal of malaria pre-elimination.
Makungu, Christina; Stephen, Stephania; Kumburu, Salome; Govella, Nicodem J; Dongus, Stefan; Hildon, Zoe Jane-Lara; Killeen, Gerry F; Jones, Caroline
2017-10-11
The effectiveness of malaria prevention with long-lasting insecticidal nets and indoor residual spraying is limited by emerging insecticide resistance, evasive mosquito behaviours that include outdoor biting, sub-optimal implementation and inappropriate use. New vector control interventions are required and their potential effectiveness will be enhanced if existing household perceptions and practices are integrated into intervention design. This qualitative descriptive study used focus groups discussions, in-depth interviews and photovoice methods to explore mosquito control perceptions and practices among residents in four study sites in Dar es Salaam, Tanzania. Mosquitoes were perceived as a growing problem, directly attributed to widespread environmental deterioration and lack of effective mosquito control interventions. Malaria and nuisance biting were perceived as the main problem caused by mosquitoes. Breeding sites were clearly distinguished from resting sites but residents did not differentiate between habitats producing malaria vector mosquitoes and others producing mostly nuisance mosquitoes. The most frequently mentioned protection methods in the wealthiest locations were bed nets, aerosol insecticide sprays, window screens, and fumigation, while bed nets were most frequently mentioned and described as 'part of the culture' in the least wealthy locations. Mosquito-proofed housing was consistently viewed as desirable, but considered unaffordable outside wealthiest locations. Slapping and covering up with clothing were most commonly used to prevent biting outdoors. Despite their utility outdoors, topical repellents applied to the skin were considered expensive, and viewed with suspicion due to perceived side effects. Improving the local environment was the preferred method for preventing outdoor biting. Affordability, effectiveness, availability, practicality, as well as social influences, such as government recommendations, socialization and internalization (familiarization and habit) were described as key factors influencing uptake. Outdoor transmission is widely accepted as an obstacle to malaria elimination. Larval source management, targeting both malaria vectors and nuisance-biting mosquitoes, is the preferred method for mosquito control among the residents of Dar es Salaam and should be prioritized for development alongside new methods for outdoor personal protection. Even if made available, effective and affordable, these additional interventions may require time and user experience to achieve positive reputations and trustworthiness.
Saito, Takahiro; Kikuchi, Aoi; Kaneko, Akira; Isozumi, Rie; Teramoto, Isao; Kimura, Masatsugu; Hirasawa, Noriyasu; Hiratsuka, Masahiro
2018-06-01
Malaria is caused by five species of Plasmodium in humans. Microscopy is currently used for pathogen detection, requiring considerable training and technical expertise as the parasites are often difficult to differentiate morphologically. Rapid diagnostic tests are as reliable as microscopy and offer faster diagnoses but possess lower detection limits and are incapable of distinguishing among the parasitic species. To improve global health efforts towards malaria control, a rapid, sensitive, species-specific, and economically viable diagnostic method is needed. In this study, we designed a malaria diagnostic method involving a multiplex single-tube nested PCR targeting Plasmodium mitochondrial cytochrome c oxidase III and single-stranded tag hybridization chromatographic printed-array strip. The detection sensitivity was found to be at least 40 times higher than that of agarose gel electrophoresis with ethidium bromide. This system also enables the identification of both single- and mixed-species malaria infections. The assay was validated with 152 Kenyan samples; using nested PCR as the standard, the assay's sensitivity and specificity were 88.7% and 100.0%, respectively. The turnaround time required, from PCR preparation to signal detection, is 90min. Our method should improve the diagnostic speed, treatment efficacy, and control of malaria, in addition to facilitating surveillance within global malaria eradication programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Peeters Grietens, Koen; Xuan, Xa Nguyen; Van Bortel, Wim; Duc, Thang Ngo; Ribera, Joan Muela; Ba Nhat, Truong; Van, Ky Pham; Le Xuan, Hung; D'Alessandro, Umberto; Erhart, Annette
2010-01-20
Despite Vietnam's success in reducing malaria mortality and morbidity over the last decade, malaria persists in the forested and mountainous areas of the central and southern provinces, where more than 50% of the clinical cases and 90% of severe cases and malaria deaths occur. Between July 2005 and September 2006, a multi-method study, triangulating a malariometric cross-sectional survey and qualitative data from focused ethnography, was carried out among the Ra-glai ethnic minority in the hilly forested areas of south-central Vietnam. Despite the relatively high malaria burden among the Ra-glai and their general awareness that mosquitoes can transmit an unspecific kind of fever (84.2%), the use of bed nets, distributed free of charge by the national malaria control programme, remains low at the farmers' forest fields where the malaria risk is the highest. However, to meet work requirements during the labour intensive malaria transmission and rainy season, Ra-glai farmers combine living in government supported villages along the road with a second home or shelter at their slash and burn fields located in the forest. Bed net use was 84.6% in the villages but only 52.9% at the forest fields; 20.6% of the respondents slept unprotected in both places. Such low use may be explained by the low perception of the risk for malaria, decreasing the perceived need to sleep protected. Several reasons may account for this: (1) only 15.6% acknowledged the higher risk of contracting malaria in the forest than in the village; (2) perceived mosquito biting times only partially coincided with Anopheles dirus ss and Anopheles minimus A true biting times; (3) the disease locally identified as 'malaria' was hardly perceived as having an impact on forest farmers' daily lives as they were unaware of the specific kind of fevers from which they had suffered even after being diagnosed with malaria at the health centre (20.9%). The progressive confinement of malaria to minority groups and settings in the Greater Mekong sub-region implies that further success in malaria control will be linked to research into these specific socio-cultural contexts. Findings highlight the need for context sensitive malaria control policies; not only to reduce the local malaria burden but also to minimize the risk of malaria spreading to other areas where transmission has virtually ceased.
Malaria vector control: from past to future.
Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P
2011-04-01
Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough understanding of biology, ethical considerations, and sufficiently trained manpower for implementation being technically intensive methods. All the methods mentioned in the review that are being implemented or proposed for implementation needs effective inter-sectoral coordination and community participation. The latest strategy is evolution-proof insecticides that include fungal biopesticides, Wolbachia, and Denso virus that essentially manipulate the life cycle of the mosquitoes were found effective but needs more research. However, for effective vector control, integrated vector management methods, involving use of combination of effective tools, is needed and is also suggested by Global Malaria Control Strategy. This review article raises issues associated with the present-day vector control strategies and state opportunities with a focus on ongoing research and recent advances to enable to sustain the gains achieved so far.
2012-01-01
Background The burden of malaria has decreased in parts of Africa following the scaling up of control interventions. However, similar data are limited from high transmission settings. Methods A cohort of 100 children, aged six weeks to 10 months of age, were enrolled in an area of high malaria transmission intensity and followed through 48 months of age. Children were given a long-lasting insecticide-treated bed net (LLIN) at enrolment and received all care, including monthly blood smears and treatment with artemisinin-based combination therapy (ACT) for uncomplicated malaria, at a dedicated clinic. The incidence of malaria was estimated by passive surveillance and associations between malaria incidence and age, calendar time and season were measured using generalized estimating equations. Results Reported compliance with LLINs was 98% based on monthly routine evaluations. A total of 1,633 episodes of malaria were observed, with a median incidence of 5.3 per person-year (PPY). There were only six cases of complicated malaria, all single convulsions. Malaria incidence peaked at 6.5 PPY at 23 months of age before declining to 3.5 PPY at 48 months. After adjusting for age and season, the risk of malaria increased by 52% from 2008 to 2011 (RR 1.52, 95% CI 1.10-2.09). Asymptomatic parasitaemia was uncommon (monthly prevalence <10%) and rarely observed prior to 24 months of age. Conclusions In Tororo, despite provision of LLINs and prompt treatment with ACT, the incidence of malaria is very high and appears to be rising. Additional malaria control interventions in high transmission settings are likely needed. Trial registration Current Controlled Trials Identifier NCT00527800 PMID:23273022
Nzobo, Baraka J; Ngasala, Billy E; Kihamia, Charles M
2015-12-02
Malaria is a public health problem in Tanzania affecting all age groups. It is known that school children are the age group most commonly infected with malaria parasites. Their infections are usually asymptomatic, go unnoticed and thus never get treated, result in anaemia, reduced ability to concentrate and learn in school and if fallen sick may lead to school absenteeism. Effective malaria control requires frequent evaluation of effectiveness of different malaria interventions. A cross-sectional study design involving 317 out of 350 school children aged 6-13 years from five primary schools within municipality was conducted. Multistage cluster sampling and simple random sampling methods were used to obtain primary school and study participants, respectively. Finger-prick blood samples were collected for Plasmodium parasite detection by malaria rapid diagnostic test (mRDT) and haemoglobin level assessment by Easy Touch(®) GHb system machine. A questionnaire was administered to assess use of insecticide-treated nets (ITNs) and anti-malarial drugs. The prevalence of asymptomatic malaria was 5.4 % (95 % CI 3.3-8.6 %) and anaemia was 10.1 % (95 % CI 7.2-13.9 %). School children aged 6-9 years were more affected by malaria than those aged 10-13 years. The proportion of ITNs used was 90.6 % (95 % CI 86.3-93.9 %) while that of artemisinin combination therapy (ACT) was 71.9 % (95 % CI 66.2-77.1 %). Findings show existence of asymptomatic malaria and walking anaemia among primary school children in Morogoro municipality. The majority of school children reported use of ITNs and ACT for malaria control. These findings provide a rationale for using schools and school children to assess effectiveness of malaria interventions.
Seasonal prevalence of malaria in West Sumba district, Indonesia
Syafruddin, Din; Krisin; Asih, Puji; Sekartuti; Dewi, Rita M; Coutrier, Farah; Rozy, Ismail E; Susanti, Augustina I; Elyazar, Iqbal RF; Sutamihardja, Awalludin; Rahmat, Agus; Kinzer, Michael; Rogers, William O
2009-01-01
Background Accurate information about the burden of malaria infection at the district or provincial level is required both to plan and assess local malaria control efforts. Although many studies of malaria epidemiology, immunology, and drug resistance have been conducted at many sites in Indonesia, there is little published literature describing malaria prevalence at the district, provincial, or national level. Methods Two stage cluster sampling malaria prevalence surveys were conducted in the wet season and dry season across West Sumba, Nusa Tenggara Province, Indonesia. Results Eight thousand eight hundred seventy samples were collected from 45 sub-villages in the surveys. The overall prevalence of malaria infection in the West Sumba District was 6.83% (95% CI, 4.40, 9.26) in the wet season and 4.95% (95% CI, 3.01, 6.90) in the dry. In the wet season Plasmodium falciparum accounted for 70% of infections; in the dry season P. falciparum and Plasmodium vivax were present in equal proportion. Malaria prevalence varied substantially across the district; prevalences in individual sub-villages ranged from 0–34%. The greatest malaria prevalence was in children and teenagers; the geometric mean parasitaemia in infected individuals decreased with age. Malaria infection was clearly associated with decreased haemoglobin concentration in children under 10 years of age, but it is not clear whether this association is causal. Conclusion Malaria is hypoendemic to mesoendemic in West Sumba, Indonesia. The age distribution of parasitaemia suggests that transmission has been stable enough to induce some clinical immunity. These prevalence data will aid the design of future malaria control efforts and will serve as a baseline against which the results of current and future control efforts can be assessed. PMID:19134197
Barriers to malaria control in rural south-west Timor-Leste: a qualitative analysis.
Neave, Penny E; Soares, Maria L
2014-01-01
Malaria is an important health problem in Timor-Leste. Although funding has been provided to reduce the burden of this disease, few studies have investigated whether this has improved malaria-related knowledge, management of symptoms, and treatment in rural communities. The aim of this study was to explore the perceptions and practices undertaken in relation to all aspects of malaria control by members of two rural communities in Timor-Leste. A qualitative study was undertaken in two rural hamlets in Timor-Leste. Research methods included transect walks, focus groups and semi-structured interviews. Content analysis was used to identify themes. The location of the hamlets near rice fields, leaking taps, inadequate water supplies and dumping of waste from the local hospital provided opportunities for mosquitoes to breed. Most participants were aware of the link between mosquitoes and malaria, but a lack of control over their environment was a major barrierto preventing malaria. The distribution ofbed nets had occurred once, and was the only intervention undertaken bythe National Malaria Control Programme. However, limiting the distribution of bed nets to pregnant women and children aged under 5 years had resulted in some focus group respondents believing that only those in these groups could be affected by malaria. Self-diagnosis and home treatmentwere common. Treatment for unresolved infections depended on access to transport funds, and belief in the power of traditional healers. Improvements in infrastructure, empowerment of rural communities, and better access to treatment are recommended if the incidence of malaria is to be reduced throughout the country.
2014-01-01
Background Malaria in pregnancy remains a major health problem. Placental malaria infection may cause pathophysiological changes in pregnancy and result in morphological changes to placental villi. Quantitative histomorphological image analysis of placental biopsies was performed to compare placental villous architecture between active or treated placental malaria cases and controls. Methods A total of 67 placentas were studied from three clinical groups: control patients who did not have malaria (n = 27), active (n = 14) and treated (n=26) malaria cases, including both Plasmodium falciparum and Plasmodium vivax infections. Image analysis of histological placental sections was performed using ImageJ software to measure the number and size (area) of terminal villi, perimeter measurement per villus and total perimeter per unit area, and number of capillaries per villus (vascularity). Histological features of placental malaria were scored and these results were correlated with malaria status and clinical outcomes. Results Villous size correlated with vascularity (p <0.0001) but was inversely correlated with observed villi per unit area, (p = 0.0001). Significantly greater villous area and vascularity was observed in UK controls. Indices of histological malaria infection were significantly greater in active versus treated malaria cases. Active placental malaria cases showed significantly smaller villous area (p <0.0084), vascularity (p <0.0139) and perimeter (p <0.0006) than treated malaria cases or controls, but significantly more villi per unit area (p <0.0001). Villous size in treated malaria cases was significantly larger than active placental malaria cases (p <0.001) and similar to controls. There was a significant relationship between villous number and anaemia at the time of infection (p <0.0034), but not placental weight, birth weight or gestational age at delivery. No differences were found between histology or villous morphology comparing infections with P. falciparum or P. vivax. Conclusions These results imply that villous size, perimeter and vascularity are acutely decreased during active placental malaria, decreasing the surface area available for gas exchange per villus. However the increased number of villi per unit area offsets this change and persists after treatment. Histopathological and villous architectural changes may be reversed by early detection and appropriate anti-malarial treatment. PMID:24386908
Radar Monitoring of Wetlands for Malaria Control
NASA Technical Reports Server (NTRS)
Pope, Kevin O.
1997-01-01
Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.
Comfort, Alison; Leegwater, Anthony; Nakhimovsky, Sharon; Kansembe, Henry; Hamainza, Busiku; Bwalya, Benson; Alilio, Martin; Johns, Ben; Olsho, Lauren
2017-01-04
Country-level evidence on the impact of malaria control on micro-economic outcomes is vital for mobilizing domestic and donor resources for malaria control. Using routinely available survey data could facilitate this investigation in a cost-efficient way. The authors used Malaria Indicator Surveys (MIS) and Living Conditions Monitoring Survey (LCMS) data from 2006 to 2010 for all 72 districts in Zambia to relate malaria control scale-up with household food spending (proxy for household well-being), educational attainment and agricultural production. The authors used two quasi-experimental designs: (1) a generalized propensity score for a continuous treatment variable (defined as coverage from owning insecticide-treated bed nets and/or receipt of indoor residual spraying); and, (2) a district fixed effects model to assess changes in the outcome relative to changes in treatment pre-post scale-up. The unit of analysis was at district level. The authors also conducted simulations post-analysis to assess statistical power. Micro-economic outcomes increased (33% increase in food spending) concurrently with malaria control coverage (62% increase) from 2006 to 2010. Despite using data from all 72 districts, both analytic methods yielded wide confidence intervals that do not conclusively link outcomes and malaria control coverage increases. The authors cannot rule out positive, null or negative effects. The upper bound estimates of the results show that if malaria control coverage increases from 60 to 70%, food spending could increase up to 14%, maize production could increase up to 57%, and years of schooling could increase up to 0.5 years. Simulations indicated that the generalized propensity score model did not have good statistical power. While it is technically possible to use routinely available survey data to relate malaria control scale-up and micro-economic outcomes, it is not clear from this analysis that meaningful results can be obtained when survey data are highly aggregated. Researchers in similar settings should assess the feasibility of disaggregating existing survey data. Additionally, large surveys, such as LCMS and MIS, could incorporate data on both malaria coverage and household expenditures, respectively.
Muela Ribera, Joan; Ngo Duc, Thang; van Bortel, Wim; Truong Ba, Nhat; Van, Ky Pham; Le Xuan, Hung; D'Alessandro, Umberto; Erhart, Annette
2012-01-01
Background Long-lasting insecticidal hammocks (LLIHs) are being evaluated as an additional malaria prevention tool in settings where standard control strategies have a limited impact. This is the case among the Ra-glai ethnic minority communities of Ninh Thuan, one of the forested and mountainous provinces of Central Vietnam where malaria morbidity persist due to the sylvatic nature of the main malaria vector An. dirus and the dependence of the population on the forest for subsistence - as is the case for many impoverished ethnic minorities in Southeast Asia. Methods A social science study was carried out ancillary to a community-based cluster randomized trial on the effectiveness of LLIHs to control forest malaria. The social science research strategy consisted of a mixed methods study triangulating qualitative data from focused ethnography and quantitative data collected during a malariometric cross-sectional survey on a random sample of 2,045 study participants. Results To meet work requirements during the labor intensive malaria transmission and rainy season, Ra-glai slash and burn farmers combine living in government supported villages along the road with a second home at their fields located in the forest. LLIH use was evaluated in both locations. During daytime, LLIH use at village level was reported by 69.3% of all respondents, and in forest fields this was 73.2%. In the evening, 54.1% used the LLIHs in the villages, while at the fields this was 20.7%. At night, LLIH use was minimal, regardless of the location (village 4.4%; forest 6.4%). Discussion Despite the free distribution of insecticide-treated nets (ITNs) and LLIHs, around half the local population remains largely unprotected when sleeping in their forest plot huts. In order to tackle forest malaria more effectively, control policies should explicitly target forest fields where ethnic minority farmers are more vulnerable to malaria. PMID:22253852
Bertrand, Kouam Eric; Mathieu, Ndomou; Inocent, Gouado; Honore, Fotso Kuate
2008-06-15
Oxidative stress and changes in antioxidant status have been implicated in the pathogenesis of malaria. To assess the antioxidant level ofbilirubin and uric acid associated with falciparum malaria infection, 60 untreated patients (30 men and 30 women) in Douala, Cameroon were screened for the study. Sixty five healthy individuals (29 men and 36 women) were used as controls. Total and conjugated bilirubin were calculated using Jendrassik-Grof method while uric acid was determined using Barham-Trinder method. It was observed that total and conjugated bilirubins were significantly (p < 0.001) higher in malaria patients (10.722 +/- 4.043 and 3.627 +/- 1.571 mg L(-1), respectively) when compared to control (6.830 +/- 2.436 and 1.777 +/- 0.729 mg L(-1)) and these bilirubin levels increased significantly with parasite count (p < 0.050). There was also significant increased (p = 0.021) of uric acid in malaria patients (56.262 +/- 13.963 mg L(-1)) compared to controls (49.838 +/- 15.419 mg L(-1)). No significant differences based on sex were observed on uric acid, parasite count, total and conjugated bilirubins in malaria patients. Positive correlations were obtained between parasite count and total bilirubin (r = 0.320, p < 0.050), conjugated bilirubin (r = 0.477, p < 0.001), uric acid (r = 0.060, p > 0.050) and between total and conjugated bilirubin (r = 0.729, p < 0.001). From this study, it has been hypothesized that the augmentation of plasma level ofbilirubin and uric acid could provide more protection against oxidative stress induced by malaria.
William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.
2013-01-01
Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830
Synergistic and antagonistic interactions between bednets and vaccines in the control of malaria.
Artzy-Randrup, Yael; Dobson, Andrew P; Pascual, Mercedes
2015-03-10
It is extremely likely that the malaria vaccines currently in development will be used in conjunction with treated bednets and other forms of malaria control. The interaction of different intervention methods is at present poorly understood in a disease such as malaria where immunity is more complex than for other pathogens that have been successfully controlled by vaccination. Here we develop a general mathematical model of malaria transmission to examine the interaction between vaccination and bednets. Counterintuitively, we find that the frailty of malaria immunity will potentially cause both synergistic and antagonistic interactions between vaccination and the use of bednets. We explore the conditions that create these tensions, and outline strategies that minimize their detrimental impact. Our analysis specifically considers the three leading vaccine classes currently in development: preerythrocytic (PEV), blood stage (BSV), and transmission blocking (TBV). We find that the combination of BSV with treated bednets can lead to increased morbidity with no added value in terms of elimination; the interaction is clearly antagonistic. In contrast, there is strong synergy between PEV and treated bednets that may facilitate elimination, although transient stages are likely to increase morbidity. The combination of TBV with treated bednets is synergistic, lowering both morbidity and elimination thresholds. Our results suggest that vaccines will not provide a straightforward solution to malaria control, and that future programs need to consider the synergistic and antagonistic interactions between vaccines and treated bednets.
Douglas, Alexander D.; Edwards, Nick J.; Duncan, Christopher J. A.; Thompson, Fiona M.; Sheehy, Susanne H.; O'Hara, Geraldine A.; Anagnostou, Nicholas; Walther, Michael; Webster, Daniel P.; Dunachie, Susanna J.; Porter, David W.; Andrews, Laura; Gilbert, Sarah C.; Draper, Simon J.; Hill, Adrian V. S.; Bejon, Philip
2013-01-01
Controlled human malaria infection is used to measure efficacy of candidate malaria vaccines before field studies are undertaken. Mathematical modeling using data from quantitative polymerase chain reaction (qPCR) parasitemia monitoring can discriminate between vaccine effects on the parasite's liver and blood stages. Uncertainty regarding the most appropriate modeling method hinders interpretation of such trials. We used qPCR data from 267 Plasmodium falciparum infections to compare linear, sine-wave, and normal-cumulative-density-function models. We find that the parameters estimated by these models are closely correlated, and their predictive accuracy for omitted data points was similar. We propose that future studies include the linear model. PMID:23570846
2012-01-01
Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130
Kang, Jung-Mi; Cho, Pyo-Yun; Moe, Mya; Lee, Jinyoung; Jun, Hojong; Lee, Hyeong-Woo; Ahn, Seong Kyu; Kim, Tae Im; Pak, Jhang Ho; Myint, Moe Kyaw; Lin, Khin; Kim, Tong-Soo; Na, Byoung-Kuk
2017-03-16
Accurate diagnosis of Plasmodium infection is crucial for prompt malaria treatment and surveillance. Microscopic examination has been widely applied as the gold standard for malaria diagnosis in most part of malaria endemic areas, but its diagnostic value has been questioned, particularly in submicroscopic malaria. In this study, the diagnostic performance of microscopic examination and nested polymerase chain reaction (PCR) was evaluated to establish optimal malaria diagnosis method in Myanmar. A total of 1125 blood samples collected from residents in the villages and towns located in Naung Cho, Pyin Oo Lwin, Tha Beik Kyin townships and Mandalay of Upper Myanmar were screened by microscopic examination and species-specific nested PCR method. Among the 1125 blood samples, 261 samples were confirmed to be infected with malaria by microscopic examination. Evaluation of the 1125 samples by species-specific nested PCR analysis revealed that the agreement between microscopic examination and nested PCR was 87.3% (261/299). Nested PCR successfully detected 38 Plasmodium falciparum or Plasmodium vivax infections, which were missed in microscopic examination. Microscopic examinations also either misdiagnosed the infected Plasmodium species, or did not detect mixed infections with different Plasmodium species in 31 cases. The nested PCR method is more reliable than conventional microscopic examination for the diagnosis of malaria infections, and this is particularly true in cases of mixed infections and submicroscopic infections. Given the observed higher sensitivity and specificity of nested PCR, the molecular method holds enormous promise in malaria diagnosis and species differentiation, and can be applied as an effective monitoring tool for malaria surveillance, control and elimination in Myanmar.
Community perceptions of a malaria vaccine in the Kintampo districts of Ghana
2013-01-01
Background Malaria remains the leading cause of morbidity and mortality in sub-Saharan Africa despite tools currently available for its control. Making malaria vaccine available for routine use will be a major hallmark, but its acceptance by community members and health professionals within the health system could pose considerable challenge as has been found with the introduction of polio vaccinations in parts of West Africa. Some of these challenges may not be expected since decisions people make are many a time driven by a complex myriad of perceptions. This paper reports knowledge and perceptions of community members in the Kintampo area of Ghana where malaria vaccine trials have been ongoing as part of the drive for the first-ever licensed malaria vaccine in the near future. Methods Both qualitative and quantitative methods were used in the data collection processes. Women and men whose children were or were not involved in the malaria vaccine trial were invited to participate in focus group discussions (FGDs). Respondents, made up of heads of religious groupings in the study area, health care providers, traditional healers and traditional birth attendants, were also invited to participate in in-depth interviews (IDIs). A cross-sectional survey was conducted in communities where the malaria vaccine trial (Mal 047RTS,S) was carried out. In total, 12 FGDs, 15 IDIs and 466 household head interviews were conducted. Results Knowledge about vaccines was widespread among participants. Respondents would like their children to be vaccinated against all childhood illnesses including malaria. Knowledge of the long existing routine vaccines was relatively high among respondents compared to hepatitis B and Haemophilus influenza type B vaccines that were introduced more recently in 2002. There was no clear religious belief or sociocultural practice that will serve as a possible barrier to the acceptance of a malaria vaccine. Conclusion With the assumption that a malaria vaccine will be as efficacious as other EPI vaccines, community members in Central Ghana will accept and prefer malaria vaccine to malaria drugs as a malaria control tool. Beliefs and cultural practices as barriers to the acceptance of malaria vaccine were virtually unknown in the communities surveyed. PMID:23651533
Could Malaria Control Programmes be Timed to Coincide with Onset of Rainfall?
Komen, Kibii
2017-06-01
Malaria cases in South Africa's Northern Province of Limpopo have surpassed known endemic KwaZulu Natal and Mpumalanga Provinces. This paper applies statistical methods: regression analysis and impulse response function to understand the timing of impact and the length that such impacts last. Climate data (rainfall and temperature) are obtained from South African Weather Services (SAWs); global data from the European Centre for Medium-Range Weather Forecasts (ECMWF), while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province). Data collected span from January 1998 to July 2007. Signs of the coefficients are positive for rainfall and temperature and negative for their exponents. Three out of five independent variables consistently maintain a very high statistical level of significance. The coefficients for climate variables describe an inverted u-shape: parameters for the exponents of rainfall (-0.02, -0.01, -0.02, -0.00) and temperature (-46.61, -47.46, -48.14, -36.04) are both negative. A one standard deviation rise in rainfall (rainfall onset) increases malaria cases, and the effects become sustained for at least 3 months and conclude that onset of rainfall therefore triggers a 'malaria season'. Malaria control programme and early warning system should be intensified in the first 3 months following the onset of rainfall.
Evaluation of direct and indirect effects of seasonal malaria chemoprevention in Mali.
Druetz, Thomas
2018-05-25
Randomized controlled trials have established that seasonal malaria chemoprevention (SMC) in children is a promising strategy to reduce malaria transmission in Sahelian West Africa. This strategy was recently introduced in a dozen countries, and about 12 million children received SMC in 2016. However, evidence on SMC effectiveness under routine programme conditions is sparse. We aim to measure the effects of the nationwide SMC programme in Mali on the prevalence of malaria and anemia in children 6-59 months. We used data from the 2015 nationally representative malaria indicator survey. A post-test only with non-randomized control group study was designed. We fitted a generalized structural equation model that controlled for potential bias on observed and non-observed variables (endogenous treatment effect model). Having received SMC reduced by 44% (95% CI [0.39-0.49]) the risk of having a positive rapid diagnostic test for malaria. In addition, the programme indirectly reduced by 18% the risk of moderate-to-severe anemia (95% CI [0.15-0.21]). SMC in Mali has substantial protective effects under routine nationwide programme conditions. Endogenous treatment effects analyses can contribute to rigorously measuring the effectiveness of health programmes and to bridging a widening gap in evaluation methods to measure progress towards achieving malaria elimination.
Modeling the Cost Effectiveness of Malaria Control Interventions in the Highlands of Western Kenya
Stuckey, Erin M.; Stevenson, Jennifer; Galactionova, Katya; Baidjoe, Amrish Y.; Bousema, Teun; Odongo, Wycliffe; Kariuki, Simon; Drakeley, Chris; Smith, Thomas A.; Cox, Jonathan; Chitnis, Nakul
2014-01-01
Introduction Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. Methods Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. Results The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. Conclusions All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions. PMID:25290939
NASA Astrophysics Data System (ADS)
Gianotti, R. L.; Bomblies, A.; Eltahir, E. A.
2008-12-01
This study describes the use of HYDREMATS, a physically-based distributed hydrology model, to investigate environmental management methods for malaria vector control in the Sahelian village of Banizoumbou, Niger. The model operates at fine spatial and temporal scales to enable explicit simulation of individual pool dynamics and isolation of mosquito breeding habitats. The results showed that leveling of topographic depressions where temporary breeding habitats form during the rainy season could reduce the persistence time of a pool to less than the time needed for establishment of mosquito breeding, approximately 7 days. Increasing the surface soil permeability by ploughing could also reduce the persistence time of a pool but this technique was not as effective as leveling. Therefore it is considered that leveling should be the preferred of the two options where possible. This investigation demonstrates that management methods that modify the hydrologic environment have significant potential to contribute to malaria vector control and human health improvement in Sahelian Africa.
Kumar, Divya Subash; Andimuthu, Ramachandran; Rajan, Rupa; Venkatesan, Mada Suresh
2014-01-08
Urban malaria is considered to be one of the most significant infectious diseases due to varied socioeconomic problems especially in tropical countries like India. Among the south Indian cities, Chennai is endemic for malaria. The present study aimed to identify the hot spots of malaria prevalence and the relationship with other factors in Chennai during 2005-2011. Data on zone-wise and ward-wise monthly malaria positive cases were collected from the Vector Control Office, Chennai Corporation, for the year 2005 to 2011 and verified using field data. This data was used to calculate the prevalence among thousand people. Hotspot analysis for all the years in the study period was done to observe the spatial trend. Association of environmental factors like altitude, population density and climatic variables was assessed using ArcGIS 9.3 version and SPSS 11.5. Pearson's correlation of climate parameters at 95% and 99% was considered to be the most significant. Social parameters of the highly malaria prone region were evaluated through a structured random questionnaire field survey. Among the ten zones of Chennai Corporation, Basin Bridge zone showed high malaria prevalence during the study period. The 'hotspot' analysis of malaria prevalence showed the emergence of newer hotspots in the Adyar zone. These hotspots of high prevalence are places of moderately populated and moderately elevated areas. The prevalence of malaria in Chennai could be due to rainfall and temperature, as there is a significant correlation with monthly rainfall and one month lag of monthly mean temperature. Further it has been observed that the socioeconomic status of people in the malaria hotspot regions and unhygienic living conditions were likely to aggravate the malaria problem. Malaria hotspots will be the best method to use for targeting malaria control activities. Proper awareness and periodical monitoring of malaria is one of the quintessential steps to control this infectious disease. It has been argued that identifying the key environmental conditions favourable for the occurrence and spread of malaria must be integrated and documented to aid future predictions of malaria in Chennai.
Zhang, Q F; Wang, R B; Zheng, B; Xia, Z G; Zhou, S S
2017-05-06
Objective: To analyze the performance of the 5 Global Fund Malaria Programmes in China from 2003 to 2013. Methods: All of the proposals, summaries, progress reports, survey reports, Monitoring& Evaluation reports, and performance rating reports of the 5 Global Fund Malaria Programmes in China and the epidemic data of program areas were collected for statistical analysis from 2012 to 2014. Symposiums were held with relevant experts from national and provincial Centers for Disease Control and Prevention, program managers and staffs from national and provincial Global Fund Malaria Programme offices. The completion of the relevant programme indicators (including the general grant information such as program areas, beneficiaries and funding; the implementation of malaria control measures; the performance of malaria control measures; the malaria incidence in the program areas; the prevalence of malaria parasites; and program management and performance evaluation) were analyzed, and the results: of the symposiums were summarized. Results The implementation period of the 5 Global Fund Malaria Programs were as follows: Round 1 from 2003 to 2008, Round 5 from 2006 to 2010, Round 6 from 2007 to 2012, Round 10 from 2012 to 2013, and National Strategy Application (NSA) from 2010 to 2012. Under the support of all the Global Fund Malaria Programs, a total of 11 936 726 fever cases received microscopic tests, 1 485 915 confirmed and suspected malaria cases were treated, 1 579 773 Long Lasting Insecticide-treated Nets were distributed, 3 414 633 regular nets were treated by insecticide, 40 298 284 primary and middle school students received health education on malaria control. Compared with the baseline value, the completion rates of each indicator increased after the implementation of the programs. The growth value ranged from 12.83% to 83.11%, among which the biggest growth was the value of the indicator'Percentage of households with at least one LLIN/ITN in target areas', and it increased from 9.2% (baseline value of 2006) to 92.31% (value of 2012). The malaria incidence in program areas has dropped significantly year by year, the annual reported malaria incidence in Yunnan and Hainan provinces decreased from 1 950/100 000, 3 850/100 000 in 2002 to 3.31/100 000, 0.15/100 000 in 2012, the P. falciparum malaria incidence in target counties in Hainan province decreased from 90.6/100 000 in 2002 to 0/100 000 in 2012. As from the implementation of NSA grant in 2010 to 2012, the annual reported malaria incidence in 92% of the 75 Type 1 counties was less than 1 per 10 000, 60.00% of Type 1 counties and 98.69% of the 687 Type 2 counties reported zero locally transmitted malaria cases. The Global Fund Secretariat had conducted a total of 37 performance evaluations, of which 9 have been rated as A1, 4 rated as A2, 19 rated as B1 and 5 rated as B1. Conclusions: The Global Fund Malaria Program in China has been closely integrated with the goal and task of National Malaria Control Program, reducing malaria burden in target areas, and pushing Chinese malaria control efforts to move from control to elimination.
Ashton, Ruth A.; Bennett, Adam; Yukich, Joshua; Bhattarai, Achuyt; Keating, Joseph; Eisele, Thomas P.
2017-01-01
Abstract. Coverage of malaria control interventions is increasing dramatically across endemic countries. Evaluating the impact of malaria control programs and specific interventions on health indicators is essential to enable countries to select the most effective and appropriate combination of tools to accelerate progress or proceed toward malaria elimination. When key malaria interventions have been proven effective under controlled settings, further evaluations of the impact of the intervention using randomized approaches may not be appropriate or ethical. Alternatives to randomized controlled trials are therefore required for rigorous evaluation under conditions of routine program delivery. Routine health management information system (HMIS) data are a potentially rich source of data for impact evaluation, but have been underused in impact evaluation due to concerns over internal validity, completeness, and potential bias in estimates of program or intervention impact. A range of methodologies were identified that have been used for impact evaluations with malaria outcome indicators generated from HMIS data. Methods used to maximize internal validity of HMIS data are presented, together with recommendations on reducing bias in impact estimates. Interrupted time series and dose-response analyses are proposed as the strongest quasi-experimental impact evaluation designs for analysis of malaria outcome indicators from routine HMIS data. Interrupted time series analysis compares the outcome trend and level before and after the introduction of an intervention, set of interventions or program. The dose-response national platform approach explores associations between intervention coverage or program intensity and the outcome at a subnational (district or health facility catchment) level. PMID:28990915
Urbanization and the global malaria recession
2013-01-01
Background The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Methods Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. Results/Conclusions A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control. PMID:23594701
Comfort, Alison B.; van Dijk, Janneke H.; Mharakurwa, Sungano; Stillman, Kathryn; Gabert, Rose; Korde, Sonali; Nachbar, Nancy; Derriennic, Yann; Musau, Stephen; Hamazakaza, Petan; Zyambo, Khozya D.; Zyongwe, Nancy M.; Hamainza, Busiku; Thuma, Philip E.
2014-01-01
There is little evidence on the impact of malaria control on the health system, particularly at the facility level. Using retrospective, longitudinal facility-level and patient record data from two hospitals in Zambia, we report a pre-post comparison of hospital admissions and outpatient visits for malaria and estimated costs incurred for malaria admissions before and after malaria control scale-up. The results show a substantial reduction in inpatient admissions and outpatient visits for malaria at both hospitals after the scale-up, and malaria cases accounted for a smaller proportion of total hospital visits over time. Hospital spending on malaria admissions also decreased. In one hospital, malaria accounted for 11% of total hospital spending before large-scale malaria control compared with < 1% after malaria control. The findings demonstrate that facility-level resources are freed up as malaria is controlled, potentially making these resources available for other diseases and conditions. PMID:24218409
Sociodemographic Determinants of Malaria among Under-Five Children in Ghana.
Nyarko, Samuel Harrenson; Cobblah, Anastasia
2014-01-01
Background. Malaria is an entrenched global health challenge particularly in the sub-Saharan African countries. However, in Ghana, little is known about the determinants of malaria prevalence among under-five children. As such, this study sought to examine the sociodemographic factors that determine malaria among under-five children in Ghana. Methods. This paper used secondary data drawn from the 2008 Ghana Demographic and Health Survey. Bivariate analysis and complementary log-log regression models were used to examine the determinants of malaria prevalence among under-five children in Ghana for the study period. Results. The results therefore revealed that region of residence, age of child, and ownership of mosquito net were the key predictors of malaria cases among under-five children in Ghana for the five-year period preceding the survey. Conclusion. It is therefore imperative that special education on prevention of malaria should be intensified by the National Malaria Control Programme in all the regions in order to reduce malaria prevalence particularly among under-five children in Ghana.
Advances in biosensors and optical assays for diagnosis and detection of malaria.
Ragavan, K V; Kumar, Sanni; Swaraj, Shiva; Neethirajan, Suresh
2018-05-15
Vector-borne diseases are a major concern for human health globally, especially malaria in densely populated, less developed, tropical regions of the world. Malaria causes loss of human life and economic harm, and may spread through travelers to new regions. Though there are sufficient therapeutics available for the effective treatment and cure of malaria, it infects millions of people and claims several thousand lives every year. Early diagnosis of the infection can potentially prevent the spread of disease, save lives, and mitigate the financial impact. Conventional analytical techniques are being widely employed for malaria diagnosis, but with low sensitivity and selectivity. Due to the poor-resource settings where malaria outbreaks often occur, most conventional diagnostic methods are not affordable and hence not effective in detection and controlling the spread of the infection. However, biosensors have improved the scope for affordable malaria diagnosis. Advances in biotechnology and nanotechnology have provided novel recognition materials and transducer elements, discoveries which allow the fabrication of affordable biosensor platforms with improved attributes. The present work covers the advancement in biosensors with an introduction to malaria, followed by conventional methods of malaria diagnosis, malaria markers, novel recognition elements and the biosensor principle. Finally, a proactive role and a perspective on developed biosensor platforms are discussed with potential biomedical applications. Copyright © 2018. Published by Elsevier B.V.
2016-01-01
Background In moving toward malaria elimination, one strategy is to implement an active surveillance system for effective case management. Thailand has developed and implemented the electronic Malaria Information System (eMIS) capturing individualized electronic records of suspected or confirmed malaria cases. Objective The main purpose of this study was to determine how well the eMIS improves the quality of Thailand’s malaria surveillance system. In particular, the focus of the study was to evaluate the effectiveness of the eMIS in terms of the system users’ perception and the system outcomes (ie, quality of data) regarding the management of malaria patients. Methods A mixed-methods technique was used with the framework based on system effectiveness attributes: data quality, timeliness, simplicity, acceptability, flexibility, stability, and usefulness. Three methods were utilized: data records review, survey of system users, and in-depth interviews with key stakeholders. From the two highest endemic provinces, paper forms matching electronic records of 4455 noninfected and 784 malaria-infected cases were reviewed. Web-based anonymous questionnaires were distributed to all 129 eMIS data entry staff throughout Thailand, and semistructured interviews were conducted with 12 management-level officers. Results The eMIS is well accepted by system users at both management and operational levels. The data quality has enabled malaria personnel to perform more effective prevention and control activities. There is evidence of practices resulting in inconsistencies and logical errors in data reporting. Critical data elements were mostly completed, except for a few related to certain dates and area classifications. Timeliness in reporting a case to the system was acceptable with a delay of 3-4 days. The evaluation of quantitative and qualitative data confirmed that the eMIS has high levels of simplicity, acceptability, stability, and flexibility. Conclusions Overall, the system implemented has achieved its objective. The results of the study suggested that the eMIS helps improve the quality of Thailand’s malaria surveillance system. As the national malaria surveillance system, the eMIS’s functionalities have provided the malaria staff working at the point of care with close-to-real-time case management data quality, covering case detection, case investigation, drug compliance, and follow-up visits. Such features has led to an improvement in the quality of the malaria control program; the government officials now have quicker access to both individual and aggregated data to promptly react to possible outbreak. The eMIS thus plays one of the key roles in moving toward the national goal of malaria elimination by the next decade. PMID:27227156
Chanda, Emmanuel; Ameneshewa, Birkinesh; Angula, Hans A; Iitula, Iitula; Uusiku, Pentrina; Trune, Desta; Islam, Quazi M; Govere, John M
2015-08-05
Namibia has made tremendous gains in malaria control and the epidemiological trend of the disease has changed significantly over the past years. In 2010, the country reoriented from the objective of reducing disease morbidity and mortality to the goal of achieving malaria elimination by 2020. This manuscript outlines the processes undertaken in strengthening tactical planning and operational frameworks for vector control to facilitate expeditious malaria elimination in Namibia. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Namibia. A methodical assessment of published and unpublished documents was conducted via a literature search of online electronic databases, Google Scholar, PubMed and WHO, using a combination of search terms. To attain the goal of elimination in Namibia, systems are being strengthened to identify and clear all infections, and significantly reduce human-mosquito contact. Particularly, consolidating vector control for reducing transmission at the identified malaria foci will be critical for accelerated malaria elimination. Thus, guarding against potential challenges and the need for evidence-based and sustainable vector control instigated the strengthening of strategic frameworks by: adopting the integrated vector management (IVM) strategy; initiating implementation of the global plan for insecticide resistance management (GPIRM); intensifying malaria vector surveillance; improving data collection and reporting systems on DDT; updating the indoor residual spraying (IRS) data collection and reporting tool; and, improving geographical reconnaissance using geographical information system-based satellite imagery. Universal coverage with IRS and long-lasting insecticidal nets, supplemented by larval source management in the context of IVM and guided by vector surveillance coupled with rational operationalization of the GPIRM, will enable expeditious attainment of elimination in Namibia. However, national capacity to plan, implement, monitor and evaluate interventions will require adequate and sustained support for technical, physical infrastructure, and human and financial resources for entomology and vector control operations.
The role of ENSO in understanding changes in Colombia's annual malaria burden by region, 1960–2006
Mantilla, Gilma; Oliveros, Hugo; Barnston, Anthony G
2009-01-01
Background Malaria remains a serious problem in Colombia. The number of malaria cases is governed by multiple climatic and non-climatic factors. Malaria control policies, and climate controls such as rainfall and temperature variations associated with the El Niño/Southern Oscillation (ENSO), have been associated with malaria case numbers. Using historical climate data and annual malaria case number data from 1960 to 2006, statistical models are developed to isolate the effects of climate in each of Colombia's five contrasting geographical regions. Methods Because year to year climate variability associated with ENSO causes interannual variability in malaria case numbers, while changes in population and institutional control policy result in more gradual trends, the chosen predictors in the models are annual indices of the ENSO state (sea surface temperature [SST] in the tropical Pacific Ocean) and time reference indices keyed to two major malaria trends during the study period. Two models were used: a Poisson and a Negative Binomial regression model. Two ENSO indices, two time reference indices, and one dummy variable are chosen as candidate predictors. The analysis was conducted using the five geographical regions to match the similar aggregation used by the National Institute of Health for its official reports. Results The Negative Binomial regression model is found better suited to the malaria cases in Colombia. Both the trend variables and the ENSO measures are significant predictors of malaria case numbers in Colombia as a whole, and in two of the five regions. A one degree Celsius change in SST (indicating a weak to moderate ENSO event) is seen to translate to an approximate 20% increase in malaria cases, holding other variables constant. Conclusion Regional differentiation in the role of ENSO in understanding changes in Colombia's annual malaria burden during 1960–2006 was found, constituting a new approach to use ENSO as a significant predictor of the malaria cases in Colombia. These results naturally point to additional needed work: (1) refining the regional and seasonal dependence of climate on the ENSO state, and of malaria on the climate variables; (2) incorporating ENSO-related climate variability into dynamic malaria models. PMID:19133152
Bhattarai, Achuyt; Ali, Abdullah S; Kachur, S. Patrick; Mårtensson, Andreas; Abbas, Ali K; Khatib, Rashid; Al-mafazy, Abdul-wahiyd; Ramsan, Mahdi; Rotllant, Guida; Gerstenmaier, Jan F; Molteni, Fabrizio; Abdulla, Salim; Montgomery, Scott M; Kaneko, Akira; Björkman, Anders
2007-01-01
Background The Roll Back Malaria strategy recommends a combination of interventions for malaria control. Zanzibar implemented artemisinin-based combination therapy (ACT) for uncomplicated malaria in late 2003 and long-lasting insecticidal nets (LLINs) from early 2006. ACT is provided free of charge to all malaria patients, while LLINs are distributed free to children under age 5 y (“under five”) and pregnant women. We investigated temporal trends in Plasmodium falciparum prevalence and malaria-related health parameters following the implementation of these two malaria control interventions in Zanzibar. Methods and Findings Cross-sectional clinical and parasitological surveys in children under the age of 14 y were conducted in North A District in May 2003, 2005, and 2006. Survey data were analyzed in a logistic regression model and adjusted for complex sampling design and potential confounders. Records from all 13 public health facilities in North A District were analyzed for malaria-related outpatient visits and admissions. Mortality and demographic data were obtained from District Commissioner's Office. P. falciparum prevalence decreased in children under five between 2003 and 2006; using 2003 as the reference year, odds ratios (ORs) and 95% confidence intervals (CIs) were, for 2005, 0.55 (0.28–1.08), and for 2006, 0.03 (0.00–0.27); p for trend < 0.001. Between 2002 and 2005 crude under-five, infant (under age 1 y), and child (aged 1–4 y) mortality decreased by 52%, 33%, and 71%, respectively. Similarly, malaria-related admissions, blood transfusions, and malaria-attributed mortality decreased significantly by 77%, 67% and 75%, respectively, between 2002 and 2005 in children under five. Climatic conditions favorable for malaria transmission persisted throughout the observational period. Conclusions Following deployment of ACT in Zanzibar 2003, malaria-associated morbidity and mortality decreased dramatically within two years. Additional distribution of LLINs in early 2006 resulted in a 10-fold reduction of malaria parasite prevalence. The results indicate that the Millennium Development Goals of reducing mortality in children under five and alleviating the burden of malaria are achievable in tropical Africa with high coverage of combined malaria control interventions. PMID:17988171
The use of a GIS-based malaria information system for malaria research and control in South Africa.
Martin, Carrin; Curtis, Bronwyn; Fraser, Colleen; Sharp, Brian
2002-12-01
The paper aims to outline the innovative development and application of a Geographical Information System based Malaria Information System for malaria research and control in South Africa. This system is a product of collaboration between the Malaria Control Programmes and the Malaria Research Programme of the Medical Research Council of South Africa. The ability of such a system to process data timeously into a usable format is discussed, as well as its relevance to malaria research, appropriate malaria control measures, tourism, and social and economic development.
Control of malaria: a successful experience from Viet Nam.
Hung, Le Q.; Vries, Peter J. de; Giao, Phan T.; Nam, Nguyen V.; Binh, Tran Q.; Chong, M. T.; Quoc, N. T. T. A.; Thanh, T. N.; Hung, L. N.; Kager, P. A.
2002-01-01
OBJECTIVE: To follow malaria prospectively in an ethnic minority commune in the south of Viet Nam with high malaria transmission and seasonal fluctuation, during malaria control interventions using insecticide-treated bednets (ITBNs) and early diagnosis and treatment (EDT) of symptomatic patients. METHODS: From 1994 onwards the following interventions were used: distribution of ITBNs to all households with biannual reimpregnation; construction of a health post and appointment of staff trained in microscopic diagnosis and treatment of malaria; regular supply of materials and drugs; annual cross-sectional malaria surveys with treatment of all parasitaemic subjects, and a programme of community involvement and health education. Surveys were held yearly at the end of the rainy season. During the surveys, demographic data were updated. Diagnosis and treatment of malaria were free of charge. Plasmodium falciparum infection was treated with artesunate and P. vivax infection with chloroquine plus primaquine. FINDINGS: The baseline survey in 1994 recorded 716 inhabitants. Of the children under 2 years of age, 37% were parasitaemic; 56% of children aged 2-10 years, and 35% of the remaining population were parasitaemic. P. falciparum accounted for 73-79% of these infections. The respective splenomegaly rates for the above-mentioned age groups were 20%, 56%, and 32%. In 1999, the proportion of parasitaemic subjects was 4%, 7% and 1%, respectively, of which P.falciparum contributed 56%. The splenomegaly rate was 0%, 5% and 2%, respectively. CONCLUSIONS: A combination of ITBNs and EDT, provided free of charge, complemented by annual diagnosis and treatment during malaria surveys and community involvement with health education successfully brought malaria under control. This approach could be applied to other regions in the south of Viet Nam and provides a sound basis for further studies in other areas with different epidemiological patterns of malaria. PMID:12219158
2011-01-01
Background Recently, there has been mounting interest in scaling-up vector control against malaria in Africa. It needs to be determined if indoor residual spraying (IRS with DDT) will provide significant marginal protection against malaria over current best practice of long-lasting insecticidal nets (LLINs) and prompt treatment in a controlled trial, given that DDT is currently the most persistent insecticide for IRS. Methods A 2 armed cluster-randomised controlled trial will be conducted to assess whether DDT IRS and LLINs combined provide better protection against clinical malaria in children than LLINs alone in rural Gambia. Each cluster will be a village, or a group of small adjacent villages; all clusters will receive LLINs and half will receive IRS in addition. Study children, aged 6 months to 13 years, will be enrolled from all clusters and followed for clinical malaria using passive case detection to estimate malaria incidence for 2 malaria transmission seasons in 2010 and 2011. This will be the primary endpoint. Exposure to malaria parasites will be assessed using light and exit traps followed by detection of Anopheles gambiae species and sporozoite infection. Study children will be surveyed at the end of each transmission season to estimate the prevalence of Plasmodium falciparum infection and the prevalence of anaemia. Discussion Practical issues concerning intervention implementation, as well as the potential benefits and risks of the study, are discussed. Trial Registration ISRCTN01738840 - Spraying And Nets Towards malaria Elimination (SANTE) PMID:21663656
Hongvivatana, T
1986-09-01
Human behavior in malaria is often narrowly referred to behavior of the target populations in transmission and control of malaria. In this presentation it was discussed that such view is too narrow. A broader framework incorporating illness behavior and human behavior in malaria control bureaucracies is needed for the success of national malaria control programme. Literature under the three broad categories of human behavior in malaria is reviewed to justify future directions in human behavior research and their significance for successful malaria control.
2014-01-01
The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated patients. MDR malaria risk situations reflect consequences of the national policy and strategy as this influences the ongoing national-level or subnational-level implementation of malaria control strategies in endemic GMS countries. Based on our experience along with current literature review, the design of ecotope-based entomological surveillance (EES) and molecular xenomonitoring of MDR falciparum and vivax malaria parasites in Anopheles vectors is proposed to monitor infection pockets in transmission control areas of forest and forest fringe-related malaria, so as to bridge malaria landscape ecology (ecotope and ecotone) and epidemiology. Malaria ecotope and ecotone are confined to a malaria transmission area geographically associated with the infestation of Anopheles vectors and particular environments to which human activities are related. This enables the EES to encompass mosquito collection and identification, salivary gland DNA extraction, Plasmodium- and species-specific identification, molecular marker-based PCR detection methods for putative drug resistance genes, and data management. The EES establishes strong evidence of Anopheles vectors carrying MDR P. vivax in infection pockets epidemiologically linked with other data obtained during which a course of follow-up treatment of the notified P. vivax patients receiving the first-line treatment was conducted. For regional and global perspectives, the EES would augment the epidemiological surveillance and monitoring of MDR falciparum and vivax malaria parasites in hotspots or suspected areas established in most endemic GMS countries implementing the National Malaria Control Programs, in addition to what is guided by the World Health Organization. PMID:25349605
Malaria Risk Mapping for Control in the Republic of Sudan
Noor, Abdisalan M.; ElMardi, Khalid A.; Abdelgader, Tarig M.; Patil, Anand P.; Amine, Ahmed A. A.; Bakhiet, Sahar; Mukhtar, Maowia M.; Snow, Robert W.
2012-01-01
Evidence shows that malaria risk maps are rarely tailored to address national control program ambitions. Here, we generate a malaria risk map adapted for malaria control in Sudan. Community Plasmodium falciparum parasite rate (PfPR) data from 2000 to 2010 were assembled and were standardized to 2–10 years of age (PfPR2–10). Space-time Bayesian geostatistical methods were used to generate a map of malaria risk for 2010. Surfaces of aridity, urbanization, irrigation schemes, and refugee camps were combined with the PfPR2–10 map to tailor the epidemiological stratification for appropriate intervention design. In 2010, a majority of the geographical area of the Sudan had risk of < 1% PfPR2–10. Areas of meso- and hyperendemic risk were located in the south. About 80% of Sudan's population in 2011 was in the areas in the desert, urban centers, or where risk was < 1% PfPR2–10. Aggregated data suggest reducing risks in some high transmission areas since the 1960s. PMID:23033400
Comparison of Texture Features Used for Classification of Life Stages of Malaria Parasite.
Bairagi, Vinayak K; Charpe, Kshipra C
2016-01-01
Malaria is a vector borne disease widely occurring at equatorial region. Even after decades of campaigning of malaria control, still today it is high mortality causing disease due to improper and late diagnosis. To prevent number of people getting affected by malaria, the diagnosis should be in early stage and accurate. This paper presents an automatic method for diagnosis of malaria parasite in the blood images. Image processing techniques are used for diagnosis of malaria parasite and to detect their stages. The diagnosis of parasite stages is done using features like statistical features and textural features of malaria parasite in blood images. This paper gives a comparison of the textural based features individually used and used in group together. The comparison is made by considering the accuracy, sensitivity, and specificity of the features for the same images in database.
A Field Trial to Assess a Blood-Stage Malaria Vaccine
Thera, Mahamadou A.; Doumbo, Ogobara K.; Coulibaly, Drissa; Laurens, Matthew B.; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Thompson, Darby; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.
2011-01-01
BACKGROUND Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02A, a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P = 0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P = 0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. PMID:21916638
Alemu, Kassahun; Worku, Alemayehu; Berhane, Yemane; Kumie, Abera
2014-01-01
Background Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs. Methods An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages. Results Males (AOR = 3.11, 95%CI: 2.28, 4.23), and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58) were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93), plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52) and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47), were found predictors for malaria in high altitude villages. Conclusion Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas. PMID:24748159
Modelling the effect of bednet coverage on malaria transmission in South Sudan.
Mukhtar, Abdulaziz Y A; Munyakazi, Justin B; Ouifki, Rachid; Clark, Allan E
2018-01-01
A campaign for malaria control, using Long Lasting Insecticide Nets (LLINs) was launched in South Sudan in 2009. The success of such a campaign often depends upon adequate available resources and reliable surveillance data which help officials understand existing infections. An optimal allocation of resources for malaria control at a sub-national scale is therefore paramount to the success of efforts to reduce malaria prevalence. In this paper, we extend an existing SIR mathematical model to capture the effect of LLINs on malaria transmission. Available data on malaria is utilized to determine realistic parameter values of this model using a Bayesian approach via Markov Chain Monte Carlo (MCMC) methods. Then, we explore the parasite prevalence on a continued rollout of LLINs in three different settings in order to create a sub-national projection of malaria. Further, we calculate the model's basic reproductive number and study its sensitivity to LLINs' coverage and its efficacy. From the numerical simulation results, we notice a basic reproduction number, [Formula: see text], confirming a substantial increase of incidence cases if no form of intervention takes place in the community. This work indicates that an effective use of LLINs may reduce [Formula: see text] and hence malaria transmission. We hope that this study will provide a basis for recommending a scaling-up of the entry point of LLINs' distribution that targets households in areas at risk of malaria.
Peeters Grietens, Koen; Gryseels, Charlotte; Dierickx, Susan; Bannister-Tyrrell, Melanie; Trienekens, Suzan; Uk, Sambunny; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Gerrets, René; Hoibak, Sarah; Muela Ribera, Joan; Hausmann-Muela, Susanna; Tho, Sochantha; Durnez, Lies; Sluydts, Vincent; d’Alessandro, Umberto; Coosemans, Marc; Erhart, Annette
2015-01-01
Human population movements currently challenge malaria elimination in low transmission foci in the Greater Mekong Subregion. Using a mixed-methods design, combining ethnography (n = 410 interviews), malariometric data (n = 4996) and population surveys (n = 824 indigenous populations; n = 704 Khmer migrants) malaria vulnerability among different types of mobile populations was researched in the remote province of Ratanakiri, Cambodia. Different structural types of human mobility were identified, showing differential risk and vulnerability. Among local indigenous populations, access to malaria testing and treatment through the VMW-system and LLIN coverage was high but control strategies failed to account for forest farmers’ prolonged stays at forest farms/fields (61% during rainy season), increasing their exposure (p = 0.002). The Khmer migrants, with low acquired immunity, active on plantations and mines, represented a fundamentally different group not reached by LLIN-distribution campaigns since they were largely unregistered (79%) and unaware of the local VMW-system (95%) due to poor social integration. Khmer migrants therefore require control strategies including active detection, registration and immediate access to malaria prevention and control tools from which they are currently excluded. In conclusion, different types of mobility require different malaria elimination strategies. Targeting mobility without an in-depth understanding of malaria risk in each group challenges further progress towards elimination. PMID:26593245
Current Status of Malaria and Potential for Control
Phillips, R. S.
2001-01-01
Malaria remains one of the world's worst health problems with 1.5 to 2.7 million deaths annually; these deaths are primarily among children under 5 years of age and pregnant women in sub-Saharan Africa. Of significance, more people are dying from malaria today than 30 years ago. This review considers the factors which have contributed to this gloomy picture, including those which relate to the vector, the female anopheline mosquito; to human activity such as creating new mosquito breeding sites, the impact of increased numbers of people, and how their migratory behavior can increase the incidence and spread of malaria; and the problems of drug resistance by the parasites to almost all currently available antimalarial drugs. In a selective manner, this review describes what is being done to ameliorate this situation both in terms of applying existing methods in a useful or even crucial role in control and prevention and in terms of new additions to the antimalarial armory that are being developed. Topics covered include biological control of mosquitoes, the use of insecticide-impregnated bed nets, transgenic mosquitoes manipulated for resistance to malaria parasites, old and new antimalarial drugs, drug resistance and how best to maintain the useful life of antimalarials, immunity to malaria and the search for antimalarial vaccines, and the malaria genome project and the potential benefits to accrue from it. PMID:11148010
Kishore, J; Gupta, V K; Singh, S V; Garg, S; Kaur, Ravneet; Ingle, G K
2008-09-01
Malaria affects millions of people in India despite decades of efforts to control it. It has acquired greater importance in last two decades due to emergence of vector resistance, poor quality of care and low utilization of services. The study was conducted to improve the management of malaria by IEC and training activities in slum areas of Delhi. The baseline and post intervention data on knowledge, attitude, behavior and practices (KABP) regarding malaria was collected from 601 and 593 subjects respectively from two zones of Municipal Corporation of Delhi (MCD). At the same time, knowledge and skills regarding management of malaria were assessed among 15 health workers working in these two zones of MCD. An intervention package in the form of health education material for the community and training modules for the workers were designed and implemented. Post intervention data were collected. The knowledge about cause of malaria, season of malaria and breeding places of mosquito increased among community members after the intervention, which was found to be statistically significant. Similarly, more people were aware about the methods of prevention of mosquito breeding after the intervention. Methods like mosquito coil (post-64.92% vs pre-55.41%) and bet nets (post-24.96% vs pre-14.47%) were used by more people in post intervention phase. The Interval between onset of symptoms and seeking treatment decreased after the intervention from 1.66 days to 1.37 days. Among the workers, knowledge and skills regarding malaria management improved after the intervention. More blood slides were made, side effects of the treatment were explained to the patients and better compliance to treatment was observed in post intervention phase. IEC activities using attractive pamphlets to the community and on-job training of workers improves management of malaria and should be used more frequently more so in the slum areas for the success of the National Anti-Malaria Program.
Snow, Robert W; Okiro, Emelda A; Gething, Peter W; Atun, Rifat; Hay, Simon I
2010-01-01
Summary Background Financing for malaria control has increased as part of international commitments to achieve the Millennium Development Goals (MDGs). We aimed to identify the unmet financial needs that would be biologically and economically equitable and would increase the chances of reaching worldwide malaria-control ambitions. Methods Populations at risk of stable Plasmodium falciparum or Plasmodium vivax transmission were calculated for 2007 and 2009 for 93 malaria-endemic countries to measure biological need. National per-person gross domestic product (GDP) was used to define economic need. An analysis of external donor assistance for malaria control was done for the period 2002–09 to compute overall and annualised per-person at-risk-funding commitments. Annualised malaria donor assistance was compared with independent predictions of funding needed to reach international targets of 80% coverage of best practices in case-management and effective disease prevention. Countries were ranked in relation to biological, economic, and unmet needs to examine equity and adequacy of support by 2010. Findings International financing for malaria control has increased by 166% (from $0·73 billion to $1·94 billion) since 2007 and is broadly consistent with biological needs. African countries have become major recipients of external assistance; however, countries where P vivax continues to pose threats to control ambitions are not as well funded. 21 countries have reached adequate assistance to provide a comprehensive suite of interventions by 2009, including 12 countries in Africa. However, this assistance was inadequate for 50 countries representing 61% of the worldwide population at risk of malaria—including ten countries in Africa and five in Asia that coincidentally are some of the poorest countries. Approval of donor funding for malaria control does not correlate with GDP. Interpretation Funding for malaria control worldwide is 60% lower than the US$4·9 billion needed for comprehensive control in 2010; this includes funding shortfalls for a wide range of countries with different numbers of people at risk and different levels of domestic income. More efficient targeting of financial resources against biological need and national income should create a more equitable investment portfolio that with increased commitments will guarantee sustained financing of control in countries most at risk and least able to support themselves. Funding Wellcome Trust. PMID:20889199
Early malaria resurgence in pre-elimination areas in Kokap Subdistrict, Kulon Progo, Indonesia
2014-01-01
Background Indonesia is among those countries committed to malaria eradication, with a continuously decreasing incidence of malaria. However, at district level the situation is different. This study presents a case of malaria resurgence Kokap Subdistrict of the Kulon Progo District in Yogyakarta Province, Java after five years of low endemicity. This study also aims to describe the community perceptions and health services delivery situation that contribute to this case. Methods All malaria cases (2007–2011) in Kulon Progo District were stratified to annual parasite incidence (API). Two-hundred and twenty-six cases during an outbreak (May 2011 to April 2012) were geocoded by household addresses using a geographic information system (GIS) technique and clusters were identified by SaTScan software analysis (Arc GIS 10.1). Purposive random sampling was conducted on respondents living inside the clusters to identify community perceptions and behaviour related to malaria. Interviews were conducted with malaria health officers to understand the challenges of malaria surveillance and control. Results After experiencing three consecutive years with API less than 1 per thousand, malaria in Kokap subdistrict increased almost ten times higher than API in the district level and five times higher than national API. Malaria cases were found in all five villages in 2012. One primary and two secondary malaria clusters in Hargotirto and Kalirejo villages were identified during the 2011–2012 outbreak. Most of the respondents were positively aware with malaria signs and activities of health workers to prevent malaria, although some social economic activities could not be hindered. Return transmigrants or migrant workers entering to their villages, reduced numbers of village malaria workers and a surge in malaria cases in the neighbouring district contributed to the resurgence. Conclusion Community perception, awareness and participation could constitute a solid foundation for malaria elimination in Kokap. However, decreasing number of village malaria workers and ineffective communication between primary health centres (PHCs) within boundary areas with similar malaria problems needs attention. Decentralization policy was allegedly the reason for the less integrated malaria control between districts, especially in the cross border areas. Malaria resurgence needs attention particularly when it occurs in an area that is entering the elimination phase. PMID:24684702
Yeka, Adoke; Gasasira, Anne; Mpimbaza, Arthur; Achan, Jane; Nankabirwa, Joaniter; Nsobya, Sam; Staedke, Sarah G.; Donnelly, Martin J.; Wabwire-Mangen, Fred; Talisuna, Ambrose; Dorsey, Grant; Kamya, Moses R.; Rosenthal, Philip J.
2011-01-01
Malaria remains one of the leading health problems of the developing world, and Uganda bears a particularly large burden from the disease. Our understanding is limited by a lack of reliable data, but it is clear that the prevalence of malaria infection, incidence of disease, and mortality from severe malaria all remain very high. Uganda has made progress in implementing key malaria control measures, in particular distribution of insecticide impregnated bednets, indoor residual spraying of insecticides, utilization of artemisinin-based combination therapy to treat uncomplicated malaria, and provision of intermittent preventive therapy for pregnant women. However, despite enthusiasm regarding the potential for the elimination of malaria in other areas, there is no convincing evidence that the burden of malaria has decreased in Uganda in recent years. Major challenges to malaria control in Uganda include very high malaria transmission intensity, inadequate health care resources, a weak health system, inadequate understanding of malaria epidemiology and the impact of control interventions, increasing resistance of parasites to drugs and of mosquitoes to insecticides, inappropriate case management, inadequate utilization of drugs to prevent malaria, and inadequate epidemic preparedness and response. Despite these challenges, prospects for the control of malaria have improved, and with attention to underlying challenges, progress toward the control of malaria in Uganda can be expected. PMID:21420377
Cost Effectiveness of Malaria Interventions from Preelimination through Elimination: a Study in Iran
Rezaei-Hemami, Mohsen; Akbari-Sari, Ali; Raiesi, Ahmad; Vatandoost, Hassan; Majdzadeh, Reza
2014-01-01
Background Malaria still is considered as a public health problem in Iran. The aim of the National Malaria Control Department is to reach the elimination by 2024. By decreasing the number of malaria cases in preelimination phase the cost effectiveness of malaria interventions decreases considerably. This study estimated the cost effectiveness of various strategies to combat malaria in preelimination and elimination phases in Iran. Methods: running costs of the interventions at each level of intervention was estimated by using evidence and expert opinions. The effect of each intervention was estimated using the documentary evidence available and expert opinions. Using a point estimate and distribution of each variable the sensitivity was evaluated with the Monte Carlo method. Results: The most cost-effective interventions were insecticide treated net (ITN), larviciding, surveillance for diagnosis and treatment of patients less than 24 hours, and indoor residual spraying (IRS) respectively, No related evidence found for the effectiveness of the border facilities. Conclusion: This study showed that interventions in the elimination phase of malaria have low cost effectiveness in Iran like many other countries. However ITN is the most cost effective intervention among the available interventions. PMID:25629064
Quinine (Cinchona) and the incurable malaria: India c. 1900-1930s.
Muraleedharan, V R
2000-06-01
The early decades of this century witnessed significant developments in the approaches to control of malaria in British India. These included both large-scale preventive measures and curative treatment methods (often referred to as "cinchona" or "quinine" policy). This paper identifies a number of factors that constrained the colonial government's capacity to control malaria through effective cinchona policy. The ideal of achieving "self-sufficiency" and having an efficient form of treatment and distribution within the reach of the masses in India (as originally intended in late 1850s) was far from being achieved. Both government's policy and medical profession seemed to have contributed equally to this failure.
Alves, Joana; Roque, Ana Luísa; Cravo, Pedro; Valdez, Tomás; Jelinek, Tomas; do Rosário, Virgílio E; Arez, Ana Paula
2006-01-01
Background Malaria has come near eradication at archipelago of Cabo Verde in 1970. Infections are now only observed in Santiago, where outbreaks occur. In these islands, malaria is considered by the international community as being of limited risk and, therefore, no prophylaxis is recommended. Since the understanding of factors that determine malaria outbreaks are crucial for controlling the disease, the present study aimed to investigate if the malaria infections observed in Santiago Island are maintained in isolated foci and in asymptomatic individuals. Methods The occurrence of asymptomatic carriers in villages with history of malaria as well as the level of exposure of these populations were investigated using PCR and serological analyses. Results Results indicate that malaria is maintained as asymptomatic and sub-patent infections and that the majority of the circulating parasite populations harbour chloroquine-resistant mutations. Conclusion These observations highlight the alarming prospect of malaria to become a serious public health problem and underscore the need for a tighter surveillance. PMID:16630349
2012-01-01
Background Ensuring the quality of malaria medicines is crucial in working toward malaria control and eventual elimination. Unlike other validated tests that can assess all critical quality attributes, which is the standard for determining the quality of medicines, basic tests are significantly less expensive, faster, and require less skilled labour; yet, these tests provide reproducible data and information on several critical quality attributes, such as identity, purity, content, and disintegration. Visual and physical inspection also provides valuable information about the manufacturing and the labelling of medicines, and in many cases this inspection is sufficient to detect counterfeit medicines. The Promoting the Quality of Medicines (PQM) programme has provided technical assistance to Amazon Malaria Initiative (AMI) countries to implement the use of basic tests as a key screening mechanism to assess the quality of malaria medicines available to patients in decentralized regions. Methods Trained personnel from the National Malaria Control Programmes (NMCPs), often in collaboration with country’s Official Medicine Control Laboratory (OMCL), developed country- specific protocols that encompassed sampling methods, sample analysis, and data reporting. Sampling sites were selected based on malaria burden, accessibility, and geographical location. Convenience sampling was performed and countries were recommended to store the sampled medicines under conditions that did not compromise their quality. Basic analytical tests, such as disintegration and thin layer chromatography (TLC), were performed utilizing a portable mini-laboratory. Results Results were originally presented at regional meetings in a non-standardized format that lacked relevant medicines information. However, since 2008 information has been submitted utilizing a template specifically developed by PQM for that purpose. From 2005 to 2010, the quality of 1,663 malaria medicines from seven AMI countries was evaluated, mostly collected from the public sector, 1,445/1,663 (86.9%). Results indicate that 193/1,663 (11.6%) were found not to meet quality specifications. Most failures were reported during visual and physical inspection, 142/1663 (8.5%), and most of these were due to expired medicines, 118/142 (83.1%). Samples failing TLC accounted for 27/1,663 (1.6%) and those failing disintegration accounted for 24/1,663 (1.4%). Medicines quality failures decreased significantly during the last two years. Conclusions Basic tests revealed that the quality of medicines in the public sector improved over the years, since the implementation of this type of quality monitoring programme in 2005. However, the lack of consistent confirmatory tests in the quality control (QC) laboratory, utilizing methods that can also evaluate additional quality attributes, could still mask quality issues. In the future, AMI countries should improve coordination with their health authorities and their QC lab consistently, to provide a more complete picture of malaria medicines quality and support the implementation of corrective actions. Facilities in the private and informal sectors also should be included when these sectors constitute an important source of medicines used by malaria patients. PMID:22704680
Malvisi, Lucio; Troisi, Catherine L; Selwyn, Beatrice J
2018-06-23
The risk of malaria infection displays spatial and temporal variability that is likely due to interaction between the physical environment and the human population. In this study, we performed a spatial analysis at three different time points, corresponding to three cross-sectional surveys conducted as part of an insecticide-treated bed nets efficacy study, to reveal patterns of malaria incidence distribution in an area of Northern Guatemala characterized by low malaria endemicity. A thorough understanding of the spatial and temporal patterns of malaria distribution is essential for targeted malaria control programs. Two methods, the local Moran's I and the Getis-Ord G * (d), were used for the analysis, providing two different statistical approaches and allowing for a comparison of results. A distance band of 3.5 km was considered to be the most appropriate distance for the analysis of data based on epidemiological and entomological factors. Incidence rates were higher at the first cross-sectional survey conducted prior to the intervention compared to the following two surveys. Clusters or hot spots of malaria incidence exhibited high spatial and temporal variations. Findings from the two statistics were similar, though the G * (d) detected cold spots using a higher distance band (5.5 km). The high spatial and temporal variability in the distribution of clusters of high malaria incidence seems to be consistent with an area of unstable malaria transmission. In such a context, a strong surveillance system and the use of spatial analysis may be crucial for targeted malaria control activities.
Song, Yongze; Ge, Yong; Wang, Jinfeng; Ren, Zhoupeng; Liao, Yilan; Peng, Junhuan
2016-07-07
Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated nonlinear relationships for prediction between malaria incidence and potential variables have not been well constructed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria scenarios in northern China. Nonlinear relationships between malaria incidence and predictor variables were constructed using a genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while elevation, water density index, and gross domestic product are held at their present-day values. Average malaria incidence was 0.107 ‰ per annum in northern China, with incidence characteristics in significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for training data (R(2) = 0.825) and 17.102 % for test data (R(2) = 0.532). The fitness of GP results are significantly improved compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped. The GP method increases the precision of predicting the spatial distribution of malaria incidence. With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the high-risk areas.
Global investment targets for malaria control and elimination between 2016 and 2030
Patouillard, Edith; Griffin, Jamie; Bhatt, Samir; Ghani, Azra; Cibulskis, Richard
2017-01-01
Background Access to malaria control interventions falls short of universal health coverage. The Global Technical Strategy for malaria targets at least 90% reduction in case incidence and mortality rates, and elimination in 35 countries by 2030. The potential to reach these targets will be determined in part by investments in malaria. This study estimates the financing required for malaria control and elimination over the 2016–2030 period. Methods A mathematical transmission model was used to explore the impact of increasing intervention coverage on burden and costs. The cost analysis took a public provider perspective covering all 97 malaria endemic countries and territories in 2015. All control interventions currently recommended by the WHO were considered. Cost data were sourced from procurement databases, the peer-reviewed literature, national malaria strategic plans, the WHO-CHOICE project and key informant interviews. Results Annual investments of $6.4 billion (95% uncertainty interval (UI $4.5–$9.0 billion)) by 2020, $7.7 billion (95% UI $5.4–$10.9 billion) by 2025 and $8.7 billion (95% UI $6.0–$12.3 billion) by 2030 will be required to reach the targets set in the Global Technical Strategy. These are equivalent to annual investment per person at risk of malaria of US$3.90 by 2020, US$4.30 by 2025 and US$4.40 by 2030, compared with US$2.30 if interventions were sustained at current coverage levels. The 20 countries with the highest burden in 2015 will require 88% of the total investment. Conclusions Given the challenges in increasing domestic and international funding, the efficient use of currently available resources should be a priority. PMID:29242750
Ding, Guoyong; Gao, Lu; Li, Xuewen; Zhou, Maigeng; Liu, Qiyong; Ren, Hongyan; Jiang, Baofa
2014-01-01
Background Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China. Methods A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study. Results A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR) = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively. Conclusion Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters. PMID:24830808
Nonvignon, Justice; Aryeetey, Genevieve Cecilia; Malm, Keziah L; Agyemang, Samuel Agyei; Aubyn, Vivian N A; Peprah, Nana Yaw; Bart-Plange, Constance N; Aikins, Moses
2016-09-06
Despite the significant gains made globally in reducing the burden of malaria, the disease remains a major public health challenge, especially in sub-Saharan Africa (SSA) including Ghana. There is a significant gap in financing malaria control globally. The private sector could become a significant source of financing malaria control. To get the private sector to appreciate the need to invest in malaria control, it is important to provide evidence of the economic burden of malaria on businesses. The objective of this study, therefore, was to estimate the economic burden on malaria on businesses in Ghana, so as to stimulate the sector's investment in malaria control. Data covering 2012-2014 were collected from 62 businesses sampled from Greater Accra, Ashanti and Western Regions of Ghana, which have the highest concentration of businesses in the country. Data on the cost of businesses' spending on treatment and prevention of malaria in staff and their dependants as well as staff absenteeism due to malaria and expenditure on other health-related activities were collected. Views of business leaders on the effect of malaria on their businesses were also compiled. The analysis was extrapolated to cover 5828 businesses across the country. The results show that businesses in Ghana lost about US$6.58 million to malaria in 2014, 90 % of which were direct costs. A total of 3913 workdays were lost due to malaria in firms in the study sample during the period 2012-2014. Businesses in the study sample spent an average of 0.5 % of the annual corporate returns on treatment of malaria in employees and their dependants, 0.3 % on malaria prevention, and 0.5 % on other health-related corporate social responsibilities. Again business leaders affirmed that malaria affects their businesses' efficiency, employee attendance and productivity and expenses. Finally, about 93 % of business leaders expressed the need private sector investment in malaria control. The economic burden of malaria on businesses in Ghana cannot be underestimated. This, together with business leaders' acknowledgement that it is important for private sector investment in malaria control, provides motivation for engagement of the private sector in financing malaria control activities.
The comparison of detection methods of asymptomatic malaria in hypoendemic areas
NASA Astrophysics Data System (ADS)
Siahaan, L.; Panggabean, M.; Panggabean, Y. C.
2018-03-01
Malaria is still a problem that disrupts public health in North Sumatera. Late diagnosis will increase the chances of increased morbidity and mortality due to malaria. The early detection of asymptomatic malaria is one of the best efforts to reduce the transmission of the disease. Early detection is certainly must be done on suspect patients who have no malaria complaints. Passive Case Detection (PCD) methods seem hard to find asymptomatic malaria. This study was conducted to compare ACD (Active Case Detection) and PCD methods in asymptomatic malaria detection in the hypoendemic areas of malaria. ACD method is done by going to the sample based on secondary data. Meanwhile, PCD is done on samples that come to health services. Samples were taken randomly and diagnosis was confirmed by microscopic examination with 3% Giemsa staining, as gold standard of malaria diagnostics. There was a significant difference between ACD and PCD detection methods (p = 0.034), where ACD method was seen superior in detecting malaria patients in all categories, such as: clinical malaria (65.2%), asymptomatic malaria (65.1%) and submicroscopic malaria (58.5%). ACD detection methods are superior in detecting malaria sufferers, especially asymptomatic malaria sufferers.
Sustainable malaria control: transdisciplinary approaches for translational applications
2012-01-01
With the adoption of the Global Malaria Action Plan, several countries are moving from malaria control towards elimination and eradication. However, the sustainability of some of the approaches taken may be questionable. Here, an overview of malaria control and elimination strategies is provided and the sustainability of each in context of vector- and parasite control is assessed. From this, it can be concluded that transdisciplinary approaches are essential for sustained malaria control and elimination in malaria-endemic communities. PMID:23268712
Sun, Xing-sheng; Li, Li; Zhang, Kan-kan
2015-12-01
To understand the current status of malaria control knowledge awareness of primary and secondary school students and its influencing factors in Yunlong District, Xuzhou City, so as to provide the evidence for improving the malaria prevention work. A total of 800 students from 4 urban and rural primary and secondary schools were randomly selected and investigated with questionnaires. The total awareness rate of malaria control knowledge was 61.27%, and the awareness rates of symptoms of malaria and malaria prevention were only 38.99% and 57.59% respectively. The main approach of obtaining the malaria control knowledge was media (51.52%). The univariate analysis showed that sex, area and different education levels affected the awareness rates of malaria control knowledge (P < 0.05), and the Logistic analysis showed that the awareness rate of malaria control knowledge of country students was lower than that of urban students (P < 0.05), and the awareness rate of malaria control knowledge of the secondary school students was higher than that of the primary school students (P < 0.05). The awareness rate of malaria control knowledge of primary and secondary school students in Yunlong District is lower than that required by the national standard. Therefore, the health education of malaria control should be strengthened, especially in countryside school students and primary school students.
Parizo, Justin; Sturrock, Hugh J. W.; Dhiman, Ramesh C.; Greenhouse, Bryan
2016-01-01
The world population, especially in developing countries, has experienced a rapid progression of urbanization over the last half century. Urbanization has been accompanied by a rise in cases of urban infectious diseases, such as malaria. The complexity and heterogeneity of the urban environment has made study of specific urban centers vital for urban malaria control programs, whereas more generalizable risk factor identification also remains essential. Ahmedabad city, India, is a large urban center located in the state of Gujarat, which has experienced a significant Plasmodium vivax and Plasmodium falciparum disease burden. Therefore, a targeted analysis of malaria in Ahmedabad city was undertaken to identify spatiotemporal patterns of malaria, risk factors, and methods of predicting future malaria cases. Malaria incidence in Ahmedabad city was found to be spatially heterogeneous, but temporally stable, with high spatial correlation between species. Because of this stability, a prediction method utilizing historic cases from prior years and seasons was used successfully to predict which areas of Ahmedabad city would experience the highest malaria burden and could be used to prospectively target interventions. Finally, spatial analysis showed that normalized difference vegetation index, proximity to water sources, and location within Ahmedabad city relative to the dense urban core were the best predictors of malaria incidence. Because of the heterogeneity of urban environments and urban malaria itself, the study of specific large urban centers is vital to assist in allocating resources and informing future urban planning. PMID:27382081
Spatial and temporal distribution of falciparum malaria in China
Lin, Hualiang; Lu, Liang; Tian, Linwei; Zhou, Shuisen; Wu, Haixia; Bi, Yan; Ho, Suzanne C; Liu, Qiyong
2009-01-01
Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female) for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is characterized by the predominance of adult men cases. Imported falciparum malaria in the non-endemic area of China, affected mainly by the malaria transmission in Yunnan, has increased both spatially and temporally. Specific intervention measures targeted at the mobile population groups are warranted. PMID:19523209
Basu, Sanjay
2002-01-01
Although malaria is a growing problem affecting several hundred million people each year, many malarial countries lack successful disease control programs. Worldwide malaria incidence rates are dramatically increasing, generating fear among many people who are witnessing malaria control initiatives fail. In this paper, we explore two options for malaria control in poor countries: (1) the production and distribution of a malaria vaccine and (2) the control of mosquitoes that harbor the malaria parasite. We first demonstrate that the development of a malaria vaccine is indeed likely, although it will take several years to produce because of both biological obstacles and insufficient research support. The distribution of such a vaccine, as suggested by some economists, will require that wealthy states promise a market to pharmaceutical companies who have traditionally failed to investigate diseases affecting the poorest of nations. But prior to the development of a malaria vaccine, we recommend the implementation of vector control pro- grams, such as those using Bti toxin, in regions with low vector capacity. Our analysis indicates that both endogenous programs in malarial regions and molecular approaches to parasite control will provide pragmatic solutions to the malaria problem. But the successful control of malaria will require sustained support from wealthy nations, without whom vaccine development and vector control programs will likely fail.
Plasmodium vivax Landscape in Brazil: Scenario and Challenges
Siqueira, Andre M.; Mesones-Lapouble, Oscar; Marchesini, Paola; Sampaio, Vanderson de Souza; Brasil, Patricia; Tauil, Pedro L.; Fontes, Cor Jesus; Costa, Fabio T. M.; Daniel-Ribeiro, Cláudio Tadeu; Lacerda, Marcus V. G.; Damasceno, Camila P.; Santelli, Ana Carolina S.
2016-01-01
Brazil is the largest country of Latin America, with a considerable portion of its territoritory within the malaria-endemic Amazon region in the North. Furthermore, a considerable portion of its territory is located within the Amazon region in the north. As a result, Brazil has reported half of the total malaria cases in the Americas in the last four decades. Recent progress in malaria control has been accompanied by an increasing proportion of Plasmodium vivax, underscoring a need for a better understanding of management and control of this species and associated challenges. Among these challenges, the contribution of vivax malaria relapses, earlier production of gametocytes (compared with Plasmodium falciparum), inexistent methods to diagnose hypnozoite carriers, and decreasing efficacy of available antimalarials need to be addressed. Innovative tools, strategies, and technologies are needed to achieve further progress toward sustainable malaria elimination. Further difficulties also arise from dealing with the inherent socioeconomic and environmental particularities of the Amazon region and its dynamic changes. PMID:27708190
Elimination of Plasmodium falciparum malaria in Tajikistan.
Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N
2017-05-30
Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards speedy reduction of P. vivax incidence in Tajikistan.
Smithson, Paul; Florey, Lia; Salgado, S. Rene; Hershey, Christine L.; Masanja, Honorati; Bhattarai, Achuyt; Mwita, Alex; McElroy, Peter D.
2015-01-01
Background Mainland Tanzania scaled up multiple malaria control interventions between 1999 and 2010. We evaluated whether, and to what extent, reductions in all-cause under-five child mortality (U5CM) tracked with malaria control intensification during this period. Methods Four nationally representative household surveys permitted trend analysis for malaria intervention coverage, severe anemia (hemoglobin <8 g/dL) prevalence (SAP) among children 6–59 months, and U5CM rates stratified by background characteristics, age, and malaria endemicity. Prevalence of contextual factors (e.g., vaccination, nutrition) likely to influence U5CM were also assessed. Population attributable risk percentage (PAR%) estimates for malaria interventions and contextual factors that changed over time were used to estimate magnitude of impact on U5CM. Results Household ownership of insecticide-treated nets (ITNs) rose from near zero in 1999 to 64% (95% CI, 61.7–65.2) in 2010. Intermittent preventive treatment of malaria in pregnancy reached 26% (95% CI, 23.6–28.0) by 2010. Sulfadoxine-pyrimethamine replaced chloroquine in 2002 and artemisinin-based combination therapy was introduced in 2007. SAP among children 6–59 months declined 50% between 2005 (11.1%; 95% CI, 10.0–12.3%) and 2010 (5.5%; 95% CI, 4.7–6.4%) and U5CM declined by 45% between baseline (1995–9) and endpoint (2005–9), from 148 to 81 deaths/1000 live births, respectively. Mortality declined 55% among children 1–23 months of age in higher malaria endemicity areas. A large reduction in U5CM was attributable to ITNs (PAR% = 11) with other malaria interventions adding further gains. Multiple contextual factors also contributed to survival gains. Conclusion Marked declines in U5CM occurred in Tanzania between 1999 and 2010 with high impact from ITNs and ACTs. High-risk children (1–24 months of age in high malaria endemicity) experienced the greatest declines in mortality and SAP. Malaria control should remain a policy priority to sustain and further accelerate progress in child survival. PMID:26536354
Masiye, Felix; Rehnberg, Clas
2005-01-01
Background Zambia is facing a double crisis of increasing malaria burden and dwindling capacity to deal with the endemic malaria burden. The pursuit of sustainable but equity mechanisms for financing malaria programmes is a subject of crucial policy discussion. This requires that comprehensive accounting of the economic impact of the various malaria programmes. Information on the economic value of programmes is essential in soliciting appropriate funding allocations for malaria control. Aims and objectives This paper specifically seeks to elicit a measure of the economic benefits of an improved malaria treatment programme in Zambia. The paper also studies the equity implications in malaria treatment given that demand or malaria treatment is determined by household socio-economic status. Methods A contingent valuation survey of about 300 Zambian households was conducted in four districts. Willingness-to-pay (WTP) was elicited for an improved treatment programme for malaria in order to generate a measure of the economic benefits of the programme. The payment card method was used in eliciting WTP bids. Findings The study reports that malaria treatment has significant economic benefits to society. The total economic benefits of an improved treatment programme were estimated at an equivalent of US$ 77 million per annum, representing about 1.8% of Zambia's GDP. The study also reports the theoretically anticipated association between WTP and several socio-economic factors. Our income elasticity of demand is positive and similar in magnitude to estimates reported in similar studies. Finally, from an equity standpoint, the constraints imposed by income and socio-economic status are discussed. PMID:16356176
Magris, M; Rubio-Palis, Y; Alexander, N; Ruiz, B; Galván, N; Frias, D; Blanco, M; Lines, J
2007-03-01
We conducted a community-randomized controlled trial in an area of moderate malaria transmission in the Amazon region, southern Venezuela, home of the Yanomami indigenous ethnic group. The aim was to compare the malaria incidence rate in villages with lambdacyhalothrin-treated hammock nets (ITHN) or with placebo-treated hammock nets (PTHN). In both arms of the study, intensive surveillance for early case detection was maintained and prompt malaria treatment was administered. Baseline data were collected before the intervention and a population of around 924 Yanomami was followed for 2 years. Despite the recent introduction of nets in the Yanomami villages and the adverse natural conditions in the area, the nets were accepted enthusiastically by the study population, used conscientiously and looked after carefully. The malaria incidence rate per thousand person-years at risk was 114.6 in the IHTN group and 186.8 in the PTHN group. The adjusted rate ratios indicated that ITHN prevent 56% [IRR: 0.44, 95% confidence interval (CI): 52-59%] of new malaria cases. ITHN reduced the prevalence of parasitaemia by 83% [relative risks (RR): 0.17, 95% CI: 47-100%], according to a cross-sectional survey carried out during the high transmission season. The prevalence of splenomegaly and anaemia was too low to detect any possible reduction as a result of ITHN. The main conclusion of the present study is that ITHN can reduce malaria incidence in the area and it is the most feasible method for malaria control in a forested area where indigenous villages are scattered over a large territory. This is the first community-level epidemiological trial to show that ITHN are highly effective against malaria transmitted by Anopheles darlingi.
A historical perspective on malaria control in Brazil
Griffing, Sean Michael; Tauil, Pedro Luiz; Udhayakumar, Venkatachalam; Silva-Flannery, Luciana
2015-01-01
Malaria has always been an important public health problem in Brazil. The early history of Brazilian malaria and its control was powered by colonisation by Europeans and the forced relocation of Africans as slaves. Internal migration brought malaria to many regions in Brazil where, given suitableAnopheles mosquito vectors, it thrived. Almost from the start, officials recognised the problem malaria presented to economic development, but early control efforts were hampered by still developing public health control and ignorance of the underlying biology and ecology of malaria. Multiple regional and national malaria control efforts have been attempted with varying success. At present, the Amazon Basin accounts for 99% of Brazil’s reported malaria cases with regional increases in incidence often associated with large scale public works or migration. Here, we provide an exhaustive summary of primary literature in English, Spanish and Portuguese regarding Brazilian malaria control. Our goal was not to interpret the history of Brazilian malaria control from a particular political or theoretical perspective, but rather to provide a straightforward, chronological narrative of the events that have transpired in Brazil over the past 200 years and identify common themes. PMID:26517649
Yakob, Laith; Cameron, Mary; Lines, Jo
2017-03-13
Malaria is spread by mosquitoes that are increasingly recognised to have diverse biting behaviours. How a mosquito in a specific environment responds to differing availability of blood-host species is largely unknown and yet critical to vector control efficacy. A parsimonious mathematical model is proposed that accounts for a diverse range of host-biting behaviours and assesses their impact on combining long-lasting insecticidal nets (LLINs) with a novel approach to malaria control: livestock treated with insecticidal compounds ('endectocides') that kill biting mosquitoes. Simulations of a malaria control programme showed marked differences across biting ecologies in the efficacy of both LLINs as a stand-alone tool and the combination of LLINs with endectocide-treated cattle. During the intervals between LLIN mass campaigns, concordant use of endectocides is projected to reduce the bounce-back in malaria prevalence that can occur as LLIN efficacy decays over time, especially if replacement campaigns are delayed. Integrating these approaches can also dramatically improve the attainability of local elimination; endectocidal treatment schedules required to achieve this aim are provided for malaria vectors with different biting ecologies. Targeting blood-feeding mosquitoes by treating livestock with endectocides offers a potentially useful complement to existing malaria control programmes centred on LLIN distribution. This approach is likely to be effective against vectors with a wide range of host-preferences and biting behaviours, with the exception of species that are so strictly anthropophilic that most blood meals are taken on humans even when humans are much less available than non-human hosts. Identifying this functional relationship in wild mosquito populations and ascertaining the extent to which it differs, within as well as between species, is a critical next step before targets can be set for employing this novel approach and combination.
Zhen-Yu, Wang; Li, Jiang; Yao-Guang, Zhang; Min, Zhu; Xiao-Ping, Zhang; Xiao-Jiang, Ma; Qian, Zhu; Yan-Yan, He; Shou-Fu, Jiang; Li, Cai
2017-02-27
To compare the application effects of three methods, namely microscopic examination, antigen detection (RDT) and nucleic acid test (PCR) in malaria detection between municipal and districts/counties centers for disease control and prevention in Shanghai, and analyze the malaria detection ability of the laboratories in Shanghai. The blood smears, whole blood samples, case review confirmation records and case data of malaria cases and suspected cases in Shanghai from 2012 to 2015 were collected by Shanghai Municipal Center for Disease Control and Prevention, and the detection results were analyzed and compared. A total of 212 samples with complete data were submitted by all districts (counties) in Shanghai from 2012 to 2015, the samples submitted by Jinshan Districts were the most (41.98%), and among the first diagnosis hospitals, those submitted by the tertiary hospitals were the most (82.07%). The submitted samples in the whole year were increased gradually from January to October. All the 212 samples were detected by three methods (the microscopic examination, RDT and PCR) in the laboratory of Shanghai Municipal Center for Disease Control and Prevention, and 167 were tested and confirmed comprehensively as positives, accounting for 78.77%, and 45 were confirmed as negatives, accounting for 21.23%. The samples were detected by the method of microscopy and domestic RDT in the laboratories of the centers for disease control and prevention at district/county level, totally 153 were tested as positives, accounting for 72.17%, 41 were unclassified, accounting for 19.34%, 53 were negative, accounting for 25.00%, and 6 were undetected, accounting for 2.83%. The coincidence of microscopic examination between the report hospitals and the centers for disease control and prevention at district/county level was 78.16%, and the coincidence between centers for disease control and prevention at district/county level and municipal level was 93.20%. The utilization rate of RDT in the laboratory of district/county level was 73.58%. The coincidence of RDT tests between those domestic and imported was 93.59%. Compared with the detection results by municipal center for disease control and prevention, 37 samples were misjudged by the laboratories of district/county level. Almost all (99.37%) of the confirmed malaria cases were imported overseas, including Africa (85.44%), Asia (13.92%) and America (0.63%). The surveillance after malaria elimination in Shanghai should be carried out by combining with different detection methods and resource integration.
Komen, Kibii; Olwoch, Jane; Rautenbach, Hannes; Botai, Joel; Adebayo, Adetunji
2015-03-01
Malaria in Limpopo Province of South Africa is shifting and now observed in originally non-malaria districts, and it is unclear whether climate change drives this shift. This study examines the distribution of malaria at district level in the province, determines direction and strength of the linear relationship and causality between malaria with the meteorological variables (rainfall and temperature) and ascertains their short- and long-run variations. Spatio-temporal method, Correlation analysis and econometric methods are applied. Time series monthly meteorological data (1998-2007) were obtained from South Africa Weather Services, while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province) and South African Department of Health. We find that malaria changes and pressures vary in different districts with a strong positive correlation between temperature with malaria, r = 0.5212, and a weak positive relationship for rainfall, r = 0.2810. Strong unidirectional causality runs from rainfall and temperature to malaria cases (and not vice versa): F (1, 117) = 3.89, ρ = 0.0232 and F (1, 117) = 20.08, P < 0.001 and between rainfall and temperature, a bi-directional causality exists: F (1, 117) = 19.80; F (1,117) = 17.14, P < 0.001, respectively, meaning that rainfall affects temperature and vice versa. Results show evidence of strong existence of a long-run relationship between climate variables and malaria, with temperature maintaining very high level of significance than rainfall. Temperature, therefore, is more important in influencing malaria transmission in Limpopo Province.
Koita, Kadiatou; Novotny, Joseph; Kunene, Simon; Zulu, Zulizile; Ntshalintshali, Nyasatu; Gandhi, Monica; Gosling, Roland
2013-06-27
Swaziland has made great progress towards its goal of malaria elimination by 2015. However, malaria importation from neighbouring high-endemic Mozambique through Swaziland's eastern border remains a major factor that could prevent elimination from being achieved. In order to reach elimination, Swaziland must rapidly identify and treat imported malaria cases before onward transmission occurs. A nationwide formative assessment was conducted over eight weeks to determine if the imported cases of malaria identified by the Swaziland National Malaria Control Programme could be linked to broader social networks and to explore methods to access these networks. Using a structured format, interviews were carried out with malaria surveillance agents (6), health providers (10), previously identified imported malaria cases (19) and people belonging to the networks identified through these interviews (25). Most imported malaria cases were Mozambicans (63%, 12/19) making a living in Swaziland and sustaining their families in Mozambique. The majority of imported cases (73%, 14/19) were labourers and self-employed contractors who travelled frequently to Mozambique to visit their families and conduct business. Social networks of imported cases with similar travel patterns were identified through these interviews. Nearly all imported cases (89%, 17/19) were willing to share contact information to enable network members to be interviewed. Interviews of network members and key informants revealed common congregation points, such as the urban market places in Manzini and Malkerns, as well as certain bus stations, where people with similar travel patterns and malaria risk behaviours could be located and tested for malaria. This study demonstrated that imported cases of malaria belonged to networks of people with similar travel patterns. This study may provide novel methods for screening high-risk groups of travellers using both snowball sampling and time-location sampling of networks to identify and treat additional malaria cases. Implementation of a proactive screening programme of importation networks may help Swaziland halt transmission and achieve malaria elimination by 2015.
Discourse on malaria elimination: where do forcibly displaced persons fit in these discussions?
2013-01-01
Background Individuals forcibly displaced are some of the poorest people in the world, living in areas where infrastructure and services are at a bare minimum. Out of a total of 10,549,686 refugees protected and assisted by the United Nations High Commissioner for Refugees globally, 6,917,496 (65.6%) live in areas where malaria is transmitted. Historically, national malaria control programmes have excluded displaced populations. Results The current discourse on malaria elimination rarely includes discussion of forcibly displaced persons who reside within malaria-eliminating countries. Of the 100 malaria-endemic countries, 64 are controlling malaria and 36 are in some stage of elimination. Of these, 30 malaria-controlling countries and 13 countries in some phase of elimination host displaced populations of ≥50,000, even though 13 of the 36 (36.1%) malaria-elimination countries host displaced populations of ≥50,000 people. Discussion Now is the time for the malaria community to incorporate forcibly displaced populations residing within malarious areas into malaria control activities. Beneficiaries, whether they are internally displaced persons or refugees, should be viewed as partners in the delivery of malaria interventions and not simply as recipients. Conclusion Until equitable and sustainable malaria control includes everyone residing in an endemic area, the goal of malaria elimination will not be met. PMID:23575209
Qian, Ying-Jun; Li, Shi-Zhu; Xu, Jun-Fang; Zhang, Li; Fu, Qing; Zhou, Xiao-Nong
2013-12-01
To set up a framework of indicators for schistosomiasis and malaria to guide the formulation and evaluation of vector-borne disease control policies focusing on adaptation to the negative impact of climate change. A 2-level indicator framework was set up on the basis of literature review, and Delphi method was applied to a total of 22 and 19 experts working on schistosomiasis and malaria, respectively. The result was analyzed to calculate the weight of various indicators. A total of 41 questionnaires was delivered, and 38 with valid response (92.7%). The system included 4 indicators at first level, i.e. surveillance, scientific research, disease control and intervention, and adaptation capacity building, with 25 indicators for schistosomiasis and 21 for malaria at the second level. Among indicators at the first level, disease surveillance ranked first with a weight of 0.32. Among the indicators at the second level, vector monitoring scored the highest in terms of both schistosomiasis and malaria. The indicators set up by Delphi method are practical,universal and effective ones using in the field, which is also useful to technically support the establishment of adaptation to climate change in the field of public health.
Measuring changes in Plasmodium falciparum transmission: Precision, accuracy and costs of metrics
Tusting, Lucy S.; Bousema, Teun; Smith, David L.; Drakeley, Chris
2016-01-01
As malaria declines in parts of Africa and elsewhere, and as more countries move towards elimination, it is necessary to robustly evaluate the effect of interventions and control programmes on malaria transmission. To help guide the appropriate design of trials to evaluate transmission-reducing interventions, we review eleven metrics of malaria transmission, discussing their accuracy, precision, collection methods and costs, and presenting an overall critique. We also review the non-linear scaling relationships between five metrics of malaria transmission; the entomological inoculation rate, force of infection, sporozoite rate, parasite rate and the basic reproductive number, R0. Our review highlights that while the entomological inoculation rate is widely considered the gold standard metric of malaria transmission and may be necessary for measuring changes in transmission in highly endemic areas, it has limited precision and accuracy and more standardised methods for its collection are required. In areas of low transmission, parasite rate, sero-conversion rates and molecular metrics including MOI and mFOI may be most appropriate. When assessing a specific intervention, the most relevant effects will be detected by examining the metrics most directly affected by that intervention. Future work should aim to better quantify the precision and accuracy of malaria metrics and to improve methods for their collection. PMID:24480314
Optimal Control of Malaria Transmission using Insecticide Treated Nets and Spraying
NASA Astrophysics Data System (ADS)
Athina, D.; Bakhtiar, T.; Jaharuddin
2017-03-01
In this paper, we consider a model of the transmission of malaria which was developed by Silva and Torres equipped with two control variables, namely the use of insecticide treated nets (ITN) to reduce the number of human beings infected and spraying to reduce the number of mosquitoes. Pontryagin maximum principle was applied to derive the differential equation system as optimality conditions which must be satisfied by optimal control variables. The Mangasarian sufficiency theorem shows that Pontryagin maximum principle is necessary as well as sufficient conditions for optimization problem. The 4th-order Runge Kutta method was then performed to solve the differential equations system. The numerical results show that both controls given at once can reduce the number of infected individuals as well as the number of mosquitoes which reduce the impact of malaria transmission.
2013-01-01
Background Malaria transmission is highly heterogeneous in most settings, resulting in the formation of recognizable malaria hotspots. Targeting these hotspots might represent a highly efficacious way of controlling or eliminating malaria if the hotspots fuel malaria transmission to the wider community. Methods/design Hotspots of malaria will be determined based on spatial patterns in age-adjusted prevalence and density of antibodies against malaria antigens apical membrane antigen-1 and merozoite surface protein-1. The community effect of interventions targeted at these hotspots will be determined. The intervention will comprise larviciding, focal screening and treatment of the human population, distribution of long-lasting insecticide-treated nets and indoor residual spraying. The impact of the intervention will be determined inside and up to 500 m outside the targeted hotspots by PCR-based parasite prevalence in cross-sectional surveys, malaria morbidity by passive case detection in selected facilities and entomological monitoring of larval and adult Anopheles populations. Discussion This study aims to provide direct evidence for a community effect of hotspot-targeted interventions. The trial is powered to detect large effects on malaria transmission in the context of ongoing malaria interventions. Follow-up studies will be needed to determine the effect of individual components of the interventions and the cost-effectiveness of a hotspot-targeted approach, where savings made by reducing the number of compounds that need to receive interventions should outweigh the costs of hotspot-detection. Trial registration NCT01575613. The protocol was registered online on 20 March 2012; the first community was randomized on 26 March 2012. PMID:23374910
2013-01-01
Background Malaria remains the leading communicable disease in Ethiopia, with around one million clinical cases of malaria reported annually. The country currently has plans for elimination for specific geographic areas of the country. Human movement may lead to the maintenance of reservoirs of infection, complicating attempts to eliminate malaria. Methods An unmatched case–control study was conducted with 560 adult patients at a Health Centre in central Ethiopia. Patients who received a malaria test were interviewed regarding their recent travel histories. Bivariate and multivariate analyses were conducted to determine if reported travel outside of the home village within the last month was related to malaria infection status. Results After adjusting for several known confounding factors, travel away from the home village in the last 30 days was a statistically significant risk factor for infection with Plasmodium falciparum (AOR 1.76; p=0.03) but not for infection with Plasmodium vivax (AOR 1.17; p=0.62). Male sex was strongly associated with any malaria infection (AOR 2.00; p=0.001). Conclusions Given the importance of identifying reservoir infections, consideration of human movement patterns should factor into decisions regarding elimination and disease prevention, especially when targeted areas are limited to regions within a country. PMID:23347703
Integrated Approach to Malaria Control
Shiff, Clive
2002-01-01
Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233
Walker, K; Lynch, M
2007-03-01
Malaria vector control targeting the larval stages of mosquitoes was applied successfully against many species of Anopheles (Diptera: Culicidae) in malarious countries until the mid-20th Century. Since the introduction of DDT in the 1940s and the associated development of indoor residual spraying (IRS), which usually has a more powerful impact than larval control on vectorial capacity, the focus of malaria prevention programmes has shifted to the control of adult vectors. In the Afrotropical Region, where malaria is transmitted mainly by Anopheles funestus Giles and members of the Anopheles gambiae Giles complex, gaps in information on larval ecology and the ability of An. gambiae sensu lato to exploit a wide variety of larval habitats have discouraged efforts to develop and implement larval control strategies. Opportunities to complement adulticiding with other components of integrated vector management, along with concerns about insecticide resistance, environmental impacts, rising costs of IRS and logistical constraints, have stimulated renewed interest in larval control of malaria vectors. Techniques include environmental management, involving the temporary or permanent removal of anopheline larval habitats, as well as larviciding with chemical or biological agents. This present review covers large-scale trials of anopheline larval control methods, focusing on field studies in Africa conducted within the past 15 years. Although such studies are limited in number and scope, their results suggest that targeting larvae, particularly in human-made habitats, can significantly reduce malaria transmission in appropriate settings. These approaches are especially suitable for urban areas, where larval habitats are limited, particularly when applied in conjunction with IRS and other adulticidal measures, such as the use of insecticide treated bednets.
Shaukat, Ayesha M; Breman, Joel G; McKenzie, F Ellis
2010-05-12
Prior studies have shown that annual entomological inoculation rates (EIRs) must be reduced to less than one to substantially reduce the prevalence of malaria infection. In this study, EIR values were used to quantify the impact of insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), and source reduction (SR) on malaria transmission. The analysis of EIR was extended through determining whether available vector control tools can ultimately eradicate malaria. The analysis is based primarily on a review of all controlled studies that used ITN, IRS, and/or SR and reported their effects on the EIR. To compare EIRs between studies, the percent difference in EIR between the intervention and control groups was calculated. Eight vector control intervention studies that measured EIR were found: four ITN studies, one IRS study, one SR study, and two studies with separate ITN and IRS intervention groups. In both the Tanzania study and the Solomon Islands study, one community received ITNs and one received IRS. In the second year of the Tanzania study, EIR was 90% lower in the ITN community and 93% lower in the IRS community, relative to the community without intervention; the ITN and IRS effects were not significantly different. In contrast, in the Solomon Islands study, EIR was 94% lower in the ITN community and 56% lower in the IRS community. The one SR study, in Dar es Salaam, reported a lower EIR reduction (47%) than the ITN and IRS studies. All of these vector control interventions reduced EIR, but none reduced it to zero. These studies indicate that current vector control methods alone cannot ultimately eradicate malaria because no intervention sustained an annual EIR less than one. While researchers develop new tools, integrated vector management may make the greatest impact on malaria transmission. There are many gaps in the entomological malaria literature and recommendations for future research are provided.
Malaria in the WHO Southeast Asia region.
Kondrashin, A V
1992-09-01
Malaria endemic countries in the southeast Asia region include Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand. Population movement and rapid urbanization, both largely caused by unemployment, and environmental deterioration change the malaria pattern. They also increase the incidence of drug-resistant malaria, especially resistance to 4-aminoquinolines. In India, Plasmodium falciparum is linked to the density and distribution of tribals, and, in southern Thailand, rubber tappers have the highest malaria incidence rate (46.29%). Since the population is young and the young are highly sensitive to malaria infection, the region has low community immunity. High malaria priority areas are forests, forested hills, forest fringe areas, developmental project sites, and border areas. High risk groups include infants, young children, pregnant women, and mobile population groups. Malaria incidence is between 2.5-2.8 million cases, and the slide positivity rate is about 3%. P. falciparum constitutes 40% for all malaria cases. In 1988 in India, there were 222 malaria deaths. Malaria is the 7th most common cause of death in Thailand. 3 of the 19 Anopheline species are resistant to at least 1 insecticide, particularly DDT. Posteradication epidemics surfaced in the mid-1970s. Malaria control programs tend to use the primary health care and integration approach to malaria control. Antiparasite measures range from a single-dose of an antimalarial to mass drug administration. Residual spraying continues to be the main strategy of vector control. Some other vector control measures are fish feeding on mosquito larvae, insecticide impregnated mosquito nets, and repellents. Control programs also have health education activities. India allocates the highest percentage of its total health budget to malaria control (21.54%). Few malariology training programs exist in the region. Slowly processed surveillance data limit the countries' ability to forecast and to combat malaria epidemics. Almost all control programs have a special research unit but capabilities are limited. Political commitment is needed to control malaria.
Mharakurwa, Sungano; Mutambu, Susan L; Mberikunashe, Joseph; Thuma, Philip E; Moss, William J; Mason, Peter R
2013-07-01
To better understand trends in the burden of malaria and their temporal relationship to control activities, a survey was conducted to assess reported cases of malaria and malaria control activities in Mutasa District, Zimbabwe. Data on reported malaria cases were abstracted from available records at all three district hospitals, three rural hospitals and 25 rural health clinics in Mutasa District from 2003 to 2011. Malaria control interventions were scaled up through the support of the Roll Back Malaria Partnership, the Global Fund to Fight AIDS, Tuberculosis and Malaria, and The President's Malaria Initiative. The recommended first-line treatment regimen changed from chloroquine or a combination of chloroquine plus sulphadoxine/pyrimethamine to artemisinin-based combination therapy, the latter adopted by 70%, 95% and 100% of health clinics by 2008, 2009 and 2010, respectively. Diagnostic capacity improved, with rapid diagnostic tests (RDTs) available in all health clinics by 2008. Vector control consisted of indoor residual spraying and distribution of long-lasting insecticidal nets. The number of reported malaria cases initially increased from levels in 2003 to a peak in 2008 but then declined 39% from 2008 to 2010. The proportion of suspected cases of malaria in older children and adults remained high, ranging from 75% to 80%. From 2008 to 2010, the number of RDT positive cases of malaria decreased 35% but the decrease was greater for children younger than five years of age (60%) compared to older children and adults (26%). The burden of malaria in Mutasa District decreased following the scale up of malaria control interventions. However, the persistent high number of cases in older children and adults highlights the need for strategies to identify locally effective control measures that target all age groups.
Active case detection for malaria elimination: a survey among Asia Pacific countries
2013-01-01
Background Moving from malaria control to elimination requires national malaria control programmes to implement strategies to detect both symptomatic and asymptomatic cases in the community. In order to do this, malaria elimination programmes follow up malaria cases reported by health facilities to carry out case investigations that will determine the origin of the infection, whether it has been imported or is due to local malaria transmission. If necessary, the malaria programme will also carry out active surveillance to find additional malaria cases in the locality to prevent further transmission. To understand current practices and share information on malaria elimination strategies, a survey specifically addressing country policies on case investigation and reactive case detection was carried out among fourteen countries of the Asia Pacific Malaria Elimination Network (APMEN). Methods A questionnaire was distributed to the malaria control programme managers amongst 14 countries in the Asia Pacific who have national or sub-national malaria elimination goals. Results Results indicate that there are a wide variety of case investigation and active case detection activities employed by the 13 countries that responded to the survey. All respondents report conducting case investigation as part of surveillance activities. More than half of these countries conduct investigations for each case. Over half aim to accomplish the investigation within one to two days of a case report. Programmes collect a broad array of demographic data during investigation procedures and definitions for imported cases are varied across respondents. Some countries report intra-national (from a different province or district) importation while others report only international importation (from a different country). Reactive case detection in respondent countries is defined as screening households within a pre-determined radius in order to identify other locally acquired infections, whether symptomatic or asymptomatic. Respondents report that reactive case detection can be triggered in different ways, in some cases with only a single case report and in others if a defined threshold of multiple cases occurs. The spatial range of screening conducted varies from a certain number of households to an entire administrative unit (e g, village). Some countries target symptomatic people whereas others target all people in order to detect asymptomatic infections. The majority of respondent programmes collect a range of information from those screened for malaria, similar to the range of information collected during case investigation. Conclusion Case investigation and reactive case detection are implemented in the malaria elimination programmes in the Asia Pacific, however practices vary widely from country to country. There is little evidence available to support countries in deciding which methods to maintain, change or adopt for improved effectiveness and efficiency. The development and use of common evaluation metrics for these activities will allow malaria programmes to assess performance and results of resource-intensive surveillance measures and may benefit other countries that are considering implementing these activities. PMID:24103345
2010-01-01
Background In Vietnam, malaria is becoming progressively restricted to specific foci where human and vector characteristics alter the known malaria epidemiology, urging for alternative or adapted control strategies. Long-lasting insecticidal hammocks (LLIH) were designed and introduced in Ninh Thuan province, south-central Vietnam, to control malaria in the specific context of forest malaria. An entomological study in this specific forested environment was conducted to assess the behavioural patterns of forest and village vectors and to assess the spatio-temporal risk factors of malaria transmission in the province. Methods Five entomological surveys were conducted in three villages in Ma Noi commune and in five villages in Phuoc Binh commune in Ninh Thuan Province, south-central Vietnam. Collections were made inside the village, at the plot near the slash-and-burn fields in the forest and on the way to the forest. All collected mosquito species were subjected to enzyme-linked immunosorbent assay (ELISA) to detect Plasmodium in the head-thoracic portion of individual mosquitoes after morphological identification. Collection data were analysed by use of correspondence and multivariate analyses. Results The mosquito density in the study area was low with on average 3.7 anopheline bites per man-night and 17.4 culicine bites per man-night. Plasmodium-infected mosquitoes were only found in the forest and on the way to the forest. Malaria transmission in the forested malaria foci was spread over the entire night, from dusk to dawn, but was most intense in the early evening as nine of the 13 Plasmodium positive bites occurred before 21H. The annual entomological inoculation rate of Plasmodium falciparum was 2.2 infective bites per person-year to which Anopheles dirus s.s. and Anopheles minimus s.s. contributed. The Plasmodium vivax annual entomological inoculation rate was 2.5 infective bites per person-year with Anopheles sawadwongporni, Anopheles dirus s.s. and Anopheles pampanai as vectors. Conclusion The vector behaviour and spatio-temporal patterns of malaria transmission in Southeast Asia impose new challenges when changing objectives from control to elimination of malaria and make it necessary to focus not only on the known main vector species. Moreover, effective tools to prevent malaria transmission in the early evening and in the early morning, when the treated bed net cannot be used, need to be developed. PMID:21182774
Implementing school malaria surveys in Kenya: towards a national surveillance system
2010-01-01
Objective To design and implement surveys of malaria infection and coverage of malaria control interventions among school children in Kenya in order to contribute towards a nationwide assessment of malaria. Methods The country was stratified into distinct malaria transmission zones based on a malaria risk map and 480 schools were visited between October 2008 and March 2010. Surveys were conducted in two phases: an initial opportunistic phase whereby schools were selected for other research purposes; and a second phase whereby schools were purposively selected to provide adequate spatial representation across the country. Consent for participation was based on passive, opt-out consent rather than written, opt-in consent because of the routine, low-risk nature of the survey. All children were diagnosed for Plasmodium infection using rapid diagnostic tests, assessed for anaemia and were interviewed about mosquito net usage, recent history of illness, and socio-economic and household indicators. Children's responses were entered electronically in the school and data transmitted nightly to Nairobi using a mobile phone modem connection. RDT positive results were corrected by microscopy and all results were adjusted for clustering using random effect regression modelling. Results 49,975 children in 480 schools were sampled, at an estimated cost of US$ 1,116 per school. The overall prevalence of malaria and anaemia was 4.3% and 14.1%, respectively, and 19.0% of children reported using an insecticide-treated net (ITN). The prevalence of infection showed marked variation across the country, with prevalence being highest in Western and Nyanza provinces, and lowest in Central, North Eastern and Eastern provinces. Nationally, 2.3% of schools had reported ITN use >60%, and low reported ITN use was a particular problem in Western and Nyanza provinces. Few schools reported having malaria health education materials or ongoing malaria control activities. Conclusion School malaria surveys provide a rapid, cheap and sustainable approach to malaria surveillance which can complement household surveys, and in Kenya, show that large areas of the country do not merit any direct school-based control, but school-based interventions, coupled with strengthened community-based strategies, are warranted in western and coastal Kenya. The results also provide detailed baseline data to inform evaluation of school-based malaria control in Kenya. PMID:21034492
Hassanpour, Gholmreza; Mohebali, Mehdi; Zeraati, Hojjat; Raeisi, Ahmad; Keshavarz, Hossein
2017-01-01
Background: The objective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review. Methods: A broad search was conducted to find articles with the words ‘malaria’ in their titles and ‘asymptomatic’ or ‘submicroscopic’ in their texts, irrespective of the type of study conducted. The Cochrane, Medline/Pub Med, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran’s databases-Iran Medex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase. Results: Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and emphasize the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to reduce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase. Conclusion: To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic patients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase. PMID:29062842
Hassanpour, Gholmreza; Mohebali, Mehdi; Zeraati, Hojjat; Raeisi, Ahmad; Keshavarz, Hossein
2017-06-01
The objective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review. A broad search was conducted to find articles with the words 'malaria' in their titles and 'asymptomatic' or 'submicroscopic' in their texts, irrespective of the type of study conducted. The Cochrane, Medline/Pub Med, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran's databases-Iran Medex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase. Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and emphasize the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to reduce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase. To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic patients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase.
Strengthening the policy setting process for global malaria control and elimination.
D'Souza, Bianca J; Newman, Robert D
2012-01-27
The scale-up of malaria control efforts in recent years, coupled with major investments in malaria research, has produced impressive public health impact in a number of countries and has led to the development of new tools and strategies aimed at further consolidating malaria control goals. As a result, there is a growing need for the malaria policy setting process to rapidly review increasing amounts of evidence. The World Health Organization Global Malaria Programme, in keeping with its mandate to set evidence-informed policies for malaria control, has convened the Malaria Policy Advisory Committee as a mechanism to increase the timeliness, transparency, independence and relevance of its recommendations to World Health Organization member states in relation to malaria control and elimination. The Malaria Policy Advisory Committee, composed of 15 world-renowned malaria experts, will meet in full twice a year, with the inaugural meeting scheduled for 31 January to 2 February 2012 in Geneva. Policy recommendations, and the evidence to support them, will be published within two months of every meeting as part of an open access Malaria Journal thematic series. This article is a prelude to that series and provides the global malaria community with the background and overview of the Committee and its terms of reference.
The complexities of malaria disease manifestations with a focus on asymptomatic malaria
2012-01-01
Malaria is a serious parasitic disease in the developing world, causing high morbidity and mortality. The pathogenesis of malaria is complex, and the clinical presentation of disease ranges from severe and complicated, to mild and uncomplicated, to asymptomatic malaria. Despite a wealth of studies on the clinical severity of disease, asymptomatic malaria infections are still poorly understood. Asymptomatic malaria remains a challenge for malaria control programs as it significantly influences transmission dynamics. A thorough understanding of the interaction between hosts and parasites in the development of different clinical outcomes is required. In this review, the problems and obstacles to the study and control of asymptomatic malaria are discussed. The human and parasite factors associated with differential clinical outcomes are described and the management and treatment strategies for the control of the disease are outlined. Further, the crucial gaps in the knowledge of asymptomatic malaria that should be the focus of future research towards development of more effective malaria control strategies are highlighted. PMID:22289302
Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.
Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian
2015-06-03
Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.
Pinder, Margaret; Conteh, Lesong; Jeffries, David; Jones, Caroline; Knudsen, Jakob; Kandeh, Balla; Jawara, Musa; Sicuri, Elisa; D'Alessandro, Umberto; Lindsay, Steve W
2016-06-03
In malaria-endemic areas, residents of modern houses have less malaria than those living in traditional houses. This study will determine if modern housing provides incremental protection against clinical malaria over the current best practice of long-lasting insecticidal nets (LLINs) and prompt treatment in The Gambia, determine the incremental cost-effectiveness of the interventions, and analyze the housing market in The Gambia. A two-armed, household, cluster-randomized, controlled study will be conducted to assess whether improved housing and LLINs combine to provide better protection against clinical malaria in children than LLINs alone in The Gambia. The unit of randomization will be the household, defined as a house and its occupants. A total of 800 households will be enrolled and will receive LLINs, and 400 will receive improved housing before clinical follow-up. One child aged 6 months to 13 years will be enrolled from each household and followed for clinical malaria using active case detection to estimate malaria incidence for two malaria transmission seasons. Episodes of clinical malaria will be the primary endpoint. Study children will be surveyed at the end of each transmission season to estimate the prevalence of Plasmodium falciparum infection, parasite density, and the prevalence of anemia. Exposure to malaria parasites will be assessed using light traps, followed by detection of Anopheles gambiae species and sporozoite infection. Ancillary economic and social science studies will undertake a cost-effectiveness analysis and use qualitative and participatory methods to explore the acceptability of the housing modifications and to design strategies for scaling-up housing interventions. The study is the first of its kind to measure the efficacy of housing on reducing clinical malaria, assess the incremental cost-effectiveness of improved housing, and identify mechanisms for scaling up housing interventions. Trial findings will help inform policy makers on improved housing for malaria control in sub-Saharan Africa. ISRCTN Registry, ISRCTN02622179 . Registered on 23 September 2014.
Mohammed-Awel, Jemal; Numfor, Eric
2017-03-01
We propose and study a mathematical model for malaria-HIV co-infection transmission and control, in which malaria treatment and insecticide-treated nets are incorporated. The existence of a backward bifurcation is established analytically, and the occurrence of such backward bifurcation is influenced by disease-induced mortality, insecticide-treated bed-net coverage and malaria treatment parameters. To further assess the impact of malaria treatment and insecticide-treated bed-net coverage, we formulate an optimal control problem with malaria treatment and insecticide-treated nets as control functions. Using reasonable parameter values, numerical simulations of the optimal control suggest the possibility of eliminating malaria and reducing HIV prevalence significantly, within a short time horizon.
Wenisch, C; Graninger, W; Viravan, C; Looareesuwan, S; Parschalk, B; Wernsdorfer, W
1994-01-01
AIM--To determine serum laminin concentrations in patients with uncomplicated Plasmodium falciparum malaria. METHODS--An enzyme linked immunosorbent assay (ELISA) was used to determine serum laminin concentrations in 54 patients with acute uncomplicated P falciparum malaria during and after treatment, and in 17 control subjects in Bangkok, Thailand. RESULTS--Raised concentrations of soluble laminin were observed in patients (mean (SD) concentration 628 (225) ng/ml), compared with normal controls (490 (116) ng/ml), during the acute phase of the disease. During treatment, serum laminin concentrations decreased and returned to normal within three days. Serum laminin concentrations were correlated with parasite counts before treatment, and with the serum concentration of soluble intercellular adhesion molecule-1 (ICAM-1), soluble E-selectin, and soluble tumour necrosis factor receptor at 55 kilodaltons. CONCLUSIONS--These findings are compatible with an increased production or release of laminin in P falciparum malaria, which could indicate a role for the subendothelial basement membrane in the pathogenesis of the disease. PMID:7525659
Jalloh, A; Tantular, I S; Pusarawati, S; Kawilarang, A P; Kerong, H; Lin, K; Ferreira, M U; Matsuoka, H; Arai, M; Kita, K; Kawamoto, F
2004-05-01
We recently reported a new rapid screening method for glucose-6-phosphate dehydrogenase (G6PD) deficiency. This method incorporates a new formazan substrate (WST-8) and is capable of detecting heterozygous females both qualitatively and quantitatively. Here, we report its evaluation during field surveys at three malaria centres and in malaria-endemic villages of Myanmar and Indonesia, either alone or in combination with a rapid on-site diagnosis of malaria. A total of 57 severe (45 males and 12 females) and 34 mild (five males and 29 females) cases of G6PD deficiency were detected among 855 subjects in Myanmar whilst 30 severe (25 males and five females) and 23 mild (six males and 17 females) cases were found among 1286 subjects in Indonesia. In all cases, severe deficiency was confirmed with another formazan method but due to limitations in its detection threshold, mild cases were misdiagnosed as G6PD-normal by this latter method. Our results indicate that the novel method can qualitatively detect both severely deficient subjects as well as heterozygous females in the field. The antimalarial drug, primaquine, was safely prescribed to Plasmodium vivax-infected patients in Myanmar. Our new, rapid screening method may be essential for the diagnosis of G6PD deficiency particularly in rural areas without electricity, and can be recommended for use in malaria control programmes.
Efficacy of local neem extracts for sustainable malaria vector control in an African village
Gianotti, Rebecca L; Bomblies, Arne; Dafalla, Mustafa; Issa-Arzika, Ibrahim; Duchemin, Jean-Bernard; Eltahir, Elfatih AB
2008-01-01
Background Larval control of malaria vectors has been historically successful in reducing malaria transmission, but largely fell out of favour with the introduction of synthetic insecticides and bed nets. However, an integrated approach to malaria control, including larval control methods, continues to be the best chance for success, in view of insecticide resistance, the behavioural adaptation of the vectors to changing environments and the difficulties of reaching the poorest populations most at risk,. Laboratory studies investigating the effects of neem seed (Azadirachta indica) extracts on Anopheles larvae have shown high rates of larval mortality and reductions in adult longevity, as well as low potential for resistance development. Methods This paper describes a method whereby seeds of the neem tree can be used to reduce adult Anopheles gambiae s.l. abundance in a way that is low cost and can be implemented by residents of rural villages in western Niger. The study was conducted in Banizoumbou village, western Niger. Neem seeds were collected from around the village. Dried seeds were ground into a coarse powder, which was then sprinkled onto known Anopheles larvae breeding habitats twice weekly during the rainy season 2007. Adult mosquitoes were captured on a weekly basis in the village and captures compared to those from 2005 and 2006 over the same period. Adult mosquitoes were also captured in a nearby village, Zindarou, as a control data set and compared to those from Banizoumbou. Results It was found that twice-weekly applications of the powder to known breeding habitats of Anopheles larvae in 2007 resulted in 49% fewer adult female Anopheles gambiae s.l. mosquitoes in Banizoumbou, compared with previous captures under similar environmental conditions and with similar habitat characteristics in 2005 and 2006. The productivity of the system in 2007 was found to be suppressed compared to the mean behaviour of 2005 and 2006 in Banizoumbou, whereas no change was found in Zindarou. Conclusion With a high abundance of neem plants in many villages in this area, the results of this study suggest that larval control using neem seed powder offers a sustainable additional tool for malaria vector control in the Sahel region of Niger. PMID:18651964
Wang, Ru-Bo; Dong, Jia-Qiang; Xia, Zhi-Gui; Cai, Tao; Zhang, Qing-Feng; Zhang, Yao; Tian, Yang-Hui; Sun, Xiao-Ying; Zhang, Guang-Yun; Li, Qing-Pu; Xu, Xiao-Yu; Li, Jia-Yin; Zhang, Jun
2016-10-06
For many countries where malaria is endemic, the burden of malaria is high in border regions. In ethnic minority areas along the Myanmar-China border, residents have poor access to medical care for diagnosis and treatment, and there have been many malaria outbreaks in such areas. Since 2007, with the support of the Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM), a malaria control project was introduced to reduce the malaria burden in several ethnic minority regions. A malaria control network was established during the period from 2007 to 2014. Multiple malaria interventions, including diagnosis, treatment, distribution of LLINs and health education, were conducted to improve the accessibility and quality of malaria control services for local residents. Annual cross-sectional surveys were conducted to evaluate intervention coverage and indicators of malaria transmission. In ethnic minority regions where a malaria control network was established, both the annual malaria incidence (19.1 per thousand per year, in 2009; 8.7, in 2014) and malaria prevalence (13.6 % in 2008; 0.43 % in 2014) decreased dramatically during the past 5-6 years. A total of 851 393 febrile patients were detected, 202 598 malaria cases (including confirmed cases and suspected cases) were treated, and 759 574 LLINs were delivered to populations at risk. Of households in 2012, 73.9 % had at least one ITNs/LLINs (vs. 28.3 %, in 2008), and 50.7 % of children less than 5 years and 50.3 % of pregnant women slept under LLINs the night prior to their visit. Additionally, malaria knowledge was improved in 68.4 % of residents. There has been great success in improving malaria control in these regions from 2007 to 2014. Malaria burdens have decreased, especially in KOK and WA. The continued maintenance of sustainable malaria control networks in these regions may be a long-term process, due to regional conflicts and the lack of funds, technology, and health workers. Furthermore, information and scientific support from the international community should be offered to these ethnic minority regions to uphold recent achievements.
Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity
Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa
2011-01-01
The Greater Mekong Subregion (GMS), comprised of six countries including Cambodia, China's Yunnan Province, Lao PDR, Myanmar (Burma), Thailand and Vietnam, is one of the most threatening foci of malaria. Since the initiation of the WHO's Mekong Malaria Program a decade ago, malaria situation in the GMS has greatly improved, reflected in the continuous decline in annual malaria incidence and deaths. However, as many nations are moving towards malaria elimination, the GMS nations still face great challenges. Malaria epidemiology in this region exhibits enormous geographical heterogeneity with Myanmar and Cambodia remaining high-burden countries. Within each country, malaria distribution is also patchy, exemplified by ‘border malaria’ and ‘forest malaria’ with high transmission occurring along international borders and in forests or forest fringes, respectively. ‘Border malaria’ is extremely difficult to monitor, and frequent malaria introductions by migratory human populations constitute a major threat to neighboring, malaria-eliminating countries. Therefore, coordination between neighboring countries is essential for malaria elimination from the entire region. In addition to these operational difficulties, malaria control in the GMS also encounters several technological challenges. Contemporary malaria control measures rely heavily on effective chemotherapy and insecticide control of vector mosquitoes. However, the spread of multidrug resistance and potential emergence of artemisinin resistance in Plasmodium falciparum make resistance management a high priority in the GMS. This situation is further worsened by the circulation of counterfeit and substandard artemisinin-related drugs. In most endemic areas of the GMS, P. falciparum and P. vivax coexist, and in recent malaria control history, P. vivax has demonstrated remarkable resilience to control measures. Deployment of the only registered drug (primaquine) for the radical cure of vivax malaria is severely undermined due to high prevalence of glucose-6-phosphate dehydrogenase deficiency in target human populations. In the GMS, the dramatically different ecologies, diverse vector systems, and insecticide resistance render traditional mosquito control less efficient. Here we attempt to review the changing malaria epidemiology in the GMS, analyze the vector systems and patterns of malaria transmission, and identify the major challenges the malaria control community faces on its way to malaria elimination. PMID:21382335
From malaria control to eradication: The WHO perspective.
Mendis, Kamini; Rietveld, Aafje; Warsame, Marian; Bosman, Andrea; Greenwood, Brian; Wernsdorfer, Walther H
2009-07-01
Efforts to control malaria have been boosted in the past few years with increased international funding and greater political commitment. Consequently, the reported malaria burden is being reduced in a number of countries throughout the world, including in some countries in tropical Africa where the burden of malaria is greatest. These achievements have raised new hopes of eradicating malaria. This paper summarizes the outcomes of a World Health Organization's expert meeting on the feasibility of such a goal. Given the hindsight and experience of the Global Malaria Eradication Programme of the 1950s and 1960s, and current knowledge of the effectiveness of antimalarial tools and interventions, it would be feasible to effectively control malaria in all parts of the world and greatly reduce the enormous morbidity and mortality of malaria. It would also be entirely feasible to eliminate malaria from countries and regions where the intensity of transmission is low to moderate, and where health systems are strong. Elimination of malaria requires a re-orientation of control activity, moving away from a population-based coverage of interventions, to one based on a programme of effective surveillance and response. Sustained efforts will be required to prevent the resurgence of malaria from where it is eliminated. Eliminating malaria from countries where the intensity of transmission is high and stable such as in tropical Africa will require more potent tools and stronger health systems than are available today. When such countries have effectively reduced the burden of malaria, the achievements will need to be consolidated before a programme re-orientation towards malaria elimination is contemplated. Malaria control and elimination are under the constant threat of the parasite and vector mosquito developing resistance to medicines and insecticides, which are the cornerstones of current antimalarial interventions. The prospects of malaria eradication, therefore, rest heavily on the outcomes of research and development for new and improved tools. Malaria control and elimination are complementary objectives in the global fight against malaria.
Malaria ecotypes and stratification.
Schapira, Allan; Boutsika, Konstantina
2012-01-01
To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna malaria; larval control may be considered though its role is not so far well established. In contrast, urban malaria in the Indian subcontinent is associated with higher risks than most adjacent rural areas, and larval control has a definite, though not exclusive, role. Simulation modelling of cost-effectiveness of malaria control strategies in different scenarios should prioritize ecotypes where malaria control encounters serious technical problems. Further field research on malaria and ecology should be interdisciplinary, especially with geography, and pay more attention to juxtapositions and to anthropic elements, especially migration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ethical aspects of malaria control and research.
Jamrozik, Euzebiusz; de la Fuente-Núñez, Vânia; Reis, Andreas; Ringwald, Pascal; Selgelid, Michael J
2015-12-22
Malaria currently causes more harm to human beings than any other parasitic disease, and disproportionally affects low-income populations. The ethical issues raised by efforts to control or eliminate malaria have received little explicit analysis, in comparison with other major diseases of poverty. While some ethical issues associated with malaria are similar to those that have been the subject of debate in the context of other infectious diseases, malaria also raises distinct ethical issues in virtue of its unique history, epidemiology, and biology. This paper provides preliminary ethical analyses of the especially salient issues of: (i) global health justice, (ii) universal access to malaria control initiatives, (iii) multidrug resistance, including artemisinin-based combination therapy (ACT) resistance, (iv) mandatory screening, (v) mass drug administration, (vi) benefits and risks of primaquine, and (vii) malaria in the context of blood donation and transfusion. Several ethical issues are also raised by past, present and future malaria research initiatives, in particular: (i) controlled infection studies, (ii) human landing catches, (iii) transmission-blocking vaccines, and (iv) genetically-modified mosquitoes. This article maps the terrain of these major ethical issues surrounding malaria control and elimination. Its objective is to motivate further research and discussion of ethical issues associated with malaria--and to assist health workers, researchers, and policy makers in pursuit of ethically sound malaria control practice and policy.
[Global trends in malaria control. Progress and topical tasks in malaria control programs].
Kondrashin, A V; Baranova, A M; Morozova, L F; Stepanova, E V
2011-01-01
This communication is the first in the series consisting of two publications describing the present state of malaria control and elimination in the world. The global malaria situation in 2009-2010 demonstrated a considerable situation as compared to the previous years. This improvement is associated with a considerable global increase of investments made by both national governments and world society to the malaria control programs. Spectacular progress has been achieved even in the areas of the most infection-affected African countries situated to the south of the Sahara Desert. It has been estimated that malaria cases in the world declined from 233, 000,000 in 2000 to 225,000,000 in 2009. Malaria mortality decreased from 985,000 in 2000 to 781,000 in 2009. To maintain the results achieved and to further reduce the problem of malaria worldwide, it is necessary to ensure a long-term political and financial support for malaria control programs at the national and international levels.
Rodríguez, Américo David; Penilla, Rosa Patricia; Henry-Rodríguez, Mario; Hemingway, Janet; Francisco Betanzos, Angel; Hernández-Avila, Juan Eugenio
2003-01-01
To investigate the knowledge and beliefs about malaria transmission and practices for vector control in eight villages on the coastal plain of Chiapas, Mexico. A cross-sectional survey was conducted during May and June 1995 in Chiapas, Mexico. A questionnaire to investigate family structure, knowledge on malaria transmission, preventive measures and attitudes towards seeking treatment was applied to both family heads of a sample of households. Associations were analyzed by estimating odds ratios with confidence intervals and p values, using bivariate and multivariate logistic regression methods. Malaria knowledge was poor and only 48% associated malaria with mosquito bites. The perceived benefit of indoor residual spraying was associated to a reduction of mosquitoes, a reduction in the numbers of cockroaches and rats, but only 3% associated it directly with the prevention of malaria transmission. Most villagers (97.6%) agreed with the indoor residual spraying of insecticides. Ninety nine percent of villagers had mosquito bednets, 75.7% used them all year round. Other measures used by villagers to prevent mosquito bites were smoke and mosquito coils. Above 40% of villagers self-medicated when any member of the family had a fever episode, but 51% attended proper health services (community dispensary, private physician, health worker). About 61% used pesticides for agricultural or livestock purposes and 55% applied themselves. Women had a greater participation as family health promoters, with 70% of the housewives being in charge of the application of self-protection preventive measures. Educational programs aimed at increasing awareness on the participation of mosquitoes on malaria transmission could promote community participation in malaria control in the region. The English version of this paper is available too at: http://www.insp.mx/salud/index.html.
Models for short term malaria prediction in Sri Lanka
Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H
2008-01-01
Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204
Enhancing the application of effective malaria interventions in Africa through training.
Ijumba, Jasper N; Kitua, Andrew Y
2004-08-01
Africa bears more than 90% of the entire global malaria disease burden. Surprisingly, even with the current renewed interest in malaria prevention and control and the enabling environment resulting from the Roll Back Malaria initiative and the political commitment made by the African Presidents at the Abuja Summit, there are still no significant initiatives for strengthening capacity for malaria control through training within the African continent itself. The Center for Enhancement of Effective Malaria Interventions (CEEMI) has been established in Dar es Salaam, Tanzania for results-oriented training. It is intended to provide the needed skills for identifying and solving malaria control problems and providing incentives to malaria control workers in their work performance. The intention is to produce implementers with leadership skills for planning and managing malaria control activities and who can use strategic thinking in improving their work performance. To sustain political commitment and support and to sensitize the community on malaria issues, the CEEMI, in collaboration with the Ministry of Health (National Malaria Control Program), the Institute of Journalism and Mass Communication of the University of Dar es Salaam, and the Commonwealth Broadcasting Association have already conducted malaria seminars for Tanzanian Members of Parliament and journalists from Kenya, Malawi, Tanzania, and Uganda. Additionally, a diploma course in health communication is being developed for journalists and for the same purpose. Also being developed is a training module for "Council Malaria Focal Person." This is aimed at complementing the Roll Back Malaria initiative to meet the Abuja targets of reducing morbidity and mortality due to malaria by 50% by 2010. Copyright 2004 The American Society of Tropical Medicine and Hygiene
Ferede, Getachew; Worku, Abiyu; Getaneh, Alemtegna; Ahmed, Ali; Haile, Tarekegn; Abdu, Yenus; Tessema, Belay; Wondimeneh, Yitayih; Alemu, Abebe
2013-01-01
Background. Malaria is a major public health problem in Ethiopia where an estimated 68% of the population lives in malarious areas. Studying its prevalence is necessary to implement effective control measures. Therefore, the aim of this study was to determine seven-year slide positive rate of malaria. Methods. A retrospective study was conducted at Metema Hospital from September 2006 to August 2012. Seven-year malaria cases data had been collected from laboratory registration book. Results. A total of 55,833 patients were examined for malaria; of these, 9486 (17%) study subjects were positive for malaria. The predominant Plasmodium species detected was P. falciparum (8602) (90.7%) followed by P. vivax (852) (9%). A slide positive rate of malaria within the last seven years (2006-2012) was almost constant with slight fluctuation. The age groups of 5-14 years old were highly affected by malariainfection (1375) (20.1%), followed by 15-29 years old (3986) (18.5%). High slide positive rate of malaria occurred during spring (September-November), followed by summer (June-August). Conclusion. Slide positive rate of malaria was high in study area. Therefore, health planners and administrators should give intensive health education for the community.
Underpinning Sustainable Vector Control through Informed Insecticide Resistance Management
Hemmings, Kay; Hughes, Angela J.; Chanda, Emmanuel; Musapa, Mulenga; Kamuliwo, Mulakwa; Phiri, Faustina N.; Muzia, Lucy; Chanda, Javan; Kandyata, Alister; Chirwa, Brian; Poer, Kathleen; Hemingway, Janet; Wondji, Charles S.; Ranson, Hilary; Coleman, Michael
2014-01-01
Background There has been rapid scale-up of malaria vector control in the last ten years. Both of the primary control strategies, long-lasting pyrethroid treated nets and indoor residual spraying, rely on the use of a limited number of insecticides. Insecticide resistance, as measured by bioassay, has rapidly increased in prevalence and has come to the forefront as an issue that needs to be addressed to maintain the sustainability of malaria control and the drive to elimination. Zambia's programme reported high levels of resistance to the insecticides it used in 2010, and, as a result, increased its investment in resistance monitoring to support informed resistance management decisions. Methodology/Principal Findings A country-wide survey on insecticide resistance in Zambian malaria vectors was performed using WHO bioassays to detect resistant phenotypes. Molecular techniques were used to detect target-site mutations and microarray to detect metabolic resistance mechanisms. Anopheles gambiae s.s. was resistant to pyrethroids, DDT and carbamates, with potential organophosphate resistance in one population. The resistant phenotypes were conferred by both target-site and metabolic mechanisms. Anopheles funestus s.s. was largely resistant to pyrethroids and carbamates, with potential resistance to DDT in two locations. The resistant phenotypes were conferred by elevated levels of cytochrome p450s. Conclusions/Significance Currently, the Zambia National Malaria Control Centre is using these results to inform their vector control strategy. The methods employed here can serve as a template to all malaria-endemic countries striving to create a sustainable insecticide resistance management plan. PMID:24932861
2014-01-01
Background Mobile populations are at a high risk of malaria infection and suspected to carry and spread resistant parasites. The Myanmar National Malaria Control Programme focuses on preventive interventions and vector control measures for the temporary mobile/migrant workers in Myanmar Artemisinin Resistance Containment Zones. Methods A prospective cross-sectional study was conducted in 2012 in Kawthaung and Bokepyin townships of Tanintharyi Region, Myanmar, covering 192 mobile/migrant aggregates. The objectives were to identify the spatial distribution of the mobile/migrant populations, and to assess knowledge, attitudes, perceptions, and practices concerning malaria prevention and control, and their preferred methods of interventions. The structure of the192 migrant aggregates was investigated using a migrant mapping tool. Individual and household information was collected by structured interviews of 408 respondents from 39 aggregates, supplemented by 12 in-depth interviews of health care providers, authorities, volunteers, and employers. Data were analyzed by triangulating quantitative and qualitative data. Results The primary reasons for the limitation in access to formal health services for suspected malaria within 24 hours were identified to be scattered distribution of migrant aggregates, variable working hours and the lack of transportation. Only 19.6% of respondents reported working at night from dusk to dawn. Among study populations, 73% reported a perceived risk of contracting malaria and 60% reported to know how to confirm a suspected case of malaria. Moreover, only 15% was able to cite correct antimalarial drugs, and less than 10% believed that non-compliance with antimalarial treatment may be related to the risk of drug resistance. About 50% of study population reported to seeking health care from the public sector, and to sleep under ITNs/LLINs the night before the survey. There was a gap in willingness to buy ITNs/LLINs and affordability (88.5% vs. 60.2%) which may affect their sustained and consistent use. Only 32.4% across all aggregates realized the importance of community participation in effective malaria prevention and control. Conclusions Community-based innovative approaches through strong collaboration and coordination of multi-stakeholders are desirable for relaying information on ITNs/LLINs, rapid diagnostic test, and artemisinin combination therapy and drug resistance successfully across the social and economic diversity of mobile/migrant aggregates in Myanmar. PMID:24884534
2011-01-01
Background Access to prompt and effective treatment is a cornerstone of the current malaria control strategy. Delays in starting appropriate treatment is a major contributor to malaria mortality. WHO recommends home management of malaria using artemisininbased combination therapy (ACT) and Rapid Diagnostic tests (RDTs) as one of the strategies for improving access to prompt and efective malaria case management. Methods A prospective evaluation of the effectiveness of using community health workers (CHWs) as delivery points for ACT and RDTs in the home management of malaria in two districts in Zambia. Results CHWs were able to manage malaria fevers by correctly interpreting RDT results and appropriately prescribing antimalarials. All severe malaria cases and febrile non-malaria fevers were referred to a health facility for further management. There were variations in malaria prevalence between the two districts and among the villages in each district. 100% and 99.4% of the patients with a negative RDT result were not prescribed an antimalarial in the two districts respectively. No cases progressed to severe malaria and no deaths were recorded during the study period. Community perceptions were positive. Conclusion CHWs are effective delivery points for prompt and effective malaria case management at community level. Adherence to test results is the best ever reported in Zambia. Further areas of implementation research are discussed. PMID:21651827
Costs and cost-effectiveness of malaria control interventions - a systematic review
2011-01-01
Background The control and elimination of malaria requires expanded coverage of and access to effective malaria control interventions such as insecticide-treated nets (ITNs), indoor residual spraying (IRS), intermittent preventive treatment (IPT), diagnostic testing and appropriate treatment. Decisions on how to scale up the coverage of these interventions need to be based on evidence of programme effectiveness, equity and cost-effectiveness. Methods A systematic review of the published literature on the costs and cost-effectiveness of malaria interventions was undertaken. All costs and cost-effectiveness ratios were inflated to 2009 USD to allow comparison of the costs and benefits of several different interventions through various delivery channels, across different geographical regions and from varying costing perspectives. Results Fifty-five studies of the costs and forty three studies of the cost-effectiveness of malaria interventions were identified, 78% of which were undertaken in sub-Saharan Africa, 18% in Asia and 4% in South America. The median financial cost of protecting one person for one year was $2.20 (range $0.88-$9.54) for ITNs, $6.70 (range $2.22-$12.85) for IRS, $0.60 (range $0.48-$1.08) for IPT in infants, $4.03 (range $1.25-$11.80) for IPT in children, and $2.06 (range $0.47-$3.36) for IPT in pregnant women. The median financial cost of diagnosing a case of malaria was $4.32 (range $0.34-$9.34). The median financial cost of treating an episode of uncomplicated malaria was $5.84 (range $2.36-$23.65) and the median financial cost of treating an episode of severe malaria was $30.26 (range $15.64-$137.87). Economies of scale were observed in the implementation of ITNs, IRS and IPT, with lower unit costs reported in studies with larger numbers of beneficiaries. From a provider perspective, the median incremental cost effectiveness ratio per disability adjusted life year averted was $27 (range $8.15-$110) for ITNs, $143 (range $135-$150) for IRS, and $24 (range $1.08-$44.24) for IPT. Conclusions A transparent evidence base on the costs and cost-effectiveness of malaria control interventions is provided to inform rational resource allocation by donors and domestic health budgets and the selection of optimal packages of interventions by malaria control programmes. PMID:22050911
First case of a naturally acquired human infection with Plasmodium cynomolgi
2014-01-01
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans. The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods. Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax. This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax. Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria. The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization. PMID:24564912
First case of a naturally acquired human infection with Plasmodium cynomolgi.
Ta, Thuy H; Hisam, Shamilah; Lanza, Marta; Jiram, Adela I; Ismail, NorParina; Rubio, José M
2014-02-24
Since 1960, a total of seven species of monkey malaria have been reported as transmissible to man by mosquito bite: Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium eylesi, Plasmodium knowlesi, Plasmodium inui, Plasmodium schwetzi and Plasmodium simium. With the exception of P. knowlesi, none of the other species has been found to infect humans in nature. In this report, it is described the first known case of a naturally acquired P. cynomolgi malaria in humans.The patient was a 39-year-old woman from a malaria-free area with no previous history of malaria or travel to endemic areas. Initially, malaria was diagnosed and identified as Plasmodium malariae/P. knowlesi by microscopy in the Terengganu State Health Department. Thick and thin blood films stained with 10% Giemsa were performed for microscopy examination. Molecular species identification was performed at the Institute for Medical Research (IMR, Malaysia) and in the Malaria & Emerging Parasitic Diseases Laboratory (MAPELAB, Spain) using different nested PCR methods.Microscopic re-examination in the IMR showed characteristics of Plasmodium vivax and was confirmed by a nested PCR assay developed by Snounou et al. Instead, a different PCR assay plus sequencing performed at the MAPELAB confirmed that the patient was infected with P. cynomolgi and not with P. vivax.This is the first report of human P. cynomolgi infection acquired in a natural way, but there might be more undiagnosed or misdiagnosed cases, since P. cynomolgi is morphologically indistinguishable from P. vivax, and one of the most used PCR methods for malaria infection detection may identify a P. cynomolgi infection as P. vivax.Simian Plasmodium species may routinely infect humans in Southeast Asia. New diagnostic methods are necessary to distinguish between the human and monkey malaria species. Further epidemiological studies, incriminating also the mosquito vector(s), must be performed to know the relevance of cynomolgi malaria and its implication on human public health and in the control of human malaria.The zoonotic malaria cannot be ignored in view of increasing interactions between man and wild animals in the process of urbanization.
[Investigation on knowledge of malaria prevention and control in residents of Suining County].
Tang, Yue-e
2014-08-01
To understand the status of knowledge of malaria prevention and control in residents of Suining County, so as to provide the reference for improving the implementation of malaria elimination. Nine villages in 3 townships (3 villages per township) were randomly selected as the study areas, and 200 residents aged above 15 years of each village were investigated with questionnaire for the knowledge of malaria prevention and control. The awareness rates of "malaria transmission way", main symptoms of malaria", "life-threatening of falciparum malaria", "how to treat malaria", and "how to prevent malaria" were 96.27%, 95.01%, 81.46%, 98.19% and 96.27%, respectively. There were no significant differences between the different genders and among the different areas (all P >0.05), but there were significant differences among different age groups (all P <0.05). The awareness of malaria prevention and control in residents of Suining County is relatively high, which means the health education is effective.
Aung, P Linn; Silawan, Tassanee; Rawiworrakul, Tassanee; Min, Myo
2018-01-01
Village health volunteers (VHVs) are key agents for malaria control in community. The Myanmar Medical Association-Malaria (MMA-Malaria) Project has promoted effective malaria control in endemic and high-risk townships by supporting roles of VHVs. To assess the roles of VHVs on malaria control and factors enhancing their roles in rural Myanmar. A cross-sectional study was conducted in five townships where the MMA-Malaria Project has been implemented. One hundred and fifty VHVs were sampled from five townships by simple random sampling. Data were collected by trained interviewers using structured questionnaires, which covered sociodemographic, supportive, motivational factors, and roles of malaria control. Studied variables were described by proportions, means, and standard deviations and were analyzed for their association by odds ratio with 95% confidence interval and Chi-square tests. Most of VHVs (96%) expected to demonstrate good roles on malaria control, but only 44.0% exhibited current roles at a good level. Factors enhancing their roles were female (P = 0.037), family income ≥50,001 kyat/month (P < 0.015), time serving as a volunteer 1-2 years (P = 0.006), good knowledge of malaria control (P < 0.001), good family support (P < 0.001), good community support (P < 0.001), and good motivational factors (P = 0.002). VHVs are key agents for malaria control in community. Most of VHVs expected to demonstrate good roles on malaria control, but less than half of them exhibited current roles at a good level. The systems and program for improving VHVs' knowledge, encouraging family and community support, and promoting motivation are essential for their better roles.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector... Malaria Prevention and Control in the Republic of Uganda as Part of the President's Malaria Initiative... Institute Pasteur of Madagascar and the Centers for Disease Control and Prevention on Malaria and Vector...
Modeling malaria and typhoid fever co-infection dynamics.
Mutua, Jones M; Wang, Feng-Bin; Vaidya, Naveen K
2015-06-01
Malaria and typhoid are among the most endemic diseases, and thus, of major public health concerns in tropical developing countries. In addition to true co-infection of malaria and typhoid, false diagnoses due to similar signs and symptoms and false positive results in testing methods, leading to improper controls, are the major challenges on managing these diseases. In this study, we develop novel mathematical models describing the co-infection dynamics of malaria and typhoid. Through mathematical analyses of our models, we identify distinct features of typhoid and malaria infection dynamics as well as relationships associated to their co-infection. The global dynamics of typhoid can be determined by a single threshold (the typhoid basic reproduction number, R0(T)) while two thresholds (the malaria basic reproduction number, R0(M), and the extinction index, R0(MM)) are needed to determine the global dynamics of malaria. We demonstrate that by using efficient simultaneous prevention programs, the co-infection basic reproduction number, R0, can be brought down to below one, thereby eradicating the diseases. Using our model, we present illustrative numerical results with a case study in the Eastern Province of Kenya to quantify the possible false diagnosis resulting from this co-infection. In Kenya, despite having higher prevalence of typhoid, malaria is more problematic in terms of new infections and disease deaths. We find that false diagnosis-with higher possible cases for typhoid than malaria-cause significant devastating impacts on Kenyan societies. Our results demonstrate that both diseases need to be simultaneously managed for successful control of co-epidemics. Copyright © 2015 Elsevier Inc. All rights reserved.
Assan, Abraham; Takian, Amirhossein; Hanafi-Bojd, Ahmad Ali; Rahimiforoushani, Abbas; Nematolahi, Shahrzad
2017-11-01
Despite continuing international attention to malaria prevention, the disease remains a global public health problem. We investigated socio-demographic factors influencing knowledge, attitudes, and practices about malaria in rural Ghana. Our survey looked at 354 households. Mean knowledge score was higher among individuals with a history of volunteers having visited their households to educate them about malaria; families with 4-6 members; and males. Households with at least one under-five-aged child also had significantly higher knowledge scores. Households with at least one pregnant woman evinced a positive attitude towards malaria prevention. National malaria control strategies have achieved positive results in the fight against malaria. Nonetheless, multipronged community-based health strategies that integrate malaria programs and population growth control initiatives may be able to reach by 2030 the sustainable development goal of eliminating malaria.
Knowledge, attitudes and practices of malaria in Colombia
2014-01-01
Background Although Colombia has witnessed an important decrease in malaria transmission, the disease remains a public health problem with an estimated ~10 million people currently living in areas with malaria risk and ~61,000 cases reported in 2012. This study aimed to determine and compare the level of knowledge, attitudes and practices (KAP) about malaria in three endemic communities of Colombia to provide the knowledge framework for development of new intervention strategies for malaria elimination. Methods A cross-sectional KAP survey was conducted in the municipalities of Tierralta, Buenaventura and Tumaco, categorized according to high risk (HR) and moderate risk (MR) based on the annual parasite index (API). Surveys were managed using REDCap and analysed using MATLAB and GraphPad Prism. Results A total of 267 residents, mostly women (74%) were surveyed. Although no differences were observed on the knowledge of classical malaria symptoms between HR and MR regions, significant differences were found in knowledge and attitudes about transmission mechanisms, anti-malarial use and malaria diagnosis. Most responders in both regions (93.5% in MR, and 94.3% in HR areas) indicated use of insecticide-treated nets (ITNs) to protect themselves from malaria, and 75.5% of responders in HR indicated they did nothing to prevent malaria transmission outdoors. Despite a high level of knowledge in the study regions, significant gaps persisted relating to practices. Self-medication and poor adherence to treatment, as well as lack of both indoor and outdoor vector control measures, were significantly associated with higher malaria risk. Conclusions Although significant efforts are currently being made by the Ministry of Health to use community education as one of the main components of the control strategy, these generic education programmes may not be applicable to all endemic regions of Colombia given the substantial geographic, ethnic and cultural diversity. PMID:24885909
Integrated vector management for malaria control
Beier, John C; Keating, Joseph; Githure, John I; Macdonald, Michael B; Impoinvil, Daniel E; Novak, Robert J
2008-01-01
Integrated vector management (IVM) is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1) evidence-based decision-making, 2) integrated approaches 3), collaboration within the health sector and with other sectors, 4) advocacy, social mobilization, and legislation, and 5) capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN) and/or indoor residual spraying (IRS) coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with existing biomedical strategies within national malaria control programmes. This review provides an overview of how IVM programmes are being implemented, and provides recommendations for further development of IVM to meet the goals of national malaria control programmes in Africa. PMID:19091038
Pommier de Santi, Vincent; Girod, Romain; Mura, Marie; Dia, Aissata; Briolant, Sébastien; Djossou, Félix; Dusfour, Isabelle; Mendibil, Alexandre; Simon, Fabrice; Deparis, Xavier; Pagès, Frédéric
2016-01-22
In December 2010, a Plasmodium vivax malaria outbreak occurred among French forces involved in a mission to control illegal gold mining in French Guiana. The findings of epidemiological and entomological investigations conducted after this outbreak are presented here. Data related to malaria cases reported to the French armed forces epidemiological surveillance system were collected during the epidemic period from December 2010 to April 2011. A retrospective cohort study was conducted to identify presumed contamination sites. Anopheles mosquitoes were sampled at the identified sites using Mosquito Magnet and CDC light traps. Specimens were identified morphologically and confirmed using molecular methods (sequencing of ITS2 gene and/or barcoding). Anopheles infections with Plasmodium falciparum and P. vivax were tested by both enzyme-linked immunosorbent assay and real-time PCR. Seventy-two P. vivax malaria cases were reported (three were mixed P. falciparum/P. vivax infections), leading to a global attack rate of 26.5% (72/272). Lack of compliance with vector control measures and doxycycline chemoprophylaxis was reported by patients. Two illegal gold mining sites located in remote areas in the primary forest were identified as places of contamination. In all, 595 Anopheles females were caught and 528 specimens were formally identified: 305 Anopheles darlingi, 145 Anopheles nuneztovari s.l., 63 Anopheles marajoara and 15 Anopheles triannulatus s.l. Three An. darlingi were infected by P. falciparum (infection rate: 1.1%) and four An. marajoara by P. vivax (infection rate: 6.4%). The main drivers of the outbreak were the lack of adherence by military personnel to malaria prevention measures and the high level of malaria transmission at illegal gold mining sites. Anopheles marajoara was clearly implicated in malaria transmission for the first time in French Guiana. The high infection rates observed confirm that illegal gold mining sites must be considered as high level malaria transmission areas in the territory. Illegal gold mining activities are challenging the control of malaria in French Guiana. Collaboration with neighbouring countries is necessary to take into account mobile populations such as gold miners. Malaria control strategies in the French armed forces must be adapted to P. vivax malaria and sylvatic Anopheles species.
Grietens, Koen Peeters; Xuan, Xa Nguyen; Ribera, Joan; Duc, Thang Ngo; Bortel, Wim van; Ba, Nhat Truong; Van, Ky Pham; Xuan, Hung Le; D'Alessandro, Umberto; Erhart, Annette
2012-01-01
Long-lasting insecticidal hammocks (LLIHs) are being evaluated as an additional malaria prevention tool in settings where standard control strategies have a limited impact. This is the case among the Ra-glai ethnic minority communities of Ninh Thuan, one of the forested and mountainous provinces of Central Vietnam where malaria morbidity persist due to the sylvatic nature of the main malaria vector An. dirus and the dependence of the population on the forest for subsistence--as is the case for many impoverished ethnic minorities in Southeast Asia. A social science study was carried out ancillary to a community-based cluster randomized trial on the effectiveness of LLIHs to control forest malaria. The social science research strategy consisted of a mixed methods study triangulating qualitative data from focused ethnography and quantitative data collected during a malariometric cross-sectional survey on a random sample of 2,045 study participants. To meet work requirements during the labor intensive malaria transmission and rainy season, Ra-glai slash and burn farmers combine living in government supported villages along the road with a second home at their fields located in the forest. LLIH use was evaluated in both locations. During daytime, LLIH use at village level was reported by 69.3% of all respondents, and in forest fields this was 73.2%. In the evening, 54.1% used the LLIHs in the villages, while at the fields this was 20.7%. At night, LLIH use was minimal, regardless of the location (village 4.4%; forest 6.4%). Despite the free distribution of insecticide-treated nets (ITNs) and LLIHs, around half the local population remains largely unprotected when sleeping in their forest plot huts. In order to tackle forest malaria more effectively, control policies should explicitly target forest fields where ethnic minority farmers are more vulnerable to malaria.
Taking a Bite out of Malaria: Controlled Human Malaria Infection by Needle and Syringe
2013-01-01
sporozoites (PfSPZ Challenge).1 Because of the potential of this “challenge in a bottle” to standardize and dramatically expand the use of controlled human...to CHMI5,6 since CHMI using mosquitoes that had fed on in vitro cultures of P. falciparum was introduced in 1986.14 Investigators frommultiple...conduct of CHMI and a second document for the microscopy methods used to determine the patency endpoint.15 Nevertheless, CHMI based upon the bites of
Rowland, Mark; Webster, Jayne; Saleh, Padshah; Chandramohan, Daniel; Freeman, Tim; Pearcy, Barbara; Durrani, Naeem; Rab, Abdur; Mohammed, Nasir
2002-10-01
Malaria is often a major health problem in countries undergoing war or conflict owing to breakdown of health systems, displacement of vulnerable populations, and the increased risk of epidemics. After 23 years of conflict, malaria has become prevalent in many rural areas of Afghanistan. From 1993 to the present, a network of non-governmental organizations, co-ordinated by HealthNet International, has operated a programme of bednet sales and re-treatment in lowland areas. To examine whether a strategy based on insecticide-treated nets (ITN) is a viable public health solution to malaria, communities were given the opportunity to buy nets and then monitored to determine population coverage and disease control impact. This was carried out using two contrasting methods: cross-sectional surveys and passive surveillance from clinics using a case-control design. Nets were purchased by 59% of families. Cross-sectional surveys demonstrated a 59% reduction in the risk of Plasmodium falciparum infection among ITN users compared with non-users (OR 0.41; 95% CI 0.25-0.66). The passive surveillance method showed a comparable reduction in the risk of symptomatic P. falciparum malaria among ITN users (OR 0.31; 95% CI 0.21-0.47). The cross-sectional method showed a 50% reduction in risk of P. vivax infection in ITN users compared with non-users (OR 0.50; 95% CI 0.17-1.49) but this effect was not statistically significant. The passive surveillance method showed a 25% reduction in the risk of symptomatic P. vivax malaria (OR 0.75; 95% CI 0.66-0.85). ITN appeared to be less effective against P. vivax because of relapsing infections; hence an effect took more than one season to become apparent. Passive surveillance was cheaper to perform and gave results consistent with cross-sectional surveys. Untreated nets provided some protection. Data on socioeconomic status, a potential confounding factor, was not collected. However, at the time of net sales, there was no difference in malaria prevalence between buyers and non-buyers. The abundance of Anopheles stephensi, the main vector, did not appear to be affected by ITN. ITN constitute one of the few feasible options for protection against malaria in chronic emergencies.
Laurens, Matthew B.; Thera, Mahamadou A.; Coulibaly, Drissa; Ouattara, Amed; Kone, Abdoulaye K.; Guindo, Ando B.; Traore, Karim; Traore, Idrissa; Kouriba, Bourema; Diallo, Dapa A.; Diarra, Issa; Daou, Modibo; Dolo, Amagana; Tolo, Youssouf; Sissoko, Mahamadou S.; Niangaly, Amadou; Sissoko, Mady; Takala-Harrison, Shannon; Lyke, Kirsten E.; Wu, Yukun; Blackwelder, William C.; Godeaux, Olivier; Vekemans, Johan; Dubois, Marie-Claude; Ballou, W. Ripley; Cohen, Joe; Dube, Tina; Soisson, Lorraine; Diggs, Carter L.; House, Brent; Bennett, Jason W.; Lanar, David E.; Dutta, Sheetij; Heppner, D. Gray; Plowe, Christopher V.; Doumbo, Ogobara K.
2013-01-01
Background The FMP2.1/AS02A candidate malaria vaccine was tested in a Phase 2 study in Mali. Based on results from the first eight months of follow-up, the vaccine appeared well-tolerated and immunogenic. It had no significant efficacy based on the primary endpoint, clinical malaria, but marginal efficacy against clinical malaria in secondary analyses, and high allele-specific efficacy. Extended follow-up was conducted to evaluate extended safety, immunogenicity and efficacy. Methods A randomized, double-blinded trial of safety, immunogenicity and efficacy of the candidate Plasmodium falciparum apical membrane antigen 1 (AMA1) vaccine FMP2.1/AS02A was conducted in Bandiagara, Mali. Children aged 1–6 years were randomized in a 1∶1 ratio to receive FMP2.1/AS02A or control rabies vaccine on days 0, 30 and 60. Using active and passive surveillance, clinical malaria and adverse events as well as antibodies against P. falciparum AMA1 were monitored for 24 months after the first vaccination, spanning two malaria seasons. Findings 400 children were enrolled. Serious adverse events occurred in nine participants in the FMP2.1/AS02A group and three in the control group; none was considered related to study vaccination. After two years, anti-AMA1 immune responses remained significantly higher in the FMP2.1/AS02A group than in the control group. For the entire 24-month follow-up period, vaccine efficacy was 7.6% (p = 0.51) against first clinical malaria episodes and 9.9% (p = 0.19) against all malaria episodes. For the final 16-month follow-up period, vaccine efficacy was 0.9% (p = 0.98) against all malaria episodes. Allele-specific efficacy seen in the first malaria season did not extend into the second season of follow-up. Interpretation Allele-specific vaccine efficacy was not sustained in the second malaria season, despite continued high levels of anti-AMA1 antibodies. This study presents an opportunity to evaluate correlates of partial protection against clinical malaria that waned during the second malaria season. Trial Registration Clinicaltrials.gov NCT00460525 NCT00460525 PMID:24260195
Chuma, Jane; Abuya, Timothy; Memusi, Dorothy; Juma, Elizabeth; Akhwale, Willis; Ntwiga, Janet; Nyandigisi, Andrew; Tetteh, Gladys; Shretta, Rima; Amin, Abdinasir
2009-01-01
Background Effective case management is central to reducing malaria mortality and morbidity worldwide, but only a minority of those affected by malaria, have access to prompt effective treatment. In Kenya, the Division of Malaria Control is committed to ensuring that 80 percent of childhood fevers are treated with effective anti-malarial medicines within 24 hours of fever onset, but this target is largely unmet. This review aimed to document evidence on access to effective malaria treatment in Kenya, identify factors that influence access, and make recommendations on how to improve prompt access to effective malaria treatment. Since treatment-seeking patterns for malaria are similar in many settings in sub-Saharan Africa, the findings presented in this review have important lessons for other malaria endemic countries. Methods Internet searches were conducted in PUBMED (MEDLINE) and HINARI databases using specific search terms and strategies. Grey literature was obtained by soliciting reports from individual researchers working in the treatment-seeking field, from websites of major organizations involved in malaria control and from international reports. Results The review indicated that malaria treatment-seeking occurs mostly in the informal sector; that most fevers are treated, but treatment is often ineffective. Irrational drug use was identified as a problem in most studies, but determinants of this behaviour were not documented. Availability of non-recommended medicines over-the-counter and the presence of substandard anti-malarials in the market are well documented. Demand side determinants of access include perception of illness causes, severity and timing of treatment, perceptions of treatment efficacy, simplicity of regimens and ability to pay. Supply side determinants include distance to health facilities, availability of medicines, prescribing and dispensing practices and quality of medicines. Policy level factors are around the complexity and unclear messages regarding drug policy changes. Conclusion Kenya, like many other African countries, is still far from achieving the Abuja targets. The government, with support from donors, should invest adequately in mechanisms that promote access to effective treatment. Such approaches should focus on factors influencing multiple dimensions of access and will require the cooperation of all stakeholders working in malaria control. PMID:19863788
A rapid malaria appraisal in the Venezuelan Amazon
2009-01-01
Background While the federal state of Amazonas bears the highest risk for malaria in Venezuela (2007: 68.4 cases/1000 inhabitants), little comprehensive information about the malaria situation is available from this area. The purpose of this rapid malaria appraisal (RMA) was to provide baseline data about malaria and malaria control in Amazonas. Methods The RMA methodology corresponds to a rapid health impact assessment (HIA) as described in the 1999 Gothenburg consensus. In conjunction with the actors of the malaria surveillance system, all useful data and information, which were accessible within a limited time-frame of five visits to Amazonas, were collected, analysed and interpreted. Results Mortality from malaria is low (< 1 in 105) and slide positivity rates have stayed at the same level for the last two decades (15% ± 6% (SD)). Active case detection accounts for ca. 40% of slides taken. The coverage of the censured population with malaria notification points (NPs) has been achieved in recent years. The main parasite is Plasmodium vivax (84% of cases). The proportion of Plasmodium falciparum is on the decline, possibly driven by the introduction of cost-free artemisinin-based combination therapy (ACT) (1988: 33.4%; 2007: 15.4%). Monitoring and documentation is complete, systematic and consistent, but poorly digitalized. Malaria transmission displayed a visible lag behind rainfall in the capital municipality of Atures, but not in the other municipalities. In comparison to reference microscopy, quality of field microscopy and rapid diagnostic tests (RDTs) is suboptimal (kappa < 0.75). Hot spots of malaria risk were seen in some indigenous ethnic groups. Conflicting strategies in respect of training of community health workers (CHW) and the introduction of new diagnostic tools (RDTs) were observed. Conclusion Malaria control is possible, even in tropical rain forest areas, if the health system is working adequately. Interventions have to be carefully designed and the features of the particular local Latin American context considered. PMID:20003328
Shimaponda-Mataa, Nzooma M; Tembo-Mwase, Enala; Gebreslasie, Michael; Achia, Thomas N O; Mukaratirwa, Samson
2017-11-01
Although malaria morbidity and mortality are greatly reduced globally owing to great control efforts, the disease remains the main contributor. In Zambia, all provinces are malaria endemic. However, the transmission intensities vary mainly depending on environmental factors as they interact with the vectors. Generally in Africa, possibly due to the varying perspectives and methods used, there is variation on the relative importance of malaria risk determinants. In Zambia, the role climatic factors play on malaria case rates has not been determined in combination of space and time using robust methods in modelling. This is critical considering the reversal in malaria reduction after the year 2010 and the variation by transmission zones. Using a geoadditive or structured additive semiparametric Poisson regression model, we determined the influence of climatic factors on malaria incidence in four endemic provinces of Zambia. We demonstrate a strong positive association between malaria incidence and precipitation as well as minimum temperature. The risk of malaria was 95% lower in Lusaka (ARR=0.05, 95% CI=0.04-0.06) and 68% lower in the Western Province (ARR=0.31, 95% CI=0.25-0.41) compared to Luapula Province. North-western Province did not vary from Luapula Province. The effects of geographical region are clearly demonstrated by the unique behaviour and effects of minimum and maximum temperatures in the four provinces. Environmental factors such as landscape in urbanised places may also be playing a role. Copyright © 2017 Elsevier B.V. All rights reserved.
The evil circle of poverty: a qualitative study of malaria and disability
2012-01-01
Background This article discusses the link between disability and malaria in a poor rural setting. Global malaria programmes and rehabilitation programmes are organized as vertical and separate programmes, and as such they focus on prevention, cure and control, and disability respectively. When looking at specific conditions and illnesses, the impairing long-term consequences of illness incidents during childhood are not questioned. Methods The study design was ethnographic with an open, exploratory approach. Data were collected in Mangochi District in Malawi through qualitative in-depth interviews and participant observation. Results Despite a local-based health service system, people living in poor rural areas are confronted with a multitude of barriers when accessing malaria prevention and treatment. Lack of skilled health personnel and equipment add to the general burden of poverty: insufficient knowledge about health care, problems connected to accessing the health facility in time, insufficient initiatives to prevent malaria attacks, and a general lack of attention to the long term disabling effects of a malaria attack. Conclusions This study points to the importance of building malaria programmes, research and statistics that take into consideration the consequences of permanent impairment after a malaria attack, as well as the context of poverty in which they often occur. In order to do so, one needs to develop methods for detecting people whose disabilities are a direct result of not having received health services after a malaria episode. This may be done through qualitative approaches in local communities and should also be supplemented by suitable surveys in order to estimate the problem on a larger scale. PMID:22236358
The history of 20th century malaria control in Peru
2013-01-01
Malaria has been part of Peruvian life since at least the 1500s. While Peru gave the world quinine, one of the first treatments for malaria, its history is pockmarked with endemic malaria and occasional epidemics. In this review, major increases in Peruvian malaria incidence over the past hundred years are described, as well as the human factors that have facilitated these events, and concerted private and governmental efforts to control malaria. Political support for malaria control has varied and unexpected events like vector and parasite resistance have adversely impacted morbidity and mortality. Though the ready availability of novel insecticides like DDT and efficacious medications reduced malaria to very low levels for a decade after the post eradication era, malaria reemerged as an important modern day challenge to Peruvian public health. Its reemergence sparked collaboration between domestic and international partners towards the elimination of malaria in Peru. PMID:24001096
Messenger, Louisa A; Rowland, Mark
2017-05-22
While long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control throughout sub-Saharan Africa, there is an urgent need for the development of novel insecticide delivery mechanisms to sustain and consolidate gains in disease reduction and to transition towards malaria elimination and eradication. Insecticide-treated durable wall lining (ITWL) may represent a new paradigm for malaria control as a potential complementary or alternate longer-lasting intervention to IRS. ITWL can be attached to inner house walls, remain efficacious over multiple years and overcome some of the operational constraints of first-line control strategies, specifically nightly behavioural compliance required of LLINs and re-current costs and user fatigue associated with IRS campaigns. Initial experimental hut trials of insecticide-treated plastic sheeting reported promising results, achieving high levels of vector mortality, deterrence and blood-feeding inhibition, particularly when combined with LLINs. Two generations of commercial ITWL have been manufactured to date containing either pyrethroid or non-pyrethroid formulations. While some Phase III trials of these products have demonstrated reductions in malaria incidence, further large-scale evidence is still required before operational implementation of ITWL can be considered either in a programmatic or more targeted community context. Qualitative studies of ITWL have identified aesthetic value and observable entomological efficacy as key determinants of household acceptability. However, concerns have been raised regarding installation feasibility and anticipated cost-effectiveness. This paper critically reviews ITWL as both a putative mechanism of house improvement or more conventional intervention and discusses its future prospects as a method for controlling malaria and other vector-borne diseases.
2014-01-01
Background A malaria vaccine could be an important addition to current control strategies. We report the safety and vaccine efficacy (VE) of the RTS,S/AS01 vaccine during 18 mo following vaccination at 11 African sites with varying malaria transmission. Methods and Findings 6,537 infants aged 6–12 wk and 8,923 children aged 5–17 mo were randomized to receive three doses of RTS,S/AS01 or comparator vaccine. VE against clinical malaria in children during the 18 mo after vaccine dose 3 (per protocol) was 46% (95% CI 42% to 50%) (range 40% to 77%; VE, p<0.01 across all sites). VE during the 20 mo after vaccine dose 1 (intention to treat [ITT]) was 45% (95% CI 41% to 49%). VE against severe malaria, malaria hospitalization, and all-cause hospitalization was 34% (95% CI 15% to 48%), 41% (95% CI 30% to 50%), and 19% (95% CI 11% to 27%), respectively (ITT). VE against clinical malaria in infants was 27% (95% CI 20% to 32%, per protocol; 27% [95% CI 21% to 33%], ITT), with no significant protection against severe malaria, malaria hospitalization, or all-cause hospitalization. Post-vaccination anti-circumsporozoite antibody geometric mean titer varied from 348 to 787 EU/ml across sites in children and from 117 to 335 EU/ml in infants (per protocol). VE waned over time in both age categories (Schoenfeld residuals p<0.001). The number of clinical and severe malaria cases averted per 1,000 children vaccinated ranged across sites from 37 to 2,365 and from −1 to 49, respectively; corresponding ranges among infants were −10 to 1,402 and −13 to 37, respectively (ITT). Meningitis was reported as a serious adverse event in 16/5,949 and 1/2,974 children and in 9/4,358 and 3/2,179 infants in the RTS,S/AS01 and control groups, respectively. Conclusions RTS,S/AS01 prevented many cases of clinical and severe malaria over the 18 mo after vaccine dose 3, with the highest impact in areas with the greatest malaria incidence. VE was higher in children than in infants, but even at modest levels of VE, the number of malaria cases averted was substantial. RTS,S/AS01 could be an important addition to current malaria control in Africa. Trial registration www.ClinicalTrials.gov NCT00866619 Please see later in the article for the Editors' Summary PMID:25072396
Pribluda, Victor S; Barojas, Adrian; Añez, Arletta; López, Cecilia G; Figueroa, Ruth; Herrera, Roxana; Nakao, Gladys; Nogueira, Fernando Ha; Pianetti, Gerson A; Povoa, Marinete M; Viana, Giselle Mr; Gomes, Margarete S Mendonça; Escobar, Jose P; Sierra, Olga L Muñoz; Norena, Susana P Rendon; Veloz, Raúl; Bravo, Marcy Silva; Aldás, Martha R; Hindssemple, Alison; Collins, Marilyn; Ceron, Nicolas; Krishnalall, Karanchand; Adhin, Malti; Bretas, Gustavo; Hernandez, Nelly; Mendoza, Marjorie; Smine, Abdelkrim; Chibwe, Kennedy; Lukulay, Patrick; Evans, Lawrence
2012-06-15
Ensuring the quality of malaria medicines is crucial in working toward malaria control and eventual elimination. Unlike other validated tests that can assess all critical quality attributes, which is the standard for determining the quality of medicines, basic tests are significantly less expensive, faster, and require less skilled labour; yet, these tests provide reproducible data and information on several critical quality attributes, such as identity, purity, content, and disintegration. Visual and physical inspection also provides valuable information about the manufacturing and the labelling of medicines, and in many cases this inspection is sufficient to detect counterfeit medicines. The Promoting the Quality of Medicines (PQM) programme has provided technical assistance to Amazon Malaria Initiative (AMI) countries to implement the use of basic tests as a key screening mechanism to assess the quality of malaria medicines available to patients in decentralized regions. Trained personnel from the National Malaria Control Programmes (NMCPs), often in collaboration with country's Official Medicine Control Laboratory (OMCL), developed country- specific protocols that encompassed sampling methods, sample analysis, and data reporting. Sampling sites were selected based on malaria burden, accessibility, and geographical location. Convenience sampling was performed and countries were recommended to store the sampled medicines under conditions that did not compromise their quality. Basic analytical tests, such as disintegration and thin layer chromatography (TLC), were performed utilizing a portable mini-laboratory. Results were originally presented at regional meetings in a non-standardized format that lacked relevant medicines information. However, since 2008 information has been submitted utilizing a template specifically developed by PQM for that purpose. From 2005 to 2010, the quality of 1,663 malaria medicines from seven AMI countries was evaluated, mostly collected from the public sector, 1,445/1,663 (86.9%). Results indicate that 193/1,663 (11.6%) were found not to meet quality specifications. Most failures were reported during visual and physical inspection, 142/1663 (8.5%), and most of these were due to expired medicines, 118/142 (83.1%). Samples failing TLC accounted for 27/1,663 (1.6%) and those failing disintegration accounted for 24/1,663 (1.4%). Medicines quality failures decreased significantly during the last two years. Basic tests revealed that the quality of medicines in the public sector improved over the years, since the implementation of this type of quality monitoring programme in 2005. However, the lack of consistent confirmatory tests in the quality control (QC) laboratory, utilizing methods that can also evaluate additional quality attributes, could still mask quality issues. In the future, AMI countries should improve coordination with their health authorities and their QC lab consistently, to provide a more complete picture of malaria medicines quality and support the implementation of corrective actions. Facilities in the private and informal sectors also should be included when these sectors constitute an important source of medicines used by malaria patients.
Ding, Guoyong; Gao, Lu; Li, Xuewen; Zhou, Maigeng; Liu, Qiyong; Ren, Hongyan; Jiang, Baofa
2014-01-01
Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China. A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study. A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR) = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively. Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters.
Community perceptions of a malaria vaccine in the Kintampo districts of Ghana.
Febir, Lawrence G; Asante, Kwaku P; Dzorgbo, Dan-Bright S; Senah, Kojo A; Letsa, Timothy S; Owusu-Agyei, Seth
2013-05-07
Malaria remains the leading cause of morbidity and mortality in sub-Saharan Africa despite tools currently available for its control. Making malaria vaccine available for routine use will be a major hallmark, but its acceptance by community members and health professionals within the health system could pose considerable challenge as has been found with the introduction of polio vaccinations in parts of West Africa. Some of these challenges may not be expected since decisions people make are many a time driven by a complex myriad of perceptions. This paper reports knowledge and perceptions of community members in the Kintampo area of Ghana where malaria vaccine trials have been ongoing as part of the drive for the first-ever licensed malaria vaccine in the near future. Both qualitative and quantitative methods were used in the data collection processes. Women and men whose children were or were not involved in the malaria vaccine trial were invited to participate in focus group discussions (FGDs). Respondents, made up of heads of religious groupings in the study area, health care providers, traditional healers and traditional birth attendants, were also invited to participate in in-depth interviews (IDIs). A cross-sectional survey was conducted in communities where the malaria vaccine trial (Mal 047RTS,S) was carried out. In total, 12 FGDs, 15 IDIs and 466 household head interviews were conducted. Knowledge about vaccines was widespread among participants. Respondents would like their children to be vaccinated against all childhood illnesses including malaria. Knowledge of the long existing routine vaccines was relatively high among respondents compared to hepatitis B and Haemophilus influenza type B vaccines that were introduced more recently in 2002. There was no clear religious belief or sociocultural practice that will serve as a possible barrier to the acceptance of a malaria vaccine. With the assumption that a malaria vaccine will be as efficacious as other EPI vaccines, community members in Central Ghana will accept and prefer malaria vaccine to malaria drugs as a malaria control tool. Beliefs and cultural practices as barriers to the acceptance of malaria vaccine were virtually unknown in the communities surveyed.
Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M.; Wu, Lemuel D.; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M. S. Riana; Seto, Edmund
2015-01-01
Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based “mSpray” app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2,865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. PMID:24769412
2014-01-01
Background Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain ‘hotspots’ of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. Methods National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. ‘Hotspots’ of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. Results The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. Conclusion This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions. PMID:24886389
2014-01-01
Background Despite the significant reduction of malaria transmission in Rwanda, Ruhuha sector is still a highly endemic area for malaria. The objective of this activity was to explore and brainstorm the potential roles of various community stakeholders in malaria elimination. Methods Horizontal participatory approaches such as ‘open space’ have been deployed to explore local priorities, stimulate community contribution to project planning, and to promote local capacity to manage programmes. Two open space meetings were conducted with 62 and 82 participants in years 1 and 2, respectively. Participants included purposively selected community and local organizations’ representatives. Results Malaria was perceived as a health concern by the respondents despite the reported reduction in prevalence from 60 to 20% for cases at the local health centre. Some misconceptions of the cause of malaria and misuse of preventive strategies were noted. Poverty was deemed to be a contributing factor to malaria transmission, with suggestions that improvement of living conditions for poor families might help malaria reduction. Participants expressed willingness to contribute to malaria elimination and underscored the need for constant education, sensitization and mobilization towards malaria control in general. Active diagnosis, preventative strategies and prompt treatment of malaria cases were all mentioned by participants as ways to reduce malaria. Participants suggested that partnership of stakeholders at various levels could speed up programme activities. A community rewards system was deemed important to motivate engaged participants, i.e., community health workers and households. Establishment of malaria clubs in schools settings was also suggested as crucial to speed up community awareness and increase skills towards further malaria reduction. Conclusions This bottom-up approach was found useful in engaging the local community, enabling them to explore issues related to malaria in the area and suggest solutions for sustainable malaria elimination gains. PMID:24886145
Evaluation of the OnSite malaria rapid test performance in Miandrivazo, Madagascar.
Ravaoarisoa, E; Andriamiandranoro, T; Raherinjafy, R; Jahevitra, M; Razanatsiorimalala, S; Andrianaranjaka, V; Randrianarivelojosia, M
2017-10-01
The performance of the malaria rapid diagnostic test OnSite-for detecting pan specific pLDH and Plasmodium falciparum specific HRP2 - was assessed during the malaria transmission peak period in Miandrivazo, in the southwestern part of Madagascar from April 20 to May 6, 2010. At the laboratory, the quality control OnSite Malaria Rapid Test according to the WHO/TDR/FIND method demonstrated that the test had good sensitivity. Of the 218 OnSite tests performed at the Miandrivazo Primary Health Center on patients with fever or a recent history of fever, four (1.8%, 95% CI: 0.6-4.9%) were invalid. Ninety four (43,1%) cases of malaria were confirmed by microscopy, of which 90 were P. falciparum malaria and 4 Plasmodium vivax malaria. With a Cohen's kappa coefficient of 0.94, the agreement between microscopy and OnSite is excellent. Compared with the rapid test CareStart™ commonly used within the public health structures in Madagascar, the sensitivity and specificity of the OnSite test were 97.9% and 96.8%.
Rezaei-Hemami, Mohsen; Akbari-Sari, Ali; Raiesi, Ahmad; Vatandoost, Hassan; Majdzadeh, Reza
2014-01-01
Malaria still is considered as a public health problem in Iran. The aim of the National Malaria Control Department is to reach the elimination by 2024. By decreasing the number of malaria cases in preelimination phase the cost effectiveness of malaria interventions decreases considerably. This study estimated the cost effectiveness of various strategies to combat malaria in preelimination and elimination phases in Iran. running costs of the interventions at each level of intervention was estimated by using evidence and expert opinions. The effect of each intervention was estimated using the documentary evidence available and expert opinions. Using a point estimate and distribution of each variable the sensitivity was evaluated with the Monte Carlo method. The most cost-effective interventions were insecticide treated net (ITN), larviciding, surveillance for diagnosis and treatment of patients less than 24 hours, and indoor residual spraying (IRS) respectively, No related evidence found for the effectiveness of the border facilities. This study showed that interventions in the elimination phase of malaria have low cost effectiveness in Iran like many other countries. However ITN is the most cost effective intervention among the available interventions.
[Efficiency and specificity of the KAT-test for rapid diagnosis of falciparum malaria].
Cong, Le Dinh; Sergiev, V P; Rabinovich, S A; Nhah, Doan Hanh; Huong, Nguyen Van; Morozov, E N; Kukina, I V; Thinh, Ta Thi; Maksakovskaia, E V; Dao, Le Minh; Chalyĭ, V F; To, Dang Thi; Fandeev, V A; Hoa, Ngo Viet; Due, Nguyen Thi
2002-01-01
A new rapid KAT Quick Malaria test for the diagnosis of falciparum malaria, which is based on the detection of a monoclonal antibody-antigen complex of malaria parasites, has been worked out by the KAT Medical CC in South Africa. The efficiency and specificity of the KAT test were compared with those of the microscopic method and with the ICT test for rapid diagnosis of P. falciparum and P. vivax. The polymerase chain reaction was used as a control test. Testing for malaria was performed on 98 blood samples from feverish patients in Vietnam and Tadjikistan and among the persons who had returned to Moscow from endemic regions. The efficiency of the KAT test for falciparum-malaria was found to be 100% versus 90.5% with ICT. The absence of cross-reactions with P. vivax and the presence of pseudopositive results of the KAT test for fever cases of non-malaria origin indicate its high specificity. There was no correlation between the rate of test line colouring and the level of parasitemia. The KAT test yielded positive results only when gametocytes were found in blood specimens.
Serologic Markers for Detecting Malaria in Areas of Low Endemicity, Somalia, 2008
Youssef, Randa M.; Cook, Jackie; Cox, Jonathan; Alegana, Victor A.; Amran, Jamal; Noor, Abdisalan M.; Snow, Robert W.; Drakeley, Chris
2010-01-01
Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy. PMID:20202412
Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008.
Bousema, Teun; Youssef, Randa M; Cook, Jackie; Cox, Jonathan; Alegana, Victor A; Amran, Jamal; Noor, Abdisalan M; Snow, Robert W; Drakeley, Chris
2010-03-01
Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.
Challenges and prospects for dengue and malaria control in Thailand, Southeast Asia.
Corbel, Vincent; Nosten, Francois; Thanispong, Kanutcharee; Luxemburger, Christine; Kongmee, Monthathip; Chareonviriyaphap, Theeraphap
2013-12-01
Despite significant advances in the search for potential dengue vaccines and new therapeutic schemes for malaria, the control of these diseases remains difficult. In Thailand, malaria incidence is falling whereas that of dengue is rising, with an increase in the proportion of reported severe cases. In the absence of antiviral therapeutic options for acute dengue, appropriate case management reduces mortality. However, the interruption of transmission still relies on vector control measures that are currently insufficient to curtail the cycle of epidemics. Drug resistance in malaria parasites is increasing, compromising malaria control and elimination. Deficiencies in our knowledge of vector biology and vectorial capacity also hinder public health efforts for vector control. Challenges to dengue and malaria control are discussed, and research priorities identified. Copyright © 2013. Published by Elsevier Ltd.
Sheikhzadeh, Khodadad; Haghdoost, Ali Akbar; Bahrampour, Abbas; Zolala, Farzaneh; Raeisi, Ahmad
2016-04-14
Controlling and preventive measures considerably reduced malaria incidence in Iran over the past few years, which confined the endemic areas to some regions in the southeastern Iran. The National Malaria Elimination Programme commenced in 2010. With regard to the presumption that the elimination programme interventions have accelerated the declining trend of malaria incidence across the endemic areas of Iran, the present study attempted to assess the effectiveness of the elimination programme by reviewing malaria incidence status, over a 14-year period, and comparing the trend of malaria incidence across malaria-endemic areas between the control and pre-elimination phase, and the elimination phase. A retrospective analysis of malaria surveillance data was conducted in a 14-year period (2001-2014), using multilevel Poisson regression. The epidemiological malaria maps and indicators also were developed and compared between the control and pre-elimination phase, and the elimination phase. The mean of malaria incidence was 2.2 (1.7-2.7) for the entire study period. This rate was 3.4 (2.6-4.1) in the control and pre-elimination phase, and 0.41 (0.25-0.57) for the elimination phase. During the malaria elimination phase, the decline of annual malaria incidence had significantly accelerated and autochthonous cases had the greatest difference in malaria incidence decline (compared to the control and pre-elimination phase), whereas, falciparum cases had the lowest difference in malaria incidence decline, followed by non-Iranian and imported cases. Furthermore, there was a decline in Iranians to non-Iranians ratio and an increase in the ratios of over 15 to under 15, as well as male to female, in the elimination phase in comparison to the control and pre-elimination phase. It seems that the decline of malaria transmission, which has been initiated over the past few years, has accelerated as a result of the elimination programme, and Iran is approaching the goals set regarding the elimination of this disease.
Quantifying the impact of decay in bed-net efficacy on malaria transmission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngonghala, Calistus N.; Del Valle, Sara Y.; Zhao, Ruijun
Insecticide-treated nets (ITNs) are at the forefront of malaria control programs and even though the percentage of households in sub-Saharan Africa that owned nets increased from 3% in 2000 to 53% in 2012, many children continue to die from malaria. The potential impact of ITNs on reducing malaria transmission is limited due to inconsistent or improper use, as well as physical decay in effectiveness. Most mathematical models for malaria transmission have assumed a fixed effectiveness rate for bed-nets, which can overestimate the impact of nets on malaria control. We develop a model for malaria spread that captures the decrease inmore » ITN effectiveness due to physical and chemical decay, as well as human behavior as a function of time. We perform uncertainty and sensitivity analyses to identify and rank parameters that play a critical role in malaria transmission. These analyses show that the basic reproduction number R 0, and the infectious human population are most sensitive to bed-net coverage and the biting rate of mosquitoes. Our results show the existence of a backward bifurcation for the case in which ITN efficacy is constant over time, which occurs for some range of parameters and is characterized by high malaria mortality in humans. This result implies that bringing R 0 to less than one is not enough for malaria elimination but rather additional efforts will be necessary to control the disease. For the case in which ITN efficacy decays over time, we determine coverage levels required to control malaria for different ITN efficacies and demonstrate that ITNs with longer useful lifespans perform better in malaria control. We conclude that malaria control programs should focus on increasing bed-net coverage, which can be achieved by enhancing malaria education and increasing bed-net distribution in malaria endemic regions.« less
Quantifying the impact of decay in bed-net efficacy on malaria transmission
Ngonghala, Calistus N.; Del Valle, Sara Y.; Zhao, Ruijun; ...
2014-08-23
Insecticide-treated nets (ITNs) are at the forefront of malaria control programs and even though the percentage of households in sub-Saharan Africa that owned nets increased from 3% in 2000 to 53% in 2012, many children continue to die from malaria. The potential impact of ITNs on reducing malaria transmission is limited due to inconsistent or improper use, as well as physical decay in effectiveness. Most mathematical models for malaria transmission have assumed a fixed effectiveness rate for bed-nets, which can overestimate the impact of nets on malaria control. We develop a model for malaria spread that captures the decrease inmore » ITN effectiveness due to physical and chemical decay, as well as human behavior as a function of time. We perform uncertainty and sensitivity analyses to identify and rank parameters that play a critical role in malaria transmission. These analyses show that the basic reproduction number R 0, and the infectious human population are most sensitive to bed-net coverage and the biting rate of mosquitoes. Our results show the existence of a backward bifurcation for the case in which ITN efficacy is constant over time, which occurs for some range of parameters and is characterized by high malaria mortality in humans. This result implies that bringing R 0 to less than one is not enough for malaria elimination but rather additional efforts will be necessary to control the disease. For the case in which ITN efficacy decays over time, we determine coverage levels required to control malaria for different ITN efficacies and demonstrate that ITNs with longer useful lifespans perform better in malaria control. We conclude that malaria control programs should focus on increasing bed-net coverage, which can be achieved by enhancing malaria education and increasing bed-net distribution in malaria endemic regions.« less
Malaria successes and challenges in Asia.
Bhatia, Rajesh; Rastogi, Rakesh Mani; Ortega, Leonard
2013-12-01
Asia ranks second to Africa in terms of malaria burden. In 19 countries of Asia, malaria is endemic and 2.31 billion people or 62% of the total population in these countries are at risk of malaria. In 2010, WHO estimated around 34.8 million cases and 45,600 deaths due to malaria in Asia. In 2011, 2.7 million cases and > 2000 deaths were reported. India, Indonesia, Myanmar and Pakistan are responsible for >85% of the reported cases (confirmed) and deaths in Asia. In last 10 yr, due to availability of donor's fund specially from Global fund, significant progress has been made by the countries in Asia in scaling-up malaria control interventions which were instrumental in reducing malaria morbidity and mortality significantly. There is a large heterogeneity in malaria epidemiology in Asia. As a result, the success in malaria control/elimination is also diverse. As compared to the data of the year 2000, out of 19 malaria endemic countries, 12 countries were able to reduce malaria incidence (microscopically confirmed cases only) by 75%. Two countries, namely Bangladesh and Malaysia are projected to reach 75% reduction by 2015 while India is projected to reach 50-75% only by 2015. The trend could not be assessed in four countries, namely Indonesia, Myanmar, Pakistan and Timor-Leste due to insufficient consistent data. Numerous key challenges need to be addressed to sustain the gains and eliminate malaria in most parts of Asia. Some of these are to control the spread of resistance in Plasmodium falciparum to artemisinin, control of outdoor transmission, control of vivax malaria and ensuring universal coverage of key interventions. Asia has the potential to influence the malaria epidemiology all over the world as well as to support the global efforts in controlling and eliminating malaria through production of quality-assured ACTs, RDTs and long-lasting insecticidal nets.
Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers
Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric
2009-01-01
Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and CYTB, the new methods reported herein are highly sensitive, allow parasite DNA extraction as well as genus- and species-specific diagnosis of several hundreds of samples, and are amenable to high-throughput scaling up for larger sample sizes. Such methods provide novel information on malaria prevalence and epidemiology and are suited for active malaria detection. The usefulness of such sensitive malaria diagnosis tools, especially in low endemic areas where eradication plans are now on-going, is discussed in this paper. PMID:19402894
Human Infections and Detection of Plasmodium knowlesi
Daneshvar, Cyrus
2013-01-01
SUMMARY Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection. PMID:23554413
Application of loop analysis for evaluation of malaria control interventions.
Yasuoka, Junko; Jimba, Masamine; Levins, Richard
2014-04-09
Despite continuous efforts and recent rapid expansion in the financing and implementation of malaria control interventions, malaria still remains one of the most devastating global health issues. Even in countries that have been successful in reducing the incidence of malaria, malaria control is becoming more challenging because of the changing epidemiology of malaria and waning community participation in control interventions. In order to improve the effectiveness of interventions and to promote community understanding of the necessity of continued control efforts, there is an urgent need to develop new methodologies that examine the mechanisms by which community-based malaria interventions could reduce local malaria incidence. This study demonstrated how the impact of community-based malaria control interventions on malaria incidence can be examined in complex systems by qualitative analysis combined with an extensive review of literature. First, sign digraphs were developed through loop analysis to analyse seven interventions: source reduction, insecticide/larvicide use, biological control, treatment with anti-malarials, insecticide-treated mosquito net/long-lasting insecticidal net, non-chemical personal protection measures, and educational intervention. Then, for each intervention, the sign digraphs and literature review were combined to analyse a variety of pathways through which the intervention can influence local malaria incidence as well as interactions between variables involved in the system. Through loop analysis it is possible to see whether increases in one variable qualitatively increases or decreases other variables or leaves them unchanged and the net effect of multiple, interacting variables. Qualitative analysis, specifically loop analysis, can be a useful tool to examine the impact of community-based malaria control interventions. Without relying on numerical data, the analysis was able to describe pathways through which each intervention could influence malaria incidence on the basis of the qualitative patterns of the interactions between variables in complex systems. This methodology is generalizable to various disease control interventions at different levels, and can be utilized by a variety of stakeholders such as researchers, community leaders and policy makers to better plan and evaluate their community-based disease control interventions.
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B.; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K.
2016-01-01
Background Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Methods Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec’s Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. Results The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5–99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. Conclusion The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention. PMID:26784111
Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa
The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
2012-01-01
Background Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. Methods In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Results Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months’ long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Conclusion Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems. PMID:22920954
Ruiz, Daniel; Poveda, Germán; Vélez, Iván D; Quiñones, Martha L; Rúa, Guillermo L; Velásquez, Luz E; Zuluaga, Juan S
2006-01-01
Background Malaria has recently re-emerged as a public health burden in Colombia. Although the problem seems to be climate-driven, there remain significant gaps of knowledge in the understanding of the complexity of malaria transmission, which have motivated attempts to develop a comprehensive model. Methods The mathematical tool was applied to represent Plasmodium falciparum malaria transmission in two endemic-areas. Entomological exogenous variables were estimated through field campaigns and laboratory experiments. Availability of breeding places was included towards representing fluctuations in vector densities. Diverse scenarios, sensitivity analyses and instabilities cases were considered during experimentation-validation process. Results Correlation coefficients and mean square errors between observed and modelled incidences reached 0.897–0.668 (P > 0.95) and 0.0002–0.0005, respectively. Temperature became the most relevant climatic parameter driving the final incidence. Accordingly, malaria outbreaks are possible during the favourable epochs following the onset of El Niño warm events. Sporogonic and gonotrophic cycles showed to be the entomological key-variables controlling the transmission potential of mosquitoes' population. Simulation results also showed that seasonality of vector density becomes an important factor towards understanding disease transmission. Conclusion The model constitutes a promising tool to deepen the understanding of the multiple interactions related to malaria transmission conducive to outbreaks. In the foreseeable future it could be implemented as a tool to diagnose possible dynamical patterns of malaria incidence under several scenarios, as well as a decision-making tool for the early detection and control of outbreaks. The model will be also able to be merged with forecasts of El Niño events to provide a National Malaria Early Warning System. PMID:16882349
Nygren, David; Isaksson, Arvid Lissel
2014-02-04
During the last decade much progress has been made in reducing malaria transmission in Macha, Southern Province, Zambia. Introduction of artemisinin combination therapies as well as mass screenings of asymptomatic carriers is believed to have contributed the most. When an endemic malaria situation is moving towards a non-endemic situation the resident population loses acquired immunity and therefore active case detection and efficient surveillance is crucial to prevent epidemic outbreaks. Our purpose was to evaluate the impact of cell phone surveillance and geographical information systems on malaria control in Macha. Furthermore, it evaluates what screening and treatment of asymptomatic carriers and implementation of rapid diagnostic tests in rural health care has led to. Ten in-depth semi-structured interviews, field observations and data collection were performed at the Macha Research Trust and at surrounding rural health centers. This qualitative method was inspired by rapid assessment procedure. The cell phone surveillance has been easily integrated in health care, and its integration with Geographical Information Systems has provided the ability to follow malaria transmission on a weekly basis. In addition, active case detection of asymptomatic carriers has been fruitful, which is reflected in it soon being applied nationwide. Furthermore, rapid diagnostic tests have provided rural health centers with reliable malaria diagnostics, thereby decreasing excessive malaria treatments and selection for drug resistance. This report reflects the importance of asymptomatic carriers in targeting malaria elimination, as well as development of effective surveillance systems when transmission decreases. Such an approach would be cost-efficient in the long run through positive effects in reduced child mortality and relief in health care.
Reduced risk for placental malaria in iron deficient women
2011-01-01
Background Nutritional iron deficiency may limit iron availability to the malaria parasite reducing infection risk, and/or impair host immunity thereby increasing this risk. In pregnant women, there is evidence of an adverse effect with iron supplementation, but the few reported studies are strongly confounded. Methods A case control study in pregnant Malawian women was undertaken in Chikhwawa southern Malawi in order to describe iron status in relation to placental malaria controlling for several confounding factors. Pregnancy characteristics were obtained and a blood sample at delivery. A full blood count was performed and serum ferritin and transferrin receptor quantified by enzyme-linked immunoassay. DNA analysis was used to identify genetic polymorphisms for ABO phenotype, hemoglobin HbS, and glucose -6 phosphate dehydrogenase deficiency. Placental tissue was obtained and malaria histology classified as active, past or no malaria infection. Results 112 cases with placental malaria were identified and 110 women with no evidence of placental infection. Iron deficiency was less frequent in women with placental Plasmodium falciparum infection. In those with acute, chronic or past placental infections the odds ratio for iron deficiency was 0.4, 95% CI 0.2-0.8, p = 0.01; for acute and chronic infections 0.4, 0.2-0.8, p = 0.006; for acute infection 0.3, 0.1-0.7, p = 0.001. The association was greater in multigravidae. Conclusion Women with either acute, or acute and chronic placental malaria were less likely to have iron deficiency than women without placental malaria infection There is a priority to establish if reversing iron deficiency through iron supplementation programs either prior to or during pregnancy enhances malaria risk. PMID:21345193
LAMP kit for diagnosis of non-falciparum malaria in Plasmodium ovale infected patients.
Cuadros, Juan; Martin Ramírez, Alexandra; González, Iveth J; Ding, Xavier C; Perez Tanoira, Ramon; Rojo-Marcos, Gerardo; Gómez-Herruz, Peña; Rubio, Jose Miguel
2017-01-07
Microscopy and rapid diagnosis tests have a limited sensitivity in diagnosis of malaria by Plasmodium ovale. The LAMP kit (LoopAMP®) can be used in the field without special equipment and could have an important role in malaria control programmes in endemic areas and for malaria diagnosis in returned travellers. The performance of the Pan primer of the kit in detecting malaria by P. ovale was compared with the results of standard nPCR in samples of patients returning from P. ovale endemic areas. Plasmodium ovale positive samples (29, tested by PCR and/or microscopy) and malaria negative specimens (398, tested by microscopy and PCR) were collected in different hospitals of Europe from June 2014 to March 2016 and frozen at -20 °C. Boil and spin method was used to extract DNA from all samples and amplification was performed with LoopAMP® MALARIA kit (Eiken Chemical, Japan) in an automated turbidimeter (Eiken 500). The results of LAMP read by turbidimetry and with the naked eye were compared. The kit showed a sensitivity of 100% and a specificity of 97.24% with positive and negative predictive values of 72.5 and 100%, respectively. Naked eyed readings were in accordance with turbidimetry readings (sensitivity, 92.5%, specificity, 98.96% and positive and negative predictive values, respectively, 90.24 and 99.22%). The limit of detection of LAMP assay for P. ovale was between 0.8 and 2 parasites/µl. The Pan primer of the Malaria kit LoopAMP® can detect P. ovale at very low-levels and showed a predictive negative value of 100%. This tool can be useful in malaria control and elimination programmes and in returned travellers from P. ovale endemic areas. Naked eye readings are equivalent to automated turbidimeter readings in specimens obtained with EDTA.
DDT, global strategies, and a malaria control crisis in South America.
Roberts, D R; Laughlin, L L; Hsheih, P; Legters, L J
1997-01-01
Malaria is reemerging in endemic-disease countries of South America. We examined the rate of real growth in annual parasite indexes (API) by adjusting APIs for all years to the annual blood examination rate of 1965 for each country. The standardized APIs calculated for Brazil, Peru, Guyana, and for 18 other malaria-endemic countries of the Americas presented a consistent pattern of low rates up through the late 1970s, followed by geometric growth in malaria incidence in subsequent years. True growth in malaria incidence corresponds temporally with changes in global strategies for malaria control. Underlying the concordance of these events is a causal link between decreased spraying of homes with DDT and increased malaria; two regression models defining this link showed statistically significant negative relationships between APIs and house-spray rates. Separate analyses of data from 1993 to 1995 showed that countries that have recently discontinued their spray programs are reporting large increases in malaria incidence. Ecuador, which has increased use of DDT since 1993, is the only country reporting a large reduction (61%) in malaria rates since 1993. DDT use for malaria control and application of the Global Malaria Control Strategy to the Americas should be subjects of urgent national and international debate. We discuss the recent actions to ban DDT, the health costs of such a ban, perspectives on DDT use in agriculture versus malaria control, and costs versus benefits of DDT and alternative insecticides.
DDT, global strategies, and a malaria control crisis in South America.
Roberts, D. R.; Laughlin, L. L.; Hsheih, P.; Legters, L. J.
1997-01-01
Malaria is reemerging in endemic-disease countries of South America. We examined the rate of real growth in annual parasite indexes (API) by adjusting APIs for all years to the annual blood examination rate of 1965 for each country. The standardized APIs calculated for Brazil, Peru, Guyana, and for 18 other malaria-endemic countries of the Americas presented a consistent pattern of low rates up through the late 1970s, followed by geometric growth in malaria incidence in subsequent years. True growth in malaria incidence corresponds temporally with changes in global strategies for malaria control. Underlying the concordance of these events is a causal link between decreased spraying of homes with DDT and increased malaria; two regression models defining this link showed statistically significant negative relationships between APIs and house-spray rates. Separate analyses of data from 1993 to 1995 showed that countries that have recently discontinued their spray programs are reporting large increases in malaria incidence. Ecuador, which has increased use of DDT since 1993, is the only country reporting a large reduction (61%) in malaria rates since 1993. DDT use for malaria control and application of the Global Malaria Control Strategy to the Americas should be subjects of urgent national and international debate. We discuss the recent actions to ban DDT, the health costs of such a ban, perspectives on DDT use in agriculture versus malaria control, and costs versus benefits of DDT and alternative insecticides. PMID:9284373
Spatial outline of malaria transmission in Iran.
Barati, Mohammad; Keshavarz-valian, Hossein; Habibi-nokhandan, Majid; Raeisi, Ahmad; Faraji, Leyla; Salahi-moghaddam, Abdoreza
2012-10-01
To conduct for modeling spatial distribution of malaria transmission in Iran. Records of all malaria cases from the period 2008-2010 in Iran were retrieved for malaria control department, MOH&ME. Metrological data including annual rainfall, maximum and minimum temperature, relative humidity, altitude, demographic, districts border shapefiles, and NDVI images received from Iranian Climatologic Research Center. Data arranged in ArcGIS. 99.65% of malaria transmission cases were focused in southeast part of Iran. These transmissions had statistically correlation with altitude (650 m), maximum (30 °C), minimum (20 °C) and average temperature (25.3 °C). Statistical correlation and overall relationship between NDVI (118.81), relative humidity (⩾45%) and rainfall in southeast area was defined and explained in this study. According to ecological condition and mentioned cut-off points, predictive map was generated using cokriging method. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Optimal strategy for controlling the spread of Plasmodium Knowlesi malaria: Treatment and culling
NASA Astrophysics Data System (ADS)
Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini
2015-05-01
Plasmodium Knowlesi malaria is a parasitic mosquito-borne disease caused by a eukaryotic protist of genus Plasmodium Knowlesi transmitted by mosquito, Anopheles leucosphyrus to human and macaques. We developed and analyzed a deterministic Mathematical model for the transmission of Plasmodium Knowlesi malaria in human and macaques. The optimal control theory is applied to investigate optimal strategies for controlling the spread of Plasmodium Knowlesi malaria using treatment and culling as control strategies. The conditions for optimal control of the Plasmodium Knowlesi malaria are derived using Pontryagin's Maximum Principle. Finally, numerical simulations suggested that the combination of the control strategies is the best way to control the disease in any community.
Challenges and prospects for malaria elimination in the Greater Mekong Subregion
Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Chen, Bin; Cao, Yaming; Fan, Qi; Parker, Daniel; Sirichaisinthop, Jeeraphat; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Zhou, Guofa
2011-01-01
Despite significant improvement in the malaria situation of the Greater Mekong Subregion (GMS), malaria control for the region continues to face a multitude of challenges. The extremely patchy malaria distribution, especially along international borders, makes disease surveillance and targeted control difficult. The vector systems are also diverse with dramatic differences in habitat ecology, biting behavior, and vectorial capacity, and there is a lack of effective transmission surveillance and control tools. Finally, in an era of heavy deployment of artemisinin-based combination therapies, the region acts as an epicenter of drug resistance, with the emergence of artemisinin resistant P. falciparum posing a threat to both regional and global malaria elimination campaigns. This problem is further exacerbated by the circulation of counterfeit and substandard artemisinin drugs. Accordingly, this Southeast Asian Malaria Research Center, consisting of a consortium of US and regional research institutions, has proposed four interlinked projects to address these most urgent problems in malaria control. The aims of these projects will help to substantially improve our understanding of malaria epidemiology, vector systems and their roles in malaria transmission, as well as the mechanisms of drug resistance in parasites. Through the training of next-generation scientists in malaria research, this program will help build up and strengthen regional research infrastructure and capacities, which are essential for sustained malaria control in this region. PMID:21515238
2010-01-01
Background In south-eastern Senegal, malaria and onchocerciasis are co-endemic. Onchocerciasis in this region has been controlled by once or twice yearly mass drug administration (MDA) with ivermectin (IVM) for over fifteen years. Since laboratory-raised Anopheles gambiae s.s. are susceptible to ivermectin at concentrations found in human blood post-ingestion of IVM, it is plausible that a similar effect could be quantified in the field, and that IVM might have benefits as a malaria control tool. Methods In 2008 and 2009, wild-caught blood fed An. gambiae s.l. mosquitoes were collected from huts of three pairs of Senegalese villages before and after IVM MDAs. Mosquitoes were held in an insectary to assess their survival rate, subsequently identified to species, and their blood meals were identified. Differences in mosquito survival were statistically analysed using a Glimmix model. Lastly, changes in the daily probability of mosquito survivorship surrounding IVM MDAs were calculated, and these data were inserted into a previously developed, mosquito age-structured model of malaria transmission. Results Anopheles gambiae s.s. (P < 0.0001) and Anopheles arabiensis (P = 0.0191) from the treated villages had significantly reduced survival compared to those from control villages. Furthermore, An gambiae s.s. caught 1-6 days after MDA in treated villages had significantly reduced survival compared to control village collections (P = 0.0003), as well as those caught pre-MDA (P < 0.0001) and >7 days post-MDA (P < 0.0001). The daily probability of mosquito survival dropped >10% for the six days following MDA. The mosquito age-structured model of malaria transmission demonstrated that a single IVM MDA would reduce malaria transmission (Ro) below baseline for at least eleven days, and that repeated IVM MDAs would result in a sustained reduction in malaria Ro. Conclusions Ivermectin MDA significantly reduced the survivorship of An. gambiae s.s. for six days past the date of the MDA, which is sufficient to temporarily reduce malaria transmission. Repeated IVM MDAs could be a novel and integrative malaria control tool in areas with seasonal transmission, and which would have simultaneous impacts on neglected tropical diseases in the same villages. PMID:21171970
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
Mitchell, Sara N; Catteruccia, Flaminia
2017-12-01
Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Hanson, Kara; Kikumbih, Nassor; Armstrong Schellenberg, Joanna; Mponda, Haji; Nathan, Rose; Lake, Sally; Mills, Anne; Tanner, Marcel; Lengeler, Christian
2003-01-01
OBJECTIVE: To assess the costs and consequences of a social marketing approach to malaria control in children by means of insecticide-treated nets in two rural districts of the United Republic of Tanzania, compared with no net use. METHODS: Project cost data were collected prospectively from accounting records. Community effectiveness was estimated on the basis of a nested case-control study and a cross-sectional cluster sample survey. FINDINGS: The social marketing approach to the distribution of insecticide-treated nets was estimated to cost 1560 US dollars per death averted and 57 US dollars per disability-adjusted life year averted. These figures fell to 1018 US dollars and 37 US dollars, respectively, when the costs and consequences of untreated nets were taken into account. CONCLUSION: The social marketing of insecticide-treated nets is an attractive intervention for preventing childhood deaths from malaria. PMID:12764493
Beiersmann, Claudia; Sanou, Aboubakary; Wladarsch, Evelyn; De Allegri, Manuela; Kouyaté, Bocar; Müller, Olaf
2007-08-08
The literature on health care seeking behaviour in sub-Saharan Africa for children suffering from malaria is quite extensive. This literature, however, is predominantly quantitative and, inevitably, fails to explore how the local concepts of illness may affect people's choices. Understanding local concepts of illness and their influence on health care-seeking behaviour can complement existing knowledge and lead to the development of more effective malaria control interventions. In a rural area of Burkina Faso, four local concepts of illness resembling the biomedical picture of malaria were described according to symptoms, aetiology, and treatment. Data were collected through eight focus group discussions, 17 semi-structured interviews with key informants, and through the analysis of 100 verbal autopsy questionnaires of children under-five diagnosed with malaria. Sumaya, dusukun yelema, kono, and djoliban were identified as the four main local illness concepts resembling respectively uncomplicated malaria, respiratory distress syndrome, cerebral malaria, and severe anaemia. The local disease categorization was found to affect both treatment and provider choice. While sumaya is usually treated by a mix of traditional and modern methods, dusukun yelema and kono are preferably treated by traditional healers, and djoliban is preferably treated in modern health facilities. Besides the conceptualization of illness, poverty was found to be another important influencing factor of health care-seeking behaviour. The findings complement previous evidence on health care-seeking behaviour, by showing how local concepts of illness strongly influence treatment and choice of provider. Local concepts of illness need to be considered when developing specific malaria control programmes.
Vaccine approaches to malaria control and elimination: Insights from mathematical models.
White, Michael T; Verity, Robert; Churcher, Thomas S; Ghani, Azra C
2015-12-22
A licensed malaria vaccine would provide a valuable new tool for malaria control and elimination efforts. Several candidate vaccines targeting different stages of the malaria parasite's lifecycle are currently under development, with one candidate, RTS,S/AS01 for the prevention of Plasmodium falciparum infection, having recently completed Phase III trials. Predicting the public health impact of a candidate malaria vaccine requires using clinical trial data to estimate the vaccine's efficacy profile--the initial efficacy following vaccination and the pattern of waning of efficacy over time. With an estimated vaccine efficacy profile, the effects of vaccination on malaria transmission can be simulated with the aid of mathematical models. Here, we provide an overview of methods for estimating the vaccine efficacy profiles of pre-erythrocytic vaccines and transmission-blocking vaccines from clinical trial data. In the case of RTS,S/AS01, model estimates from Phase II clinical trial data indicate a bi-phasic exponential profile of efficacy against infection, with efficacy waning rapidly in the first 6 months after vaccination followed by a slower rate of waning over the next 4 years. Transmission-blocking vaccines have yet to be tested in large-scale Phase II or Phase III clinical trials so we review ongoing work investigating how a clinical trial might be designed to ensure that vaccine efficacy can be estimated with sufficient statistical power. Finally, we demonstrate how parameters estimated from clinical trials can be used to predict the impact of vaccination campaigns on malaria using a mathematical model of malaria transmission. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shirayama, Yoshihisa; Phompida, Samlane; Shibuya, Kenji
2009-01-01
Background Insecticide-treated nets (ITNs) are a key intervention to control malaria. The intervention coverage varies as a consequence of geographical accessibility to remote villages and limitations of financial and human resources for the intervention. People's adherence to the intervention, i.e., proper use of ITNs, also affects malaria health outcome. The study objective is to explore the impact of the intervention coverage and people's adherence to the intervention on malaria health outcome among targeted villages in various geographic locations. Methods Geographic information system (GIS) maps were developed using the data collected in an active case detection survey in Khammouane province, Laos. The survey was conducted using rapid diagnostic tests (RDTs) and a structured questionnaire at 23 sites in the province from June to July, the rainy season, in 2005. A total of 1,711 villagers from 403 households participated in the survey. Results As indicated on the GIS maps, villages with malaria cases, lower intervention coverage, and lower adherence were identified. Although no malaria case was detected in most villages with the best access to the district center, several cases were detected in the distal villages, where the intervention coverage and adherence to the intervention remained relatively lower. Conclusion Based on the data and maps, it was demonstrated that malaria remained unevenly distributed within districts. Balancing the intervention coverage in the distal villages with the overall coverage and continued promotion of the proper use of ITNs are necessary for a further reduction of malaria cases in the province. PMID:19772628
Garfield, R
1999-07-31
Throughout Central America, a traditional malaria control strategy (depending on heavy use of organic pesticides) became less effective during the 1970s. In Nicaragua, an alternative strategy, based on frequent local epidemiological assessments and community participation, was developed in the 1980s. Despite war-related social instability, and continuing vector resistance, this approach was highly successful. By the end of the contra war, there finally existed organisational and ecological conditions that favoured improved malaria control. Yet the expected improvements did not occur. In the 1990s, Nicaragua experienced its worst recorded malaria epidemics. This situation was partly caused by the country's macroeconomic structural adjustment programme. Volunteers now take fewer slides and provide less treatment, malaria control workers are less motivated by the spirit of public service, and some malaria control stations charge for diagnosis or treatment. To "roll back malaria", in Nicaragua at least, will require the roll-back of some erroneous aspects of structural adjustment.
Evidence of non-Plasmodium falciparum malaria infection in Kédougou, Sénégal.
Daniels, Rachel F; Deme, Awa Bineta; Gomis, Jules F; Dieye, Baba; Durfee, Katelyn; Thwing, Julie I; Fall, Fatou B; Ba, Mady; Ndiop, Medoune; Badiane, Aida S; Ndiaye, Yaye Die; Wirth, Dyann F; Volkman, Sarah K; Ndiaye, Daouda
2017-01-03
Expanded malaria control efforts in Sénégal have resulted in increased use of rapid diagnostic tests (RDT) to identify the primary disease-causing Plasmodium species, Plasmodium falciparum. However, the type of RDT utilized in Sénégal does not detect other malaria-causing species such as Plasmodium ovale spp., Plasmodium malariae, or Plasmodium vivax. Consequently, there is a lack of information about the frequency and types of malaria infections occurring in Sénégal. This study set out to better determine whether species other than P. falciparum were evident among patients evaluated for possible malaria infection in Kédougou, Sénégal. Real-time polymerase chain reaction speciation assays for P. vivax, P. ovale spp., and P. malariae were developed and validated by sequencing and DNA extracted from 475 Plasmodium falciparum-specific HRP2-based RDT collected between 2013 and 2014 from a facility-based sample of symptomatic patients from two health clinics in Kédougou, a hyper-endemic region in southeastern Sénégal, were analysed. Plasmodium malariae (n = 3) and P. ovale wallikeri (n = 2) were observed as co-infections with P. falciparum among patients with positive RDT results (n = 187), including one patient positive for all three species. Among 288 negative RDT samples, samples positive for P. falciparum (n = 24), P. ovale curtisi (n = 3), P. ovale wallikeri (n = 1), and P. malariae (n = 3) were identified, corresponding to a non-falciparum positivity rate of 2.5%. These findings emphasize the limitations of the RDT used for malaria diagnosis and demonstrate that non-P. falciparum malaria infections occur in Sénégal. Current RDT used for routine clinical diagnosis do not necessarily provide an accurate reflection of malaria transmission in Kédougou, Sénégal, and more sensitive and specific methods are required for diagnosis and patient care, as well as surveillance and elimination activities. These findings have implications for other malaria endemic settings where species besides P. falciparum may be transmitted and overlooked by control or elimination activities.
Ferrao, Joao L; Niquisse, Sergio; Mendes, Jorge M; Painho, Marco
2018-04-19
Background : Malaria continues to be a major public health concern in Africa. Approximately 3.2 billion people worldwide are still at risk of contracting malaria, and 80% of deaths caused by malaria are concentrated in only 15 countries, most of which are in Africa. These high-burden countries have achieved a lower than average reduction of malaria incidence and mortality, and Mozambique is among these countries. Malaria eradication is therefore one of Mozambique’s main priorities. Few studies on malaria have been carried out in Chimoio, and there is no malaria map risk of the area. This map is important to identify areas at risk for application of Public Precision Health approaches. By using GIS-based spatial modelling techniques, the research goal of this article was to map and model malaria risk areas using climate, socio-demographic and clinical variables in Chimoio, Mozambique. Methods : A 30 m × 30 m Landsat image, ArcGIS 10.2 and BioclimData were used. A conceptual model for spatial problems was used to create the final risk map. The risks factors used were: the mean temperature, precipitation, altitude, slope, distance to water bodies, distance to roads, NDVI, land use and land cover, malaria prevalence and population density. Layers were created in a raster dataset. For class value comparisons between layers, numeric values were assigned to classes within each map layer, giving them the same importance. The input dataset were ranked, with different weights according to their suitability. The reclassified outputs of the data were combined. Results : Chimoio presented 96% moderate risk and 4% high-risk areas. The map showed that the central and south-west “Residential areas”, namely, Centro Hipico, Trangapsso, Bairro 5 and 1° de Maio, had a high risk of malaria, while the rest of the residential areas had a moderate risk. Conclusions : The entire Chimoio population is at risk of contracting malaria, and the precise estimation of malaria risk, therefore, has important precision public health implications and for the planning of effective control measures, such as the proper time and place to spray to combat vectors, distribution of bed nets and other control measures.
2014-01-01
Background This paper establishes empirical evidence relating the agriculture and health sectors in Uganda. The analysis explores linkages between agricultural management, malaria and implications for improving community health outcomes in rural Uganda. The goal of this exploratory work is to expand the evidence-base for collaboration between the agricultural and health sectors in Uganda. Methods The paper presents an analysis of data from the 2006 Uganda National Household Survey using a parametric multivariate Two-Limit Tobit model to identify correlations between agro-ecological variables including geographically joined daily seasonal precipitation records and household level malaria risk. The analysis of agricultural and environmental factors as they affect household malaria rates, disaggregated by age-group, is inspired by a complimentary review of existing agricultural malaria literature indicating a gap in evidence with respect to agricultural management as a form of malaria vector management. Crop choices and agricultural management practices may contribute to vector control through the simultaneous effects of reducing malaria transmission, improving housing and nutrition through income gains, and reducing insecticide resistance in both malaria vectors and agricultural pests. Results The econometric results show the existence of statistically significant correlations between crops, such as sweet potatoes/yams, beans, millet and sorghum, with household malaria risk. Local environmental factors are also influential- daily maximum temperature is negatively correlated with malaria, while daily minimum temperature is positively correlated with malaria, confirming trends in the broader literature are applicable to the Ugandan context. Conclusions Although not necessarily causative, the findings provide sufficient evidence to warrant purposefully designed work to test for agriculture health causation in vector management. A key constraint to modeling the agricultural basis of malaria transmission is the lack of data integrating both the health and agricultural information necessary to satisfy the differing methodologies used by the two sectors. A national platform for collaboration between the agricultural and health sectors could help align programs to achieve better measurements of agricultural interactions with vector reproduction and evaluate the potential for agricultural policy and programs to support rural malaria control. PMID:24990158
Malaria Control and Elimination,1 Venezuela, 1800s–1970s
Villegas, Leopoldo; Udhayakumar, Venkatachalam
2014-01-01
Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920, malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world’s interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication. Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization. We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.
Malaria control and elimination, Venezuela, 1800s –1970s.
Griffing, Sean M; Villegas, Leopoldo; Udhayakumar, Venkatachalam
2014-10-01
Venezuela had the highest number of human malaria cases in Latin American before 1936. During 1891–1920,malaria was endemic to >600,000 km2 of this country; malaria death rates led to major population decreases during 1891–1920. No pathogen, including the influenza virus that caused the 1918 pandemic, caused more deaths than malaria during 1905–1945. Early reports of malaria eradication in Venezuela helped spark the world's interest in global eradication. We describe early approaches to malaria epidemiology in Venezuela and how this country developed an efficient control program and an approach to eradication.Arnoldo Gabaldón was a key policy maker during this development process. He directed malaria control in Venezuela from the late 1930s to the end of the 1970s and contributed to malaria program planning of the World Health Organization.We discuss how his efforts helped reduce the incidence of malaria in Venezuela and how his approach diverged from World Health Organization guidelines.
Malaria eradication: the economic, financial and institutional challenge.
Mills, Anne; Lubell, Yoel; Hanson, Kara
2008-12-11
Malaria eradication raises many economic, financial and institutional challenges. This paper reviews these challenges, drawing on evidence from previous efforts to eradicate malaria, with a special focus on resource-poor settings; summarizes more recent evidence on the challenges, drawing on the literature on the difficulties of scaling-up malaria control and strengthening health systems more broadly; and explores the implications of these bodies of evidence for the current call for elimination and intensified control. Economic analyses dating from the eradication era, and more recent analyses, suggest that, in general, the benefits of malaria control outweigh the costs, though few studies have looked at the relative returns to eradication versus long-term control. Estimates of financial costs are scanty and difficult to compare. In the 1960s, the consolidation phase appeared to cost less than $1 per capita and, in 1988, was estimated to be $2.31 per capita (both in 2006 prices). More recent estimates for high coverage of control measures suggest a per capita cost of several dollars. Institutional challenges faced by malaria eradication included limits to the rule of law (a major problem where malaria was concentrated in border areas with movement of people associated with illegal activities), the existence and performance of local implementing structures, and political sustainability at national and global levels. Recent analyses of the constraints to scaling-up malaria control, together with the historical evidence, are used to discuss the economic, financial and institutional challenges that face the renewed call for eradication and intensified control. The paper concludes by identifying a research agenda covering: issues of the allocative efficiency of malaria eradication, especially using macro-economic modelling to estimate the benefits and costs of malaria eradication and intensified control, and studies of the links between malaria control and economic development, the costs and consequences of the various tools and mixes of tools employed in control and eradication, issues concerning the extension of coverage of interventions and service delivery approaches, especially those that can reach the poorest, research on the processes of formulating and implementing malaria control and eradication policies, at both international and national levels, research on financing issues, at global and national levels.
Malaria eradication: the economic, financial and institutional challenge
Mills, Anne; Lubell, Yoel; Hanson, Kara
2008-01-01
Malaria eradication raises many economic, financial and institutional challenges. This paper reviews these challenges, drawing on evidence from previous efforts to eradicate malaria, with a special focus on resource-poor settings; summarizes more recent evidence on the challenges, drawing on the literature on the difficulties of scaling-up malaria control and strengthening health systems more broadly; and explores the implications of these bodies of evidence for the current call for elimination and intensified control. Economic analyses dating from the eradication era, and more recent analyses, suggest that, in general, the benefits of malaria control outweigh the costs, though few studies have looked at the relative returns to eradication versus long-term control. Estimates of financial costs are scanty and difficult to compare. In the 1960s, the consolidation phase appeared to cost less than $1 per capita and, in 1988, was estimated to be $2.31 per capita (both in 2006 prices). More recent estimates for high coverage of control measures suggest a per capita cost of several dollars. Institutional challenges faced by malaria eradication included limits to the rule of law (a major problem where malaria was concentrated in border areas with movement of people associated with illegal activities), the existence and performance of local implementing structures, and political sustainability at national and global levels. Recent analyses of the constraints to scaling-up malaria control, together with the historical evidence, are used to discuss the economic, financial and institutional challenges that face the renewed call for eradication and intensified control. The paper concludes by identifying a research agenda covering: ∘ issues of the allocative efficiency of malaria eradication, especially using macro-economic modelling to estimate the benefits and costs of malaria eradication and intensified control, and studies of the links between malaria control and economic development ∘ the costs and consequences of the various tools and mixes of tools employed in control and eradication ∘ issues concerning the extension of coverage of interventions and service delivery approaches, especially those that can reach the poorest ∘ research on the processes of formulating and implementing malaria control and eradication policies, at both international and national levels ∘ research on financing issues, at global and national levels. PMID:19091035
Yé, Yazoume; Eisele, Thomas P; Eckert, Erin; Korenromp, Eline; Shah, Jui A; Hershey, Christine L; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E; Moore, Zhuzhi; Bhattarai, Achuyt
2017-09-01
Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality.
Sandeu, Maurice Marcel; Moussiliou, Azizath; Moiroux, Nicolas; Padonou, Gilles G.; Massougbodji, Achille; Corbel, Vincent; Tuikue Ndam, Nicaise
2012-01-01
Background An accurate method for detecting malaria parasites in the mosquito’s vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP) is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. Methods Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. Results The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6%) and specificity (98%), compared to ELISA-CSP as the referent standard. The agreement between both methods was “excellent” (κ = 0.8, P<0.05). The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P = 0, 2). All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. Conclusion This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the utility of employing an accurate molecular diagnostic tool for detecting malaria parasites in field mosquito populations. PMID:23285168
Mushi, Adiel K; Schellenberg, Joanna; Mrisho, Mwifadhi; Manzi, Fatuma; Mbuya, Conrad; Mponda, Haji; Mshinda, Hassan; Tanner, Marcel; Alonso, Pedro; Pool, Robert; Schellenberg, David
2008-09-29
Intermittent preventive treatment of malaria in infants (IPTi) using sulphadoxine-pyrimethamine and linked to the expanded programme on immunization (EPI) is a promising strategy for malaria control in young children. As evidence grows on the efficacy of IPTi as public health strategy, information is needed so that this novel control tool can be put into practice promptly, once a policy recommendation is made to implement it. This paper describes the development of a behaviour change communication strategy to support implementation of IPTi by the routine health services in southern Tanzania, in the context of a five-year research programme evaluating the community effectiveness of IPTi. Mixed methods including a rapid qualitative assessment and quantitative health facility survey were used to investigate communities' and providers' knowledge and practices relating to malaria, EPI, sulphadoxine-pyrimethamine and existing health posters. Results were applied to develop an appropriate behaviour change communication strategy for IPTi involving personal communication between mothers and health staff, supported by a brand name and two posters. Malaria in young children was considered to be a nuisance because it causes sleepless nights. Vaccination services were well accepted and their use was considered the mother's responsibility. Babies were generally taken for vaccination despite complaints about fevers and swellings after the injections. Sulphadoxine-pyrimethamine was widely used for malaria treatment and intermittent preventive treatment of malaria in pregnancy, despite widespread rumours of adverse reactions based on hearsay and newspaper reports. Almost all health providers said that they or their spouse were ready to take SP in pregnancy (96%, 223/242). A brand name, key messages and images were developed and pre-tested as behaviour change communication materials. The posters contained public health messages, which explained the intervention itself, how and when children receive it and safety issues. Implementation of IPTi started in January 2005 and evaluation is ongoing. Behaviour Change Communication (BCC) strategies for health interventions must be both culturally appropriate and technically sound. A mixed methods approach can facilitate an interactive process among relevant actors to develop a BCC strategy.
Wilson, Mark L.; Krogstad, Donald J.; Arinaitwe, Emmanuel; Arevalo-Herrera, Myriam; Chery, Laura; Ferreira, Marcelo U.; Ndiaye, Daouda; Mathanga, Don P.; Eapen, Alex
2015-01-01
A major public health question is whether urbanization will transform malaria from a rural to an urban disease. However, differences about definitions of urban settings, urban malaria, and whether malaria control should differ between rural and urban areas complicate both the analysis of available data and the development of intervention strategies. This report examines the approach of the International Centers of Excellence for Malaria Research (ICEMR) to urban malaria in Brazil, Colombia, India (Chennai and Goa), Malawi, Senegal, and Uganda. Its major theme is the need to determine whether cases diagnosed in urban areas were imported from surrounding rural areas or resulted from transmission within the urban area. If infections are being acquired within urban areas, malaria control measures must be targeted within those urban areas to be effective. Conversely, if malaria cases are being imported from rural areas, control measures must be directed at vectors, breeding sites, and infected humans in those rural areas. Similar interventions must be directed differently if infections were acquired within urban areas. The hypothesis underlying the ICEMR approach to urban malaria is that optimal control of urban malaria depends on accurate epidemiologic and entomologic information about transmission. PMID:26259941
Controlling imported malaria cases in the United States of America.
Dembele, Bassidy; Yakubu, Abdul-Aziz
2017-02-01
We extend the mathematical malaria epidemic model framework of Dembele et al. and use it to ``capture" the 2013 Centers for Disease Control and Prevention (CDC) reported data on the 2011 number of imported malaria cases in the USA. Furthermore, we use our ``fitted" malaria models for the top 20 countries of malaria acquisition by USA residents to study the impact of protecting USA residents from malaria infection when they travel to malaria endemic areas, the impact of protecting residents of malaria endemic regions from mosquito bites and the impact of killing mosquitoes in those endemic areas on the CDC number of imported malaria cases in USA. To significantly reduce the number of imported malaria cases in USA, for each top 20 country of malaria acquisition by USA travelers, we compute the optimal proportion of USA international travelers that must be protected against malaria infection and the optimal proportion of mosquitoes that must be killed.
Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip
2017-01-01
Abstract Background Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. PMID:28973672
Brock, P M; Fornace, K M; Parmiter, M; Cox, J; Drakeley, C J; Ferguson, H M; Kao, R R
2016-04-01
The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.
Agampodi, Suneth; Wijerathne, Buddhika; Weerakoon, Kosala
2016-10-01
Sri Lanka achieved a major milestone in communicable disease control in 2012 by reporting zero incidence of autochthonous malaria. However, reduction of malaria was associated with concurrent increase of several tropical diseases. This review looks into the time trends and epidemiology of these communicable diseases in Sri Lanka. Reduction of malaria cases coincides with an increase of dengue, leptospirosis and rickettsioses in Sri Lanka. Although the case fatality rate of dengue has reduced and maintained below 1%, leptospirosis in clinical management is questionable. Despite having national focal points for control and prevention, these emerging diseases are completely out of control. Whether the holding back of vector control activities of malaria after a successful control programme is having an effect on emergence of other vector-borne diseases should be studied. The communicable disease control programme in Sri Lanka should be further strengthened with availability of proper and rapid diagnostic facilities. Malaria control could not be considered as a great achievement due to the fact that other emerging infectious diseases are replacing malaria.
Yeka, Adoke; Gasasira, Anne; Mpimbaza, Arthur; Achan, Jane; Nankabirwa, Joaniter; Nsobya, Sam; Staedke, Sarah G.; Donnelly, Martin J.; Wabwire-Mangen, Fred; Talisuna, Ambrose; Dorsey, Grant; Kamya, Moses R.; Rosenthal, Philip J.
2012-01-01
In the recent past there have been several reports of successes in malaria control, leading some public health experts to conclude that Africa is witnessing an epidemiological transition, from an era of failed malaria control to progression from successful control to elimination. Successes in control have been attributed to increased international donor support leading to increased intervention coverage. However, these changes are not uniform across Africa. In Uganda, where baseline transmission is very high and intervention coverage not yet to scale, the malaria burden is not declining and has even likely increased in the last decade. In this article we present perspectives for the future for Uganda and other malaria endemic countries with high baseline transmission intensity and significant health system challenges. For these high burden areas,malaria elimination is currently not feasible, and early elimination programs are inappropriate, as they would further fragment already fragmented and inefficient malaria control systems. Rather, health impacts will be maximized by aiming to achieve universal coverage of proven interventions in the context of a strengthened health system. PMID:21756863
Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model.
Hagenlocher, Michael; Castro, Marcia C
2015-01-01
Outbreaks of vector-borne diseases (VBDs) impose a heavy burden on vulnerable populations. Despite recent progress in eradication and control, malaria remains the most prevalent VBD. Integrative approaches that take into account environmental, socioeconomic, demographic, biological, cultural, and political factors contributing to malaria risk and vulnerability are needed to effectively reduce malaria burden. Although the focus on malaria risk has increasingly gained ground, little emphasis has been given to develop quantitative methods for assessing malaria risk including malaria vulnerability in a spatial explicit manner. Building on a conceptual risk and vulnerability framework, we propose a spatial explicit approach for modeling relative levels of malaria risk - as a function of hazard, exposure, and vulnerability - in the United Republic of Tanzania. A logistic regression model was employed to identify a final set of risk factors and their contribution to malaria endemicity based on multidisciplinary geospatial information. We utilized a Geographic Information System for the construction and visualization of a malaria vulnerability index and its integration into a spatially explicit malaria risk map. The spatial pattern of malaria risk was very heterogeneous across the country. Malaria risk was higher in Mainland areas than in Zanzibar, which is a result of differences in both malaria entomological inoculation rate and prevailing vulnerabilities. Areas of high malaria risk were identified in the southeastern part of the country, as well as in two distinct "hotspots" in the northwestern part of the country bordering Lake Victoria, while concentrations of high malaria vulnerability seem to occur in the northwestern, western, and southeastern parts of the mainland. Results were visualized using both 10×10 km(2) grids and subnational administrative units. The presented approach makes an important contribution toward a decision support tool. By decomposing malaria risk into its components, the approach offers evidence on which factors could be targeted for reducing malaria risk and vulnerability to the disease. Ultimately, results offer relevant information for place-based intervention planning and more effective spatial allocation of resources.
Impact of Malaria at the End of Pregnancy on Infant Mortality and Morbidity
Sigauque, Betuel; Sanz, Sergi; Maixenchs, María; Ordi, Jaume; Aponte, John J; Mabunda, Samuel; Alonso, Pedro L; Menéndez, Clara
2011-01-01
Background. There is some consensus that malaria in pregnancy may negatively affect infant's mortality and malaria morbidity, but there is less evidence concerning the factors involved. Methods. A total of 1030 Mozambican pregnant women were enrolled in a randomized, placebo-controlled trial of intermittent preventive treatment with sulfadoxine-pyrimethamine, and their infants were followed up throughout infancy. Overall mortality and malaria morbidity rates were recorded. The association of maternal and fetal risk factors with infant mortality and malaria morbidity was assessed. Results. There were 58 infant deaths among 997 live-born infants. The risk of dying during infancy was increased among infants born to women with acute placental infection (odds ratio [OR], 5.08 [95% confidence interval (CI), 1.77–14.53)], parasitemia in cord blood (OR, 19.31 [95% CI, 4.44–84.02]), low birth weight (OR, 2.82 [95% CI, 1.27–6.28]) or prematurity (OR, 3.19 [95% CI, 1.14–8.95]). Infants born to women who had clinical malaria during pregnancy (OR, 1.96 [95% CI, 1.13–3.41]) or acute placental infection (OR, 4.63 [95% CI, 2.10–10.24]) had an increased risk of clinical malaria during infancy. Conclusions. Malaria infection at the end of pregnancy and maternal clinical malaria negatively impact survival and malaria morbidity in infancy. Effective clinical management and prevention of malaria in pregnancy may improve infant's health and survival. PMID:21199881
Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Herrera, Sonia M; Herrera, Sócrates; Lacerda, Marcus V G
2017-07-04
In spite of significant progress towards malaria control and elimination achieved in South America in the 2000s, this mosquito-transmitted tropical disease remains an important public health concern in the region. Most malaria cases in South America come from Amazon rain forest areas in northern countries, where more than half of malaria is caused by Plasmodium vivax, while Plasmodium falciparum malaria incidence has decreased in recent years. This review discusses current malaria data, policies and challenges in four South American Amazon countries: Brazil, Colombia, Peru and the Bolivarian Republic of Venezuela. Challenges to continuing efforts to further decrease malaria incidence in this region include: a significant increase in malaria cases in recent years in Venezuela, evidence of submicroscopic and asymptomatic infections, peri-urban malaria, gold mining-related malaria, malaria in pregnancy, glucose-6-phosphate dehydrogenase (G6PD) deficiency and primaquine use, and possible under-detection of Plasmodium malariae. Some of these challenges underscore the need to implement appropriate tools and procedures in specific regions, such as a field-compatible molecular malaria test, a P. malariae-specific test, malaria diagnosis and appropriate treatment as part of regular antenatal care visits, G6PD test before primaquine administration for P. vivax cases (with weekly primaquine regimen for G6PD deficient individuals), single low dose of primaquine for P. falciparum malaria in Colombia, and national and regional efforts to contain malaria spread in Venezuela urgently needed especially in mining areas. Joint efforts and commitment towards malaria control and elimination should be strategized based on examples of successful regional malaria fighting initiatives, such as PAMAFRO and RAVREDA/AMI.
2013-01-01
Background In malaria endemic areas, schoolchildren usually have asymptomatic malaria infections and consequently remain untreated. Therefore, intermittent preventive treatment with sulfadoxine-pyrimethamine in schoolchildren would be a plausible strategy in malaria stable transmission areas to prevent anaemia and malnutrition. However, in contrast to infancy and pregnancy, antimalaria intermittent preventive treatment in children has been barely investigated. As the implementation of intermittent preventive treatment may be challenged by sulfadoxine-pyrimethamine resistance, sulfadoxine-pyrimethamine combined with piperaquine may be a better alternative than sulfadoxine-pyrimethamine monotherapy. A clinical trial is being conducted to assess the efficacy and safety of intermittent preventive treatments versus controls in Democratic Republic of Congo (DRCongo) schoolchildren and their impact on sulfadoxine-pyrimethamine resistance. Methods/Design A phase IIIb, randomised, controlled trial will enroll asymptomatic schoolchildren. For interventions, sulfadoxine-pyrimethamine is compared to sulfadoxine-pyrimethamine plus piperaquine and to a control group. The two treatments are given four-monthly from baseline for a year as a single dose for sulfadoxine-pyrimethamine and two doses at 24-hour intervals for piperaquine. All participants receive praziquantel and albendazole as mass-treatment for helminthiasis at enrolment. The primary endpoint is haemoglobin concentration change at 12 months follow-up. Secondary endpoints are malaria parasite load and malaria prevalence, at baseline and at month 12. Malaria and helminthiasis incidence will be monitored throughout the study. Statistical analysis will use multilevel modelling due to repeated measurements and clustering effect of participants. Discussion The very few studies on intermittent preventive treatment in schoolchildren in malaria stable transmission areas have contradictory results. This randomised controlled trial is unique in comparing efficacy and safety of a prophylactic combination therapy to monotherapy or a control group after 12 months follow-up. Resistance markers for sulfadoxine-pyrimethamine (including break through parasitaemias) will also be recorded. Its uniqueness lies also in the fact that we use piperaquine, a long acting antimalarial, in combination with sulfadoxine-pyrimethamine. Artemisinin derivatives have been excluded as it is part of the treatment policies in virtually all malaria endemic countries. Our findings may, therefore, contribute to the public health of youngsters who fail to thrive and grow due to multiple morbidities. Trial registration NCT01722539; PACTR201211000449323 PMID:24063608
Prevalence of urban malaria and assocated factors in Gondar Town, Northwest Ethiopia.
Tilaye, Tesfaye; Deressa, Wakgari
2007-04-01
Malaria has become one of the major health problems currently facing the urban communities. The rapid increase in urbanization, rural-urban migration and climatic changes are among the main factors contributing for the rise of malaria in urban areas. To our knowledge, there has been no malaria prevalence study so far conducted in Gondar Town. The aim of this study was to determine the prevalence of malaria infection and its associated risk factors in Gondar Town. A community-based survey was conducted in three randomly selected malarious Kebeles of Gondar Town during November-December 2004. Blood films were collected from a finger-prick of 734 members of the selected households for microscopic examination of malaria parasites. Among 734 examined blood films, 39 (5.3%) were positive for malaria infection, of which 29 (74.4%) were due to Plasmodium falciparum and 10 (25.6%) due to P. vivax. Seven (18%) malaria infections were reported from children under the age of five years, indicating the endemicity of malaria to the study area. Age-specific rates show that higher malaria prevalence rate was found among under-five children (7.2%) and 15-19 year-old age group (7.3%). Proximity to mosquito breeding sites was found to be the main risk factor for malaria infection (OR = 2.4, 95% CI. 1.2-5.1). The prevalence of malaria in Gondar Town was found to be high. The prevalence was strongly associated with proximity of residence to potential mosquito breeding sites. The occurrence of the disease among under-five children would indicate that malaria is indigenous to the area. Use of personal protection methods such as insecticide treated mosquito nets should be scaled up, and malaria control interventions should target residents who are at a closer proximity to mosquito breeding sites.
Fighting malaria in Madhya Pradesh (Central India): Are we loosing the battle?
Singh, Neeru; Dash, Aditya P; Thimasarn, Krongthong
2009-01-01
Malaria control in Madhya Pradesh is complex because of vast tracts of forest with tribal settlement. Fifty four million individuals of various ethnic origins, accounting for 8% of the total population of India, contributed 30% of total malaria cases, 60% of total falciparum cases and 50% of malaria deaths in the country. Ambitious goals to control tribal malaria by launching "Enhanced Malaria Control Project" (EMCP) by the National Vector Borne Disease Control Programme (NVBDCP), with the World Bank assistance, became effective in September 1997 in eight north Indian states. Under EMCP, the programme used a broader mix of new interventions, i.e. insecticide-treated bed nets, spraying houses with effective residual insecticides, use of larvivorous fishes, rapid diagnostic tests for prompt diagnosis, treatment of the sick with effective radical treatment and increased public awareness and IEC. However, the challenge is to scale up these services. A retrospective analysis of data on malaria morbidity and associated mortality reported under the existing surveillance system of the Madhya Pradesh (Central India) for the years 1996–2007 was carried out to determine the impact of EMCP on malaria morbidity and associated mortality. Analysis revealed that despite the availability of effective intervention tools for the prevention and control of malaria, falciparum malaria remains uncontrolled and deaths due to malaria have increased. Precisely, the aim of this epidemiological analysis is to draw lessons applicable to all international aid efforts, bureaucracy, policy makers and programme managers in assessing its project performance as a new Global Malaria Action Plan is launched with ambitious goal of reducing malaria and its elimination by scaling up the use of existing tools. PMID:19419588
Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F
2018-01-01
Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.
2014-01-01
Background The impact of the age of first Plasmodium falciparum infection on the rate of acquisition of immunity to malaria and on the immune correlates of protection has proven difficult to elucidate. A randomized, double-blind, placebo-controlled trial using monthly chemoprophylaxis with sulphadoxine-pyrimethamine plus artesunate was conducted to modify the age of first P. falciparum erythrocytic exposure in infancy and assess antibodies and malaria risk over two years. Methods Participants (n = 349) were enrolled at birth to one of three groups: late exposure, early exposure and control group, and were followed up for malaria morbidity and immunological analyses at birth, 2.5, 5.5, 10.5, 15 and 24 months of age. Total IgG, IgG subclasses and IgM responses to MSP-119, AMA-1, and EBA-175 were measured by ELISA, and IgG against variant antigens on the surface of infected erythrocytes by flow cytometry. Factors affecting antibody responses in relation to chemoprophylaxis and malaria incidence were evaluated. Results Generally, antibody responses did not vary significantly between exposure groups except for levels of IgM to EBA-175, and seropositivity of IgG1 and IgG3 to MSP-119. Previous and current malaria infections were strongly associated with increased IgG against MSP-119, EBA-175 and AMA-1 (p < 0.0001). After adjusting for exposure, only higher levels of anti-EBA-175 IgG were significantly associated with reduced clinical malaria incidence (IRR 0.67, p = 0.0178). Conclusions Overall, the age of first P. falciparum infection did not influence the magnitude and breadth of IgG responses, but previous exposure was critical for antibody acquisition. IgG responses to EBA-175 were the strongest correlate of protection against clinical malaria. Trial registration ClinicalTrials.gov: NCT00231452. PMID:24674654
2013-01-01
Background The last decade has witnessed increased funding for malaria control. Malaria experts have used the opportunity to advocate for rollout of such interventions as free bed nets. A free bed net distribution strategy is seen as the quickest way to improve coverage of effective malaria control tools especially among poorest communities. Evidence to support this claim is however, sparse. This study explored the effectiveness of targeted free bed net distribution strategy in achieving equity in terms of ownership and use of bed nets and also reduction of malaria prevalence among children under-five years of age. Methods National malaria indicator survey (MIS) data from Angola, Tanzania and Uganda was used in the analysis. Hierarchical multilevel logistic regression models were used to analyse the relationship between variables of interest. Outcome variables were defined as: childhood test-confirmed malaria infections, household ownership of any mosquito net and children’s use of any mosquito nets. Marginal effects of having free bed net distribution on households with different wealth status were calculated. Results Angolan children from wealthier households were 6.4 percentage points less likely to be parasitaemic than those in poorest households, whereas those from Tanzania and Uganda were less likely to test malaria positive by 7 and 11.6 percentage points respectively (p < 0.001). The study estimates and present results on the marginal effects based on the impact of free bed net distribution on children's malaria status given their socio-economic background. Poorest households were less likely to own a net by 21.4% in Tanzania, and 2.8% in Uganda, whereas both poorer and wealthier Angolan households almost achieved parity in bed net ownership (p < 0.001). Wealthier households had a higher margin of using nets than poorest people in both Tanzania and Uganda by 11.4% and 3.9% respectively. However, the poorest household in Angola had a 6.1% net use advantage over children in wealthier households (p < 0.001). Conclusion This is the first study to use nationally representative data to explore inequalities in bed net ownership and related consequences on childhood malaria infection rates across different countries. While targeted distribution of free bed nets improved overall bed net ownership, it did not overcome ownership inequalities as measured by household socioeconomic status. Use of bed nets was disproportionately lower among poorest children, except for Angola where bed net use was higher among poorest households when compared to children in wealthier households. The study highlights the need for malaria control world governing bodies and policy makers to continue working on finding appropriate strategies to improve access to effective malaria control tools especially by the poorest who often times bears the brunt of malaria burden than their wealthier counterparts. PMID:23855893
Ross, Nicholas E; Pritchard, Charles J; Rubin, David M; Dusé, Adriano G
2006-05-01
Malaria is a serious global health problem, and rapid, accurate diagnosis is required to control the disease. An image processing algorithm to automate the diagnosis of malaria on thin blood smears is developed. The image classification system is designed to positively identify malaria parasites present in thin blood smears, and differentiate the species of malaria. Images are acquired using a charge-coupled device camera connected to a light microscope. Morphological and novel threshold selection techniques are used to identify erythrocytes (red blood cells) and possible parasites present on microscopic slides. Image features based on colour, texture and the geometry of the cells and parasites are generated, as well as features that make use of a priori knowledge of the classification problem and mimic features used by human technicians. A two-stage tree classifier using backpropogation feedforward neural networks distinguishes between true and false positives, and then diagnoses the species (Plasmodium falciparum, P. vivax, P. ovale or P. malariae) of the infection. Malaria samples obtained from the Department of Clinical Microbiology and Infectious Diseases at the University of the Witwatersrand Medical School are used for training and testing of the system. Infected erythrocytes are positively identified with a sensitivity of 85% and a positive predictive value (PPV) of 81%, which makes the method highly sensitive at diagnosing a complete sample provided many views are analysed. Species were correctly determined for 11 out of 15 samples.
Malaria Situation and Anopheline Mosquitoes in Qom Province, Central Iran
Farzinnia, B; Saghafipour, A; Abai, MR
2010-01-01
Background: The aims of this study was to analysis the current situation of malaria and to find the distribution of anopheline mosquitoes, as probable vectors of the disease, in Qom Province, central Iran. Methods: This study was carried out in two parts. First stage was data collection about malaria cases using recorded documents of patients in the Province health center, during 2001–2008. The second stage was entomological survey conducted by mosquito larval collection method in 4 villages with different geographical positions in 2008. Data were analyzed using Excel software. Results: Of 4456 blood slides, 10.9% out were positive. Most of cases were imported from other countries (90.4%), mainly from Afghanistan (56.5%) and Pakistan (16.3%). Slide positive rate showed a maximum of 16.9% and a minimum of 2.9% in 2008 and 2007, respectively. Plasmodium vivax was causative agent of 93.75% of cases, followed by P. falciparum (6.25%). More than 15 years old age group contained the most malaria reported cases (66.7%). Two Anopheles species, An. superpictus and An. claviger were collected and identified. This is the first report of Anopheles claviger in Qom Province. Conclusion: Malaria is in the control stage in Qom Province. The rate of local transmission is very low (only 1 case), shows Anopheles superpictus, as the main malaria vector of central part of Iran, can play its role in malaria transmission in the area. PMID:22808402
2012-01-01
Background Malaria is commonly considered a disease of the poor, but there is very little evidence of a possible two-way causality in the association between malaria and poverty. Until now, limitations to examine that dual relationship were the availability of representative data on confirmed malaria cases, the use of a good proxy for poverty, and accounting for endogeneity in regression models. Methods A simultaneous equation model was estimated with nationally representative data for Tanzania that included malaria parasite testing with RDTs for young children (six-59 months), and accounted for environmental variables assembled with the aid of GIS. A wealth index based on assets, access to utilities/infrastructure, and housing characteristics was used as a proxy for socioeconomic status. Model estimation was done with instrumental variables regression. Results Results show that households with a child who tested positive for malaria at the time of the survey had a wealth index that was, on average, 1.9 units lower (p-value < 0.001), and that an increase in the wealth index did not reveal significant effects on malaria. Conclusion If malaria is indeed a cause of poverty, as the findings of this study suggest, then malaria control activities, and particularly the current efforts to eliminate/eradicate malaria, are much more than just a public health policy, but also a poverty alleviation strategy. However, if poverty has no causal effect on malaria, then poverty alleviation policies should not be advertised as having the potential additional effect of reducing the prevalence of malaria. PMID:22571516
Doctor, Stephanie M; Liu, Yunhao; Whitesell, Amy; Thwai, Kyaw L; Taylor, Steve M; Janko, Mark; Emch, Michael; Kashamuka, Melchior; Muwonga, Jérémie; Tshefu, Antoinette; Meshnick, Steven R
2016-05-01
Malaria surveillance is critical for control efforts, but diagnostic methods frequently disagree. Here, we compare microscopy, PCR, and a rapid diagnostic test in 7137 samples from children in the Democratic Republic of the Congo using latent class analysis. PCR had the highest sensitivity (94.6%) and microscopy had the lowest (76.7%). Copyright © 2016 Elsevier Inc. All rights reserved.
Malaria in selected non-Amazonian countries of Latin America.
Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Angel; Padilla, Julio Cesar; Escalante, Ananias A; Beier, John C; Herrera, Socrates
2012-03-01
Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent's contribution to the global malaria burden is small, at least 1-1.2 million malaria cases are reported annually. Sixty percent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2%) followed by P. falciparum (25.7%) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health (NIH) National Institute of Allergy and Infectious Diseases (NIAID). Copyright © 2011 Elsevier B.V. All rights reserved.
Malaria in selected non-Amazonian countries of Latin America
Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Ángel; Padilla, Julio Cesar; Escalante, Ananias A.; Beier, John C.; Herrera, Socrates
2011-01-01
Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent’s contribution to the global malaria burden is small, at least 1 to 1.2 million malaria cases are reported annually. Sixty per cent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2 %) followed by P. falciparum (25.7 %) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by the Pan American Health Organization/World Health Organization (PAHO/WHO) and several other partners), have made great investments for malaria control in the region. We describe here the current status of malaria in a non-Amazonian region comprising several countries of South and Central America participating in the Centro Latino Americano de Investigación en Malaria (CLAIM), an International Center of Excellence for Malaria Research (ICEMR) sponsored by the National Institutes of Health’s (NIH) National Institute of Allergy and Infectious Diseases (NIAID). PMID:21741349
Funding for malaria control 2006-2010: a comprehensive global assessment.
Pigott, David M; Atun, Rifat; Moyes, Catherine L; Hay, Simon I; Gething, Peter W
2012-07-28
The last decade has seen a dramatic increase in international and domestic funding for malaria control, coupled with important declines in malaria incidence and mortality in some regions of the world. As the ongoing climate of financial uncertainty places strains on investment in global health, there is an increasing need to audit the origin, recipients and geographical distribution of funding for malaria control relative to populations at risk of the disease. A comprehensive review of malaria control funding from international donors, bilateral sources and national governments was undertaken to reconstruct total funding by country for each year 2006 to 2010. Regions at risk from Plasmodium falciparum and/or Plasmodium vivax transmission were identified using global risk maps for 2010 and funding was assessed relative to populations at risk. Those nations with unequal funding relative to a regional average were identified and potential explanations highlighted, such as differences in national policies, government inaction or donor neglect. US$8.9 billion was disbursed for malaria control and elimination programmes over the study period. Africa had the largest levels of funding per capita-at-risk, with most nations supported primarily by international aid. Countries of the Americas, in contrast, were supported typically through national government funding. Disbursements and government funding in Asia were far lower with a large variation in funding patterns. Nations with relatively high and low levels of funding are discussed. Global funding for malaria control is substantially less than required. Inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination. Efforts to sustain and increase international investment in malaria control should be informed by evidence-based assessment of funding equity.
Doumbo, Ogobara K; Wellems, Thomas E; Diallo, Dapa A
2007-01-01
Background Glucose-6-phosphate dehydrogenase (G6PD) is important in the control of oxidant stress in erythrocytes, the host cells for Plasmodium falciparum. Mutations in this enzyme produce X-linked deficiency states associated with protection against malaria, notably in Africa where the A− form of G6PD deficiency is widespread. Some reports have proposed that heterozygous females with mosaic populations of normal and deficient erythrocytes (due to random X chromosome inactivation) have malaria resistance similar to or greater than hemizygous males with populations of uniformly deficient erythrocytes. These proposals are paradoxical, and they are not consistent with currently hypothesized mechanisms of protection. Methods and Findings We conducted large case-control studies of the A− form of G6PD deficiency in cases of severe or uncomplicated malaria among two ethnic populations of rural Mali, West Africa, where malaria is hyperendemic. Our results indicate that the uniform state of G6PD deficiency in hemizygous male children conferred significant protection against severe, life-threatening malaria, and that it may have likewise protected homozygous female children. No such protection was evident from the mosaic state of G6PD deficiency in heterozygous females. We also found no significant differences in the parasite densities of males and females with differences in G6PD status. Pooled odds ratios from meta-analysis of our data and data from a previous study confirmed highly significant protection against severe malaria in hemizygous males but not in heterozygous females. Among the different forms of severe malaria, protection was principally evident against cerebral malaria, the most frequent form of life-threatening malaria in these studies. Conclusions The A− form of G6PD deficiency in Africa is under strong natural selection from the preferential protection it provides to hemizygous males against life-threatening malaria. Little or no such protection is present among heterozygous females. Although these conclusions are consistent with data from at least one previous study, they have not heretofore been realized to our knowledge, and they therefore give fresh perspectives on malaria protection by G6PD deficiency as an X-linked trait. PMID:17355169
Enemchukwu, B N; Ibe, C C; Udedi, S C; Iroha, A; Ubaoji, K I; Ogundapo, S S
2014-06-01
Malaria and typhoid fever are among the most endemic diseases in the tropics and are associated with poverty and underdevelopment with significant morbidity and mortality. Both diseases can lead to liver damage if not properly treated. The liver function assessment was therefore conducted on (90) volunteer patients; comprising (30) patients with malaria only, (30) with typhoid only and (30) with malaria-typhoid co-infection randomly selected from Abia State University Teaching Hospital, Aba, Abia State, Nigeria and (20) healthy individuals were used as control. Blood samples collected from these subjects were screened for malaria parasite and Staphylococcus typhi using standard methods. Mean serum levels of ALP (112.55±84.23), AST (31.33±12.80), ALT (23.10±11.84), TB (19.43±5.02), CB (5.91±3.03) and ALP (116.69±48.68), AST (28.33±11.72), ALT (22.8±5.94), TB (19.31±5.84),CB (5.60±2.50) were obtained for those subjects with malaria and typhoid respectively and subjects with malaria-typhoid co-infection recorded the following; ALP (134.33±56.62), AST (33.97±8.43), ALT (24.40±4.37),TB (21.27±2.96),CB (6.58±3.10) while the control subjects had mean serum levels ofALP (71.05±18.18), AST (16.65±7.45), ALT (13.85±6.09), TB (10.05±4.85) and CB (3.00±1.67). These mean values were subjected to a statistical test using students t-test which revealed a significant increase (p<0.05).The results suggest that malaria, typhoid and malaria-typhoid co-infection can elevate ALP, AST, ALT, TB and CB serum levels and can lead to liver damage if not properly treated.
2010-01-01
Background Long-lasting insecticidal nets (LLINs) are an important tool for controlling malaria. Much attention has been devoted to determine both the effect of LLINs on the reduction of Plasmodium infection rate and on clinically-confirmed malaria cases in sub-Saharan Africa. We carried out an epidemiological study to investigate whether LLINs impact on Plasmodium prevalence rate and the proportion of clinically-confirmed malaria cases, in five villages in the district of Toumodi, central Côte d'Ivoire. Methods From April 2007 to November 2008, a community-based malaria control programme was implemented in the study villages, which involved large-scale distribution of LLINs, and training and sensitization activities within the community. We determined the effect of this programme on Plasmodium prevalence rate, clinically-confirmed malaria cases and proportion of high parasitaemia rates in children aged 6-59 months through a series of cross-sectional surveys starting in April 2007 and repeated once every 6 months. Results We observed a significant decrease in the mean P. falciparum prevalence rate from April 2007 to April 2008 (p = 0.029). An opposite trend was observed from November 2007 to November 2008 when P. falciparum prevalence rate increased significantly (p = 0.003). Highly significant decreases in the proportions of clinical malaria cases were observed between April 2007 and April 2008 (p < 0.001), and between November 2007 and November 2008 (p = 0.001). Conclusions Large-scale distribution of LLINs, accompanied by training and sensitization activities, significantly reduced Plasmodium prevalence rates among young children in the first year of the project, whereas overall clinical malaria rates dropped over the entire 18-month project period. A decrease in community motivation to sleep under bed nets, perhaps along with changing patterns of malaria transmission, might explain the observed increase in the Plasmodium prevalence rate between November 2007 and November 2008. PMID:20860829
Goswami, Prashant; Murty, Upadhayula Suryanarayana; Mutheneni, Srinivasa Rao; Krishnan, Swathi Trithala
2014-01-01
Background Pro-active and effective control as well as quantitative assessment of impact of climate change on malaria requires identification of the major drivers of the epidemic. Malaria depends on vector abundance which, in turn, depends on a combination of weather variables. However, there remain several gaps in our understanding and assessment of malaria in a changing climate. Most of the studies have considered weekly or even monthly mean values of weather variables, while the malaria vector is sensitive to daily variations. Secondly, rarely all the relevant meteorological variables have been considered together. An important question is the relative roles of weather variables (vector abundance) and change in host (human) population, in the change in disease load. Method We consider the 28 states of India, characterized by diverse climatic zones and changing population as well as complex variability in malaria, as a natural test bed. An annual vector load for each of the 28 states is defined based on the number of vector genesis days computed using daily values of temperature, rainfall and humidity from NCEP daily Reanalysis; a prediction of potential malaria load is defined by taking into consideration changes in the human population and compared with the reported number of malaria cases. Results For most states, the number of malaria cases is very well correlated with the vector load calculated with the combined conditions of daily values of temperature, rainfall and humidity; no single weather variable has any significant association with the observed disease prevalence. Conclusion The association between vector-load and daily values of weather variables is robust and holds for different climatic regions (states of India). Thus use of all the three weather variables provides a reliable means of pro-active and efficient vector sanitation and control as well as assessment of impact of climate change on malaria. PMID:24971510
Quantifying the economic burden of malaria in Nigeria using the willingness to pay approach
Jimoh, Ayodele; Sofola, Oluyemi; Petu, Amos; Okorosobo, Tuoyo
2007-01-01
Background Malaria illness imposes great burden on the society as it has adverse effects on the physical, mental and social well being of the people as well as on the economic development of the nation. Methods The study uses the Willingness To Pay (WTP) approach to evaluate the burden of malaria in Nigeria. Results The results indicate that households would be prepared to pay an average of about Naira 1,112 (USD 9.3) per month for the treatment of malaria. This is about Naira 427 (USD 3.6) in excess of the average expenditure they currently make on malaria treatment per month. Similarly, households are willing to pay on the average a sum of Naira 7,324 (USD 61) per month for the control of malaria. Again, this is an excess of about Naira 2,715 (USD 22.6) over the cost they currently bear (protection, treatment and indirect costs), and it represents households' average valuation of their intangible costs of malaria illness. This amount represents about Naira 611.7 (USD 5.1) per head per month and Naira 7,340 (USD 61.2) per year. For a country with a population of about 120 million this translates to about Naira 880,801 million per annum representing about 12.0 per cent of Gross Domestic Product. Hence, the malaria burden in Nigeria is enormous and has a devastating impact on economic growth. Conclusion In the long term, it is important to recognize that health and poverty are closely linked. Reducing the burden of malaria in Nigeria will help to contribute to the economic well-being of communities; and poverty-reduction will be an essential input into improving health. National malaria control programme in Nigeria and their partners need to recognize these links, and identify mechanisms for ensuring that the poorest have access to essential health interventions. PMID:17517146
2010-01-01
Background Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. Methods This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. Results It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts. Conclusions The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan. PMID:20813066
Brady, Oliver J.; Godfray, H. Charles J.; Tatem, Andrew J.; Gething, Peter W.; Cohen, Justin M.; McKenzie, F. Ellis; Perkins, T. Alex; Reiner, Robert C.; Tusting, Lucy S.; Sinka, Marianne E.; Moyes, Catherine L.; Eckhoff, Philip A.; Scott, Thomas W.; Lindsay, Steven W.; Hay, Simon I.; Smith, David L.
2016-01-01
Background Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Methods and Results Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Conclusions Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. PMID:26822603
Soleimani Ahmadi, Mussa; Vatandoost, Hassan; Shaeghi, Mansoreh; Raeisi, Ahmad; Abedi, Farshid; Eshraghian, Mohammad Reza; Aghamolaei, Teimur; Madani, Abdol Hossein; Safari, Reza; Jamshidi, Mahin; Alimorad, Abbas
2012-01-01
Long-lasting insecticidal nets (LLINs) have been advocated as an effective tool against malaria transmission. However, success of this community based intervention largely depends on the knowledge and practice regarding malaria and its prevention. According to the national strategy plan on evaluation of LLINs (Olyset nets), this study was conducted to determine the perceptions and practices about malaria and to improve use of LLINs in Bashagard district, one of the important foci of malaria in southeast Iran. The study area comprised 14 villages that were randomized in two clusters and designated as LLINs and untreated nets. Each of households in both clusters received two bed nets by the free distribution and delivery. After one month quantitative data collection method was used to collect information regarding the objectives of the study. On the basis of this information, an educational program was carried out in both areas to increase motivation for use of bed nets. Community knowledge and practice regarding malaria and LLIN use assessed pre- and post-educational program. The data were analyzed using SPSS ver.16 software. At baseline, 77.5% of respondents in intervention and 69.4 % in control area mentioned mosquito bite as the cause of malaria, this awareness increased significantly in intervention (90.3%) and control areas (87.9%), following the educational program. A significant increase also was seen in the proportion of households who used LLINs the previous night (92.5%) compared with untreated nets (87.1%). Educational status was an important predictor of LLINs use. Regular use of LLIN was considerably higher than the targeted coverage (80%) which recommended by World Heaths Organization. About 81.1% and 85.3% of respondents from LLIN and control areas reported that mosquito nuisance and subsequent malaria transmission were the main determinants of bed net use. These findings highlight a need for educational intervention in implementation of long-lasting insecticidal nets; this should be considered in planning and decision-making in the national malaria control program during the next campaigns of LLINs in Iran. © 2012 Tehran University of Medical Sciences. All rights reserved.
She, Guo-lin; Ma, Yu-Cai; Wang, Fu-biao
2013-08-01
To analyze the current situation of the comprehensive prevention and control system for imported falciparum malaria in Hanjiang District and evaluate its effect. According to the Management Scheme on Control of Imported Falciparum Malaria in Yangzhou City, the comprehensive prevention and control system for imported falciparum malaria was implemented, and the relevant malaria data were collected and analyzed statistically. The data included plasmodium blood test ratio of fever patients among exported labors and those returned, the ratio of laboratory-confirmed cases among all reported cases of falciparum malaria, the ratio of falciparum malaria patients who received the standard treatment within 24 hours after onset, etc from 2010 to 2012. After the implementation of the comprehensive prevention and control system, the confirmation ratio of falciparum malaria cases within 24 hours following first visit has reached 60.47%, the average time from first visit to confirmation has shortened to 1.8 d, and the average time from onset to confirmation has shortened to 3.7 d. The health education coverage ratio was 100%, the health knowledge awareness ratio was 95.56%, the ratio of patients seeking treatment on own initiative was 100%, the laboratory-confirmed ratio was 100%, and the ratio of standard treatment after malaria diagnosis was 100%. The comprehensive prevention and control system carried out by Hanjiang District has made remarkable achievements.
Yé, Yazoume; Eisele, Thomas P.; Eckert, Erin; Korenromp, Eline; Shah, Jui A.; Hershey, Christine L.; Ivanovich, Elizabeth; Newby, Holly; Carvajal-Velez, Liliana; Lynch, Michael; Komatsu, Ryuichi; Cibulskis, Richard E.; Moore, Zhuzhi; Bhattarai, Achuyt
2017-01-01
Abstract. Concerted efforts from national and international partners have scaled up malaria control interventions, including insecticide-treated nets, indoor residual spraying, diagnostics, prompt and effective treatment of malaria cases, and intermittent preventive treatment during pregnancy in sub-Saharan Africa (SSA). This scale-up warrants an assessment of its health impact to guide future efforts and investments; however, measuring malaria-specific mortality and the overall impact of malaria control interventions remains challenging. In 2007, Roll Back Malaria's Monitoring and Evaluation Reference Group proposed a theoretical framework for evaluating the impact of full-coverage malaria control interventions on morbidity and mortality in high-burden SSA countries. Recently, several evaluations have contributed new ideas and lessons to strengthen this plausibility design. This paper harnesses that new evaluation experience to expand the framework, with additional features, such as stratification, to examine subgroups most likely to experience improvement if control programs are working; the use of a national platform framework; and analysis of complete birth histories from national household surveys. The refined framework has shown that, despite persisting data challenges, combining multiple sources of data, considering potential contributions from both fundamental and proximate contextual factors, and conducting subnational analyses allows identification of the plausible contributions of malaria control interventions on malaria morbidity and mortality. PMID:28990923
Hershey, Christine L.; Bhattarai, Achuyt; Florey, Lia S.; McElroy, Peter D.; Nielsen, Carrie F.; Yé, Yazoume; Eckert, Erin; Franca-Koh, Ana Cláudia; Shargie, Estifanos; Komatsu, Ryuichi; Smithson, Paul; Thwing, Julie; Mihigo, Jules; Herrera, Samantha; Taylor, Cameron; Shah, Jui; Mouzin, Eric; Yoon, Steven S.; Salgado, S. René
2017-01-01
Abstract. As funding for malaria control increased considerably over the past 10 years resulting in the expanded coverage of malaria control interventions, so did the need to measure the impact of these investments on malaria morbidity and mortality. Members of the Roll Back Malaria (RBM) Partnership undertook impact evaluations of malaria control programs at a time when there was little guidance in terms of the process for conducting an impact evaluation of a national-level malaria control program. The President’s Malaria Initiative (PMI), as a member of the RBM Partnership, has provided financial and technical support for impact evaluations in 13 countries to date. On the basis of these experiences, PMI and its partners have developed a streamlined process for conducting the evaluations with a set of lessons learned and recommendations. Chief among these are: to ensure country ownership and involvement in the evaluations; to engage stakeholders throughout the process; to coordinate evaluations among interested partners to avoid duplication of efforts; to tailor the evaluation to the particular country context; to develop a standard methodology for the evaluations and a streamlined process for completion within a reasonable time; and to develop tailored dissemination products on the evaluation for a broad range of stakeholders. These key lessons learned and resulting recommendations will guide future impact evaluations of malaria control programs and other health programs. PMID:28990921
Widespread mosquito net fishing in the Barotse floodplain: Evidence from qualitative interviews
Mulenga, Angela; Reid, Robert
2018-01-01
Background The insecticide-treated mosquito net (ITN) is a crucial component of malaria control programs, and has prevented many malaria cases and deaths due to scale up. ITNs also serve effectively as fishing nets and various sources have reported use of ITNs for fishing. This article examines how widespread the practice of mosquito net fishing with ITNs is. Methods We conducted in-depth interviews with fishery personnel and traditional leadership from the Barotse Royal Establishment in Western Province, Zambia, to better understand the presence or absence of the use of ITNs as fishing nets. We then coded the interviews for themes through content analysis. Additionally we conducted a desk review of survey data to show trends in malaria indicators, nutritional status of the population and fish consumption. Results All those interviewed reported that ITNs are regularly used for fishing in Western Zambia and the misuse is widespread. Concurrently those interviewed reported declines in fish catches both in terms of quantity and quality leading to threatened food security in the area. In addition to unsustainable fishing practices those interviewed referenced drought and population pressure as reasons for fishery decline. Malaria indicators do not show a trend in declining malaria transmission, fish consumption has dropped dramatically and nutritional status has not improved over time. Conclusions Despite the misuse of the ITNs for fishing all those interviewed maintained that ITN distribution should continue. Donors, control programs and scientists should realize that misuse of ITNs as fishing nets is a current problem for malaria control and potentially for food security that needs to be addressed. PMID:29719003
Muhammad, Hamzat U; Giwa, Fatima J; Olayinka, Adebola T; Balogun, Shakir M; Ajayi, IkeOluwapo; Ajumobi, Olufemi; Nguku, Patrick
2016-06-18
Malaria in pregnancy remains a public health problem in Nigeria. It causes maternal anaemia and adversely affects birth outcome leading to low birth weight, abortions and still births. Nigeria has made great strides in addressing the prevention and control of malaria in pregnancy. However, recent demographic survey shows wide disparities in malaria control activities across the geopolitical zones. This situation has been compounded by the political unrest and population displacement especially in the Northeastern zone leaving a significant proportion of pregnant women at risk of diseases, including malaria. The use of malaria preventive measures during pregnancy and the risk of malaria parasitaemia, anaemia and low birth weight babies were assessed among parturient women in an insurgent area. A cross-sectional survey was conducted among 184 parturient women at Federal Medical Centre, Nguru in Yobe state, between July and November 2014. Information on demographics, antenatal care and prevention practices was collected using an interviewer-administered questionnaire. Maternal peripheral and the cord blood samples were screened for malaria parasitaemia by microscopy of Giemsa-stained blood films. The presence of anaemia was also determined by microhaemocrit method using the peripheral blood samples. Data was analysed using descriptive and analytical statistics. Prevalence of malaria parasitaemia, anaemia and low birth weight babies was 40.0, 41.0 and 37.0 %, respectively, and mothers aged younger than 25 years were mostly affected. Eighty (43.0 %) of the women received up to two doses of sulfadoxine-pyrimethamine for intermittent preventive treatment (IPTp-SP) during pregnancy and most, 63 (83.0 %) of those tested malaria positive received less than these. Presence of malaria infection at antenatal clinic enrollment (OR: 6.6; 95 % CI: 3.4-13.0), non-adherence to direct observation therapy for administration of IPTp-SP (OR: 4.6; 95 % CI: 2.2-9.5) and receiving
[Application of ARIMA model to predict number of malaria cases in China].
Hui-Yu, H; Hua-Qin, S; Shun-Xian, Z; Lin, A I; Yan, L U; Yu-Chun, C; Shi-Zhu, L I; Xue-Jiao, T; Chun-Li, Y; Wei, H U; Jia-Xu, C
2017-08-15
Objective To study the application of autoregressive integrated moving average (ARIMA) model to predict the monthly reported malaria cases in China, so as to provide a reference for prevention and control of malaria. Methods SPSS 24.0 software was used to construct the ARIMA models based on the monthly reported malaria cases of the time series of 20062015 and 2011-2015, respectively. The data of malaria cases from January to December, 2016 were used as validation data to compare the accuracy of the two ARIMA models. Results The models of the monthly reported cases of malaria in China were ARIMA (2, 1, 1) (1, 1, 0) 12 and ARIMA (1, 0, 0) (1, 1, 0) 12 respectively. The comparison between the predictions of the two models and actual situation of malaria cases showed that the ARIMA model based on the data of 2011-2015 had a higher accuracy of forecasting than the model based on the data of 2006-2015 had. Conclusion The establishment and prediction of ARIMA model is a dynamic process, which needs to be adjusted unceasingly according to the accumulated data, and in addition, the major changes of epidemic characteristics of infectious diseases must be considered.
PIRAHMADI, Sakineh; ZAKERI, Sedigheh; RAEISI, Ahmad
2017-01-01
Background: Asymptomatic malaria infection provides a reservoir of parasites, causing the persistence of malaria transmission. It accounts an important challenge for successful management of the control, elimination, and eradication programmes in any malaria-endemic region. This investigation was designed to assess the presence and the prevalence of asymptomatic carriers in Iranshahr district of Sistan and Baluchistan Province (2013–2014), with a considerable population movement, during the malaria elimination phase in Iran. Methods: Finger-prick blood samples were collected from symptomless (n=250) and febrile (n=50) individuals residing in Iranshahr district, easthern Iran (Hoodian, Mand, Chah-e Giji, Jolgehashem, Esfand, Dalgan and Chahshour) during Jan 2013 to Dec 2014, and Plasmodium infections were detected using light microscopic and highly sensitive nested-PCR techniques. Results: Thick and thin Giemsa-stained blood smears were negative for Plasmodium parasites. In addition, based on nested-PCR analysis, no P. vivax, P. falciparum, and P. malariae parasites were detected among the studied individuals. Conclusion: Investigation the absence of asymptomatic carriers in Iranshahr district was illustrated and achieving malaria elimination in this area is feasible in a near future. PMID:28761465
Tsoka-Gwegweni, J M; Kleinschmidt, I
2013-01-24
South Africa has no policy to prevent malaria in pregnancy, despite the adverse effects of the disease in pregnancy. However, malaria control measures consisting of indoor residual spraying and specific antimalarial treatment have been in place since the 1970s. Information on the burden of malaria in pregnancy in South Africa is needed to indicate whether a specific policy for malaria prevention in pregnancy is necessary. To determine the burden of malaria in pregnancy in KwaZulu-Natal (KZN) province, South Africa. Pregnant women were enrolled at their first antenatal care visit to three health facilities in Umkhanyakude health district in northern KZN during May 2004 - September 2005 and followed up until delivery. Data collection included demographic details, current and previous malaria infection during pregnancy, haemoglobin concentrations and birth outcomes. Of the 1 406 study participants, more than a quarter were younger than 20 years of age, and more than 90% were unemployed and unmarried. Although 33.2% of the women were anaemic, this was not related to malaria. The prevalence and incidence of malaria were very low, and low birth weight was only weakly associated with malaria (1/10). The low burden of malaria in these pregnant women suggests that they have benefited from malaria control strategies in the study area. The implication is that additional measures specific for malaria prevention in pregnancy are not required. However, ongoing monitoring is needed to ensure that malaria prevalence remains low.
Thomson, Madeleine C; Ukawuba, Israel; Hershey, Christine L; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa
2017-09-01
Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.
Tackling the malaria problem in the South-East Asia Region: need for a change in policy?
Bharati, Kaushik; Ganguly, N K
2013-01-01
Malaria is largely neglected in the South-East Asia Region (SEAR), although it has the highest number of people susceptible to the disease. Malaria in the SEAR exhibits special epidemiological characteristics such as "forest malaria" and malaria due to migration across international borders. The Greater Mekong Subregion (GMS) has been a focal-point for the emergence of drug resistant malaria. With the recent emergence of artemisinin resistance, coupled with the limited availability of insecticides, malaria control efforts in the SEAR face a steep challenge. Indirect man-made factors such as climate change, as well as direct man-made factors such as the circulation of counterfeit drugs have added to the problem. Increased monitoring, surveillance, pharmacovigilance as well as cross-border collaboration are required to address these problems. Regional networking and data-sharing will keep all stakeholders updated about the status of various malaria control programmes in the SEAR. Cutting-edge technologies such as GIS/GPS (geographical information system/global positioning system) systems and mobile phones can provide information in "real-time". A holistic and sustained approach to malaria control by integrated vector management (IVM) is suggested, in which all the stakeholder countries work collaboratively as a consortium. This approach will address the malaria problem in a collective manner so that malaria control can be sustained over time.
Re-imagining malaria--a platform for reflections to widen horizons in malaria control.
Hausmann-Muela, Susanna; Eckl, Julian
2015-04-24
Ongoing political-economic discussions that take stock of social and societal determinants of health present an opportunity for productive dialogue on why current approaches to malaria control and elimination need to be broadened, and how this may be accomplished. They invite us, for example, to look beyond malaria as a disease, to appreciate the experiences of malaria-afflicted populations, to transcend techno-centric approaches, to investigate social conflicts around malaria, to give voice to the communities engaged in bottom-up approaches, and to revisit lessons learned in the past. While contributions from all disciplines are invited to this discussion, social scientists are particularly encouraged to participate. They have struggled in the past to find an appropriate platform within the malaria community that provides them the opportunity to address researchers from other disciplines, malaria practitioners, and policy makers. The Malaria Journal's new thematic series on 're-imagining malaria' offers them this opportunity. The goal of the series is to encourage transdisciplinary thinking, to stimulate discussion, to promote constructive criticism, and to gather overlooked experiences that help to reflect on implicit assumptions. Overall it aims at widening horizons in malaria control.
Wilson, Mark L; Krogstad, Donald J; Arinaitwe, Emmanuel; Arevalo-Herrera, Myriam; Chery, Laura; Ferreira, Marcelo U; Ndiaye, Daouda; Mathanga, Don P; Eapen, Alex
2015-09-01
A major public health question is whether urbanization will transform malaria from a rural to an urban disease. However, differences about definitions of urban settings, urban malaria, and whether malaria control should differ between rural and urban areas complicate both the analysis of available data and the development of intervention strategies. This report examines the approach of the International Centers of Excellence for Malaria Research (ICEMR) to urban malaria in Brazil, Colombia, India (Chennai and Goa), Malawi, Senegal, and Uganda. Its major theme is the need to determine whether cases diagnosed in urban areas were imported from surrounding rural areas or resulted from transmission within the urban area. If infections are being acquired within urban areas, malaria control measures must be targeted within those urban areas to be effective. Conversely, if malaria cases are being imported from rural areas, control measures must be directed at vectors, breeding sites, and infected humans in those rural areas. Similar interventions must be directed differently if infections were acquired within urban areas. The hypothesis underlying the ICEMR approach to urban malaria is that optimal control of urban malaria depends on accurate epidemiologic and entomologic information about transmission. © The American Society of Tropical Medicine and Hygiene.
Targeting male mosquito swarms to control malaria vector density
Sawadogo, Simon Peguedwinde; Niang, Abdoulaye; Bilgo, Etienne; Millogo, Azize; Maïga, Hamidou; Dabire, Roch K.; Tripet, Frederic; Diabaté, Abdoulaye
2017-01-01
Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. It has been estimated that the spread of resistance could lead to an additional 120000 deaths per year, and interfere with the prospects for sustained control or the feasibility of achieving malaria elimination. Another complication for the development of resistance management strategies is that, in addition to insecticide resistance, mosquito behavior evolves in a manner that diminishes the impact of LLINs and IRS. Mosquitoes may circumvent LLIN and IRS control through preferential feeding and resting outside human houses and/or being active earlier in the evening before people go to sleep. Recent developments in our understanding of mosquito swarming suggest that new tools targeting mosquito swarms can be designed to cut down the high reproductive rate of malaria vectors. Targeting swarms of major malaria vectors may provide an effective control method to counteract behavioral resistance developed by mosquitoes. Here, we evaluated the impact of systematic spraying of swarms of Anopheles gambiae s.l. using a mixed carbamate and pyrethroid aerosol. The impact of this intervention on vector density, female insemination rates and the age structure of males was measured. We showed that the resulting mass killing of swarming males and some mate-seeking females resulted in a dramatic 80% decrease in population size compared to a control population. A significant decrease in female insemination rate and a significant shift in the age structure of the male population towards younger males incapable of mating were observed. This paradigm-shift study therefore demonstrates that targeting primarily males rather than females, can have a drastic impact on mosquito population. PMID:28278212
Factors influencing malaria control policy-making in Kenya, Uganda and Tanzania.
Mutero, Clifford M; Kramer, Randall A; Paul, Christopher; Lesser, Adriane; Miranda, Marie Lynn; Mboera, Leonard E G; Kiptui, Rebecca; Kabatereine, Narcis; Ameneshewa, Birkinesh
2014-08-08
Policy decisions for malaria control are often difficult to make as decision-makers have to carefully consider an array of options and respond to the needs of a large number of stakeholders. This study assessed the factors and specific objectives that influence malaria control policy decisions, as a crucial first step towards developing an inclusive malaria decision analysis support tool (MDAST). Country-specific stakeholder engagement activities using structured questionnaires were carried out in Kenya, Uganda and Tanzania. The survey respondents were drawn from a non-random purposeful sample of stakeholders, targeting individuals in ministries and non-governmental organizations whose policy decisions and actions are likely to have an impact on the status of malaria. Summary statistics across the three countries are presented in aggregate. Important findings aggregated across countries included a belief that donor preferences and agendas were exerting too much influence on malaria policies in the countries. Respondents on average also thought that some relevant objectives such as engaging members of parliament by the agency responsible for malaria control in a particular country were not being given enough consideration in malaria decision-making. Factors found to influence decisions regarding specific malaria control strategies included donor agendas, costs, effectiveness of interventions, health and environmental impacts, compliance and/acceptance, financial sustainability, and vector resistance to insecticides. Malaria control decision-makers in Kenya, Uganda and Tanzania take into account health and environmental impacts as well as cost implications of different intervention strategies. Further engagement of government legislators and other policy makers is needed in order to increase funding from domestic sources, reduce donor dependence, sustain interventions and consolidate current gains in malaria.
Moss, William J; Hamapumbu, Harry; Kobayashi, Tamaki; Shields, Timothy; Kamanga, Aniset; Clennon, Julie; Mharakurwa, Sungano; Thuma, Philip E; Glass, Gregory
2011-06-10
The burden of malaria has decreased dramatically within the past several years in parts of sub-Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The objective of this study was to identify environmental risk factors for malaria transmission using remote sensing technologies to guide malaria control interventions in a region of declining burden of malaria. Satellite images were used to construct a sampling frame for the random selection of households enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province, Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness, topographic position index and hydrological models of stream networks. A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of RDT positive households and incident infections were more likely to be located in high-risk areas derived from prevalence data. Based on the spatial risk map, targeting households in the top 80th percentile of malaria risk would require malaria control interventions directed to only 24% of the households. Remote sensing technologies can be used to target malaria control interventions in a region of declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria elimination.
2009-01-01
Background Malaria remains a major cause of morbidity and mortality among children under five years of age in Nigeria. Most of the early treatments for fever and malaria occur through self-medication with anti-malarials bought over-the-counter (OTC) from untrained drug vendors. Self-medication through drug vendors can be ineffective, with increased risks of drug toxicity and development of drug resistance. Global malaria control initiatives highlights the potential role of drug vendors to improve access to early effective malaria treatment, which underscores the need for interventions to improve treatment obtained from these outlets. This study aimed to determine the feasibility and impact of training rural drug vendors on community-based malaria treatment and advice with referral of severe cases to a health facility. Methods A drug vendor-training programme was carried out between 2003 and 2005 in Ugwuogo-Nike, a rural community in south-east Nigeria. A total of 16 drug vendors were trained and monitored for eight months. The programme was evaluated to measure changes in drug vendor practice and knowledge using exit interviews. In addition, home visits were conducted to measure compliance with referral. Results The intervention achieved major improvements in drug selling and referral practices and knowledge. Exit interviews confirmed significant increases in appropriate anti-malarial drug dispensing, correct history questions asked and advice given. Improvements in malaria knowledge was established and 80% compliance with referred cases was observed during the study period, Conclusion The remarkable change in knowledge and practices observed indicates that training of drug vendors, as a means of communication in the community, is feasible and strongly supports their inclusion in control strategies aimed at improving prompt effective treatment of malaria with referral of severe cases. PMID:19930561
2010-01-01
Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay. PMID:20822506
2012-01-01
Background Seeking consent for genetic and genomic research can be challenging, particularly in populations with low literacy levels, and in emergency situations. All of these factors were relevant to the MalariaGEN study of genetic factors influencing immune responses to malaria in northern rural Ghana. This study sought to identify issues arising in practice during the enrolment of paediatric cases with severe malaria and matched healthy controls into the MalariaGEN study. Methods The study used a rapid assessment incorporating multiple qualitative methods including in depth interviews, focus group discussions and observations of consent processes. Differences between verbal information provided during community engagement processes, and consent processes during the enrolment of cases and controls were identified, as well as the factors influencing the tailoring of such information. Results MalariaGEN participants and field staff seeking consent were generally satisfied with their understanding of the project and were familiar with aspects of the study relating to malaria. Some genetic aspects of the study were also well understood. Participants and staff seeking consent were less aware of the methodologies employed during genomic research and their implications, such as the breadth of data generated and the potential for future secondary research. Moreover, trust in and previous experience with the Navrongo Health Research Centre which was conducting the research influenced beliefs about the benefits of participating in the MalariaGEN study and subsequent decision-making about research participation. Conclusions It is important to recognise that some aspects of complex genomic research may be of less interest to and less well understood by research participants and that such gaps in understanding may not be entirely addressed by best practice in the design and conduct of consent processes. In such circumstances consideration needs to be given to additional protections for participants that may need to be implemented in such research, and how best to provide such protections. Capacity building for research ethics committees with limited familiarity with genetic and genomic research, and appropriate engagement with communities to elicit opinions of the ethical issues arising and acceptability of downstream uses of genome wide association data are likely to be important. PMID:22747883
Nateghpour, M; Edrissian, Ghh; Raeisi, A; Motevalli-Haghi, A; Farivar, L; Mohseni, Gh; Rahimi-Froushani, A
2012-01-01
Malaria is still one of the most important infectious diseases in the world. The disease also is a public health problem in south and southeast of Iran. This study programmed to show the correlation between regular malaria microscopy training and refresher training courses and control of malaria in Iran. Three types of training courses were conducted in this programme including; five - day, ten - day and bimonthly training courses. Each of the training courses contained theoretical and practical sections and training impact was evaluated by practical examination and multiple-choice quizzes through pre and post tests. Distribution pattern of the participants in the training and refresher training courses showed that the most participants were from Sistan & Baluchistan and Hormozgan provinces where malaria is endemic and most cases of the infection come out from these malarious areas. A total of 695 identified individuals were participated in the training courses. A significant conversely correlation was found between conducting malaria microscopy training courses and annual malaria cases in Iran. Conducting a suitable programme for malaria microscopy training and refresher training plays an important role in the control of malaria in endemic areas. Obviously, the decrease of malaria cases in Iran has been achieved due to some activities that malaria diagnosis training was one of them.
Optimal control in a model of malaria with differential susceptibility
NASA Astrophysics Data System (ADS)
Hincapié, Doracelly; Ospina, Juan
2014-06-01
A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.
Sanders, Kelly C; Rundi, Christina; Jelip, Jenarun; Rashman, Yusof; Smith Gueye, Cara; Gosling, Roly D
2014-01-21
Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals. This observational qualitative case study employed semi-structured key informant interviews to describe partnerships between the Malaysian Malaria Control Programme (MCP), and private palm oil, rubber and acacia plantations in the state of Sabah. Semi-structured interview guides were used to examine resource commitments, incentives, challenges, and successes of the collaborations. Interviews with workers from private plantations and the state of Sabah MCP indicated that partnerships with the commercial sector had contributed to decreases in incidence at plantation sites since 1991. Several plantations contribute financial and human resources toward malaria control efforts and all plantations frequently communicate with the MCP to help monitor the malaria situation on-site. Management of partnerships between private corporations and government entities can be challenging, as prioritization of malaria control may change with annual profits or arrival of new management. Partnering with the commercial sector has been an essential operational strategy to support malaria elimination in Sabah. The successes of these partnerships rely on a common understanding that elimination will be a mutually beneficial outcome for employers and the general public. Best practices included consistent communication, developing government-staffed subsector offices for malaria control on-site, engaging commercial plantations to provide financial and human resources for malaria control activities, and the development of new worker screening programmes. The successes and challenges associated with partnerships between the public and commercial sector can serve as an example for other malaria-eliminating countries with large plantation sectors, and may also be applied to other sectors that employ migrant workers or have commercial enterprises in hard to reach areas.
Rouhani, Saba; Diarra, Seybou; Saye, Renion; Bamadio, Modibo; Jones, Rebecca; Traore, Diahara; Traore, Klenon; Jukes, Matthew CH; Thuilliez, Josselin; Brooker, Simon; Roschnik, Natalie; Sacko, Moussa
2017-01-01
Background School-aged children are rarely targeted by malaria control programmes, yet the prevalence of Plasmodium infection in primary school children often exceeds that seen in younger children and could affect haemoglobin concentration and school performance. Methods A cluster-randomised trial was carried out in 80 primary schools in southern Mali to evaluate the impact of a school-based malaria intervention package. Intervention schools received two interventions sequentially: (1) teacher-led participatory malaria prevention education, combined with distribution of long-lasting insecticidal nets (LLINs), followed 7 months later at the end of the transmission season by (2) mass delivery of artesunate and sulfadoxine-pyrimethamine administered by teachers, termed intermittent parasite clearance in schools (IPCs). Control schools received LLINs as part of the national universal net distribution programme. The impact of the interventions on malaria and anaemia was evaluated over 20 months using cross-sectional surveys in a random subset of 38 schools(all classes), with a range of cognitive measures (sustained attention, visual search, numeracy, vocabulary and writing) assessed in a longitudinal cohort of children aged 9–12 years in all 80 schools. Results Delivery of a single round of IPCs was associated with dramatic reductions in malaria parasitaemia (OR 0.005, 95% CI 0.002 to 0.011, p<0.001) and gametocyte carriage (OR 0.02, 95% CI 0.00 to 0.17, p<0.001) in intervention compared with control schools. This effect was sustained for 6 months until the beginning of the next transmission season. IPCs was also associated with a significant decrease in anaemia (OR 0.56, 95% CI 0.40 to 0.78, p=0.001), and increase in sustained attention (difference +0.23, 95% CI 0.10 to 0.36, p<0.001). There was no evidence of impact on other cognitive measures. Conclusion The combination of malaria prevention education, LLINs and IPCs can reduce anaemia and improve sustained attention of school children in areas of highly seasonal transmission. These findings highlight the impact of asymptomatic malaria infection on cognitive performance in schoolchildren and the benefit of IPCs in reducing this burden. Additionally, malaria control in schools can help diminish the infectious reservoir that sustains Plasmodium transmission. PMID:29081992
Mbonye, Anthony K.; Magnussen, Pascal; Lal, Sham; Hansen, Kristian S.; Cundill, Bonnie; Chandler, Clare; Clarke, Siân E.
2015-01-01
Background Inappropriate treatment of malaria is widely reported particularly in areas where there is poor access to health facilities and self-treatment of fevers with anti-malarial drugs bought in shops is the most common form of care-seeking. The main objective of the study was to examine the impact of introducing rapid diagnostic tests for malaria (mRDTs) in registered drug shops in Uganda, with the aim to increase appropriate treatment of malaria with artemisinin-based combination therapy (ACT) in patients seeking treatment for fever in drug shops. Methods A cluster-randomized trial of introducing mRDTs in registered drug shops was implemented in 20 geographical clusters of drug shops in Mukono district, central Uganda. Ten clusters were randomly allocated to the intervention (diagnostic confirmation of malaria by mRDT followed by ACT) and ten clusters to the control arm (presumptive treatment of fevers with ACT). Treatment decisions by providers were validated by microscopy on a reference blood slide collected at the time of consultation. The primary outcome was the proportion of febrile patients receiving appropriate treatment with ACT defined as: malaria patients with microscopically-confirmed presence of parasites in a peripheral blood smear receiving ACT or rectal artesunate, and patients with no malaria parasites not given ACT. Findings A total of 15,517 eligible patients (8672 intervention and 6845 control) received treatment for fever between January-December 2011. The proportion of febrile patients who received appropriate ACT treatment was 72·9% versus 33·7% in the control arm; a difference of 36·1% (95% CI: 21·3 – 50·9), p<0·001. The majority of patients with fever in the intervention arm accepted to purchase an mRDT (97·8%), of whom 58·5% tested mRDT-positive. Drug shop vendors adhered to the mRDT results, reducing over-treatment of malaria by 72·6% (95% CI: 46·7– 98·4), p<0·001) compared to drug shop vendors using presumptive diagnosis (control arm). Conclusion Diagnostic testing with mRDTs compared to presumptive treatment of fevers implemented in registered drug shops substantially improved appropriate treatment of malaria with ACT. Trial Registration ClinicalTrials.gov NCT01194557. PMID:26200467
Application of optimal control strategies to HIV-malaria co-infection dynamics
NASA Astrophysics Data System (ADS)
Fatmawati; Windarto; Hanif, Lathifah
2018-03-01
This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.
Koepfli, Cristian; Barry, Alyssa; Javati, Sarah; Timinao, Lincoln; Nate, Elma; Mueller, Ivo; Barnadas, Celine
2014-01-01
Papua New Guinea (PNG) is undertaking intensified efforts to control malaria. The National Malaria Control Program aims to reduce the burden of disease by large-scale distribution of insecticide-treated bednets, improved diagnosis and implementation of new treatments. A scientific program monitoring the effect of these interventions, including molecular epidemiology studies, closely accompanies the program. Laboratory assays have been developed in (or transferred to) PNG to measure prevalence of infection and intensity of transmission as well as potential resistance to currently used drugs. These assays help to assess the impact of the National Malaria Control Program, and they reveal a much clearer picture of malaria epidemiology in PNG. In addition, analysis of the geographical clustering of parasites aids in selecting areas where intensified control will be most successful. This paper gives an overview of current research and recently completed studies in the molecular epidemiology of malaria conducted in Papua New Guinea.
Volatile biomarkers of symptomatic and asymptomatic malaria infection in humans
Wanjiku, Caroline; Stanczyk, Nina M.; Pulido, Hannier; Betz, Heike S.
2018-01-01
Malaria remains among the world’s deadliest diseases, and control efforts depend critically on the availability of effective diagnostic tools, particularly for the identification of asymptomatic infections, which play a key role in disease persistence and may account for most instances of transmission but often evade detection by current screening methods. Research on humans and in animal models has shown that infection by malaria parasites elicits changes in host odors that influence vector attraction, suggesting that such changes might yield robust biomarkers of infection status. Here we present findings based on extensive collections of skin volatiles from human populations with high rates of malaria infection in Kenya. We report broad and consistent effects of malaria infection on human volatile profiles, as well as significant divergence in the effects of symptomatic and asymptomatic infections. Furthermore, predictive models based on machine learning algorithms reliably determined infection status based on volatile biomarkers. Critically, our models identified asymptomatic infections with 100% sensitivity, even in the case of low-level infections not detectable by microscopy, far exceeding the performance of currently available rapid diagnostic tests in this regard. We also identified a set of individual compounds that emerged as consistently important predictors of infection status. These findings suggest that volatile biomarkers may have significant potential for the development of a robust, noninvasive screening method for detecting malaria infections under field conditions. PMID:29760095
Xu, Jian-Wei; Liu, Hui; Zhang, Yu; Guo, Xiang-Rui; Wang, Jia-Zhi
2015-01-01
A retrospective case-control study was conducted to identify risk factors for border malaria in a malaria elimination setting of Yunnan Province, China. The study comprised 214 cases and 428 controls. The controls were individually matched to the cases on the basis of residence, age, and gender. In addition, statistical associations are based on matched analyses. The frequencies of imported, male, adult, and vivax malaria cases were respectively 201 (93.9%), 194 (90.7%), 210 (98.1%), and 176 (82.2%). Overnight stay in Myanmar within the prior month was independently associated with malaria infection (odds ratio [OR] 159.5, 95% confidence interval [CI] 75.1–338.9). In particular, stays in lowland and foothill (OR 5.5, 95% CI 2.5–11.8) or mid-hill (OR 42.8, 95% CI 5.1–319.8) areas, or near streamlets (OR 15.3, 95% CI 4.3–55.2) or paddy field or pools (OR10.1, 95% CI 4.4–55.8) were found to be independently associated with malaria. Neither forest exposure nor use of vector control measures was associated with malaria. In conclusion, travel to lowland and foothill or mid-hill hyperendemic areas, especially along the waterside in Myanmar, was found to be the highest risk factor for malaria. In considering the limitations of the study, further investigations are needed to identify the major determinants of malaria risk and develop new strategies for malaria elimination on China-Myanmar border. PMID:25601994
2010-01-01
Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB) methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB) and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin), the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of ATSB can substantially decrease malaria vector population densities and longevity. It is likely that ATSB methods can be used as a new powerful tool for the control of malaria vectors, particularly since this approach is highly effective for mosquito control, technologically simple, inexpensive, and environmentally safe. PMID:20663142
Bald, I; Camara, A; Baldé, O; Magassouba, N F; Bah, M S; Makanéra, A; Gamy, E P
2010-08-01
Malaria and HIV/AIDS are two of the most widespread infectious diseases encountered in sub-Saharan Africa. Even minor interactions between these two diseases could have substantial effects on public health. The purpose of this study was to investigate associations between malaria and HIV infection. Study was carried out over an 8-month period (April 1, 2003 to November 30, 2003) in the Tropical and Infectious Diseases Department of the Donka National Hospital in Conakry, Guinea. A total of 89 malaria patients including 41 cases with HIV infection and 48 controls without HIV infection were included. All patients were hospitalized during the study and provided informed consent. Results showed that malaria affected all age groups in the same proportion. Mean patient age was 34 years (range, 15 and 76 years). Males were more frequently infected with a sex ratio of 1.05. The average number of malaria episodes was higher in cases (malaria with HIV-infection than in controls (malaria without HIV infection). Hyperthermia was observed in most cases (68.29%) and controls (77.08%). Severe anemia was observed in 26.82% of cases versus 10.41% of controls. Low parasite density was observed in 73.17% of cases as compared to 68.75% of controls. The recovery rate was higher in the control group than in case group: 27.08% versus 14.63%. The death rate was higher in the case group than in the control group: 21.95% versus 6.25%. These findings demonstrate a link between malaria and HIV. The frequency of malaria episodes was higher in patients with HIV infection than patients without HIV infection and the outcome of malarial episodes was better in patients without HIV infection.
Alonso, Sergi; Zulliger, Rose; Wagman, Joe; Saifodine, Abuchahama; Candrinho, Baltazar; Macete, Eusébio; Brew, Joe; Fornadel, Christen; Kassim, Hidayat; Loch, Lourdes; Sacoor, Charfudin; Varela, Kenyssony; Carty, Cara L; Robertson, Molly; Saute, Francisco
2018-01-01
Background Most of the reduction in malaria prevalence seen in Africa since 2000 has been attributed to vector control interventions. Yet increases in the distribution and intensity of insecticide resistance and higher costs of newer insecticides pose a challenge to sustaining these gains. Thus, endemic countries face challenging decisions regarding the choice of vector control interventions. Methods A cluster randomised trial is being carried out in Mopeia District in the Zambezia Province of Mozambique, where malaria prevalence in children under 5 is high (68% in 2015), despite continuous and campaign distribution of long-lasting insecticide-treated nets (LLINs). Study arm 1 will continue to use the standard, LLIN-based National Malaria Control Programme vector control strategy (LLINs only), while study arm 2 will receive indoor residual spraying (IRS) once a year for 2 years with a microencapsulated formulation of pirimiphos-methyl (Actellic 300 CS), in addition to the standard LLIN strategy (LLINs+IRS). Prior to the 2016 IRS implementation (the first of two IRS campaigns in this study), 146 clusters were defined and stratified per number of households. Clusters were then randomised 1:1 into the two study arms. The public health impact and cost-effectiveness of IRS intervention will be evaluated over 2 years using multiple methods: (1) monthly active malaria case detection in a cohort of 1548 total children aged 6–59 months; (2) enhanced passive surveillance at health facilities and with community health workers; (3) annual cross-sectional surveys; and (4) entomological surveillance. Prospective microcosting of the intervention and provider and societal costs will be conducted. Insecticide resistance status pattern and changes in local Anopheline populations will be included as important supportive outcomes. Discussion By evaluating the public health impact and cost-effectiveness of IRS with a non-pyrethroid insecticide in a high-transmission setting with high LLIN ownership, it is expected that this study will provide programmatic and policy-relevant data to guide national and global vector control strategies. Trial registration number NCT02910934. PMID:29564161
Eskenazi, Brenda; Quirós-Alcalá, Lesliam; Lipsitt, Jonah M; Wu, Lemuel D; Kruger, Philip; Ntimbane, Tzundzukani; Nawn, John Burns; Bornman, M S Riana; Seto, Edmund
2014-07-01
Recent estimates indicate that malaria has led to over half a million deaths worldwide, mostly to African children. Indoor residual spraying (IRS) of insecticides is one of the primary vector control interventions. However, current reporting systems do not obtain precise location of IRS events in relation to malaria cases, which poses challenges for effective and efficient malaria control. This information is also critical to avoid unnecessary human exposure to IRS insecticides. We developed and piloted a mobile-based application (mSpray) to collect comprehensive information on IRS spray events. We assessed the utility, acceptability and feasibility of using mSpray to gather improved homestead- and chemical-level IRS coverage data. We installed mSpray on 10 cell phones with data bundles, and pilot tested it with 13 users in Limpopo, South Africa. Users completed basic information (number of rooms/shelters sprayed; chemical used, etc.) on spray events. Upon submission, this information as well as geographic positioning system coordinates and time/date stamp were uploaded to a Google Drive Spreadsheet to be viewed in real time. We administered questionnaires, conducted focus groups, and interviewed key informants to evaluate the utility of the app. The low-cost, cell phone-based "mSpray" app was learned quickly by users, well accepted and preferred to the current paper-based method. We recorded 2865 entries (99.1% had a GPS accuracy of 20 m or less) and identified areas of improvement including increased battery life. We also identified a number of logistic and user problems (e.g., cost of cell phones and cellular bundles, battery life, obtaining accurate GPS measures, user errors, etc.) that would need to be overcome before full deployment. Use of cell phone technology could increase the efficiency of IRS malaria control efforts by mapping spray events in relation to malaria cases, resulting in more judicious use of chemicals that are potentially harmful to humans and the environment. Copyright © 2014. Published by Elsevier Ltd.
2013-01-01
Background As successful malaria control programmes move towards elimination, they must identify residual transmission foci, target vector control to high-risk areas, focus on both asymptomatic and symptomatic infections, and manage importation risk. High spatial and temporal resolution maps of malaria risk can support all of these activities, but commonly available malaria maps are based on parasite rate, a poor metric for measuring malaria at extremely low prevalence. New approaches are required to provide case-based risk maps to countries seeking to identify remaining hotspots of transmission while managing the risk of transmission from imported cases. Methods Household locations and travel histories of confirmed malaria patients during 2011 were recorded through routine surveillance by the Swaziland National Malaria Control Programme for the higher transmission months of January to April and the lower transmission months of May to December. Household locations for patients with no travel history to endemic areas were compared against a random set of background points sampled proportionate to population density with respect to a set of variables related to environment, population density, vector control, and distance to the locations of identified imported cases. Comparisons were made separately for the high and low transmission seasons. The Random Forests regression tree classification approach was used to generate maps predicting the probability of a locally acquired case at 100 m resolution across Swaziland for each season. Results Results indicated that case households during the high transmission season tended to be located in areas of lower elevation, closer to bodies of water, in more sparsely populated areas, with lower rainfall and warmer temperatures, and closer to imported cases than random background points (all p < 0.001). Similar differences were evident during the low transmission season. Maps from the fit models suggested better predictive ability during the high season. Both models proved useful at predicting the locations of local cases identified in 2012. Conclusions The high-resolution mapping approaches described here can help elimination programmes understand the epidemiology of a disappearing disease. Generating case-based risk maps at high spatial and temporal resolution will allow control programmes to direct interventions proactively according to evidence-based measures of risk and ensure that the impact of limited resources is maximized to achieve and maintain malaria elimination. PMID:23398628
Masiye, Felix; Rehnberg, Clas
2005-12-15
Zambia is facing a double crisis of increasing malaria burden and dwindling capacity to deal with the endemic malaria burden. The pursuit of sustainable but equity mechanisms for financing malaria programmes is a subject of crucial policy discussion. This requires that comprehensive accounting of the economic impact of the various malaria programmes. Information on the economic value of programmes is essential in soliciting appropriate funding allocations for malaria control. This paper specifically seeks to elicit a measure of the economic benefits of an improved malaria treatment programme in Zambia. The paper also studies the equity implications in malaria treatment given that demand or malaria treatment is determined by household socio-economic status. A contingent valuation survey of about 300 Zambian households was conducted in four districts. Willingness-to-pay (WTP) was elicited for an improved treatment programme for malaria in order to generate a measure of the economic benefits of the programme. The payment card method was used in eliciting WTP bids. The study reports that malaria treatment has significant economic benefits to society. The total economic benefits of an improved treatment programme were estimated at an equivalent of USD 77 million per annum, representing about 1.8% of Zambia's GDP. The study also reports the theoretically anticipated association between WTP and several socio-economic factors. Our income elasticity of demand is positive and similar in magnitude to estimates reported in similar studies. Finally, from an equity standpoint, the constraints imposed by income and socio-economic status are discussed.
Kobylinski, Kevin C.; Alout, Haoues; Foy, Brian D.; Clements, Archie; Adisakwattana, Poom; Swierczewski, Brett E.; Richardson, Jason H.
2014-01-01
Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression. PMID:25070998
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Tobin-West, Charles I; Asuquo, Eme O
2013-01-01
Background: This study was conducted to assess the level of intermittent preventive treatment of malaria in pregnancy (IPTp) in Rivers State, Nigeria, to identify obstacles prohibiting utilization in order to make recommendations for improved uptake and malaria control in general. Methods: A cross-sectional study was carried out in November 2008 among 339 pregnant women and those who had delivered children in the last 1 year, using a multistage sampling method. Data were analyzed using the Epi-Info version 6.04d statistical software package and hypothesis tests were conducted to compare summary statistics at 95% significance level. Results: Most of the respondents (76.4%) had knowledge that malaria was caused by mosquitoes and was harmful in pregnancy. Although majority of the pregnant women (80.8%) attended antenatal care clinics, knowledge of the correct use of SP was low (32.6%) and only 62.8% took malaria preventive treatment. Of these, 58.4% took SP, while nearly a third, 31.8%, took chloroquine. Only 16.4% took their SP at the health facility directly observed by health workers according to the national guidelines. The commonest reason for not preventing malaria was that they were not sick during the period of pregnancy. Conclusions: Misconceptions about IPTp persist among women known to have attended antenatal care clinics, resulting in only a minority of pregnant women receiving IPTp as recommended by national guidelines. Efforts directed at awareness creation on the new malaria prevention and treatment policy are therefore necessary to enhance the uptake of IPT in pregnancy in Rivers State. Further studies are however, needed to evaluate the knowledge and practices of health care workers on the new malaria treatment policy. PMID:23412963
Malaria Four-year Epidemiological Trends in Sistan and Baluchistan Province, Iran
Norouzinezhad, Faezeh; Ghaffari, Fatemeh; Raeisi, Ahmad; Norouzinejad, Abbas; Kaveh, Farzad
2017-01-01
Introduction Malaria is one of the foremost public health concerns in Iran, where more than 90% of malaria cases are reported in the southern and south-eastern areas of the country. The aim of this study was to assess the epidemiological trends of malaria over a four-year period in in the Sistan and Baluchistan province in south east of Iran. Methods This descriptive epidemiological study examined malaria trends in Sistan and Baluchistan province from 2011 to 2014. The study used data collected in accordance with the Iranian Ministry of Health’s malaria control and elimination protocol. This protocol has digitized the data reporting system for malaria, and all information were sent online to the Center of Disease Control in the Ministry of Health. In this manner, information on malaria cases in Sistan and Baluchistan were made available for the researchers to analyze. Descriptive and comparative analyses were conducted using the SPSS version 13. Results Annual incidence rates reported in 2011, 2012, 2013, and 2014 showed the prevalence of 89.9, 43.9, 38.3 and 36.6 (per 100,000 persons), respectively. Across all 4 years, the highest numbers of cases were found in persons 16–25 years old and among males. Most of the infected individuals were villagers and workers. In total, 64.8% of patients were Iranian and 29.5% were Pakistani. The highest number of cases was diagnosed in the cities of Sarbaz and Chabahar, with 1,742 and 1,707 cases, respectively. The results showed that over the last 4 years, 50.8% of cases have entered into Iran from foreign countries. The majority of cases involved parasites in the trophozoite stage of the life cycle. In terms of surveillance, passive care was reported in the majority of cases, and vivax malaria had the highest prevalence in comparison with other types. Conclusion The findings are showing that the care, control and treatment system applied to Sistan and Baluchistan province has had a positive effect on decreasing the prevalence rate of Malaria disease. Meanwhile, it is recommended to policy makers to provide more health controls for border entries, stop irregular immigration and apply more precise case searches in order to have a complete and on time treatment in a way that the chain of transmission of the disease would be cut. Health education and knowledge-ability promotion programs are better to be set in order to develop self-protection and environment improvement among people. PMID:28243421
History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting.
Matthys, Barbara; Sherkanov, Tohir; Karimov, Saifudin S; Khabirov, Zamonidin; Mostowlansky, Till; Utzinger, Jürg; Wyss, Kaspar
2008-10-26
Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007) in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. One case of P. vivax was detected among the 363 schoolchildren examined (0.28%). The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%). Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against malaria in the face of population movements and inadequate surveillance may render local communities vulnerable to potential epidemics. To attain malaria transmission interruption in Tajikistan by 2015, there is a need for rigorous surveillance along with strengthening of primary health care facilities for effective case management, and possibly a more differentiated vector control strategy based on additional local evidence.
2012-01-01
Background In Savannakhet province, Laos and Quang Tri province, Vietnam, malaria is still an important health problem and most cases are found in the mountainous, forested border areas where ethnic minority groups live. The objectives of this study were to obtain a better joint understanding of the malaria situation along the border and, on the basis of that, improve malaria control methods through better cooperation between the two countries. Methods Fourteen villages in Savannakhet and 22 villages in Quang Tri were randomly selected within 5 km from the border where a blood survey for microscopic diagnosis (n = 1256 and n = 1803, respectively), household interviews (n = 400, both sides) and vector surveys were conducted between August and October 2010. Satellite images were used to examine the forest density around the study villages. Results Malaria prevalence was significantly higher in Laos (5.2%) than in Vietnam (1.8%) and many other differences were found over the short distance across the border. Bed net coverage was high (> 90%) in both Laos and Vietnam but, while in Laos more than 60% of the nets were long-lasting insecticide-treated, Vietnam used indoor residual spraying in this area and the nets were untreated. Anopheles mosquitoes were more abundant in Laos than in Vietnam, especially many Anopheles dirus were captured in indoor light traps while none were collected in Vietnam. The forest cover was higher around the Lao than the Vietnamese villages. After this study routine exchange of malaria surveillance data was institutionalized and for the first time indoor residual spraying was applied in some Lao villages. Conclusions The abundance of indoor-collected An. dirus on the Laos side raises doubts about the effectiveness of a sole reliance on long-lasting insecticide-treated nets in this area. Next to strengthening the early detection, correct diagnosis and prompt, adequate treatment of malaria infections, it is recommended to test focal indoor residual spraying and the promotion of insect repellent use in the early evening as additional vector interventions. Conducting joint malaria surveys by staff of two countries proved to be effective in stimulating better collaboration and improve cross-border malaria control. PMID:22862795
Herrera, Sócrates; Solarte, Yezid; Jordán-Villegas, Alejandro; Echavarría, Juan Fernando; Rocha, Leonardo; Palacios, Ricardo; Ramírez, Óscar; Vélez, Juan D.; Epstein, Judith E.; Richie, Thomas L.; Arévalo-Herrera, Myriam
2011-01-01
A safe and reproducible Plasmodium vivax infectious challenge method is required to evaluate the efficacy of malaria vaccine candidates. Seventeen healthy Duffy (+) and five Duffy (−) subjects were randomly allocated into three (A–C) groups and were exposed to the bites of 2–4 Anopheles albimanus mosquitoes infected with Plasmodium vivax derived from three donors. Duffy (−) subjects were included as controls for each group. Clinical manifestations of malaria and parasitemia were monitored beginning 7 days post-challenge. All Duffy (+) volunteers developed patent malaria infection within 16 days after challenge. Prepatent period determined by thick smear, was longer for Group A (median 14.5 d) than for Groups B and C (median 10 d/each). Infected volunteers recovered rapidly after treatment with no serious adverse events. The bite of as low as two P. vivax-infected mosquitoes provides safe and reliable infections in malaria-naive volunteers, suitable for assessing antimalarial and vaccine efficacy trials. PMID:21292872
Factoring quality laboratory diagnosis into the malaria control agenda for sub-Saharan Africa.
Aidoo, Michael
2013-09-01
Recent progress in malaria control in sub-Saharan Africa has been achieved primarily through provision of insecticide-treated nets, indoor residual spraying, and antimalarial drugs. Although these interventions are important, proper case identification and accurate measurement of their impact depend on quality diagnostic testing. Current availability of diagnostic testing for malaria in sub-Saharan Africa is inadequate to support disease management, prevention programs, and surveillance needs. Challenges faced include a dearth of skilled workforce, inadequate health systems infrastructure, and lack of political will. A coordinated approach to providing pre-service clinical and laboratory training together with systems that support a scale-up of laboratory services could provide means not only for effective malaria case management but also, management of non-malaria febrile illnesses, disease surveillance, and accurate control program evaluation. A synthesis of the challenges faced in ensuring quality malaria testing and how to include this information in the malaria control and elimination agenda are presented.
Gamboa, Dionicia; Ho, Mei-Fong; Bendezu, Jorge; Torres, Katherine; Chiodini, Peter L.; Barnwell, John W.; Incardona, Sandra; Perkins, Mark; Bell, David; McCarthy, James; Cheng, Qin
2010-01-01
Background Malaria rapid diagnostic tests (RDTs) offer significant potential to improve the diagnosis of malaria, and are playing an increasing role in malaria case management, control and elimination. Peru, along with other South American countries, is moving to introduce malaria RDTs as components of malaria control programmes supported by the Global Fund for AIDS, TB and malaria. The selection of the most suitable malaria RDTs is critical to the success of the programmes. Methods Eight of nine microscopy positive P. falciparum samples collected in Iquitos, Peru tested negative or weak positive using HRP2-detecting RDTs. These samples were tested for the presence of pfhrp2 and pfhrp3 and their flanking genes by PCR, as well as the presence of HRP proteins by ELISA. To investigate for geographic extent of HRP-deleted parasites and their temporal occurrence a retrospective study was undertaken on 148 microscopy positive P. falciparum samples collected in different areas of the Amazon region of Peru. Findings Eight of the nine isolates lacked the pfhrp2 and/or pfhrp3 genes and one or both flanking genes, and the absence of HRP was confirmed by ELISA. The retrospective study showed that 61 (41%) and 103 (70%) of the 148 samples lacked the pfhrp2 or pfhrp3 genes respectively, with 32 (21.6%) samples lacking both hrp genes. Conclusions This is the first documentation of P. falciparum field isolates lacking pfhrp2 and/or pfhrp3. The high frequency and wide distribution of different parasites lacking pfhrp2 and/or pfhrp3 in widely dispersed areas in the Peruvian Amazon implies that malaria RDTs targeting HRP2 will fail to detect a high proportion of P. falciparum in malaria-endemic areas of Peru and should not be used. RDTs detecting parasite LDH or aldolase and quality microscopy should be use for malaria diagnosis in this region. There is an urgent need for investigation of the abundance and geographic distribution of these parasites in Peru and neighbouring countries. PMID:20111602
Using Rainfall and Temperature Data in the Evaluation of National Malaria Control Programs in Africa
Thomson, Madeleine C.; Ukawuba, Israel; Hershey, Christine L.; Bennett, Adam; Ceccato, Pietro; Lyon, Bradfield; Dinku, Tufa
2017-01-01
Abstract. Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues. PMID:28990912
McCollum, Jeffrey T; Hanna, Refaat; Halbach, Alaina C; Cummings, James F
2015-01-01
From April 24 to 26, 2013, the Armed Forces Health Surveillance Center and the U.S. Africa Command cosponsored the inaugural meeting of the West Africa Malaria Task Force in Accra, Ghana. The meeting's purpose was to identify common challenges, explore regional and transcontinental collaborations, and to share knowledge about best practices in the fight against malaria in West Africa. Military representatives from Benin, Burkina Faso, Ghana, Liberia, Niger, Nigeria, Senegal, and Togo participated in the Task Force; various U.S. Government agencies were also represented, including the Department of Defense, the Centers for Disease Control and Prevention, and the Agency for International Development. African nation participants presented brief overviews of their military's malaria prevention and control measures, surveillance programs, diagnostic capabilities, and treatment regimens emphasizing gaps within existing programs. Representatives from U.S. agencies discussed activities and capabilities relevant for the region, challenges and lessons learned regarding malaria, and highlighted opportunities for enhanced partnerships to counter malaria in West Africa. This article summarizes the major conclusions of the Task Force meeting, identifies relevant focus areas for future Task Force activities, and outlines opportunities for further inclusion of West African militaries to improve regional malaria surveillance and control efforts. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Renewed mobilization against malaria.
1991-01-01
1 million people die in the world from malaria annually, 800,000 of whom are 5 year old children in Sub-Sahara Africa. Further it affects 270 million people. In fact, 110 million develop malaria, 90 million of whom are from Sub-Saharan Africa. Thus WHO has introduced a new world initiative for malaria control to reverse the worsening trend that began in the mid 1970s. In October 1991, 150 officials from 50 African, Asian, and Latin American countries and participants from UN cooperation and development agencies and bilateral agencies attended an interregional conference at the WHO Regional office for Africa in Brazzaville, Congo. It strove to evaluate malaria situations specific to Africa, to update the malaria control plan in Africa, and to contribute to the development of an implementable world strategy. This world strategy needs to consider the local situation and encourage participation of the government and people of affected countries. Further individuals, communities, and various sectors of the national economy including those involved in health, education, development, and agriculture need to participate in malaria control. In addition, for this strategy to work, most countries must strengthen the management and financing of health services to meet their needs. For example, local populations must share local operating costs such as those for essential drugs and mosquito control operations. Community participation must also include personal protection such as impregnated bed nets and environmental measures. Besides malaria control must be integrated into the existing health system at country, provincial, and peripheral levels. In sum, improved case management, control of malaria transmission, and prevention and control of epidemics form the basis for the new strategy.
Kyaw, Aye Mon Mon; Kathirvel, Soundappan; Das, Mrinalini; Thapa, Badri; Linn, Nay Yi Yi; Maung, Thae Maung; Lin, Zaw; Thi, Aung
2018-01-01
Myanmar, a malaria endemic country of Southeast Asia, adopted surveillance and response strategy similar to "1-3-7" Chinese strategy to achieve sub-national elimination in six low-endemic region/states of the country. Among these, Yangon, Bago-East, and Mon region/states have implemented this malaria surveillance and response strategy with modification in 2016. The current study was conducted to assess the case notification, investigation, classification, and response strategy (NICR) in these three states. This was a retrospective cohort study using routine program data of all patients with malaria diagnosed and reported under the National Malaria Control Programme in 2016 from the above three states. As per the program, all malaria cases need to be notified within 1 day and investigated within 3 days of diagnosis and response to control (active case detection and control) should be taken for all indigenous malaria cases within 7 days of diagnosis. A total of 959 malaria cases were diagnosed from the study area in 2016. Of these, the case NICR details were available only for 312 (32.5%) malaria cases. Of 312 cases, the case notification, investigation, and classification were carried out within 3 days of malaria diagnosis in 95.5% cases (298/312). Of 208 indigenous malaria cases (66.7%, 208/312), response to control was taken in 96.6% (201/208) within 7 days of diagnosis. The timeline at each stage of the strategy namely case notification, investigation, classification, and response to control was followed, and response action was taken in nearly all indigenous malaria cases for the available case information. Strengthening of health information and monitoring system is needed to avoid missing information. Future research on feasibility of mobile/tablet-based surveillance system and providing response to all cases including imported malaria can be further studied.
Challenges for malaria elimination in Brazil.
Ferreira, Marcelo U; Castro, Marcia C
2016-05-20
Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas.
Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.
2013-01-01
Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606
Temu, Emmanuel A.; Coleman, Mike; Abilio, Ana Paula; Kleinschmidt, Immo
2012-01-01
Background African countries are scaling up malaria interventions, especially insecticide treated nets (ITN) and indoor residual spraying (IRS), for which ambitious coverage targets have been set. In spite of these efforts infection prevalence remains high in many parts of the continent. This study investigated risk factors for malaria infection in children using three malaria indicator surveys from Zambezia province, Mozambique. The impact of IRS and ITNs, the effects of keeping farm animals and of the construction material of roofs of houses and other potential risk factors associated with malaria infection in children were assessed. Methods Cross-sectional community-based surveys were conducted in October of 2006, 2007 and 2008. A total of 8338 children (ages 1–15 years) from 2748 households were included in the study. All children were screened for malaria by rapid diagnostic tests. Caregiver interviews were used to assess household demographic and wealth characteristics and ITN and IRS coverage. Associations between malaria infection, vector control interventions and potential risk factors were assessed. Results Overall, the prevalence of malaria infection was 47.8% (95%CI: 38.7%–57.1%) in children 1–15 years of age, less than a quarter of children (23.1%, 95%CI: 19.1%–27.6%) were sleeping under ITN and almost two thirds were living in IRS treated houses (coverage 65.4%, 95%CI: 51.5%–77.0%). Protective factors that were independently associated with malaria infection were: sleeping in an IRS house without sleeping under ITN (Odds Ratio (OR) = 0.6; 95%CI: 0.4–0.9); additional protection due to sleeping under ITN in an IRS treated house (OR = 0.5; 95%CI: 0.3–0.7) versus sleeping in an unsprayed house without a ITN; and parental education (primary/secondary: OR = 0.6; 95%CI: 0.5–0.7) versus parents with no education. Increased risk of infection was associated with: current fever (OR = 1.2; 95%CI: 1.0–1.5) versus no fever; pig keeping (OR = 3.2; 95%CI: 2.1–4.9) versus not keeping pigs; living in houses with a grass roof (OR = 1.7; 95%CI: 1.3–2.4) versus other roofing materials and bigger household size (8–15 people: OR = 1.6; 95%CI: 1.3–2.1) versus small households (1–4 persons). Conclusion Malaria infection among children under 15 years of age in Zambezia remained high but conventional malaria vector control methods, in particular IRS, provided effective means of protection. Household ownership of farm animals, particularly pigs, and living in houses with a grass roof were independently associated with increased risk of infection, even after allowing for household wealth. To reduce the burden of malaria, national control programs need to ensure high coverage of effective IRS and promote the use of ITNs, particularly in households with elevated risks of infection, such as those keeping farm animals, and those with grass roofs. PMID:22363640
Health, human rights, and malaria control: historical background and current challenges.
Brentlinger, Paula E
2006-01-01
Malaria, a parasitic infection, causes hundreds of millions of disease episodes and more than a million deaths every year, nearly all of them occurring in the poorer and more vulnerable sectors of the world's developing countries. In spite of the great burden of suffering caused by malaria, the human rights implications of this disease have not been well described. This article summarizes important associations between the spread of malaria and human rights abuses (such as those associated with slavery and armed conflict) and between poverty, socio-economic inequity, and access to malaria-control measures. The author concludes that malaria control merits inclusion as a core element in global strategies to achieve progressive realization of the right to health.
Tackling the malaria problem in the South-East Asia Region: Need for a change in policy?
Bharati, Kaushik; Ganguly, N. K.
2013-01-01
Malaria is largely neglected in the South-East Asia Region (SEAR), although it has the highest number of people susceptible to the disease. Malaria in the SEAR exhibits special epidemiological characteristics such as “forest malaria” and malaria due to migration across international borders. The Greater Mekong Subregion (GMS) has been a focal-point for the emergence of drug resistant malaria. With the recent emergence of artemisinin resistance, coupled with the limited availability of insecticides, malaria control efforts in the SEAR face a steep challenge. Indirect man-made factors such as climate change, as well as direct man-made factors such as the circulation of counterfeit drugs have added to the problem. Increased monitoring, surveillance, pharmacovigilance as well as cross-border collaboration are required to address these problems. Regional networking and data-sharing will keep all stakeholders updated about the status of various malaria control programmes in the SEAR. Cutting-edge technologies such as GIS/GPS (geographical information system/global positioning system) systems and mobile phones can provide information in “real-time”. A holistic and sustained approach to malaria control by integrated vector management (IVM) is suggested, in which all the stakeholder countries work collaboratively as a consortium. This approach will address the malaria problem in a collective manner so that malaria control can be sustained over time. PMID:23481050
Country-level operational implementation of the Global Plan for Insecticide Resistance Management
Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo
2013-01-01
Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs. PMID:23696658
Ecologists can enable communities to implement malaria vector control in Africa
Mukabana, W Richard; Kannady, Khadija; Kiama, G Michael; Ijumba, Jasper N; Mathenge, Evan M; Kiche, Ibrahim; Nkwengulila, Gamba; Mboera, Leonard; Mtasiwa, Deo; Yamagata, Yoichi; van Schayk, Ingeborg; Knols, Bart GJ; Lindsay, Steven W; de Castro, Marcia Caldas; Mshinda, Hassan; Tanner, Marcel; Fillinger, Ulrike; Killeen, Gerry F
2006-01-01
Background Integrated vector management (IVM) for malaria control requires ecological skills that are very scarce and rarely applied in Africa today. Partnerships between communities and academic ecologists can address this capacity deficit, modernize the evidence base for such approaches and enable future scale up. Methods Community-based IVM programmes were initiated in two contrasting settings. On Rusinga Island, Western Kenya, community outreach to a marginalized rural community was achieved by University of Nairobi through a community-based organization. In Dar es Salaam, Tanzania, Ilala Municipality established an IVM programme at grassroots level, which was subsequently upgraded and expanded into a pilot scale Urban Malaria Control Programme with support from national academic institutes. Results Both programmes now access relevant expertise, funding and policy makers while the academic partners benefit from direct experience of community-based implementation and operational research opportunities. The communities now access up-to-date malaria-related knowledge and skills for translation into local action. Similarly, the academic partners have acquired better understanding of community needs and how to address them. Conclusion Until sufficient evidence is provided, community-based IVM remains an operational research activity. Researchers can never directly support every community in Africa so community-based IVM strategies and tactics will need to be incorporated into undergraduate teaching programmes to generate sufficient numbers of practitioners for national scale programmes. Academic ecologists at African institutions are uniquely positioned to enable the application of practical environmental and entomological skills for malaria control by communities at grassroots level and should be supported to fulfil this neglected role. PMID:16457724
Combining fungal biopesticides and insecticide-treated bednets to enhance malaria control.
Hancock, Penelope A
2009-10-01
In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.
Country-level operational implementation of the Global Plan for Insecticide Resistance Management.
Hemingway, Janet; Vontas, John; Poupardin, Rodolphe; Raman, Jaishree; Lines, Jo; Schwabe, Chris; Matias, Abrahan; Kleinschmidt, Immo
2013-06-04
Malaria control is reliant on the use of long-lasting pyrethroid-impregnated nets and/or indoor residual spraying (IRS) of insecticide. The rapid selection and spread of operationally significant pyrethroid resistance in African malaria vectors threatens our ability to sustain malaria control. Establishing whether resistance is operationally significant is technically challenging. Routine monitoring by bioassay is inadequate, and there are limited data linking resistance selection with changes in disease transmission. The default is to switch insecticides when resistance is detected, but limited insecticide options and resistance to multiple insecticides in numerous locations make this approach unsustainable. Detailed analysis of the resistance situation in Anopheles gambiae on Bioko Island after pyrethroid resistance was detected in this species in 2004, and the IRS program switched to carbamate bendiocarb, has now been undertaken. The pyrethroid resistance selected is a target-site knock-down resistance kdr-form, on a background of generally elevated metabolic activity, compared with insecticide-susceptible A. gambiae, but the major cytochrome P450-based metabolic pyrethroid resistance mechanisms are not present. The available evidence from bioassays and infection data suggests that the pyrethroid resistance mechanisms in Bioko malaria vectors are not operationally significant, and on this basis, a different, long-lasting pyrethroid formulation is now being reintroduced for IRS in a rotational insecticide resistance management program. This will allow control efforts to be sustained in a cost-effective manner while reducing the selection pressure for resistance to nonpyrethroid insecticides. The methods used provide a template for evidence-based insecticide resistance management by malaria control programs.
Gryseels, Charlotte; Uk, Sambunny; Sluydts, Vincent; Durnez, Lies; Phoeuk, Pisen; Suon, Sokha; Set, Srun; Heng, Somony; Siv, Sovannaroth; Gerrets, René; Tho, Sochantha; Coosemans, Marc; Peeters Grietens, Koen
2015-01-01
In Cambodia, despite an impressive decline in prevalence over the last 10 years, malaria is still a public health problem in some parts of the country. This is partly due to vectors that bite early and outdoors reducing the effectiveness of measures such as Long-Lasting Insecticidal Nets. Repellents have been suggested as an additional control measure in such settings. As part of a cluster-randomized trial on the effectiveness of topical repellents in controlling malaria infections at community level, a mixed-methods study assessed user rates and determinants of use. Repellents were made widely available and Picaridin repellent reduced 97% of mosquito bites. However, despite high acceptability, daily use was observed to be low (8%) and did not correspond to the reported use in surveys (around 70%). The levels of use aimed for by the trial were never reached as the population used it variably across place (forest, farms and villages) and time (seasons), or in alternative applications (spraying on insects, on bed nets, etc.). These findings show the key role of human behavior in the effectiveness of malaria preventive measures, questioning whether malaria in low endemic settings can be reduced substantially by introducing measures without researching and optimizing community involvement strategies. PMID:26574048
Evaluation of Commercial Agrochemicals as New Tools for Malaria Vector Control.
Hoppé, Mark; Hueter, Ottmar F; Bywater, Andy; Wege, Philip; Maienfisch, Peter
2016-10-01
Malaria is a vector-borne and life-threatening disease caused by parasites that are transmitted to people through the bites of infected female Anopheles mosquitoes. The vector control insecticide market represents a small fraction of the crop protection market and is estimated to be valued at up to $500 million at the active ingredient level. Insecticide resistance towards the current WHOPES-approved products urgently requires the development of new tools to protect communities against the transmission of malaria. The evaluation of commercial products for malaria vector control is a viable and cost effective strategy to identify new malaria vector control products. Several examples of such spin-offs from crop protection insecticides are already evidencing the success of this strategy, namely pirimiphos-methyl for indoor residual sprays and spinosad, diflubenzuron, novaluron, and pyriproxifen for mosquito larvae control, a supplementary technology for control of malaria vectors. In our study the adulticidal activities of 81 insecticides representing 23 insecticidal modes of action classes, 34 fungicides from 6 fungicidal mode of action classes and 15 herbicides from 2 herbicidal modes of action classes were tested in a newly developed screening system. WHOPES approved insecticides for malaria vector control consistently caused 80-100% mortality of adult Anopheles stephensi at application rates between 0.2 and 20 mg active ingradient (AI) litre -1 . Chlorfenapyr, fipronil, carbosulfan and endosulfan showed the expected good activity. Four new insecticides and three fungicides with promising activity against adult mosquitoes were identified, namely the insecticides acetamiprid, thiamethoxam, thiocyclam and metaflumizone and the fungicides diflumetorin, picoxystrobin, and fluazinam. Some of these compounds certainly deserve to be further evaluated for malaria vector control. This is the first report describing good activity of commercial fungicides against malaria vectors.
Hernandez-Valladares, Maria; Rihet, Pascal; Iraqi, Fuad A
2014-01-01
There is growing evidence for human genetic factors controlling the outcome of malaria infection, while molecular basis of this genetic control is still poorly understood. Case-control and family-based studies have been carried out to identify genes underlying host susceptibility to malarial infection. Parasitemia and mild malaria have been genetically linked to human chromosomes 5q31-q33 and 6p21.3, and several immune genes located within those regions have been associated with malaria-related phenotypes. Association and linkage studies of resistance to malaria are not easy to carry out in human populations, because of the difficulty in surveying a significant number of families. Murine models have proven to be an excellent genetic tool for studying host response to malaria; their use allowed mapping 14 resistance loci, eight of them controlling parasitic levels and six controlling cerebral malaria. Once quantitative trait loci or genes have been identified, the human ortholog may then be identified. Comparative mapping studies showed that a couple of human and mouse might share similar genetically controlled mechanisms of resistance. In this way, char8, which controls parasitemia, was mapped on chromosome 11; char8 corresponds to human chromosome 5q31-q33 and contains immune genes, such as Il3, Il4, Il5, Il12b, Il13, Irf1, and Csf2. Nevertheless, part of the genetic factors controlling malaria traits might differ in both hosts because of specific host-pathogen interactions. Finally, novel genetic tools including animal models were recently developed and will offer new opportunities for identifying genetic factors underlying host phenotypic response to malaria, which will help in better therapeutic strategies including vaccine and drug development.
Hasegawa, Aya; Yasuoka, Junko; Ly, Po; Nguon, Chea; Jimba, Masamine
2013-08-23
Malaria and other communicable diseases remain major threats in developing countries. In Cambodia, village malaria workers (VMWs) have been providing malaria control services in remote villages to cope with the disease threats. In 2009, the VMW project integrated child health services into the original malaria control services. However, little has been studied about the utilization of VMWs' child health services. This study aimed to identify determinants of caregivers' VMW service utilization for childhood illness and caregivers' knowledge of malaria management. A cross-sectional study was conducted in 36 VMW villages of Kampot and Kampong Thom provinces in July-September 2012. An equal number of VMW villages with malaria control services only (M) and those with malaria control plus child health services (M+C) were selected from each province. Using structured questionnaires, 800 caregivers of children under five and 36 VMWs, one of the two VMWs who was providing VMW services in each study village were interviewed. Among the caregivers, 23% in M villages and 52% in M+C villages utilized VMW services for childhood illnesses. Determinants of caregivers' utilization of VMWs in M villages included their VMWs' length of experience (AOR = 11.80, 95% confidence interval [CI] = 4.46-31.19) and VMWs' service quality (AOR = 2.04, CI = 1.01-4.11). In M+C villages, VMWs' length of experience (AOR = 2.44, CI = 1.52-3.94) and caregivers' wealth index (AOR = 0.35, CI = 0.18-0.68) were associated with VMW service utilization. Meanwhile, better service quality of VMWs (AOR = 3.21, CI = 1.34-7.66) and caregivers' literacy (AOR = 9.91, CI = 4.66-21.05) were positively associated with caregivers' knowledge of malaria management. VMWs' service quality and length of experience are important determinants of caregivers' utilization of VMWs' child health services and their knowledge of malaria management. Caregivers are seeking VMWs' support for childhood illnesses even if they are providing only malaria control services. This underlines the importance of scaling-up VMWs' capacity by adding child health services of good quality, which will result in improving child health status in remote Cambodia.
Ako-Nai, Kwashie Ajibade; Ebhodaghe, Blessing Itohan; Osho, Patrick; Adejuyigbe, Ebun; Adeyemi, Folasade Mubiat; Kassim, Olakunle O
2014-12-15
This study examined HIV and malaria co-infection as a risk factor for urinary tract infections (UTIs) in pregnancy. The study group included 74 pregnant women, 20 to 42 years of age, who attended the antenatal clinic at the Specialist Hospital at Akure, Ondo State, Nigeria. Forty-four of the pregnant women were either HIV seropositive with malaria infection (HIV+Mal+) or HIV seropositive without malaria (HIV+Mal-). The remaining thirty pregnant women served as controls and included women HIV seronegative but with malaria (HIV-Mal+) and women HIV seronegative without malaria. UTI was indicated by a bacterial colony count of greater than 10⁵/mL of urine, using cysteine lactose electrolyte deficient medium (CLED) as the primary isolation medium. Bacterial isolates were characterized using convectional bacteriological methods, and antibiotics sensitivity tests were carried out using the disk diffusion method. A total of 246 bacterial isolates were recovered from the cultures, with a mean of 3.53 isolates per subject. Women who were HIV+Mal+ had the most diverse group of bacterial isolates and the highest frequency of UTIs. The bacterial isolates from the HIV+Mal+ women also showed the highest degree of antibiotic resistance. While pregnancy and HIV infection may each represent a risk factor for UTI, HIV and malaria co-infection may increase its frequency in pregnancy. The higher frequency of multiple antibiotic resistance observed among the isolates, particularly isolates from HIV+Mal+ subjects, poses a serious public health concern as these strains may aggravate the prognosis of both UTI and HIV infection.
Fillinger, Ulrike; Kannady, Khadija; William, George; Vanek, Michael J; Dongus, Stefan; Nyika, Dickson; Geissbühler, Yvonne; Chaki, Prosper P; Govella, Nico J; Mathenge, Evan M; Singer, Burton H; Mshinda, Hassan; Lindsay, Steven W; Tanner, Marcel; Mtasiwa, Deo; de Castro, Marcia C; Killeen, Gerry F
2008-01-01
Background As the population of Africa rapidly urbanizes, large populations could be protected from malaria by controlling aquatic stages of mosquitoes if cost-effective and scalable implementation systems can be designed. Methods A recently initiated Urban Malaria Control Programme in Dar es Salaam delegates responsibility for routine mosquito control and surveillance to modestly-paid community members, known as Community-Owned Resource Persons (CORPs). New vector surveillance, larviciding and management systems were designed and evaluated in 15 city wards to allow timely collection, interpretation and reaction to entomologic monitoring data using practical procedures that rely on minimal technology. After one year of baseline data collection, operational larviciding with Bacillus thuringiensis var. israelensis commenced in March 2006 in three selected wards. Results The procedures and staff management systems described greatly improved standards of larval surveillance relative to that reported at the outset of this programme. In the first year of the programme, over 65,000 potential Anopheles habitats were surveyed by 90 CORPs on a weekly basis. Reaction times to vector surveillance at observations were one day, week and month at ward, municipal and city levels, respectively. One year of community-based larviciding reduced transmission by the primary malaria vector, Anopheles gambiae s.l., by 31% (95% C.I. = 21.6–37.6%; p = 0.04). Conclusion This novel management, monitoring and evaluation system for implementing routine larviciding of malaria vectors in African cities has shown considerable potential for sustained, rapidly responsive, data-driven and affordable application. Nevertheless, the true programmatic value of larviciding in urban Africa can only be established through longer-term programmes which are stably financed and allow the operational teams and management infrastructures to mature by learning from experience. PMID:18218148
Tong, Michael Xiaoliang; Hansen, Alana; Hanson-Easey, Scott; Cameron, Scott; Xiang, Jianjun; Liu, Qiyong; Liu, Xiaobo; Sun, Yehuan; Weinstein, Philip; Han, Gil-Soo; Williams, Craig; Bi, Peng
2017-03-31
Though there was the significant decrease in the incidence of malaria in central and southwest China during the 1980s and 1990s, there has been a re-emergence of malaria since 2000. A cross-sectional survey was conducted amongst the staff of eleven Centers for Disease Control and Prevention (CDC) in China to gauge their perceptions regarding the impacts of climate change on malaria transmission and its control and prevention. Descriptive analysis was performed to study CDC staff's knowledge, attitudes, perceptions and suggestions for malaria control in the face of climate change. A majority (79.8%) of CDC staff were concerned about climate change and 79.7% believed the weather was becoming warmer. Most participants (90.3%) indicated climate change had a negative effect on population health, 92.6 and 86.8% considered that increasing temperatures and precipitation would influence the transmission of vector-borne diseases including malaria. About half (50.9%) of the surveyed staff indicated malaria had re-emerged in recent years, and some outbreaks were occurring in new geographic areas. The main reasons for such re-emergence were perceived to be: mosquitoes in high-density, numerous imported cases, climate change, poor environmental conditions, internal migrant populations, and lack of health awareness. This study found most CDC staff endorsed the statement that climate change had a negative impact on infectious disease transmission. Malaria had re-emerged in some areas of China, and most of the staff believed that this can be managed. However, high densities of mosquitoes and the continuous increase in imported cases of malaria in local areas, together with environmental changes are bringing about critical challenges to malaria control in China. This study contributes to an understanding of climate change related perceptions of malaria control and prevention amongst CDC staff. It may help to formulate in-house training guidelines, community health promotion programmes and policies to improve the capacity of malaria control and prevention in the face of climate change in China.
Malaria epidemiology in Lihir Island, Papua New Guinea
2013-01-01
Background Plasmodium vivax and Plasmodium falciparum malaria remain highly endemic in the Pacific Islands including Lihir Island, Papua New Guinea. Lihir Gold Limited is conducting mining activities and funded an integrated vector control intervention within the villages surrounding the mine. The aim of this study was to assess the impact of such programme by comparing the epidemiological trends of malaria in different parts of the island. Methods Two cross-sectional surveys were conducted before and after the intervention (2006–2010) to determine malaria prevalence in mine-impact (MI) and non-MI areas. Incidence of malaria was estimated for the Lihir Medical Centre catchment area using island population denominators and a health-centre passive case detection ongoing from 2006–2011. Results A total of 2,264 and 1,653 children < 15 were surveyed in the cross-sectional studies. The prevalence of any malaria parasitaemia initially was 31.5% in MI areas and, 34.9% in non-MI (POR 1.17; 95 CI 0.97 – 1.39). After four years there was a significant reduction in prevalence in the MI areas (5.8%; POR 0.13, 95 CI 0.09–0.20), but reduction was less marked in non-MI areas (26.9%; POR 0.69, 95 CI 0.58-0.81). 28,747 patients were included in the evaluation of incidence trends and overall malaria in local Lihirian population in MI areas declined over time, while it remained at similar high levels among migrants. The age-incidence analysis showed that for each higher age range the malaria incidence declines compared to that of the previous stratum. Conclusions There was a substantial reduction in prevalence and incidence rates of both P. vivax and P. falciparum in the mining area following implementation of a malaria control intervention, which was not seen in the area outside the mining activities. PMID:23497296
Quantitative detection of PfHRP2 in saliva of malaria patients in the Philippines
2012-01-01
Background Malaria is a global health priority with a heavy burden of fatality and morbidity. Improvements in field diagnostics are needed to support the agenda for malaria elimination. Saliva has shown significant potential for use in non-invasive diagnostics, but the development of off-the-shelf saliva diagnostic kits requires best practices for sample preparation and quantitative insight on the availability of biomarkers and the dynamics of immunoassay in saliva. This pilot study measured the levels of the PfHRP2 in patient saliva to inform the development of salivary diagnostic tests for malaria. Methods Matched samples of blood and saliva were collected between January and May, 2011 from eight patients at Palawan Baptist Hospital in Roxas, Palawan, Philippines. Parasite density was determined from thick-film blood smears. Concentrations of PfHRP2 in saliva of malaria-positive patients were measured using a custom chemiluminescent ELISA in microtitre plates. Sixteen negative-control patients were enrolled at UCLA. A substantive difference between this protocol and previous related studies was that saliva samples were stabilized with protease inhibitors. Results Of the eight patients with microscopically confirmed P. falciparum malaria, seven tested positive for PfHRP2 in the blood using rapid diagnostic test kits, and all tested positive for PfHRP2 in saliva. All negative-control samples tested negative for salivary PfHRP2. On a binary-decision basis, the ELISA agreed with microscopy with 100 % sensitivity and 100 % specificity. Salivary levels of PfHRP2 ranged from 17 to 1,167 pg/mL in the malaria-positive group. Conclusion Saliva is a promising diagnostic fluid for malaria when protein degradation and matrix effects are mitigated. Systematic quantitation of other malaria biomarkers in saliva would identify those with the best clinical relevance and suitability for off-the-shelf diagnostic kits. PMID:22631858
[A history of malaria in modern Korea 1876-1945].
Yeo, Insok
2011-06-30
Although it is not certain when malaria began to appear in Korea, malaria is believed to have been an endemic disease from ancient times. It was Dr. H. N. Allen (1858-1932) who made the first description and diagnosis of malaria in terms of Western medicine. In his first year report (1885) of Korean Government Hospital he mentioned malaria as the most prevalent disease. Very effective anti-malarial drug quinine was imported and it made great contribution in treating malaria. After Japan had annexed Korea in 1910, policies for public health system were fundamentally revised. Japan assumed control of Korean medical institutions and built high-quality Western hospitals for the health care of Japanese residents. The infectious diseases which were under special surveillance were cholera, typhoid fever, dysentery, typhus, scarlet fever, smallpox, and paratyphoid fever. Among chronic infectious diseases tuberculosis and leprosy were those under special control. Malaria, however, was not one of these specially controlled infectious diseases although it was widely spread throughout the peninsula. But serious studies on malaria were carried out by Japanese medical scientists. In particular, a Japanese parasitologist Kobayasi Harujiro(1884-1969) carried out extensive studies on human parasites, including malaria, in Korea. According to his study, most of the malaria in Korea turned out to be tertian fever. In spite of its high prevalence, malaria did not draw much attention from the colonial authorities and no serious measure was taken since tertian fever is a mild form of malaria caused by Plasmodium vivax and is not so much fatal as tropical malaria caused by P. falciparum. And tertian malaria was easily controlled by taking quinine. Although the majority of malaria in Korea was tertian fever, other types were not absent. Quartan fever was not rarely reported in 1930s. The attitude of colonial authorities toward malaria in Korea was contrasted with that in Taiwan. After Japan had set out to colonize Taiwan as a result of Sino-Japanese war, malaria in Taiwan was a big obstacle to the colonization process. Therefore, a lot of medical scientists were asked to engage the malaria research in order to handle health problems in colonized countries caused by malaria. Unlike the situation in Taiwan, malaria in Korea did not cause a serious health problem as in Taiwan. However, its risk was not negligible. In 1933 there were almost 130,000 malaria patients in Korea and 1,800 patients among them died of malaria. The Japanese Government General took measures to control malaria especially during the 1930s and the number of patients decreased. However, as Japan engaged in the World War II, the general hygienic state of the society worsened and the number of malarial patients increased. The worsened situation remains the same after Liberation (1945) and during the Korean war (1950-53).
Kong, Xiangli; Liu, Xin; Tu, Hong; Xu, Yan; Niu, Jianbing; Wang, Yongbin; Zhao, Changlei; Kou, Jingxuan; Feng, Jun
2017-01-31
Shandong Province experienced a declining malaria trend of local-acquired transmission, but the increasing imported malaria remains a challenge. Therefore, understanding the epidemiological characteristics of malaria and the control and elimination strategy and interventions is needed for better planning to achieve the overall elimination goal in Shandong Province. A retrospective study was conducted and all individual cases from a web-based reporting system were reviewed and analysed to explore malaria-endemic characteristics in Shandong from 2005 to 2015. Annual malaria incidence reported in 2005-2015 were geo-coded and matched to the county-level. Spatial cluster analysis was performed to evaluate any identified spatial disease clusters for statistical significance. The space-time cluster was detected with high rates through the retrospective space-time analysis scanning using the discrete Poisson model. The overall malaria incidence decreased to a low level during 2005-2015. In total, 1564 confirmed malaria cases were reported, 27.1% of which (n = 424) were indigenous cases. Most of the indigenous case (n = 339, 80.0%) occurred from June to October. However, the number and scale of imported cases have been increased but no significant difference was observed during months. Shandong is endemic for both Plasmodium vivax (n = 730) and Plasmodium falciparum (n = 674). The disease is mainly distributed in Southern (n = 710) and Eastern region (n = 424) of Shandong, such as Jinning (n = 214 [13.7%]), Weihai (n = 151 [9.7%]), and Yantai (n = 107 [6.8%]). Furthermore, the spatial cluster analysis of malaria cases from 2005 to 2015 indicated that the diseased was not randomly distributed. For indigenous cases, a total of 15 and 2 high-risk counties were determined from 2005 to 2009 (control phase) and from 2010 to 2015 (elimination phase), respectively. For imported cases, a total of 26 and 29 high-risk counties were determined from 2005 to 2009 (control phase) and from 2010 to 2015 (elimination phase), respectively. The method of spatial scan statistics identified different 13 significant spatial clusters between 2005 and 2015. The space-time clustering analysis determined that the most likely cluster included 14 and 19 counties for indigenous and imported, respectively. In order to cope with the requirements of malaria elimination phase, the surveillance system should be strengthened particularity on the frequent migration regions as well as the effective multisectoral cooperation and coordination mechanisms. Specific response packages should be tailored among different types of cities and capacity building should also be improved mainly focus on the emergence response and case management. Fund guarantees for scientific research should be maintained both during the elimination and post-elimination phase to consolidate the achievements of malaria elimination.
2014-01-01
Background Predicting anopheles vectors’ population densities and boundary shifts is crucial in preparing for malaria risks and unanticipated outbreaks. Although shifts in the distribution and boundaries of the major malaria vectors (Anopheles gambiae s.s. and An. arabiensis) across Africa have been predicted, quantified areas of absolute change in zone of suitability for their survival have not been defined. In this study, we have quantified areas of absolute change conducive for the establishment and survival of these vectors, per African country, under two climate change scenarios and based on our findings, highlight practical measures for effective malaria control in the face of changing climatic patterns. Methods We developed a model using CLIMEX simulation platform to estimate the potential geographical distribution and seasonal abundance of these malaria vectors in relation to climatic factors (temperature, rainfall and relative humidity). The model yielded an eco-climatic index (EI) describing the total favourable geographical locations for the species. The EI values were classified and exported to a GIS package. Using ArcGIS, the EI shape points were clipped to the extent of Africa and then converted to a raster layer using Inverse Distance Weighted (IDW) interpolation method. Generated maps were then transformed into polygon-based geo-referenced data set and their areas computed and expressed in square kilometers (km2). Results Five classes of EI were derived indicating the level of survivorship of these malaria vectors. The proportion of areas increasing or decreasing in level of survival of these malaria vectors will be more pronounced in eastern and southern African countries than those in western Africa. Angola, Ethiopia, Kenya, Mozambique, Tanzania, South Africa and Zambia appear most likely to be affected in terms of absolute change of malaria vectors suitability zones under the selected climate change scenarios. Conclusion The potential shifts of these malaria vectors have implications for human exposure to malaria, as recrudescence of the disease is likely to be recorded in several new areas and regions. Therefore, the need to develop, compile and share malaria preventive measures, which can be adapted to different climatic scenarios, remains crucial. PMID:24885061
Birhanu, Zewdie; Yihdego, Yemane Ye-Ebiyo; Yewhalaw, Delenasaw
2018-04-04
In the context of reduced transmission of malaria, it is essential to re-evaluate and determine the level of transmission as it guides re-orientation of control measures which is appropriate to local disease epidemiology. However, little is known about level of malaria transmission in Ethiopia. The present study aimed to investigate the level of malaria transmission through combined application of classical methods and enzyme-linked immunosorbent assay (EIA) in low transmission settings of Ethiopia. This study was conducted in June 2016 on 763 apparently healthy children 2-9 years of age. Children were recruited from ten sites representing different malaria transmission settings in Ethiopia. Splenomegaly rate, infection rate and EIA antibody test were used to determine endemicity. The data were analysed using SPSS 21.0 and Stata 12.0. The overall prevalence of malaria parasitaemia was 2.49% (95% CI 1.38-3.59) and 2.36% (95% CI 1.28-3.44) as detected using rapid diagnostic test and microscopy, respectively. Plasmodium falciparum accounted for 62.63% of the infections. The prevalence of parasitaemia significantly varied by altitude and localities; the highest (5.8%) in areas below 1500 m above sea level. Overall, splenomegaly rate was 1.70% (95% CI 0.78-0.2.66%), making the overall malaria transmission hypoendemic. Infection rate was higher among males (2.7%), but rate of splenomegaly was higher in females. Incongruent with spleen rate and parasitaemia, EIA showed a higher level of cumulative exposure to malaria with spatially localized and highly heterogeneous transmission. Overall, 126 (18.75%, 95% CI 15.79-21.71) of the children were positive for total malaria antibodies with significant variations with altitude, age and sex; the higher in areas of < 1500 m asl (25.8%), children ≥ 5 years (22.1%) and among males (20.9%). Splenomegaly and parasitaemia are not good measures to show variations in the levels of malaria transmission in reduced and/or low endemic settings. The malaria antibody (i.e. serological) test seems to be a good measure of malaria endemicity showing greater degree of heterogeneity and localized risk of transmission. Thus, malaria elimination efforts need to be supported with serological indicators to identify patterns of foci of transmission to set priorities for interventions.
Malaria rapid diagnostic tests.
Wilson, Michael L
2012-06-01
Global efforts to control malaria are more complex than those for other infectious diseases, in part because of vector transmission, the complex clinical presentation of Plasmodium infections, >1 Plasmodium species causing infection, geographic distribution of vectors and infection, and drug resistance. The World Health Organization approach to global malaria control focuses on 2 components: vector control and diagnosis and treatment of clinical malaria. Although microscopy performed on peripheral blood smears remains the most widely used diagnostic test and the standard against which other tests are measured, rapid expansion of diagnostic testing worldwide will require use of other diagnostic approaches. This review will focus on the malaria rapid diagnostic test (MRDT) for detecting malaria parasitemia, both in terms of performance characteristics of MRDTs and how they are used under field conditions. The emphasis will be on the performance and use of MRDTs in regions of endemicity, particularly sub-Saharan Africa, where most malaria-related deaths occur.
Dako-Gyeke, Mavis; Kofie, Humphrey M
2015-03-01
Throughout Africa and particularly in Ghana, there are concerns about malaria infection during pregnancy. This study aimed to investigate factors that influence malaria prevention and control practices among pregnant women residing in Chorkor and Korle-Gonno in Accra, Ghana. One hundred and twenty pregnant women between ages 18-49 were randomly recruited during antenatal sessions at a maternity facility in Accra, as participants for the study. An interviewer-administered questionnaire was used to collect data, which were analysed using SPSS version16.0. It was found that in Chorkor and Korle-Gonno, 57.4% and 42.6% participants respectively reported having been infected with malaria during their current pregnancy. There was no significant relationship between religious beliefs of participants and their malaria prevention and control practices (X2 = 0.28, P = .53). However, there was a significant relationship between malaria prevention and control practices of participants and their income earning (X2 = 53.94, P = .00) and employment (X2 = 61.76, P = .00) statuses. With the exception of ethnicity (X2 = 35.62, P =.22), other socio-cultural conditions had a significant relationship with malaria prevention and control practices of the participants. The findings suggest the need to consider and integrate factors, such as poverty and poor living conditions in malaria prevention and control strategies.
The Biological Control of the Malaria Vector
Kamareddine, Layla
2012-01-01
The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979
Malaria control under unstable dynamics: reactive vs. climate-based strategies.
Baeza, Andres; Bouma, Menno J; Dhiman, Ramesh; Pascual, Mercedes
2014-01-01
In areas of the world where malaria prevails under unstable conditions, attacking the adult vector population through insecticide-based Indoor Residual Spraying (IRS) is the most common method for controlling epidemics. Defined in policy guidance, the use of Annual Parasitic Incidence (API) is an important tool for assessing the effectiveness of control and for planning new interventions. To investigate the consequences that a policy based on API in previous seasons might have on the population dynamics of the disease and on control itself in regions of low and seasonal transmission, we formulate a mathematical malaria model that couples epidemiologic and vector dynamics with IRS intervention. This model is parameterized for a low transmission and semi-arid region in northwest India, where epidemics are driven by high rainfall variability. We show that this type of feedback mechanism in control strategies can generate transient cycles in malaria even in the absence of environmental variability, and that this tendency to cycle can in turn limit the effectiveness of control in the presence of such variability. Specifically, for realistic rainfall conditions and over a range of control intensities, the effectiveness of such 'reactive' intervention is compared to that of an alternative strategy based on rainfall and therefore vector variability. Results show that the efficacy of intervention is strongly influenced by rainfall variability and the type of policy implemented. In particular, under an API 'reactive' policy, high vector populations can coincide more frequently with low control coverage, and in so doing generate large unexpected epidemics and decrease the likelihood of elimination. These results highlight the importance of incorporating information on climate variability, rather than previous incidence, in planning IRS interventions in regions of unstable malaria. These findings are discussed in the more general context of elimination and other low transmission regions such as highlands. Copyright © 2013. Published by Elsevier B.V.
Durrheim, D N; Govere, J; la Grange, J J; Mabuza, A
2001-01-01
Malaria is a re-emerging disease in much of Africa. In response, the World Health Organization launched the Roll Back Malaria (RBM) initiative. One of six key principles adopted is the early detection of malaria cases. However, the importance of definitive diagnosis and potential value of field deployment of rapid malaria tests in RBM has been largely ignored. The Lowveld Region of Mpumalanga Province, South Africa, is home to a predominantly non-immune population, of approximately 850000 inhabitants, who are at risk of seasonal Plasmodium falciparum malaria. Malaria treatment in this area is usually only initiated on detection of malaria parasites in the peripheral bloodstream, as many other rickettsial and viral febrile illness mimic malaria. The malaria control programme traditionally relied on light microscopy of Giemsa-stained thick blood films for malaria diagnosis. This review summarizes operational research findings that led to the introduction of rapid malaria card tests for primary diagnosis of malaria throughout the Mpumalanga malaria area. Subsequent operational research and extensive experience over a four-year period since introducing the ICT Malaria Pf test appears to confirm the local appropriateness of this diagnostic modality. A laboratory is not required and clinic staff are empowered to make a prompt definitive diagnosis, limiting delays in initiating correct therapy. The simple, accurate and rapid non-microscopic means now available for diagnosing malaria could play an important role in Rolling Back Malaria in selected areas.
Current management and prevention of malaria in pregnancy: a review.
Agboghoroma, C O
2014-01-01
Pregnant women suffer more frequent and severe malaria than non-pregnant women. Malaria in pregnancy contributes to the high maternal and perinatal morbidity and mortality in Africa. To review the burden and highlight the current management and prevention strategies for control of malaria in pregnancy in Africa. Papers for this review were identified by searches of PubMed and Google, and references from relevant articles. Search terms were "malaria", "malaria in pregnancy", "Malaria during pregnancy" and "antimalarial drug". Only papers published in English between 1983 and 2013 were included. In malarial endemic areas, acquired partial malarial immunity is not effective during pregnancy. Pregnant women are prone to frequent malaria infections which may be severe or asymptomatic but associated with placental parasitization. Malaria contributes 2-15% to maternal anaemia, 13-70% to intrauterine growth restriction, 8-14% to low birth weight, 8-36% to prematurity, 3-8% to infant deaths and 2.9-17.6% to maternal mortality. The control of malaria in pregnancy is currently predicated on three main strategies: 1) Prompt and effective case management of malaria; 2).Use of Insecticide-treated nets; and 3).Intermittent preventive treatment in pregnancy with sulfadoxine-pyrimethamine. Artemisinin-based combined therapy is the recommended treatment for uncomplicated malaria in the second and third trimesters of pregnancy, while quinine is used in the first trimester and for severe cases of malaria at any gestational age. The control of malaria during pregnancy should be an integral part of efforts to reduce maternal and perinatal morbidity and mortality in Africa.
Desai, Meghna; Buff, Ann M.; Khagayi, Sammy; Byass, Peter; Amek, Nyaguara; van Eijk, Annemieke; Slutsker, Laurence; Vulule, John; Odhiambo, Frank O.; Phillips-Howard, Penelope A.; Lindblade, Kimberly A.; Laserson, Kayla F.; Hamel, Mary J.
2014-01-01
Recent global malaria burden modeling efforts have produced significantly different estimates, particularly in adult malaria mortality. To measure malaria control progress, accurate malaria burden estimates across age groups are necessary. We determined age-specific malaria mortality rates in western Kenya to compare with recent global estimates. We collected data from 148,000 persons in a health and demographic surveillance system from 2003–2010. Standardized verbal autopsies were conducted for all deaths; probable cause of death was assigned using the InterVA-4 model. Annual malaria mortality rates per 1,000 person-years were generated by age group. Trends were analyzed using Poisson regression. From 2003–2010, in children <5 years the malaria mortality rate decreased from 13.2 to 3.7 per 1,000 person-years; the declines were greatest in the first three years of life. In children 5–14 years, the malaria mortality rate remained stable at 0.5 per 1,000 person-years. In persons ≥15 years, the malaria mortality rate decreased from 1.5 to 0.4 per 1,000 person-years. The malaria mortality rates in young children and persons aged ≥15 years decreased dramatically from 2003–2010 in western Kenya, but rates in older children have not declined. Sharp declines in some age groups likely reflect the national scale up of malaria control interventions and rapid expansion of HIV prevention services. These data highlight the importance of age-specific malaria mortality ascertainment and support current strategies to include all age groups in malaria control interventions. PMID:25180495
Couto AA; Calvosa, V S; Lacerda, R; Castro, F; Santa Rosa, E; Nascimento, J M
2001-01-01
This paper reports on the epidemiological characterization of malaria following implementation of a program to control the endemic in a gold-mining area in northern Amapá State. The study focuses on total malaria cases in Amapá and the impact of the disease on the population, as represented by the Mineração Novo Astro S/A company and its employees as well as the community of Vila de Lourenço in the municipality of Calçoene, and adjacent gold miners. The effect of control measures in the program area is indicated by a significant reduction in malaria incidence and malaria-related morbidity and mortality. The importance of participation by private enterprise is emphasized, particularly in large projects for the control of endemic diseases (notably malaria) in the Amazon Region.
Malaria control: achievements, problems and strategies.
Nájera, J A
2001-06-01
Even if history has not always been the Magistra vitae, Cicero expected it to be, it should provide, as Baas said, a mirror in which to observe and compare the past and present in order to draw therefrom well-grounded conclusions for the future. Based on this belief, this paper aims to provide an overview of the foundations and development of malaria control policies during the XX century. It presents an analysis of the conflicting tendencies which shaped the development of these policies and which appear to have oscillated between calls for frontal attack in an all-out campaign and calls for sustainable gains, even if slow. It discusses the various approaches to the control of malaria, their achievements and their limitations, not only to serve as a background to understand better the foundations of current policies, but also to prevent that simplistic generalisations may again lead to exaggerated expectations and disillusion. The first part of the paper is devoted to the development of malaria control during the first half of the century, characterised by the ups and downs in the reliance on mosquito control as the control measure applicable everywhere. The proliferation of "man-made-malaria", which accompanied the push for economic development in most of the endemic countries, spurred the need for control interventions and, while great successes were obtained in many specific projects, the general campaigns proposed by the enthusiasts of vector control faced increasing difficulties in their practical implementation in the field. Important events, which may be considered representative of this period are, on the campaign approach, the success of Gorgas in the Panama Canal, but also the failure of the Mian Mir project in India; while on the developmental approach, the Italian and Dutch schools of malariology, the Tennessee Valley and the development of malaria sanitation, included the so called species sanitation. The projection of these developments to a global scale was steered by the Malaria Commission of the League of Nations and greatly supported by the Rockefeller Foundation. Perhaps the most important contribution of this period was the development of malaria epidemiology, including the study of the genesis of epidemics and their possible forecasting and prevention. Although the great effectiveness of DDT was perhaps the main determinant for proposing the global eradication of the disease in the 1950s, it was the confidence in the epidemiological knowledge and the prestige of malariology, which gave credibility to the proposal at the political level. The second part deals with the global malaria eradication campaign of the 1950s and 1960s. It recognises the enormous impact of the eradication effort in the consolidation of the control successes of the first half of the century, as well as its influence in the development of planning of health programmes. Nevertheless, it also stresses the negative influence that the failure to achieve its utopian expectations had on the general disappointment and slow progress of malaria control, which characterised the last third of the century. The paper then analyses the evolution of malaria control funding, which often appears out of tune with political statements. The fourth part is devoted to the search for realistic approaches to malaria control, leading to the adoption of the global malaria control strategy in Amsterdam in 1992, and the challenge, at the end of the century, to rally forces commensurate with the magnitude of the problem, while aiming at realistic objectives. After discussing the conflicting views on the relations between malaria and socio-economic development and the desirable integration of malaria control into sustainable development, the paper ends with some considerations on the perspectives of malaria control, as seen by the author in early 1998, just before the launching of the current Roll Back Malaria initiative by WHO.
Radar Monitoring of Wetlands for Malaria Control
NASA Technical Reports Server (NTRS)
Pope, Kevin O.
1997-01-01
Malaria is perhaps the most serious human disease problem. It inflicts millions worldwide and is on the rise in many countries where it was once under control. This rise is in part due to the high costs, both economic and environmental, of current control programs. The search for more cost-effective means to combat malaria has focussed attention on new technologies, one of which is remote sensing. Remote sensing has become an important tool in the effort to control a variety of diseases worldwide and malaria is perhaps one of the most promising. This study is part of the malaria control effort in the Central American country of Belize, which has experienced a resurgence of malaria in the last two decades. The proposed project is a feasibility study of the use of Radarsat (and other similar radar systems) to monitor seasonal changes in the breeding sites of the anopheline mosquito, which is responsible for malaria transmission. We propose that spatial and temporal changes in anopheline mosquito production can be predicted by sensing where and when their breeding sites are flooded. Timely knowledge of anopheline mosquito production is a key factor in control efforts. Such knowledge can be used by local control agencies to direct their limited resources to selected areas and time periods when the human population is at greatest risk. Radar is a key sensor in this application because frequent cloud cover during the peak periods of malaria transmission precludes the use of optical sensors.
Cross-border movement, economic development and malaria elimination in the Kingdom of Saudi Arabia.
Al Zahrani, Mohammed H; Omar, Abdiasiis I; Abdoon, Abdelmohsin M O; Ibrahim, Ali Adam; Alhogail, Abdullah; Elmubarak, Mohamed; Elamin, Yousif Eldirdiry; AlHelal, Mohammed A; Alshahrani, Ali M; Abdelgader, Tarig M; Saeed, Ibrahim; El Gamri, Tageddin B; Alattas, Mohammed S; Dahlan, Abdu A; Assiri, Abdullah M; Maina, Joseph; Li, Xiao Hong; Snow, Robert W
2018-06-26
Malaria at international borders presents particular challenges with regards to elimination. International borders share common malaria ecologies, yet neighboring countries are often at different stages of the control-to-elimination pathway. Herein, we present a case study on malaria, and its control, at the border between Saudi Arabia and Yemen. Malaria program activity reports, case data, and ancillary information have been assembled from national health information systems, archives, and other related sources. Information was analyzed as a semi-quantitative time series, between 2000 and 2017, to provide a plausibility framework to understand the possible contributions of factors related to control activities, conflict, economic development, migration, and climate. The malaria recession in the Yemeni border regions of Saudi Arabia is a likely consequence of multiple, coincidental factors, including scaled elimination activities, cross-border vector control, periods of low rainfall, and economic development. The temporal alignment of many of these factors suggests that economic development may have changed the receptivity to the extent that it mitigated against surges in vulnerability posed by imported malaria from its endemic neighbor Yemen. In many border areas of the world, malaria is likely to be sustained through a complex congruence of factors, including poverty, conflict, and migration.
Roussilhon, Christian; Brasseur, Philippe; Agnamey, Patrice; Pérignon, Jean-Louis; Druilhe, Pierre
2010-01-01
Background Former studies have pointed to a monocyte-dependant effect of antibodies in protection against malaria and thereby to cytophilic antibodies IgG1 and IgG3, which trigger monocyte receptors. Field investigations have further documented that a switch from non-cytophilic to cytophilic classes of antimalarial antibodies was associated with protection. The hypothesis that the non-cytophilic isotype imbalance could be related to concomittant helminthic infections was supported by several interventions and case-control studies. Methods and Findings We investigated here the hypothesis that the delayed acquisition of immunity to malaria could be related to a worm-induced Th2 drive on antimalarial immune responses. IgG1 to IgG4 responses against 6 different parasite-derived antigens were analyzed in sera from 203 Senegalese children, half carrying intestinal worms, presenting 421 clinical malaria attacks over 51 months. Results show a significant correlation between the occurrence of malaria attacks, worm carriage (particularly that of hookworms) and a decrease in cytophilic IgG1 and IgG3 responses and an increase in non-cytophilic IgG4 response to the merozoite stage protein 3 (MSP3) vaccine candidate. Conclusion The results confirm the association with protection of anti-MSP3 cytophilic responses, confirm in one additional setting that worms increase malaria morbidity and show a Th2 worm-driven pattern of anti-malarial immune responses. They document why large anthelminthic mass treatments may be worth being assessed as malaria control policies. PMID:20174576
Molecular diagnosis of malaria by photo-induced electron transfer fluorogenic primers: PET-PCR.
Lucchi, Naomi W; Narayanan, Jothikumar; Karell, Mara A; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs.
Chipwaza, Beatrice; Mugasa, Joseph P.; Mayumana, Iddy; Amuri, Mbaraka; Makungu, Christina; Gwakisa, Paul S.
2014-01-01
Introduction Although malaria has been the leading cause of fever for many years, with improved control regimes malaria transmission, morbidity and mortality have decreased. Recent studies have increasingly demonstrated the importance of non-malaria fevers, which have significantly improved our understanding of etiologies of febrile illnesses. A number of non-malaria febrile illnesses including Rift Valley Fever, dengue fever, Chikungunya virus infection, leptospirosis, tick-borne relapsing fever and Q-fever have been reported in Tanzania. This study aimed at assessing the awareness of communities and practices of health workers on non-malaria febrile illnesses. Methods Twelve focus group discussions with members of communities and 14 in-depth interviews with health workers were conducted in Kilosa district, Tanzania. Transcripts were coded into different groups using MaxQDA software and analyzed through thematic content analysis. Results The study revealed that the awareness of the study participants on non-malaria febrile illnesses was low and many community members believed that most instances of fever are due to malaria. In addition, the majority had inappropriate beliefs about the possible causes of fever. In most cases, non-malaria febrile illnesses were considered following a negative Malaria Rapid Diagnostic Test (mRDT) result or persistent fevers after completion of anti-malaria dosage. Therefore, in the absence of mRDTs, there is over diagnosis of malaria and under diagnosis of non-malaria illnesses. Shortages of diagnostic facilities for febrile illnesses including mRDTs were repeatedly reported as a major barrier to proper diagnosis and treatment of febrile patients. Conclusion Our results emphasize the need for creating community awareness on other causes of fever apart from malaria. Based on our study, appropriate treatment of febrile patients will require inputs geared towards strengthening of diagnostic facilities, drugs availability and optimal staffing of health facilities. PMID:24852787
Malaria prevalence in Bata district, Equatorial Guinea: a cross-sectional study.
Ncogo, Policarpo; Herrador, Zaida; Romay-Barja, Maria; García-Carrasco, Emely; Nseng, Gloria; Berzosa, Pedro; Santana-Morales, Maria A; Riloha, Matilde; Aparicio, Pilar; Valladares, Basilio; Benito, Agustín
2015-11-16
Malaria has traditionally been a leading public health problem in Equatorial Guinea. After completion, in September 2011, of the integrated set of interventions against malaria launched by the Global Fund Malaria Programme in the mainland area, the epidemiological situation of malaria remains unknown. The aim of this study was to investigate the prevalence rate of malaria and associated factors based on the rapid diagnosis test (RDT) in Bata district, in order to provide evidence that will reinforce the National Malaria Control Programme. From June to August 2013, a representative cross sectional survey using a multistage, stratified, cluster-selected sample was carried out in urban zones and rural villages from Bata district. Data on socio-demographic, health status and malaria-related behaviours was collected. Malaria diagnosis was performed by RDT. Bivariate and multivariable statistical methods were employed to assess malaria prevalence and its association with different factors. Prevalence of malaria was higher in rural settings (58.9 %; CI 95 % 55.2-62.5 %) than in the sampled urban communities (33.9 %; CI 95 % 31.1-36.9 %). Presence of anaemia was also high, especially in rural sites (89.6 vs. 82.8 %, p < 0.001). The analyses show that a positive RDT result was significantly associated with age group, the most affected age range being 13 months-14 years old. Other significant covariates were ethnic group (only in urban sites), number of adults living in the house (only in rural villages) previous history of fever, anaemia (only in urban sites) and sleeping under a bed net. Moreover, those who never slept under a bed net were two times more likely to have malaria. The prevalence of malaria was high in Bata district, especially in rural villages. The National Programme to fight malaria in Equatorial Guinea should take into account the differences found between rural and urban communities and age groups to target appropriately those worst affected. The findings of this study will assist in planning and undertaking regional policy and other preventive initiatives.
Prioritization of malaria endemic zones using self-organizing maps in the Manipur state of India.
Murty, Upadhyayula Suryanarayana; Srinivasa Rao, Mutheneni; Misra, Sunil
2008-09-01
Due to the availability of a huge amount of epidemiological and public health data that require analysis and interpretation by using appropriate mathematical tools to support the existing method to control the mosquito and mosquito-borne diseases in a more effective way, data-mining tools are used to make sense from the chaos. Using data-mining tools, one can develop predictive models, patterns, association rules, and clusters of diseases, which can help the decision-makers in controlling the diseases. This paper mainly focuses on the applications of data-mining tools that have been used for the first time to prioritize the malaria endemic regions in Manipur state by using Self Organizing Maps (SOM). The SOM results (in two-dimensional images called Kohonen maps) clearly show the visual classification of malaria endemic zones into high, medium and low in the different districts of Manipur, and will be discussed in the paper.
Wilson, G. Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene
2018-01-01
Background Water level management has been suggested as a potential tool to reduce malaria around large reservoirs. However, no field-based test has been conducted to assess the effect of water level management on mosquito larval abundance in African settings. The objective of the present study is to evaluate the effects of water level drawdown rates on mosquito larval abundance. Methods Twelve experimental dams were constructed on the foreshore of the Koka Dam in Ethiopia. These were grouped into four daily water drawdown treatments, each with three replicates: no water-level drawdown (Group 1; Control), 10 mm.d-1 (Group 2), 15 mm.d-1 (Group 3) and 20 mm.d-1 (Group 4). Larval sampling was conducted weekly for a period of 6 weeks each in the main malaria transmission season (October to November 2013) and subsequent dry season (February to March 2014). Larval densities were compared among treatments over time using repeated measures Analysis of Variance (ANOVA). Results A total of 284 Anopheles mosquito larvae were collected from the experimental dams during the study period. Most (63.4%; n = 180) were collected during the main malaria transmission season while the remaining (36.6%; n = 104) were collected during the dry season. Larvae comprised four Anopheles species, dominated by Anopheles arabiensis (48.1% of total larval samples; n = 136) and An. pharoensis (33.2%; n = 94). Mean larval density was highest in control treatment dams with stable water levels throughout the study, and decreased significantly (P < 0.05) with increasing water drawdown rates in both seasons. During the main transmission season, anopheline larval density was generally lower by 30%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, compared with the control dams (Group 1). In the dry season, larval density was reduced by 45%, 70% and 84% in Groups 2, Group 3 and Group 4, respectively, when compared to the control dams. Conclusion Increased water drawdown rates were associated with lower mosquito larval abundance. Water level management could thus serve as a potential control measure for malaria vectors around reservoirs by regulating the persistence of shallow shoreline breeding habitats. Dam operators and water resource managers should consider incorporating water level management as a malaria control mechanism into routine dam operations to manage the risk of malaria transmission to human populations around reservoirs. PMID:29672560
2010-01-01
Background Accurate malaria diagnosis is mandatory for the treatment and management of severe cases. Moreover, individuals with asymptomatic malaria are not usually screened by health care facilities, which further complicates disease control efforts. The present study compared the performances of a malaria rapid diagnosis test (RDT), the thick blood smear method and nested PCR for the diagnosis of symptomatic malaria in the Brazilian Amazon. In addition, an innovative computational approach was tested for the diagnosis of asymptomatic malaria. Methods The study was divided in two parts. For the first part, passive case detection was performed in 311 individuals with malaria-related symptoms from a recently urbanized community in the Brazilian Amazon. A cross-sectional investigation compared the diagnostic performance of the RDT Optimal-IT, nested PCR and light microscopy. The second part of the study involved active case detection of asymptomatic malaria in 380 individuals from riverine communities in Rondônia, Brazil. The performances of microscopy, nested PCR and an expert computational system based on artificial neural networks (MalDANN) using epidemiological data were compared. Results Nested PCR was shown to be the gold standard for diagnosis of both symptomatic and asymptomatic malaria because it detected the major number of cases and presented the maximum specificity. Surprisingly, the RDT was superior to microscopy in the diagnosis of cases with low parasitaemia. Nevertheless, RDT could not discriminate the Plasmodium species in 12 cases of mixed infections (Plasmodium vivax + Plasmodium falciparum). Moreover, the microscopy presented low performance in the detection of asymptomatic cases (61.25% of correct diagnoses). The MalDANN system using epidemiological data was worse that the light microscopy (56% of correct diagnoses). However, when information regarding plasma levels of interleukin-10 and interferon-gamma were inputted, the MalDANN performance sensibly increased (80% correct diagnoses). Conclusions An RDT for malaria diagnosis may find a promising use in the Brazilian Amazon integrating a rational diagnostic approach. Despite the low performance of the MalDANN test using solely epidemiological data, an approach based on neural networks may be feasible in cases where simpler methods for discriminating individuals below and above threshold cytokine levels are available. PMID:20459613
Brochero, Helena; Quiñones, Martha L
2008-03-01
The relevance of the medical entomology was considered with respect to current framework of malaria control programs in Colombia. A responsibility is indicated for balancing control efforts along with providing information on the malaria vectors. This knowledge must be acquired in order to focus the related activities that are required. The malaria control program must be based on results of local entomological surveillance, and the data must be in a form to give practical answers to questions regarding the control program. Difficulties in undertaking the required studies are described, particularly regarding the taxonomic identification of Colombian Anopheles in Colombia and which of these can be incriminated as malaria vectors.
Stone, Christopher M; Lindsay, Steve W; Chitnis, Nakul
2014-12-01
The opportunity to integrate vector management across multiple vector-borne diseases is particularly plausible for malaria and lymphatic filariasis (LF) control where both diseases are transmitted by the same vector. To date most examples of integrated control targeting these diseases have been unanticipated consequences of malaria vector control, rather than planned strategies that aim to maximize the efficacy and take the complex ecological and biological interactions between the two diseases into account. We developed a general model of malaria and LF transmission and derived expressions for the basic reproductive number (R0) for each disease. Transmission of both diseases was most sensitive to vector mortality and biting rate. Simulating different levels of coverage of long lasting-insecticidal nets (LLINs) and larval control confirms the effectiveness of these interventions for the control of both diseases. When LF was maintained near the critical density of mosquitoes, minor levels of vector control (8% coverage of LLINs or treatment of 20% of larval sites) were sufficient to eliminate the disease. Malaria had a far greater R0 and required a 90% population coverage of LLINs in order to eliminate it. When the mosquito density was doubled, 36% and 58% coverage of LLINs and larval control, respectively, were required for LF elimination; and malaria elimination was possible with a combined coverage of 78% of LLINs and larval control. Despite the low level of vector control required to eliminate LF, simulations suggest that prevalence of LF will decrease at a slower rate than malaria, even at high levels of coverage. If representative of field situations, integrated management should take into account not only how malaria control can facilitate filariasis elimination, but strike a balance between the high levels of coverage of (multiple) interventions required for malaria with the long duration predicted to be required for filariasis elimination.
Chronic Malaria Revealed by a New Fluorescence Pattern on the Antinuclear Autoantibodies Test
Hommel, Benjamin; Charuel, Jean-Luc; Jaureguiberry, Stéphane; Arnaud, Laurent; Courtin, Regis; Kassab, Petra; Prendki, Virginie; Paris, Luc; Ghillani-Dalbin, Pascale; Thellier, Marc; Caumes, Eric; Amoura, Zahir; Mazier, Dominique; Musset, Lucile; Buffet, Pierre; Miyara, Makoto
2014-01-01
Background Several clinical forms of malaria such as chronic carriage, gestational malaria or hyper-reactive malarial splenomegaly may follow a cryptic evolution with afebrile chronic fatigue sometimes accompanied by anemia and/or splenomegaly. Conventional parasitological tests are often negative or not performed, and severe complications may occur. Extensive explorations of these conditions often include the search for antinuclear autoantibodies (ANA). Methods We analysed fluorescence patterns in the ANA test in patients with either chronic cryptic or acute symptomatic malaria, then conducted a one-year prospective study at a single hospital on all available sera drawn for ANA detections. We then identified autoantibodies differentially expressed in malaria patients and in controls using human protein microarray. Results We uncovered and defined a new, malaria-related, nucleo-cytoplasmic ANA pattern displaying the specific association of a nuclear speckled pattern with diffuse cytoplasmic perinuclearly-enhanced fluorescence. In the one-year prospective analysis, 79% of sera displaying this new nucleo-cytoplasmic fluorescence were from patients with malaria. This specific pattern, not seen in other parasitic diseases, allowed a timely reorientation of the diagnosis toward malaria. To assess if the autoantibody immune response was due to autoreactivity or molecular mimicry we isolated 42 autoantigens, targets of malarial autoantibodies. BLAST analysis indicated that 23 of recognized autoantigens were homologous to plasmodial proteins suggesting autoimmune responses directly driven by the plasmodial infection. Conclusion In patients with malaria in whom parasitological tests have not been performed recognition of this new, malaria-related fluorescence pattern on the ANA test is highly suggestive of the diagnosis and triggers immediate, easy confirmation and adapted therapy. PMID:24551116
2013-01-01
Background Long-lasting insecticide treated nets (LLINs) and indoor residual house spraying (IRS) are the main interventions for the control of malaria vectors in Zanzibar. The aim of the present study was to assess the susceptibility status of malaria vectors against the insecticides used for LLINs and IRS and to determine the durability and efficacy of LLINs on the island. Methods Mosquitoes were sampled from Pemba and Unguja islands in 2010–2011 for use in WHO susceptibility tests. One hundred and fifty LLINs were collected from households on Unguja, their physical state was recorded and then tested for efficacy as well as total insecticide content. Results Species identification revealed that over 90% of the Anopheles gambiae complex was An. arabiensis with a small number of An. gambiae s.s. and An. merus being present. Susceptibility tests showed that An. arabiensis on Pemba was resistant to the pyrethroids used for LLINs and IRS. Mosquitoes from Unguja Island, however, were fully susceptible to all pyrethroids tested. A physical examination of 150 LLINs showed that two thirds were damaged after only three years in use. All used nets had a significantly lower (p < 0.001) mean permethrin concentration of 791.6 mg/m2 compared with 944.2 mg/m2 for new ones. Their efficacy decreased significantly against both susceptible An. gambiae s.s. colony mosquitoes and wild-type mosquitoes from Pemba after just six washes (p < 0.001). Conclusion The sustainability of the gains achieved in malaria control in Zanzibar is seriously threatened by the resistance of malaria vectors to pyrethroids and the short-lived efficacy of LLINs. This study has revealed that even in relatively well-resourced and logistically manageable places like Zanzibar, malaria elimination is going to be difficult to achieve with the current control measures. PMID:23537463
A retrospective analysis of the change in anti-malarial treatment policy: Peru.
Williams, Holly Ann; Vincent-Mark, Arlene; Herrera, Yenni; Chang, O Jaime
2009-04-28
National malaria control programmes must deal with the complex process of changing national malaria treatment guidelines, often without guidance on the process of change. Selecting a replacement drug is only one issue in this process. There is a paucity of literature describing successful malaria treatment policy changes to help guide control programs through this process. To understand the wider context in which national malaria treatment guidelines were formulated in a specific country (Peru). Using qualitative methods (individual and focus group interviews, stakeholder analysis and a review of documents), a retrospective analysis of the process of change in Peru's anti-malarial treatment policy from the early 1990's to 2003 was completed. The decision to change Peru's policies resulted from increasing levels of anti-malarial drug resistance, as well as complaints from providers that the drugs were no longer working. The context of the change occurred in a time in which Peru was changing national governments, which created extreme challenges in moving the change process forward. Peru utilized a number of key strategies successfully to ensure that policy change would occur. This included a) having the process directed by a group who shared a common interest in malaria and who had long-established social and professional networks among themselves, b) engaging in collaborative teamwork among nationals and between nationals and international collaborators, c) respect for and inclusion of district-level staff in all phases of the process, d) reliance on high levels of technical and scientific knowledge, e) use of standardized protocols to collect data, and f) transparency. Although not perfectly or fully implemented by 2003, the change in malaria treatment policy in Peru occurred very quickly, as compared to other countries. They identified a problem, collected the data necessary to justify the change, utilized political will to their favor, approved the policy, and moved to improve malaria control in their country. As such, they offer an excellent example for other countries as they contemplate or embark on policy changes.
Simplified Models of Vector Control Impact upon Malaria Transmission by Zoophagic Mosquitoes
Kiware, Samson S.; Chitnis, Nakul; Moore, Sarah J.; Devine, Gregor J.; Majambere, Silas; Merrill, Stephen; Killeen, Gerry F.
2012-01-01
Background High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as “very zoophagic,” meaning they feed occasionally (<10% of blood meals) upon humans, so personal protection interventions have negligible impact upon their survival. Methods and Findings We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index). The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1) Rely on only three field-measurable parameters. (2) Predict immediate and delayed (with and without assuming reduced human infectivity, respectively) impacts of personal protection measures upon transmission. (3) Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4) Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user’s direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80%) are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. Conclusions Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact interventions using three field-measurable parameters; the proportion of human exposure to mosquitoes occurring when an intervention can be practically used, its protective efficacy when used, and the proportion of people using it. PMID:22701527
A Literature Review of the Effect of Malaria on Stunting.
Jackson, Bianca D; Black, Robert E
2017-11-01
Background: The current version of the Lives Saved Tool (LiST) maternal and child health impact modeling software does not include an effect of malaria on stunting. Objective: This literature review was undertaken to determine whether such a causal link should be included in the LiST model. Methods: The PubMed, Embase, and Scopus databases were searched by using broad search terms. The searches returned a total of 4281 documents. Twelve studies from among the retrieved documents were included in the review according to the inclusion and exclusion criteria. Results: There was mixed evidence for an effect of malaria on stunting among longitudinal observational studies, and none of the randomized controlled trials of malaria interventions found an effect of the interventions on stunting. Conclusions: There is insufficient evidence to include malaria as a determinant of stunting or an effect of malaria interventions on stunting in the LiST model. The paucity and heterogeneity of the available literature were a major limitation. In addition, the studies included in the review consistently fulfilled their ethical responsibility to treat children under observation for malaria, which may have interfered with the natural history of the disease and prevented any observable effect on stunting or linear growth. © 2017 American Society for Nutrition.
2011-01-01
Background GlaxoSmithKline Biologicals and the PATH Malaria Vaccine Initiative are working in partnership to develop a malaria vaccine to protect infants and children living in malaria endemic regions of sub-Saharan Africa, which can be delivered through the Expanded Programme on Immunization. The RTS,S/AS candidate vaccine has been evaluated in multiple phase I/II studies and shown to have a favourable safety profile and to be well-tolerated in both adults and children. This paper details the design of the phase III multicentre efficacy trial of the RTS,S/AS01 malaria vaccine candidate, which is pivotal for licensure and policy decision-making. Methods The phase III trial is a randomized, controlled, multicentre, participant- and observer-blind study on-going in 11 centres associated with different malaria transmission settings in seven countries in sub-Saharan Africa. A minimum of 6,000 children in each of two age categories (6-12 weeks, 5-17 months) have been enrolled. Children were randomized 1:1:1 to one of three study groups: (1) primary vaccination with RTS,S/AS01 and booster dose of RTS,S/AS01; (2) primary vaccination with RTS,S/AS01 and a control vaccine at time of booster; (3) primary vaccination with control vaccine and a control vaccine at time of booster. Primary vaccination comprises three doses at monthly intervals; the booster dose is administered at 18 months post-primary course. Subjects will be followed to study month 32. The co-primary objectives are the evaluation of efficacy over one year post-dose 3 against clinical malaria when primary immunization is delivered at: (1) 6-12 weeks of age, with co-administration of DTPwHepB/Hib antigens and OPV; (2) 5-17 months of age. Secondary objectives include evaluation of vaccine efficacy against severe malaria, anaemia, malaria hospitalization, fatal malaria, all-cause mortality and other serious illnesses including sepsis and pneumonia. Efficacy of the vaccine against clinical malaria under different transmission settings, the evolution of efficacy over time and the potential benefit of a booster will be evaluated. In addition, the effect of RTS,S/AS01 vaccination on growth, and the safety and immunogenicity in HIV-infected and malnourished children will be assessed. Safety of the primary course of immunization and the booster dose will be documented in both age categories. Conclusions This pivotal phase III study of the RTS,S/AS01 candidate malaria vaccine in African children was designed and implemented by the Clinical Trials Partnership Committee. The study will provide efficacy and safety data to fulfil regulatory requirements, together with data on a broad range of endpoints that will facilitate the evaluation of the public health impact of the vaccine and will aid policy and implementation decisions. Trial registration Clinicaltrials.gov NCT00866619 PMID:21816029
Dlamini, Sabelo V; Liao, Chien-Wei; Dlamini, Zandile H; Siphepho, Jameson S; Cheng, Po-Ching; Chuang, Ting-Wu; Fan, Chia-Kwung
2017-04-01
Although malaria control programs have made rapid progress recently, they neglect important social and behavioral factors associated with the disease. Social, political, and cultural factors are involved in malaria control, and individuals in a community may be comfortable in behaving in ways that, to an outsider, may seem contrary to commonly held perceptions. Malaria control efforts can no longer afford to overlook the multidimensional human contexts that create and support varying notions of malaria and its prevention, treatment, and control. This study aimed to assess the knowledge and perceptions of malaria issues in the community, and to identify practices that support or hinder the progress of malaria control programs. A triangulation study involving individual interviews, focus group discussions, and observatory analysis between 2003 and 2010 at Lomahasha, a malarious community on the eastern border of Swaziland and Mozambique, was conducted. Results indicated that a high knowledge level and good perception of the disease were observed in the age group of < 40 years, contrary to those in higher age groups, among the Lomahasha community members. However, behavior of certain community groups includes practices that are not supportive of the national control program's aspirations, such as delay in seeking medical attention, staying outdoors until late, maintaining stagnant water in roadside excavations, and seeking medical assistance from wrong sources. Malpractices are more commonly observed among men, boys, and those who drink alcohol. This study suggests a thorough community diagnosis before all intervention programs for malaria control are instituted. Copyright © 2015. Published by Elsevier B.V.
Chemosterilants for Control of Insects and Insect Vectors of Disease.
Baxter, Richard H G
2016-10-01
Both historically and at present, vector control is the most generally effective means of controlling malaria transmission. Insecticides are the predominant method of vector control, but the sterile insect technique (SIT) is a complementary strategy with a successful track record in both agricultural and public health sectors. Strategies of genetic and radiation-induced sterilization of Anopheles have to date been limited by logistical and/or regulatory hurdles. A safe and effective mosquito chemosterilant would therefore be of major utility to future deployment of SIT for malaria control. Here we review the prior and current use of chemosterilants in SIT, and assess the potential for future research. Recent genomic and proteomic studies reveal opportunities for specific targeting of seminal fluid proteins, and the capacity to interfere with sperm motility and storage in the female.
NASA Technical Reports Server (NTRS)
Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph
2007-01-01
These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors. The output of the model includes the individual infection status and the quantities normally observed in field studies, such as mosquito biting rates, sporozoite infection rates, gametocyte prevalence and incidence. Results are in good agreement with mosquito vector and human malaria data acquired by Coleman et al. over 4.5 years in Kong Mong Tha, a remote village in western Thailand. Application of our models is not restricted to the Greater Mekong Subregion. Our models have been applied to malaria in Indonesia, Korea, and other regions in the world with similar success.
Kabaria, Caroline W; Molteni, Fabrizio; Mandike, Renata; Chacky, Frank; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2016-07-30
With more than half of Africa's population expected to live in urban settlements by 2030, the burden of malaria among urban populations in Africa continues to rise with an increasing number of people at risk of infection. However, malaria intervention across Africa remains focused on rural, highly endemic communities with far fewer strategic policy directions for the control of malaria in rapidly growing African urban settlements. The complex and heterogeneous nature of urban malaria requires a better understanding of the spatial and temporal patterns of urban malaria risk in order to design effective urban malaria control programs. In this study, we use remotely sensed variables and other environmental covariates to examine the predictability of intra-urban variations of malaria infection risk across the rapidly growing city of Dar es Salaam, Tanzania between 2006 and 2014. High resolution SPOT satellite imagery was used to identify urban environmental factors associated malaria prevalence in Dar es Salaam. Supervised classification with a random forest classifier was used to develop high resolution land cover classes that were combined with malaria parasite prevalence data to identify environmental factors that influence localized heterogeneity of malaria transmission and develop a high resolution predictive malaria risk map of Dar es Salaam. Results indicate that the risk of malaria infection varied across the city. The risk of infection increased away from the city centre with lower parasite prevalence predicted in administrative units in the city centre compared to administrative units in the peri-urban suburbs. The variation in malaria risk within Dar es Salaam was shown to be influenced by varying environmental factors. Higher malaria risks were associated with proximity to dense vegetation, inland water and wet/swampy areas while lower risk of infection was predicted in densely built-up areas. The predictive maps produced can serve as valuable resources for municipal councils aiming to shrink the extents of malaria across cities, target resources for vector control or intensify mosquito and disease surveillance. The semi-automated modelling process developed can be replicated in other urban areas to identify factors that influence heterogeneity in malaria risk patterns and detect vulnerable zones. There is a definite need to expand research into the unique epidemiology of malaria transmission in urban areas for focal elimination and sustained control agendas.
Elbadry, Maha A; Al-Khedery, Basima; Tagliamonte, Massimiliano S; Yowell, Charles A; Raccurt, Christian P; Existe, Alexandre; Boncy, Jacques; Weppelmann, Thomas A; Beau De Rochars, Valery E M; Lemoine, Jean F; Okech, Bernard A; Dame, John B
2015-12-21
Public health measures are poised for transition from malaria control to malaria elimination on the island of Hispaniola. Assessment of the reservoir of asymptomatic infections from which acute malaria cases may derive is critical to plan and evaluate elimination efforts. Current field technology is ill suited for detecting sub-microscopic infections, thus highly sensitive survey methods capable of detecting virtually all infections are needed. In this study the prevalence of infection with Plasmodium falciparum was determined in patients seeking medical care primarily for non-febrile conditions in six departments in Haiti using a newly designed qRT-PCR-based assay. Three different methods of parasite detection were compared to assess their utility in approximating the prevalence of P. falciparum infections in the population: malaria rapid diagnostic test (RDT) designed to detect histidine-rich protein 2 (HRP2), thick smear microscopy, and a quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based upon the small sub-unit ribosomal RNA. The limit of detection of the qRT-PCR assay utilized was 0.0003 parasite/µL of blood. Venous blood was obtained from a total of 563 subjects from six departments in Haiti, all of whom were seeking medical attention without complaints consistent with malaria. Each subject was questioned for knowledge and behaviour using demographic and epidemiological survey to identify risk factors for disease transmission. Among the 563 samples tested, ten and 16 were found positive for malaria by RDT and microscopy, respectively. Using the qRT-PCR test to assess the infection status of these subjects, an additional 92 were identified for a total of 108. Based upon the qRT-PCR assay results, a wide variation in prevalence of infection in asymptomatic subjects was seen between geographic locations ranging from 4-41%. The prevalence of infection was highest in the Grand Anse, Nord and Sud-Est Departments, and demographic data from questionnaires provide evidence for focal disease transmission. The qRT-PCR assay is sufficiently sensitive to identify an unexpectedly large number of asymptomatic, submicroscopic infections. Identifying and clearing these infections presents a significant challenge to both control and elimination efforts, but the qRT-PCR assay offers a reliable method to identify them.
Willingness to use a rapid diagnostic test for malaria in a rural area of central Côte d’Ivoire
2012-01-01
Background Malaria mortality is mainly a direct consequence of inadequate and/or delayed diagnosis and case management. Some important control interventions (e.g. long-lasting insecticidal nests) have contributed to reduce malaria morbidity and mortality in different parts of the world. Moreover, the development and effective use of rapid diagnostic tests (RDTs) hold promise to further enhance the control and elimination of malaria, particularly in areas where health services are deficient. The aim of this study was to determine knowledge, attitudes, practices and beliefs in relation to RDTs for malaria in rural Côte d’Ivoire. Methods One hundred individuals from Bozi and Yoho who sought care at the health centre in Bozi and were offered an RDT for malaria were interviewed in April 2010 using a pre-tested questionnaire on practice and perceptions in relation to RDTs for malaria. The relationships between acceptance of RDTs and factors related to opinions were identified, using generalized linear mixed models. Qualitative data from open-ended questions complemented the quantitative analysis. Results Only 34 out of 100 patients who were offered an RDT for malaria were willing to undergo the test. People who perceived blood as a sacred body fluid were less likely to comply with an RDT. The concurrent availability and use of RDTs for HIV and malaria was associated with an unwilling attitude towards RDTs for malaria (Fisher’s exact test, p <0.001). The initial willingness of patients to accept malaria testing with RDTs was significantly related to general fear and wanting to know malaria infection status. For further and regular use of RDTs, a strong relationship was observed between acceptance and the idea that an RDT is a pretext used by health worker to know HIV status (odds ratio (OR) = 16.61, 95% confidence interval (CI) = 1.03-268.5). Those thinking that blood samples were useful for medical diagnoses were 8.31-times (95% CI = 2.22-31.1) more likely to undergo an RDT compared to those rejecting blood sampling as a diagnostic strategy. Conclusion Socio-cultural factors might be barriers for accepting RDTs in general health services. There are social representations of malaria and HIV/AIDS, symbolic for blood or experiences in relation to blood taking and blood-related diseases in relation to the introduction and routine use of RDTs. Special attention should be given to these barriers as otherwise the promotion of RDTs for prompt and effective diagnosis and subsequent management of malaria is hampered. PMID:23249239
2014-01-01
Abstract Background For many years, malaria has been one of the main health concerns of the government of Ghana. The government has recently implemented a control strategy which will ensure the inclusion of the community members who were previously excluded from the process. Until now, however, scientific study on this strategy has been scanty. Objectives The objectives were to investigate the level at which communities have been allowed to participate and to understand whether the idea of community participation in malaria control strategy is a myth or a reality. Methods Data were collected in the rural district of Ahafo-Ano South in the Ashanti region of Ghana. An exploratory qualitative approach was employed in order to ascertain the opinions of the local health officials and community members. The level of participation was measured using the framework of Arnstein's ‘ladder’ of participation, as developed in 1969. Results Evidence showed that the level of community participation was only tokenistic. Communities were only informed and/or consulted after decisions had been made, but the real engagement and negotiations were absent. Communities thus had limited opportunities to air their views in the planning process. Conclusion This article has revealed that the government's vision of ensuring community participation in the malaria control policy-making process can be said to be a myth rather than a reality. PMID:26245403
A malaria transmission-directed model of mosquito life cycle and ecology
2011-01-01
Background Malaria is a major public health issue in much of the world, and the mosquito vectors which drive transmission are key targets for interventions. Mathematical models for planning malaria eradication benefit from detailed representations of local mosquito populations, their natural dynamics and their response to campaign pressures. Methods A new model is presented for mosquito population dynamics, effects of weather, and impacts of multiple simultaneous interventions. This model is then embedded in a large-scale individual-based simulation and results for local elimination of malaria are discussed. Mosquito population behaviours, such as anthropophily and indoor feeding, are included to study their effect upon the efficacy of vector control-based elimination campaigns. Results Results for vector control tools, such as bed nets, indoor spraying, larval control and space spraying, both alone and in combination, are displayed for a single-location simulation with vector species and seasonality characteristic of central Tanzania, varying baseline transmission intensity and vector bionomics. The sensitivities to habitat type, anthropophily, indoor feeding, and baseline transmission intensity are explored. Conclusions The ability to model a spectrum of local vector species with different ecologies and behaviours allows local customization of packages of interventions and exploration of the effect of proposed new tools. PMID:21999664
SHAHI, Mehran; KAMRANI, Ehsan; SALEHI, Mehrdad; HABIBI, Reza; HANAFI-BOJD, Ahmad Ali
2015-01-01
Background: The widespread use of chemical insecticides, resistance in vectors and environmental problems, all have led to an increased interest in the use of biological agents in malaria control programs. The most important functional elements are the native fish. The aim of this study was to identify the native species of lavivorous fish in Rudan County, southern Iran, to introduce an effective species and to propose its’ implementation in the national malaria control program. Methods: This ecologically descriptive study was conducted during 2011–2012 using random sampling from different fish habitats of Rudan County. The shoals of fish were caught using fishing net. Fish samples were then identified in the Ichthyology lab, Department of Fisheries and the Environment, Hormozgan University. Results: Three species of larvivorous fish were identified as follows: Gambusia holbrooki, Aphaniusdispar dispar and Aphanius sp. The latter species has the most distribution in the study area and needs more morphological and molecular studies for identification at the species level. Conclusion: Two species of native fish, i.e., A. dispar and A. sp. with larvivorous potential live in the area. Further studies on their predatory property are recommended in order to apply this local potential against malaria vectors in the area. PMID:26744713
New treatment policy of malaria as a part of malaria control program in Indonesia.
Kusriastuti, Rita; Surya, Asik
2012-07-01
Malaria control program is one of the oldest program in the Ministry of Health (MoH) Republic of Indonesia. Started with effort to eradicate malaria in 1959 through Malaria Eradication Command well known as KOPEM (Komando Pembasmian Malaria) then it evolves to Malaria Control Program, Roll Back Malaria Program, and the current Malaria Elimination Program. In terms of diagnostic and treatment, the policy has formulated by strictly follow evidence-based principles as well as technical guided from World Health Organization (WHO). In 2004, based on numerous researches conducted in Indonesia the use of chloroquine was stopped and artemisinin-based combination therapy (ACT) was then initiated. For severe cases the use of intravenous (iv) Artesunate for cases treated in hospitals and intramuscular (im) Arthemeter for cases treated in the primary care setting were also introduced. ACT, Artesunate iv, and Artemether im, all are provided nationwide through the procurement system. For radical treatment, the recommendation in Indonesia is to add primaquine (PQ) to ACT for Plasmodium vivax and Plasmodium ovale infections to prevent relapses and for Plasmodium Falciparum infection to kill the gametocytes. These recommendations put hope to reduce malaria mortality to zero and eventually with other interventions will eliminate malaria from the country by 2030. The dissemination of this information is important for the policy to apply in practice across the country.
2012-01-01
Background Both treatment and prevention strategies are recommended by the World Health Organization for the control of malaria during pregnancy in tropical areas. The aim of this study was to assess use of a rapid diagnostic test for prompt management of malaria in pregnancy in Bangui, Central African Republic. Methods A cohort of 76 pregnant women was screened systematically for malaria with ParacheckPf® at each antenatal visit. The usefulness of the method was analysed by comparing the number of malaria episodes requiring treatment in the cohort with the number of prescriptions received by another group of pregnant women followed-up in routine antenatal care. Results In the cohort group, the proportion of positive ParacheckPf® episodes during antenatal clinics visits was 13.8%, while episodes of antimalarial prescriptions in the group which was followed-up routinely by antenatal personnel was estimated at 26.3%. Hence, the relative risk of the cohort for being prescribed an antimalarial drug was 0.53. Therefore, the attributable fraction of presumptive treatment avoided by systematic screening with ParacheckPf® was 47%. Conclusions Use of a rapid diagnostic test is useful, affordable and easy for adequate treatment of malaria in pregnant women. More powerful studies of the usefulness of introducing the test into antenatal care are needed in all heath centres in the country and in other tropical areas. PMID:22734602
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Dessay, Nadine
2018-01-01
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field. PMID:29518988
Catry, Thibault; Li, Zhichao; Roux, Emmanuel; Herbreteau, Vincent; Gurgel, Helen; Mangeas, Morgan; Seyler, Frédérique; Dessay, Nadine
2018-03-07
The prevention and control of mosquito-borne diseases, such as malaria, are important health issues in tropical areas. Malaria transmission is a multi-scale process strongly controlled by environmental factors, and the use of remote-sensing data is suitable for the characterization of its spatial and temporal dynamics. Synthetic aperture radar (SAR) is well-adapted to tropical areas, since it is capable of imaging independent of light and weather conditions. In this study, we highlight the contribution of SAR sensors in the assessment of the relationship between vectors, malaria and the environment in the Amazon region. More specifically, we focus on the SAR-based characterization of potential breeding sites of mosquito larvae, such as man-made water collections and natural wetlands, providing guidelines for the use of SAR capabilities and techniques in order to optimize vector control and malaria surveillance. In light of these guidelines, we propose a framework for the production of spatialized indicators and malaria risk maps based on the combination of SAR, entomological and epidemiological data to support malaria risk prevention and control actions in the field.
Nwaneri, D U; Adeleye, O A; Ande, A B
2013-03-01
Malaria is a major contributor of maternal and peri-natal morbidity and mortality. The disease may be asymptomatic despite sequestration of parasitized red blood cells in the placental micro-circulation with antecedent complications. In such condition, it may also be difficult to identify the malaria parasite by the peripheral blood film microscopy, thus the need for use of simple but reliable tool for malaria parasite diagnosis. To determine the prevalence of asymptomatic malaria parasitaemia using the Rapid Diagnostic Test in pregnant unbooked women seen in a primary health centre during a malaria control campaign programme in rural Ondo-south, District Nigeria. Prevalence of asymptomatic malaria parasitaemia was 25.9%. Only 3 (3.5%) of the 85 women had the long lasting insecticide-treated nets. There was no significant association between malaria parasitaemia, and the age group, parity and gestation age. Given the high prevalence of asymptomatic malaria in pregnancy, routine screening for malaria at booking and scaling-up of other malaria control strategies such as the use of long lasting insecticidal-treated nets and intermittent preventive therapy for pregnant women are recommended.
Bradley, John; Knight, Philip; Stone, William; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Doumbo, Ogobara K.; Sauerwein, Robert W.; Kariuki, Simon; Drakeley, Chris; Stevenson, Jennifer; Cox, Jonathan
2016-01-01
Background Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. Methods and Findings Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June–6 July 2012) and 16 wk (21 August–10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI −1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. Conclusions Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. Trial registration ClinicalTrials.gov NCT01575613 PMID:27071072
Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin
2016-04-01
Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.
When climate change couples social neglect: malaria dynamics in Panamá.
Hurtado, Lisbeth Amarilis; Cáceres, Lorenzo; Chaves, Luis Fernando; Calzada, José E
2014-04-01
A major challenge of infectious disease elimination is the need to interrupt pathogen transmission across all vulnerable populations. Ethnic minorities are among the key vulnerable groups deserving special attention in disease elimination initiatives, especially because their lifestyle might be intrinsically linked to locations with high transmission risk. There has been a renewed interest in malaria elimination, which has ignited a quest to understand factors necessary for sustainable malaria elimination, highlighting the need for diverse approaches to address epidemiological heterogeneity across malaria transmission settings. An analysis of malaria incidence among the Guna Amerindians of Panamá over the last 34 years showed that this ethnic minority was highly vulnerable to changes that were assumed to not impact malaria transmission. Epidemic outbreaks were linked with El Niño Southern Oscillations and were sensitive to political instability and policy changes that did not ensure adequate attention to the malaria control needs of the Gunas. Our results illustrate how the neglect of minorities poses a threat to the sustainable control and eventual elimination of malaria in Central America and other areas where ethnic minorities do not share the benefits of malaria control strategies intended for dominant ethnic groups.
Patel, Jaymin C; Oberstaller, Jenna; Xayavong, Maniphet; Narayanan, Jothikumar; DeBarry, Jeremy D; Srinivasamoorthy, Ganesh; Villegas, Leopoldo; Escalante, Ananias A; DaSilva, Alexandre; Peterson, David S; Barnwell, John W; Kissinger, Jessica C; Udhayakumar, Venkatachalam; Lucchi, Naomi W
2013-01-01
Plasmodium vivax infections remain a major source of malaria-related morbidity and mortality. Early and accurate diagnosis is an integral component of effective malaria control programs. Conventional molecular diagnostic methods provide accurate results but are often resource-intensive, expensive, have a long turnaround time and are beyond the capacity of most malaria-endemic countries. Our laboratory has recently developed a new platform called RealAmp, which combines loop-mediated isothermal amplification (LAMP) with a portable tube scanner real-time isothermal instrument for the rapid detection of malaria parasites. Here we describe new primers for the detection of P. vivax using the RealAmp method. Three pairs of amplification primers required for this method were derived from a conserved DNA sequence unique to the P. vivax genome. The amplification was carried out at 64°C using SYBR Green or SYTO-9 intercalating dyes for 90 minutes with the tube scanner set to collect fluorescence signals at 1-minute intervals. Clinical samples of P. vivax and other human-infecting malaria parasite species were used to determine the sensitivity and specificity of the primers by comparing with an 18S ribosomal RNA-based nested PCR as the gold standard. The new set of primers consistently detected laboratory-maintained isolates of P. vivax from different parts of the world. The primers detected P. vivax in the clinical samples with 94.59% sensitivity (95% CI: 87.48-98.26%) and 100% specificity (95% CI: 90.40-100%) compared to the gold standard nested-PCR method. The new primers also proved to be more sensitive than the published species-specific primers specifically developed for the LAMP method in detecting P. vivax.
Bijker, Else M; Sauerwein, Robert W; Bijker, Wiebe E
2016-02-01
Controlled human malaria infections are clinical trials in which healthy volunteers are deliberately infected with malaria under controlled conditions. Controlled human malaria infections are complex clinical trials: many different groups and institutions are involved, and several complex technologies are required to function together. This functioning together of technologies, people, and institutions is under special pressure because of potential risks to the volunteers. In this article, the authors use controlled human malaria infections as a strategic research site to study the use of control, the role of trust, and the interactions between trust and control in the construction of scientific knowledge. The authors argue that tandems of trust and control play a central role in the successful execution of clinical trials and the construction of scientific knowledge. More specifically, two aspects of tandems of trust and control will be highlighted: tandems are sites where trust and control coproduce each other, and tandems link the personal, the technical, and the institutional domains. Understanding tandems of trust and control results in setting some agendas for both clinical trial research and science and technology studies.
Onyango, Shirley A.; Kitron, Uriel; Mungai, Peter; Muchiri, Eric M.; Kokwaro, Elizabeth; King, Charles H.; Mutuku, Francis M.
2014-01-01
Long-term success of ongoing malaria control efforts based on mosquito bed nets (long-lasting insecticidal net) and indoor residual spraying is dependent on continuous monitoring of mosquito vectors, and thus on effective mosquito sampling tools. The objective of our study was to identify the most efficient mosquito sampling tool(s) for routine vector surveillance for malaria and lymphatic filariasis transmission in coastal Kenya. We evaluated relative efficacy of five collection methods—light traps associated with a person sleeping under a net, pyrethrum spray catches, Prokopack aspirator, clay pots, and urine-baited traps—in four villages representing three ecological settings along the south coast of Kenya. Of the five methods, light traps were the most efficient for collecting female Anopheles gambiae s.l. (Giles) (Diptera: Culicidae) and Anopheles funestus (Giles) (Diptera: Culicidae) mosquitoes, whereas the Prokopack aspirator was most efficient in collecting Culex quinquefasciatus (Say) (Diptera: Culicidae) and other culicines. With the low vector densities here, and across much of sub-Saharan Africa, wherever malaria interventions, long-lasting insecticidal nets, and/or indoor residual spraying are in place, the use of a single mosquito collection method will not be sufficient to achieve a representative sample of mosquito population structure. Light traps will remain a relevant tool for host-seeking mosquitoes, especially in the absence of human landing catches. For a fair representation of the indoor mosquito population, light traps will have to be supplemented with aspirator use, which has potential for routine monitoring of indoor resting mosquitoes, and can substitute the more labor-intensive and intrusive pyrethrum spray catches. There are still no sufficiently efficient mosquito collection methods for sampling outdoor mosquitoes, particularly those that are bloodfed. PMID:24180120
Grigg, M J; William, T; Drakeley, C J; Jelip, J; von Seidlein, L; Barber, B E; Fornace, K M; Anstey, N M; Yeo, T W; Cox, J
2014-01-01
Introduction Plasmodium knowlesi has long been present in Malaysia, and is now an emerging cause of zoonotic human malaria. Cases have been confirmed throughout South-East Asia where the ranges of its natural macaque hosts and Anopheles leucosphyrus group vectors overlap. The majority of cases are from Eastern Malaysia, with increasing total public health notifications despite a concurrent reduction in Plasmodium falciparum and P. vivax malaria. The public health implications are concerning given P. knowlesi has the highest risk of severe and fatal disease of all Plasmodium spp in Malaysia. Current patterns of risk and disease vary based on vector type and competence, with individual exposure risks related to forest and forest-edge activities still poorly defined. Clustering of cases has not yet been systematically evaluated despite reports of peri-domestic transmission and known vector competence for human-to-human transmission. Methods and analysis A population-based case–control study will be conducted over a 2-year period at two adjacent districts in north-west Sabah, Malaysia. Confirmed malaria cases presenting to the district hospital sites meeting relevant inclusion criteria will be requested to enrol. Three community controls matched to the same village as the case will be selected randomly. Study procedures will include blood sampling and administration of household and individual questionnaires to evaluate potential exposure risks associated with acquisition of P. knowlesi malaria. Secondary outcomes will include differences in exposure variables between P. knowlesi and other Plasmodium spp, risk of severe P. knowlesi malaria, and evaluation of P. knowlesi case clustering. Primary analysis will be per protocol, with adjusted ORs for exposure risks between cases and controls calculated using conditional multiple logistic regression models. Ethics This study has been approved by the human research ethics committees of Malaysia, the Menzies School of Health Research, Australia, and the London School of Hygiene and Tropical Medicine, UK. PMID:25149186
Duncan, Christopher J. A.; Sheehy, Susanne H.; Ewer, Katie J.; Douglas, Alexander D.; Collins, Katharine A.; Halstead, Fenella D.; Elias, Sean C.; Lillie, Patrick J.; Rausch, Kelly; Aebig, Joan; Miura, Kazutoyo; Edwards, Nick J.; Poulton, Ian D.; Hunt-Cooke, Angela; Porter, David W.; Thompson, Fiona M.; Rowland, Ros; Draper, Simon J.; Gilbert, Sarah C.; Fay, Michael P.; Long, Carole A.; Zhu, Daming; Wu, Yimin; Martin, Laura B.; Anderson, Charles F.; Lawrie, Alison M.; Hill, Adrian V. S.; Ellis, Ruth D.
2011-01-01
Background Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria. Methods In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes. Results A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]). Conclusions Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers. Trial Registration ClinicalTrials.gov [NCT00984763] PMID:21799809
Chen-Hussey, Vanessa; Carneiro, Ilona; Keomanila, Hongkham; Gray, Rob; Bannavong, Sihamano; Phanalasy, Saysana; Lindsay, Steven W.
2013-01-01
Background Mosquito vectors of malaria in Southeast Asia readily feed outdoors making malaria control through indoor insecticides such as long-lasting insecticidal nets (LLINs) and indoor residual spraying more difficult. Topical insect repellents may be able to protect users from outdoor biting, thereby providing additional protection above the current best practice of LLINs. Methods and Findings A double blind, household randomised, placebo-controlled trial of insect repellent to reduce malaria was carried out in southern Lao PDR to determine whether the use of repellent and long-lasting insecticidal nets (LLINs) could reduce malaria more than LLINs alone. A total of 1,597 households, including 7,979 participants, were recruited in June 2009 and April 2010. Equal group allocation, stratified by village, was used to randomise 795 households to a 15% DEET lotion and the remainder were given a placebo lotion. Participants, field staff and data analysts were blinded to the group assignment until data analysis had been completed. All households received new LLINs. Participants were asked to apply their lotion to exposed skin every evening and sleep under the LLINs each night. Plasmodium falciparum and P. vivax cases were actively identified by monthly rapid diagnostic tests. Intention to treat analysis found no effect from the use of repellent on malaria incidence (hazard ratio: 1.00, 95% CI: 0.99–1.01, p = 0.868). A higher socio-economic score was found to significantly decrease malaria risk (hazard ratio: 0.72, 95% CI: 0.58–0.90, p = 0.004). Women were also found to have a reduced risk of infection (hazard ratio: 0.59, 95% CI: 0.37–0.92, p = 0.020). According to protocol analysis which excluded participants using the lotions less than 90% of the time found similar results with no effect from the use of repellent. Conclusions This randomised controlled trial suggests that topical repellents are not a suitable intervention in addition to LLINs against malaria amongst agricultural populations in southern Lao PDR. These results are also likely to be applicable to much of the Greater Mekong Sub-region. Trial Registration This trial is registered with number NCT00938379 PMID:23967083
Wai, Khin Thet; Kyaw, Myat Phone; Oo, Tin; Zaw, PeThet; Nyunt, Myat Htut; Thida, Moe; Kyaw, Thar Tun
2014-05-17
Mobile populations are at a high risk of malaria infection and suspected to carry and spread resistant parasites. The Myanmar National Malaria Control Programme focuses on preventive interventions and vector control measures for the temporary mobile/migrant workers in Myanmar Artemisinin Resistance Containment Zones. A prospective cross-sectional study was conducted in 2012 in Kawthaung and Bokepyin townships of Tanintharyi Region, Myanmar, covering 192 mobile/migrant aggregates. The objectives were to identify the spatial distribution of the mobile/migrant populations, and to assess knowledge, attitudes, perceptions, and practices concerning malaria prevention and control, and their preferred methods of interventions. The structure of the 192 migrant aggregates was investigated using a migrant mapping tool. Individual and household information was collected by structured interviews of 408 respondents from 39 aggregates, supplemented by 12 in-depth interviews of health care providers, authorities, volunteers, and employers. Data were analyzed by triangulating quantitative and qualitative data. The primary reasons for the limitation in access to formal health services for suspected malaria within 24 hours were identified to be scattered distribution of migrant aggregates, variable working hours and the lack of transportation. Only 19.6% of respondents reported working at night from dusk to dawn. Among study populations, 73% reported a perceived risk of contracting malaria and 60% reported to know how to confirm a suspected case of malaria. Moreover, only 15% was able to cite correct antimalarial drugs, and less than 10% believed that non-compliance with antimalarial treatment may be related to the risk of drug resistance. About 50% of study population reported to seeking health care from the public sector, and to sleep under ITNs/LLINs the night before the survey. There was a gap in willingness to buy ITNs/LLINs and affordability (88.5% vs. 60.2%) which may affect their sustained and consistent use. Only 32.4% across all aggregates realized the importance of community participation in effective malaria prevention and control. Community-based innovative approaches through strong collaboration and coordination of multi-stakeholders are desirable for relaying information on ITNs/LLINs, rapid diagnostic test, and artemisinin combination therapy and drug resistance successfully across the social and economic diversity of mobile/migrant aggregates in Myanmar.
2011-01-01
Background Malaria and Tuberculosis (TB) are important causes of morbidity and mortality in Africa. Malaria prevention reduces mortality among HIV patients, pregnant women and children, but its role in TB patients is not clear. In the TB National Reference Center in Guinea-Bissau, admitted patients are in severe clinical conditions and mortality during the rainy season is high. We performed a three-step malaria prevention program to reduce mortality in TB patients during the rainy season. Methods Since 2005 Permethrin treated bed nets were given to every patient. Since 2006 environmental prevention with permethrin derivates was performed both indoor and outdoor during the rainy season. In 2007 cotrimoxazole prophylaxis was added during the rainy season. Care was without charge; health education on malaria prevention was performed weekly. Primary outcomes were death, discharge, drop-out. Results 427, 346, 549 patients were admitted in 2005, 2006, 2007, respectively. Mortality dropped from 26.46% in 2005 to 18.76% in 2007 (p-value 0.003), due to the significant reduction in rainy season mortality (death/discharge ratio: 0.79, 0.55 and 0.26 in 2005, 2006 and 2007 respectively; p-value 0.001) while dry season mortality remained constant (0.39, 0.37 and 0.32; p-value 0.647). Costs of malaria prevention were limited: 2€/person. No drop-outs were observed. Health education attendance was 96-99%. Conclusions Malaria prevention in African tertiary care hospitals seems feasible with limited costs. Vector control, personal protection and cotrimoxazole prophylaxis seem to reduce mortality in severely ill TB patients. Prospective randomized trials are needed to confirm our findings in similar settings. Trial registration number Current Controlled Trials: ISRCTN83944306 PMID:21366907
Host attraction and biting behaviour of Anopheles mosquitoes in South Halmahera, Indonesia.
St Laurent, Brandyce; Burton, Timothy A; Zubaidah, Siti; Miller, Helen C; Asih, Puji B; Baharuddin, Amirullah; Kosasih, Sully; Shinta; Firman, Saya; Hawley, William A; Burkot, Thomas R; Syafruddin, Din; Sukowati, Supratman; Collins, Frank H; Lobo, Neil F
2017-08-02
Indonesia is home to a variety of malaria vectors whose specific bionomic traits remain largely uncharacterized. Species-specific behaviours, such as host feeding preferences, impact the dynamics of malaria transmission and the effectiveness of vector control interventions. To examine species-specific host attraction and feeding behaviours, a Latin square design was used to compare Anopheles mosquitoes attracted to human, cow, and goat-baited tents. Anopheles mosquitoes were collected hourly from the inside walls of each baited tent. Species were morphologically and then molecularly identified using rDNA ITS2 sequences. The head and thorax of individual specimens were analysed for Plasmodium DNA using PCR. Bloodmeals were identified using a multiplex PCR. A total of 1024, 137, and 74 Anopheles were collected over 12 nights in cow, goat, and human-baited tents, respectively. The species were identified as Anopheles kochi, Anopheles farauti s.s., Anopheles hackeri, Anopheles hinesorum, Anopheles indefinitus, Anopheles punctulatus, Anopheles tessellatus, Anopheles vagus, and Anopheles vanus, many of which are known to transmit human malaria. Molecular analysis of blood meals revealed a high level of feeding on multiple host species in a single night. Anopheles kochi, An. indefinitus, and An. vanus were infected with Plasmodium vivax at rates comparable to primary malaria vectors. The species distributions of Anopheles mosquitoes attracted to human, goat, and cow hosts were similar. Eight of nine sporozoite positive samples were captured with animal-baited traps, indicating that even predominantly zoophilic mosquitoes may be contributing to malaria transmission. Multiple host feeding and flexibility in blood feeding behaviour have important implications for malaria transmission, malaria control, and the effectiveness of intervention and monitoring methods, particularly those that target human-feeding vectors.
Sharma, P; Bhargava, M; Sukhachev, D; Datta, S; Wattal, C
2014-02-01
Tropical febrile illnesses such as malaria and dengue are challenging to differentiate clinically. Automated cellular indices from hematology analyzers may afford a preliminary rapid distinction. Blood count and VCS parameters from 114 malaria patients, 105 dengue patients, and 105 febrile controls without dengue or malaria were analyzed. Statistical discriminant functions were generated, and their diagnostic performances were assessed by ROC curve analysis. Three statistical functions were generated: (i) malaria-vs.-controls factor incorporating platelet count and standard deviations of lymphocyte volume and conductivity that identified malaria with 90.4% sensitivity, 88.6% specificity; (ii) dengue-vs.-controls factor incorporating platelet count, lymphocyte percentage and standard deviation of lymphocyte conductivity that identified dengue with 81.0% sensitivity and 77.1% specificity; and (iii) febrile-controls-vs.-malaria/dengue factor incorporating mean corpuscular hemoglobin concentration, neutrophil percentage, mean lymphocyte and monocyte volumes, and standard deviation of monocyte volume that distinguished malaria and dengue from other febrile illnesses with 85.1% sensitivity and 91.4% specificity. Leukocyte abnormalities quantitated by automated analyzers successfully identified malaria and dengue and distinguished them from other fevers. These economic discriminant functions can be rapidly calculated by analyzer software programs to generate electronic flags to trigger-specific testing. They could potentially transform diagnostic approaches to tropical febrile illnesses in cost-constrained settings. © 2013 John Wiley & Sons Ltd.
Jiménez, Alfons; Nhabomba, Augusto; Casas-Vila, Núria; Puyol, Laura; Campo, Joseph J.; Manaca, Maria Nelia; Aguilar, Ruth; Pinazo, María-Jesús; Almirall, Mercè; Soler, Cristina; Muñoz, José; Bardají, Azucena; Angov, Evelina; Dutta, Sheetij; Chitnis, Chetan E.; Alonso, Pedro L.; Gascón, Joaquim; Dobaño, Carlota
2013-01-01
Background Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas. Methods A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry. Results Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria. Conclusions Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures. PMID:23967347
Elimination of Plasmodium vivax Malaria in Azerbaijan
Mammadov, Suleyman; Gasimov, Elkhan; Kurdova-Mintcheva, Rossitza; Wongsrichanalai, Chansuda
2016-01-01
Azerbaijan in the south caucasus region of far southeastern Europe has a long history of malaria endemicity but just successfully eliminated local transmission. After a period of relatively stable malaria situation (1960–1970), the country witnessed an epidemic followed by a series of outbreaks of various magnitudes in the following two decades, all caused by Plasmodium vivax. Compared with 1993, the number of malaria cases in the country jumped 29 times in 1994, 123 times in 1995, and 571 times in 1996 at the peak of the epidemic, when 13,135 cases were officially registered. Incidence rate increased dramatically from 0.2/100,000 population in 1991 to over 17/100,000 population in 1996. Scaled-up malaria control led to the containment of the epidemic and to a dramatic decrease of malaria burden nationwide. Azerbaijan has applied contemporary, complex control and surveillance strategies and approaches and is currently in the prevention of reintroduction phase. This article describes Azerbaijan's public health experience in conducting malaria control and elimination interventions over several decades until 2013 when the country reached an important milestone—no indigenous malaria cases were recorded. PMID:27708184
Baiden, F; Malm, K; Bart-Plange, C; Hodgson, A; Chandramohan, D; Webster, J; Owusu-Agyei, S
2014-06-01
The presumptive approach was the World Health Organisation (WHO) recommended to the management of malaria for many years and this was incorporated into syndromic guidelines such as the Integrated Management of Childhood Illnesses (IMCI). In early 2010 however, WHO issued revised treatment guidelines that call for a shift from the presumptive to the test-based approach. Practically, this implies that in all suspected cases, the diagnosis of uncomplicated malaria should be confirmed using rapid test before treatment is initiated. This revision effectively brings to an end an era of clinical practice that span several years. Its implementation has important implications for the health systems in malaria-endemic countries. On the basis of research in Ghana and other countries, and evidence from program work, the Ghana National Malaria Control Program has issued revised national treatment guidelines that call for implementation of test-based management of malaria in all cases, and across all age groups. This article reviews the evidence and the technical basis for the shift to test-based management and examines the implications for malaria control in Ghana.
Sáenz, Fabián E; Arévalo-Cortés, Andrea; Valenzuela, Gabriela; Vallejo, Andrés F; Castellanos, Angélica; Poveda-Loayza, Andrea C; Gutierrez, Juan B; Alvarez, Alvaro; Yan, Yi Heng; Benavides, Yoldy; Castro, Luis Enrique; Arévalo-Herrera, Myriam; Herrera, Sócrates
2017-07-26
The recent scale-up in malaria control measures in Latin America has resulted in a significant decrease in the number of reported cases in several countries including Ecuador, where it presented a low malaria incidence in recent years (558 reported cases in 2015) with occasional outbreaks of both Plasmodium falciparum and Plasmodium vivax in the coastal and Amazonian regions. This success in malaria control in recent years has led Ecuador to transition its malaria policy from control to elimination. This study evaluated the general knowledge, attitude and practices (KAP) about malaria, as well as its prevalence in four communities of an endemic area in northwest Ecuador. A total of 258 interviews to assess KAP in the community indicated that most people in the study area have a basic knowledge about the disease but did not use to contribute to its control. Six hundred and forty-eight blood samples were collected and analysed by thick blood smear and real-time PCR. In addition, the distribution of the infections was mapped in the study communities. Although, no parasites were found by microscopy, by PCR the total malaria prevalence was 7.5% (6.9% P. vivax and 0.6% P. falciparum), much higher than expected and comparable to that reported in endemic areas of neighbouring countries with higher malaria transmission. Serology using ELISA and immunofluorescence indicated 27% respondents for P. vivax and 22% respondents for P. falciparum. Results suggest that despite a great malaria reduction in Ecuador, transition from control to elimination would demand further improvement in malaria diagnostics, including active case detection to identify and treat parasite asymptomatic carriers, as well as community participation in its elimination.
Zhang, Jun; Dong, Jia-Qiang; Li, Jia-Ying; Zhang, Yue; Tian, Yang-Hui; Sun, Xiao-Ying; Zhang, Guang-Yun; Li, Qing-Pu; Xu, Xiao-Yu; Cai, Tao
2016-09-01
In the Yunnan province of China, 18 counties in six prefectures border Myanmar. Due to its particular combination of geographic features, climate conditions, and cultural landscape, the area provides a suitable environment for the spread of insect-borne diseases such as malaria. In five identified Myanmar Special Regions along the China-Myanmar border, economic development is lagging, people live in extreme poverty, and the healthcare system is fragile. Coupled with political and other reasons, this precludes malaria control work to be effectively carried out in Myanmar, resulting in a heavy burden of the disease. Frequent population movements and favorable conditions for malaria transmission on the border fuel difficulties in controlling and eliminating the spread of the disease in the area. To reduce the prevalence of malaria in the China-Myanmar border area and improve healthcare services for local residents in this particular environment, Health Poverty Action (HPA) has provided malaria aid in the area since the beginning of 2006, as a sub-recipient of the China Global Fund Malaria Programs. In this case study, we examined HPA's activities as part of its malaria control programs in the area, analyzed and summarized the effectiveness and impact of the cross-border healthcare model as implemented by non-governmental organizations, and put forward suggestions for cross-border health aid models and for the prevention of malaria transmission in the Greater Mekong Subregion. HPA had carried out a great quantity of successful malaria control activities in border areas between China and Myanmar, strengthened the partnership and established the collaboration, coordination and cooperation channels among stakeholders. HPA has laid good groundwork and developed its valuable model that could be highlighted and referenced.
Harris, Ivor; Sharrock, Wesley W; Bain, Lisa M; Gray, Karen-Ann; Bobogare, Albino; Boaz, Leonard; Lilley, Ken; Krause, Darren; Vallely, Andrew; Johnson, Marie-Louise; Gatton, Michelle L; Shanks, G Dennis; Cheng, Qin
2010-09-07
Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥ 38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.
Wang, Shr-Jie; Lengeler, Christian; Smith, Thomas A; Vounatsou, Penelope; Cissé, Guéladio; Tanner, Marcel
2006-01-01
Background Currently, there is a significant lack of knowledge concerning urban malaria patterns in general and in Abidjan in particular. The prevalence of malaria, its distribution in the city and the fractions of fevers attributable to malaria in the health facilities have not been previously investigated. Methods A health facility-based survey and health care system evaluation was carried out in a peripheral municipality of Abidjan (Yopougon) during the rainy season of 2002, applying a standardized Rapid Urban Malaria Appraisal (RUMA) methodology. Results According to national statistics, approximately 240,000 malaria cases (both clinical cases and laboratory confirmed cases) were reported by health facilities in the whole of Abidjan in 2001. They accounted for 40% of all consultations. In the health facilities of the Yopougon municipality, the malaria infection rates in fever cases for different age groups were 22.1% (under one year-olds), 42.8% (one to five years-olds), 42.0% (> five to 15 years-olds) and 26.8% (over 15 years-olds), while those in the control group were 13.0%. 26.7%, 21.8% and 14.6%, respectively. The fractions of malaria-attributable fever were 0.12, 0.22, 0.27 and 0.13 in the same age groups. Parasitaemia was homogenously detected in different areas of Yopougon. Among all children, 10.1% used a mosquito net (treated or not) the night before the survey and this was protective (OR = 0.52, 95% CI 0.29–0.97). Travel to rural areas within the last three months was frequent (31% of all respondents) and associated with a malaria infection (OR = 1.75, 95% CI 1.25–2.45). Conclusion Rapid urbanization has changed malaria epidemiology in Abidjan and endemicity was found to be moderate in Yopougon. Routine health statistics are not fully reliable to assess the burden of disease, and the low level of the fractions of malaria-attributable fevers indicated substantial over-treatment of malaria. PMID:16584575
Zhao, Jinkou; Lama, Marcel; Korenromp, Eline; Aylward, Patrick; Shargie, Estifanos; Filler, Scott; Komatsu, Ryuichi; Atun, Rifat
2012-01-01
Introduction The World Health Organization Guidelines for the Treatment of Malaria, in 2006 and 2010, recommend parasitological confirmation of malaria before commencing treatment. Although microscopy has been the mainstay of malaria diagnostics, the magnitude of diagnostic scale up required to follow the Guidelines suggests that rapid diagnostic tests (RDTs) will be a large component. This study analyzes the adoption of rapid diagnostic testing in malaria programs supported by the Global Fund to fight AIDS, Tuberculosis and Malaria (Global Fund), the leading international funder of malaria control globally. Methods and Findings We analyzed, for the period 2005 to 2010, Global Fund programmatic data for 81 countries on the quantity of RDTs planned; actual quantities of RDTs and artemisinin-based combination treatments (ACTs) procured in 2009 and 2010; RDT-related activities including RDTs distributed, RDTs used, total diagnostic tests including RDTs and microscopy performed, health facilities equipped with RDTs; personnel trained to perform rapid diagnostic malaria test; and grant budgets allocated to malaria diagnosis. In 2010, diagnosis accounted for 5.2% of malaria grant budget. From 2005 to 2010, the procurement plans include148 million RDTs through 96 malaria grants in 81 countries. Around 115 million parasitological tests, including RDTs, had reportedly been performed from 2005 to 2010. Over this period, 123,132 health facilities were equipped with RDTs and 137,140 health personnel had been trained to perform RDT examinations. In 2009 and 2010, 41 million RDTs and 136 million ACTs were purchased. The ratio of procured RDTs to ACTs was 0.26 in 2009 and 0.34 in 2010. Conclusions/significance Global Fund financing has enabled 81 malaria-endemic countries to adopt WHO guidelines by investing in RDTs for malaria diagnosis, thereby helping improve case management of acute febrile illness in children. However, roll-out of parasitological diagnosis lags behind the roll-out of ACT-based treatment, and will require prioritization of investments. PMID:22952703
An automatic vision-based malaria diagnosis system.
Vink, J P; Laubscher, M; Vlutters, R; Silamut, K; Maude, R J; Hasan, M U; DE Haan, G
2013-06-01
Malaria is a worldwide health problem with 225 million infections each year. A fast and easy-to-use method, with high performance is required to differentiate malaria from non-malarial fevers. Manual examination of blood smears is currently the gold standard, but it is time-consuming, labour-intensive, requires skilled microscopists and the sensitivity of the method depends heavily on the skills of the microscopist. We propose an easy-to-use, quantitative cartridge-scanner system for vision-based malaria diagnosis, focusing on low malaria parasite densities. We have used special finger-prick cartridges filled with acridine orange to obtain a thin blood film and a dedicated scanner to image the cartridge. Using supervised learning, we have built a Plasmodium falciparum detector. A two-step approach was used to first segment potentially interesting areas, which are then analysed in more detail. The performance of the detector was validated using 5,420 manually annotated parasite images from malaria parasite culture in medium, as well as using 40 cartridges of 11,780 images containing healthy blood. From finger prick to result, the prototype cartridge-scanner system gave a quantitative diagnosis in 16 min, of which only 1 min required manual interaction of basic operations. It does not require a wet lab or a skilled operator and provides parasite images for manual review and quality control. In healthy samples, the image analysis part of the system achieved an overall specificity of 99.999978% at the level of (infected) red blood cells, resulting in at most seven false positives per microlitre. Furthermore, the system showed a sensitivity of 75% at the cell level, enabling the detection of low parasite densities in a fast and easy-to-use manner. A field trial in Chittagong (Bangladesh) indicated that future work should primarily focus on improving the filling process of the cartridge and the focus control part of the scanner. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
2014-01-01
Background Mass insecticide treated bed net (ITN) deployment, and its associated coverage of populations at risk, had “pushed” a decline in malaria transmission. However, it is unknown whether malaria control is being enhanced by zooprophylaxis, i.e., mosquitoes diverted to feed on hosts different from humans, a phenomenon that could further reduce malaria entomological transmission risk in areas where livestock herding is common. Methods Between May and July 2009, we collected mosquitoes in 104 houses from three neighboring villages with high ITN coverage (over 80%), along Lake Victoria. We also performed a census of livestock in the area and georeferenced tethering points for all herds, as well as, mosquito larval habitats. Bloodmeal contents from sampled mosquitoes were analyzed, and each mosquito was individually tested for malaria sporozoite infections. We then evaluated the association of human density, ITN use, livestock abundance and larval habitats with mosquito abundance, bloodfeeding on humans and malaria sporozoite rate using generalized linear mixed effects models. Results We collected a total of 8123 mosquitoes, of which 1664 were Anopheles spp. malaria vectors over 295 household spray catches. We found that vector household abundance was mainly driven by the number of householders (P < 0.05), goats/sheep tethered around the house (P < 0.05) and ITNs, which halved mosquito abundance (P < 0.05). In general, similar patterns were observed for Anopheles arabiensis, but not An. gambiae s.s. and An. funestus s.s., whose density did not increase with the presence of livestock animals. Feeding on humans significantly increased in all species with the number of householders (P < 0.05), and only significantly decreased for An. arabiensis in the presence of cattle (P < 0.05). Only 26 Anopheles spp. vectors had malaria sporozoites with the sporozoite rate significantly decreasing as the proportion of cattle feeding mosquitoes increased (P < 0.05). Conclusion Our data suggest that cattle, in settings with large ITN coverage, have the potential to drive an unexpected “push-pull” malaria control system, where An. arabiensis mosquitoes “pushed” out of human contact by ITNs are likely being further “pulled” by cattle. PMID:24472517
Mapping malaria risk among children in Côte d’Ivoire using Bayesian geo-statistical models
2012-01-01
Background In Côte d’Ivoire, an estimated 767,000 disability-adjusted life years are due to malaria, placing the country at position number 14 with regard to the global burden of malaria. Risk maps are important to guide control interventions, and hence, the aim of this study was to predict the geographical distribution of malaria infection risk in children aged <16 years in Côte d’Ivoire at high spatial resolution. Methods Using different data sources, a systematic review was carried out to compile and geo-reference survey data on Plasmodium spp. infection prevalence in Côte d’Ivoire, focusing on children aged <16 years. The period from 1988 to 2007 was covered. A suite of Bayesian geo-statistical logistic regression models was fitted to analyse malaria risk. Non-spatial models with and without exchangeable random effect parameters were compared to stationary and non-stationary spatial models. Non-stationarity was modelled assuming that the underlying spatial process is a mixture of separate stationary processes in each ecological zone. The best fitting model based on the deviance information criterion was used to predict Plasmodium spp. infection risk for entire Côte d’Ivoire, including uncertainty. Results Overall, 235 data points at 170 unique survey locations with malaria prevalence data for individuals aged <16 years were extracted. Most data points (n = 182, 77.4%) were collected between 2000 and 2007. A Bayesian non-stationary regression model showed the best fit with annualized rainfall and maximum land surface temperature identified as significant environmental covariates. This model was used to predict malaria infection risk at non-sampled locations. High-risk areas were mainly found in the north-central and western area, while relatively low-risk areas were located in the north at the country border, in the north-east, in the south-east around Abidjan, and in the central-west between two high prevalence areas. Conclusion The malaria risk map at high spatial resolution gives an important overview of the geographical distribution of the disease in Côte d’Ivoire. It is a useful tool for the national malaria control programme and can be utilized for spatial targeting of control interventions and rational resource allocation. PMID:22571469
NASA Astrophysics Data System (ADS)
Ofosu, E.; Awuah, E.; Annor, F. O.
2009-04-01
In the seven (7) administrative zones of the Bongo District of the Upper East Region of Ghana, the occurrences of malaria and relative abundance of the principal malaria vector, Anopheles species, were studied as a function of the presence and characteristics of reservoirs during the rainy season. Case studies in the sub-Sahara Africa indicate that malaria transmission may increase decrease or remain largely unchanged as a consequence of reservoir presence. Analysis made, shows that the distance from reservoir to settlement and surface area of reservoirs significantly affected adult Anopheles mosquito abundance. Percentage of inhabitants using insecticide treated nets, livestock population density, human population density and Anopheles mosquito abundance significantly affected the occurrence of malaria. The results suggest that vector control targeted at reservoir characteristics and larval control, and supplemented by high patronage of insecticide treated nets may be an effective approach for epidemic malaria control in the Bongo District. Key Words: Bongo District, Reservoir, Anopheles species, Malaria, Vector abundance.
Ruiz, Daniel; Cerón, Viviana; Molina, Adriana M.; Quiñónes, Martha L.; Jiménez, Mónica M.; Ahumada, Martha; Gutiérrez, Patricia; Osorio, Salua; Mantilla, Gilma; Connor, Stephen J.; Thomson, Madeleine C.
2014-01-01
As part of the Integrated National Adaptation Pilot project and the Integrated Surveillance and Control System, the Colombian National Institute of Health is working on the design and implementation of a Malaria Early Warning System framework, supported by seasonal climate forecasting capabilities, weather and environmental monitoring, and malaria statistical and dynamic models. In this report, we provide an overview of the local ecoepidemiologic settings where four malaria process-based mathematical models are currently being implemented at a municipal level. The description includes general characteristics, malaria situation (predominant type of infection, malaria-positive cases data, malaria incidence, and seasonality), entomologic conditions (primary and secondary vectors, mosquito densities, and feeding frequencies), climatic conditions (climatology and long-term trends), key drivers of epidemic outbreaks, and non-climatic factors (populations at risk, control campaigns, and socioeconomic conditions). Selected pilot sites exhibit different ecoepidemiologic settings that must be taken into account in the development of the integrated surveillance and control system. PMID:24891460
Séne, Papa Diogoye; Park, Danny C.; Neafsey, Daniel E.; Schaffner, Stephen F.; Hamilton, Elizabeth J.; Lukens, Amanda K.; Van Tyne, Daria; Mboup, Souleymane; Sabeti, Pardis C.; Ndiaye, Daouda; Wirth, Dyann F.
2013-01-01
Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs), use of rapid diagnostic tests (RDTs) for malaria detection, and deployment of artemisinin combination therapy (ACT). Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign. PMID:23593309
Mwandagalirwa, Melchior Kashamuka; Levitz, Lauren; Thwai, Kyaw L; Parr, Jonathan B; Goel, Varun; Janko, Mark; Tshefu, Antoinette; Emch, Michael; Meshnick, Steven R; Carrel, Margaret
2017-11-09
The Democratic Republic of the Congo (DRC) bears a large share of global malaria burden despite efforts to control and eliminate the disease. More detailed understanding of individual and household level characteristics associated with malaria are needed, as is an understanding of how these characteristics vary spatiotemporally and across different community-level malaria endemicities. An ongoing study in Kinshasa Province is designed to address gaps in prior malaria surveillance in the DRC by monitoring malaria across seasons, age groups and in high and low malaria sites. Across seven sites, 242 households and 1591 individuals are participating in the study. Results of the enrollment questionnaire, rapid diagnostic tests and PCR testing of dried blood spots are presented. Overall malaria prevalence in the study cohort is high, 27% by rapid diagnostic test and 31% by polymerase chain reaction, and malaria prevalence is highly varied across very small geographic distances. Malaria prevalence is highest in children aged 6-15. While the majority of households own bed nets, bed net usage is less than 50%. The study cohort will provide an understanding of how malaria persists in populations that have varying environmental exposures, varying community-level malaria, and varying access to malaria control efforts.
Rai, Praveen Kumar; Nathawat, Mahendra Singh; Rai, Shalini
2013-01-01
This paper explores the scope of malaria-susceptibility modelling to predict malaria occurrence in an area. An attempt has been made in Varanasi district, India, to evaluate the status of malaria disease and to develop a model by which malaria-prone zones could be predicted using five classes of relative malaria susceptibility, i.e.very low, low, moderate, high and very high categories. The information value (Info Val) method was used to assess malaria occurrence and various time-were used as the independent variables. A geographical information system (GIS) is employed to investigate associations between such variables and distribution of different mosquitoes responsible for malaria transmission. Accurate prediction of risk depends on a number of variables, such as land use, NDVI, climatic factors, population, distance to health centres, ponds, streams and roads etc., all of which have an influence on malaria transmission or reporting. Climatic factors, particularly rainfall, temperature and relative humidity, are known to have a major influence on the biology of mosquitoes. To produce a malaria-susceptibility map using this method, weightings are calculated for various classes in each group. The groups are then superimposed to prepare a Malaria Susceptibility Index (MSI) map. We found that 3.87% of the malaria cases were found in areas with a low malaria-susceptibility level predicted from the model, whereas 39.86% and 26.29% of malaria cases were found in predicted high and very high susceptibility level areas, respectively. Malaria susceptibility modelled using a GIS may have a role in predicting the risks of malaria and enable public health interventions to be better targeted.
2012-01-01
Background Malaria and anaemia (Haemoglobin <11 g/dl) remain frequent in tropical regions and are closely associated. Although anaemia aetiologies are known to be multi-factorial, most studies in malaria endemic areas have been confined to analysis of possible associations between anaemia and individual factors such as malaria. A case control study involving children aged from 1 to 10 years was conducted to assess some assumed contributors to anaemia in the area of Bonconto Health post in Senegal. Methods Study participants were randomly selected from a list of children who participated in a survey in December 2010. Children aged from 1 to 10 years with haemoglobin level below 11 g/dl represented cases (anaemic children). Control participants were eligible if of same age group and their haemoglobin level was >= 11 g/dl. For each participant, a physical examination was done and anthropometric data collected prior to a biological assessment which included: malaria parasitaemia infection, intestinal worm carriage, G6PD deficiency, sickle cell disorders, and alpha-talassaemia. Results Three hundred and fifty two children < 10 years of age were enrolled (176 case and 176 controls). In a logistic regression analysis, anaemia was significantly associated with malaria parasitaemia (aOR=5.23, 95%CI[1.1-28.48]), sickle cell disorders (aOR=2.89, 95%CI[1,32-6.34]), alpha-thalassemia (aOR=1.82, 95%CI[1.2-3.35]), stunting (aOR=3.37, 95%CI[1.93-5.88], age ranged from 2 to 4 years (aOR=0.13, 95%CI[0.05-0.31]) and age > 5 years (aOR=0.03, 95%CI[0.01-0.08]). Stratified by age group, anaemia was significantly associated with stunting in children less than 5 years (aOR=3.1 95%CI[1.4 – 6.8]), with, sickle cell disorders (aOR=3.5 95%CI [1.4 – 9.0]), alpha-thalassemia (or=2.4 95%CI[1.1–5.3]) and stunting (aOR=3.6 95%CI [1.6–8.2]) for children above 5 years. No association was found between G6PD deficiency, intestinal worm carriage and children’s gender. Conclusion Malaria parasitaemia, stunting and haemoglobin genetic disorders represented the major causes of anaemia among study participants. Anaemia control in this area could be achieved by developing integrated interventions targeting both malaria and malnutrition. PMID:23057857
Haque, Ubydul; Overgaard, Hans J; Clements, Archie C A; Norris, Douglas E; Islam, Nazrul; Karim, Jahirul; Roy, Shyamal; Haque, Waziul; Kabir, Moktadir; Smith, David L; Glass, Gregory E
2014-02-01
Malaria is endemic in 13 of 64 districts in Bangladesh. About 14 million people are at risk. Some evidence suggests that the prevalence of malaria in Bangladesh has decreased since the the Global Fund to Fight AIDS, Tuberculosis and Malaria started to support the National Malaria Control Program (NMCP) in 2007. We did an epidemiological and economic assessment of malaria control in Bangladesh. We obtained annually reported, district-level aggregated malaria case data and information about disbursed funds from the NMCP. We used a Poisson regression model to examine the associations between total malaria, severe malaria, malaria-attributable mortality, and insecticide-treated net coverage. We identified and mapped malaria hotspots using the Getis-Ord Gi* statistic. We estimated the cost-effectiveness of the NMCP by estimating the cost per confirmed case, cost per treated case, and cost per person of insecticide-treated net coverage. During the study period (from Jan 1, 2008, to Dec 31, 2012) there were 285,731 confirmed malaria cases. Malaria decreased from 6.2 cases per 1000 population in 2008, to 2.1 cases per 1000 population in 2012. Prevalence of all malaria decreased by 65% (95% CI 65-66), severe malaria decreased by 79% (78-80), and malaria-associated mortality decreased by 91% (83-95). By 2012, there was one insecticide-treated net for every 2.6 individuals (SD 0.20). Districts with more than 0.5 insecticide-treated nets per person had a decrease in prevalence of 21% (95% CI 19-23) for all malaria, 25% (17-32) for severe malaria, and 76% (35-91) for malaria-associated mortality among all age groups. Malaria hotspots remained in the highly endemic districts in the Chittagong Hill Tracts. The cost per diagnosed case was US$0.39 (SD 0.02) and per treated case was $0.51 (0.27); $0.05 (0.04) was invested per person per year for health education and $0.68 (0.30) was spent per person per year for insecticide-treated net coverage. Malaria elimination is an achievable prospect in Bangladesh and failure to push for elimination nearly ensures a resurgence of disease. Consistent financing is needed to avoid resurgence and maintain elimination goals. None. Copyright © 2014 Haque et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
Daniels, Rachel; Hamilton, Elizabeth J; Durfee, Katelyn; Ndiaye, Daouda; Wirth, Dyann F; Hartl, Daniel L; Volkman, Sarah K
2015-11-10
Despite decades of eradication efforts, malaria remains a global burden. Recent renewed interest in regional elimination and global eradication has been accompanied by increased genomic information about Plasmodium parasite species responsible for malaria, including characteristics of geographical populations as well as variations associated with reduced susceptibility to anti-malarial drugs. One common genetic variation, single-nucleotide polymorphisms (SNPs), offers attractive targets for parasite genotyping. These markers are useful not only for tracking drug resistance markers but also for tracking parasite populations using markers not under drug or other selective pressures. SNP genotyping methods offer the ability to track drug resistance as well as to fingerprint individual parasites for population surveillance, particularly in response to malaria control efforts in regions nearing elimination status. While informative SNPs have been identified that are agnostic to specific genotyping technologies, high-resolution melting (HRM) analysis is particularly suited to field-based studies. Compared to standard fluorescent-probe based methods that require individual SNPs in a single labeled probe and offer at best 10% sensitivity to detect SNPs in samples that contain multiple genomes (polygenomic), HRM offers 2-5% sensitivity. Modifications to HRM, such as blocked probes and asymmetric primer concentrations as well as optimization of amplification annealing temperatures to bias PCR towards amplification of the minor allele, further increase the sensitivity of HRM. While the sensitivity improvement depends on the specific assay, we have increased detection sensitivities to less than 1% of the minor allele. In regions approaching malaria eradication, early detection of emerging or imported drug resistance is essential for prompt response. Similarly, the ability to detect polygenomic infections and differentiate imported parasite types from cryptic local reservoirs can inform control programs. This manuscript describes modifications to high resolution melting technology that further increase its sensitivity to identify polygenomic infections in patient samples.
Linder, Nina; Turkki, Riku; Walliander, Margarita; Mårtensson, Andreas; Diwan, Vinod; Rahtu, Esa; Pietikäinen, Matti; Lundin, Mikael; Lundin, Johan
2014-01-01
Microscopy is the gold standard for diagnosis of malaria, however, manual evaluation of blood films is highly dependent on skilled personnel in a time-consuming, error-prone and repetitive process. In this study we propose a method using computer vision detection and visualization of only the diagnostically most relevant sample regions in digitized blood smears. Giemsa-stained thin blood films with P. falciparum ring-stage trophozoites (n = 27) and uninfected controls (n = 20) were digitally scanned with an oil immersion objective (0.1 µm/pixel) to capture approximately 50,000 erythrocytes per sample. Parasite candidate regions were identified based on color and object size, followed by extraction of image features (local binary patterns, local contrast and Scale-invariant feature transform descriptors) used as input to a support vector machine classifier. The classifier was trained on digital slides from ten patients and validated on six samples. The diagnostic accuracy was tested on 31 samples (19 infected and 12 controls). From each digitized area of a blood smear, a panel with the 128 most probable parasite candidate regions was generated. Two expert microscopists were asked to visually inspect the panel on a tablet computer and to judge whether the patient was infected with P. falciparum. The method achieved a diagnostic sensitivity and specificity of 95% and 100% as well as 90% and 100% for the two readers respectively using the diagnostic tool. Parasitemia was separately calculated by the automated system and the correlation coefficient between manual and automated parasitemia counts was 0.97. We developed a decision support system for detecting malaria parasites using a computer vision algorithm combined with visualization of sample areas with the highest probability of malaria infection. The system provides a novel method for blood smear screening with a significantly reduced need for visual examination and has a potential to increase the throughput in malaria diagnostics.
Spatial-explicit modeling of social vulnerability to malaria in East Africa
2014-01-01
Background Despite efforts in eradication and control, malaria remains a global challenge, particularly affecting vulnerable groups. Despite the recession in malaria cases, previously malaria free areas are increasingly confronted with epidemics as a result of changing environmental and socioeconomic conditions. Next to modeling transmission intensities and probabilities, integrated spatial methods targeting the complex interplay of factors that contribute to social vulnerability are required to effectively reduce malaria burden. We propose an integrative method for mapping relative levels of social vulnerability in a spatially explicit manner to support the identification of intervention measures. Methods Based on a literature review, a holistic risk and vulnerability framework has been developed to guide the assessment of social vulnerability to water-related vector-borne diseases (VBDs) in the context of changing environmental and societal conditions. Building on the framework, this paper applies spatially explicit modeling for delineating homogeneous regions of social vulnerability to malaria in eastern Africa, while taking into account expert knowledge for weighting the single vulnerability indicators. To assess the influence of the selected indicators on the final index a local sensitivity analysis is carried out. Results Results indicate that high levels of malaria vulnerability are concentrated in the highlands, where immunity within the population is currently low. Additionally, regions with a lack of access to education and health services aggravate vulnerability. Lower values can be found in regions with relatively low poverty, low population pressure, low conflict density and reduced contributions from the biological susceptibility domain. Overall, the factors characterizing vulnerability vary spatially in the region. The vulnerability index reveals a high level of robustness in regard to the final choice of input datasets, with the exception of the immunity indicator which has a marked impact on the composite vulnerability index. Conclusions We introduce a conceptual framework for modeling risk and vulnerability to VBDs. Drawing on the framework we modeled social vulnerability to malaria in the context of global change using a spatially explicit approach. The results provide decision makers with place-specific options for targeting interventions that aim at reducing the burden of the disease amongst the different vulnerable population groups. PMID:25127688
Wangdi, Kinley; Banwell, Cathy; Gatton, Michelle L; Kelly, Gerard C; Namgay, Rinzin; Clements, Archie C A
2016-05-01
The number of malaria cases has fallen in Bhutan in the past two decades, and the country has a goal of complete elimination of malaria by 2016. The aims of this study are to ascertain the trends and burden of malaria, the costs of intensified control activities, the main donors of funding for the control activities, and the costs of different preventive measures in the pre-elimination phase (2006-14) in Bhutan. We undertook a descriptive analysis of malaria surveillance data from 2006 to 2014, using data from the Vector-borne Disease Control Programme (VDCP) run by the Department of Public Health of Bhutan's Ministry of Health. Malaria morbidity and mortality in local Bhutanese people and foreign nationals were analysed. The cost of different control and preventive measures were calculated, and the average numbers of long-lasting insecticidal nests per person were estimated. A total of 5491 confirmed malaria cases occurred in Bhutan between 2006 and 2014. By 2013, there was an average of one long-lasting insecticidal net for every 1·51 individuals. The cost of procuring long-lasting insecticidal nets accounted for more than 90% of the total cost of prevention measures. The Global Fund to Fight AIDS, Tuberculosis and Malaria was the main international donor, accounting for more than 80% of the total funds. The malaria burden in Bhutan decreased significantly during the study period with high coverage of long-lasting insecticidal nets. The foreseeable challenges that require national attention to maintain a malaria-free status after elimination are importation of malaria, especially from India; continued protection of the population in endemic districts through complete coverage with long-lasting insecticidal nets and indoor residual spraying; and exploration of local funding modalities post-elimination in the event of a reduction in international funding. None. Copyright © 2016 Wangdi et al. Open Access article distributed under the terms of CC BY. Published by Elsevier Ltd.. All rights reserved.
[Current malaria situation in Turkey].
Gockchinar, T; Kalipsi, S
2001-01-01
Geographically, Turkey is situated in an area where malaria is very risky. The climatic conditions in the region are suitable for the malaria vector to proliferate. Due to agricultural infrastructural changes, GAP and other similar projects, insufficient environmental conditions, urbanization, national and international population moves, are a key to manage malaria control activities. It is estimated that malaria will be a potential danger for Turkey in the forthcoming years. The disease is located largely in south-eastern Anatolia. The Diyarbakir, Batman, Sanliurfa, Siirt, and Mardin districts are the most affected areas. In western districts, like Aydin and Manisa, an increase in the number of indigenous cases can be observed from time to time. This is due to workers moving from malaria districts to western parts to final work. Since these workers cannot be controlled, the population living in these regions get infected from indigenous cases. There were 84,345 malaria cases in 1994 and 82,096 in 1995, they decreased to 60,884 in 1996 and numbered 35,456 in 1997. They accounted for 36,842 and 20,963 in 1998 and 1999, respectively. In Turkey there are almost all cases of P. vivax malaria. There are also P. vivax and P. falciparum malaria cases coming from other countries: There were 321 P. vivax cases, including 2 P. falciparum ones, arriving to Turkey from Iraq in 1995. The P. vivax malaria cases accounted for 229 in 1996, and 67, cases P. vivax including 12 P. falciparum cases, in 1997, and 4 P. vivax cases in 1998 that came from that country. One P. vivax case entered Turkey from Georgia in 1998. The cause of higher incidence of P. vivax cases in 1995, it decreasing in 1999, is the lack of border controls over workers coming to Turkey. The other internationally imported cases are from Syria, Sudan, Pakistan, Afghanistan, Nigeria, India, Azerbaijan, Malaysia, Ghana, Indonesia, Yemen. Our examinations have shown that none of these internationally imported cases are important in transmitting the diseases. The districts where malaria cases occur are the places where population moves are rapid, agriculture is the main occupation, the increase in the population is high and the education/cultural level is low. Within years, the districts with high malaria cases also differ. Before 1990 Cucurova and Amikova were the places that showed the highest incidence of malaria. Since 1990, the number of cases from south-eastern Anatolia has started to rise. The main reasons for this change are a comprehensive malaria prevention programme, regional development, developed agricultural systems, and lower population movements. The 1999 statistical data indicate that 83 and 17% of all malaria cases are observed in the GAP and other districts, respectively. The distribution of malaria cases in Turkey differs by months and climatic conditions. The incidence of malaria starts to rise in March, reaching its peak in July, August and September, begins to fall in October. In other words, the number of malaria cases is lowest in winter and reaches its peak in summer and autumn. This is not due to the parasite itself, but a climatic change is a main reason. In the past years the comprehensive malaria prevention programme has started bearing its fruits. Within the WHO Roll Back Malaria strategies, Turkey has started to implement its national malaria control projects, the meeting held on March 22, 2000, coordinated the country's international cooperation for this purpose. The meeting considered the aim of the project to be introduced into other organizations. In this regards, the target for 2002 is to halve the incidence of malaria as compared to 1999. The middle--and long-term incidence of malaria will be lowered to even smaller figures. The objectives of this project are as follows: to integrate malaria services with primary health care services to prove more effective studies; to develop early diagnosis and treatment systems, to provide better diagnostic services, and to develop mobile diagnostic ones; to make radical treatment and monitoring patients; to conduct regular active case surveillance studies; to conduct regular vector control studies; to monitor the sensitivity of vectors to insecticides and to provide their alternatives; to design malaria control studies for the specialists of districts; to implement educational programmes among the population and attract it in controlling malaria.
Present status of malaria control in Asia
Dy, F. J.
1954-01-01
The author summarizes the information given by 13 governments—Afghanistan, Burma, Ceylon, China, India, Indonesia, Malaya, Netherlands New Guinea, Philippines, Portuguese India, Sarawak, Thailand, and Viet Nam—on their existing and proposed malaria-control programmes in response to a questionnaire prepared by WHO for discussion at the First Asian Malaria Conference, which was held in Bangkok in September 1953. Although in late 1953 nearly 46.5 million of the 271 million people living in malarious regions were protected against the disease, more than 224 million others were still unprotected. It is noted that residual-insecticide spraying—the basis of most campaigns—has significantly reduced spleen- and parasite-rates; that the minor opposition to spraying initially encountered in some places quickly disappeared as the benefits became apparent; that malaria control has resulted in general improvements in public health and has promoted socio-economic development; that anopheline resistance to the insecticides used has not been observed; that ten governments voiced the need for indoctrination of public officials concerning malaria control; and that there is a trend among governments to make financial provision for long-term malaria-control schemes. PMID:13209318
Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia
Yewhalaw, Delenasaw; Legesse, Worku; Van Bortel, Wim; Gebre-Selassie, Solomon; Kloos, Helmut; Duchateau, Luc; Speybroeck, Niko
2009-01-01
Background Ethiopia plans to increase its electricity power supply by five-fold over the next five years to fulfill the needs of its people and support the economic growth based on large hydropower dams. Building large dams for hydropower generation may increase the transmission of malaria since they transform ecosystems and create new vector breeding habitats. The aim of this study was to assess the effects of Gilgel-Gibe hydroelectric dam in Ethiopia on malaria transmission and changing levels of prevalence in children. Methods A cross-sectional, community-based study was carried out between October and December 2005 in Jimma Zone, south-western Ethiopia, among children under 10 years of age living in three 'at-risk' villages (within 3 km from dam) and three 'control' villages (5 to 8 km from dam). The man-made Gilgel-Gibe dam is operating since 2004. Households with children less than 10 years of age were selected and children from the selected households were sampled from all the six villages. This included 1,081 children from 'at-risk' villages and 774 children from 'control' villages. Blood samples collected from children using finger prick were examined microscopically to determine malaria prevalence, density of parasitaemia and identify malarial parasite species. Results Overall 1,855 children (905 girls and 950 boys) were surveyed. A total of 194 (10.5%) children were positive for malaria, of which, 117 (60.3%) for Plasmodium vivax, 76 (39.2%) for Plasmodium falciparum and one (0.5%) for both P. vivax and P. falciparum. A multivariate design-based analysis indicated that, while controlling for age, sex and time of data collection, children who resided in 'at-risk' villages close to the dam were more likely to have P. vivax infection than children who resided farther away (odds ratio (OR) = 1.63, 95% CI = 1.15, 2.32) and showed a higher OR to have P. falciparum infection than children who resided in 'control' villages, but this was not significant (OR = 2.40, 95% CI = 0.84, 6.88). A classification tree revealed insights in the importance of the dam as a risk factor for malaria. Assuming that the relationship between the dam and malaria is causal, 43% of the malaria occurring in children was due to living in close proximity to the dam. Conclusion This study indicates that children living in close proximity to a man-made reservoir in Ethiopia are at higher risk of malaria compared to those living farther away. It is recommended that sound prevention and control programme be designed and implemented around the reservoir to reduce the prevalence of malaria. In this respect, in localities near large dams, health impact assessment through periodic survey of potential vectors and periodic medical screening is warranted. Moreover, strategies to mitigate predicted negative health outcomes should be integral parts in the preparation, construction and operational phases of future water resource development and management projects. PMID:19178727
EMIRA: Ecologic Malaria Reduction for Africa--innovative tools for integrated malaria control.
Dambach, Peter; Traoré, Issouf; Becker, Norbert; Kaiser, Achim; Sié, Ali; Sauerborn, Rainer
2014-01-01
Malaria control is based on early treatment of cases and on vector control. The current measures for malaria vector control in Africa are mainly based on long-lasting insecticide treated nets (LLINs) and to a much smaller extent on indoor residual spraying (IRS). A third pillar in the fight against the malaria vector, larval source management (LSM), has virtually not been used in Africa since the ban of DDT in the 1960s. Within the light of recent WHO recommendations for Bacillus thuringiensis israelensis (Bti) use against malaria and other vector species, larval source management could see a revival in the upcoming years. In this project we analyze the ecologic and health impacts as well as the cost effectiveness of larval source management under different larviciding scenarios in a health district in Burkina Faso. The project is designed as prospective intervention study with duration of three years (2013-2015). Its spatial scale includes three arms of interventions and control, comprising a total of 127 villages and the district capital Nouna in the extended HDSS (Health Demographic Surveillance System) of the Kossi province. Baseline data on mosquito abundance, parasitemia in U5 children, and malaria related morbidity and mortality are gathered over the project duration. Besides the outcome on ecologic and health parameters, the economic costs are seized and valued against the achieved health benefits. Risk map based, guided larvicide application might be a possibility to further decrease economic cost of LSM and facilitate its faster incorporation to integrated malaria control programs. Given the limited resources in many malaria endemic countries, it is of utmost importance to relate the costs of novel strategies for malaria prevention to their effect on the burden of the disease. Occurring costs and the impact on the health situation will be made comparable to other, existing intervention strategies, allowing stakeholders and policymakers decision making.
Controlled Human Malaria Infection: Applications, Advances, and Challenges.
Stanisic, Danielle I; McCarthy, James S; Good, Michael F
2018-01-01
Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.
Liverani, Marco; Charlwood, Jacques Derek; Lawford, Harriet; Yeung, Shunmay
2017-10-13
Large-scale use of insecticide-treated nets and indoor residual spraying have contributed to a significant decrease in malaria transmission worldwide. Further reduction and progress towards elimination, however, require complementary control measures which can address the remaining gaps in protection from mosquito bites. Following the development of novel pyrethroids with high knockdown effects on malaria vectors, programmatic use of spatial repellents has been suggested as one potential strategy to fill the gaps. This report explores social and contextual factors that may influence the relevance, uptake and sustainable use of a spatial repellent in two remote villages in Mondulkiri province, Cambodia, with endemic malaria transmission. The repellent consisted of polyethylene emanators, held in an open plastic frame and impregnated with 10% metofluthrin. In a baseline survey, 90.9% of households in Ou Chra (n = 30/33) and 96.6% in Pu Cha (n = 57/59) were interviewed. Behavioural data were collected for all household occupants (n = 448). In both villages, there were times and places in which people remained exposed to mosquito bites. Prior to the installation of the repellent, 50.6 and 59.5% of respondents noted that bites occurred "very often" inside the house and in the outdoor area surrounding the house, respectively. Indoor biting was reported to occur more frequently in the evening, followed by at night, while outdoor biting occurred more frequently in the early morning. In a follow-up survey, spatial repellents were well received in both villages, although 63.2% of respondents would not replace bed nets with repellents. Most participants (96.6%) were willing to use the product again; the mean willingness to pay was US$ 0.3 per unit. A preference for local procurement methods emerged. Widespread use of spatial repellents would not fill all protective gaps, but, if their entomological efficacy can be ascertained, outdoor application has the potential to enhance vector control strategies in Cambodia. Successful implementation would require subsidisation and integration with the existing national malaria control strategy. It is hoped that this study, while contributing to a better understanding of the social contexts of residual malaria transmission, will generate further interest in the evaluation of spatial repellents for malaria control.
Cost analysis of school-based intermittent screening and treatment of malaria in Kenya
2011-01-01
Background The control of malaria in schools is receiving increasing attention, but there remains currently no consensus as to the optimal intervention strategy. This paper analyses the costs of intermittent screening and treatment (IST) of malaria in schools, implemented as part of a cluster-randomized controlled trial on the Kenyan coast. Methods Financial and economic costs were estimated using an ingredients approach whereby all resources required in the delivery of IST are quantified and valued. Sensitivity analysis was conducted to investigate how programme variation affects costs and to identify potential cost savings in the future implementation of IST. Results The estimated financial cost of IST per child screened is US$ 6.61 (economic cost US$ 6.24). Key contributors to cost were salary costs (36%) and malaria rapid diagnostic tests (RDT) (22%). Almost half (47%) of the intervention cost comprises redeployment of existing resources including health worker time and use of hospital vehicles. Sensitivity analysis identified changes to intervention delivery that can reduce programme costs by 40%, including use of alternative RDTs and removal of supervised treatment. Cost-effectiveness is also likely to be highly sensitive to the proportion of children found to be RDT-positive. Conclusion In the current context, school-based IST is a relatively expensive malaria intervention, but reducing the complexity of delivery can result in considerable savings in the cost of intervention. (Costs are reported in US$ 2010). PMID:21933376
Field Evaluation of a Push-Pull System to Reduce Malaria Transmission
Menger, David J.; Omusula, Philemon; Holdinga, Maarten; Homan, Tobias; Carreira, Ana S.; Vandendaele, Patrice; Derycke, Jean-Luc; Mweresa, Collins K.; Mukabana, Wolfgang Richard; van Loon, Joop J. A.; Takken, Willem
2015-01-01
Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention. PMID:25923114
Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia
2010-01-01
Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed. PMID:21054903
Zhang, Qian; Lai, Shengjie; Zheng, Canjun; Zhang, Honglong; Zhou, Sheng; Hu, Wenbiao; Clements, Archie C A; Zhou, Xiao-Nong; Yang, Weizhong; Hay, Simon I; Yu, Hongjie; Li, Zhongjie
2014-11-03
In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from <10% before 2010 to 55.2% in 2012. From 2004 to 2006, malaria showed a significantly increasing trend and with the highest incidence peak in 2006 (4.6/100,000), while from 2007 onwards, malaria decreased sharply to only 0.18/100,000 in 2012. Males and young age groups became the predominantly affected population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.
2013-01-01
Background Relatively few programmes have attempted to actively engage the private sector in national malaria control efforts. This paper evaluates the health impact of a large-scale distribution of insecticide-treated nets (ITNs) conducted in partnership with a Zambian agribusiness, and its cost-effectiveness from the perspective of the National Malaria Control Programme (NMCP). Methods The study was designed as a cluster-randomized controlled trial. A list of 81,597 cotton farmers was obtained from Dunavant, a contract farming company in Zambia’s cotton sector, in December 2010. 39,963 (49%) were randomly selected to obtain one ITN each. Follow-up interviews were conducted with 438 farmers in the treatment and 458 farmers in the control group in June and July 2011. Treatment and control households were compared with respect to bed net ownership, bed net usage, self-reported fever, and self-reported confirmed malaria. Cost data was collected throughout the programme. Results The distribution effectively reached target beneficiaries, with approximately 95% of households in the treatment group reporting that they had received an ITN through the programme. The average increase in the fraction of household members sleeping under an ITN the night prior to the interview was 14.6 percentage points (p-value <0.001). Treatment was associated with a 42 percent reduction in the odds of self-reported fever (p-value <0.001) and with a 49 percent reduction in the odds of self-reported malaria (p-value 0.002). This was accomplished at a cost of approximately five US$ per ITN to Zambia’s NMCP. Conclusions The results illustrate that existing private sector networks can efficiently control malaria in remote rural regions. The intra-household allocation of ITNs distributed through this channel was comparable to that of ITNs received from other sources, and the health impact remained substantial. PMID:23506170
Wangdi, Kinley; Singhasivanon, Pratap; Silawan, Tassanee; Lawpoolsri, Saranath; White, Nicholas J; Kaewkungwal, Jaranit
2010-09-03
Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts. The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan.
Rapid urban malaria appraisal (RUMA) in sub-Saharan Africa
Wang, Shr-Jie; Lengeler, Christian; Smith, Thomas A; Vounatsou, Penelope; Cissé, Guéladio; Diallo, Diadie A; Akogbeto, Martin; Mtasiwa, Deo; Teklehaimanot, Awash; Tanner, Marcel
2005-01-01
Background The rapid urban malaria appraisal (RUMA) methodology aims to provide a cost-effective tool to conduct rapid assessments of the malaria situation in urban sub-Saharan Africa and to improve the understanding of urban malaria epidemiology. Methods This work was done in Yopougon municipality (Abidjan), Cotonou, Dar es Salaam and Ouagadougou. The study design consists of six components: 1) a literature review, 2) the collection of available health statistics, 3) a risk mapping, 4) school parasitaemia surveys, 5) health facility-based surveys and 6) a brief description of the health care system. These formed the basis of a multi-country evaluation of RUMA's feasibility, consistency and usefulness. Results A substantial amount of literature (including unpublished theses and statistics) was found at each site, providing a good overview of the malaria situation. School and health facility-based surveys provided an overview of local endemicity and the overall malaria burden in different city areas. This helped to identify important problems for in-depth assessment, especially the extent to which malaria is over-diagnosed in health facilities. Mapping health facilities and breeding sites allowed the visualization of the complex interplay between population characteristics, health services and malaria risk. However, the latter task was very time-consuming and required special expertise. RUMA is inexpensive, costing around 8,500–13,000 USD for a six to ten-week period. Conclusion RUMA was successfully implemented in four urban areas with different endemicity and proved to be a cost-effective first approach to study the features of urban malaria and provide an evidence basis for planning control measures. PMID:16153298
Kalantari, Mohsen; Soltani, Zahra; Ebrahimi, Mostafa; Yousefi, Masoud; Amin, Masoumeh; Shafiei, Ayda; Azizi, Kourosh
2017-01-01
Despite control programs, which aim to eliminate malaria from Iran by 2025, transmission of malaria has not been removed from the country. This study aimed to monitor malaria from asymptomatic parasitaemia and clinical cases from about one year of active case surveillance and potential vectors of malaria in the newly emerged focus of Mamasani and Rostam, southern Iran during 2014–2015. Samples were collected and their DNAs were extracted for Polymerase Chain Reaction (PCR) assay using specific primers for detection of Plasmodium species. The Annual Parasite Incidence rate (API) was three cases per 1,000 population from 2,000 individuals in three villages. Parasites species were detected in 9 out of the 4,000 blood smear samples among which, 6 cases were indigenous and had no history of travels to endemic areas of malaria. Also, the prevalence rate of asymptomatic parasites was about 0.3%. Overall, 1073 Anopheles spp. were caught from 9 villages. Totally, 512 female samples were checked by PCR, which indicated that none of them was infected with Plasmodium. Despite new malaria local transmission in humans in Mamasani and Rostam districts, no infection with Plasmodium was observed in Anopheles species. Because of neighboring of the studied area to the re-emerged focus in Fars province (Kazerun) and important endemic foci of malaria in other southern provinces, such as Hormozgan and Kerman, monitoring of the vectors and reservoir hosts of Plasmodium species would be unavoidable. Application of molecular methods, such as PCR, can simplify access to the highest level of accuracy in malaria researches. PMID:28078947
Analysing the quality of routine malaria data in Mozambique
Chilundo, Baltazar; Sundby, Johanne; Aanestad, Margunn
2004-01-01
Background In Mozambique, malaria is the principal cause of morbidity and mortality. Efforts are being made to increase control activities within communities. These activities require management decisions based on evidence of malaria incidence. Although some data generated are of poor quality, there is little research towards improving the reporting systems. Methods An analysis of the quality of routine malaria data was performed in selected districts in Southern Mozambique from August to September 2003. The aim was to assess the quality of the source data in terms of completeness, correctness and consistency across management levels. Results Analysis revealed primary data to be of poor quality. The diversity of reporting systems with limited coordination give rise to redundancies and wastage of resources. There was evidence of "invention" of data in health facilities contributing to an incorrect representation of malaria incidence. Large, "non-clinical", time-based variations of malaria cases due to reporting delays were also noted, contributing to false alerts of outbreaks. Furthermore, targets established in the national strategic plan for malaria cannot be calculated through the existing systems; this is the case, for example, for data related to pregnant women and children under-five years. Discussion and recommendations The existing reporting system for malaria is currently not satisfying the information needs of managers. It is suggested that one standardized system, including the creation of one form to include the essential variables required for the calculation of key indicators by age, gender and pregnancy status, and to establish a national database that maps malaria by location. PMID:14998435
The evil circle of poverty: a qualitative study of malaria and disability.
Ingstad, Benedicte; Munthali, Alister C; Braathen, Stine H; Grut, Lisbet
2012-01-11
This article discusses the link between disability and malaria in a poor rural setting. Global malaria programmes and rehabilitation programmes are organized as vertical and separate programmes, and as such they focus on prevention, cure and control, and disability respectively. When looking at specific conditions and illnesses, the impairing long-term consequences of illness incidents during childhood are not questioned. The study design was ethnographic with an open, exploratory approach. Data were collected in Mangochi District in Malawi through qualitative in-depth interviews and participant observation. Despite a local-based health service system, people living in poor rural areas are confronted with a multitude of barriers when accessing malaria prevention and treatment. Lack of skilled health personnel and equipment add to the general burden of poverty: insufficient knowledge about health care, problems connected to accessing the health facility in time, insufficient initiatives to prevent malaria attacks, and a general lack of attention to the long term disabling effects of a malaria attack. This study points to the importance of building malaria programmes, research and statistics that take into consideration the consequences of permanent impairment after a malaria attack, as well as the context of poverty in which they often occur. In order to do so, one needs to develop methods for detecting people whose disabilities are a direct result of not having received health services after a malaria episode. This may be done through qualitative approaches in local communities and should also be supplemented by suitable surveys in order to estimate the problem on a larger scale. © 2012 Ingstad et al; licensee BioMed Central Ltd.
Cahyaningrum, Pratiwi; Sulistyawati, Sulistyawati
2018-05-01
Malaria remains a public health concern worldwide, including Indonesia. Purworejo is a district in which endemic of malaria, they have re-setup to entering malaria elimination in 2021. Accordingly, actions must be taken to accelerate and guaranty that the goal will reach based on an understanding of the risk factors for malaria. Thus, we analysed malaria risk factors based on human and housing conditions in Kaligesing, Purworejo, Indonesia. A case-control study was carried out in Kaligesing subdistrict, Purworejo, Indonesia in July to August 2017. A structured questionnaire and checklist were used to collect data from 96 participants, who consisted of 48 controls and 48 cases. Univariate, bivariate, and multivariate analyses were performed. Bivariate analysis found that education level, the presence of a cattle cage within 100 m of the house, not sleeping under a bednet the previous night, and not closing the doors and windows from 6 p.m. to 5 a.m. were significantly ( p ≤0.25) associated with malaria. Of these factors, only not sleeping under a bednet the previous night and not closing the doors and windows from 6 p.m. to 5 a.m. were significantly associated with malaria. The findings of this study demonstrate that potential risk factor for Malaria should be paid of attention all the time, particularly for an area which is targeting Malaria elimination.
Das, Ashis; Das Gupta, R K; Friedman, Jed; Pradhan, Madan M; Mohapatra, Charu C; Sandhibigraha, Debakanta
2013-01-29
The focus of India's National Malaria Programme witnessed a paradigm shift recently from health facility to community-based approaches. The current thrust is on diagnosing and treating malaria by community health workers and prevention through free provision of long-lasting insecticidal nets. However, appropriate community awareness and practice are inevitable for the effectiveness of such efforts. In this context, the study assessed community perceptions and practice on malaria and similar febrile illnesses. This evidence base is intended to direct the roll-out of the new strategies and improve community acceptance and utilization of services. A qualitative study involving 26 focus group discussions and 40 key informant interviews was conducted in two districts of Odisha State in India. The key points of discussion were centred on community perceptions and practice regarding malaria prevention and treatment. Thematic analysis of data was performed. The 272 respondents consisted of 50% females, three-quarter scheduled tribe community and 30% students. A half of them were literates. Malaria was reported to be the most common disease in their settings with multiple modes of transmission by the FGD participants. Adoption of prevention methods was seasonal with perceived mosquito density. The reported use of bed nets was low and the utilization was determined by seasonality, affordability, intoxication and alternate uses of nets. Although respondents were aware of malaria-related symptoms, care-seeking from traditional healers and unqualified providers was prevalent. The respondents expressed lack of trust in the community health workers due to frequent drug stock-outs. The major determinants of health care seeking were socio-cultural beliefs, age, gender, faith in the service provider, proximity, poverty, and perceived effectiveness of available services. Apart from the socio-cultural and behavioural factors, the availability of acceptable care can modulate the community perceptions and practices on malaria management. The current community awareness on symptoms of malaria and prevention is fair, yet the prevention and treatment practices are not optimal. Promoting active community involvement and ownership in malaria control and management through strengthening community based organizations would be relevant. Further, timely availability of drugs and commodities at the community level can improve their confidence in the public health system.
A sticky situation: the unexpected stability of malaria elimination
Smith, David L.; Cohen, Justin M.; Chiyaka, Christinah; Johnston, Geoffrey; Gething, Peter W.; Gosling, Roly; Buckee, Caroline O.; Laxminarayan, Ramanan; Hay, Simon I.; Tatem, Andrew J.
2013-01-01
Malaria eradication involves eliminating malaria from every country where transmission occurs. Current theory suggests that the post-elimination challenges of remaining malaria-free by stopping transmission from imported malaria will have onerous operational and financial requirements. Although resurgent malaria has occurred in a majority of countries that tried but failed to eliminate malaria, a review of resurgence in countries that successfully eliminated finds only four such failures out of 50 successful programmes. Data documenting malaria importation and onwards transmission in these countries suggests malaria transmission potential has declined by more than 50-fold (i.e. more than 98%) since before elimination. These outcomes suggest that elimination is a surprisingly stable state. Elimination's ‘stickiness’ must be explained either by eliminating countries starting off qualitatively different from non-eliminating countries or becoming different once elimination was achieved. Countries that successfully eliminated were wealthier and had lower baseline endemicity than those that were unsuccessful, but our analysis shows that those same variables were at best incomplete predictors of the patterns of resurgence. Stability is reinforced by the loss of immunity to disease and by the health system's increasing capacity to control malaria transmission after elimination through routine treatment of cases with antimalarial drugs supplemented by malaria outbreak control. Human travel patterns reinforce these patterns; as malaria recedes, fewer people carry malaria from remote endemic areas to remote areas where transmission potential remains high. Establishment of an international resource with backup capacity to control large outbreaks can make elimination stickier, increase the incentives for countries to eliminate, and ensure steady progress towards global eradication. Although available evidence supports malaria elimination's stickiness at moderate-to-low transmission in areas with well-developed health systems, it is not yet clear if such patterns will hold in all areas. The sticky endpoint changes the projected costs of maintaining elimination and makes it substantially more attractive for countries acting alone, and it makes spatially progressive elimination a sensible strategy for a malaria eradication endgame. PMID:23798693
Snow, Robert W; Okiro, Emelda A; Gething, Peter W; Atun, Rifat; Hay, Simon I
2010-10-23
Financing for malaria control has increased as part of international commitments to achieve the Millennium Development Goals (MDGs). We aimed to identify the unmet financial needs that would be biologically and economically equitable and would increase the chances of reaching worldwide malaria-control ambitions. Populations at risk of stable Plasmodium falciparum or Plasmodium vivax transmission were calculated for 2007 and 2009 for 93 malaria-endemic countries to measure biological need. National per-person gross domestic product (GDP) was used to define economic need. An analysis of external donor assistance for malaria control was done for the period 2002-09 to compute overall and annualised per-person at-risk-funding commitments. Annualised malaria donor assistance was compared with independent predictions of funding needed to reach international targets of 80% coverage of best practices in case-management and effective disease prevention. Countries were ranked in relation to biological, economic, and unmet needs to examine equity and adequacy of support by 2010. International financing for malaria control has increased by 166% (from $0·73 billion to $1·94 billion) since 2007 and is broadly consistent with biological needs. African countries have become major recipients of external assistance; however, countries where P vivax continues to pose threats to control ambitions are not as well funded. 21 countries have reached adequate assistance to provide a comprehensive suite of interventions by 2009, including 12 countries in Africa. However, this assistance was inadequate for 50 countries representing 61% of the worldwide population at risk of malaria-including ten countries in Africa and five in Asia that coincidentally are some of the poorest countries. Approval of donor funding for malaria control does not correlate with GDP. Funding for malaria control worldwide is 60% lower than the US$4·9 billion needed for comprehensive control in 2010; this includes funding shortfalls for a wide range of countries with different numbers of people at risk and different levels of domestic income. More efficient targeting of financial resources against biological need and national income should create a more equitable investment portfolio that with increased commitments will guarantee sustained financing of control in countries most at risk and least able to support themselves. Wellcome Trust. Copyright © 2010 Elsevier Ltd. All rights reserved.
INSECTICIDE-TREATED BED NETS IN RONDÔNIA, BRAZIL: EVALUATION OF THEIR IMPACT ON MALARIA CONTROL
Vieira, Gabriel de Deus; Basano, Sergio de Almeida; Katsuragawa, Tony Hiroshi; Camargo, Luís Marcelo Aranha
2014-01-01
Mosquito nets treated with long-lasting insecticide (LLINs), when used in compliance with guidelines of the World Health Organization, may be effective for malaria vector control. In 2012, approximately 150,000 LLINs were installed in nine municipalities in the state of Rondônia. However, no studies have assessed their impact on the reduction of malaria incidence. This study analyzed secondary data of malaria incidence, in order to assess the impact of LLINs on the annual parasite incidence (API). The results showed no statistically significant differences in API one year after LLIN installation when compared to municipalities without LLINs. The adoption of measures for malaria vector control should be associated with epidemiological studies and evaluations of their use and efficiency, with the aim of offering convincing advantages that justify their implementation and limit malaria infection in the Amazon Region. PMID:25351543
Molecular Diagnosis of Malaria by Photo-Induced Electron Transfer Fluorogenic Primers: PET-PCR
Lucchi, Naomi W.; Narayanan, Jothikumar; Karell, Mara A.; Xayavong, Maniphet; Kariuki, Simon; DaSilva, Alexandre J.; Hill, Vincent; Udhayakumar, Venkatachalam
2013-01-01
There is a critical need for developing new malaria diagnostic tools that are sensitive, cost effective and capable of performing large scale diagnosis. The real-time PCR methods are particularly robust for large scale screening and they can be used in malaria control and elimination programs. We have designed novel self-quenching photo-induced electron transfer (PET) fluorogenic primers for the detection of P. falciparum and the Plasmodium genus by real-time PCR. A total of 119 samples consisting of different malaria species and mixed infections were used to test the utility of the novel PET-PCR primers in the diagnosis of clinical samples. The sensitivity and specificity were calculated using a nested PCR as the gold standard and the novel primer sets demonstrated 100% sensitivity and specificity. The limits of detection for P. falciparum was shown to be 3.2 parasites/µl using both Plasmodium genus and P. falciparum-specific primers and 5.8 parasites/µl for P. ovale, 3.5 parasites/µl for P. malariae and 5 parasites/µl for P. vivax using the genus specific primer set. Moreover, the reaction can be duplexed to detect both Plasmodium spp. and P. falciparum in a single reaction. The PET-PCR assay does not require internal probes or intercalating dyes which makes it convenient to use and less expensive than other real-time PCR diagnostic formats. Further validation of this technique in the field will help to assess its utility for large scale screening in malaria control and elimination programs. PMID:23437209
Ghosh, S K; Patil, Rajan R; Tiwari, S N
2012-01-01
Objective. A Socio-economic-political-cultural (SEPC) study was undertaken under the Roll Back Malaria (RBM) initiative to understand the process of programme implementation and how far in the changing malaria context, the broader environment has been understood and programme components have undergone changes. Material and Methods. Two studies were carried out; first in four villages under the primary health unit (PHU) Banavaralu in Tiptur Taluka in September 2002 and the second one in April 2003 in four villages in Chitradurga district, namely, Kappagere, Kellodu in Hosadurga Taluka, and Vani Vilas Puram and Kathrikenhally in Hiriyur Taluka. Focus group discussion and key interviews were adopted to collect the qualitative data. Results. Gender discrimination and lack of empowerment of women came out strongly in social analysis. In the rural elected bodies called Panchayats, the concept of health committees was not known. Health committees as one of the important statutory committees under every Panchayat were nonexistent in reality in these villages. Financial difficulties at Grama Panchayat level and also meager budget allocation for health have led to indifferent attitude of Panchayat members towards health. It was observed that there were generally no specific cultural practices in relation to malaria cure. Cultural and traditional practices in malaria-related issues were not predominant in the community except for some sporadic instances. Conclusion and Recommendation. SEPC study is an important indicator in malaria control programme. It is ultimately the community that takes the major decision directly or indirectly and the health authority must guide them in right direction.
Malaria survey and malaria control detachments in the South-West Pacific Area in World War 2.
Crocker, Denton W
2009-01-01
Malaria among troops in the South-West Pacific Area (SWPA) in World War 2 affected the military effort to the degree that special units were formed to combat it. These malaria survey detachments (MSDs) and malaria control detachments (MCDs) were self-contained and so could move quickly to wherever their services were needed. In SWPA by 25 September 1944 there were 32 MSDs and 65 MCDs. Tables of organization called for 11 enlisted men in MSDs and MCDs, two officers in MSDs and one in MCDs. Detachments served throughout the SWPA. Detailed records of the 31st MSD show that in addition to antimalarial efforts it worked at control of scrub typhus, dengue and venereal disease, at reduction of rat populations and in experimental work involving DDT and schistosomiasis. Specific locations of the 31st MSD were New Guinea (3 sites), Morotai, Leyte, Mindoro, Okinawa and Japan. The detachment served overseas for 21 months. Experience in combating malaria in SWPA in World War 2 points to the need for better and continuous training of both medical and line officers in malaria prevention and control.
Zhou, Shui-sen; Rietveld, Aafje E C; Velarde-Rodriguez, Mar; Ramsay, Andrew R; Zhang, Shao-sen; Zhou, Xiao-nong; Cibulskis, Richard E
2014-12-04
A literature review for operational research on malaria control and elimination was conducted using the term 'malaria' and the definition of operational research (OR). A total of 15 886 articles related to malaria were searched between January 2008 and June 2013. Of these, 582 (3.7%) met the definition of operational research. These OR projects had been carried out in 83 different countries. Most OR studies (77%) were implemented in Africa south of the Sahara. Only 5 (1%) of the OR studies were implemented in countries in the pre-elimination or elimination phase. The vast majority of OR projects (92%) were led by international or local research institutions, while projects led by National Malaria Control Programmes (NMCP) accounted for 7.8%. With regards to the topic under investigation, the largest percentage of papers was related to vector control (25%), followed by epidemiology/transmission (16.5%) and treatment (16.3%). Only 19 (3.8%) of the OR projects were related to malaria surveillance. Strengthening the capacity of NMCPs to conduct operational research and publish its findings, and improving linkages between NMCPs and research institutes may aid progress towards malaria elimination and eventual eradication world-wide.
Diallo, Nouhoum; Akweongo, Patricia; Maya, Ernest; Aikins, Moses; Sarfo, Bismark
2017-03-09
The burden of malaria in mobile populations remains poorly documented in sub-Saharan Africa. This study determined the prevalence of malaria among hawkers and long-distance truck drivers in the Greater Accra region of Ghana. A cross-sectional design using consecutive sampling method between June and July 2016 in Accra and Tema in Ghana was used in this study. The study population was hawkers who roam and sleep in the Market Streets, and long-distance truck drivers. Participants completed closed ended interview questionnaires on socio-demographic characteristics, primary residence and knowledge about malaria. Rapid diagnostic test and thick blood smears of each participant were stained with Giemsa and read using microscopy. Geographical position system (GPS) was used to collect the station locations of these mobile populations. The overall prevalence of malaria was 15.1% and Plasmodium falciparum was responsible for all malaria infection. The malaria prevalence was 18.9 and 10.9% respectively among hawkers and truck drivers (p < 0.05). The hawkers, the single and the no formal educated participants were more likely to get malaria than the long-distance truck drivers (OR = 1.91, 95% CI 1.07-3.42), the married (OR = 1.94 95% CI 1.11-3.40) and the educated participants (OR = 2.56 95% CI 1.10-5.93), respectively. After controlling for other variables, marital status (OR = 2.60 95% CI 1.43- 4.73) and educational level (OR = 2.70 95% CI 1.08-6.77) were statistically significantly associated with malaria. This study demonstrated that the prevalence of malaria is high among hawkers and long distance truck drivers. Sociodemographic characteristics, such as marital status, occupation and educational level are significantly associated with malaria. The station locations as determined by GPS technology will make these mobile populations easier to reach for any malaria intervention.
Epidemiology of forest malaria in Central Vietnam: the hidden parasite reservoir.
Thanh, Pham Vinh; Van Hong, Nguyen; Van Van, Nguyen; Van Malderen, Carine; Obsomer, Valérie; Rosanas-Urgell, Anna; Grietens, Koen Peeters; Xa, Nguyen Xuan; Bancone, Germana; Chowwiwat, Nongnud; Duong, Tran Thanh; D'Alessandro, Umberto; Speybroeck, Niko; Erhart, Annette
2015-02-19
After successfully reducing the malaria burden to pre-elimination levels over the past two decades, the national malaria programme in Vietnam has recently switched from control to elimination. However, in forested areas of Central Vietnam malaria elimination is likely to be jeopardized by the high occurrence of asymptomatic and submicroscopic infections as shown by previous reports. This paper presents the results of a malaria survey carried out in a remote forested area of Central Vietnam where we evaluated malaria prevalence and risk factors for infection. After a full census (four study villages = 1,810 inhabitants), the study population was screened for malaria infections by standard microscopy and, if needed, treated according to national guidelines. An additional blood sample on filter paper was also taken in a random sample of the population for later polymerase chain reaction (PCR) and more accurate estimation of the actual burden of malaria infections. The risk factor analysis for malaria infections was done using survey multivariate logistic regression as well as the classification and regression tree method (CART). A total of 1,450 individuals were screened. Malaria prevalence by microscopy was 7.8% (ranging from 3.9 to 10.9% across villages) mostly Plasmodium falciparum (81.4%) or Plasmodium vivax (17.7%) mono-infections; a large majority (69.9%) was asymptomatic. By PCR, the prevalence was estimated at 22.6% (ranging from 16.4 to 42.5%) with a higher proportion of P. vivax mono-infections (43.2%). The proportion of sub-patent infections increased with increasing age and with decreasing prevalence across villages. The main risk factors were young age, village, house structure, and absence of bed net. This study confirmed that in Central Vietnam a substantial part of the human malaria reservoir is hidden. Additional studies are urgently needed to assess the contribution of this hidden reservoir to the maintenance of malaria transmission. Such evidence will be crucial for guiding elimination strategies.
Childhood Malaria Admission Rates to Four Hospitals in Malawi between 2000 and 2010
Okiro, Emelda A.; Kazembe, Lawrence N.; Kabaria, Caroline W.; Ligomeka, Jeffrey; Noor, Abdisalan M.; Ali, Doreen; Snow, Robert W.
2013-01-01
Introduction The last few years have witnessed rapid scaling-up of key malaria interventions in several African countries following increases in development assistance. However, there is only limited country-specific information on the health impact of expanded coverage of these interventions. Methods Paediatric admission data were assembled from 4 hospitals in Malawi reflecting different malaria ecologies. Trends in monthly clinical malaria admissions between January 2000 and December 2010 were analysed using time-series models controlling for covariates related to climate and service use to establish whether changes in admissions can be related to expanded coverage of interventions aimed at reducing malaria infection. Results In 3 of 4 sites there was an increase in clinical malaria admission rates. Results from time series models indicate a significant month-to-month increase in the mean clinical malaria admission rates at two hospitals (trend P<0.05). At these hospitals clinical malaria admissions had increased from 2000 by 41% to 100%. Comparison of changes in malaria risk and ITN coverage appear to correspond to a lack of disease declines over the period. Changes in intervention coverage within hospital catchments showed minimal increases in ITN coverage from <6% across all sites in 2000 to maximum of 33% at one hospital site by 2010. Additionally, malaria transmission intensity remained unchanged between 2000–2010 across all sites. Discussion Despite modest increases in coverage of measures to reduce infection there has been minimal changes in paediatric clinical malaria cases in four hospitals in Malawi. Studies across Africa are increasingly showing a mixed set of impact results and it is important to assemble more data from more sites to understand the wider implications of malaria funding investment. We also caution that impact surveillance should continue in areas where intervention coverage is increasing with time, for example Malawi, as decline may become evident within a period when coverage reaches optimal levels. PMID:23638008
The effect of dams and seasons on malaria incidence and anopheles abundance in Ethiopia
2013-01-01
Background Reservoirs created by damming rivers are often believed to increase malaria incidence risk and/or stretch the period of malaria transmission. In this paper, we report the effects of a mega hydropower dam on P. falciparum malaria incidence in Ethiopia. Methods A longitudinal cohort study was conducted over a period of 2 years to determine Plasmodium falciparum malaria incidence among children less than 10 years of age living near a mega hydropower dam in Ethiopia. A total of 2080 children from 16 villages located at different distances from a hydropower dam were followed up from 2008 to 2010 using active detection of cases based on weekly house to house visits. Of this cohort of children, 951 (48.09%) were females and 1059 (51.91%) were males, with a median age of 5 years. Malaria vectors were simultaneously surveyed in all the 16 study villages. Frailty models were used to explore associations between time-to-malaria and potential risk factors, whereas, mixed-effects Poisson regression models were used to assess the effect of different covariates on anopheline abundance. Results Overall, 548 (26.86%) children experienced at least one clinical malaria episode during the follow up period with mean incidence rate of 14.26 cases/1000 child-months at risk (95% CI: 12.16 - 16.36). P. falciparum malaria incidence showed no statistically significant association with distance from the dam reservoir (p = 0.32). However, P. falciparum incidence varied significantly between seasons (p < 0.01). The malaria vector, Anopheles arabiensis, was however more abundant in villages nearer to the dam reservoir. Conclusions P. falciparum malaria incidence dynamics were more influenced by seasonal drivers than by the dam reservoir itself. The findings could have implications in timing optimal malaria control interventions and in developing an early warning system in Ethiopia. PMID:23566411
2013-01-01
Background In sub-Saharan Africa, the burden of morbidity and mortality linked to malaria during pregnancy (MiP) is significant and compounded by its unclear symptoms and links with other health problems during pregnancy. Mindful of the biomedical and social complexity of MiP, this article explores and compares local understandings of MiP and their links with other pregnancy-related health problems. Methods A comparative qualitative study was undertaken at four sites in three countries: Ghana, Malawi and Kenya. Individual and group interviews were conducted with pregnant women, their relatives, opinion leaders, other community members and health providers. MiP-related behaviours were also observed at health facilities and in local communities. Results Across the four sites, local malaria concepts overlapped with biomedically defined malaria. In terms of symptoms, at-risk groups, outcomes and aetiology of malaria during pregnancy, this overlap was however both site-specific and partial. Moreover, the local malaria concepts were not monolithic and their descriptions varied amongst respondents. The symptoms of pregnancy and malaria also overlapped but, for respondents, symptom severity was the distinguishing factor. Malaria was generally, though not universally, perceived as serious for pregnant women. Miscarriage was the most widely known outcome, and links with anaemia, low birth weight and congenital malaria were mentioned. Nonetheless, amongst many potential causes of miscarriage, malaria was not recognized as the most important, but rather interacted with other pregnancy-related problems. Conclusions Given the overlap of common pregnancy problems with the symptoms of malaria, and the limited association of malaria with its main outcomes, a comprehensive antenatal care programme is the most appropriate strategy for the provision of health education, prevention and treatment for MiP. Variations in locally shared understandings of MiP must however be taken into account when designing and promoting MiP intervention strategies. PMID:23876079
The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006
Chowell, Gerardo; Munayco, Cesar V; Escalante, Ananias A; McKenzie, F Ellis
2009-01-01
Background Malaria is the direct cause of approximately one million deaths worldwide each year, though it is both preventable and curable. Increasing the understanding of the transmission dynamics of falciparum and vivax malaria and their relationship could suggest improvements for malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum (1994–2006) and Plasmodium vivax (1999–2006) in Perú at different spatial scales in conjunction with associated demographic, geographic and climatological data are analysed. Methods Malaria periodicity patterns were analysed through wavelet spectral analysis, studied patterns of persistence as a function of community size and assessed spatial heterogeneity via the Lorenz curve and the summary Gini index. Results Wavelet time series analyses identified annual cycles in the incidence of both malaria species as the dominant pattern. However, significant spatial heterogeneity was observed across jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax than P. falciparum. While the incidence of P. falciparum has been declining in recent years across geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions with a slight decline in coastal regions. Factors that may be contributing to this decline are discussed. The time series of both malaria species were significantly synchronized in coastal (ρ = 0.9, P < 0.0001) and jungle regions (ρ = 0.76, P < 0.0001) but not in mountain regions. Community size was significantly associated with malaria persistence due to both species in jungle regions, but not in coastal and mountain regions. Conclusion Overall, findings highlight the importance of highly refined spatial and temporal data on malaria incidence together with demographic and geographic information in improving the understanding of malaria persistence patterns associated with multiple malaria species in human populations, impact of interventions, detection of heterogeneity and generation of hypotheses. PMID:19558695
Obala, Andrew A; Mangeni, Judith Nekesa; Platt, Alyssa; Aswa, Daniel; Abel, Lucy; Namae, Jane; Prudhomme O'Meara, Wendy
2015-01-01
Insecticide-treated nets are the cornerstone of global malaria control and have been shown to reduce malaria morbidity by 50-60%. However, some areas are experiencing a resurgence in malaria following successful control. We describe an efficacy decay framework to understand why high malaria burden persists even under high ITN coverage in a community in western Kenya. We enrolled 442 children hospitalized with malaria and paired them with age, time, village and gender-matched controls. We completed comprehensive household and neighborhood assessments including entomological surveillance. The indicators are grouped into five domains in an efficacy decay framework: ITN ownership, compliance, physical integrity, vector susceptibility and facilitating factors. After variable selection, case-control data were analyzed using conditional logistic regression models and mosquito data were analyzed using negative binomial regression. Predictive margins were calculated from logistic regression models. Measures of ITN coverage and physical integrity were not correlated with hospitalized malaria in our study. However, consistent ITN use (Adjusted Odds Ratio (AOR) = 0.23, 95%CI: 0.12-0.43), presence of nearby larval sites (AOR = 1.137, 95%CI: 1.02-1.27), and specific types of crops (AOR (grains) = 0.446, 95%CI: 0.24-0.82) were significantly correlated with malaria amongst children who owned an ITN. The odds of hospitalization for febrile malaria nearly tripled when one other household member had symptomatic malaria infection (AOR-2.76, 95%CI:1.83-4.18). Overall, perfect household adherence could reduce the probability of hospitalization for malaria to less than 30% (95%CI:0.12-0.46) and adjusting environmental factors such as elimination of larval sites and growing grains nearby could reduce the probability of hospitalization for malaria to less than 20% (95%CI:0.04-0.31). Availability of ITNs is not the bottleneck for malaria prevention in this community. Behavior change interventions to improve compliance and environmental management of mosquito breeding habitats may greatly enhance ITN efficacy. A better understanding of the relationship between agriculture and mosquito survival and feeding success is needed.
Thera, Mahamadou A; Doumbo, Ogobara K; Coulibaly, Drissa; Diallo, Dapa A; Sagara, Issaka; Dicko, Alassane; Diemert, David J; Heppner, D. Gray; Stewart, V. Ann; Angov, Evelina; Soisson, Lorraine; Leach, Amanda; Tucker, Kathryn; Lyke, Kirsten E; Plowe, Christopher V
2006-01-01
Objectives: The objectives were to evaluate the safety, reactogenicity, and allele-specific immunogenicity of the blood-stage malaria vaccine FMP1/AS02A in adults exposed to seasonal malaria and the impact of natural infection on vaccine-induced antibody levels. Design: We conducted a randomized, double-blind, controlled phase I clinical trial. Setting: Bandiagara, Mali, West Africa, is a rural town with intense seasonal transmission of Plasmodium falciparum malaria. Participants: Forty healthy, malaria-experienced Malian adults aged 18–55 y were enrolled. Interventions: The FMP1/AS02A malaria vaccine is a 42-kDa recombinant protein based on the carboxy-terminal end of merozoite surface protein-1 (MSP-142) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The control vaccine was a killed rabies virus vaccine (Imovax). Participants were randomized to receive either FMP1/AS02A or rabies vaccine at 0, 1, and 2 mo and were followed for 1 y. Outcome Measures: Solicited and unsolicited adverse events and allele-specific antibody responses to recombinant MSP-142 and its subunits derived from P. falciparum strains homologous and heterologous to the 3D7 vaccine strain were measured. Results: Transient local pain and swelling were more common in the malaria vaccine group than in the control group (11/20 versus 3/20 and 10/20 versus 6/20, respectively). MSP-142 antibody levels rose during the malaria transmission season in the control group, but were significantly higher in malaria vaccine recipients after the second immunization and remained higher after the third immunization relative both to baseline and to the control group. Immunization with the malaria vaccine was followed by significant increases in antibodies recognizing three diverse MSP-142 alleles and their subunits. Conclusions: FMP1/AS02A was well tolerated and highly immunogenic in adults exposed to intense seasonal malaria transmission and elicited immune responses to genetically diverse parasite clones. Anti-MSP-142 antibody levels followed a seasonal pattern that was significantly augmented and prolonged by the malaria vaccine. PMID:17124530
Su-Min, Ren; Zhao-Wu, Tang
2016-05-24
To understand the awareness status on malaria control knowledge of residents, primary and middle school students in Huai'an District, Huai'an City, so as to provide the evidences for promoting the malaria elimination process in this district. Three towns in Huai'an District were selected randomly, and one village, one primary school and one junior middle school in each town were chosen as the investigation sites. The residents over 18 years old, the primary school students in Grade 4 to 6, and the junior middle students in the investigation sites were investigated by questionnaires to understand their awareness status on knowledge of malaria control. Totally 305 residents and 618 students were investigated. The awareness rate of students was 89.97%, and the rates of the junior middle school students and primary school students were 85.94% and 94.10%, respectively, the difference between them was statistically significant ( P <0.01). The awareness rate of the residents was 80.98%, which was lower than that of the students ( P <0.05). For the students, the awareness rate on "precaution of malaria" (96.74%) was the highest, while that on "drug of malaria" (68.93%) was the lowest. For the residents, the rate on "transmission route of malaria" (95.08%) was the highest, that on "4·26 is Malaria Day" (64.26%) was the lowest. Expect the items of "transmission route of malaria" and "precaution of malaria" (both P >0.05), the differences of the awareness rates on all the other items between the students and residents were statistically significant (all P <0.01). Although the awareness rates of malaria control knowledge in the population of Huai'an District, Huai'an City have achieved the goal of the relevant requirement, the health education on malaria control still should be strengthened, especially for the primary students, female residents and exported labor service personnel.
Review of research on malaria*
Lepes, T.
1974-01-01
This review of progress in malaria research over the periods 1951-1970 and 1970-1973 indicates the results so far achieved in research on the parasite, on the immune response of the host, and on the vector; refers to the means of controlling or eradicating malaria that have been developed in recent years; and outlines the present status of the malaria control and eradication programme. Although impressive results have already been achieved in malaria research, more systematization and concentration of efforts are required if real breakthroughs are to be made. The experience gained in this respect is discussed. PMID:4613499
Snow, Robert W.; Amratia, Punam; Zamani, Ghasem; Mundia, Clara W.; Noor, Abdisalan M.; Memish, Ziad A.; Al Zahrani, Mohammad H.; Al Jasari, Adel; Fikri, Mahmoud; Atta, Hoda
2014-01-01
The transmission of malaria across the Arabian Peninsula is governed by the diversity of dominant vectors and extreme aridity. It is likely that where malaria transmission was historically possible it was intense and led to a high disease burden. Here, we review the speed of elimination, approaches taken, define the shrinking map of risk since 1960 and discuss the threats posed to a malaria-free Arabian Peninsula using the archive material, case data and published works. From as early as the 1940s, attempts were made to eliminate malaria on the peninsula but were met with varying degrees of success through to the 1970s; however, these did result in a shrinking of the margins of malaria transmission across the peninsula. Epidemics in the 1990s galvanised national malaria control programmes to reinvigorate control efforts. Before the launch of the recent global ambition for malaria eradication, countries on the Arabian Peninsula launched a collaborative malaria-free initiative in 2005. This initiative led a further shrinking of the malaria risk map and today locally acquired clinical cases of malaria are reported only in Saudi Arabia and Yemen, with the latter contributing to over 98% of the clinical burden. PMID:23548086
Rosas-Aguirre, Angel; Speybroeck, Niko; Llanos-Cuentas, Alejandro; Rosanas-Urgell, Anna; Carrasco-Escobar, Gabriel; Rodriguez, Hugo; Gamboa, Dionicia; Contreras-Mancilla, Juan; Alava, Freddy; Soares, Irene S.; Remarque, Edmond; D´Alessandro, Umberto; Erhart, Annette
2015-01-01
Background With low and markedly seasonal malaria transmission, increasingly sensitive tools for better stratifying the risk of infection and targeting control interventions are needed. A cross-sectional survey to characterize the current malaria transmission patterns, identify hotspots, and detect recent changes using parasitological and serological measures was conducted in three sites of the Peruvian Amazon. Material and Methods After full census of the study population, 651 participants were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites (microscopy and PCR) and antibodies against P. vivax (PvMSP119, PvAMA1) and P. falciparum (PfGLURP, PfAMA1) antigens by ELISA. Risk factors for malaria infection (positive PCR) and malaria exposure (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific seroprevalence was analyzed using a reversible catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR, λ). SaTScan was used to detect spatial clusters of serology-positive individuals within each site. Results The overall parasite prevalence by PCR was low, i.e. 3.9% for P. vivax and 6.7% for P. falciparum, while the seroprevalence was substantially higher, 33.6% for P. vivax and 22.0% for P. falciparum, with major differences between study sites. Age and location (site) were significantly associated with P. vivax exposure; while location, age and outdoor occupation were associated with P. falciparum exposure. P. falciparum seroprevalence curves showed a stable transmission throughout time, while for P. vivax transmission was better described by a model with two SCRs. The spatial analysis identified well-defined clusters of P. falciparum seropositive individuals in two sites, while it detected only a very small cluster of P. vivax exposure. Conclusion The use of a single parasitological and serological malaria survey has proven to be an efficient and accurate method to characterize the species specific heterogeneity in malaria transmission at micro-geographical level as well as to identify recent changes in transmission. PMID:26356311
2012-01-01
Background Malaria is a potentially severe disease widely distributed in tropical and subtropical regions worldwide. Clinically, the progression of the disease can be life-threatening if it is not promptly diagnosed and properly treated. Through treatment, the radical cure of Plasmodium vivax infection can be achieved, thus preventing potential relapses and the emergence of new cases outside the Amazon region in Brazil. Surveillance for therapeutic failure in non-endemic areas is advantageous, as it is unlikely that recurrence of the disease can be attributed to a new malaria infection in these regions. Methods An observational study of 53 cases of P. vivax and mixed (P. vivax and Plasmodium falciparum) malaria was conducted at a travel medicine centre between 2005 and 2011 in Rio de Janeiro and a descriptive analysis of the potential factors related to recurrence of P. vivax malaria was performed. Groups with different therapeutic responses were compared using survival analysis based on the length of time to recurrence and a set of independent variables thought to be associated with recurrence. Results Twenty-one relapses (39.6%) of P. vivax malaria were observed. The overall median time to relapse, obtained by the Kaplan-Meier method, was 108 days, and the survival analysis demonstrated an association between non-weight-adjusted primaquine dosing and the occurrence of relapse (p < 0.03). Primaquine total dose at 3.6 mg/kg gave improved results in preventing relapses. Conclusions A known challenge to individual cure and environmental control of malaria is the possibility of an inappropriate, non-weight-based primaquine dosing, which should be considered a potential cause of P. vivax malaria relapse. Indeed, the total dose of primaquine associated with non-occurrence of relapses was higher than recommended by Brazilian guidelines. PMID:22839416
Increase in cases of malaria in Mozambique, 2014: epidemic or new endemic pattern?
Arroz, Jorge Alexandre Harrison
2016-01-01
ABSTRACT OBJECTIVE To describe the increase in cases of malaria in Mozambique. METHODS Cross-sectional study conducted in 2014, in Mozambique with national weekly epidemiological bulletin data. I analyzed the number of recorded cases in the 2009-2013 period, which led to the creation of an endemic channel using the quartile and C-Sum methods. Monthly incidence rates were calculated for the first half of 2014, making it possible to determine the pattern of endemicity. Months in which the incidence rates exceeded the third quartile or line C-sum were declared as epidemic months. RESULTS The provinces of Nampula, Zambezia, Sofala, and Inhambane accounted for 52.7% of all cases in the first half of 2014. Also during this period, the provinces of Nampula, Sofala and Tete were responsible for 54.9% of the deaths from malaria. The incidence rates of malaria in children, and in all ages, have showed patterns in the epidemic zone. For all ages, the incidence rate has peaked in April (2,573 cases/100,000 inhabitants). CONCLUSIONS The results suggest the occurrence of an epidemic pattern of malaria in the first half of 2014 in Mozambique. It is strategic to have a more accurate surveillance at all levels (central, provincial and district) to target prevention and control interventions in a timely manner. PMID:26982961
[French language training course: malaria workshop organized by Institut Pasteur de Madagascar].
Domarle, O; Randrianarivelojosia, M; Duchemin, J B; Robert, V; Ariey, F; Hommel, M
2007-10-01
The Malaria Workshop organized by Institut Pasteur de Madagascar is an original course that applies innovative concepts to training of health professionals involved in malaria control in endemic countries. Course objectives are to enhance the skills needed to fight malaria (transversal competencies, critical approach, and position statement), to reinforce project cycle management proficiency, and to demonstrate how the Internet can be used as a source of documentation to compensate for geographical isolation. The Malaria Workshop is a six-consecutive-week full-day course that has been presented once a year since 2003. Seventy-six researchers, physicians or health ministry officials have already benefited from this training. Teaching methods emphasize andragogy that facilitates a learner/mentor relationship promoting exchange rather than transmission of knowledge and problem-based learning that engages learners to take an active part in gathering information. These methods in combination with the diverse backgrounds and experience of course participants foster a positive dynamic environment for learning that is monitored by weekly progress evaluation. Follow-up surveys have confirmed the positive effect of this training on the professional performance of former participants who become more involved in program development and fund-raising efforts. A professional network is growing and learners are starting to their experience. In this report workshop organizers describe the course's origins and concepts and present the conclusions drawn based on the first five yearly sessions.
Birbeck, Gretchen L; Molyneux, Malcolm E; Kaplan, Peter W; Seydel, Karl B; Chimalizeni, Yamikani F; Kawaza, Kondwani; Taylor, Terrie E
2010-12-01
Cerebral malaria, a disorder characterised by coma, parasitaemia, and no other evident cause of coma, is challenging to diagnose definitively in endemic regions that have high rates of asymptomatic parasitaemia and limited neurodiagnostic facilities. A recently described malaria retinopathy improves diagnostic specificity. We aimed to establish whether retinopathy-positive cerebral malaria is a risk factor for epilepsy or other neurodisabilities. Between 2005 and 2007, we did a prospective cohort study of survivors of cerebral malaria with malaria retinopathy in Blantyre, Malawi. Children with cerebral malaria were identified at the time of their index admission and age-matched to concurrently admitted children without coma or nervous system infection. Initially matching of cases to controls was 1:1 but, in 2006, enrolment criteria for cerebral malaria survivors were revised to limit inclusion to children with cerebral malaria and retinopathy on the basis of indirect ophthalmoscopic examination; matching was then changed to 1:2 and the revised inclusion criteria were applied retrospectively for children enrolled previously. Clinical assessments at discharge and standardised nurse-led follow-up every 3 months thereafter were done to identify children with new seizure disorders or other neurodisabilities. A Kaplan-Meier survival analysis was done for incident epilepsy. 132 children with retinopathy-positive cerebral malaria and 264 age-matched, non-comatose controls were followed up for a median of 495 days (IQR 195-819). 12 of 132 cerebral malaria survivors developed epilepsy versus none of 264 controls (odds ratio [OR] undefined; p<0·0001). 28 of 121 cerebral malaria survivors developed new neurodisabilities, characterised by gross motor, sensory, or language deficits, compared with two of 253 controls (OR 37·8, 95% CI 8·8-161·8; p<0·0001). The risk factors for epilepsy in children with cerebral malaria were a higher maximum temperature (39·4°C [SD 1·2] vs 38·5°C [1·1]; p=0·01) and acute seizures (11/12 vs 76/120; OR 6·37, 95% CI 1·02-141·2), and male sex was a risk factor for new neurodisabilities (20/28 vs 38/93; OR 3·62, 1·44-9·06). Almost a third of retinopathy-positive cerebral malaria survivors developed epilepsy or other neurobehavioural sequelae. Neuroprotective clinical trials aimed at managing hyperpyrexia and optimising seizure control are warranted. US National Institutes of Health and Wellcome Trust. Copyright © 2010 Elsevier Ltd. All rights reserved.
Malaria situation and anopheline mosquitoes in qom province, central iran.
Farzinnia, B; Saghafipour, A; Abai, Mr
2010-01-01
The aims of this study was to analysis the current situation of malaria and to find the distribution of anopheline mosquitoes, as probable vectors of the disease, in Qom Province, central Iran. This study was carried out in two parts. First stage was data collection about malaria cases using recorded documents of patients in the Province health center, during 2001-2008. The second stage was entomological survey conducted by mosquito larval collection method in 4 villages with different geographical positions in 2008. Data were analyzed using Excel software. Of 4456 blood slides, 10.9% out were positive. Most of cases were imported from other countries (90.4%), mainly from Afghanistan (56.5%) and Pakistan (16.3%). Slide positive rate showed a maximum of 16.9% and a minimum of 2.9% in 2008 and 2007, respectively. Plasmodium vivax was causative agent of 93.75% of cases, followed by P. falciparum (6.25%). More than 15 years old age group contained the most malaria reported cases (66.7%). Two Anopheles species, An. superpictus and An. claviger were collected and identified. This is the first report of Anopheles claviger in Qom Province. Malaria is in the control stage in Qom Province. The rate of local transmission is very low (only 1 case), shows Anopheles superpictus, as the main malaria vector of central part of Iran, can play its role in malaria transmission in the area.
Seasonal genetic partitioning in the neotropical malaria vector, Anopheles darlingi
2014-01-01
Background Anopheles darlingi is the main malaria mosquito vector in the Amazonia region. In spite of being considered a riverine, forest-dwelling species, this mosquito is becoming more abundant in peri-urban areas, increasing malaria risk. This has been associated with human-driven environmental changes such as deforestation. Methods Microsatellites were used to characterize A. darlingi from seven localities along the Madeira River, Rondônia (Brazil), collected in the early and late periods of the rainy season. Results Two genetically distinct subpopulations were detected: one (subpopulation A) was associated with the late rainfall period and seems to be ecologically closer to the typical forest A. darlingi; the other (subpopulation B) was associated with the early rainfall period and is probably more adapted to drier conditions by exploiting permanent anthropogenic breeding sites. Results suggest also a pattern of asymmetric introgression, with more subpopulation A alleles introgressed into subpopulation B. Both subpopulations (and admixed mosquitoes) presented similar malaria infection rates, highlighting the potential for perennial malaria transmission in the region. Conclusions The co-occurrence of two genetically distinct subpopulations of A. darlingi adapted to different periods of rainfall may promote a more perennial transmission of malaria throughout the year. These findings, in a context of strong environmental impact due to deforestation and dam construction, have serious implications for malaria epidemiology and control in the Amazonian region. PMID:24885508
Alemu, Getaneh; Mama, Mohammedaman
2016-01-01
Background. Determination of the various ABO/Rh blood group distributions and their association with malaria infection has paramount importance in the context of transfusion medicine and malaria control. Methods. Facility based cross-sectional study was conducted from February to June, 2015, to assess ABO/Rh blood groups distribution and their association with asymptomatic malaria. A structured questionnaire was used to collect data. Blood grouping was done using monoclonal antibodies. Thin and thick blood films were examined for Plasmodium parasites. Data were analyzed using SPSS version 20.0. Results. A total of 416 blood donors participated with median age of 22 ± 0.29 (median ± standard error of the mean). Distribution of ABO phenotypes, in decreasing order, was O (175, 42.1%), A (136, 32.7%), B (87, 20.9%), and AB (18, 4.3%). Most of them were Rh+ (386, 92.8%). The overall malaria prevalence was 4.1% (17/416). ABO blood group is significantly associated with malaria infection (P = 0.022). High rate of parasitemia was seen in blood group O donors (6.899, P = 0.003) compared to those with other ABO blood groups. Conclusion. Blood groups O and AB phenotypes are the most and the least ABO blood groups, respectively. There is significant association between ABO blood group and asymptomatic malaria parasitemia. PMID:26925291
Plasmodium vivax Malaria in Cambodia
Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier
2016-01-01
The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187
Medzihradsky, Oliver F; Kleinschmidt, Immo; Mumbengegwi, Davis; Roberts, Kathryn W; McCreesh, Patrick; Dufour, Mi-Suk Kang; Uusiku, Petrina; Katokele, Stark; Bennett, Adam; Smith, Jennifer; Sturrock, Hugh; Prach, Lisa M; Ntuku, Henry; Tambo, Munyaradzi; Didier, Bradley; Greenhouse, Bryan; Gani, Zaahira; Aerts, Ann; Gosling, Roly; Hsiang, Michelle S
2018-01-01
Introduction To interrupt malaria transmission, strategies must target the parasite reservoir in both humans and mosquitos. Testing of community members linked to an index case, termed reactive case detection (RACD), is commonly implemented in low transmission areas, though its impact may be limited by the sensitivity of current diagnostics. Indoor residual spraying (IRS) before malaria season is a cornerstone of vector control efforts. Despite their implementation in Namibia, a country approaching elimination, these methods have been met with recent plateaus in transmission reduction. This study evaluates the effectiveness and feasibility of two new targeted strategies, reactive focal mass drug administration (rfMDA) and reactive focal vector control (RAVC) in Namibia. Methods and analysis This is an open-label cluster randomised controlled trial with 2×2 factorial design. The interventions include: rfMDA (presumptive treatment with artemether-lumefantrine (AL)) versus RACD (rapid diagnostic testing and treatment using AL) and RAVC (IRS with Acellic 300CS) versus no RAVC. Factorial design also enables comparison of the combined rfMDA+RAVC intervention to RACD. Participants living in 56 enumeration areas will be randomised to one of four arms: rfMDA, rfMDA+RAVC, RACD or RACD+RAVC. These interventions, triggered by index cases detected at health facilities, will be targeted to individuals residing within 500 m of an index. The primary outcome is cumulative incidence of locally acquired malaria detected at health facilities over 1 year. Secondary outcomes include seroprevalence, infection prevalence, intervention coverage, safety, acceptability, adherence, cost and cost-effectiveness. Ethics and dissemination Findings will be reported on clinicaltrials.gov, in peer-reviewed publications and through stakeholder meetings with MoHSS and community leaders in Namibia. Trial registration number NCT02610400; Pre-results. PMID:29374672
The economic burden of malaria.
Gallup, J L; Sachs, J D
2001-01-01
Malaria and poverty are intimately connected. Controlling for factors such as tropical location, colonial history, and geographical isolation, countries with intensive malaria had income levels in 1995 of only 33% that of countries without malaria, whether or not the countries were in Africa. The high levels of malaria in poor countries are not mainly a consequence of poverty. Malaria is geographically specific. The ecological conditions that support the more efficient malaria mosquito vectors primarily determine the distribution and intensity of the disease. Intensive efforts to eliminate malaria in the most severely affected tropical countries have been largely ineffective. Countries that have eliminated malaria in the past half century have all been either subtropical or islands. These countries' economic growth in the 5 years after eliminating malaria has usually been substantially higher than growth in the neighboring countries. Cross-country regressions for the 1965-1990 period confirm the relationship between malaria and economic growth. Taking into account initial poverty, economic policy, tropical location, and life expectancy, among other factors, countries with intensive malaria grew 1.3% less per person per year, and a 10% reduction in malaria was associated with 0.3% higher growth. Controlling for many other tropical diseases does not change the correlation of malaria with economic growth, and these diseases are not themselves significantly negatively correlated with economic growth. A second independent measure of malaria has a slightly higher correlation with economic growth in the 1980-1996 period. We speculate about the mechanisms that could cause malaria to have such a large impact on the economy, such as foreign investment and economic networks within the country.
Ndiath, Mansour; Faye, Babacar; Cisse, Badara; Ndiaye, Jean Louis; Gomis, Jules François; Dia, Anta Tal; Gaye, Oumar
2014-11-24
Malaria is major public health problem in Senegal. In some parts of the country, it occurs almost permanently with a seasonal increase during the rainy season. There is evidence to suggest that the prevalence of malaria in Senegal has decreased considerably during the past few years. Recent data from the Senegalese National Malaria Control Programme (NMCP) indicates that the number of malaria cases decrease from 1,500,000 in 2006 to 174,339 in 2010. With the decline of malaria morbidity in Senegal, the characterization of the new epidemiological profile of this disease is crucial for public health decision makers. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using confirmed malaria cases in 74 villages. ArcMAp was used to map malaria hotspots. Logistic regression was used to investigate risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. A total of 1,614 individuals in 440 randomly selected households were enrolled. The overall malaria prevalence was 12%. The malaria prevalence during the study period varied from less than 2% to more than 25% from one village to another. The results showed also that rooms located between 50 m to 100 m away from livestock holding place [adjusted O.R = 0.7, P = 0.044, 95% C.I (1.02 - 7.42)], bed net use [adjusted O.R = 1.2, P = 0.024, 95% C.I (1.02 -1.48)], are good predictors for malaria hotspots in the Keur Soce health and demographic surveillance site. The socio economic status of the household also predicted on hotspots patterns. The less poor household are 30% less likely to be classified as malaria hotspots area compared to the poorest household [adjusted O.R = 0.7, P = 0.014, 95% C.I (0.47 - 0.91)]. The study investigated risk factors for malaria hotspots in small communities in the Keur Soce site. The result showed considerable variation of malaria prevalence between villages which cannot be detected in aggregated data. The data presented in this paper are the first step to understanding malaria in the Keur Soce site from a micro-geographic perspective.
Shekalaghe, Seif; Rutaihwa, Mastidia; Billingsley, Peter F.; Chemba, Mwajuma; Daubenberger, Claudia A.; James, Eric R.; Mpina, Maximillian; Ali Juma, Omar; Schindler, Tobias; Huber, Eric; Gunasekera, Anusha; Manoj, Anita; Simon, Beatus; Saverino, Elizabeth; Church, L. W. Preston; Hermsen, Cornelus C.; Sauerwein, Robert W.; Plowe, Christopher; Venkatesan, Meera; Sasi, Philip; Lweno, Omar; Mutani, Paul; Hamad, Ali; Mohammed, Ali; Urassa, Alwisa; Mzee, Tutu; Padilla, Debbie; Ruben, Adam; Lee Sim, B. Kim; Tanner, Marcel; Abdulla, Salim; Hoffman, Stephen L.
2014-01-01
Controlled human malaria infection (CHMI) by mosquito bite has been used to assess anti-malaria interventions in > 1,500 volunteers since development of methods for infecting mosquitoes by feeding on Plasmodium falciparum (Pf) gametocyte cultures. Such CHMIs have never been used in Africa. Aseptic, purified, cryopreserved Pf sporozoites, PfSPZ Challenge, were used to infect Dutch volunteers by intradermal injection. We conducted a double-blind, placebo-controlled trial to assess safety and infectivity of PfSPZ Challenge in adult male Tanzanians. Volunteers were injected intradermally with 10,000 (N = 12) or 25,000 (N = 12) PfSPZ or normal saline (N = 6). PfSPZ Challenge was well tolerated and safe. Eleven of 12 and 10 of 11 subjects, who received 10,000 and 25,000 PfSPZ respectively, developed parasitemia. In 10,000 versus 25,000 PfSPZ groups geometric mean days from injection to Pf positivity by thick blood film was 15.4 versus 13.5 (P = 0.023). Alpha-thalassemia heterozygosity had no apparent effect on infectivity. PfSPZ Challenge was safe, well tolerated, and infectious. PMID:25070995
Mosquito larval source management for controlling malaria
Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W
2015-01-01
Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software. Main results We included 13 studies; four cluster-RCTs, eight controlled before-and-after trials, and one randomized cross-over trial. The included studies evaluated habitat modification (one study), habitat modification with larviciding (two studies), habitat manipulation (one study), habitat manipulation plus larviciding (two studies), or larviciding alone (seven studies) in a wide variety of habitats and countries. Malaria incidence In two cluster-RCTs undertaken in Sri Lanka, larviciding of abandoned mines, streams, irrigation ditches, and rice paddies reduced malaria incidence by around three-quarters compared to the control (RR 0.26, 95% CI 0.22 to 0.31, 20,124 participants, two trials, moderate quality evidence). In three controlled before-and-after trials in urban and rural India and rural Kenya, results were inconsistent (98,233 participants, three trials, very low quality evidence). In one trial in urban India, the removal of domestic water containers together with weekly larviciding of canals and stagnant pools reduced malaria incidence by three quarters. In one trial in rural India and one trial in rural Kenya, malaria incidence was higher at baseline in intervention areas than in controls. However dam construction in India, and larviciding of streams and swamps in Kenya, reduced malaria incidence to levels similar to the control areas. In one additional randomized cross-over trial in the flood plains of the Gambia River, where larval habitats were extensive and ill-defined, larviciding by ground teams did not result in a statistically significant reduction in malaria incidence (2039 participants, one trial). Parasite prevalence In one cluster-RCT from Sri Lanka, larviciding reduced parasite prevalence by almost 90% (RR 0.11, 95% CI 0.05 to 0.22, 2963 participants, one trial, moderate quality evidence). In five controlled before-and-after trials in Greece, India, the Philippines, and Tanzania, LSM resulted in an average reduction in parasite prevalence of around two-thirds (RR 0.32, 95% CI 0.19 to 0.55, 8041 participants, five trials, moderate quality evidence). The interventions in these five trials included dam construction to reduce larval habitats, flushing of streams, removal of domestic water containers, and larviciding. In the randomized cross-over trial in the flood plains of the Gambia River, larviciding by ground teams did not significantly reduce parasite prevalence (2039 participants, one trial). Authors’ conclusions In Africa and Asia, LSM is another policy option, alongside LLINs and IRS, for reducing malaria morbidity in both urban and rural areas where a sufficient proportion of larval habitats can be targeted. Further research is needed to evaluate whether LSM is appropriate or feasible in parts of rural Africa where larval habitats are more extensive. PMID:23986463
Campodonico, Joanna; Sevilla-Martir, Javier; Arrizabalaga, Gustavo; Kochhar, Komal
2015-01-01
Malaria in Honduras is endemic and accounts for 40% of the total cases in Central America. Our goal was to assess knowledge of preventive methods and current treatment of malaria among the affected community of Trujillo, Honduras. A cross-sectional survey was administered to 71 individuals. Most respondents had a good understanding about common malaria symptoms but not about the complications associated with severe cases. More important, we found that less than 20% of the respondents recognized indoor residual sprays and insecticide-treated nets as effective preventive measures, which are the most efficient preventive methods. Our study highlights the perceptions the people of Trujillo have about malaria. From our observations, we put forward recommendations to implement a comprehensive campaign to educate the Trujillo population about malaria preventive methods and to recruit local and international efforts to distribute insecticide-treated nets.
Prospects for malaria elimination in non-Amazonian regions of Latin America
Herrera, Sócrates; Quiñones, Martha Lucia; Quintero, Juan Pablo; Corredor, Vladimir; Fuller, Douglas O.; Mateus, Julio Cesar; Calzada, Jose E.; Gutierrez, Juan B.; Llanos, Alejandro; Soto, Edison; Menendez, Clara; Wu, Yimin; Alonso, Pedro; Carrasquilla, Gabriel; Galinski, Mary; Beier, John C.; Arevalo-Herrera, Myriam
2011-01-01
Latin America contributes 1 to 1.2 million clinical malaria cases to the global malaria burden of about 300 million per year. In 21 malaria endemic countries, the population at risk in this region represents less than 10% of the total population exposed worldwide. Factors such as rapid deforestation, inadequate agricultural practices, climate change, political instability, and both increasing parasite drug resistance and vector resistance to insecticides contribute to malaria transmission. Recently, several malaria endemic countries have experienced a significant reduction in numbers of malaria cases. This is most likely due to actions taken by National Malaria Control Programs (NMCP) with the support from international funding agencies. We describe here the research strategies and activities to be undertaken by the Centro Latino Americano de Investigación en Malaria (CLAIM), a new research center established for the non-Amazonian region of Latin America by the National Institute of Allergy and Infectious Diseases (NIAID). Throughout a network of countries in the region, initially including Colombia, Guatemala, Panama, and Peru, CLAIM will address major gaps in our understanding of changing malaria epidemiology, vector biology and control, and clinical malaria mainly due to Plasmodium vivax. In close partnership with NMCPs, CLAIM seeks to conduct research on how and why malaria is decreasing in many countries of the region as a basis for developing and implementing new strategies that will accelerate malaria elimination. PMID:21781953
Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Perkins, T Alex; Reiner, Robert C; Tusting, Lucy S; Sinka, Marianne E; Moyes, Catherine L; Eckhoff, Philip A; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L
2016-02-01
Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.
Pongvongsa, Tiengkham; Ha, Hoang; Thanh, Le; Marchand, Ron P; Nonaka, Daisuke; Tojo, Bumpei; Phongmany, Panom; Moji, Kazuhiko; Kobayashi, Jun
2012-08-03
In Savannakhet province, Laos and Quang Tri province, Vietnam, malaria is still an important health problem and most cases are found in the mountainous, forested border areas where ethnic minority groups live. The objectives of this study were to obtain a better joint understanding of the malaria situation along the border and, on the basis of that, improve malaria control methods through better cooperation between the two countries. Fourteen villages in Savannakhet and 22 villages in Quang Tri were randomly selected within 5 km from the border where a blood survey for microscopic diagnosis (n = 1256 and n = 1803, respectively), household interviews (n = 400, both sides) and vector surveys were conducted between August and October 2010. Satellite images were used to examine the forest density around the study villages. Malaria prevalence was significantly higher in Laos (5.2%) than in Vietnam (1.8%) and many other differences were found over the short distance across the border. Bed net coverage was high (> 90%) in both Laos and Vietnam but, while in Laos more than 60% of the nets were long-lasting insecticide-treated, Vietnam used indoor residual spraying in this area and the nets were untreated. Anopheles mosquitoes were more abundant in Laos than in Vietnam, especially many Anopheles dirus were captured in indoor light traps while none were collected in Vietnam. The forest cover was higher around the Lao than the Vietnamese villages. After this study routine exchange of malaria surveillance data was institutionalized and for the first time indoor residual spraying was applied in some Lao villages. The abundance of indoor-collected An. dirus on the Laos side raises doubts about the effectiveness of a sole reliance on long-lasting insecticide-treated nets in this area. Next to strengthening the early detection, correct diagnosis and prompt, adequate treatment of malaria infections, it is recommended to test focal indoor residual spraying and the promotion of insect repellent use in the early evening as additional vector interventions. Conducting joint malaria surveys by staff of two countries proved to be effective in stimulating better collaboration and improve cross-border malaria control.
Gone, Terefe; Lemango, Fiseha; Eliso, Endale; Yohannes, Samuel; Yohannes, Tadele
2017-01-13
Recent studies have presented conflicting findings about whether malaria is associated with an increased or decreased risk of malnutrition. Therefore, assessing the relationship between these two disastrous diseases in the most vulnerable groups, such as in children aged below 5 years (under-five children), may lead to the discovery of new low-cost and effective aides to current methods of malnutrition prevention in malaria-endemic areas. Therefore, this study was conducted to assess the relationship between malaria and malnutrition among under five children in an area with a high degree of malaria transmission. The study involved comparing malnourished children aged 6-59 months and nourished children of the same age for their past exposure to malaria, in Shashogo District, Southern Ethiopia. A validated structured questionnaire was used to collect home to home socioeconomic data and anthropometric instruments for clinical data. The collected data were analysed using descriptive and inferential statistics by means of EpiData entry software and STATA data analysis software. A total of 356 (89 malnourished and 267 nourished) under-five children participated in the study. Previous exposure to Plasmodium infection was found to be a predictor for the manifestation of malnutrition in under-five children (P = 0.02 [OR = 1.87, CI = 1.115-3.138]). Children from a household with a monthly income of less than USD 15 were 4.5 more likely to be malnourished as compared to the other children (P = 0.001 [OR = 0.422, CI = 0.181-0.978]). This study found that exposure to Plasmodium has a significant impact on the nutritional status of children. In addition, socio-demographic factors, such as family income, may play a role in determining whether children are malnourished or not and may lead to increased morbidity due to malnourishment in children living in malaria-endemic areas. Therefore, malnutrition control interventions should be consolidated with malaria prevention strategies particularly in high malaria transmission areas.
Nair, Chandrasekhar Bhaskaran; Manjula, Jagannath; Subramani, Pradeep Annamalai; Nagendrappa, Prakash B; Manoj, Mulakkapurath Narayanan; Malpani, Sukriti; Pullela, Phani Kumar; Subbarao, Pillarisetti Venkata; Ramamoorthy, Siva; Ghosh, Susanta K
2016-01-01
Sensitive and specific detection of malarial parasites is crucial in controlling the significant malaria burden in the developing world. Also important is being able to identify life threatening Plasmodium falciparum malaria quickly and accurately to reduce malaria related mortality. Existing methods such as microscopy and rapid diagnostic tests (RDTs) have major shortcomings. Here, we describe a new real-time PCR-based diagnostic test device at point-of-care service for resource-limited settings. Truenat® Malaria, a chip-based microPCR test, was developed by bigtec Labs, Bangalore, India, for differential identification of Plasmodium falciparum and Plasmodium vivax parasites. The Truenat Malaria tests runs on bigtec's Truelab Uno® microPCR device, a handheld, battery operated, and easy-to-use real-time microPCR device. The performance of Truenat® Malaria was evaluated versus the WHO nested PCR protocol. The Truenat® Malaria was further evaluated in a triple-blinded study design using a sample panel of 281 specimens created from the clinical samples characterized by expert microscopy and a rapid diagnostic test kit by the National Institute of Malaria Research (NIMR). A comparative evaluation was done on the Truelab Uno® and a commercial real-time PCR system. The limit of detection of the Truenat Malaria assay was found to be <5 parasites/μl for both P. falciparum and P. vivax. The Truenat® Malaria test was found to have sensitivity and specificity of 100% each, compared to the WHO nested PCR protocol based on the evaluation of 100 samples. The sensitivity using expert microscopy as the reference standard was determined to be around 99.3% (95% CI: 95.5-99.9) at the species level. Mixed infections were identified more accurately by Truenat Malaria (32 samples identified as mixed) versus expert microscopy and RDTs which detected 4 and 5 mixed samples, respectively. The Truenat® Malaria microPCR test is a valuable diagnostic tool and implementation should be considered not only for malaria diagnosis but also for active surveillance and epidemiological intervention.
van Eijk, Anna M; Hill, Jenny; Noor, Abdisalan M; Snow, Robert W; ter Kuile, Feiko O
2015-01-01
Summary Background In malarious areas, pregnant women are more likely to have detectable malaria than are their non-pregnant peers, and the excess risk of infection varies with gravidity. Pregnant women attending antenatal clinic for their first visit are a potential pragmatic sentinel group to track the intensity of malaria transmission; however, the relation between malaria prevalence in children, a standard measure to estimate malaria endemicity, and pregnant women has never been compared. Methods We obtained data on malaria prevalence in pregnancy from the Malaria in Pregnancy Library (January, 2015) and data for children (0–59 months) were obtained from recently published work on parasite prevalence in Africa and the Malaria in Pregnancy Library. We used random effects meta-analysis to obtain a pooled prevalence ratio (PPR) of malaria in children versus pregnant women (during pregnancy, not at delivery) and by gravidity, and we used meta-regression to assess factors affecting the prevalence ratio. Findings We used data from 18 sources that included 57 data points. There was a strong linear relation between the prevalence of malaria infection in pregnant women and children (r=0·87, p<0·0001). Prevalence was higher in children when compared with all gravidae (PPR=1·44, 95% CI 1·29–1·62; I2=80%, 57 studies), and against multigravidae (1·94, 1·68–2·24; I2=80%, 7 studies), and marginally higher against primigravidae (1·16, 1·05–1·29; I2=48%, 8 studies). PPR was higher in areas of higher transmission. Interpretation Malaria prevalence in pregnant women is strongly correlated with prevalence data in children obtained from household surveys, and could provide a pragmatic adjunct to survey strategies to track trends in malaria transmission in Africa. Funding The Malaria in Pregnancy Consortium, which is funded through a grant from the Bill & Melinda Gates Foundation to the Liverpool School of Tropical Medicine, UK; US Centers for Disease Control and Prevention; and Wellcome Trust, UK. PMID:26296450
2011-01-01
Background Early diagnosis and prompt effective case management are important components of any malaria elimination strategy. Tafea Province, Vanuatu has a rich history of traditional practices and beliefs, which have been integrated with missionary efforts and the introduction of modern constructions of health. Gaining a detailed knowledge of community perceptions of malarial symptomatology and treatment-seeking behaviours is essential in guiding effective community participation strategies for malaria control and elimination. Method An ethnographic study involving nine focus group discussions (FGD), 12 key informant interviews (KII) and seven participatory workshops were carried out on Tanna Island, Vanuatu. Villages in areas of high and low malaria transmission risk were selected. Four ni-Vanuatu research officers, including two from Tanna, were trained and employed to conduct the research. Data underwent thematic analysis to examine treatment-seeking behaviour and community perceptions of malaria. Results Malaria was perceived to be a serious, but relatively new condition, and in most communities, identified as being apparent only after independence in 1980. Severe fever in the presence of other key symptoms triggered a diagnosis of malaria by individuals. Use of traditional or home practices was common: perceived vulnerability of patient and previous experience with malaria impacted on the time taken to seek treatment at a health facility. Barriers to health care access and reasons for delay in care-seeking included the availability of health worker and poor community infrastructure. Conclusion Due to programme success of achieving low malaria transmission, Tafea province has been identified for elimination of malaria by 2012 in the Government of Vanuatu Malaria Action Plans (MAP). An effective malaria elimination programme requires interactions between the community and its leaders, malaria workers and health providers for success in diagnosis and prompt treatment. As malaria becomes more uncommon, utilizing unique motivators for communities to seek early diagnosis and treatment is important, particularly as other health conditions that cause fevers become increasingly more common. The design of these interventions are dependent upon robust understanding of community perceptions of disease, and the evolving nature of these perceptions. PMID:21787434
Fletcher, M; Teklehaimanot, A; Yemane, G; Kassahun, A; Kidane, G; Beyene, Y
1993-02-01
Because of problems with drug and insecticide resistance, the National Organization for the Control of Malaria and other Vectorborne Diseases, Ethiopia, has embarked on a programme of research on alternative malaria control methods, including the use of biological control agents, such as larvivorous fish. The objectives of the study were to identify indigenous larvivorous fish species which could be potential candidates for use as biological control agents; to extend knowledge of their distribution in Ethiopia; and to conduct laboratory tests to determine their feeding capacity. An extensive search resulted in the identification of 11 larvivorous fish species indigenous to Ethiopia, including five species previously unrecorded in the country. Seven species were assessed under standard laboratory conditions for their feeding capacity on larvae of Anopheles gambiae s.l. and Culex andersoni. All species tested were efficient larvivores in the laboratory. However, their larvivorous capacity should be tested further in field trials. Based on the findings of this study, two priority areas for the assessment of biological control using larvivorous fish were identified, the port city of Assab, using the local species Aphanius dispar, and the Ogaden, south-eastern Ethiopia, using the local species Oreochromis spilurus spilurus.
Chanda, Emmanuel; Ameneshewa, Birkinesh; Mihreteab, Selam; Berhane, Araia; Zehaie, Assefash; Ghebrat, Yohannes; Usman, Abdulmumini
2015-12-02
Contemporary malaria vector control relies on the use of insecticide-based, indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). However, malaria-endemic countries, including Eritrea, have struggled to effectively deploy these tools due technical and operational challenges, including the selection of insecticide resistance in malaria vectors. This manuscript outlines the processes undertaken in consolidating strategic planning and operational frameworks for vector control to expedite malaria elimination in Eritrea. The effort to strengthen strategic frameworks for vector control in Eritrea was the 'case' for this study. The integrated vector management (IVM) strategy was developed in 2010 but was not well executed, resulting in a rise in malaria transmission, prompting a process to redefine and relaunch the IVM strategy with integration of other vector borne diseases (VBDs) as the focus. The information sources for this study included all available data and accessible archived documentary records on malaria vector control in Eritrea. Structured literature searches of published, peer-reviewed sources using online, scientific, bibliographic databases, Google Scholar, PubMed and WHO, and a combination of search terms were utilized to gather data. The literature was reviewed and adapted to the local context and translated into the consolidated strategic framework. In Eritrea, communities are grappling with the challenge of VBDs posing public health concerns, including malaria. The global fund financed the scale-up of IRS and LLIN programmes in 2014. Eritrea is transitioning towards malaria elimination and strategic frameworks for vector control have been consolidated by: developing an integrated vector management (IVM) strategy (2015-2019); updating IRS and larval source management (LSM) guidelines; developing training manuals for IRS and LSM; training of national staff in malaria entomology and vector control, including insecticide resistance monitoring techniques; initiating the global plan for insecticide resistance management; conducting needs' assessments and developing standard operating procedure for insectaries; developing a guidance document on malaria vector control based on eco-epidemiological strata, a vector surveillance plan and harmonized mapping, data collection and reporting tools. Eritrea has successfully consolidated strategic frameworks for vector control. Rational decision-making remains critical to ensure that the interventions are effective and their choice is evidence-based, and to optimize the use of resources for vector control. Implementation of effective IVM requires proper collaboration and coordination, consistent technical and financial capacity and support to offer greater benefits.
A comparative laboratory diagnosis of malaria: microscopy versus rapid diagnostic test kits.
Azikiwe, C C A; Ifezulike, C C; Siminialayi, I M; Amazu, L U; Enye, J C; Nwakwunite, O E
2012-04-01
To compare the two methods of rapid diagnostic tests (RDTs) and microscopy in the diagnosis of malaria. RDTs and microscopy were carried out to diagnose malaria. Percentage malaria parasitaemia was calculated on thin films and all non-acute cases of plasmodiasis with less than 0.001% malaria parasitaemia were regarded as negative. Results were simply presented as percentage positive of the total number of patients under study. The results of RDTs were compared to those of microscopy while those of RDTs based on antigen were compared to those of RDTs based on antibody. Patients' follow-up was made for all cases. All the 200 patients under present study tested positive to RDTs based on malaria antibodies (serum) method (100%). 128 out of 200 tested positive to RDTs based on malaria antigen (whole blood) method (64%), while 118 out of 200 patients under present study tested positive to visual microscopy of Lieshman and diluted Giemsa (59%). All patients that tested positive to microscopy also tested positive to RDTs based on antigen. All patients on the second day of follow-up were non-febrile and had antimalaria drugs. We conclude based on the present study that the RDTs based on malaria antigen (whole blood) method is as specific as the traditional microscopy and even appears more sensitive than microscopy. The RDTs based on antibody (serum) method is unspecific thus it should not be encouraged. It is most likely that Africa being an endemic region, formation of certain levels of malaria antibody may not be uncommon. The present study also supports the opinion that a good number of febrile cases is not due to malaria. We support WHO's report on cost effectiveness of RDTs but, recommend that only the antigen based method should possibly, be adopted in Africa and other malaria endemic regions of the world.
The use of schools for malaria surveillance and programme evaluation in Africa
Brooker, Simon; Kolaczinski, Jan H; Gitonga, Carol W; Noor, Abdisalan M; Snow, Robert W
2009-01-01
Effective malaria control requires information on both the geographical distribution of malaria risk and the effectiveness of malaria interventions. The current standard for estimating malaria infection and impact indicators are household cluster surveys, but their complexity and expense preclude frequent and decentralized monitoring. This paper reviews the historical experience and current rationale for the use of schools and school children as a complementary, inexpensive framework for planning, monitoring and evaluating malaria control in Africa. Consideration is given to (i) the selection of schools; (ii) diagnosis of infection in schools; (iii) the representativeness of schools as a proxy of the communities they serve; and (iv) the increasing need to evaluate interventions delivered through schools. Finally, areas requiring further investigation are highlighted. PMID:19840372
[Cultural domains pertaining to malaria: an approach to non-institutional knowledge].
Fernández-Niño, Julián A; Idrovo, Álvaro J; Giraldo-Gartner, Vanesa; Molina-León, Helvert F
2014-01-01
Malaria control policies have not fully achieved the expected results due to little consideration of cultural aspects, among other factors. To explore the cultural domains pertaining to this disease in an endemic Colombian population, in order to both design and implement effective action plans. A convenience sampling was conducted to select inhabitants from 12 villages in Tierralta, Córdoba. In order to generate free-lists, participants were asked about their communities' health problems, causes of malaria, control measures and those responsible for malaria control. Smith's indexes were calculated for each item answered. Between 30 and 38 individuals per village participated in the study (N=401). The mean age was 40.24 years (standard deviation (SD)=14.22) and women were 45.39% of the total. Participants recognized malaria and respiratory infections as the primary health problems in the community (median Smith's indexes: 0.83 and 0.63, respectively). A lack of environmental interventions was identified as the main determinant of malaria (median Smith's index: 0.65). Finally, the health care center (median Smith's index: 0.71) and health professionals (median Smith's index: 0.52) were identified as those most responsible for malaria control. The design of programs to reduce the impact of malaria requires developing interventions or initiatives that are adapted to the community's needs, demands and available resources. Free-listing is proposed as an effective tool to collect information about cultural domains related to health.
Prevalence of gestational, placental and congenital malaria in north-west Colombia
2013-01-01
Background The frequency of pregnancy-associated malaria is increasingly being documented in American countries. In Colombia, with higher frequency of Plasmodium vivax over Plasmodium falciparum infection, recent reports confirmed gestational malaria as a serious public health problem. Thick smear examination is the gold standard to diagnose malaria in endemic settings, but in recent years, molecular diagnostic methods have contributed to elucidate the dimension of the problem of gestational malaria. The study was aimed at exploring the prevalence of gestational, placental and congenital malaria in women who delivered at the local hospitals of north-west Colombia, between June 2008 and April 2011. Methods A group of 129 parturient women was selected to explore the prevalence of gestational, placental and congenital malaria in a descriptive, prospective and transversal (prevalence) design. Diagnosis was based on the simultaneous application of two independent diagnostic tests: microscopy of thick blood smears and a polymerase chain reaction assay (PCR). Results The prevalence of gestational malaria (thick smear /PCR) was 9.1%/14.0%; placental malaria was 3.3%/16.5% and congenital malaria was absent. A history of gestational malaria during the current pregnancy was significantly associated with gestational malaria at delivery. Plasmodium vivax caused 65% of cases of gestational malaria, whereas P. falciparum caused most cases of placental malaria. Conclusions Gestational and placental malaria are a serious problem in the region, but the risk of congenital malaria is low. A history of malaria during pregnancy may be a practical indicator of infection at delivery. PMID:24053184
Sustaining control: lessons from the Lubombo spatial development initiative in southern Africa.
Maharaj, Rajendra; Moonasar, Devanand; Baltazar, Candrinho; Kunene, Simon; Morris, Natashia
2016-08-12
The Lubombo Spatial Development Initiative (LSDI) was a tri-country project between South Africa, Swaziland and Mozambique with the aim of accelerating socio-economic development in the region. The malaria component of the project was introduced to decrease the transmission of malaria in the region. This goal was met but with termination of this project resulted in an upsurge of malaria cases in the sub-region mainly as a result of migration from high transmission areas to low transmission ones. The movement of people across borders in southern Africa remains a challenge in sustaining malaria control and elimination. Malaria case data for Swaziland and South Africa were obtained from their respective national Malaria Information Systems. Data for Mozambique was obtained from the Mozambican Ministry of Health. Data obtained during the course of the LSDI project was compared to the case data post the termination of the LSDI. The 12-year period of the LSDI showed a substantial decrease in disease burden amongst the three countries involved when compared to the baseline year of 2000. The decrease in malaria cases was 99 % in South Africa and 98 % in Swaziland. Malaria prevalence in Mozambique decreased by 85 % over the same period. However, after the LSDI ended, between 2012 and 2014, there was an upward trend in case data that was counter to the goal of elimination. South Africa and Swaziland benefitted from the LSDI and were able to sustain malaria control and progress to the stage of elimination. Mozambique could not sustain the gains made during the LSDI and case numbers increased. Technical and financial resources are key challenges for malaria control and elimination interventions.
Tahita, Marc C; Tinto, Halidou; Menten, Joris; Ouedraogo, Jean-Bosco; Guiguemde, Robert T; van Geertruyden, Jean Pierre; Erhart, Annette; D'Alessandro, Umberto
2013-12-27
Malaria in pregnancy is a major public health problem in endemic countries. Though the signs and symptoms of malaria among pregnant women have been already described, clinical presentation may vary according to intensity of transmission and local perceptions. Therefore, determining common signs and symptoms among pregnant women with a malaria infection may be extremely useful to identify those in need of further investigation by rapid diagnostic test or microscopy. Six hundred pregnant women attending the maternity clinic of Nanoro District Hospital, Burkina Faso were recruited, 200 with suspected clinical malaria and 400 as controls. Cases were matched with controls by gestational age and parity. Signs and symptoms were collected and a blood sample taken for rapid diagnostic test, microscopy and haemoglobin measurement. A multivariate model was used to assess the predictive value of signs and symptoms for malaria infection. The overall prevalence of malaria was 42.6% (256/600) while anaemia was found in 60.8% (365/600) of the women. Nearly half (49%) of the cases and 39.5% of the controls had a malaria infection (p = 0.03). The most common signs and symptoms among the cases were fever (36%,72/200), history of fever (29%,58/200) and headache (52%,104/200). The positive predictive value for fever was 53% (95% CI:41-64), history of fever 58% (95% CI:37-63) and headache 51% (95% CI:41-61). Signs and symptoms suggestive of malaria are frequent among pregnant women living in areas of intense transmission. Common malaria symptoms are not strong predictors of infection. For a better management of malaria in pregnancy, active screening to detect and treat malaria infection early should be performed on all pregnant women attending a health facility.
Mello, Marcia B C; Luz, Francisco C; Leal-Santos, Fabio A; Alves, Eduardo R; Gasquez, Thamires M; Fontes, Cor J F
2014-06-17
Due to students' initial inexperience, slides are frequently broken and blood smears are damaged in microscopy training, leading to the need for their constant replacement. To minimize this problem a method of preparing blood smears on transparent acetate sheets was developed with the goal of implementing appropriate and more readily available teaching resources for the microscopic diagnosis of malaria. Acetate sheets derived from polyester were used to standardize the preparation and staining of thin and thick blood smears on transparent acetate sheets. Thick and thin blood smears were also prepared using the conventional method on glass slides. The staining was conducted using Giemsa staining for the thick and thin smears. Microscopic examination (1,000x) of the thin and thick blood smears prepared on transparent acetate produced high-quality images for both the parasites and the blood cells. The smears showed up on a clear background and with minimal dye precipitation. It was possible to clearly identify the main morphological characteristics of Plasmodium, neutrophils and platelets. After 12 months of storage, there was no change in image quality or evidence of fungal colonization. Preparation of thin and thick blood smears in transparent acetate for the microscopic diagnosis of malaria does not compromise the morphological and staining characteristics of the parasites or blood cells. It is reasonable to predict the applicability of transparent acetate in relevant situations such as the training of qualified professionals for the microscopic diagnosis of malaria and the preparation of positive specimens for competency assessment (quality control) of professionals and services involved in the diagnosis of malaria.