Science.gov

Sample records for malaria genetic clues

  1. Parasite-host interaction in malaria: genetic clues and copy number variation

    PubMed Central

    2009-01-01

    In humans, infections contribute highly to mortality and morbidity rates worldwide. Malaria tropica is one of the major infectious diseases globally and is caused by the protozoan parasite Plasmodium falciparum. Plasmodia have accompanied human beings since the emergence of humankind. Due to its pathogenicity, malaria is a powerful selective force on the human genome. Genetic epidemiology approaches such as family and twin studies, candidate gene studies, and disease-association studies have identified a number of genes that mediate relative protection against the severest forms of the disease. New molecular approaches, including genome-wide association studies, have recently been performed to expand our knowledge on the functional effect of human variation in malaria. For the future, a systematic determination of gene-dosage effects and expression profiles of protective genes might unveil the functional impact of structural alterations in these genes on either side of the host-parasite interaction. PMID:19725943

  2. Genetic Clues to the 2014 Ebola Outbreak

    MedlinePlus

    ... External link, please review our exit disclaimer . Subscribe Genetic Clues to the 2014 Ebola Outbreak Scientists sequenced ... of Ebola as the outbreak continues. Understanding the genetics of the virus will also help scientists develop ...

  3. Genetic Control Of Malaria Mosquitoes.

    PubMed

    McLean, Kyle Jarrod; Jacobs-Lorena, Marcelo

    2016-03-01

    Experiments demonstrating the feasibility of genetically modifying mosquito vectors to impair their ability to transmit the malaria parasite have been known for well over a decade. However, means to spread resistance or population control genes into wild mosquito populations remains an unsolved challenge. Two recent reports give hope that CRISPR technology may allow such challenge to be overcome. PMID:26809567

  4. Biomarkers: The Clues to Genetic Susceptibility.

    PubMed Central

    Zeiger, M

    1994-01-01

    There are approximately 500,000 cancer-related deaths annually in the United States. Scientists believe as that many as 80% of those deaths could be prevented due to the fact that most malignancies are a result of external factors rather than inherent biological conditions. With recent advances in molecular biology, a new field that combines highly sensitive and specific techniques for detecting early damage associated with cancer has emerged. By combining knowledge about external factors related to lifestyle and environmental or occupational exposure to chemicals with knowledge of how genetic differences cause variations in human responses to environmental pollutants, scientists are developing a better understanding of questions such as why some smokers get cancer but others do not, why certain groups of people have a higher incidence of cancer after exposure to a toxicant and others do not, and why certain women are more prone to develop breast cancer than others. Scientists using biomarkers of susceptibility will be able to identify risks and prevent adverse health effects through prevention and intervention strategies. PMID:9719667

  5. Advances in molecular genetic systems in malaria.

    PubMed

    de Koning-Ward, Tania F; Gilson, Paul R; Crabb, Brendan S

    2015-06-01

    Robust tools for analysing gene function in Plasmodium parasites, which are the causative agents of malaria, are being developed at an accelerating rate. Two decades after genetic technologies for use in Plasmodium spp. were first described, a range of genetic tools are now available. These include conditional systems that can regulate gene expression at the genome, transcriptional or protein level, as well as more sophisticated tools for gene editing that use piggyBac transposases, integrases, zinc-finger nucleases or the CRISPR-Cas9 system. In this Review, we discuss the molecular genetic systems that are currently available for use in Plasmodium falciparum and Plasmodium berghei, and evaluate the advantages and limitations of these tools. We examine the insights that have been gained into the function of genes that are important during the blood stages of the parasites, which may help to guide the development and improvement of drug therapies and vaccines.

  6. How Malaria Has Affected the Human Genome and What Human Genetics Can Teach Us about Malaria

    PubMed Central

    Kwiatkowski, Dominic P.

    2005-01-01

    Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α+ thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine. PMID:16001361

  7. Genetics first or metabolism first? The formamide clue.

    PubMed

    Saladino, Raffaele; Botta, Giorgia; Pino, Samanta; Costanzo, Giovanna; Di Mauro, Ernesto

    2012-08-21

    Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level.

  8. Genetics first or metabolism first? The formamide clue.

    PubMed

    Saladino, Raffaele; Botta, Giorgia; Pino, Samanta; Costanzo, Giovanna; Di Mauro, Ernesto

    2012-08-21

    Life is made of the intimate interaction of metabolism and genetics, both built around the chemistry of the most common elements of the Universe (hydrogen, oxygen, nitrogen, and carbon). The transmissible interaction of metabolic and genetic cycles results in the hypercycles of organization and de-organization of chemical information, of living and non-living. The origin-of-life quest has long been split into several attitudes exemplified by the aphorisms "genetics-first" or "metabolism-first". Recently, the opposition between these approaches has been solved by more unitary theoretical and experimental frames taking into account energetic, evolutionary, proto-metabolic and environmental aspects. Nevertheless, a unitary and simple chemical frame is still needed that could afford both the precursors of the synthetic pathways eventually leading to RNA and to the key components of the central metabolic cycles, possibly connected with the synthesis of fatty acids. In order to approach the problem of the origin of life it is therefore reasonable to start from the assumption that both metabolism and genetics had a common origin, shared a common chemical frame, and were embedded under physical-chemical conditions favourable for the onset of both. The singleness of such a prebiotically productive chemical process would partake of Darwinian advantages over more complex fragmentary chemical systems. The prebiotic chemistry of formamide affords in a single and simple physical-chemical frame nucleic bases, acyclonucleosides, nucleotides, biogenic carboxylic acids, sugars, amino sugars, amino acids and condensing agents. Thus, we suggest the possibility that formamide could have jointly provided the main components for the onset of both (pre)genetic and (pre)metabolic processes. As a note of caution, we discuss the fact that these observations only indicate possible solutions at the level of organic substrates, not at the systemic chemical level. PMID:22684046

  9. More than just skin deep: faciocutaneous clues to genetic syndromes with malignancies.

    PubMed

    Shen, Zhu; Hoffman, Jodi D; Hao, Fei; Pier, Eric

    2012-01-01

    Genetic syndromes with dermatologic findings and multisystemic involvement (e.g., visceral cancer predisposition) are underrecognized. Patients may have incomplete penetrance and variable expressivity; some patients may solely exhibit subtle skin signs, which create a diagnostic challenge for physicians. Interdisciplinary diagnostic knowledge is required for the early diagnosis and monitoring of patients with these syndromes. Cutaneous changes in the face-one of the most highly exposed areas-can be easily noticed by patients themselves, their families and friends, and physicians; these changes may serve as early indicators of genetic syndromes with malignancies. In this article, we present examples of genetic syndromes with malignancies for which a thorough faciocutaneous examination is helpful in establishing a diagnosis. These examples include lentiginosis-related syndromes (e.g., Peutz-Jeghers syndrome, Carney complex), photosensitivity-related syndromes (Bloom syndrome, Rothmund-Thomson syndrome), and hamartoma-related syndromes (Cowden syndrome, multiple endocrine neoplasia syndrome, tuberous sclerosis complex, Gardner syndrome, Muir-Torre syndrome). The characteristics of these faciocutaneous clues are summarized and discussed. Objective evaluation of these faciocutaneous clues in combination with other clinical information (e.g., family history, histopathological findings, combination with other concomitant faciocutaneous lesions) is emphasized to narrow the diagnosis. The list of genetic syndromes with faciocutaneous manifestations is still expanding. Increased awareness of faciocutaneous markers can alert physicians to underlying syndromes and malignancies, render earlier screening and detection of associated medical issues, and allow for genetic counseling of family members. PMID:22707513

  10. Genetic Expression Outside the Skin: Clues to Mechanisms of Genotype × Environment Interaction

    PubMed Central

    Reiss, David; Leve, Leslie D.

    2007-01-01

    The rapidly moving study of Gene × Environment interaction needs interim conceptual tools to track progress, integrate findings, and apply this knowledge to preventive intervention. We define two closely related concepts: the social mediation of the expression of genetic influences and the interaction between the entire genotype and the social environment (Genotype × Environment interaction; G×E). G×E interaction, the primary focus of this report, assesses individual differences in the full genotype using twin, sibling, and adoption designs and, for the most part, employs fine-grained analyses of relational processes in the social environment. In comparison, studies of Allele × Environment interaction (A×E) assess the influence on development of one or more measured polymorphisms as modified by environmental factors. G×E studies build on work showing how the social environment responds to genetic influences and how genetic influences shape the social environment. Recent G×E research has yielded new insight into variations in the sensitivity of the social environment to genotypic influences and provides clues to the specificity and timing of these environmental responses that can be leveraged to inform preventive interventions aimed at reducing genetic risk for problem behavior. PMID:17931431

  11. The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape.

    PubMed

    Carrel, Margaret; Patel, Jaymin; Taylor, Steve M; Janko, Mark; Mwandagalirwa, Melchior Kashamuka; Tshefu, Antoinette K; Escalante, Ananias A; McCollum, Andrea; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Meshnick, Steven; Emch, Michael

    2015-05-01

    Understanding how malaria parasites move between populations is important, particularly given the potential for malaria to be reintroduced into areas where it was previously eliminated. We examine the distribution of malaria genetics across seven sites within the Democratic Republic of Congo (DRC) and two nearby countries, Ghana and Kenya, in order to understand how the relatedness of malaria parasites varies across space, and whether there are barriers to the flow of malaria parasites within the DRC or across borders. Parasite DNA was retrieved from dried blood spots from 7 Demographic and Health Survey sample clusters in the DRC. Malaria genetic characteristics of parasites from Ghana and Kenya were also obtained. For each of 9 geographic sites (7 DRC, 1 Ghana and 1 Kenya), a pair-wise RST statistic was calculated, indicating the genetic distance between malaria parasites found in those locations. Mapping genetics across the spatial extent of the study area indicates a complex genetic landscape, where relatedness between two proximal sites may be relatively high (RST > 0.64) or low (RST < 0.05), and where distal sites also exhibit both high and low genetic similarity. Mantel's tests suggest that malaria genetics differ as geographic distances increase. Principal Coordinate Analysis suggests that genetically related samples are not co-located. Barrier analysis reveals no significant barriers to gene flow between locations. Malaria genetics in the DRC have a complex and fragmented landscape. Limited exchange of genes across space is reflected in greater genetic distance between malaria parasites isolated at greater geographic distances. There is, however, evidence for close genetic ties between distally located sample locations, indicating that movement of malaria parasites and flow of genes is being driven by factors other than distance decay. This research demonstrates the contributions that spatial disease ecology and landscape genetics can make to

  12. The geography of malaria genetics in the Democratic Republic of Congo: A complex and fragmented landscape

    PubMed Central

    Carrel, Margaret; Patel, Jaymin; Taylor, Steve M.; Janko, Mark; Mwandagalirwa, Melchior Kashamuka; Tshefu, Antoinette K.; Escalante, Ananias A.; McCollum, Andrea; Alam, Md Tauqeer; Udhayakumar, Venkatachalam; Meshnick, Steven; Emch, Michael

    2014-01-01

    Understanding how malaria parasites move between populations is important, particularly given the potential for malaria to be reintroduced into areas where it was previously eliminated. We examine the distribution of malaria genetics across seven sites within the Democratic Republic of Congo (DRC) and two nearby countries, Ghana and Kenya, in order to understand how the relatedness of malaria parasites varies across space, and whether there are barriers to the flow of malaria parasites within the DRC or across borders. Parasite DNA was retrieved from dried blood spots from 7 Demographic and Health Survey sample clusters in the DRC. Malaria genetic characteristics of parasites from Ghana and Kenya were also obtained. For each of 9 geographic sites (7 DRC, 1 Ghana and 1 Kenya), a pair-wise RST statistic was calculated, indicating the genetic distance between malaria parasites found in those locations. Mapping genetics across the spatial extent of the study area indicates a complex genetic landscape, where relatedness between two proximal sites may be relatively high (RST > 0.64) or low (RST < 0.05), and where distal sites also exhibit both high and low genetic similarity. Mantel’s tests suggest that malaria genetics differ as geographic distances increase. Principal Coordinate Analysis suggests that genetically related samples are not co-located. Barrier analysis reveals no significant barriers to gene flow between locations. Malaria genetics in the DRC have a complex and fragmented landscape. Limited exchange of genes across space is reflected in greater genetic distance between malaria parasites isolated at greater geographic distances. There is, however, evidence for close genetic ties between distally located sample locations, indicating that movement of malaria parasites and flow of genes is being driven by factors other than distance decay. This research demonstrates the contributions that spatial disease ecology and landscape genetics can make to

  13. Genetic structure and evolved malaria resistance in Hawaiian honeycreepers

    USGS Publications Warehouse

    Foster, J.T.; Woodworth, B.L.; Eggert, L.E.; Hart, P.J.; Palmer, D.; Duffy, D.C.; Fleischer, R.C.

    2007-01-01

    Infectious diseases now threaten wildlife populations worldwide but population recovery following local extinction has rarely been observed. In such a case, do resistant individuals recolonize from a central remnant population, or do they spread from small, perhaps overlooked, populations of resistant individuals? Introduced avian malaria (Plasmodium relictum) has devastated low-elevation populations of native birds in Hawaii, but at least one species (Hawaii amakihi, Hemignathus virens) that was greatly reduced at elevations below about 1000 m tolerates malaria and has initiated a remarkable and rapid recovery. We assessed mitochondrial and nuclear DNA markers from amakihi and two other Hawaiian honeycreepers, apapane (Himatione sanguinea) and iiwi (Vestiaria coccinea), at nine primary study sites from 2001 to 2003 to determine the source of re-establishing birds. In addition, we obtained sequences from tissue from amakihi museum study skins (1898 and 1948-49) to assess temporal changes in allele distributions. We found that amakihi in lowland areas are, and have historically been, differentiated from birds at high elevations and had unique alleles retained through time; that is, their genetic signature was not a subset of the genetic variation at higher elevations. We suggest that high disease pressure rapidly selected for resistance to malaria at low elevation, leaving small pockets of resistant birds, and this resistance spread outward from the scattered remnant populations. Low-elevation amakihi are currently isolated from higher elevations (> 1000 m) where disease emergence and transmission rates appear to vary seasonally and annually. In contrast to results from amakihi, no genetic differentiation between elevations was found in apapane and iiwi, indicating that slight variation in genetic or life-history attributes can determine disease resistance and population recovery. Determining the conditions that allow for the development of resistance to disease is

  14. Malaria

    MedlinePlus

    MENU Return to Web version Malaria Overview What is malaria? Malaria is an infection of a part of the blood called the red blood cells. It is ... by mosquitoes that carry a parasite that causes malaria. If a mosquito carrying this parasite bites you, ...

  15. Network-based gene prediction for Plasmodium falciparum malaria towards genetics-based drug discovery

    PubMed Central

    2015-01-01

    Background Malaria is the most deadly parasitic infectious disease. Existing drug treatments have limited efficacy in malaria elimination, and the complex pathogenesis of the disease is not fully understood. Detecting novel malaria-associated genes not only contributes in revealing the disease pathogenesis, but also facilitates discovering new targets for anti-malaria drugs. Methods In this study, we developed a network-based approach to predict malaria-associated genes. We constructed a cross-species network to integrate human-human, parasite-parasite and human-parasite protein interactions. Then we extended the random walk algorithm on this network, and used known malaria genes as the seeds to find novel candidate genes for malaria. Results We validated our algorithms using 77 known malaria genes: 14 human genes and 63 parasite genes were ranked averagely within top 2% and top 4%, respectively among human and parasite genomes. We also evaluated our method for predicting novel malaria genes using a set of 27 genes with literature supporting evidence. Our approach ranked 12 genes within top 1% and 24 genes within top 5%. In addition, we demonstrated that top-ranked candied genes were enriched for drug targets, and identified commonalities underlying top-ranked malaria genes through pathway analysis. In summary, the candidate malaria-associated genes predicted by our data-driven approach have the potential to guide genetics-based anti-malaria drug discovery. PMID:26099491

  16. Malaria.

    ERIC Educational Resources Information Center

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  17. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder.

    PubMed

    Klein, Christine; Schlossmacher, Michael G

    2007-11-27

    Over the last 10 years, an unprecedented number of scientific reports have been published that relate to the pathogenesis of parkinsonism. Since the discovery in 1997 of the first heritable form of parkinsonism that could be linked to a mutation in a single gene, SNCA, many more genetic leads have followed (Parkin, DJ-1, PINK1, LRRK2, to name a few); these have provided us with many molecular clues to better explore the etiology of parkinsonism and have led to the dismantling of many previously held dogmas about Parkinson disease (PD). Epidemiologic studies have delineated an array of environmental modulators of susceptibility to parkinsonism, which can now be examined in the context of gene expression. Furthermore, in vivo imaging data and postmortem results have generated concepts that greatly expanded our appreciation for the phenotypic spectrum of parkinsonism from its presymptomatic to advanced stages. With this plethora of new information emerged the picture of a complex syndrome that raises many questions: How many forms of classic parkinsonism/Parkinson disease(s) are there? Where does the disease begin? What causes late-onset, "idiopathic" PD? What are the caveats related to genetic testing? What is the role of Lewy bodies? What will be the best disease model to accommodate the now known genetic and environmental contributors to parkinsonism? What will be the ideal markers and targets for earlier diagnosis and cause-directed therapy? In the following article we highlight some of the burning issues surrounding the understanding of classic parkinsonism, a complex puzzle of genes, environment, and an aging host.

  18. Genetics and Genomics of Sjogren's Syndrome: Research provides Clues to Pathogenesis and Novel Therapies

    PubMed Central

    Segal, Barbara M.; Nazmul-Hossain, Abu N. M.; Patel, Ketan; Hughes, Pamela; Moser, Kathy L.; Rhodus, Nelson L.

    2011-01-01

    Purpose While the key inciting events that drive the progression from autoantibodies to clinical disease remain to be clarified, new light has been shed on the factors contributing to disease susceptibility and the role of genetic factors in determining Sjogren's syndrome (SS) disease phenotypes. The purpose of this review is to provide an update on the role of genetic markers in the susceptibility to and pathogenesis of Sjogren's syndrome. This paper also discusses how genomic and proteomic technology can help in the design of specific therapeutics. Key Findings Recent evidence suggests that inflammatory genes associated with interferon pathways, and specific regulatory genes that control the maturation and proliferation of B cells, contribute to the pathogenesis of Sjogren's syndrome. Both gene expression profiling technology and gene association studies have been used to identify these key biologic pathways. Molecularly defined subsets of pSS patients are also being revealed by these studies. Previously identified gene loci which predispose to multiple autoimmune disorders have been confirmed supporting the paradigm of “general” autoimmune disease genes. Association of SS with many additional susceptibility loci are likely to be established through ongoing genome-wide association scans (GWAS). Clues from genetic studies suggest that targeting B cells will prove to be an effective way of reducing the systemic manifestations of pSS and are supported by early clinical trials. Summary Genome-wide technologies are likely to identify new genes and molecular pathways in the pathogenesis of SS that will be useful not only to identify patients at risk for SS, but also to identify subsets of patients at risk for variable levels of disease severity. In the future, these studies could identify novel biomarkers that will lead to significant advances in management by providing the means to tailor therapeutic strategies to individual patients. PMID:21497524

  19. Malaria.

    PubMed

    Garcia, Lynne S

    2010-03-01

    Malaria has had a greater impact on world history than any other infectious disease. More than 300 to 500 million individuals worldwide are infected with Plasmodium spp, and 1.5 to 2.7 million people a year, most of whom are children, die from the infection. Malaria is endemic in over 90 countries in which 2400 million people live; this represents 40% of the world's population. Approximately 90% of malaria deaths occur in Africa. Despite continuing efforts in vaccine development, malaria prevention is difficult, and no drug is universally effective. This article examines malaria caused by the 4 most common Plasmodium spp that infect humans, P vivax, P ovale, P malariae, and P falciparum, as well as mixed infections and the simian parasite P knowlesi. A comprehensive review of the microbiology, clinical presentation, pathogenesis, diagnosis, and treatment of these forms of malaria is given.

  20. Optimal control strategy of malaria vector using genetically modified mosquitoes.

    PubMed

    Rafikov, M; Bevilacqua, L; Wyse, A P P

    2009-06-01

    The development of transgenic mosquitoes that are resistant to diseases may provide a new and effective weapon of diseases control. Such an approach relies on transgenic mosquitoes being able to survive and compete with wild-type populations. These transgenic mosquitoes carry a specific code that inhibits the plasmodium evolution in its organism. It is said that this characteristic is hereditary and consequently the disease fades away after some time. Once transgenic mosquitoes are released, interactions between the two populations and inter-specific mating between the two types of mosquitoes take place. We present a mathematical model that considers the generation overlapping and variable environment factors. Based on this continuous model, the malaria vector control is formulated and solved as an optimal control problem, indicating how genetically modified mosquitoes should be introduced in the environment. Numerical simulations show the effectiveness of the proposed control.

  1. Genetics of Transfusion Recipient Alloimmunization: Can Clues from Susceptibility to Autoimmunity Pave the Way?

    PubMed Central

    Tatari-Calderone, Zohreh; Luban, Naomi L.C.; Vukmanovic, Stanislav

    2014-01-01

    Summary The search for genetic determinants of alloimmunization in sickle cell disease transfusion recipients was based on two premises: i) that polymorphisms responsible for stronger immune and/or inflammatory responses and hemoglobin βS mutation were co-selected by malaria; and ii) that stronger responder status contributes to development of lupus. We found a marker of alloimmunization in the gene encoding for Ro52 protein, also known as Sjögren syndrome antigen 1 (SSA1) and TRIM21. Surprisingly, the nature of the association was opposite of that with lupus; the same variant of a polymorphism (rs660) that was associated with lupus incidence was also associated with induction of tolerance to red blood cell antigens during early childhood. The dual function of Ro52 can explain this apparent contradiction. We propose that other lupus/autoimmunity susceptibility loci may reveal roles of additional molecules in various aspects of alloimmunization induced by transfusion as well as during pregnancy. PMID:25670931

  2. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    PubMed Central

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  3. Impact of malaria on genetic polymorphism and genetic diseases in Africans and African Americans.

    PubMed Central

    Miller, L H

    1994-01-01

    The high mortality from malaria in sub-Sahara Africa selected multiple genes that give the population a selective advantage. Identification of the genetic basis for resistance may suggest unusual approaches to development of malarial vaccines and antimalarial drugs. Some of these genes may be deleterious, although of selective advantage within the African setting, and need to be identified for counseling for disease prevention. PMID:8146132

  4. [Malaria].

    PubMed

    Burchard, G D

    2014-02-01

    Malaria is the most important infectious disease imported by travelers and migrants from tropical and subtropical areas. It is imported quite frequently. It is a life-threatening disease. Symptoms are nonspecific and cannot easily be distinguished from a wide range of other febrile conditions. Therefore, travel history must be taken in all patients with fever of unknown origin and malaria diagnostics must be performed immediately on suspicion of malaria. Uncomplicated falciparum malaria should be treated in the hospital with either atovaquone-proguanil or with an artemisinin-based combination preparation. If there is evidence of severe malaria, the patient must be moved to an intensive care unit. The antiparasitic agent of choice is then artesunate.

  5. Malaria

    MedlinePlus

    ... Malaria can be carried by mosquitoes in temperate climates, but the parasite disappears over the winter. The ... a major disease hazard for travelers to warm climates. In some areas of the world, mosquitoes that ...

  6. Malaria

    MedlinePlus

    ... a parasite. You get it when an infected mosquito bites you. Malaria is a major cause of ... insect repellent with DEET Cover up Sleep under mosquito netting Centers for Disease Control and Prevention

  7. Epidemiological and genetic clues for molecular mechanisms involved in uterine leiomyoma development and growth

    PubMed Central

    Commandeur, Arno E.; Styer, Aaron K.; Teixeira, Jose M.

    2015-01-01

    BACKGROUND Uterine leiomyomas (fibroids) are highly prevalent benign smooth muscle tumors of the uterus. In the USA, the lifetime risk for women developing uterine leiomyomas is estimated as up to 75%. Except for hysterectomy, most therapies or treatments often provide only partial or temporary relief and are not successful in every patient. There is a clear racial disparity in the disease; African-American women are estimated to be three times more likely to develop uterine leiomyomas and generally develop more severe symptoms. There is also familial clustering between first-degree relatives and twins, and multiple inherited syndromes in which fibroid development occurs. Leiomyomas have been described as clonal and hormonally regulated, but despite the healthcare burden imposed by the disease, the etiology of uterine leiomyomas remains largely unknown. The mechanisms involved in their growth are also essentially unknown, which has contributed to the slow progress in development of effective treatment options. METHODS A comprehensive PubMed search for and critical assessment of articles related to the epidemiological, biological and genetic clues for uterine leiomyoma development was performed. The individual functions of some of the best candidate genes are explained to provide more insight into their biological function and to interconnect and organize genes and pathways in one overarching figure that represents the current state of knowledge about uterine leiomyoma development and growth. RESULTS In this review, the widely recognized roles of estrogen and progesterone in uterine leiomyoma pathobiology on the basis of clinical and experimental data are presented. This is followed by fundamental aspects and concepts including the possible cellular origin of uterine fibroids. The central themes in the subsequent parts are cytogenetic aberrations in leiomyomas and the racial/ethnic disparities in uterine fibroid biology. Then, the attributes of various in vitro and

  8. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals

    PubMed Central

    Gunawardena, Sharmini; Karunaweera, Nadira D.

    2015-01-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals. PMID:25943157

  9. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals.

    PubMed

    Gunawardena, Sharmini; Karunaweera, Nadira D

    2015-05-01

    Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.

  10. Preventing the spread of malaria and dengue fever using genetically modified mosquitoes.

    PubMed

    James, Anthony A

    2007-01-01

    In this candid interview, Anthony A. James explains how mosquito genetics can be exploited to control malaria and dengue transmission. Population replacement strategy, the idea that transgenic mosquitoes can be released into the wild to control disease transmission, is introduced, as well as the concept of genetic drive and the design criterion for an effective genetic drive system. The ethical considerations of releasing genetically-modified organisms into the wild are also discussed.

  11. Malaria life cycle intensifies both natural selection and random genetic drift.

    PubMed

    Chang, Hsiao-Han; Moss, Eli L; Park, Daniel J; Ndiaye, Daouda; Mboup, Souleymane; Volkman, Sarah K; Sabeti, Pardis C; Wirth, Dyann F; Neafsey, Daniel E; Hartl, Daniel L

    2013-12-10

    Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.

  12. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    PubMed Central

    2011-01-01

    Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 Genetic differentiation (0.202

  13. Genetic red cell disorders and severity of falciparum malaria in Myanmar.

    PubMed Central

    Oo, M.; Tin-Shwe; Marlar-Than; O'Sullivan, W. J.

    1995-01-01

    A hospital-based survey was undertaken to investigate the relationship between the incidence and severity of malaria infection and various red cell disorders in Myanmar. The mean parasitaemia levels of patients with alpha- or beta-thalassaemia trait or with severe glucose-6-phosphate dehydrogenase (G6PD) deficiency were lower than those of individuals with normal haemoglobin AA or with heterozygous haemoglobin E. The double genetic defect of thalassaemia trait and severe G6PD deficiency appeared to confer some degree of protection against malaria. PMID:8846492

  14. Perspectives of people in Mali toward genetically-modified mosquitoes for malaria control

    PubMed Central

    2010-01-01

    Background Genetically-modified (GM) mosquitoes have been proposed as part of an integrated vector control strategy for malaria control. Public acceptance is essential prior to field trials, particularly since mosquitoes are a vector of human disease and genetically modified organisms (GMOs) face strong scepticism in developed and developing nations. Despite this, in sub-Saharan Africa, where the GM mosquito effort is primarily directed, very little data is available on perspectives to GMOs. Here, results are presented of a qualitative survey of public attitudes to GM mosquitoes for malaria control in rural and urban areas of Mali, West Africa between the months of October 2008 and June 2009. Methods The sample consisted of 80 individuals - 30 living in rural communities, 30 living in urban suburbs of Bamako, and 20 Western-trained and traditional health professionals working in Bamako and Bandiagara. Questions were asked about the cause of malaria, heredity and selective breeding. This led to questions about genetic alterations, and acceptable conditions for a release of pest-resistant GM corn and malaria-refractory GM mosquitoes. Finally, participants were asked about the decision-making process in their community. Interviews were transcribed and responses were categorized according to general themes. Results Most participants cited mosquitoes as one of several causes of malaria. The concept of the gene was not widely understood; however selective breeding was understood, allowing limited communication of the concept of genetic modification. Participants were open to a release of pest-resistant GM corn, often wanting to conduct a trial themselves. The concept of a trial was reapplied to GM mosquitoes, although less frequently. Participants wanted to see evidence that GM mosquitoes can reduce malaria prevalence without negative consequences for human health and the environment. For several participants, a mosquito control programme was preferred; however a

  15. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia

    PubMed Central

    Mohd Abd Razak, Mohd Ridzuan; Sastu, Umi Rubiah; Norahmad, Nor Azrina; Abdul-Karim, Abass; Muhammad, Amirrudin; Muniandy, Prem Kumar; Jelip, Jenarun; Rundi, Christina; Imwong, Mallika; Mudin, Rose Nani; Abdullah, Noor Rain

    2016-01-01

    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751–800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651–700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  16. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia.

    PubMed

    Mohd Abd Razak, Mohd Ridzuan; Sastu, Umi Rubiah; Norahmad, Nor Azrina; Abdul-Karim, Abass; Muhammad, Amirrudin; Muniandy, Prem Kumar; Jelip, Jenarun; Rundi, Christina; Imwong, Mallika; Mudin, Rose Nani; Abdullah, Noor Rain

    2016-01-01

    Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0

  17. Genetic heterogeneity of prematurity and intrauterine growth retardation: clues from the Old Order Amish.

    PubMed

    Khoury, M J; Cohen, B H

    1987-08-01

    We studied differences in the role of genetic factors in prematurity and intrauterine growth retardation with the use of data on 312 Amish singleton live children ascertained from Amish records in Lancaster county, Pennsylvania, between 1969 and 1980. Birth and death certificates were obtained on all children, and inbreeding coefficients of child, mother, and father were computed by use of the path method of tracing common ancestors in a unique genealogic registry of Amish ancestors dating back to the 1700s. Multivariate analysis with linear and log linear models showed that a lower mean gestational age and a higher risk of prematurity (less than 37 weeks) and borderline maturity (37 to 38 weeks) were significantly associated with increased maternal inbreeding but not child or paternal inbreeding. On the other hand, a higher risk of intrauterine growth retardation (less than the tenth percentile in birth weight for gestational age) and mild intrauterine growth delay (tenth to twenty-fifth percentile) were associated with increased child inbreeding but not maternal or paternal inbreeding. The analysis suggests the presence of genetic heterogeneity in the etiology of prematurity and intrauterine growth retardation; while prematurity is mostly related to the maternal genotype, intrauterine growth retardation is related to the fetal genotype. The study reemphasizes the need for separating low birth weight into prematurity and intrauterine growth retardation in genetic and epidemiologic studies. PMID:3618690

  18. The Unexplained Female Predominance of Systemic Lupus Erythematosus: Clues from Genetic and Cytokine Studies

    PubMed Central

    Weckerle, Corinna E.

    2010-01-01

    Despite recent progress in the understanding of systemic lupus erythematosus (SLE), the striking 9:1 female to male ratio of disease incidence remains largely unexplained. In addition, peak SLE incidence rates occur during the early reproductive years in women. Studies which illuminate potential causes underlying this sex difference and characteristic onset during the reproductive years have the potential to fundamentally advance our understanding of disease pathogenesis in SLE. Similarly, progress in this area will likely inform human reproductive immunology. Studies of sex hormone function in the immune system are of obvious importance; however, it seems likely that many other types of sex-related genetic and immunological differences will contribute to SLE. In this review, we will focus on recent work in sex-related differences in cytokine pathways and genetics of these pathways as they relate to SLE pathogenesis. It seems quite possible that many of these sex-related differences could be important to reproductive fitness, which may explain the conservation of these immune system features and the observed female predominance of SLE. PMID:20063186

  19. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi.

    PubMed

    Sutton, Patrick L; Luo, Zunping; Divis, Paul C S; Friedrich, Volney K; Conway, David J; Singh, Balbir; Barnwell, John W; Carlton, Jane M; Sullivan, Steven A

    2016-06-01

    Plasmodium cynomolgi is a malaria parasite that typically infects Asian macaque monkeys, and humans on rare occasions. P. cynomolgi serves as a model system for the human malaria parasite Plasmodium vivax, with which it shares such important biological characteristics as formation of a dormant liver stage and a preference to invade reticulocytes. While genomes of three P. cynomolgi strains have been sequenced, genetic diversity of P. cynomolgi has not been widely investigated. To address this we developed the first panel of P. cynomolgi microsatellite markers to genotype eleven P. cynomolgi laboratory strains and 18 field isolates from Sarawak, Malaysian Borneo. We found diverse genotypes among most of the laboratory strains, though two nominally different strains were found to be genetically identical. We also investigated sequence polymorphism in two erythrocyte invasion gene families, the reticulocyte binding protein and Duffy binding protein genes, in these strains. We also observed copy number variation in rbp genes. PMID:26980604

  20. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  1. Alterations in Plasmodium falciparum Genetic Structure Two Years after Increased Malaria Control Efforts in Western Kenya

    PubMed Central

    Vardo-Zalik, Anne M.; Zhou, Guofa; Zhong, Daibin; Afrane, Yaw A.; Githeko, Andrew K.; Yan, Guiyun

    2013-01-01

    The impact of malaria intervention measures (insecticide-treated net use and artemisinin combination therapy) on malaria genetics was investigated at two sites in western Kenya: an endemic lowland and an epidemic highland. The genetic structure of the parasite population was assessed by using microsatellites, and the prevalence of drug-resistant mutations was examined by using the polymerase chain reaction–restriction fragment length polymorphism method. Two years after intervention, genetic diversity remained high in both populations. A significant decrease in the prevalence of quintuple mutations conferring resistance to sulfadoxine-pyrimethamine was detected in both populations, but the mutation prevalence at codon 1246 of the Plasmodium falciparum multidrug resistance 1 gene had increased in the highland population. The decrease in sulfadoxine-pyrimethamine–resistant mutants is encouraging, but the increase in P. falciparum multidrug resistance 1 gene mutations is worrisome because these mutations are linked to resistance to other antimalarial drugs. In addition, the high level of genetic diversity observed after intervention suggests transmission is still high in each population. PMID:23166196

  2. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands

    PubMed Central

    2013-01-01

    Background Temotu Province, Solomon Islands is progressing toward malaria elimination. A baseline survey conducted in 2008 showed that most Plasmodium infections in the province were of low parasite density and asymptomatic infections. To better understand mechanisms underlying these malaria transmission characteristics genetic diversity and relationships among Plasmodium falciparum and Plasmodium vivax populations in the province were examined. Methods Forty-five P. falciparum and 67 P. vivax samples collected in the 2008 baseline survey were successfully genotyped using eight P. falciparum and seven P. vivax microsatellite markers. Genetic diversity, relationships and distribution of both P. falciparum and P. vivax populations were analysed. Results Plasmodium falciparum population exhibited low diversity with 19 haplotypes identified and had closely related clusters indicating clonal expansion. Interestingly, a dominant haplotype was significantly associated with fever and high parasite density. In contrast, the P. vivax population was highly diverse with 58 haplotypes identified that were not closely related. Parasite populations between different islands in the province showed low genetic differentiation. Conclusion The low diversity and clonal population of P. falciparum population may partially account for clinical immunity developed against illness. However, it is possible that importation of a new P. falciparum strain was the major cause of illness. High diversity in P. vivax population and low relatedness between strains suggested clinical immunity to P. vivax may be maintained by different mechanisms. The genetic diversity, population structure and distribution of strains indicate that transmission of P. falciparum was low, but that of P. vivax was still high in 2008. These data will be useful for assessing changes in malaria transmission resulting from interventions. PMID:24261646

  3. Multilocus population genetic analysis of the Southwest Pacific malaria vector Anopheles punctulatus.

    PubMed

    Seah, Ignatius M; Ambrose, Luke; Cooper, Robert D; Beebe, Nigel W

    2013-09-01

    The population structure and history of the cryptic malaria vector species, Anopheles punctulatus (Doenitz), was investigated throughout Papua New Guinea and the Solomon Islands with the aim of detailing genetic subdivisions and the potential for movement through this biogeographically complex region. We obtained larval collections from over 80 sites and utilised a diverse array of molecular markers that evolve through different processes. Individuals were initially identified to species and genotyped using the ribosomal DNA second internal transcribed spacer. DNA sequencing of a single copy nuclear ribosomal protein S9 and the mitochondrial cytochrome oxidase I loci were then investigated and 12 nuclear microsatellite markers were developed and analysed. Our data revealed three genetically distinct populations--one in Papua New Guinea, the second on Buka Island (Bougainville Province, Papua New Guinea), and the third on Guadalcanal Island (Solomon Islands). Genetic differentiation within Papua New Guinea was much lower than that found in studies of other closely related species in the region. The data does suggest that A. punctulatus has undergone a population bottleneck followed by a recent population and range expansion in Papua New Guinea. Humans and regional economic growth may be facilitating this population expansion, as A. punctulatus is able to rapidly occupy human modified landscapes and traverse unsealed roads. We therefore anticipate extensive movement of this species through New Guinea--particularly into the highlands, with a potential increase in malaria frequency in a warming climate--as well as relatively unrestricted gene flow of advantageous alleles that may confound vector control efforts.

  4. Bottlenecks and multiple introductions: Population genetics of the vector of avian malaria in Hawaii

    USGS Publications Warehouse

    Fonseca, Dina M.; LaPointe, Dennis A.; Fleischer, Robert C.

    2000-01-01

    Avian malaria has had a profound impact on the demographics and behaviour of Hawaiian forest birds since its vector, Culex quinquefasciatusthe southern house mosquito, was first introduced to Hawaii around 1830. In order to understand the dynamics of the disease in Hawaii and gain insights into the evolution of vector-mediated parasite–host interactions in general we studied the population genetics of Cx. quinquefasciatus in the Hawaiian Islands. We used both microsatellite and mitochondrial loci. Not surprisingly we found that mosquitoes in Midway, a small island in the Western group, are quite distinct from the populations in the main Hawaiian Islands. However, we also found that in general mosquito populations are relatively isolated even among the main islands, in particular between Hawaii (the Big Island) and the remaining Hawaiian Islands. We found evidence of bottlenecks among populations within the Big Island and an excess of alleles in Maui, the site of the original introduction. The mitochondrial diversity was typically low but higher than expected. The current distribution of mitochondrial haplotypes combined with the microsatellite information lead us to conclude that there have been several introductions and to speculate on some processes that may be responsible for the current population genetics of vectors of avian malaria in Hawaii.

  5. Relationship between Plasmodium falciparum malaria prevalence, genetic diversity and endemic Burkitt lymphoma in Malawi.

    PubMed

    Johnston, W Thomas; Mutalima, Nora; Sun, David; Emmanuel, Benjamin; Bhatia, Kishor; Aka, Peter; Wu, Xiaolin; Borgstein, E; Liomba, G N; Kamiza, Steve; Mkandawire, Nyengo; Batumba, Mkume; Carpenter, Lucy M; Jaffe, Harold; Molyneux, Elizabeth M; Goedert, James J; Soppet, Daniel; Newton, Robert; Mbulaiteye, Sam M

    2014-01-01

    Endemic Burkitt lymphoma (eBL) has been linked to Plasmodium falciparum (Pf) malaria infection, but the contribution of infection with multiple Pf genotypes is uncertain. We studied 303 eBL (cases) and 274 non eBL-related cancers (controls) in Malawi using a sensitive and specific molecular-barcode array of 24 independently segregating Pf single nucleotide polymorphisms. Cases had a higher Pf malaria prevalence than controls (64.7% versus 45.3%; odds ratio [OR] 2.1, 95% confidence interval (CI): 1.5 to 3.1). Cases and controls were similar in terms of Pf density (4.9 versus 4.5 log copies, p = 0.28) and having ≥3 non-clonal calls (OR 2.7, 95% CI: 0.7-9.9, P = 0.14). However, cases were more likely to have a higher Pf genetic diversity score (153.9 versus 133.1, p = 0.036), which measures a combination of clonal and non-clonal calls, than controls. Further work is needed to evaluate the possible role of Pf genetic diversity in the pathogenesis of endemic BL.

  6. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei

    PubMed Central

    Matz, Joachim M.; Kooij, Taco W. A.

    2015-01-01

    Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods. PMID:25789828

  7. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei.

    PubMed

    Matz, Joachim M; Kooij, Taco W A

    2015-03-01

    Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.

  8. 'Tennessee' Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image shows the area within 'Endurance Crater,' currently being investigated by the Mars Exploration Rover Opportunity. The rover is inspecting a hole it drilled into a flat rock (center) dubbed 'Tennessee,' which scientists believe may be made up of the same evaporite-rich materials as those found in 'Eagle Crater.'

    The overall geography inside Endurance is more complex than scientists anticipated, with at least three distinct bands of rock visible in front of the rover. Scientists hope to investigate the second and third layers of rock for more clues to Mars' history. This image was taken on sol 133 (June 8, 2004) with the rover's panoramic camera, using the 750-, 530- and 430-nanometer filters.

  9. Geographic genetic differentiation of a malaria parasite, Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis.

    PubMed

    Fricke, Jennifer M; Vardo-Zalik, Anne M; Schall, Jos J

    2010-04-01

    Gene flow, and resulting degree of genetic differentiation among populations, will shape geographic genetic patterns and possibly local adaptation of parasites and their hosts. Some studies of Plasmodium falciparum in humans show substantial differentiation of the parasite in locations separated by only a few kilometers, a paradoxical finding for a parasite in a large, mobile host. We examined genetic differentiation of the malaria parasite Plasmodium mexicanum, and its lizard host, Sceloporus occidentalis, at 8 sites in northern California, with the use of variable microsatellite markers for both species. These lizards are small and highly territorial, so we expected local genetic differentiation of both parasite and lizard. Populations of P. mexicanum were found to be differentiated by analysis of 5 markers (F(st) values >0.05-0.10) over distances as short as 230-400 m, and greatly differentiated (F(st) values >0.25) for sites separated by approximately 10 km. In contrast, the lizard host had no, or very low, levels of differentiation for 3 markers, even for sites >40 km distant. Thus, gene flow for the lizard was great, but despite the mobility of the vertebrate host, the parasite was locally genetically distinct. This discrepancy could result if infected lizards move little, but their noninfected relatives were more mobile. Previous studies on the virulence of P. mexicanum for fence lizards support this hypothesis. However, changing prevalence of the parasite, without changes in density of the lizard, could also result in this pattern.

  10. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia.

    PubMed

    Chen, Bin; Harbach, Ralph E; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K

    2012-12-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout Southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except Northern Thailand with Central Thailand. Mismatch distributions and extremely significant F(s) values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species.

  11. Population genetics of the malaria vector Anopheles aconitus in China and Southeast Asia

    PubMed Central

    Chen, Bin; Harbach, Ralph E.; Walton, Catherine; He, Zhengbo; Zhong, Daibin; Yan, Guiyun; Butlin, Roger K.

    2012-01-01

    Anopheles aconitus is a well-known vector of malaria and is broadly distributed in the Oriental Region, yet there is no information on its population genetic characteristics. In this study, the genetic differentiation among populations was examined using 140 mtDNA COII sequences from 21 sites throughout southern China, Myanmar, Vietnam, Thailand, Laos and Sri Lanka. The population in Sri Lanka has characteristic rDNA D3 and ITS2, mtDNA COII and ND5 haplotypes, and may be considered a distinct subspecies. Clear genetic structure was observed with highly significant genetic variation present among population groups in Southeast Asia. The greatest genetic diversity exists in Yunnan and Myanmar population groups. All population groups are significantly different from one another in pairwise Fst values, except northern Thailand with central Thailand. Mismatch distributions and extremely significant Fs values suggest that the populations passed through a recent demographic expansion. These patterns are discussed in relation to the likely biogeographic history of the region and compared to other Anopheles species. PMID:22982161

  12. Patterns and dynamics of genetic diversity in Plasmodium falciparum: what past human migrations tell us about malaria.

    PubMed

    Mita, Toshihiro; Jombart, Thibaut

    2015-06-01

    Plasmodium falciparum is the main agent of malaria, one of the major human infectious diseases affecting millions of people worldwide. The genetic diversity of P. falciparum populations is an essential factor in the parasite's ability to adapt to changes in its environment, enabling the development of drug resistance and the evasion from the host immune system through antigenic variation. Therefore, characterizing these patterns and understanding the main drivers of the pathogen's genetic diversity can provide useful inputs for informing control strategies. In this paper, we review the pioneering work led by Professor Kazuyuki Tanabe on the genetic diversity of P. falciparum populations. In a first part, we recall basic results from population genetics for quantifying within-population genetic diversity, and discuss the main mechanisms driving this diversity. Then, we show how these approaches have been used for reconstructing the historical spread of malaria worldwide, and how current patterns of genetic diversity suggest that the pathogen followed our ancestors in their journey out of Africa. Because these results are robust to different types of genetic markers, they provide a baseline for predicting the pathogen's diversity in unsampled populations, and some useful elements for predicting vaccine efficacy and informing malaria control strategies.

  13. Chlorine Clues

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot shows that levels of the element chlorine rise dramatically in the deeper rocks lining the walls of the crater dubbed 'Endurance.' The data shown here were taken by the Mars Exploration Rover Opportunity's alpha particle X-ray spectrometer at Endurance and 'Eagle Crater,' the site where Opportunity first landed at Meridiani Planum.

    Opportunity has been inching down the walls of Endurance Crater, investigating distinct layers of rock as it goes for clues to Mars' buried past. The various Endurance layers have been informally labeled 'A' through 'F.' Targets within these layers are listed on the graph along with previous targets from Eagle Crater. All the rocks listed here were observed after they had been drilled by the rover's rock abrasion tool.

    The observations indicate that the elements making up the shallow rock layers of Endurance Crater resemble those of Eagle, while the deeper layers of Endurance possess increasingly higher concentrations of the element chlorine.

    Opportunity will continue to roll deeper into Endurance to see if this puzzling trend continues. Scientists hope the new data will help them figure out how the presence of chlorine fits into the history of water at Endurance Crater.

  14. Imputation-Based Population Genetics Analysis of Plasmodium falciparum Malaria Parasites

    PubMed Central

    Samad, Hanif; Coll, Francesc; Preston, Mark D.; Ocholla, Harold; Fairhurst, Rick M.; Clark, Taane G.

    2015-01-01

    Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima’s D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and

  15. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites.

    PubMed

    Samad, Hanif; Coll, Francesc; Preston, Mark D; Ocholla, Harold; Fairhurst, Rick M; Clark, Taane G

    2015-04-01

    Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86 k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima's D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and

  16. Imputation-based population genetics analysis of Plasmodium falciparum malaria parasites.

    PubMed

    Samad, Hanif; Coll, Francesc; Preston, Mark D; Ocholla, Harold; Fairhurst, Rick M; Clark, Taane G

    2015-04-01

    Whole-genome sequencing technologies are being increasingly applied to Plasmodium falciparum clinical isolates to identify genetic determinants of malaria pathogenesis. However, genome-wide discovery methods, such as haplotype scans for signatures of natural selection, are hindered by missing genotypes in sequence data. Poor correlation between single nucleotide polymorphisms (SNPs) in the P. falciparum genome complicates efforts to apply established missing-genotype imputation methods that leverage off patterns of linkage disequilibrium (LD). The accuracy of state-of-the-art, LD-based imputation methods (IMPUTE, Beagle) was assessed by measuring allelic r2 for 459 P. falciparum samples from malaria patients in 4 countries: Thailand, Cambodia, Gambia, and Malawi. In restricting our analysis to 86 k high-quality SNPs across the populations, we found that the complete-case analysis was restricted to 21k SNPs (24.5%), despite no single SNP having more than 10% missing genotypes. The accuracy of Beagle in filling in missing genotypes was consistently high across all populations (allelic r2, 0.87-0.96), but the performance of IMPUTE was mixed (allelic r2, 0.34-0.99) depending on reference haplotypes and population. Positive selection analysis using Beagle-imputed haplotypes identified loci involved in resistance to chloroquine (crt) in Thailand, Cambodia, and Gambia, sulfadoxine-pyrimethamine (dhfr, dhps) in Cambodia, and artemisinin (kelch13) in Cambodia. Tajima's D-based analysis identified genes under balancing selection that encode well-characterized vaccine candidates: apical merozoite antigen 1 (ama1) and merozoite surface protein 1 (msp1). In contrast, the complete-case analysis failed to identify any well-validated drug resistance or candidate vaccine loci, except kelch13. In a setting of low LD and modest levels of missing genotypes, using Beagle to impute P. falciparum genotypes is a viable strategy for conducting accurate large-scale population genetics and

  17. NOS2 Variants Reveal a Dual Genetic Control of Nitric Oxide Levels, Susceptibility to Plasmodium Infection, and Cerebral Malaria

    PubMed Central

    Trovoada, Maria de Jesus; Martins, Madalena; Ben Mansour, Riadh; Sambo, Maria do Rosário; Fernandes, Ana B.; Antunes Gonçalves, Lígia; Borja, Artur; Moya, Roni; Almeida, Paulo; Costa, João; Marques, Isabel; Macedo, M. Paula; Coutinho, António; Narum, David L.

    2014-01-01

    Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E–04 < P < 7.57E–04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E–05 < P < 7.90E–04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E–4 < P < 4.33E–02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes. PMID:24379293

  18. NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria.

    PubMed

    Trovoada, Maria de Jesus; Martins, Madalena; Ben Mansour, Riadh; Sambo, Maria do Rosário; Fernandes, Ana B; Antunes Gonçalves, Lígia; Borja, Artur; Moya, Roni; Almeida, Paulo; Costa, João; Marques, Isabel; Macedo, M Paula; Coutinho, António; Narum, David L; Penha-Gonçalves, Carlos

    2014-03-01

    Nitric oxide (NO) is a proposed component of malaria pathogenesis, and the inducible nitric oxide synthase gene (NOS2) has been associated to malaria susceptibility. We analyzed the role of NOS2 polymorphisms on NO bioavailability and on susceptibility to infection, Plasmodium carrier status and clinical malaria. Two distinct West African sample collections were studied: a population-based collection of 1,168 apparently healthy individuals from the Príncipe Island and a hospital-based cohort of 269 Angolan children. We found that two NOS2 promoter single-nucleotide polymorphism (SNP) alleles associated to low NO plasma levels in noninfected individuals were also associated to reduced risk of pre-erythrocytic infection as measured anti-CSP antibody levels (6.25E-04 < P < 7.57E-04). In contrast, three SNP alleles within the NOS2 cistronic region conferring increased NO plasma levels in asymptomatic carriers were strongly associated to risk of parasite carriage (8.00E-05 < P < 7.90E-04). Notwithstanding, three SNP alleles in this region protected from cerebral malaria (7.90E-4 < P < 4.33E-02). Cohesively, the results revealed a dual regimen in the genetic control of NO bioavailability afforded by NOS2 depending on the infection status. NOS2 promoter variants operate in noninfected individuals to decrease both NO bioavailability and susceptibility to pre-erythrocytic infection. Conversely, NOS2 cistronic variants (namely, rs6505469) operate in infected individuals to increase NO bioavailability and confer increased susceptibility to unapparent infection but protect from cerebral malaria. These findings corroborate the hypothesis that NO anti-inflammatory properties impact on different steps of malaria pathogenesis, explicitly by favoring infection susceptibility and deterring severe malaria syndromes.

  19. Genetic structure along an elevational gradient in Hawaiian honeycreepers reveals contrasting evolutionary responses to avian malaria

    USGS Publications Warehouse

    Eggert, L.S.; Terwilliger, L.A.; Woodworth, B.L.; Hart, P.J.; Palmer, D.; Fleischer, R.C.

    2008-01-01

    Background. The Hawaiian honeycreepers (Drepanidinae) are one of the best-known examples of an adaptive radiation, but their persistence today is threatened by the introduction of exotic pathogens and their vector, the mosquito Culex quinquefasciatus. Historically, species such as the amakihi (Hemignathus virens), the apapane (Himatione sanguinea), and the iiwi (Vestiaria coccinea) were found from the coastal lowlands to the high elevation forests, but by the late 1800's they had become extremely rare in habitats below 900 m. Recently, however, populations of amakihi and apapane have been observed in low elevation habitats. We used twelve polymorphic microsatellite loci to investigate patterns of genetic structure, and to infer responses of these species to introduced avian malaria along an elevational gradient on the eastern flanks of Mauna Loa and Kilauea volcanoes on the island of Hawaii. Results. Our results indicate that amakihi have genetically distinct, spatially structured populations that correspond with altitude. We detected very few apapane and no iiwi in low-elevation habitats, and genetic results reveal only minimal differentiation between populations at different altitudes in either of these species. Conclusion. Our results suggest that amakihi populations in low elevation habitats have not been recolonized by individuals from mid or high elevation refuges. After generations of strong selection for pathogen resistance, these populations have rebounded and amakihi have become common in regions in which they were previously rare or absent. ?? 2008 Eggert et al; licensee BioMed Central Ltd.

  20. Blindness Clues

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Age-related macular degeneration is the leading cause of blindness in older adults, yet researchers are still in the dark about many of the factors that cause this incurable disease. But new insight from University of Florida (UF) and German researchers about a genetic link between rhesus monkeys with macular degeneration and humans could unlock…

  1. Clues to tRNA Evolution from the Distribution of Class II tRNAs and Serine Codons in the Genetic Code.

    PubMed

    Bernhardt, Harold S

    2016-01-01

    We have previously proposed that tRNA(Gly) was the first tRNA and glycine was the first amino acid incorporated into the genetic code. The next two amino acids incorporated would have been the other two small hydrophilic amino acids serine and aspartic acid, which occurred through the duplication of the tRNA(Gly) sequence, followed by mutation of its anticodon by single C to U transition mutations, possibly through spontaneous deamination. Interestingly, however, tRNA(Ser) has a different structure than most other tRNAs, possessing a long variable arm; because of this tRNA(Ser) is classified as a class II tRNA. Also, serine codons are found not only in the bottom right-hand corner of the genetic code table next to those for glycine and aspartic acid, but also in the top row of the table, next to those for two of the most hydrophobic amino acids, leucine and phenylalanine. In the following, I propose that the class II tRNA structure of tRNA(Ser) and the arrangement of serine codons in the genetic code provide clues to the early evolution of tRNA and the genetic code. In addition, I address Di Giulio's recent criticism of our proposal that tRNA(Gly) was the first tRNA, and discuss how early peptides produced from a restricted amino acid alphabet of glycine, serine and aspartic acid might have possessed proteolytic activity, which is possibly important for the early recycling of amino acid monomers. PMID:26927183

  2. Clues to tRNA Evolution from the Distribution of Class II tRNAs and Serine Codons in the Genetic Code

    PubMed Central

    Bernhardt, Harold S.

    2016-01-01

    We have previously proposed that tRNAGly was the first tRNA and glycine was the first amino acid incorporated into the genetic code. The next two amino acids incorporated would have been the other two small hydrophilic amino acids serine and aspartic acid, which occurred through the duplication of the tRNAGly sequence, followed by mutation of its anticodon by single C to U transition mutations, possibly through spontaneous deamination. Interestingly, however, tRNASer has a different structure than most other tRNAs, possessing a long variable arm; because of this tRNASer is classified as a class II tRNA. Also, serine codons are found not only in the bottom right-hand corner of the genetic code table next to those for glycine and aspartic acid, but also in the top row of the table, next to those for two of the most hydrophobic amino acids, leucine and phenylalanine. In the following, I propose that the class II tRNA structure of tRNASer and the arrangement of serine codons in the genetic code provide clues to the early evolution of tRNA and the genetic code. In addition, I address Di Giulio’s recent criticism of our proposal that tRNAGly was the first tRNA, and discuss how early peptides produced from a restricted amino acid alphabet of glycine, serine and aspartic acid might have possessed proteolytic activity, which is possibly important for the early recycling of amino acid monomers. PMID:26927183

  3. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae.

    PubMed

    Lombardo, Fabrizio; Ghani, Yasmeen; Kafatos, Fotis C; Christophides, George K

    2013-01-01

    Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase), pattern recognition (fibrinogen-domain lectins and Nimrod), immune modulation (peptidase and serine protease homolog), immune signaling (Eiger and LPS-induced factor), cell adhesion and communication (Laminin B1 and Ninjurin) and immune homeostasis (Lipophorin receptor). The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens. PMID:23382679

  4. High prevalence and genetic diversity of Plasmodium malariae and no evidence of Plasmodium knowlesi in Bangladesh.

    PubMed

    Fuehrer, Hans-Peter; Swoboda, Paul; Harl, Josef; Starzengruber, Peter; Habler, Verena Elisabeth; Bloeschl, Ingrid; Haque, Rashidul; Matt, Julia; Khan, Wasif Ali; Noedl, Harald

    2014-04-01

    Although the prevalence of malaria remains high in parts of Bangladesh, there continues to be a substantial shortage of information regarding the less common malaria parasites such as Plasmodium malariae or Plasmodium knowlesi. Recent studies indicate that P. malariae may be extremely rare, and so far, there are no data on the presence (or absence) of P. knowlesi in southeastern Bangladesh. Genus- and species-specific nested polymerase chain reaction (PCR) analysis of the small subunit ribosomal RNA gene was performed to assess the presence and prevalence of P. malariae and P. knowlesi in 2,246 samples originating from asymptomatic and febrile participants of a cross-sectional and a febrile illnesses study in the Chittagong Hill Tracts in southeastern Bangladesh. P. malariae was detected in 60 samples (2.7%) corresponding to 8% of the 746 samples giving positive PCR results for Plasmodium sp., mainly because of the high prevalence (9.5%) among asymptomatic study participants testing positive for malaria. Symptomatic cases were more common (4.3% of all symptomatic malaria cases) during the dry season. Parasitemias were low (1,120-2,560/μl in symptomatic and 120-520/μl in asymptomatic carriers). Symptomatic patients presented mild to moderate symptoms like fever, chills, headache, dizziness, fatigue and myalgia.Although both the intermediate as well as the definite host are known to be endemic in southeastern Bangladesh, no evidence for the presence of P. knowlesi was found. We conclude that the role of P. malariae is highly underestimated in rural Bangladesh with major implications for malaria control and elimination strategies. PMID:24578257

  5. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  6. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    PubMed Central

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  7. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  8. Environmental Mapping of Paracoccidioides spp. in Brazil Reveals New Clues into Genetic Diversity, Biogeography and Wild Host Association

    PubMed Central

    Arantes, Thales Domingos; Theodoro, Raquel Cordeiro; Teixeira, Marcus de Melo; Bosco, Sandra de Moraes Gimenes; Bagagli, Eduardo

    2016-01-01

    Background Paracoccidioides brasiliensis and Paracoccidioides lutzii are the etiological agents of Paracoccidioidomycosis (PCM), and are easily isolated from human patients. However, due to human migration and a long latency period, clinical isolates do not reflect the spatial distribution of these pathogens. Molecular detection of P. brasiliensis and P. lutzii from soil, as well as their isolation from wild animals such as armadillos, are important for monitoring their environmental and geographical distribution. This study aimed to detect and, for the first time, evaluate the genetic diversity of P. brasiliensis and P. lutzii for Paracoccidioidomycosis in endemic and non-endemic areas of the environment, by using Nested PCR and in situ hybridization techniques. Methods/Principal Findings Aerosol (n = 16) and soil (n = 34) samples from armadillo burrows, as well as armadillos (n = 7) were collected in endemic and non-endemic areas of PCM in the Southeastern, Midwestern and Northern regions of Brazil. Both P. brasiliensis and P. lutzii were detected in soil (67.5%) and aerosols (81%) by PCR of Internal Transcribed Spacer (ITS) region (60%), and also by in situ hybridization (83%). Fungal isolation from armadillo tissues was not possible. Sequences from both species of P. brasiliensis and P. lutzii were detected in all regions. In addition, we identified genetic Paracoccidioides variants in soil and aerosol samples which have never been reported before in clinical or armadillo samples, suggesting greater genetic variability in the environment than in vertebrate hosts. Conclusions/Significance Data may reflect the actual occurrence of Paracoccidioides species in their saprobic habitat, despite their absence/non-detection in seven armadillos evaluated in regions with high prevalence of PCM infection by P. lutzii. These results may indicate a possible ecological difference between P. brasiliensis and P. lutzii concerning their wild hosts. PMID:27045486

  9. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia.

    PubMed

    Gutiérrez, Lina A; Gómez, Giovan F; González, John J; Castro, Martha I; Luckhart, Shirley; Conn, Jan E; Correa, Margarita M

    2010-07-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia.

  10. Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia

    PubMed Central

    Gutiérrez, Lina A.; Gómez, Giovan F.; González, John J.; Castro, Martha I.; Luckhart, Shirley; Conn, Jan E.; Correa, Margarita M.

    2010-01-01

    Anopheles darlingi is an important vector of Plasmodium spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of An. darlingi at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear white and cytochrome oxidase subunit I (COI) gene sequences were analyzed. The northern white gene lineage was exclusively distributed in Córdoba and Antioquia and shared COI haplotypes were highly represented in mosquitoes from both states. COI analyses showed these An. darlingi are genetically closer to Central American populations than southern South American populations. Overall microsatellites and COI analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between An. darlingi populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia. PMID:20595475

  11. Multi-drug resistant Mycobacterium tuberculosis complex genetic diversity and clues on recent transmission in Punjab, Pakistan.

    PubMed

    Yasmin, Memona; Gomgnimbou, Michel K; Siddiqui, Rubina T; Refrégier, Guislaine; Sola, Christophe

    2014-10-01

    Multi-Drug Resistant Tuberculosis (MDR-TB), i.e. bacilli resistant to rifampicin (RIF) and isoniazid (INH), is a major Public Health concern in Pakistan according to WHO estimates (3.5% and 32% of new and retreated cases, respectively). Previous Pakistanis reports identified a correlation between being MDR and belonging to Beijing or EAI lineages in one study, and belonging to "H4"-Ural Euro-American sublineage in another study. In addition, MDR-TB transmission was suspected in Karachi. We tested MDR characteristics on a Punjab sample of 278 clinical isolates (without selection for Multi-Drug Resistance) including new and retreated cases collected from 2008 to 2012. All samples were characterized by a new, microbead-based method named "TB-SPRINT" (molecular diagnostic including spoligotype identification, and genetic resistance determinants to first-line anti-TB drugs RIF and INH). Isolates from 2011 to 2012 (n=100) were further analyzed using 24-loci MIRU-VNTR. We detected 8.7% MDR isolates (CI95%=[5.0; 12.5]), mainly among CAS lineage that predominates in this central-East region of Pakistan. Out of 20 MDR-TB cases, 12 different TB-SPRINT profiles were identified, limiting the suspicion of MDR-TB transmission. 24 MIRU-VNTR confirmed the unrelatedness of isolates with different TB-SPRINT profiles and discriminated 3 isolates with identical TB-SPRINT profiles. In conclusion, our study did not confirm any of the correlations between Multi-Drug Resistance and lineage or sublineage in Punjab, Pakistan. MDR-TB isolates were diverse indicating that transmission is not pervasive. TB-SPRINT proved useful as a first step for detecting MDR-TB likely transmission events, before more extensive genotyping such as 15 or 24 MIRU-VNTR and thorough epidemiological investigation.

  12. Female and Male Perspectives on the Neolithic Transition in Europe: Clues from Ancient and Modern Genetic Data

    PubMed Central

    Rasteiro, Rita; Chikhi, Lounès

    2013-01-01

    The arrival of agriculture into Europe during the Neolithic transition brought a significant shift in human lifestyle and subsistence. However, the conditions under which the spread of the new culture and technologies occurred are still debated. Similarly, the roles played by women and men during the Neolithic transition are not well understood, probably due to the fact that mitochondrial DNA (mtDNA) and Y chromosome (NRY) data are usually studied independently rather than within the same statistical framework. Here, we applied an integrative approach, using different model-based inferential techniques, to analyse published datasets from contemporary and ancient European populations. By integrating mtDNA and NRY data into the same admixture approach, we show that both males and females underwent the same admixture history and both support the demic diffusion model of Ammerman and Cavalli-Sforza. Similarly, the patterns of genetic diversity found in extant and ancient populations demonstrate that both modern and ancient mtDNA support the demic diffusion model. They also show that population structure and differential growth between farmers and hunter-gatherers are necessary to explain both types of data. However, we also found some differences between male and female markers, suggesting that the female effective population size was larger than that of the males, probably due to different demographic histories. We argue that these differences are most probably related to the various shifts in cultural practices and lifestyles that followed the Neolithic Transition, such as sedentism, the shift from polygyny to monogamy or the increase of patrilocality. PMID:23613761

  13. PRELIMINARY REPORT ON THE PUTATIVE ASSOCIATION OF IL10 -3575 T/A GENETIC POLYMORPHISM WITH MALARIA SYMPTOMS

    PubMed Central

    DOMINGUES, Wilson; KANUNFRE, Kelly Aparecida; RODRIGUES, Jonatas Cristian; TEIXEIRA, Leandro Emidio; YAMAMOTO, Lidia; OKAY, Thelma Suely

    2016-01-01

    Only a small percentage of individuals living in endemic areas develop severe malaria suggesting that host genetic factors may play a key role. This study has determined the frequency of single nucleotide polymorphisms (SNPs) in some pro and anti-inflammatory cytokine gene sequences: IL6 (-174; rs1800795), IL12p40 (+1188; rs3212227), IL4 (+33; rs2070874), IL10 (-3575; rs1800890) and TGFb1 (+869; rs1800470), by means of PCR-RFLP. Blood samples were collected from 104 symptomatic and 37 asymptomatic subjects. Laboratory diagnosis was assessed by the thick blood smear test and nested-PCR. No association was found between IL6 (-174), IL12p40 (+1188), IL4 (+33), IL10 (- 3575), TGFb1 (+869) SNPs and malaria symptoms. However, regarding the IL10 -3575 T/A SNP, there were significantly more AA and AT subjects, carrying the polymorphic allele A, in the symptomatic group (c2 = 4.54, p = 0.01, OR = 0.40 [95% CI - 0.17- 0.94]). When the analysis was performed by allele, the frequency of the polymorphic allele A was also significantly higher in the symptomatic group (c2 = 4.50, p = 0.01, OR = 0.45 [95% CI - 0.21-0.95]). In conclusion, this study has suggested the possibility that the IL10 - 3575 T/A SNP might be associated with the presence and maintenance of malaria symptoms in individuals living in endemic areas. Taking into account that this polymorphism is related to decreased IL10 production, a possible role of this SNP in the pathophysiology of malaria is also suggested, but replication studies with a higher number of patients and evaluation of IL10 levels are needed for confirmation. PMID:27074324

  14. The distinctive features of Indian malaria parasites.

    PubMed

    Das, Aparup

    2015-03-01

    Malaria and factors driving malaria are heterogeneous in India, unlike in other countries, and the epidemiology of malaria therefore is considered 'highly complex'. This complexity is primarily attributed to several unique features of the malaria parasites, mosquito vectors, malaria-susceptible populations, and ecoclimatic variables in India. Recent research on the genetic epidemiology of Indian malaria parasites has been successful in partly unraveling the mysteries underlying these complexities.

  15. Clues to Conclusions

    ERIC Educational Resources Information Center

    Soloway, Rhoda K.

    1978-01-01

    To help students learn how to interpret, infer, and speculate on conclusions, here is a week-long learning activity on "clue finding". A mitten, a bagful of debris and a few intriguing exercises with descriptive paragraphs show students that they use clues every day to draw conclusions and that they can extend this ability to analyze what they…

  16. Complex genetic control of susceptibility to malaria: positional cloning of the Char9 locus

    PubMed Central

    Min-Oo, Gundula; Fortin, Anny; Pitari, Giuseppina; Tam, Mifong; Stevenson, Mary M.; Gros, Philippe

    2007-01-01

    Mouse strains AcB55 and AcB61 are resistant to malaria by virtue of a mutation in erythrocyte pyruvate kinase (PklrI90N). Linkage analysis in [AcB55 × A/J] F2 mice detected a second locus (Char9; logarithm of odds = 4.74) that regulates the blood-stage replication of Plasmodium chabaudi AS independently of Pklr. We characterized the 77 genes of the Char9 locus for tissue-specific expression, strain-specific alterations in gene expression, and polymorphic variants that are possibly associated with differential susceptibility. We identified Vnn1/Vnn3 as the likely candidates responsible for Char9. Vnn3/Vnn1 map within a conserved haplotype block and show expression levels that are strictly cis-regulated by this haplotype. The absence of Vnn messenger RNA expression and lack of pantetheinase protein activity in tissues are associated with susceptibility to malaria and are linked to a complex rearrangement in the Vnn3 promoter region. The A/J strain also carries a unique nonsense mutation that leads to a truncated protein. Vanin genes code for a pantetheinase involved in the production of cysteamine, a key regulator of host responses to inflammatory stimuli. Administration of cystamine in vivo partially corrects susceptibility to malaria in A/J mice, as measured by reduced blood parasitemia and decreased mortality. These studies suggest that pantetheinase is critical for the host response to malaria. PMID:17312006

  17. Malaria Research

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  18. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research.

    PubMed

    Carlton, Jane M; Volkman, Sarah K; Uplekar, Swapna; Hupalo, Daniel N; Pereira Alves, João Marcelo; Cui, Liwang; Donnelly, Martin; Roos, David S; Harb, Omar S; Acosta, Monica; Read, Andrew; Ribolla, Paulo E M; Singh, Om P; Valecha, Neena; Wassmer, Samuel C; Ferreira, Marcelo; Escalante, Ananias A

    2015-09-01

    The study of the three protagonists in malaria-the Plasmodium parasite, the Anopheles mosquito, and the human host-is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world.

  19. Unraveling Parkinson's: Three Clues

    MedlinePlus

    ... to find fascinating new clues. Free radicals: One theory holds that free radicals—unstable and potentially damaging ... such as a pesticide or a toxin. This theory is based on the fact that a number ...

  20. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites.

    PubMed

    van Schaijk, Ben C L; Ploemen, Ivo H J; Annoura, Takeshi; Vos, Martijn W; Foquet, Lander; van Gemert, Geert-Jan; Chevalley-Maurel, Severine; van de Vegte-Bolmer, Marga; Sajid, Mohammed; Franetich, Jean-Francois; Lorthiois, Audrey; Leroux-Roels, Geert; Meuleman, Philip; Hermsen, Cornelius C; Mazier, Dominique; Hoffman, Stephen L; Janse, Chris J; Khan, Shahid M; Sauerwein, Robert W

    2014-01-01

    A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. In this study, we present data on safety and protective efficacy using sporozoites with deletions of two genes, that is the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high-level protection. The human PfΔb9ΔslarpGAP generated without drug resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine. PMID:25407681

  1. A genetically attenuated malaria vaccine candidate based on P. falciparum b9/slarp gene-deficient sporozoites

    PubMed Central

    van Schaijk, Ben C L; Ploemen, Ivo H J; Annoura, Takeshi; Vos, Martijn W; Foquet, Lander; van Gemert, Geert-Jan; Chevalley-Maurel, Severine; van de Vegte-Bolmer, Marga; Sajid, Mohammed; Franetich, Jean-Francois; Lorthiois, Audrey; Leroux-Roels, Geert; Meuleman, Philip; Hermsen, Cornelius C; Mazier, Dominique; Hoffman, Stephen L; Janse, Chris J; Khan, Shahid M; Sauerwein, Robert W

    2014-01-01

    A highly efficacious pre-erythrocytic stage vaccine would be an important tool for the control and elimination of malaria but is currently unavailable. High-level protection in humans can be achieved by experimental immunization with Plasmodium falciparum sporozoites attenuated by radiation or under anti-malarial drug coverage. Immunization with genetically attenuated parasites (GAP) would be an attractive alternative approach. In this study, we present data on safety and protective efficacy using sporozoites with deletions of two genes, that is the newly identified b9 and slarp, which govern independent and critical processes for successful liver-stage development. In the rodent malaria model, PbΔb9ΔslarpGAP was completely attenuated showing no breakthrough infections while efficiently inducing high-level protection. The human PfΔb9ΔslarpGAP generated without drug resistance markers were infective to human hepatocytes in vitro and to humanized mice engrafted with human hepatocytes in vivo but completely aborted development after infection. These findings support the clinical development of a PfΔb9ΔslarpSPZ vaccine. DOI: http://dx.doi.org/10.7554/eLife.03582.001 PMID:25407681

  2. Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

    PubMed Central

    2011-01-01

    Background Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. Methodology Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (~700 km away) as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. Results High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km2 of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (FST = 0.066) was higher than that of the well-known M and S forms of An. gambiae s. s. in West and Central Africa (FST = 0.035), suggesting that these populations are maintained by some level of reproductive isolation. Conclusion It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The impact of the observed An

  3. Clues to the Past

    ERIC Educational Resources Information Center

    Weaver, Julie K.

    2010-01-01

    Students love a mystery. So what do America's most majestic bird, a bag of habitat clues, and a soft-shelled egg have in common? This easy-to-do inquiry activity engages students as they connect clues to problem-solve how the bald eagle reached the brink of extinction in the 1960s in the lower 48 states. It was designed to give students an…

  4. Population genetic study of Plasmodium falciparum parasites pertaining to dhps gene sequence in malaria endemic areas of Assam.

    PubMed

    Sharma, J; Dutta, P; Khan, S A

    2015-01-01

    Plasmodium falciparum malaria parasite had developed resistance to almost all the currently used antimalarial drugs. The purpose of the study was to come across the genetic distances in P. falciparum dhps gene sequences circulating in Assam. A partial fragment of P. falciparum dhps gene containing major single nucleotide polymorphisms associated with sulphadoxine resistance were amplified and sequenced. Thereafter specific bioinformatics tools like BioEdit v7.0.9, ClustalW in Mega 5, DnaSP version v.5.10.01 etc were used for the analysis. A total of 100 P. falciparum positive cases in different malaria endemic areas of Assam were included for the study. Based upon the mutation analysis, a total of seven different P. falciparum dhps genotypes were observed with five variable sites. Maximum five haplotypes were found in the P. falciparum isolates from Jorhat district of Assam. Four polymorphic sites were observed in the P. falciparum dhps gene sequences in Karbi Anglong, NC Hills, Chirang and Jorhat whereas the isolates from other study areas had three polymorphic sites. A statistically significant positive value of Tajima's D were observed among the P. falciparum field isolates in Assam indicating that there is an excess of intermediate frequency alleles and can result from population bottlenecks, structure and/or balancing selection. Extensive gene flow took place among the P. falciparum population of Jorhat with Sivasagar, Chirang with Sivasagar and Chirang with Karbi Anglong. However, large genetic differentiation was observed among the P. falciparum isolates of NC Hills with Lakhimpur, Tinsukia, Dibrugarh and Golaghat and also the parasite population of Karbi Anglong with Lakhimpur and Tinsukia signifying little gene flow among the population. This finding has shown that mutant Pfdhps gene associated with sulphadoxine resistance is circulating in Assam. It is believed that, the parasite population may have undergone high level of breeding.

  5. Improving the population genetics toolbox for the study of the African malaria vector Anopheles nili: microsatellite mapping to chromosomes

    PubMed Central

    2011-01-01

    Background Anopheles nili is a major vector of malaria in the humid savannas and forested areas of sub-Saharan Africa. Understanding the population genetic structure and evolutionary dynamics of this species is important for the development of an adequate and targeted malaria control strategy in Africa. Chromosomal inversions and microsatellite markers are commonly used for studying the population structure of malaria mosquitoes. Physical mapping of these markers onto the chromosomes further improves the toolbox, and allows inference on the demographic and evolutionary history of the target species. Results Availability of polytene chromosomes allowed us to develop a map of microsatellite markers and to study polymorphism of chromosomal inversions. Nine microsatellite markers were mapped to unique locations on all five chromosomal arms of An. nili using fluorescent in situ hybridization (FISH). Probes were obtained from 300-483 bp-long inserts of plasmid clones and from 506-559 bp-long fragments amplified with primers designed using the An. nili genome assembly generated on an Illumina platform. Two additional loci were assigned to specific chromosome arms of An. nili based on in silico sequence similarity and chromosome synteny with Anopheles gambiae. Three microsatellites were mapped inside or in the vicinity of the polymorphic chromosomal inversions 2Rb and 2Rc. A statistically significant departure from Hardy-Weinberg equilibrium, due to a deficit in heterozygotes at the 2Rb inversion, and highly significant linkage disequilibrium between the two inversions, were detected in natural An. nili populations collected from Burkina Faso. Conclusions Our study demonstrated that next-generation sequencing can be used to improve FISH for microsatellite mapping in species with no reference genome sequence. Physical mapping of microsatellite markers in An. nili showed that their cytological locations spanned the entire five-arm complement, allowing genome-wide inferences

  6. Genetic polymorphisms associated with anti-malarial antibody levels in a low and unstable malaria transmission area in southern Sri Lanka

    PubMed Central

    2012-01-01

    Background The incidence of malaria in Sri Lanka has significantly declined in recent years. Similar trends were seen in Kataragama, a known malaria endemic location within the southern province of the country, over the past five years. This is a descriptive study of anti-malarial antibody levels and selected host genetic mutations in residents of Kataragama, under low malaria transmission conditions. Methods Sera were collected from 1,011 individuals residing in Kataragama and anti-malarial antibodies and total IgE levels were measured by a standardized ELISA technique. Host DNA was extracted and used for genotyping of selected SNPs in known genes associated with malaria. The antibody levels were analysed in relation to the past history of malaria (during past 10 years), age, sex, the location of residence within Kataragama and selected host genetic markers. Results A significant increase in antibodies against Plasmodium falciparum antigens AMA1, MSP2, NANP and Plasmodium vivax antigen MSP1 in individuals with past history of malaria were observed when compared to those who did not. A marked increase of anti-MSP1(Pf) and anti-AMA1(Pv) was also evident in individuals between 45–59 years (when compared to other age groups). Allele frequencies for two SNPs in genes that code for IL-13 and TRIM-5 were found to be significantly different between those who have experienced one or more malaria attacks within past 10 years and those who did not. When antibody levels were classified into a low-high binary trait, significant associations were found with four SNPs for anti-AMA1(Pf); two SNPs for anti-MSP1(Pf); eight SNPs for anti-NANP(Pf); three SNPs for anti-AMA1(Pv); seven SNPs for anti-MSP1(Pv); and nine SNPs for total IgE. Eleven of these SNPs with significant associations with anti-malarial antibody levels were found to be non–synonymous. Conclusions Evidence is suggestive of an age–acquired immunity in this study population in spite of low malaria

  7. Seeking consent to genetic and genomic research in a rural Ghanaian setting: A qualitative study of the MalariaGEN experience

    PubMed Central

    2012-01-01

    Background Seeking consent for genetic and genomic research can be challenging, particularly in populations with low literacy levels, and in emergency situations. All of these factors were relevant to the MalariaGEN study of genetic factors influencing immune responses to malaria in northern rural Ghana. This study sought to identify issues arising in practice during the enrolment of paediatric cases with severe malaria and matched healthy controls into the MalariaGEN study. Methods The study used a rapid assessment incorporating multiple qualitative methods including in depth interviews, focus group discussions and observations of consent processes. Differences between verbal information provided during community engagement processes, and consent processes during the enrolment of cases and controls were identified, as well as the factors influencing the tailoring of such information. Results MalariaGEN participants and field staff seeking consent were generally satisfied with their understanding of the project and were familiar with aspects of the study relating to malaria. Some genetic aspects of the study were also well understood. Participants and staff seeking consent were less aware of the methodologies employed during genomic research and their implications, such as the breadth of data generated and the potential for future secondary research. Moreover, trust in and previous experience with the Navrongo Health Research Centre which was conducting the research influenced beliefs about the benefits of participating in the MalariaGEN study and subsequent decision-making about research participation. Conclusions It is important to recognise that some aspects of complex genomic research may be of less interest to and less well understood by research participants and that such gaps in understanding may not be entirely addressed by best practice in the design and conduct of consent processes. In such circumstances consideration needs to be given to additional

  8. Satellite imagery in the fight against Malaria, the case for Genetic Programming

    NASA Astrophysics Data System (ADS)

    Ssentongo, J. S.; Hines, E. L.

    The analysis of multi-temporal data is a critical issue in the field of remote sensing and presents a constant challenge The approach used here relies primarily on utilising a method commonly used in statistics and signal processing Empirical Orthogonal Function EOF analysis Normalized Difference Vegetation Index NDVI and Rainfall Estimate RFE satellite images pertaining to the Sub-Saharan Africa region were obtained The images are derived from the Advanced Very High Resolution Radiometer AVHRR on the United States National Oceanic and Atmospheric Administration NOAA polar orbiting satellites spanning from January 2000 to December 2002 The region of interest was narrowed down to the Limpopo Province Northern Province of South Africa EOF analyses of the space-time-intensity series of dekadal mean NDVI values was been performed They reveal that NDVI can be accurately approximated by its principal component time series and contains a near sinusoidal oscillation pattern Peak greenness essentially what NDVI measures seasons last approximately 8 weeks This oscillation period is very similar to that of Malaria cases reported in the same period but lags behind by 4 dekads about 40 days Singular Value Decomposition SVD of Coupled Fields is performed on the spacetime-intensity series of dekadal mean NDVI and RFE values Correlation analyses indicate that both Malaria and greenness appear to be dependant on rainfall the onset of their seasonal highs always following an arrival of rain There is a greater

  9. PlasmoGEM, a database supporting a community resource for large-scale experimental genetics in malaria parasites

    PubMed Central

    Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C.; Billker, Oliver

    2015-01-01

    The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. PMID:25593348

  10. Genetic Evaluation of the Performance of Malaria Parasite Clearance Rate Metrics

    PubMed Central

    Nkhoma, Standwell C.; Stepniewska, Kasia; Nair, Shalini; Phyo, Aung Pyae; McGready, Rose; Nosten, François; Anderson, Tim J. C.

    2013-01-01

    Accurate measurement of malaria parasite clearance rates (CRs) following artemisinin (ART) treatment is critical for resistance surveillance and research, and various CR metrics are currently used. We measured 13 CR metrics in 1472 ART-treated hyperparasitemia infections for which 6-hour parasite counts and parasite genotypes (93 single nucleotide polymorphisms [SNPs]) were available. We used heritability to evaluate the performance of each metric. Heritability ranged from 0.06 ± 0.06 (SD) for 50% parasite clearance times to 0.67 ± 0.04 (SD) for clearance half-lives estimated from 6-hour parasite counts. These results identify the measures that should be avoided and show that reliable clearance measures can be obtained with abbreviated monitoring protocols. PMID:23592863

  11. Genetic evaluation of the performance of malaria parasite clearance rate metrics.

    PubMed

    Nkhoma, Standwell C; Stepniewska, Kasia; Nair, Shalini; Phyo, Aung Pyae; McGready, Rose; Nosten, François; Anderson, Tim J C

    2013-07-15

    Accurate measurement of malaria parasite clearance rates (CRs) following artemisinin (ART) treatment is critical for resistance surveillance and research, and various CR metrics are currently used. We measured 13 CR metrics in 1472 ART-treated hyperparasitemia infections for which 6-hour parasite counts and parasite genotypes (93 single nucleotide polymorphisms [SNPs]) were available. We used heritability to evaluate the performance of each metric. Heritability ranged from 0.06 ± 0.06 (SD) for 50% parasite clearance times to 0.67 ± 0.04 (SD) for clearance half-lives estimated from 6-hour parasite counts. These results identify the measures that should be avoided and show that reliable clearance measures can be obtained with abbreviated monitoring protocols.

  12. Host genetic variations in glutathione-S-transferases, superoxide dismutases and catalase genes influence susceptibility to malaria infection in an Indian population.

    PubMed

    Fernandes, Rayzel C; Hasan, Marriyah; Gupta, Himanshu; Geetha, K; Rai, Padmalatha S; Hande, Manjunath H; D'Souza, Sydney C; Adhikari, Prabha; Brand, Angela; Satyamoorthy, Kapaettu

    2015-06-01

    Antioxidant enzymes can contribute to disease susceptibility or determine response to therapy in individuals with malaria. Genetic variations due to polymorphisms in host genes encoding antioxidant enzymes such as glutathione S-transferases-theta, mu, pi (GSTT, GSTM, GSTP), superoxide dismutases (SOD) and catalase (CAT), may therefore, influence inter-individual response to malaria pathology and propensity of infection caused by Plasmodium vivax (Pv) and Plasmodium falciparum (Pf). Therefore, using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and DNA sequencing, we investigated the association of deletions of GSTT1 and GSTM1, single nucleotide polymorphisms (SNPs) of GSTP1 (rs1695), SOD1 (rs2234694), SOD2 (rs4880, rs1141718), SOD3 (rs2536512) and CAT (rs1001179) in individuals infected with Pf (n = 100) and Pv (n = 100) against healthy controls (n = 150). Our data suggest a significant role for GSTM1 deletions in complicated Pv (p = 0.0007) malaria with ODDs ratio 3.8 [with 95 % confidence interval (CI) 1.9-7.4]. The results also indicated that polymorphisms present in GSTP1, SOD1 and CAT genes may be associated with malaria susceptibility (p < 0.05), whereas SOD3 polymorphism may play a role in malarial resistance (p < 0.05). In addition, we observed significant SNP-SNP interactions with synergistic genetic effects in SOD2, SOD3 and CAT genes for Pv and in SOD2 and SOD3 genes for Pf. In conclusion, our results provide convincing evidence for a relationship between polymorphisms in host antioxidant enzymes and susceptibility to malaria infection.

  13. Genetic differentiation in the African malaria vector, Anopheles gambiae s.s., and the problem of taxonomic status.

    PubMed Central

    Gentile, Gabriele; Della Torre, Alessandra; Maegga, Bertha; Powell, Jeffrey R; Caccone, Adalgisa

    2002-01-01

    Of the seven recognized species of the Anopheles gambiae complex, A. gambiae s.s. is the most widespread and most important vector of malaria. It is becoming clear that, in parts of West Africa, this nominal species is not a single panmictic unit. We found that the internal transcribed spacer (ITS) of the X-linked rDNA has two distinct sequences with three fixed nucleotide differences; we detected no heterozygotes at these three sites, even in areas of sympatry of the two ITS types. The intergenic spacer (IGS) of this region also displays two distinct sequences that are in almost complete linkage disequilibrium with the distinct ITS alleles. We have designated these two types as S/type I and M/type II. These rDNA types correspond at least partly to the previously recognized chromosomal forms. Here we expand the geographic range of sampling to 251 individuals from 38 populations. Outside of West Africa, a single rDNA type, S/type I, corresponds to the Savanna chromosomal form. In West Africa, both types are often found in a single local sample. To understand if these findings might be due to unusual behavior of the rDNA region, we sequenced the same region for 46 A. arabiensis, a sympatric sibling species. No such distinct discontinuity was observed for this species. Autosomal inversions in one chromosome arm (2R), an insecticide resistance gene on 2L, and this single X-linked region indicate at least two genetically differentiated subpopulations of A. gambiae. Yet, rather extensive studies of other regions of the genome have failed to reveal genetic discontinuity. Evidently, incomplete genetic isolation exists within this single nominal species. PMID:12196401

  14. Genetic variation in the Plasmodium falciparum circumsporozoite protein in India and its relevance to RTS,S malaria vaccine.

    PubMed

    Zeeshan, Mohammad; Alam, Mohammad Tauqeer; Vinayak, Sumiti; Bora, Hema; Tyagi, Rupesh Kumar; Alam, Mohd Shoeb; Choudhary, Vandana; Mittra, Pooja; Lumb, Vanshika; Bharti, Praveen Kumar; Udhayakumar, Venkatachalam; Singh, Neeru; Jain, Vidhan; Singh, Pushpendra Pal; Sharma, Yagya Dutta

    2012-01-01

    RTS,S is the most advanced malaria vaccine candidate, currently under phase-III clinical trials in Africa. This Plasmodium falciparum vaccine contains part of the central repeat region and the complete C-terminal T cell epitope region (Th2R and Th3R) of the circumsporozoite protein (CSP). Since naturally occurring polymorphisms at the vaccine candidate loci are critical determinants of the protective efficacy of the vaccines, it is imperative to investigate these polymorphisms in field isolates. In this study we have investigated the genetic diversity at the central repeat, C-terminal T cell epitope (Th2R and Th3R) and N-terminal T cell epitope regions of the CSP, in P. falciparum isolates from Madhya Pradesh state of India. These isolates were collected through a 5-year prospective study aimed to develop a well-characterized field-site for the future evaluation of malaria vaccine in India. Our results revealed that the central repeat (63 haplotypes, n = 161) and C-terminal Th2R/Th3R epitope (24 haplotypes, n = 179) regions were highly polymorphic, whereas N-terminal non-repeat region was less polymorphic (5 haplotypes, n = 161) in this population. We did not find any evidence of the role of positive natural selection in maintaining the genetic diversity at the Th2R/Th3R regions of CSP. Comparative analysis of the Th2R/Th3R sequences from this study to the global isolates (n = 1160) retrieved from the GenBank database revealed two important points. First, the majority of the sequences (~61%, n = 179) from this study were identical to the Dd2/Indochina type, which is also the predominant Th2R/Th3R haplotype in Asia (~59%, n = 974). Second, the Th2R/Th3R sequences in Asia, South America and Africa are geographically distinct with little allele sharing between continents. In conclusion, this study provides an insight on the existing polymorphisms in the CSP in a parasite population from India that could potentially influence the efficacy of RTS,S vaccine in this

  15. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View across the International Centers of Excellence for Malaria Research

    PubMed Central

    Carlton, Jane M.; Volkman, Sarah K.; Uplekar, Swapna; Hupalo, Daniel N.; Alves, João Marcelo Pereira; Cui, Liwang; Donnelly, Martin; Roos, David S.; Harb, Omar S.; Acosta, Monica; Read, Andrew; Ribolla, Paulo E. M.; Singh, Om P.; Valecha, Neena; Wassmer, Samuel C.; Ferreira, Marcelo; Escalante, Ananias A.

    2015-01-01

    The study of the three protagonists in malaria—the Plasmodium parasite, the Anopheles mosquito, and the human host—is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world. PMID:26259940

  16. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis.

    PubMed

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M; Kreppel, Katharina S; Kihonda, Anicet; Govella, Nicodem J; Collier, Travis C; Cornel, Anthony J; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C; Weakley, Allison M; Lanzaro, Gregory C

    2016-09-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of "SNP heritability" for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  17. The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis

    PubMed Central

    Main, Bradley J; Lee, Yoosook; Ferguson, Heather M.; Kreppel, Katharina S.; Kihonda, Anicet; Govella, Nicodem J.; Collier, Travis C.; Cornel, Anthony J.; Eskin, Eleazar; Kang, Eun Yong; Nieman, Catelyn C.; Weakley, Allison M.; Lanzaro, Gregory C.

    2016-01-01

    Malaria transmission is dependent on the propensity of Anopheles mosquitoes to bite humans (anthropophily) instead of other dead end hosts. Recent increases in the usage of Long Lasting Insecticide Treated Nets (LLINs) in Africa have been associated with reductions in highly anthropophilic and endophilic vectors such as Anopheles gambiae s.s., leaving species with a broader host range, such as Anopheles arabiensis, as the most prominent remaining source of transmission in many settings. An. arabiensis appears to be more of a generalist in terms of its host choice and resting behavior, which may be due to phenotypic plasticity and/or segregating allelic variation. To investigate the genetic basis of host choice and resting behavior in An. arabiensis we sequenced the genomes of 23 human-fed and 25 cattle-fed mosquitoes collected both in-doors and out-doors in the Kilombero Valley, Tanzania. We identified a total of 4,820,851 SNPs, which were used to conduct the first genome-wide estimates of “SNP heritability” for host choice and resting behavior in this species. A genetic component was detected for host choice (human vs cow fed; permuted P = 0.002), but there was no evidence of a genetic component for resting behavior (indoors versus outside; permuted P = 0.465). A principal component analysis (PCA) segregated individuals based on genomic variation into three groups which were characterized by differences at the 2Rb and/or 3Ra paracentromeric chromosome inversions. There was a non-random distribution of cattle-fed mosquitoes between the PCA clusters, suggesting that alleles linked to the 2Rb and/or 3Ra inversions may influence host choice. Using a novel inversion genotyping assay, we detected a significant enrichment of the standard arrangement (non-inverted) of 3Ra among cattle-fed mosquitoes (N = 129) versus all non-cattle-fed individuals (N = 234; χ2, p = 0.007). Thus, tracking the frequency of the 3Ra in An. arabiensis populations may be of use to infer

  18. Genetic Resistance to Malaria Is Associated With Greater Enhancement of Immunoglobulin (Ig)M Than IgG Responses to a Broad Array of Plasmodium falciparum Antigens

    PubMed Central

    Arama, Charles; Skinner, Jeff; Doumtabe, Didier; Portugal, Silvia; Tran, Tuan M.; Jain, Aarti; Traore, Boubacar; Doumbo, Ogobara K.; Davies, David Huw; Troye-Blomberg, Marita; Dolo, Amagana; Felgner, Philip L.; Crompton, Peter D.

    2015-01-01

    Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection. PMID:26361633

  19. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network.

    PubMed

    Escalante, Ananias A; Ferreira, Marcelo U; Vinetz, Joseph M; Volkman, Sarah K; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J; Barry, Alyssa E; Carlton, Jane M; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Pacheco, M Andreina; Vallejo, Andres F; Herrera, Socrates; Felger, Ingrid

    2015-09-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts.

  20. Malaria Molecular Epidemiology: Lessons from the International Centers of Excellence for Malaria Research Network

    PubMed Central

    Escalante, Ananias A.; Ferreira, Marcelo U.; Vinetz, Joseph M.; Volkman, Sarah K.; Cui, Liwang; Gamboa, Dionicia; Krogstad, Donald J.; Barry, Alyssa E.; Carlton, Jane M.; van Eijk, Anna Maria; Pradhan, Khageswar; Mueller, Ivo; Greenhouse, Bryan; Andreina Pacheco, M.; Vallejo, Andres F.; Herrera, Socrates; Felger, Ingrid

    2015-01-01

    Molecular epidemiology leverages genetic information to study the risk factors that affect the frequency and distribution of malaria cases. This article describes molecular epidemiologic investigations currently being carried out by the International Centers of Excellence for Malaria Research (ICEMR) network in a variety of malaria-endemic settings. First, we discuss various novel approaches to understand malaria incidence and gametocytemia, focusing on Plasmodium falciparum and Plasmodium vivax. Second, we describe and compare different parasite genotyping methods commonly used in malaria epidemiology and population genetics. Finally, we discuss potential applications of molecular epidemiological tools and methods toward malaria control and elimination efforts. PMID:26259945

  1. Gene-therapy for malaria prevention.

    PubMed

    Rodrigues, Mauricio M; Soares, Irene S

    2014-11-01

    The limited number of tools for malaria prevention and the inability to eradicate the disease have required large investments in vaccine development, as vaccines have been the only foreseeable type of immunoprophylaxis against malaria. An alternative strategy named vectored immunoprophylaxis (VIP) now would allow genetically transduced host cells to assemble and secrete antibodies that neutralize the infectivity of the malaria parasite and prevent disease.

  2. Malaria Facts

    MedlinePlus

    ... a CDC Malaria Branch clinician. malaria@cdc.gov File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  3. Genetic polymorphism of merozoite surface protein-1 in Plasmodium falciparum isolates from patients with mild to severe malaria in Libreville, Gabon.

    PubMed

    Bouyou-Akotet, Marielle Karine; M'Bondoukwé, Noé Patrick; Mawili-Mboumba, Denise Patricia

    2015-01-01

    We assessed Plasmodium (P.) falciparum allelic diversity based on clinical severity and age. The study was conducted from 2011 to 2012 in Libreville, Gabon where malaria prevalence was 24.5%. The polymorphism of the merozoite surface protein-1 (msp1) locus was analyzed in isolates from patients with complicated and uncomplicated malaria. Blood was collected on filter paper. After DNA extraction, genotyping of the msp1 gene was performed using nested PCR. The K1, Ro33, and Mad20 allelic families were detected in 71 (63%), 64 (57%), and 38 (34%) of the 112 analyzed samples, respectively. Overall, 17 K1 and 11 Mad20 alleles were detected. There was no association between msp1 allelic families and age. Mad20 allelic diversity increased with the severity of malaria. The number of K1 and Mad20 alleles decreased with age. The multiplicity of infection (MOI) was 1-6 genotypes and the complexity of infection (COI) 1.8 ± 1. The COI differed based on age: it was 1.9 (±1.1) in the isolates from adults, 1.8 (±1.1) in those from 0-5 year-old children, whereas it tended to be lower (1.6 ± 0.8) in those from 6-15 year-old children. Extensive genetic diversity is found in P. falciparum strains circulating in Libreville. The number of specific msp1 alleles increased with clinical severity, suggesting an association between the diversity and the severity of malaria.

  4. Malaria (For Parents)

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Malaria KidsHealth > For Parents > Malaria Print A A A ... Prevention Diagnosis and Treatment en español Malaria About Malaria Malaria is a common infection in hot, tropical ...

  5. Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code.

    PubMed

    Polyansky, Anton A; Hlevnjak, Mario; Zagrovic, Bojan

    2013-08-01

    Despite more than 50 years of effort, the origin of the genetic code remains enigmatic. Among different theories, the stereochemical hypothesis suggests that the code evolved as a consequence of direct interactions between amino acids and appropriate bases. If indeed true, such physicochemical foundation of the mRNA/protein relationship could also potentially lead to novel principles of protein-mRNA interactions in general. Inspired by this promise, we have recently explored the connection between the physicochemical properties of mRNAs and their cognate proteins at the proteome level. Using experimentally and computationally derived measures of solubility of amino acids in aqueous solutions of pyrimidine analogs together with knowledge-based interaction preferences of amino acids for different nucleobases, we have revealed a statistically significant matching between the composition of mRNA coding sequences and the base-binding preferences of their cognate protein sequences. Our findings provide strong support for the stereochemical hypothesis of genetic code's origin and suggest the possibility of direct complementary interactions between mRNAs and cognate proteins even in present-day cells. PMID:23945356

  6. Genetic variant in SWI/SNF complexes influences hepatocellular carcinoma risk: a new clue for the contribution of chromatin remodeling in carcinogenesis.

    PubMed

    Zhong, Rong; Liu, Li; Tian, Yao; Wang, Ying; Tian, Jing; Zhu, Bei-bei; Chen, Wei; Qian, Jia-ming; Zou, Li; Xiao, Min; Shen, Na; Yang, Hong; Lou, Jiao; Qiu, Qian; Ke, Jun-tao; Lu, Xing-hua; Wang, Zhen-ling; Song, Wei; Zhang, Ti; Li, Hui; Wang, Li; Miao, Xiao-ping

    2014-02-21

    Chromatin remodeling has been newly established as an important cancer genome characterization and recent exome and whole-genome sequencing studies of hepatocellular carcinoma (HCC) showed that recurrent inactivating mutations in SWI/SNF subunits involved in the molecular basis of hepatocarcinogenesis. To test the hypothesis that genetic variants in the key subunits of SWI/SNF complexes may contribute to HCC susceptibility, we systematically assessed associations of genetic variants in SWI/SNF complexes with HCC risk using a two-staged case-control study in Chinese population. A set of 24 single nucleotide polymorphisms (SNPs) in SWI/SNF complexes were examined in stage 1 with 502 HCC patients and 487 controls and three promising SNPs (SMARCA4 rs11879293, rs2072382 and SMARCB1 rs2267032) were further genotyped in stage 2 comprising 501 cases and 545 controls for validation. SMARCA4 rs11879293 presented consistently significant associations with the risk of HCC at both stages, with an OR of 0.73 (95% CI: 0.62-0.87) using additive model in combined analysis. Moreover, the decreased risk of HCC associated with SMARCA4 rs11879293 AG/AA was more evident among HBsAg positive individuals (OR = 0.47, 95% CI: 0.27-0.80) in combined analysis. The study highlighted the potential role of the SWI/SNF complexes in conferring susceptibility to HCC, especially modified HCC risk by HBV infection.

  7. Mystery in genetics: PUB4 gives a clue to the complex mechanism of CLV signaling pathway in the shoot apical meristem.

    PubMed

    Kinoshita, Atsuko; Seo, Mitsunori; Kamiya, Yuji; Sawa, Shinichiro

    2015-01-01

    Postembryonic growth and development in higher plants are ultimately reliant on the activity of meristems, where the cells divide frequently to provide source cells for new organs and tissues while in part maintain their pluripotent nature as stem cells. The shoot apical meristem (SAM) is maintained throughout the life of plants and responsible for the development of all areal tissues. In Arabidopsis thaliana, the size of SAM is controlled by a peptide ligand, CLAVATA3 (CLV3). Previously, genetic studies have identified several genes that function downstream of CLV3, many of which, intriguingly, encode receptors. Recently we identified an E3 ubiquitin ligase, PLANT U-BOX 4 (PUB4), as a key regulatory component of root meristem maintenance that functions downstream of an exogenous synthetic CLV3 peptide. Here, we report an additional function of PUB4 in the SAM. PMID:25898239

  8. An asymmetric underlying rule in the assignment of codons: Possible clue to a quick early evolution of the genetic code via successive binary choices

    PubMed Central

    Delarue, Marc

    2007-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are responsible for creating the pool of correctly charged aminoacyl-tRNAs that are necessary for the translation of genetic information (mRNA) by the ribosome. Each aaRS belongs to either one of only two classes with two different mechanisms of aminoacylation, making use of either the 2′OH (Class I) or the 3′OH (Class II) of the terminal A76 of the tRNA and approaching the tRNA either from the minor groove (2′OH) or the major groove (3′OH). Here, an asymmetric pattern typical of differentiation is uncovered in the partition of the codon repertoire, as defined by the mechanism of aminoacylation of each corresponding tRNA. This pattern can be reproduced in a unique cascade of successive binary decisions that progressively reduces codon ambiguity. The deduced order of differentiation is manifestly driven by the reduction of translation errors. A simple rule can be defined, decoding each codon sequence in its binary class, thereby providing both the code and the key to decode it. Assuming that the partition into two mechanisms of tRNA aminoacylation is a relic that dates back to the invention of the genetic code in the RNA World, a model for the assignment of amino acids in the codon table can be derived. The model implies that the stop codon was always there, as the codon whose tRNA cannot be charged with any amino acid, and makes the prediction of an ultimate differentiation step, which is found to correspond to the codon assignment of the 22nd amino acid pyrrolysine in archaebacteria. PMID:17164478

  9. New Clues to Sleeping Sickness

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_161284.html New Clues to Sleeping Sickness Disease-causing parasites found ... people with no symptoms of the disease, a new study finds. Sleeping sickness affects 4,000 to ...

  10. Classifying the Context Clues in Children's Text

    ERIC Educational Resources Information Center

    Dowds, Susan J. Parault; Haverback, Heather Rogers; Parkinson, Meghan M.

    2016-01-01

    This study aimed to determine which types of context clues exist in children's texts and whether it is possible for experts to identify reliably those clues. Three experienced coders used Ames' clue set as a foundation for a system to classify context clues in children's text. Findings showed that the adjustments to Ames' system resulted in 15…

  11. Molecular Epidemiology of Malaria

    PubMed Central

    Conway, David J.

    2007-01-01

    Malaria persists as an undiminished global problem, but the resources available to address it have increased. Many tools for understanding its biology and epidemiology are well developed, with a particular richness of comparative genome sequences. Targeted genetic manipulation is now effectively combined with in vitro culture assays on the most important human parasite, Plasmodium falciparum, and with in vivo analysis of rodent and monkey malaria parasites in their laboratory hosts. Studies of the epidemiology, prevention, and treatment of human malaria have already been influenced by the availability of molecular methods, and analyses of parasite polymorphisms have long had useful and highly informative applications. However, the molecular epidemiology of malaria is currently undergoing its most substantial revolution as a result of the genomic information and technologies that are available in well-resourced centers. It is a challenge for research agendas to face the real needs presented by a disease that largely exists in extremely resource-poor settings, but it is one that there appears to be an increased willingness to undertake. To this end, developments in the molecular epidemiology of malaria are reviewed here, emphasizing aspects that may be current and future priorities. PMID:17223628

  12. Epidemiologic clues to inflammatory bowel disease.

    PubMed

    Bernstein, Charles N

    2010-12-01

    In this article, the recent literature exploring the epidemiology of inflammatory bowel disease (IBD) is reviewed. Epidemiologic studies present data on disease burden, but may also provide clues to disease etiology. The emergence of IBD in developing nations warrants a systematic search for environmental changes in those countries to explain the evolution of IBD. The hygiene hypothesis suggests that an alteration in the microbial environment experienced by the host facilitates the evolution of chronic immune-mediated diseases. One complex database study suggested that areas with high species richness of human intestinal helminthes are areas with genetic changes in interleukin gene loci. In other words, over the years, the microbial ecology has affected human genetics, which in turn would have an impact on immune responses. Other factors affect the gut microbiome, and several studies have explored the increase in incidence of IBD in relation to such factors as exogenous infections, use of antibiotics, and diet.

  13. Population genetics structure of Plasmodium vivax circumsporozoite protein during the elimination process in low and unstable malaria transmission areas, southeast of Iran.

    PubMed

    Shabani, Samaneh Hemati; Zakeri, Sedigheh; Mehrizi, Akram Abouie; Mortazavi, Yousef; Djadid, Navid Dinparast

    2016-08-01

    In Iran, the prevalence of Plasmodium falciparum and Plasmodium vivax has dropped after a national malaria elimination program was launched. To estimate the likelihood of success and to measure the outcome of malaria intervention tools during elimination programs (2008-2012), the population genetic surveys of Iranian P. vivax isolates (n=60) were carried out using the CSP genetic marker. The results were compared with a similar work that was carried out during a control phase (2000-2003) in the same study areas. Based on PCR-RFLP analysis, 49 (81.67%) of 60 studied samples were VK210 and 11 (18.33%) were VK247 with no mixed genotypes. However, 10.97% of P. vivax isolates of control phase harbored the mixed genotypes. Sequencing analysis of 50 pvcsp gene showed 14 distinct haplotypes, of which 11 and 3 were VK210 and VK247 types, respectively. However, during the control phase, 19 distinct subtypes (11 VK210 and 8 VK247) were reported. Also, 7 of 11 VK210 and the VK247F subtypes were new, and 3 out of 7 new VK210 and VK247F were isolated from the patients with Pakistani nationality. The lower nucleotide diversity per site (π=0.02017±0.00436 and π=0.04525±0.00255) and haplotype diversity (Hd=0.513±0.093 and Hd=0.691±0.128) as well as lower In/Del haplotype [Hd(i)=0.243 and 0] and nucleotide diversity [π(i)=0.00078 and 0] were recorded for VK210 and VK247of the elimination samples, respectively. In conclusion, the comparison of PRMs and RATs in CRR along with the polymorphism analysis of the sequence lengths, SNPs, and In/Del polymorphisms in all analyzed samples showed lower genetic diversity for PvCSP in the elimination samples. Also, although there is a turnover of P. vivax parasite genotypes in the study areas, reduction in genetic diversity and transmission was detected due to scaling-up of the intervention tools during an elimination program in Iran. This notable challenge of the elimination program must be taken into account and controlled by active

  14. Malaria vaccine.

    PubMed

    1994-05-01

    Some have argued that the vaccine against malaria developed by Manuel Pattaroyo, a Colombian scientist, is being tested prematurely in humans and that it is unlikely to be successful. While the Pattaroyo vaccine has been shown to confer protection against the relatively mild malaria found in Colombia, doubts exist over whether it will be effective in Africa. Encouraging first results, however, are emerging from field tests in Tanzania. The vaccine triggered a strong new immune response, even in individuals previously exposed to malaria. Additional steps must be taken to establish its impact upon mortality and morbidity. Five major trials are underway around the world. The creator estimates that the first ever effective malaria vaccine could be available for widespread use within five years and he has no intention of securing a patent for the discovery. In another development, malaria specialists from 35 African countries convened at an international workshop in Zimbabwe to compare notes. Participants disparaged financial outlays for the fight against malaria equivalent to 2% of total AIDS funding as insufficient; noted intercountry differences in prevention, diagnosis, and treatment; and found information exchange between anglophone and francophone doctors to be generally poor. PMID:12287671

  15. Selection of drug resistance-mediating Plasmodium falciparum genetic polymorphisms by seasonal malaria chemoprevention in Burkina Faso.

    PubMed

    Somé, Anyirékun Fabrice; Zongo, Issaka; Compaoré, Yves-Daniel; Sakandé, Souleymane; Nosten, François; Ouédraogo, Jean-Bosco; Rosenthal, Philip J

    2014-07-01

    Seasonal malaria chemoprevention (SMC), with regular use of amodiaquine plus sulfadoxine-pyrimethamine (AQ/SP) during the transmission season, is now a standard malaria control measure in the Sahel subregion of Africa. Another strategy under study is SMC with dihydroartemisinin plus piperaquine (DP). Plasmodium falciparum single nucleotide polymorphisms (SNPs) in P. falciparum crt (pfcrt), pfmdr1, pfdhfr, and pfdhps are associated with decreased response to aminoquinoline and antifolate antimalarials and are selected by use of these drugs. To characterize selection by SMC of key polymorphisms, we assessed 13 SNPs in P. falciparum isolated from children aged 3 to 59 months living in southwestern Burkina Faso and randomized to receive monthly DP or AQ/SP for 3 months in 2009. We compared SNP prevalence before the onset of SMC and 1 month after the third treatment in P. falciparum PCR-positive samples from 120 randomly selected children from each treatment arm and an additional 120 randomly selected children from a control group that did not receive SMC. The prevalence of relevant mutations was increased after SMC with AQ/SP. Significant selection was seen for pfcrt 76T (68.5% to 83.0%, P = 0.04), pfdhfr 59R (54.8% to 83.3%, P = 0.0002), and pfdhfr 108N (55.0% to 87.2%, P = 0.0001), with trends toward selection of pfmdr1 86Y, pfdhfr 51I, and pfdhps 437G. After SMC with DP, only borderline selection of wild-type pfmdr1 D1246 (mutant; 7.7% to 0%, P = 0.05) was seen. In contrast to AQ/SP, SMC with DP did not clearly select for known resistance-mediating polymorphisms. SMC with AQ/SP, but not DP, may hasten the development of resistance to components of this regimen. (This study has been registered at ClinicalTrials.gov under registration no. NCT00941785.).

  16. Designing malaria vaccines to circumvent antigen variability.

    PubMed

    Ouattara, Amed; Barry, Alyssa E; Dutta, Sheetij; Remarque, Edmond J; Beeson, James G; Plowe, Christopher V

    2015-12-22

    Prospects for malaria eradication will be greatly enhanced by an effective vaccine, but parasite genetic diversity poses a major impediment to malaria vaccine efficacy. In recent pre-clinical and field trials, vaccines based on polymorphic Plasmodium falciparum antigens have shown efficacy only against homologous strains, raising the specter of allele-specific immunity such as that which plagues vaccines against influenza and HIV. The most advanced malaria vaccine, RTS,S, targets relatively conserved epitopes on the P. falciparum circumsporozoite protein. After more than 40 years of development and testing, RTS,S, has shown significant but modest efficacy against clinical malaria in phase 2 and 3 trials. Ongoing phase 2 studies of an irradiated sporozoite vaccine will ascertain whether the full protection against homologous experimental malaria challenge conferred by high doses of a whole organism vaccine can provide protection against diverse strains in the field. Here we review and evaluate approaches being taken to design broadly cross-protective malaria vaccines.

  17. The role of vitamin D in malaria.

    PubMed

    Lương, Khanh Vinh Quốc; Nguyễn, Lan Thi Hoàng

    2015-01-15

    An abnormal calcium-parathyroid hormone (PTH)-vitamin D axis has been reported in patients with malaria infection. A role for vitamin D in malaria has been suggested by many studies. Genetic studies have identified numerous factors that link vitamin D to malaria, including human leukocyte antigen genes, toll-like receptors, heme oxygenase-1, angiopoietin-2, cytotoxic T lymphocyte antigen-4, nucleotide-binding oligomerization domain-like receptors, and Bcl-2. Vitamin D has also been implicated in malaria via its effects on the Bacillus Calmette-Guerin (BCG) vaccine, matrix metalloproteinases, mitogen-activated protein kinase pathways, prostaglandins, reactive oxidative species, and nitric oxide synthase. Vitamin D may be important in malaria; therefore, additional research on its role in malaria is needed.

  18. Ethical aspects of malaria control and research.

    PubMed

    Jamrozik, Euzebiusz; de la Fuente-Núñez, Vânia; Reis, Andreas; Ringwald, Pascal; Selgelid, Michael J

    2015-01-01

    Malaria currently causes more harm to human beings than any other parasitic disease, and disproportionally affects low-income populations. The ethical issues raised by efforts to control or eliminate malaria have received little explicit analysis, in comparison with other major diseases of poverty. While some ethical issues associated with malaria are similar to those that have been the subject of debate in the context of other infectious diseases, malaria also raises distinct ethical issues in virtue of its unique history, epidemiology, and biology. This paper provides preliminary ethical analyses of the especially salient issues of: (i) global health justice, (ii) universal access to malaria control initiatives, (iii) multidrug resistance, including artemisinin-based combination therapy (ACT) resistance, (iv) mandatory screening, (v) mass drug administration, (vi) benefits and risks of primaquine, and (vii) malaria in the context of blood donation and transfusion. Several ethical issues are also raised by past, present and future malaria research initiatives, in particular: (i) controlled infection studies, (ii) human landing catches, (iii) transmission-blocking vaccines, and (iv) genetically-modified mosquitoes. This article maps the terrain of these major ethical issues surrounding malaria control and elimination. Its objective is to motivate further research and discussion of ethical issues associated with malaria--and to assist health workers, researchers, and policy makers in pursuit of ethically sound malaria control practice and policy. PMID:26693920

  19. Ethical aspects of malaria control and research.

    PubMed

    Jamrozik, Euzebiusz; de la Fuente-Núñez, Vânia; Reis, Andreas; Ringwald, Pascal; Selgelid, Michael J

    2015-12-22

    Malaria currently causes more harm to human beings than any other parasitic disease, and disproportionally affects low-income populations. The ethical issues raised by efforts to control or eliminate malaria have received little explicit analysis, in comparison with other major diseases of poverty. While some ethical issues associated with malaria are similar to those that have been the subject of debate in the context of other infectious diseases, malaria also raises distinct ethical issues in virtue of its unique history, epidemiology, and biology. This paper provides preliminary ethical analyses of the especially salient issues of: (i) global health justice, (ii) universal access to malaria control initiatives, (iii) multidrug resistance, including artemisinin-based combination therapy (ACT) resistance, (iv) mandatory screening, (v) mass drug administration, (vi) benefits and risks of primaquine, and (vii) malaria in the context of blood donation and transfusion. Several ethical issues are also raised by past, present and future malaria research initiatives, in particular: (i) controlled infection studies, (ii) human landing catches, (iii) transmission-blocking vaccines, and (iv) genetically-modified mosquitoes. This article maps the terrain of these major ethical issues surrounding malaria control and elimination. Its objective is to motivate further research and discussion of ethical issues associated with malaria--and to assist health workers, researchers, and policy makers in pursuit of ethically sound malaria control practice and policy.

  20. Ecological zones rather than molecular forms predict genetic differentiation in the malaria vector Anopheles gambiae s.s. in Ghana.

    PubMed

    Yawson, Alexander E; Weetman, David; Wilson, Michael D; Donnelly, Martin J

    2007-02-01

    The malaria mosquito Anopheles gambiae s.s. is rapidly becoming a model for studies on the evolution of reproductive isolation. Debate has centered on the taxonomic status of two forms (denoted M and S) within the nominal taxon identified by point mutations in the X-linked rDNA region. Evidence is accumulating that there are significant barriers to gene flow between these forms, but that the barriers are not complete throughout the entire range of their distribution. We sampled populations from across Ghana and southern Burkina Faso, West Africa, from areas where the molecular forms occurred in both sympatry and allopatry. Neither Bayesian clustering methods nor F(ST)-based analysis of microsatellite data found differentiation between the M and S molecular forms, but revealed strong differentiation among different ecological zones, irrespective of M/S status and with no detectable effect of geographical distance. Although no M/S hybrids were found in the samples, admixture analysis detected evidence of contemporary interform gene flow, arguably most pronounced in southern Ghana where forms occur sympatrically. Thus, in the sampled area of West Africa, lack of differentiation between M and S forms likely reflects substantial introgression, and ecological barriers appear to be of greater importance in restricting gene flow.

  1. The IL17F and IL17RA Genetic Variants Increase Risk of Cerebral Malaria in Two African Populations

    PubMed Central

    Conte, Ianina; Poudiougou, Belco; Argiro, Laurent; Cabantous, Sandrine; Dessein, Hélia; Burté, Florence; Oumar, Aboubacar A.; Brown, Biobele J.; Traore, Abdoualye; Afolabi, Nathaniel K.; Barry, Abdoulaye; Omokhodion, Samuel; Ndoumbe, Ursule Ewanda; Shokunbi, Wuraola A.; Sodeinde, Olugbemiro; Doumbo, Ogobara; Dessein, Alain J.

    2015-01-01

    Cerebral malaria (CM) is a neurological complication of infection with Plasmodium falciparum that is partly caused by cytokine-mediated inflammation. It is not known whether interleukin-17 (IL-17) cytokines, which regulate inflammation, control the development of CM. To evaluate the involvement of IL-17 cytokines in CM, we analyzed 46 common polymorphisms in IL17A, IL17F, and IL17RA (which encodes the common receptor chain of the members of the IL-17 family) in two independent African populations. A case-control study involving 115 Nigerian children with CM and 160 controls from the community (CC) showed that IL17F reference single nucleotide polymorphism (SNP) 6913472 (rs6913472) (P = 0.004; odds ratio [OR] = 3.12), IL17F rs4715291 (P = 0.004; OR = 2.82), IL17RA rs12159217 (P = 0.01; OR = 2.27), and IL17RA rs41396547 (P = 0.026; OR = 3.15) were independently associated with CM. A replication study was performed in 240 nuclear Malian family trios (two parents with one CM child). We replicated the association for 3 SNPs, IL17F rs6913472 (P = 0.03; OR = 1.39), IL17RA rs12159217 (P = 0.01; OR = 1.52), and IL17RA rs41396547 (P = 0.04; OR = 3.50). We also found that one additional SNP, IL17RA rs41433045, in linkage disequilibrium (LD) with rs41396547, was associated with CM in both Nigeria and Mali (P = 0.002; OR = 4.12 in the combined sample). We excluded the possibility that SNPs outside IL17F and IL17RA, in strong LD with the associated SNPs, could account for the observed associations. Furthermore, the results of a functional study indicated that the aggravating GA genotype of IL17F rs6913472 was associated with lower IL-17F concentrations. Our findings show for the first time that IL17F and IL17RA polymorphisms modulate susceptibility to CM and provide evidence that IL-17F protects against CM. PMID:26667835

  2. Categorical complexities of Plasmodium falciparum malaria in individuals is associated with genetic variations in ADORA2A and GRK5 genes.

    PubMed

    Gupta, Himanshu; Jain, Aditya; Saadi, Abdul Vahab; Vasudevan, Thanvanthri G; Hande, Manjunath H; D'Souza, Sydney C; Ghosh, Susanta K; Umakanth, Shashikiran; Satyamoorthy, Kapaettu

    2015-08-01

    In the erythrocytes, malaria parasite entry and infection is mediated through complex membrane sorting and signaling processes. We investigated the effects of single-locus and multilocus interactions to test the hypothesis that the members of the GPCR family genes, adenosine A2a receptor (ADORA2A) and G-protein coupled receptor kinase5 (GRK5), may contribute to the pathogenesis of malaria caused by Plasmodium falciparum (Pf) independently or through complex interactions. In a case-control study of adults, individuals affected by Pf malaria (complicated n=168; uncomplicated n=282) and healthy controls (n=450) were tested for their association to four known SNPs in GRK5 (rs2230345, rs2275036, rs4752307 and rs11198918) and two in ADORA2A (rs9624472 and rs5751876) genes with malaria susceptibility, using techniques of polymerase chain reaction-restriction fragment length polymorphisms and direct DNA sequencing. Single-locus analysis showed significant association of 2 SNPs; rs5751876 (OR=3.2(2.0-5.2); p=0.0006) of ADORA2A and rs2230345 (OR=0.3(0.2-0.5); p=0.0006) of GRK5 with malaria. The mean of the serum creatinine levels were significantly higher in patients with variant GG (p=0.006) of rs9624472 in ADORA2A gene compared to AA and AG genotypes in complicated Pf malaria cases, with the G allele also showing increased risk for malaria (OR=1.3(1.1-1.6); p=0.017). Analyses of predicted haplotypes of the two ADORA2A and the four GRK5 SNPs have identified the haplotypes that conferred risk as well as resistance to malaria with statistical significance. Molecular docking analysis of evolutionary rs2230345 SNP indicated a stable activity of GRK5 for the mutant allele compared to the wild type. Further, generalized multifactor dimensionality reduction to test the contribution of individual effects of the six polymorphisms and higher-order interactions to risk of symptoms/clinical complications of malaria suggested a best six-locus model showing statistical significance. The

  3. Cerebral malaria.

    PubMed

    Postels, Douglas G; Birbeck, Gretchen L

    2013-01-01

    Malaria, the most significant parasitic disease of man, kills approximately one million people per year. Half of these deaths occur in those with cerebral malaria (CM). The World Health Organization (WHO) defines CM as an otherwise unexplained coma in a patient with malarial parasitemia. Worldwide, CM occurs primarily in African children and Asian adults, with the vast majority (greater than 90%) of cases occurring in children 5 years old or younger in sub-Saharan Africa. The pathophysiology of the disease is complex and involves infected erythrocyte sequestration, cerebral inflammation, and breakdown of the blood-brain barrier. A recently characterized malarial retinopathy is visual evidence of Plasmodium falciparum's pathophysiological processes occurring in the affected patient. Treatment consists of supportive care and antimalarial administration. Thus far, adjuvant therapies have not been shown to improve mortality rates or neurological outcomes in children with CM. For those who survive CM, residual neurological abnormalities are common. Epilepsy, cognitive impairment, behavioral disorders, and gross neurological deficits which include motor, sensory, and language impairments are frequent sequelae. Primary prevention strategies, including bed nets, vaccine development, and chemoprophylaxis, are in varied states of development and implementation. Continuing efforts to find successful primary prevention options and strategies to decrease neurological sequelae are needed. PMID:23829902

  4. Malaria vaccine.

    PubMed

    Khurana, S K; Talib, V H

    1996-12-01

    Recently it has become evident that he same candidate antigen can be shared by several of the parasite stages, and thus the concept of a multistage vaccine is becoming more and more attractive. A TDR Task Force evaluated the promise and stage of development of some 20 existing asexual blood stage candidate antigens and prepared a strategy for their development leading to clinical testing and field trials, Amongst these are merozoite surface protein 1 (MSP-1), Serine Rich Antigen (SERA), Apical Membrane Antigen (AMA-1), and Erythrocyte Binding Antigen (EBA). A field study conducted in Tanzanian children showed that the SPf66 Colombian vaccine was safe, induced antibodies, and reduced the risk of developing clinical malaria by around 30%. This study, confirmed the potential of the vaccine to confer partial protection in areas of high as well as low intensity of transmission. Pfs25 is a leading candidate antigen for a transmission blocking vaccine. It is found in the ookinete stage of the parasite in the mosquito midgut. Gramme amounts of GMP-grade material have been produced and a vaccine based on the Pfs25 antigen formulated with alum should have gone into phase I and II clinical trials in the USA and Africa during 1995. Because the first malaria prototype vaccine to be tried out in people on a large scale has been the polymerized synthetic peptide developed by patarroye on the basis of the SPf66 antigen of P. faliciparum, the results are with much interest. It is still premature to predict the effectiveness of this vaccine globally, but its development will encourage further progress in a fields that has repeatedly been characterized by raised and then dashed drops. These various vaccines are based on the classical approach to vaccination, which is to raise host immunity against the parasite so as to reduce parasite densities or to sterilize an infection. A newer approach is development of antidisease vaccines which aim to alleviate morbidity by suppressing

  5. Harnessing genomics and genome biology to understand malaria biology.

    PubMed

    Volkman, Sarah K; Neafsey, Daniel E; Schaffner, Stephen F; Park, Daniel J; Wirth, Dyann F

    2012-05-01

    Malaria is an important human disease and is the target of a global eradication campaign. New technological and informatics advancements in population genomics are being leveraged to identify genetic loci under selection in the malaria parasite and to find variants that are associated with key clinical phenotypes, such as drug resistance. This article provides a timely Review of how population-genetics-based strategies are being applied to Plasmodium falciparum both to identify genetic loci as key targets of interventions and to develop monitoring and surveillance tools that are crucial for the successful elimination and eradication of malaria.

  6. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is the most important vector-borne tropical disease (Collins and Paskewitz, 1995) and there is no simple and universally applicable form of vector control. While new methods such as malaria vaccine or genetic manipulation of mosquitoes are being explored in the laboratories, the need for more field research on malaria transmission remains very strong. For the foreseeable future many malaria programs must focus on controlling the vector, the anopheline mosquito, often under the specter of shrinking budgets. Therefore information on which human populations are at the greatest risk is especially valuable when allocating scarce resources. The goal of the Radar Monitoring of Wetlands for Malaria Control Project is to demonstrate the feasibility of using Radarsat or other comparable satellite radar imaging systems to determine where and when human populations are at greatest risk for contracting malaria. The study area is northern Belize, a region with abundant wetlands and a potentially serious malaria problem. A key aspect of this study is the analysis of multi-temporal satellite imagery to track seasonal flooding of anopheline mosquito breeding sites. Radarsat images of the test site in Belize have been acquired one to three times a month over the last year, however,, to date only one processed image has been received from the Alaska SAR Facility for analysis. Therefore analysis at this stage is focussed on determining the radar backscatter characteristics of known anopheline breeding sites, with future work to be dedicated toward seasonal changes.

  7. Mouse-Based Research on Quiescent Primate Malaria Parasites.

    PubMed

    Markus, Miles B

    2016-04-01

    Mice engrafted with primate tissue make two important plasmodial dormancy-related questions researchable. The first is concerned with whether latent merozoites in the lymphatic system can give rise to relapse-like, recurrent malaria in primates. The second is that genetic evidence of hypnozoite activation as the source of relapsing primate malaria can be looked for.

  8. Ancient Magnetic Reversals: Clues to the Geodynamo.

    ERIC Educational Resources Information Center

    Hoffman, Kenneth A.

    1988-01-01

    Discusses the question posed by some that the earth's magnetic field may reverse. States that rocks magnetized by ancient fields may offer clues to the underlying reversal mechanism in the earth's core. (TW)

  9. Malaria and Travelers

    MedlinePlus

    ... a CDC Malaria Branch clinician. malaria@cdc.gov File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  10. Malaria Treatment (United States)

    MedlinePlus

    ... a CDC Malaria Branch clinician. malaria@cdc.gov File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  11. Spleen enlargement and genetic diversity of Plasmodium falciparum infection in two ethnic groups with different malaria susceptibility in Mali, West Africa.

    PubMed

    Bereczky, S; Dolo, A; Maiga, B; Hayano, M; Granath, F; Montgomery, S M; Daou, M; Arama, C; Troye-Blomberg, M; Doumbo, O K; Färnert, A

    2006-03-01

    The high resistance to malaria in the nomadic Fulani population needs further understanding. The ability to cope with multiclonal Plasmodium falciparum infections was assessed in a cross-sectional survey in the Fulani and the Dogon, their sympatric ethnic group in Mali. The Fulani had lower parasite prevalence and densities and more prominent spleen enlargement. Spleen rates in children aged 2-9 years were 75% in the Fulani and 44% in the Dogon (P<0.001). There was no difference in number of P. falciparum genotypes, defined by merozoite surface protein 2 polymorphism, with mean values of 2.25 and 2.11 (P=0.503) in the Dogon and Fulani, respectively. Spleen rate increased with parasite prevalence, density and number of co-infecting clones in asymptomatic Dogon. Moreover, splenomegaly was increased in individuals with clinical malaria in the Dogon, odds ratio 3.67 (95% CI 1.65-8.15, P=0.003), but not found in the Fulani, 1.36 (95% CI 0.53-3.48, P=0.633). The more susceptible Dogon population thus appear to respond with pronounced spleen enlargement to asymptomatic multiclonal infections and acute disease whereas the Fulani have generally enlarged spleens already functional for protection. The results emphasize the importance of spleen function in protective immunity to the polymorphic malaria parasite.

  12. Malaria in selected non-Amazonian countries of Latin America

    PubMed Central

    Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Ángel; Padilla, Julio Cesar; Escalante, Ananias A.; Beier, John C.; Herrera, Socrates

    2011-01-01

    Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent’s contribution to the global malaria burden is small, at least 1 to 1.2 million malaria cases are reported annually. Sixty per cent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2 %) followed by P. falciparum (25.7 %) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA

  13. Malaria in selected non-Amazonian countries of Latin America.

    PubMed

    Arevalo-Herrera, Myriam; Quiñones, Martha Lucia; Guerra, Carlos; Céspedes, Nora; Giron, Sandra; Ahumada, Martha; Piñeros, Juan Gabriel; Padilla, Norma; Terrientes, Zilka; Rosas, Angel; Padilla, Julio Cesar; Escalante, Ananias A; Beier, John C; Herrera, Socrates

    2012-03-01

    Approximately 170 million inhabitants of the American continent live at risk of malaria transmission. Although the continent's contribution to the global malaria burden is small, at least 1-1.2 million malaria cases are reported annually. Sixty percent of the malaria cases occur in Brazil and the other 40% are distributed in 20 other countries of Central and South America. Plasmodium vivax is the predominant species (74.2%) followed by P. falciparum (25.7%) and P. malariae (0.1%), and no less than 10 Anopheles species have been identified as primary or secondary malaria vectors. Rapid deforestation and agricultural practices are directly related to increases in Anopheles species diversity and abundance, as well as in the number of malaria cases. Additionally, climate changes profoundly affect malaria transmission and are responsible for malaria epidemics in some regions of South America. Parasite drug resistance is increasing, but due to bio-geographic barriers there is extraordinary genetic differentiation of parasites with limited dispersion. Although the clinical spectrum ranges from uncomplicated to severe malaria cases, due to the generally low to middle transmission intensity, features such as severe anemia, cerebral malaria and other complications appear to be less frequent than in other endemic regions and asymptomatic infections are a common feature. Although the National Malaria Control Programs (NMCP) of different countries differ in their control activities these are all directed to reduce morbidity and mortality by using strategies like health promotion, vector control and impregnate bed nets among others. Recently, international initiatives such as the Malaria Control Program in Andean-country Border Regions (PAMAFRO) (implemented by the Andean Organism for Health (ORAS) and sponsored by The Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)) and The Amazon Network for the Surveillance of Antimalarial Drug Resistance (RAVREDA) (sponsored by

  14. Heterogeneities of the malaria vectorial system in tropical Africa and their significance in malaria epidemiology and control

    PubMed Central

    Coluzzi, Mario

    1984-01-01

    The most important units of the malaria vectorial system in tropical Africa are included in the Linnaean taxon Anopheles gambiae, which has been split into six sibling species recognized by the application of genetic techniques. More recent studies have shown further complexities involving chromosomal inversion polymorphism in some vector populations as well as incipient speciation processes. The significance for field research in malaria of the splitting of a morphological taxon into genetically defined units and subunits is discussed. PMID:6335681

  15. Incidence of Severe Malaria Syndromes and Status of Immune Responses among Khat Chewer Malaria Patients in Ethiopia

    PubMed Central

    Ketema, Tsige

    2015-01-01

    Although more emphasis has been given to the genetic and environmental factors that determine host vulnerability to malaria, other factors that might have a crucial role in burdening the disease have not been evaluated yet. Therefore, this study was designed to assess the effect of khat chewing on the incidence of severe malaria syndromes and immune responses during malaria infection in an area where the two problems co-exist. Clinical, physical, demographic, hematological, biochemical and immunological data were collected from Plasmodium falciparum mono-infected malaria patients (age ≥ 10 years) seeking medication in Halaba Kulito and Jimma Health Centers. In addition, incidences of severe malaria symptoms were assessed. The data were analyzed using SPSS (version 20) software. Prevalence of current khat chewer malaria patients was 57.38% (95%CI =53-61.56%). Malaria symptoms such as hyperpyrexia, prostration and hyperparasitemia were significantly lower (P<0.05) among khat chewer malaria patients. However, relative risk to jaundice and renal failure were significantly higher (P<0.05) in khat chewers than in non-khat chewer malaria patients. Longer duration of khat use was positively associated with incidence of anemia. IgM and IgG antibody titers were significantly higher (P<0.05) among khat chewer malaria patients than among malaria positive non-chewers. Although levels of IgG subclasses in malaria patients did not show significant differences (P>0.05), IgG3 antibody was significantly higher (P<0.001) among khat chewer malaria patients. Moreover, IgM, IgG, IgG1and IgG3 antibodies had significant negative association (P<0.001) with parasite burden and clinical manifestations of severe malaria symptoms, but not with severe anemia and hypoglycemia. Additionally, a significant increment (P<0.05) in CD4+ T-lymphocyte population was observed among khat users. Khat might be an important risk factor for incidence of some severe malaria complications. Nevertheless, it

  16. Malaria in South Asia: prevalence and control.

    PubMed

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajan, Satish N; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2012-03-01

    The "Malaria Evolution in South Asia" (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US-India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public-private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012.

  17. Malaria in South Asia: Prevalence and control

    PubMed Central

    Kumar, Ashwani; Chery, Laura; Biswas, Chinmoy; Dubhashi, Nagesh; Dutta, Prafulla; Dua, Virendra Kumar; Kacchap, Mridula; Kakati, Sanjeeb; Khandeparkar, Anar; Kour, Dalip; Mahajanj, Satish N.; Maji, Ardhendu; Majumder, Partha; Mohanta, Jagadish; Mohapatra, Pradyumna K.; Narayanasamy, Krishnamoorthy; Roy, Krishnangshu; Shastri, Jayanthi; Valecha, Neena; Vikash, Rana; Wani, Reena; White, John; Rathod, Pradipsinh K

    2013-01-01

    The “Malaria Evolution in South Asia” (MESA) program project is an International Center of Excellence for Malaria Research (ICEMR) sponsored by the US National Institutes of Health. This US–India collaborative program will study the origin of genetic diversity of malaria parasites and their selection on the Indian subcontinent. This knowledge should contribute to a better understanding of unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and Plasmodium vivax infections. In this first of two reviews, we highlight malaria prevalence in India. In particular, we draw attention to variations in distribution of different human-parasites and different vectors, variation in drug resistance traits, and multiple forms of clinical presentations. Uneven malaria severity in India is often attributed to large discrepancies in health care accessibility as well as human migrations within the country and across neighboring borders. Poor access to health care goes hand in hand with poor reporting from some of the same areas, combining to possibly distort disease prevalence and death from malaria in some parts of India. Corrections are underway in the form of increased resources for disease control, greater engagement of village-level health workers for early diagnosis and treatment, and possibly new public–private partnerships activities accompanying traditional national malaria control programs in the most severely affected areas. A second accompanying review raises the possibility that, beyond uneven health care, evolutionary pressures may alter malaria parasites in ways that contribute to severe disease in India, particularly in the NE corridor of India bordering Myanmar Narayanasamy et al., 2012. PMID:22248528

  18. Molecular entomology and prospects for malaria control.

    PubMed Central

    Collins, F. H.; Kamau, L.; Ranson, H. A.; Vulule, J. M.

    2000-01-01

    During the past decade, the techniques of molecular and cell biology have been embraced by many scientists doing research on anopheline vectors of malaria parasites. Some of the most important research advances in molecular entomology have concerned the development of sophisticated molecular tools for procedures such as genetic and physical mapping and germ line transformation. Major advances have also been made in the study of specific biological processes such as insect defence against pathogens and the manner in which malaria parasites and their anopheline hosts interact during sporogony. One of the most important highlights of this research trend has been the emergence during the past year of a formal international Anopheles gambiae genome project, which at present includes investigators in several laboratories in Europe and the USA. Although much of this molecular research is directed towards the development of malaria control strategies that are probably many years from implementation, there are some important areas of molecular entomology that may have a more near-term impact on malaria control. We highlight developments over the past decade in three such areas that we believe can make important contributions to the development of near-term malaria control strategies. These areas are anopheline species identification, the detection and monitoring of insecticide susceptibility/resistance in wild anopheline populations and the determination of the genetic structure of anopheline populations. PMID:11196488

  19. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria.

    PubMed

    Bordbar, Bita; Tuikue Ndam, Nicaise; Renard, Emmanuelle; Jafari-Guemouri, Sayeh; Tavul, Livingstone; Jennison, Charlie; Gnidehou, Sédami; Tahar, Rachida; Gamboa, Dionicia; Bendezu, Jorge; Menard, Didier; Barry, Alyssa E; Deloron, Philippe; Sabbagh, Audrey

    2014-07-01

    In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection.

  20. Sri Lanka Malaria Maps

    PubMed Central

    Briët, Olivier JT; Gunawardena, Dissanayake M; van der Hoek, Wim; Amerasinghe, Felix P

    2003-01-01

    Background Despite a relatively good national case reporting system in Sri Lanka, detailed maps of malaria distribution have not been publicly available. Methods In this study, monthly records over the period 1995 – 2000 of microscopically confirmed malaria parasite positive blood film readings, at sub-district spatial resolution, were used to produce maps of malaria distribution across the island. Also, annual malaria trends at district resolution were displayed for the period 1995 – 2002. Results The maps show that Plasmodium vivax malaria incidence has a marked variation in distribution over the island. The incidence of Plasmodium falciparum malaria follows a similar spatial pattern but is generally much lower than that of P. vivax. In the north, malaria shows one seasonal peak in the beginning of the year, whereas towards the south a second peak around June is more pronounced. Conclusion This paper provides the first publicly available maps of both P. vivax and P. falciparum malaria incidence distribution on the island of Sri Lanka at sub-district resolution, which may be useful to health professionals, travellers and travel medicine professionals in their assessment of malaria risk in Sri Lanka. As incidence of malaria changes over time, regular updates of these maps are necessary. PMID:12914667

  1. Clues in diagnosing congenital heart disease.

    PubMed Central

    Moss, A. J.

    1992-01-01

    A number of practical office and bedside clues to cardiac disease in infants and children have been passed on through the years. They relate to the history, to the inspection and palpation components of the physical examination, and to knowledge of the specific cardiac defects that are likely to be associated with certain clinical syndromes. With the possible exception of coarctation of the aorta, the clues are not diagnostically specific. In many instances, however, they serve to narrow a broad array of diagnostic possibilities to 2 or 3 and, with the aid of other clues and auscultation, they can often be distinguished from one another. When a primary care physician is confronted with a child who has an incidental murmur that is "probably" innocent but could be organic, useful clues favoring an organic murmur are a history of congenital heart disease in a first-degree relative; a history of maternal rubella syndrome, alcohol use, or teratogenic drug use during pregnancy; a history of inappropriate sweating; a history of syncope, chest pain, or squatting; maternal diabetes mellitus; premature birth; birth at a high altitude; cyanosis; abnormal pulsations; recurrent bronchiolitis or pneumonia; chronic unexplained hoarseness; asymmetric facies with crying; and a physical appearance suggestive of a clinical syndrome. PMID:1574882

  2. Malaria ecotypes and stratification.

    PubMed

    Schapira, Allan; Boutsika, Konstantina

    2012-01-01

    To deal with the variability of malaria, control programmes need to stratify their malaria problem into a number of smaller units. Such stratification may be based on the epidemiology of malaria or on its determinants such as ecology. An ecotype classification was developed by the World Health Organization (WHO) around 1990, and it is time to assess its usefulness for current malaria control as well as for malaria modelling on the basis of published research. Journal and grey literature was searched for articles on malaria or Anopheles combined with ecology or stratification. It was found that all malaria in the world today could be assigned to one or more of the following ecotypes: savanna, plains and valleys; forest and forest fringe; foothill; mountain fringe and northern and southern fringes; desert fringe; coastal and urban. However, some areas are in transitional or mixed zones; furthermore, the implications of any ecotype depend on the biogeographical region, sometimes subregion, and finally, the knowledge on physiography needs to be supplemented by local information on natural, anthropic and health system processes including malaria control. Ecotyping can therefore not be seen as a shortcut to determine control interventions, but rather as a framework to supplement available epidemiological and entomological data so as to assess malaria situations at the local level, think through the particular risks and opportunities and reinforce intersectoral action. With these caveats, it does however emerge that several ecotypic distinctions are well defined and have relatively constant implications for control within certain biogeographic regions. Forest environments in the Indo-malay and the Neotropics are, with a few exceptions, associated with much higher malaria risk than in adjacent areas; the vectors are difficult to control, and the anthropic factors also often converge to impose constraints. Urban malaria in Africa is associated with lower risk than savanna

  3. Investigation of Host Candidate Malaria-Associated Risk/Protective SNPs in a Brazilian Amazonian Population

    PubMed Central

    da Silva Santos, Simone; Clark, Taane G.; Campino, Susana; Suarez-Mutis, Martha Cecília; Rockett, Kirk A.; Kwiatkowski, Dominic P.; Fernandes, Octavio

    2012-01-01

    The Brazilian Amazon is a hypo-endemic malaria region with nearly 300,000 cases each year. A variety of genetic polymorphisms, particularly in erythrocyte receptors and immune response related genes, have been described to be associated with susceptibility and resistance to malaria. In order to identify polymorphisms that might be associated with malaria clinical outcomes in a Brazilian Amazonian population, sixty-four human single nucleotide polymorphisms in 37 genes were analyzed using a Sequenom massARRAY iPLEX platform. A total of 648 individuals from two malaria endemic areas were studied, including 535 malaria cases (113 individuals with clinical mild malaria, 122 individuals with asymptomatic infection and 300 individuals with history of previous mild malaria) and 113 health controls with no history of malaria. The data revealed significant associations (p<0.003) between one SNP in the IL10 gene (rs1800896) and one SNP in the TLR4 gene (rs4986790) with reduced risk for clinical malaria, one SNP in the IRF1 gene (rs2706384) with increased risk for clinical malaria, one SNP in the LTA gene (rs909253) with protection from clinical malaria and one SNP in the TNF gene (RS1800750) associated with susceptibility to clinical malaria. Also, a new association was found between a SNP in the CTL4 gene (rs2242665), located at the major histocompatibility complex III region, and reduced risk for clinical malaria. This study represents the first association study from an Amazonian population involving a large number of host genetic polymorphisms with susceptibility or resistance to Plasmodium infection and malaria outcomes. Further studies should include a larger number of individuals, refined parameters and a fine-scale map obtained through DNA sequencing to increase the knowledge of the Amazonian population genetic diversity. PMID:22615793

  4. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  5. Declining Efficacy of Artemisinin Combination Therapy Against P. Falciparum Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

    PubMed Central

    Phyo, Aung Pyae; Ashley, Elizabeth A.; Anderson, Tim J. C.; Bozdech, Zbynek; Carrara, Verena I.; Sriprawat, Kanlaya; Nair, Shalini; White, Marina McDew; Dziekan, Jerzy; Ling, Clare; Proux, Stephane; Konghahong, Kamonchanok; Jeeyapant, Atthanee; Woodrow, Charles J.; Imwong, Mallika; McGready, Rose; Lwin, Khin Maung; Day, Nicholas P. J.; White, Nicholas J.; Nosten, Francois

    2016-01-01

    Background. Deployment of mefloquine–artesunate (MAS3) on the Thailand–Myanmar border has led to a sustained reduction in falciparum malaria, although antimalarial efficacy has declined substantially in recent years. The role of Plasmodium falciparum K13 mutations (a marker of artemisinin resistance) in reducing treatment efficacy remains controversial. Methods. Between 2003 and 2013, we studied the efficacy of MAS3 in 1005 patients with uncomplicated P. falciparum malaria in relation to molecular markers of resistance. Results. Polymerase chain reaction (PCR)–adjusted cure rates declined from 100% in 2003 to 81.1% in 2013 as the proportions of isolates with multiple Pfmdr1 copies doubled from 32.4% to 64.7% and those with K13 mutations increased from 6.7% to 83.4%. K13 mutations conferring moderate artemisinin resistance (notably E252Q) predominated initially but were later overtaken by propeller mutations associated with slower parasite clearance (notably C580Y). Those infected with both multiple Pfmdr1 copy number and a K13 propeller mutation were 14 times more likely to fail treatment. The PCR-adjusted cure rate was 57.8% (95% confidence interval [CI], 45.4, 68.3) compared with 97.8% (95% CI, 93.3, 99.3) in patients with K13 wild type and Pfmdr1 single copy. K13 propeller mutation alone was a strong risk factor for recrudescence (P = .009). The combined population attributable fraction of recrudescence associated with K13 mutation and Pfmdr1 amplification was 82%. Conclusions. The increasing prevalence of K13 mutations was the decisive factor for the recent and rapid decline in efficacy of artemisinin-based combination (MAS3) on the Thailand–Myanmar border. PMID:27313266

  6. The rediscovery of malaria parasites of ungulates.

    PubMed

    Templeton, Thomas J; Martinsen, Ellen; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-10-01

    Over a hundred years since their first description in 1913, the sparsely described malaria parasites (genus Plasmodium) of ungulates have been rediscovered using molecular typing techniques. In the span of weeks, three studies have appeared describing the genetic characterization and phylogenetic analyses of malaria parasites from African antelope (Cephalophus spp.) and goat (Capra aegagrus hircus), Asian water buffalo (Bubalus bubalis), and North American white-tailed deer (Odocoileus virginianus). Here we unify the contributions from those studies with the literature on pre-molecular characterizations of ungulate malaria parasites, which are largely based on surveys of Giemsa-reagent stained blood smears. We present a phylogenetic tree generated from all available ungulate malaria parasite sequence data, and show that parasites from African duiker antelope and goat, Asian water buffalo and New World white-tailed deer group together in a clade, which branches early in Plasmodium evolution. Anopheline mosquitoes appear to be the dominant, if not sole vectors for parasite transmission. We pose questions for future phylogenetic studies, and discuss topics that we hope will spur further molecular and cellular studies of ungulate malaria parasites.

  7. The rediscovery of malaria parasites of ungulates.

    PubMed

    Templeton, Thomas J; Martinsen, Ellen; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-10-01

    Over a hundred years since their first description in 1913, the sparsely described malaria parasites (genus Plasmodium) of ungulates have been rediscovered using molecular typing techniques. In the span of weeks, three studies have appeared describing the genetic characterization and phylogenetic analyses of malaria parasites from African antelope (Cephalophus spp.) and goat (Capra aegagrus hircus), Asian water buffalo (Bubalus bubalis), and North American white-tailed deer (Odocoileus virginianus). Here we unify the contributions from those studies with the literature on pre-molecular characterizations of ungulate malaria parasites, which are largely based on surveys of Giemsa-reagent stained blood smears. We present a phylogenetic tree generated from all available ungulate malaria parasite sequence data, and show that parasites from African duiker antelope and goat, Asian water buffalo and New World white-tailed deer group together in a clade, which branches early in Plasmodium evolution. Anopheline mosquitoes appear to be the dominant, if not sole vectors for parasite transmission. We pose questions for future phylogenetic studies, and discuss topics that we hope will spur further molecular and cellular studies of ungulate malaria parasites. PMID:27444556

  8. Pyruvate kinase deficiency in mice protects against malaria.

    PubMed

    Min-Oo, Gundula; Fortin, Anny; Tam, Mi-Fong; Nantel, André; Stevenson, Mary M; Gros, Philippe

    2003-12-01

    The global health impact of malaria is enormous, with an estimated 300-500 million clinical cases and 1 million annual deaths. In humans, initial susceptibility to infection with Plasmodium species, disease severity and ultimate outcome of malaria (self-healing or lethal) are under complex genetic control. Alleles associated with sickle cell anemia, beta-thalassemia and deficiency in glucose-6-phosphate dehydrogenase have a protective effect against malaria and may have been retained by positive selection in areas of endemic malaria. Likewise, genetic variations in erythrocyte antigens and levels of host cytokines affect type and severity of disease. A mouse model of infection with Plasmodium chabaudi was used to study the genetic component of malaria susceptibility. Segregation analyses in informative F2 crosses derived from resistant C57BL/6J and susceptible A/J, C3H and SJL strains using extent of blood stage replication of the parasite and survival as traits mapped three P. chabaudi resistance (Char) loci on chromosomes 9 (Char1), 8 (Char2) and 17 (Char3, MHC-linked). Recombinant congenic strains AcB55 and AcB61 are unusually resistant to malaria despite carrying susceptibility alleles at Char1 and Char2. Malaria resistance in AcB55 and AcB61 is associated with splenomegaly and constitutive reticulocytosis, is inherited in an autosomal recessive fashion and is controlled by a locus on chromosome 3 (Char4). Sequencing of candidate genes from the Char4 region identified a loss-of-function mutation (269T-->A, resulting in the amino acid substitution I90N) in the pyruvate kinase gene (Pklr) that underlies the malaria resistance in AcB55 and AcB61. These results suggest that pyruvate kinase deficiency may similarly protect humans against malaria. PMID:14595440

  9. A review of malaria transmission dynamics in forest ecosystems.

    PubMed

    Kar, Narayani Prasad; Kumar, Ashwani; Singh, Om P; Carlton, Jane M; Nanda, Nutan

    2014-06-09

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized.

  10. A review of malaria transmission dynamics in forest ecosystems

    PubMed Central

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  11. Malaria Epidemiology and Control Within the International Centers of Excellence for Malaria Research.

    PubMed

    Moss, William J; Dorsey, Grant; Mueller, Ivo; Laufer, Miriam K; Krogstad, Donald J; Vinetz, Joseph M; Guzman, Mitchel; Rosas-Aguirre, Angel M; Herrera, Socrates; Arevalo-Herrera, Myriam; Chery, Laura; Kumar, Ashwani; Mohapatra, Pradyumna K; Ramanathapuram, Lalitha; Srivastava, H C; Cui, Liwang; Zhou, Guofa; Parker, Daniel M; Nankabirwa, Joaniter; Kazura, James W

    2015-09-01

    Understanding the epidemiological features and metrics of malaria in endemic populations is a key component to monitoring and quantifying the impact of current and past control efforts to inform future ones. The International Centers of Excellence for Malaria Research (ICEMR) has the opportunity to evaluate the impact of malaria control interventions across endemic regions that differ in the dominant Plasmodium species, mosquito vector species, resistance to antimalarial drugs and human genetic variants thought to confer protection from infection and clinical manifestations of plasmodia infection. ICEMR programs are conducting field studies at multiple sites with the aim of generating standardized surveillance data to improve the understanding of malaria transmission and to monitor and evaluate the impact of interventions to inform malaria control and elimination programs. In addition, these epidemiological studies provide a vast source of biological samples linked to clinical and environmental "meta-data" to support translational studies of interactions between the parasite, human host, and mosquito vector. Importantly, epidemiological studies at the ICEMR field sites are integrated with entomological studies, including the measurement of the entomological inoculation rate, human biting index, and insecticide resistance, as well as studies of parasite genetic diversity and antimalarial drug resistance.

  12. Application of Genomics to Field Investigations of Malaria by the International Centers for Excellence in Malaria Research

    PubMed Central

    Volkman, Sarah K.; Ndiaye, Daouda; Diakite, Mahamadou; Koita, Ousmane; Nwakanma, Davis; Daniels, Rachel; Park, Danny; Neafsey, Dan; Muskavitch, Marc; Krogstad, Don; Sabeti, Pardis; Hartl, Dan; Wirth, Dyann

    2011-01-01

    Success of the global research agenda toward eradication of malaria will depend on development of new tools, including drugs, vaccines, insecticides and diagnostics. Genomic information, now available for the malaria parasites, their mosquito vectors, and human host, can be leveraged to both develop these tools and monitor their effectiveness. Although knowledge of genomic sequences for the malaria parasites, Plasmodium falciparum and P. vivax, have helped advance our understanding of malaria biology, simply knowing this sequence information has not yielded a plethora of new interventions to reduce the burden of malaria. Here we review and provide specific examples of how genomic information has increased our knowledge of parasite biology, focusing on P. falciparum malaria. We then discuss how population genetics can be applied toward the epidemiological and transmission-related goals outlined by the International Centers of Excellence in Malaria Research groups recently established by the National Institutes of Health. Finally, we propose genomics is a research area that can promote coordination and collaboration between various ICEMR groups, and that working together as a community can significantly advance the value of this information toward reduction of the global malaria burden. PMID:22182668

  13. [Malaria in Iraq].

    PubMed

    Shamo, F J

    2001-01-01

    Malaria control campaign started in Iraq in 1957. This made the country largely free of the disease. Since 1991, following the recent war, Iraq has been affected by serious epidemic of P. vivax malaria that started in 3 autonomous governorates and soon involved other parts of the country. There were 49,840 malaria cases in the country in 1995. The national malaria programme personnel did their best to contain and control the epidemic. Active and passive case detection and treatment were introduced. Free of charge drugs are provided at all levels in the endemic area. Vector control includes environmental management, distribution of Gambusia fish, larviciding, indoor residual spraying with pyrithroids. A total of 4134 malaria cases were recorded in the country in 1999. PMID:11548316

  14. Genetic Characterisation of Plasmodium falciparum Isolates with Deletion of the pfhrp2 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis and Control.

    PubMed

    Dorado, Erika Jimena; Okoth, Sheila Akinyi; Montenegro, Lidia Madeline; Diaz, Gustavo; Barnwell, John W; Udhayakumar, Venkatachalam; Murillo Solano, Claribel

    2016-01-01

    Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive

  15. Genetic Characterisation of Plasmodium falciparum Isolates with Deletion of the pfhrp2 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis and Control.

    PubMed

    Dorado, Erika Jimena; Okoth, Sheila Akinyi; Montenegro, Lidia Madeline; Diaz, Gustavo; Barnwell, John W; Udhayakumar, Venkatachalam; Murillo Solano, Claribel

    2016-01-01

    Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive

  16. Genetic Characterisation of Plasmodium falciparum Isolates with Deletion of the pfhrp2 and/or pfhrp3 Genes in Colombia: The Amazon Region, a Challenge for Malaria Diagnosis and Control

    PubMed Central

    Dorado, Erika Jimena; Okoth, Sheila Akinyi; Montenegro, Lidia Madeline; Diaz, Gustavo; Barnwell, John W.; Udhayakumar, Venkatachalam; Murillo Solano, Claribel

    2016-01-01

    Most Plasmodium falciparum-detecting rapid diagnostic tests (RDTs) target histidine-rich protein 2 (PfHRP2). However, P. falciparum isolates with deletion of the pfhrp2 gene and its homolog gene, pfhrp3, have been detected. We carried out an extensive investigation on 365 P. falciparum dried blood samples collected from seven P. falciparum endemic sites in Colombia between 2003 and 2012 to genetically characterise and geographically map pfhrp2- and/or pfhrp3-negative P. falciparum parasites in the country. We found a high proportion of pfhrp2-negative parasites only in Amazonas (15/39; 38.5%), and these parasites were also pfhrp3-negative. These parasites were collected between 2008 and 2009 in Amazonas, while pfhrp3-negative parasites (157/365, 43%) were found in all the sites and from each of the sample collection years evaluated (2003 to 2012). We also found that all pfhrp2- and/or pfhrp3-negative parasites were also negative for one or both flanking genes. Six sub-population clusters were established with 93.3% (14/15) of the pfhrp2-negative parasites grouped in the same cluster and sharing the same haplotype. This haplotype corresponded with the genetic lineage BV1, a multidrug resistant strain that caused two outbreaks reported in Peru between 2010 and 2013. We found this BV1 lineage in the Colombian Amazon as early as 2006. Two new clonal lineages were identified in these parasites from Colombia: the genetic lineages EV1 and F. PfHRP2 sequence analysis revealed high genetic diversity at the amino acid level, with 17 unique sequences identified among 53 PfHRP2 sequences analysed. The use of PfHRP2-based RDTs is not recommended in Amazonas because of the high proportion of parasites with pfhrp2 deletion (38.5%), and implementation of new strategies for malaria diagnosis and control in Amazonas must be prioritised. Moreover, studies to monitor and genetically characterise pfhrp2-negative P. falciparum parasites in the Americas are warranted, given the extensive

  17. What Is Genetic Ancestry Testing?

    MedlinePlus

    ... from relatives or from historical documentation. Examination of DNA variations can provide clues about where a person's ... families with the same surname are related. Mitochondrial DNA testing: This type of testing identifies genetic variations ...

  18. Neurological manifestations of malaria.

    PubMed

    Román, G C; Senanayake, N

    1992-03-01

    The involvement of the nervous system in malaria is reviewed in this paper. Cerebral malaria, the acute encephalopathy which complicates exclusively the infection by Plasmodium falciparum commonly affects children and adolescents in hyperendemic areas. Plugging of cerebral capillaries and venules by clumped, parasitized red cells causing sludging in the capillary circulation is one hypothesis to explain its pathogenesis. The other is a humoral hypothesis which proposes nonspecific, immune-mediated, inflammatory responses with release of vasoactive substances capable of producing endothelial damage and alterations of permeability. Cerebral malaria has a mortality rate up to 50%, and also a considerable longterm morbidity, particularly in children. Hypoglycemia, largely in patients treated with quinine, may complicate the cerebral symptomatology. Other central nervous manifestations of malaria include intracranial hemorrhage, cerebral arterial occlusion, and transient extrapyramidal and neuropsychiatric manifestations. A self-limiting, isolated cerebellar ataxia, presumably caused by immunological mechanisms, in patients recovering from falciparum malaria has been recognized in Sri Lanka. Malaria is a common cause of febrile seizures in the tropics, and it also contributes to the development of epilepsy in later life. Several reports of spinal cord and peripheral nerve involvement are also available. A transient muscle paralysis resembling periodic paralysis during febrile episodes of malaria has been described in some patients. The pathogenesis of these neurological manifestations remains unexplored, but offers excellent perspectives for research at a clinical as well as experimental level. PMID:1307475

  19. Malaria in Children

    PubMed Central

    Schumacher, Richard-Fabian; Spinelli, Elena

    2012-01-01

    This review is focused on childhood specific aspects of malaria, especially in resource-poor settings. We summarise the actual knowledge in the field of epidemiology, clinical presentation, diagnosis, management and prevention. These aspects are important as malaria is responsible for almost a quarter of all child death in sub-Saharan Africa. Malaria control is thus one key intervention to reduce childhood mortality, especially as malaria is also an important risk factor for other severe infections, namely bacteraemia. In children symptoms are more varied and often mimic other common childhood illness, particularly gastroenteritis, meningitis/encephalitis, or pneumonia. Fever is the key symptom, but the characteristic regular tertian and quartan patterns are rarely observed. There are no pathognomonic features for severe malaria in this age group. The well known clinical (fever, impaired consciousness, seizures, vomiting, respiratory distress) and laboratory (severe anaemia, thrombocytopenia, hypoglycaemia, metabolic acidosis, and hyperlactataemia) features of severe falciparum malaria in children, are equally typical for severe sepsis. Appropriate therapy (considering species, resistance patterns and individual patient factors) – possibly a drug combination of an artemisinin derivative with a long-acting antimalarial drug - reduces treatment duration to only three days and should be urgently started. While waiting for the results of ongoing vaccine trials, all effort should be made to better implement other malaria-control measures like the use of treated bed-nets, repellents and new chemoprophylaxis regimens. PMID:23205261

  20. Migration and malaria.

    PubMed

    Jitthai, Nigoon

    2013-01-01

    Migration is an important global issue as poorly managed migration can result in a diversity of problems, including an increase in the transmission of diseases such as malaria. There is evidence to suggest that malaria is no longer a forest-dependent disease and may largely be affected by population movements, mostly to agricultural areas. While internal and transnational migration has different legal implications in most countries, both types of migration occur for the same reasons; economic and/ or safety. Although migration in itself is not a definitive risk for malaria, several factors can put, migrants and local communities alike, in vulnerable situations. In particular, infrastructure and rural development, deforestation for logging and economic farming, political movements, and natural disasters are some of the major factors that push and pull people in and out of malaria-endemic areas. Therefore, understanding the changing socio-environmental situation as well as population movements and their associated risks for malaria infection, is critical for malaria control, containment, and elimination. Efforts to address these issues should include advocacy, mapping exercises and expanded/ strengthened surveillance to also include migrant health information systems. Malaria related information, prevention measures, and early diagnosis and appropriate treatment should be made easily accessible for migrants regardless of their migration status; not only to ensure that they are equipped with appropriate knowledge and devices to protect themselves, but also to ensure that they are properly diagnosed and treated, to prevent further transmission, and to ensure that they are captured by the surveillance system. PMID:24159832

  1. Malaria and Vascular Endothelium

    PubMed Central

    de Alencar, Aristóteles Comte; de Lacerda, Marcus Vinícius Guimarães; Okoshi, Katashi; Okoshi, Marina Politi

    2014-01-01

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease. PMID:25014058

  2. Malaria: prevention in travellers

    PubMed Central

    Croft, Ashley

    2000-01-01

    Definition Malaria is caused by a protozoan infection of red blood cells with one of four species of the genus plasmodium: P falciparum, P vivax, P ovale, or P malariae.1 Clinically, malaria may present in different ways, but it is usually characterised by fever (which may be swinging), tachycardia, rigors, and sweating. Anaemia, hepatosplenomegaly, cerebral involvement, renal failure, and shock may occur. Incidence/prevalence Each year there are 300-500 million clinical cases of malaria. About 40% of the world's population is at risk of acquiring the disease.23 Each year 25-30 million people from non-tropical countries visit areas in which malaria is endemic,4 of whom between 10 000 and 30 000 contract malaria.5 Aetiology/risk factors Malaria is mainly a rural disease, requiring standing water nearby. It is transmitted by bites6 from infected female anopheline mosquitoes,7 mainly at dusk and during the night.18 In cities, mosquito bites are usually from female culicene mosquitoes, which are not vectors of malaria.9 Malaria is resurgent in most tropical countries and the risk to travellers is increasing.10 Prognosis Ninety per cent of travellers who contract malaria do not become ill until after they return home.5 “Imported malaria” is easily treated if diagnosed promptly, and it follows a serious course in only about 12% of people.1112 The most severe form of the disease is cerebral malaria, with a case fatality rate in adult travellers of 2-6%,3 mainly because of delays in diagnosis.5 Aims To reduce the risk of infection; to prevent illness and death. Outcomes Rates of malarial illness and death, and adverse effects of treatment. Proxy measures include number of mosquito bites and number of mosquitoes in indoor areas. We found limited evidence linking number of mosquito bites and risk of malaria.13 Methods Clinical Evidence search and appraisal in November 1999. We reviewed all identified systematic reviews and randomised controlled trials (RCTs

  3. Malaria prevention in travelers.

    PubMed

    Genton, Blaise; D'Acremont, Valérie

    2012-09-01

    A common approach to malaria prevention is to follow the "A, B, C, D" rule: Awareness of risk, Bite avoidance, Compliance with chemoprophylaxis, and prompt Diagnosis in case of fever. The risk of acquiring malaria depends on the length and intensity of exposure; the risk of developing severe disease is primarily determined by the health status of the traveler. These parameters need to be assessed before recommending chemoprophylaxis and/or stand-by emergency treatment. This review discusses the different strategies and drug options available for the prevention of malaria during and post travel.

  4. Can pharmacogenomics improve malaria drug policy?

    PubMed

    Roederer, Mary W; McLeod, Howard; Juliano, Jonathan J

    2011-11-01

    Coordinated global efforts to prevent and control malaria have been a tour-de-force for public health, but success appears to have reached a plateau in many parts of the world. While this is a multifaceted problem, policy strategies have largely ignored genetic variations in humans as a factor that influences both selection and dosing of antimalarial drugs. This includes attempts to decrease toxicity, increase effectiveness and reduce the development of drug resistance, thereby lowering health care costs. We review the potential hurdles to developing and implementing pharmacogenetic-guided policies at a national or regional scale for the treatment of uncomplicated falciparum malaria. We also consider current knowledge on some component drugs of artemisinin combination therapies and ways to increase our understanding of host genetics, with the goal of guiding policy decisions for drug selection.

  5. Can pharmacogenomics improve malaria drug policy?

    PubMed

    Roederer, Mary W; McLeod, Howard; Juliano, Jonathan J

    2011-11-01

    Coordinated global efforts to prevent and control malaria have been a tour-de-force for public health, but success appears to have reached a plateau in many parts of the world. While this is a multifaceted problem, policy strategies have largely ignored genetic variations in humans as a factor that influences both selection and dosing of antimalarial drugs. This includes attempts to decrease toxicity, increase effectiveness and reduce the development of drug resistance, thereby lowering health care costs. We review the potential hurdles to developing and implementing pharmacogenetic-guided policies at a national or regional scale for the treatment of uncomplicated falciparum malaria. We also consider current knowledge on some component drugs of artemisinin combination therapies and ways to increase our understanding of host genetics, with the goal of guiding policy decisions for drug selection. PMID:22084530

  6. Online biomedical resources for malaria-related red cell disorders.

    PubMed

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-07-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed.

  7. Online Biomedical Resources for Malaria-Related Red Cell Disorders

    PubMed Central

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-01-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed. PMID:23568771

  8. Online biomedical resources for malaria-related red cell disorders.

    PubMed

    Piel, Frédéric B; Howes, Rosalind E; Nyangiri, Oscar A; Moyes, Catherine L; Williams, Thomas N; Weatherall, David J; Hay, Simon I

    2013-07-01

    Warnings about the expected increase of the global public health burden of malaria-related red cell disorders are accruing. Past and present epidemiological data are necessary to track spatial and temporal changes in the frequencies of these genetic disorders. A number of open access biomedical databases including data on malaria-related red cell disorders have been launched over the last two decades. Here, we review the content of these databases, most of which focus on genetic diversity, and we describe a new epidemiological resource developed by the Malaria Atlas Project. To tackle upcoming public health challenges, the integration of epidemiological and genetic data is important. As many countries are considering implementing national screening programs, strategies to make such data more accessible are also needed. PMID:23568771

  9. Diagnosis of placental malaria.

    PubMed

    Mockenhaupt, Frank P; Ulmen, Ulrike; von Gaertner, Christiane; Bedu-Addo, George; Bienzle, Ulrich

    2002-01-01

    In a group of 596 delivering Ghanaian women, the sensitivities of peripheral blood thick film microscopy, ICT Malaria P.f/P.v test, and PCR in detecting microscopically confirmed placental Plasmodium falciparum infection were 42, 80, and 97%, respectively. In addition to the gross underestimation of placental malaria by peripheral blood film microscopy, submicroscopic infections were found to be a risk factor for maternal anemia.

  10. Evaluating the usefulness of paratransgenesis for malaria control.

    PubMed

    Kotnis, Bhushan; Kuri, Joy

    2016-07-01

    Malaria is a serious global health problem which is especially devastating to the developing world. Most malaria control programs use insecticides for controlling mosquito populations. Large scale usage of these insecticides exerts massive selection pressure on mosquitoes resulting in insecticide resistant mosquito breeds. Thus, developing alternative strategies are crucial for sustainable malaria control. Here, we explore the usefulness of an alternative strategy, paratransgenesis: the introduction of genetically engineered plasmodium killing bacteria inside the mosquito gut. The genetically modified bacterial culture is housed in cotton balls dipped in a sugar solution (sugar bait) and they enter a mosquito's midgut when it drinks from a sugar bait. We study scenarios where vectors and hosts mix homogeneously as well as heterogeneously and calculate the amount of baits required to prevent a malaria outbreak. Given the baits are attractive, we show that the basic reproductive number drops rapidly with the increase in bait density. Furthermore, we propose a targeted bait distribution strategy for minimizing the reproductive number for the heterogeneous case. Our results can prove to be useful for designing future experiments and field trials of alternative malaria control mechanisms and they also have implications on the development of malaria control programs. PMID:27140529

  11. Travel risk, malaria importation and malaria transmission in Zanzibar

    PubMed Central

    Le Menach, Arnaud; Tatem, Andrew J.; Cohen, Justin M.; Hay, Simon I.; Randell, Heather; Patil, Anand P.; Smith, David L.

    2011-01-01

    The prevalence of Plasmodium falciparum malaria in Zanzibar has reached historic lows. Improving control requires quantifying malaria importation rates, identifying high-risk travelers, and assessing onwards transmission. Estimates of Zanzibar's importation rate were calculated through two independent methodologies. First, mobile phone usage data and ferry traffic between Zanzibar and mainland Tanzania were re-analyzed using a model of heterogeneous travel risk. Second, a dynamic mathematical model of importation and transmission rates was used. Zanzibar residents traveling to malaria endemic regions were estimated to contribute 1–15 times more imported cases than infected visitors. The malaria importation rate was estimated to be 1.6 incoming infections per 1,000 inhabitants per year. Local transmission was estimated too low to sustain transmission in most places. Malaria infections in Zanzibar largely result from imported malaria and subsequent transmission. Plasmodium falciparum malaria elimination appears feasible by implementing control measures based on detecting imported malaria cases and controlling onward transmission. PMID:22355611

  12. Protective role of brain water channel AQP4 in murine cerebral malaria

    PubMed Central

    Promeneur, Dominique; Lunde, Lisa Kristina; Amiry-Moghaddam, Mahmood; Agre, Peter

    2013-01-01

    Tragically common among children in sub-Saharan Africa, cerebral malaria is characterized by rapid progression to coma and death. In this study, we used a model of cerebral malaria appearing in C57BL/6 WT mice after infection with the rodent malaria parasite Plasmodium berghei ANKA. Expression and cellular localization of the brain water channel aquaporin-4 (AQP4) was investigated during the neurological syndrome. Semiquantitative real-time PCR comparing uninfected and infected mice showed a reduction of brain AQP4 transcript in cerebral malaria, and immunoblots revealed reduction of brain AQP4 protein. Reduction of brain AQP4 protein was confirmed in cerebral malaria by quantitative immunogold EM; however, polarized distribution of AQP4 at the perivascular and subpial astrocyte membranes was not altered. To further examine the role of AQP4 in cerebral malaria, WT mice and littermates genetically deficient in AQP4 were infected with P. berghei. Upon development of cerebral malaria, WT and AQP4-null mice exhibited similar increases in width of perivascular astroglial end-feet in brain. Nevertheless, the AQP4-null mice exhibited more severe signs of cerebral malaria with greater brain edema, although disruption of the blood–brain barrier was similar in both groups. In longitudinal studies, cerebral malaria appeared nearly 1 d earlier in the AQP4-null mice, and reduced survival was noted when chloroquine rescue was attempted. We conclude that the water channel AQP4 confers partial protection against cerebral malaria. PMID:23277579

  13. Malaria, a difficult diagnosis in a febrile patient with sub-microscopic parasitaemia and polyclonal lymphocyte activation outside the endemic region, in Brazil.

    PubMed

    Brasil, Patrícia; Costa, Anielle P; Longo, Cecilia L; da Silva, Sidnei; Ferreira-da-Cruz, Maria F; Daniel-Ribeiro, Cláudio Tadeu

    2013-11-07

    A case of autochthonous Plasmodium vivax malaria with sub-microscopic parasitaemia and polyclonal B-cell activation (PBA) (as reflected by positive IgM and IgG serology for toxoplasmosis, cytomegalovirus, and antinuclear and rheumatoid factors) was diagnosed by polymerase chain reaction (PCR) after consecutive negative rapid diagnostic test results and blood films. The patient, a 44-year-old man from Rio de Janeiro state, Brazil, had visited the Atlantic Forest, a tourist, non-malaria-endemic area where no autochthonous cases of 'bromeliad malaria' has ever been described. The characteristic pattern of fever, associated with PBA, was the clue to malaria diagnosis, despite consecutive negative thick blood smears. The study highlights a need for changes in clinical and laboratory diagnostic approaches, namely the incorporation of PCR as part of the current routine malaria diagnostic methods in non-endemic areas.

  14. The treatment of malaria.

    PubMed

    White, N J

    1996-09-12

    Increasing drug resistance in Plasmodium falciparum and a resurgence of malaria in tropical areas have effected a change in treatment of malaria in the last two decades. Symptoms of malaria are fever, chills, headache, and malaise. The prognosis worsens as the parasite counts, counts of mature parasites, and counts of neutrophils containing pigment increase. Treatment depends on severity, age of patient, degree of background immunity, likely pattern of susceptibility to antimalarial drugs, and the cost and availability of drugs. Chloroquine should be used for P. vivax, P. malariae, and P. ovale. P. vivax has shown high resistance to chloroquine in Oceania, however. Primaquine may be needed to treat P. vivax and P. ovale to rid the body of hypnozoites that survive in the liver. Chloroquine can treat P. falciparum infections acquired in North Africa, Central America north of the Panama Canal, Haiti, or the Middle East but not in most of Africa and some parts of Asia and South America. In areas of low grade resistance to chloroquine, amodiaquine can be used to effectively treat falciparum malaria. A combination of sulfadoxine-pyrimethamine is responsive to falciparum infections with high grade resistance to chloroquine. Mefloquine, halofantrine, or quinine with tetracycline can be used to treat multidrug-resistant P. falciparum. Derivatives of artemisinin obtained from qinghao or sweet wormwood developed as pharmaceuticals in China are the most rapidly acting of all antimalarial drugs. Children tend to tolerate antimalarial drugs well. Children who weigh less than 15 kg should not be given mefloquine. Health workers should not prescribe primaquine to pregnant women or newborns due to the risk of hemolysis. Chloroquine, sulfadoxine-pyrimethamine, quinine, and quinidine can be safely given in therapeutic doses throughout pregnancy. Clinical manifestations of severe malaria are hypoglycemia, convulsions, severe anemia, acute renal failure, jaundice, pulmonary edema

  15. Clues to prolific productivity among prominent scientists.

    PubMed

    Kantha, S S

    1992-10-01

    In a survey based on the biographical sketches, obituary notes and eulogies of notable scientists, eight were identified as belonging to an elite group, having authored more than 1000 research publications, which include books, monographs and patents. They were, in chronological order, Thomas Alva Edison, Paul Karrer, Margaret Mead, Giulio Natta, Hans Selye, Herbert C Brown, Tetsuji Kametani and Carl Djerassi. Among these, Karrer, Natta and Brown were Nobelists in chemistry. Four criteria which can be identified as clues to their prolific productivity are, 1) enthusiasm for compulsive work and eccentric life style, 2) physical and/or environmental handicap, 3) pioneering efforts in a new research field, and 4) selection of research area, predominantly organic chemistry.

  16. Clues to prolific productivity among prominent scientists.

    PubMed

    Kantha, S S

    1992-10-01

    In a survey based on the biographical sketches, obituary notes and eulogies of notable scientists, eight were identified as belonging to an elite group, having authored more than 1000 research publications, which include books, monographs and patents. They were, in chronological order, Thomas Alva Edison, Paul Karrer, Margaret Mead, Giulio Natta, Hans Selye, Herbert C Brown, Tetsuji Kametani and Carl Djerassi. Among these, Karrer, Natta and Brown were Nobelists in chemistry. Four criteria which can be identified as clues to their prolific productivity are, 1) enthusiasm for compulsive work and eccentric life style, 2) physical and/or environmental handicap, 3) pioneering efforts in a new research field, and 4) selection of research area, predominantly organic chemistry. PMID:1461180

  17. Monkey malaria kills four humans.

    PubMed

    Galinski, Mary R; Barnwell, John W

    2009-05-01

    Four human deaths caused by Plasmodium knowlesi, a simian malaria species, are stimulating a surge of public health interest and clinical vigilance in vulnerable areas of Southeast Asia. We, and other colleagues, emphasize that these cases, identified in Malaysia, are a clear warning that health facilities and clinicians must rethink the diagnosis and treatment of malaria cases presumed to be caused by a less virulent human malaria species, Plasmodium malariae.

  18. Vaccines against malaria.

    PubMed

    Hill, Adrian V S

    2011-10-12

    There is no licenced vaccine against any human parasitic disease and Plasmodium falciparum malaria, a major cause of infectious mortality, presents a great challenge to vaccine developers. This has led to the assessment of a wide variety of approaches to malaria vaccine design and development, assisted by the availability of a safe challenge model for small-scale efficacy testing of vaccine candidates. Malaria vaccine development has been at the forefront of assessing many new vaccine technologies including novel adjuvants, vectored prime-boost regimes and the concept of community vaccination to block malaria transmission. Most current vaccine candidates target a single stage of the parasite's life cycle and vaccines against the early pre-erythrocytic stages have shown most success. A protein in adjuvant vaccine, working through antibodies against sporozoites, and viral vector vaccines targeting the intracellular liver-stage parasite with cellular immunity show partial efficacy in humans, and the anti-sporozoite vaccine is currently in phase III trials. However, a more effective malaria vaccine suitable for widespread cost-effective deployment is likely to require a multi-component vaccine targeting more than one life cycle stage. The most attractive near-term approach to develop such a product is to combine existing partially effective pre-erythrocytic vaccine candidates. PMID:21893544

  19. Helminths and malaria co-infections are associated with elevated serum IgE

    PubMed Central

    2014-01-01

    Background Both helminth and malaria infections result in a highly polarized immune response characterized by IgE production. This study aimed to investigate the total serum IgE profile in vivo as a measure of Th2 immune response in malaria patients with and without helminth co-infection. Methods A cross sectional observational study composed of microscopically confirmed malaria positive (N = 197) and malaria negative (N = 216) apparently healthy controls with and without helminth infection was conducted at Wondo Genet Health Center, Southern Ethiopia. A pre-designed structured format was utilized to collect socio-demographic and clinical data of the subjects. Detection and quantification of helminths, malaria parasites and determination of serum IgE levels were carried out following standard procedures. Results Irrespective of helminth infection, individuals infected by malaria showed significantly high levels of serum IgE compared with malaria free apparently healthy controls (with and without helminth infections). Moreover, malaria patients co-infected with intestinal helminths showed high level of serum IgE compared with those malaria patients without intestinal helminths (2198 IU/ml versus 1668 IU/ml). A strong statistically significant association was observed between malaria parasite density and elevated serum IgE levels (2047 IU/ml versus 1778 IU/ml; P = 0.001) with high and low parasitaemia (parasite density >50,000 parasite/μl of blood), respectively. Likewise, helminth egg loads were significantly associated with elevated serum IgE levels (P = 0.003). Conclusions The elevated serum IgE response in malaria patients irrespective of helminth infection and its correlation with malaria parasite density and helminth egg intensity support that malaria infection is also a strong driver of IgE production as compared to helminths. PMID:24886689

  20. Hair shaft abnormalities--clues to diagnosis and treatment.

    PubMed

    Itin, Peter H; Fistarol, Susanna K

    2005-01-01

    Hair dysplasias are congenital or acquired alterations which often involve the hair shaft. Hair shaft abnormalities are characterized by changes in color, density, length and structure. Hair shaft alterations often result from structural changes within the hair fibers and cuticles which may lead to brittle and uncombable hair. The hair of patients with hair shaft diseases feels dry and looks lusterless. Hair shaft diseases may occur as localized or generalized disorders. Genetic predisposition or exogenous factors produce and maintain hair shaft abnormalities. Hair shaft diseases are separated into those with and those without increased hair fragility. In general, optic microscopy and polarized light microscopy of hair shafts provide important clues to the diagnosis of isolated hair shaft abnormalities or complex syndromes. To establish an exact diagnosis of dysplastic hair shafts, a structured history and physical examination of the whole patient are needed which emphasizes other skin appendages such as the nails, sweat and sebaceous glands. Profound knowledge on hair biology and embryology is necessary to understand the different symptom complexes. Therapy of hair shaft disorders should focus on the cause. In addition, minimizing traumatic influences to hair shafts, such as drying hair with an electric dryer or permanent waves and dyes, is important. A short hairstyle is more suitable for patients with hair shaft disorders.

  1. The multiple autoimmune syndromes. A clue for the autoimmune tautology.

    PubMed

    Anaya, Juan-Manuel; Castiblanco, John; Rojas-Villarraga, Adriana; Pineda-Tamayo, Ricardo; Levy, Roger A; Gómez-Puerta, José; Dias, Carlos; Mantilla, Ruben D; Gallo, Juan Esteban; Cervera, Ricard; Shoenfeld, Yehuda; Arcos-Burgos, Mauricio

    2012-12-01

    The multiple autoimmune syndromes (MAS) consist on the presence of three or more well-defined autoimmune diseases (ADs) in a single patient. The aim of this study was to analyze the clinical and genetic characteristics of a large series of patients with MAS. A cluster analysis and familial aggregation analysis of ADs was performed in 84 patients. A genome-wide microsatellite screen was performed in MAS families, and associated loci were investigated through the pedigree disequilibrium test. Systemic lupus erythematosus (SLE), autoimmune thyroid disease (AITD), and Sjögren's syndrome together were the most frequent ADs encountered. Three main clusters were established. Aggregation for type 1 diabetes, AITD, SLE, and all ADs as a trait was found. Eight loci associated with MAS were observed harboring autoimmunity genes. The MAS represent the best example of polyautoimmunity as well as the effect of a single genotype on diverse phenotypes. Its study provides important clues to elucidate the common mechanisms of ADs (i.e., autoimmune tautology).

  2. The origin of malignant malaria.

    PubMed

    Rich, Stephen M; Leendertz, Fabian H; Xu, Guang; LeBreton, Matthew; Djoko, Cyrille F; Aminake, Makoah N; Takang, Eric E; Diffo, Joseph L D; Pike, Brian L; Rosenthal, Benjamin M; Formenty, Pierre; Boesch, Christophe; Ayala, Francisco J; Wolfe, Nathan D

    2009-09-01

    Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Côte d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.

  3. Research toward Malaria Vaccines

    NASA Astrophysics Data System (ADS)

    Miller, Louis H.; Howard, Russell J.; Carter, Richard; Good, Michael F.; Nussenzweig, Victor; Nussenzweig, Ruth S.

    1986-12-01

    Malaria exacts a toll of disease to people in the Tropics that seems incomprehensible to those only familiar with medicine and human health in the developed world. The methods of molecular biology, immunology, and cell biology are now being used to develop an antimalarial vaccine. The Plasmodium parasites that cause malaria have many stages in their life cycle. Each stage is antigenically distinct and potentially could be interrupted by different vaccines. However, achieving complete protection by vaccination may require a better understanding of the complexities of B- and T-cell priming in natural infections and the development of an appropriate adjuvant for use in humans.

  4. Malaria Evolution in South Asia: Knowledge for Control and Elimination

    PubMed Central

    Narayanasamy, Krishnamoorthy; Chery, Laura; Basu, Analabha; Duraisingh, Manoj T.; Escalante, Ananias; Fowble, Joseph; Guler, Jennifer L.; Herricks, Thurston; Kumar, Ashwani; Majumder, Partha; Maki, Jennifer; Mascarenhas, Anjali; Rodrigues, Janneth; Roy, Bikram; Sen, Somdutta; Shastri, Jayanthi; Smith, Joseph; Valecha, Neena; White, John; Rathod, Pradipsinh K.

    2013-01-01

    The study of malaria parasites on the Indian subcontinent should help us understand unexpected disease outbreaks and unpredictable disease presentations from Plasmodium falciparum and from Plasmodium vivax infections. The Malaria Evolution in South Asia (MESA) research program is one of ten International Centers of Excellence for Malaria Research (ICEMR) sponsored by the US National Institute of Health. In this second of two reviews, we describe why population structures of Plasmodia in India will be characterized and how we will determine their consequences on disease presentation, outcome and patterns. Specific projects will determine if genetic diversity, possibly driven by parasites with higher genetic plasticity, plays a role in changing epidemiology, pathogenesis, vector competence of parasite populations, and whether innate human genetic traits protect Indians from malaria today. Deep local clinical knowledge of malaria in India will be supplemented by basic scientists who bring new research tools. Such tools will include whole genome sequencing and analysis methods; in vitro assays to measure genome plasticity, RBC cytoadhesion, invasion, and deformability; mosquito infectivity assays to evaluate changing parasite-vector compatibilities; and host genetics to understand protective traits in Indian populations. The MESA-ICEMR study sites span diagonally across India, including a mixture of very urban and rural hospitals, each with very different disease patterns and patient populations. Research partnerships include government-associated research institutes, private medical schools, city and state government hospitals, and hospitals with industry ties. Between 2012-2017, in addition to developing clinical research and basic science infrastructure at new clinical sites, our training workshops will engage new scientists and clinicians throughout South Asia in the malaria research field. PMID:22266213

  5. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Capsicum represents one of several well characterized Solanaceous genera. A wealth of classical and molecular genetics research is available for the genus. Information gleaned from its cultivated relatives, tomato and potato, provide further insight for basic and applied studies. Early ...

  6. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  7. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum.

    PubMed

    Yamagishi, Junya; Natori, Anna; Tolba, Mohammed E M; Mongan, Arthur E; Sugimoto, Chihiro; Katayama, Toshiaki; Kawashima, Shuichi; Makalowski, Wojciech; Maeda, Ryuichiro; Eshita, Yuki; Tuda, Josef; Suzuki, Yutaka

    2014-09-01

    To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions.

  8. The 1996 Runme Shaw Memorial Lecture: malaria--past, present and future.

    PubMed

    Warrell, D A

    1997-05-01

    Falciparum malaria may have infected Homo sapiens (and perhaps H erectus) in the Asia Pacific region for more than 100,000 years. This estimate is based on the gene frequency of alpha-thalassaemia, the protection it affords against falciparum malaria and assumptions of untreated mortality from the infection. Up until the end of the 19th century, there was a high mortality from malaria in the coastal parts of Malaya, but the malaria control campaign, begun in 1901 at Klang, was described by Sir Ronald Ross as the first successful antimalarial work in the (then) British Empire. This was extended to Singapore in 1911. When the Far Eastern Association of Tropical Medicine held its Fifth Biennial Congress in Singapore in 1923, malaria was still a major killing disease in parts of Malaya and Sarawak. The mechanism of life-threatening malaria involves cytoadherence of parasitised erythrocytes in microvascular beds, a process enhanced by the products of macrophage activation induced by malarial pyrogen. Improvements in the chemotherapy of life-threatening falciparum malaria with chloroquine and quinine have been countered by the emergence of resistant strains. Artemisinin derivatives may become the treatment of choice during the coming decade. Apart from traditional anti-mosquito methods, control of malaria now involves the use of insecticide-impregnated bed nets, new entomological strategies, including genetic manipulation of mosquitoes and selective chemoprophylaxis. Antigenic diversity and antigenic variation of the malaria parasite have so far defeated attempts to produce an effective vaccine.

  9. [Evidence of an urban, local transmission of malaria in Antananarivo, Madagascar].

    PubMed

    Cot, S; Matra, R; Rabarijaona, L; Robert, V; Raharimalala, L; Raveloson, A; Ariey, F

    2006-04-01

    Madagascar presents a large heterogeneity in terms of climate and altitude, which explains the uneven spread of malaria throughout the island. The capital, Antananarivo, counts more than one million inhabitants, altitude between 1250 and 1470 m, in an area where the transmission is low but malaria may cause deadly epidemic outbreaks. Numerous malaria cases are reported, without biological confirmation, and reliable data about urban malaria transmission are lacking. The " Institut Pasteur de Madagascar" together with the Malagasy Ministry of Health performed in 2003 a study about malaria transmission in Antananarivo. A prevalence survey of malaria among fever syndromes, with data collected from 43 urban dispensaries, showed that confirmed malaria cases represented only 2% of the total fever cases (15 cases out of 779 fever syndromes). The vast majority was imported from costal areas (13 cases out of 15), where malaria is hyperendemic. However, a local urban transmission was found for two patients and five other subjects identified during a proximity survey. Vectors A. arabiensis and A. funestus were found inside the patient houses, located in close proximity of flooded rice fields. Genetic analysis of P. falciparum strains allowed to distinguish three genotypes, aggregated by house. The analysis of parasite genome polymorphism proves here its validity for epidemic surveys in areas where malaria is unstable, with no premunition in the local urban population.

  10. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells

    PubMed Central

    Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-01-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  11. Inhibition of Malaria Infection in Transgenic Anopheline Mosquitoes Lacking Salivary Gland Cells.

    PubMed

    Yamamoto, Daisuke S; Sumitani, Megumi; Kasashima, Katsumi; Sezutsu, Hideki; Matsuoka, Hiroyuki

    2016-09-01

    Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control. PMID:27598328

  12. The dynamics of malaria.

    PubMed

    Macdonald, G; Cuellar, C B; Foll, C V

    1968-01-01

    Previous studies on dynamic systems of transmission of malaria, and of eradication of infection following the interruption of transmission, have now been adapted for advanced techniques using the facilities offered by computers.The computer programmes have been designed for a deterministic model suitable for a large community and also for a stochastic model relevant to small populations in which infections reach very low finite numbers. In this model, new infections and recoveries are assessed by the daily inoculation rate and are subject to laws of chance. Such a representation is closer than previous models to natural happenings in the process of malaria eradication. Further refinements of the new approach include the seasonal transmission and simulation of mass chemotherapy aimed at a cure of P. falciparum infections.These programmes present models on which the actual or expected results of changes due to various factors can be studied by the analysis of specific malaria situations recorded in the field. The value of control methods can also be tested by the study of such hypothetical epidemiological models and by trying out various procedures.Two specific malaria situations (in a pilot project in Northern Nigeria and in an outbreak in Syria) were studied by this method and provided some interesting results of operational value. The attack measures in the pilot project in Northern Nigeria were carried out according to the theoretical model derived from the basic data obtained in the field. PMID:5303328

  13. Malaria Risk in Travelers

    PubMed Central

    Askling, Helena Hervius; Nilsson, Jenny; Tegnell, Anders; Janzon, Ragnhild

    2005-01-01

    Imported malaria has been an increasing problem in several Western countries in the last 2 decades. To calculate the risk factors of age, sex, and travel destination in Swedish travelers, we used data from the routine reporting system for malaria (mixture of patients with and without adequate prophylaxis), a database on travel patterns, and in-flight or visa data on Swedish travelers of 1997 to 2003. The crude risk for travelers varied from 1 per 100,000 travelers to Central America and the Caribbean to 357 per 100,000 in central Africa. Travelers to East Africa had the highest adjusted odds ratio (OR = 341; 95% confidence intervals [CI] 134–886) for being reported with malaria, closely followed by travelers to central Africa and West Africa. Male travelers as well as children <1–6 years of age had a higher risk of being reported with malaria (OR = 1,7; 95% CI 1.3–2.3 and OR = 4,8; 95%CI 1.5–14.8) than women and other age groups. PMID:15757560

  14. Nanomedicine against malaria.

    PubMed

    Urbán, Patricia; Fernàndez-Busquets, Xavier

    2014-01-01

    Malaria is arguably one of the main medical concerns worldwide because of the numbers of people affected, the severity of the disease and the complexity of the life cycle of its causative agent, the protist Plasmodium sp. The clinical, social and economic burden of malaria has led for the last 100 years to several waves of serious efforts to reach its control and eventual eradication, without success to this day. With the advent of nanoscience, renewed hopes have appeared of finally obtaining the long sought-after magic bullet against malaria in the form of a nanovector for the targeted delivery of antimalarial drugs exclusively to Plasmodium-infected cells. Different types of encapsulating structure, targeting molecule, and antimalarial compound will be discussed for the assembly of Trojan horse nanocapsules capable of targeting with complete specificity diseased cells and of delivering inside them their antimalarial cargo with the objective of eliminating the parasite with a single dose. Nanotechnology can also be applied to the discovery of new antimalarials through single-molecule manipulation approaches for the identification of novel drugs targeting essential molecular components of the parasite. Finally, methods for the diagnosis of malaria can benefit from nanotools applied to the design of microfluidic-based devices for the accurate identification of the parasite's strain, its precise infective load, and the relative content of the different stages of its life cycle, whose knowledge is essential for the administration of adequate therapies. The benefits and drawbacks of these nanosystems will be considered in different possible scenarios, including cost-related issues that might be hampering the development of nanotechnology-based medicines against malaria with the dubious argument that they are too expensive to be used in developing areas.

  15. Use of Integrated Malaria Management Reduces Malaria in Kenya

    PubMed Central

    Okech, Bernard A.; Mwobobia, Isaac K.; Kamau, Anthony; Muiruri, Samuel; Mutiso, Noah; Nyambura, Joyce; Mwatele, Cassian; Amano, Teruaki; Mwandawiro, Charles S.

    2008-01-01

    Background During an entomological survey in preparation for malaria control interventions in Mwea division, the number of malaria cases at the Kimbimbi sub-district hospital was in a steady decline. The underlying factors for this reduction were unknown and needed to be identified before any malaria intervention tools were deployed in the area. We therefore set out to investigate the potential factors that could have contributed to the decline of malaria cases in the hospital by analyzing the malaria control knowledge, attitudes and practices (KAP) that the residents in Mwea applied in an integrated fashion, also known as integrated malaria management (IMM). Methods Integrated Malaria Management was assessed among community members of Mwea division, central Kenya using KAP survey. The KAP study evaluated community members' malaria disease management practices at the home and hospitals, personal protection measures used at the household level and malaria transmission prevention methods relating to vector control. Concurrently, we also passively examined the prevalence of malaria parasite infection via outpatient admission records at the major referral hospital in the area. In addition we studied the mosquito vector population dynamics, the malaria sporozoite infection status and entomological inoculation rates (EIR) over an 8 month period in 6 villages to determine the risk of malaria transmission in the entire division. Results A total of 389 households in Mwea division were interviewed in the KAP study while 90 houses were surveyed in the entomological study. Ninety eight percent of the households knew about malaria disease while approximately 70% of households knew its symptoms and methods to manage it. Ninety seven percent of the interviewed households went to a health center for malaria diagnosis and treatment. Similarly a higher proportion (81%) used anti-malarial medicines bought from local pharmacies. Almost 90% of households reported owning and using an

  16. Hair shafts in trichoscopy: clues for diagnosis of hair and scalp diseases.

    PubMed

    Rudnicka, Lidia; Rakowska, Adriana; Kerzeja, Marta; Olszewska, Małgorzata

    2013-10-01

    Trichoscopy (hair and scalp dermoscopy) analyzes the structure and size of growing hair shafts, providing diagnostic clues for inherited and acquired causes of hair loss. Types of hair shaft abnormalities observed include exclamation mark hairs (alopecia areata, trichotillomania, chemotherapy-induced alopecia), Pohl-Pinkus constrictions (alopecia areata, chemotherapy-induced alopecia, blood loss, malnutrition), comma hairs (tinea capitis), corkscrew hairs (tinea capitis), coiled hairs (trichotillomania), flame hairs (trichotillomania), and tulip hairs (in trichotillomania, alopecia areata). Trichoscopy allows differential diagnosis of most genetic hair shaft disorders. This article proposes a classification of hair shaft abnormalities observed by trichoscopy. PMID:24075554

  17. Central centrifugal cicatricial alopecia: what has been achieved, current clues for future research.

    PubMed

    Ogunleye, Temitayo A; McMichael, Amy; Olsen, Elise A

    2014-04-01

    Central centrifugal cicatricial alopecia is an inflammatory type of central scalp hair loss seen primarily in women of African descent. The prevalence is unknown, but may vary from 2.7% to 5.7% and increases with age. This review outlines the history and current beliefs and identifies clues for future research for this enigmatic condition. Despite that the cause of central centrifugal cicatricial alopecia is unknown, research is ongoing. The role of cytokeratins, androgens, genetics, and various possible sources of chronic inflammation in disease pathogenesis remain to be elucidated.

  18. Animal Research Yields Clues to Sexual Spread of Zika

    MedlinePlus

    ... Animal Research Yields Clues to Sexual Spread of Zika Researchers think vaginal fluid may be ideal breeding ... in mice may offer insight into how the Zika virus is transmitted sexually and affects a fetus. ...

  19. Gut Bacteria May Hold Clues to Chronic Fatigue Syndrome

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_159905.html Gut Bacteria May Hold Clues to Chronic Fatigue Syndrome Intestinal ... doctors -- may be influenced by a person's intestinal bacteria -- sometimes called gut microbiome, new research finds. "Patients with chronic fatigue ...

  20. New Clues to Age-Related Hearing Loss

    MedlinePlus

    ... gov/news/fullstory_161359.html New Clues to Age-Related Hearing Loss Older people's brains have a ... the brain's ability to process speech declines with age. For the study, Alessandro Presacco and colleagues divided ...

  1. Malaria on the move: human population movement and malaria transmission.

    PubMed Central

    Martens, P.; Hall, L.

    2000-01-01

    Reports of malaria are increasing in many countries and in areas thought free of the disease. One of the factors contributing to the reemergence of malaria is human migration. People move for a number of reasons, including environmental deterioration, economic necessity, conflicts, and natural disasters. These factors are most likely to affect the poor, many of whom live in or near malarious areas. Identifying and understanding the influence of these population movements can improve prevention measures and malaria control programs. PMID:10756143

  2. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model

    NASA Astrophysics Data System (ADS)

    Verburg, Peter H.; Soepboer, Welmoed; Veldkamp, A.; Limpiada, Ramil; Espaldon, Victoria; Mastura, Sharifah S. A.

    2002-09-01

    Land-use change models are important tools for integrated environmental management. Through scenario analysis they can help to identify near-future critical locations in the face of environmental change. A dynamic, spatially explicit, land-use change model is presented for the regional scale: CLUE-S. The model is specifically developed for the analysis of land use in small regions (e.g., a watershed or province) at a fine spatial resolution. The model structure is based on systems theory to allow the integrated analysis of land-use change in relation to socio-economic and biophysical driving factors. The model explicitly addresses the hierarchical organization of land use systems, spatial connectivity between locations and stability. Stability is incorporated by a set of variables that define the relative elasticity of the actual land-use type to conversion. The user can specify these settings based on expert knowledge or survey data. Two applications of the model in the Philippines and Malaysia are used to illustrate the functioning of the model and its validation.

  3. Immune Escape Strategies of Malaria Parasites

    PubMed Central

    Gomes, Pollyanna S.; Bhardwaj, Jyoti; Rivera-Correa, Juan; Freire-De-Lima, Celio G.; Morrot, Alexandre

    2016-01-01

    Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins, and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission. PMID:27799922

  4. Global phylogeographic limits of Hawaii's avian malaria

    USGS Publications Warehouse

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  5. Rapid diagnostic tests for malaria.

    PubMed

    Visser, Theodoor; Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-12-01

    Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them.

  6. Rapid diagnostic tests for malaria

    PubMed Central

    Daily, Jennifer; Hotte, Nora; Dolkart, Caitlin; Cunningham, Jane; Yadav, Prashant

    2015-01-01

    Abstract Maintaining quality, competitiveness and innovation in global health technology is a constant challenge for manufacturers, while affordability, access and equity are challenges for governments and international agencies. In this paper we discuss these issues with reference to rapid diagnostic tests for malaria. Strategies to control and eliminate malaria depend on early and accurate diagnosis. Rapid diagnostic tests for malaria require little training and equipment and can be performed by non-specialists in remote settings. Use of these tests has expanded significantly over the last few years, following recommendations to test all suspected malaria cases before treatment and the implementation of an evaluation programme to assess the performance of the malaria rapid diagnostic tests. Despite these gains, challenges exist that, if not addressed, could jeopardize the progress made to date. We discuss recent developments in rapid diagnostic tests for malaria, highlight some of the challenges and provide suggestions to address them. PMID:26668438

  7. Impact of Malaria Preexposure on Antiparasite Cellular and Humoral Immune Responses after Controlled Human Malaria Infection

    PubMed Central

    Obiero, Joshua M.; Shekalaghe, Seif; Hermsen, Cornelus C.; Mpina, Maxmillian; Bijker, Else M.; Roestenberg, Meta; Teelen, Karina; Billingsley, Peter F.; Sim, B. Kim Lee; James, Eric R.; Daubenberger, Claudia A.; Hoffman, Stephen L.; Abdulla, Salim

    2015-01-01

    To understand the effect of previous malaria exposure on antiparasite immune responses is important for developing successful immunization strategies. Controlled human malaria infections (CHMIs) using cryopreserved Plasmodium falciparum sporozoites provide a unique opportunity to study differences in acquisition or recall of antimalaria immune responses in individuals from different transmission settings and genetic backgrounds. In this study, we compared antiparasite humoral and cellular immune responses in two cohorts of malaria-naive Dutch volunteers and Tanzanians from an area of low malarial endemicity, who were subjected to the identical CHMI protocol by intradermal injection of P. falciparum sporozoites. Samples from both trials were analyzed in parallel in a single center to ensure direct comparability of immunological outcomes. Within the Tanzanian cohort, we distinguished one group with moderate levels of preexisting antibodies to asexual P. falciparum lysate and another that, based on P. falciparum serology, resembled the malaria-naive Dutch cohort. Positive P. falciparum serology at baseline was associated with a lower parasite density at first detection by quantitative PCR (qPCR) after CHMI than that for Tanzanian volunteers with negative serology. Post-CHMI, both Tanzanian groups showed a stronger increase in anti-P. falciparum antibody titers than Dutch volunteers, indicating similar levels of B-cell memory independent of serology. In contrast to the Dutch, Tanzanians failed to increase P. falciparum-specific in vitro recall gamma interferon (IFN-γ) production after CHMI, and innate IFN-γ responses were lower in P. falciparum lysate-seropositive individuals than in seronegative individuals. In conclusion, positive P. falciparum lysate serology can be used to identify individuals with better parasite control but weaker IFN-γ responses in circulating lymphocytes, which may help to stratify volunteers in future CHMI trials in areas where malaria is

  8. Artemisinin-resistant Plasmodium falciparum malaria

    PubMed Central

    Fairhurst, Rick M.; Dondorp, Arjen M.

    2016-01-01

    For more than five decades, Southeast Asia (SEA) has been fertile ground for the emergence of drug-resistant Plasmodium falciparum malaria. After generating parasites resistant to chloroquine, sulfadoxine, pyrimethamine, quinine, and mefloquine, this region has now spawned parasites resistant to artemisinins – the world's most potent antimalarial drugs. In areas where artemisinin resistance is prevalent, artemisinin combination therapies (ACTs) – the first-line treatments for malaria – are failing fast. This worrisome development threatens to make malaria practically untreatable in SEA, and threatens to compromise global endeavors to eliminate this disease. A recent series of clinical, in-vitro, genomics, and transcriptomics studies in SEA have defined in-vivo and in-vitro phenotypes of artemisinin resistance; identified its causal genetic determinant; explored its molecular mechanism; and assessed its clinical impact. Specifically, these studies have established that artemisinin resistance manifests as slow parasite clearance in patients and increased survival of early ring-stage parasites in vitro; is caused by single nucleotide polymorphisms in the parasite's ‘K13’ gene; is associated with an upregulated “unfolded protein response” pathway that may antagonize the pro-oxidant activity of artemisinins; and selects for partner drug resistance that rapidly leads to ACT failures. In SEA, clinical studies are urgently needed to monitor ACT efficacy where K13 mutations are prevalent; test whether new combinations of currently-available drugs cure ACT failures; and advance new antimalarial compounds through preclinical pipelines and into clinical trials. Intensifying these efforts should help to forestall the spread of artemisinin and partner drug resistance from SEA to Sub-Saharan Africa, where the world's malaria transmission, morbidity, and mortality rates are highest. PMID:27337450

  9. Singular Clues to Causality and Their Use in Human Causal Judgment

    ERIC Educational Resources Information Center

    White, Peter A.

    2014-01-01

    It is argued that causal understanding originates in experiences of acting on objects. Such experiences have consistent features that can be used as clues to causal identification and judgment. These are singular clues, meaning that they can be detected in single instances. A catalog of 14 singular clues is proposed. The clues function as…

  10. Concurrent meningitis and vivax malaria

    PubMed Central

    Santra, Tuhin; Datta, Sumana; Agrawal, Neha; Bar, Mita; Kar, Arnab; Adhikary, Apu; Ranjan, Kunal

    2015-01-01

    Malaria is an endemic infectious disease in India. It is often associated with other infective conditions but concomitant infection of malaria and meningitis are uncommon. We present a case of meningitis with vivax malaria infection in a 24-year-old lady. This case emphasizes the importance of high index of clinical suspicion to detect other infective conditions like meningitis when fever does not improve even after anti-malarial treatment in a patient of malaria before switching therapy suspecting drug resistance, which is quite common in this part of world. PMID:26985423

  11. Malaria elimination: surveillance and response

    PubMed Central

    Bridges, Daniel J; Winters, Anna M; Hamer, Davidson H

    2012-01-01

    In the last decade, substantial progress has been made in reducing malaria-associated morbidity and mortality across the globe. Nevertheless, sustained malaria control is essential to continue this downward trend. In some countries, where aggressive malaria control has reduced malaria to a low burden level, elimination, either nationally or subnationally, is now the aim. As countries or areas with a low malaria burden move towards elimination, there is a transition away from programs of universal coverage towards a strategy of localized detection and response to individual malaria cases. To do so and succeed, it is imperative that a strong surveillance and response system is supported, that community cadres are trained to provide appropriate diagnostics and treatment, and that field diagnostics are further developed such that their sensitivity allows for the detection and subsequent treatment of malaria reservoirs in low prevalence environments. To be certain, there are big challenges on the road to elimination, notably the development of drug and insecticide resistance. Nevertheless, countries like Zambia are making great strides towards implementing systems that support malaria elimination in target areas. Continued development of new diagnostics and antimalarial therapies is needed to support progress in malaria control and elimination. PMID:23265423

  12. Malaria control in Tanzania

    SciTech Connect

    Yhdego, M.; Majura, P. )

    1988-01-01

    A review of the malaria control programs and the problem encountered in the United Republic of Tanzania since 1945 to the year 1986 is discussed. Buguruni, one of the squatter areas in the city of Dar es Salaam, is chosen as a case study in order to evaluate the economic advantage of engineering methods for the control of malaria infection. Although the initial capital cost of engineering methods may be high, the cost effectiveness requires a much lower financial burden of only about Tshs. 3 million compared with the conventional methods of larviciding and insecticiding which requires more than Tshs. 10 million. Finally, recommendations for the adoption of engineering methods are made concerning the upgrading of existing roads and footpaths in general with particular emphasis on drainage of large pools of water which serve as breeding sites for mosquitoes.

  13. Picking up Clues from the Discard Pile

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through red, green and blue filters that have been combined into this approximately true-color image.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif

  14. Prior Clues of Internal Activity on Pluto

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    New Horizons scientists Kelsi Singer and Alan Stern predicted that Pluto may have subsurface activity, in this study published even before New Horizon's recent observations of Pluto's strangely uncratered surface areas. Where Does the Nitrogen Come From? Pluto's surface and atmosphere contain a significant amount of nitrogen, but the gas leaks out of Pluto's atmosphere at an tremendous rate -- estimated at about 1.5 × 1012-13 grams per year (roughly 200-2000 tons/hr!). But if the nitrogen has been escaping at this rate since the solar system was formed, the entire atmospheric reservoir of would have been lost long before now. So what is resupplying Pluto's nitrogen? Singer and Stern explore several possible sources: Delivery by comet impact: The authors calculate that over the 4-billion-year span since Pluto's formation, it has been impacted by a total of 600 million comets of varying sizes, all likely containing nitrogen. But their estimates show that the amount of nitrogen this would supply falls several orders of magnitude shy of explaining the escape rate. Excavation by cratering: Could comet impacts simply expose nitrogen buried in reservoirs just beneath Pluto's surface? That method, too, falls short of resupplying atmospheric nitrogen escape by at least an order of magnitude, even using the most generous estimates. Internal activity: Unless the believed atmospheric loss rate of Pluto is overestimated, the authors conclude that Pluto must experience some sort of internal activity such as cryovolcanism that brings nitrogen from below its surface up and into the atmosphere. The Study in Context of Current Events. Singer and Stern wrote and submitted this paper before the New Horizons spacecraft's recent flyby of Pluto. Data from this mission has recently provided surprise after surprise -- from images of smooth, crater-free regions on Pluto's surface to evidence of sheets of carbon monoxide, methane, and nitrogen ices flowing like glaciers. These clues support

  15. Singular clues to causality and their use in human causal judgment.

    PubMed

    White, Peter A

    2014-01-01

    It is argued that causal understanding originates in experiences of acting on objects. Such experiences have consistent features that can be used as clues to causal identification and judgment. These are singular clues, meaning that they can be detected in single instances. A catalog of 14 singular clues is proposed. The clues function as heuristics for generating causal judgments under uncertainty and are a pervasive source of bias in causal judgment. More sophisticated clues such as mechanism clues and repeated interventions are derived from the 14. Research on the use of empirical information and conditional probabilities to identify causes has used scenarios in which several of the clues are present, and the use of empirical association information for causal judgment depends on the presence of singular clues. It is the singular clues and their origin that are basic to causal understanding, not multiple instance clues such as empirical association, contingency, and conditional probabilities. PMID:23957568

  16. Experimental Models of Microvascular Immunopathology: The Example of Cerebral Malaria

    PubMed Central

    El-Assaad, Fatima; Combes, Valery; Grau, Georges ER

    2015-01-01

    Human cerebral malaria is a severe and often lethal complication of Plasmodium falciparum infection. Complex host and parasite interactions should the precise mechanisms involved in the onset of this neuropathology. Adhesion of parasitised red blood cells and host cells to endothelial cells lead to profound endothelial alterations that trigger immunopathological changes, varying degrees of brain oedema and can compromise cerebral blood flow, cause cranial nerve dysfunction and hypoxia. Study of the cerebral pathology in human patients is limited to clinical and genetic field studies in endemic areas, thus cerebral malaria (CM) research relies heavily on experimental models. The availability of malaria models allows study from the inoculation of Plasmodium to the onset of disease and permit invasive experiments. Here, we discuss some aspects of our current understanding of CM, the experimental models available and some important recent findings extrapolated from these models. PMID:26430675

  17. [Malaria and memory in the Veneto region of Italy].

    PubMed

    Pegoraro, Manuela; Crotti, Daniele

    2009-09-01

    Malaria and emigration are two terms deeply embedded in Veneto history, related to images far back in the past, unknown to younger generations. Losing one's own collective historical memory is a source of personal and cultural impoverishment and inevitably compromises one's awareness of the present, possibly leading to superficial judgements and hastily formed opinions. Such a situation is all the more serious in a geographical area, north-eastern Italy, where immigration is so abundant. In this paper the authors seek to retrieve, at least in part, this memory, especially in terms of history (to what extent malaria afflicted residents in Veneto and migrants from the region) and biology (how much imprinting from malaria has remained in the native population's genetic make-up). PMID:19838093

  18. Malaria research in the post-genomic era

    PubMed Central

    Winzeler, Elizabeth Ann

    2009-01-01

    In many pathogens genome-dependent methods can partially substitute for powerful forward genetic methods that have advanced model organism research for decades. In 2002 the genome sequence of the parasite causing the most severe type of human malaria, Plasmodium falciparum, was completed, eliminating many of the barriers to performing state-of-the-art molecular biological research on malaria parasites, and beginning a renaissance of sorts. Although new, licensed therapies may not yet have resulted from genome-dependent experiments, they have produced a wealth of new illuminating observations about the basic biology of malaria parasites, and it is likely that these will eventually lead to new, rationale, therapeutic approaches. This review will focus on the basic research discoveries that have depended in part, on the availability of genome sequence. PMID:18843360

  19. Pathogenesis of malaria revisited.

    PubMed

    Dasari, Prasad; Bhakdi, Sucharit

    2012-11-01

    Plasmodium falciparum malaria claims 1 million lives around the globe every year. Parasitemia can reach remarkably high levels. The developing parasite digests hemoglobin and converts the waste product to hemozoin alias malaria pigment. These processes occur in a vesicular compartment named the digestive vacuole (DV). Each parasitized cell releases one DV upon rupture. Myriads of DVs thus gain entry into the blood, but whether they trigger pathobiological events has never been investigated. We recently discovered that the DV membrane simultaneously activates the two major enzyme cascades in blood, complement and coagulation. Activation of both is known to occur in patients with severe malaria, so discovery of the common trigger has large consequences. The DV membrane but not the merozoite has the capacity to spontaneously activate the alternative complement and intrinsic clotting pathway. Ejection of merozoites and the DV into the bloodstream, therefore, results in selective opsonization and phagocytosis of the DV, leaving merozoites free to invade new cells. The DV membrane furthermore has the capacity to assemble prothrombinase, the key convertase of the intrinsic clotting pathway. The dual capacity of the DV to activate both complement and coagulation can be suppressed by low-molecular-weight dextran sulfate. This agent protects experimental animals from the detrimental consequences, resulting from intravenous application of purified DVs. Phagocytosis of DVs not only deploys PMN away from merozoites, but also drives the cells into a state of functional exhaustion. This may be one reason for the enhanced susceptibility of patients with severe malaria toward systemic bacterial infections. Together, these findings indicate that the DV may represent a hitherto unrecognized, important determinant of parasite pathogenicity.

  20. Oxidative Stress in Malaria

    PubMed Central

    Percário, Sandro; Moreira, Danilo R.; Gomes, Bruno A. Q.; Ferreira, Michelli E. S.; Gonçalves, Ana Carolina M.; Laurindo, Paula S. O. C.; Vilhena, Thyago C.; Dolabela, Maria F.; Green, Michael D.

    2012-01-01

    Malaria is a significant public health problem in more than 100 countries and causes an estimated 200 million new infections every year. Despite the significant effort to eradicate this dangerous disease, lack of complete knowledge of its physiopathology compromises the success in this enterprise. In this paper we review oxidative stress mechanisms involved in the disease and discuss the potential benefits of antioxidant supplementation as an adjuvant antimalarial strategy. PMID:23208374

  1. Discovery of Dual-Stage Malaria Inhibitors with New Targets

    PubMed Central

    Raphemot, Rene; Lafuente-Monasterio, Maria J.; Gamo-Benito, Francisco Javier; Clardy, Jon

    2015-01-01

    Malaria remains a major global health problem, with more than half of the world population at risk of contracting the disease and nearly a million deaths each year. Here, we report the discovery of inhibitors that target multiple stages of malaria parasite growth. To identify these inhibitors, we took advantage of the Tres Cantos Antimalarial Compound Set (TCAMS) small-molecule library, which is comprised of diverse and potent chemical scaffolds with activities against the blood stage of the malaria parasite, and investigated their effects against the elusive liver stage of the malaria parasite using a forward chemical screen. From a screen of nearly 14,000 compounds, we identified and confirmed 103 compounds as dual-stage malaria inhibitors. Interestingly, these compounds show preferential inhibition of parasite growth in liver- versus blood-stage malaria parasite assays, highlighting the drug susceptibility of this parasite form. Mode-of-action studies were completed using genetically modified and drug-resistant Plasmodium parasite strains. While we identified some compound targets as classical antimalarial pathways, such as the mitochondrial electron transport chain through cytochrome bc1 complex inhibition or the folate biosynthesis pathway, most compounds induced parasite death through as yet unknown mechanisms of action. Importantly, the identification of new chemotypes with different modes of action in killing Plasmodium parasites represents a promising opportunity for probing essential and novel molecular processes that remain to be discovered. The chemical scaffolds identified with activity against drug-resistant Plasmodium parasites represent starting points for dual-stage antimalarial development to surmount the threat of malaria parasite drug resistance. PMID:26666931

  2. Discovery of Dual-Stage Malaria Inhibitors with New Targets.

    PubMed

    Raphemot, Rene; Lafuente-Monasterio, Maria J; Gamo-Benito, Francisco Javier; Clardy, Jon; Derbyshire, Emily R

    2016-03-01

    Malaria remains a major global health problem, with more than half of the world population at risk of contracting the disease and nearly a million deaths each year. Here, we report the discovery of inhibitors that target multiple stages of malaria parasite growth. To identify these inhibitors, we took advantage of the Tres Cantos Antimalarial Compound Set (TCAMS) small-molecule library, which is comprised of diverse and potent chemical scaffolds with activities against the blood stage of the malaria parasite, and investigated their effects against the elusive liver stage of the malaria parasite using a forward chemical screen. From a screen of nearly 14,000 compounds, we identified and confirmed 103 compounds as dual-stage malaria inhibitors. Interestingly, these compounds show preferential inhibition of parasite growth in liver- versus blood-stage malaria parasite assays, highlighting the drug susceptibility of this parasite form. Mode-of-action studies were completed using genetically modified and drug-resistant Plasmodium parasite strains. While we identified some compound targets as classical antimalarial pathways, such as the mitochondrial electron transport chain through cytochrome bc1 complex inhibition or the folate biosynthesis pathway, most compounds induced parasite death through as yet unknown mechanisms of action. Importantly, the identification of new chemotypes with different modes of action in killing Plasmodium parasites represents a promising opportunity for probing essential and novel molecular processes that remain to be discovered. The chemical scaffolds identified with activity against drug-resistant Plasmodium parasites represent starting points for dual-stage antimalarial development to surmount the threat of malaria parasite drug resistance. PMID:26666931

  3. [Malaria in hominids].

    PubMed

    Snounou, Georges; Escalante, Ananias; Kasenene, John; Rénia, Laurent; Grüner, Anne-Charlotte; Krief, Sabrina

    2011-11-01

    Malaria parasites (Plasmodium spp) that infect great apes are very poorly documented Malaria was first described in gorillas, chimpanzees and orangutans in the early 20th century, but most studies were confined to a handful of chimpanzees in the 1930-1950s and a few orangutans in the 1970s. The three Plasmodium species described in African great apes were very similar to those infecting humans. The most extensively studied was P reichenowi, because of its close phylogenetic relation to P. falciparum, the predominant parasite in Africa and the most dangerous for humans. In the last three years, independent molecular studies of various chimpanzee and gorilla populations have revealed an unexpected diversity in the Plasmodium species they harbor, which are also phylogenetically close to P falciparum. In addition, cases of non human primate infection by human malaria parasites have been observed. These observations shed fresh light on the origin and evolutionary history of P. falciparum and provide a unique opportunity to probe the biological specificities of this major human parasite.

  4. Artemether for severe malaria

    PubMed Central

    Esu, Ekpereonne; Effa, Emmanuel E; Opie, Oko N; Uwaoma, Amirahobu; Meremikwu, Martin M

    2014-01-01

    Background In 2011 the World Health Organization (WHO) recommended parenteral artesunate in preference to quinine as first-line treatment for people with severe malaria. Prior to this recommendation, many countries, particularly in Africa, had begun to use artemether, an alternative artemisinin derivative. This review evaluates intramuscular artemether compared with both quinine and artesunate. Objectives To assess the efficacy and safety of intramuscular artemether versus any other parenteral medication in treating severe malaria in adults and children. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, CENTRAL (The Cochrane Library), MEDLINE, EMBASE and LILACS, ISI Web of Science, conference proceedings and reference lists of articles. We also searched the WHO clinical trial registry platform, ClinicalTrials.gov and the metaRegister of Controlled Trials (mRCT) for ongoing trials up to 9 April 2014. Selection criteria Randomized controlled trials (RCTs) comparing intramuscular artemether with intravenous or intramuscular antimalarial for treating severe malaria. Data collection and analysis The primary outcome was all-cause death.Two authors independently assessed trial eligibility, risk of bias and extracted data. We summarized dichotomous outcomes using risk ratios (RR) and continuous outcomes using mean differences (MD), and presented both measures with 95% confidence intervals (CI). Where appropriate, we combined data in meta-analyses and assessed the quality of the evidence using the GRADE approach. Main results We included 18 RCTs, enrolling 2662 adults and children with severe malaria, carried out in Africa (11) and in Asia (7). Artemether versus quinine For children in Africa, there is probably little or no difference in the risk of death between intramuscular artemether and quinine (RR 0.96, 95% CI 0.76 to 1.20; 12 trials, 1447 participants, moderate quality evidence). Coma recovery may be about five hours shorter with

  5. Epidemiological and clinical correlates of malaria-helminth co-infections in southern Ethiopia

    PubMed Central

    2013-01-01

    Background In many areas of the world, including Ethiopia, malaria and helminths are co-endemic, therefore, co-infections are common. However, little is known how concurrent infections affect the epidemiology and/or pathogenesis of each other. Therefore, this study was conducted to assess the effects of intestinal helminth infections on the epidemiology and clinical patterns of malaria in southern Ethiopia where both infections are prevalent. Methods A cross-sectional study was conducted in 2006 at Wondo Genet Health Center and Bussa Clinic, southern Ethiopia. Consecutive blood film positive malaria patients (N=230) and malaria negative asymptomatic individuals (N=233) were recruited. Malaria parasite detection and quantification was diagnosed using Giemsa-stained thick and thin blood films, respectively. Helminths were detected using direct microscopy and formol-ether concentration techniques. Coarse quantification of helminths ova was made using Kato Katz method. Results The over all magnitude of intestinal parasitic infection was high irrespective of malaria infection (67% among malaria positive patients versus 53.1% among malaria non-infected asymptomatic individuals). Trichuris trichiura infection was associated with increased malaria prevalence while increased worm burden of helminths as expressed by egg intensity was associated with increased malaria parasitaemia which could be a potential factor for development of severe malarial infection with the course of the disease. Majority (77%) of the subjects had multiple helminths infection. T. trichiura, Ascaris lumbricoides, Schistosoma mansoni, and hookworm infestation accounted for 64.5, 57.7 %, 28.4%, and 12.2% of the infections, respectively. Conclusions Populations in malaria-endemic areas of southern Ethiopia are multi-parasitized with up to four helminths. Mass deworming may be a simple practical approach in endemic areas in reducing the risk of severe malarial attack particularly for those at high risk

  6. Cross-border malaria: a major obstacle for malaria elimination.

    PubMed

    Wangdi, Kinley; Gatton, Michelle L; Kelly, Gerard C; Clements, Archie C A

    2015-06-01

    Movement of malaria across international borders poses a major obstacle to achieving malaria elimination in the 34 countries that have committed to this goal. In border areas, malaria prevalence is often higher than in other areas due to lower access to health services, treatment-seeking behaviour of marginalized populations that typically inhabit border areas, difficulties in deploying prevention programmes to hard-to-reach communities, often in difficult terrain, and constant movement of people across porous national boundaries. Malaria elimination in border areas will be challenging and key to addressing the challenges is strengthening of surveillance activities for rapid identification of any importation or reintroduction of malaria. This could involve taking advantage of technological advances, such as spatial decision support systems, which can be deployed to assist programme managers to carry out preventive and reactive measures, and mobile phone technology, which can be used to capture the movement of people in the border areas and likely sources of malaria importation. Additionally, joint collaboration in the prevention and control of cross-border malaria by neighbouring countries, and reinforcement of early diagnosis and prompt treatment are ways forward in addressing the problem of cross-border malaria.

  7. The Genome of Anopheles darlingi, the main neotropical malaria vector

    PubMed Central

    Marinotti, Osvaldo; Cerqueira, Gustavo C.; de Almeida, Luiz Gonzaga Paula; Ferro, Maria Inês Tiraboschi; Loreto, Elgion Lucio da Silva; Zaha, Arnaldo; Teixeira, Santuza M. R.; Wespiser, Adam R.; Almeida e Silva, Alexandre; Schlindwein, Aline Daiane; Pacheco, Ana Carolina Landim; da Silva, Artur Luiz da Costa; Graveley, Brenton R.; Walenz, Brian P.; Lima, Bruna de Araujo; Ribeiro, Carlos Alexandre Gomes; Nunes-Silva, Carlos Gustavo; de Carvalho, Carlos Roberto; Soares, Célia Maria de Almeida; de Menezes, Claudia Beatriz Afonso; Matiolli, Cleverson; Caffrey, Daniel; Araújo, Demetrius Antonio M.; de Oliveira, Diana Magalhães; Golenbock, Douglas; Grisard, Edmundo Carlos; Fantinatti-Garboggini, Fabiana; de Carvalho, Fabíola Marques; Barcellos, Fernando Gomes; Prosdocimi, Francisco; May, Gemma; de Azevedo Junior, Gilson Martins; Guimarães, Giselle Moura; Goldman, Gustavo Henrique; Padilha, Itácio Q. M.; Batista, Jacqueline da Silva; Ferro, Jesus Aparecido; Ribeiro, José M. C.; Fietto, Juliana Lopes Rangel; Dabbas, Karina Maia; Cerdeira, Louise; Agnez-Lima, Lucymara Fassarella; Brocchi, Marcelo; de Carvalho, Marcos Oliveira; Teixeira, Marcus de Melo; Diniz Maia, Maria de Mascena; Goldman, Maria Helena S.; Cruz Schneider, Maria Paula; Felipe, Maria Sueli Soares; Hungria, Mariangela; Nicolás, Marisa Fabiana; Pereira, Maristela; Montes, Martín Alejandro; Cantão, Maurício E.; Vincentz, Michel; Rafael, Miriam Silva; Silverman, Neal; Stoco, Patrícia Hermes; Souza, Rangel Celso; Vicentini, Renato; Gazzinelli, Ricardo Tostes; Neves, Rogério de Oliveira; Silva, Rosane; Astolfi-Filho, Spartaco; Maciel, Talles Eduardo Ferreira; Ürményi, Turán P.; Tadei, Wanderli Pedro; Camargo, Erney Plessmann; de Vasconcelos, Ana Tereza Ribeiro

    2013-01-01

    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector–human and vector–parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi. PMID:23761445

  8. Profiling the host response to malaria vaccination and malaria challenge

    PubMed Central

    Dunachie, Susanna; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    A vaccine for malaria is urgently required. The RTS,S vaccine represents major progress, but is only partially effective. Development of the next generation of highly effective vaccines requires elucidation of the protective immune response. Immunity to malaria is known to be complex, and pattern-based approaches such as global gene expression profiling are ideal for understanding response to vaccination and protection against disease. The availability of experimental sporozoite challenge in humans to test candidate malaria vaccines offers a precious opportunity unavailable for other current targets of vaccine research such as HIV, tuberculosis and Ebola. However, a limited number of transcriptional profiling studies in the context of malaria vaccine research have been published to date. This review outlines the background, existing studies, limits and opportunities for gene expression studies to accelerate malaria vaccine research. PMID:26256528

  9. Profiling the host response to malaria vaccination and malaria challenge.

    PubMed

    Dunachie, Susanna; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    A vaccine for malaria is urgently required. The RTS,S vaccine represents major progress, but is only partially effective. Development of the next generation of highly effective vaccines requires elucidation of the protective immune response. Immunity to malaria is known to be complex, and pattern-based approaches such as global gene expression profiling are ideal for understanding response to vaccination and protection against disease. The availability of experimental sporozoite challenge in humans to test candidate malaria vaccines offers a precious opportunity unavailable for other current targets of vaccine research such as HIV, tuberculosis and Ebola. However, a limited number of transcriptional profiling studies in the context of malaria vaccine research have been published to date. This review outlines the background, existing studies, limits and opportunities for gene expression studies to accelerate malaria vaccine research.

  10. Immunity to malaria in an era of declining malaria transmission.

    PubMed

    Fowkes, Freya J I; Boeuf, Philippe; Beeson, James G

    2016-02-01

    With increasing malaria control and goals of malaria elimination, many endemic areas are transitioning from high-to-low-to-no malaria transmission. Reductions in transmission will impact on the development of naturally acquired immunity to malaria, which develops after repeated exposure to Plasmodium spp. However, it is currently unclear how declining transmission and malaria exposure will affect the development and maintenance of naturally acquired immunity. Here we review the key processes which underpin this knowledge; the amount of Plasmodium spp. exposure required to generate effective immune responses, the longevity of antibody responses and the ability to mount an effective response upon re-exposure through memory responses. Lastly we identify research priorities which will increase our understanding of how changing transmission will impact on malarial immunity.

  11. New insight-guided approaches to detect, cure, prevent and eliminate malaria.

    PubMed

    Kumar, Sushil; Kumari, Renu; Pandey, Richa

    2015-05-01

    New challenges posed by the development of resistance against artemisinin-based combination therapies (ACTs) as well as previous first-line therapies, and the continuing absence of vaccine, have given impetus to research in all areas of malaria control. This review portrays the ongoing progress in several directions of malaria research. The variants of RTS,S and apical membrane antigen 1 (AMA1) are being developed and test adapted as multicomponent and multistage malaria control vaccines, while many other vaccine candidates and methodologies to produce antigens are under experimentation. To track and prevent the spread of artemisinin resistance from Southeast Asia to other parts of the world, rolling circle-enhanced enzyme activity detection (REEAD), a time- and cost-effective malaria diagnosis in field conditions, and a DNA marker associated with artemisinin resistance have become available. Novel mosquito repellents and mosquito trapping and killing techniques much more effective than the prevalent ones are undergoing field testing. Mosquito lines stably infected with their symbiotic wild-type or genetically engineered bacteria that kill sympatric malaria parasites are being constructed and field tested for stopping malaria transmission. A complementary approach being pursued is the addition of ivermectin-like drug molecules to ACTs to cure malaria and kill mosquitoes. Experiments are in progress to eradicate malaria mosquito by making it genetically male sterile. High-throughput screening procedures are being developed and used to discover molecules that possess long in vivo half life and are active against liver and blood stages for the fast cure of malaria symptoms caused by simple or relapsing and drug-sensitive and drug-resistant types of varied malaria parasites, can stop gametocytogenesis and sporogony and could be given in one dose. Target-based antimalarial drug designing has begun. Some of the putative next-generation antimalarials that possess in their

  12. How might infant and paediatric immune responses influence malaria vaccine efficacy?

    PubMed Central

    MOORMANN, A M

    2009-01-01

    Naturally acquired immunity to malaria requires repeat infections yet does not engender sterile immunity or long-lasting protective immunologic memory. This renders infants and young children the most susceptible to malaria-induced morbidity and mortality, and the ultimate target for a malaria vaccine. The prevailing paradigm is that infants initially garner protection due to transplacentally transferred anti-malarial antibodies and other intrinsic factors such as foetal haemoglobin. As these wane infants have an insufficient immune repertoire to prevent genetically diverse Plasmodium infections and an inability to control malaria-induced immunopathology. This Review discusses humoral, cell-mediated and innate immune responses to malaria and how each contributes to protection – focusing on how deficiencies in infant and paediatric immune responses might influence malaria vaccine efficacy in this population. In addition, burgeoning evidence suggests a role for inhibitory receptors that limit immunopathology and guide the development of long-lived immunity. Precisely how age or malaria infections influence the function of these regulators is unknown. Therefore the possibility that infants may not have the immune-dexterity to balance effective parasite clearance with timely immune-regulation leading to protective immunologic memory is considered. And thus, malaria vaccines tested in adults and older children may not be predictive for trials conducted in infants. PMID:19691558

  13. Recent advances in malaria genomics and epigenomics.

    PubMed

    Kirchner, Sebastian; Power, B Joanne; Waters, Andrew P

    2016-01-01

    Malaria continues to impose a significant disease burden on low- and middle-income countries in the tropics. However, revolutionary progress over the last 3 years in nucleic acid sequencing, reverse genetics, and post-genome analyses has generated step changes in our understanding of malaria parasite (Plasmodium spp.) biology and its interactions with its host and vector. Driven by the availability of vast amounts of genome sequence data from Plasmodium species strains, relevant human populations of different ethnicities, and mosquito vectors, researchers can consider any biological component of the malarial process in isolation or in the interactive setting that is infection. In particular, considerable progress has been made in the area of population genomics, with Plasmodium falciparum serving as a highly relevant model. Such studies have demonstrated that genome evolution under strong selective pressure can be detected. These data, combined with reverse genetics, have enabled the identification of the region of the P. falciparum genome that is under selective pressure and the confirmation of the functionality of the mutations in the kelch13 gene that accompany resistance to the major frontline antimalarial, artemisinin. Furthermore, the central role of epigenetic regulation of gene expression and antigenic variation and developmental fate in P. falciparum is becoming ever clearer. This review summarizes recent exciting discoveries that genome technologies have enabled in malaria research and highlights some of their applications to healthcare. The knowledge gained will help to develop surveillance approaches for the emergence or spread of drug resistance and to identify new targets for the development of antimalarial drugs and perhaps vaccines. PMID:27605022

  14. Unexpected fold in the circumsporozoite protein target of malaria vaccines

    SciTech Connect

    Doud, Michael B.; Koksal, Adem C.; Mi, Li-Zhi; Song, Gaojie; Lu, Chafen; Springer, Timothy A.

    2012-10-09

    Circumsporozoite (CS) protein is the major surface component of Plasmodium falciparum sporozoites and is essential for host cell invasion. A vaccine containing tandem repeats, region III, and thrombospondin type-I repeat (TSR) of CS is efficacious in phase III trials but gives only a 35% reduction in severe malaria in the first year postimmunization. We solved crystal structures showing that region III and TSR fold into a single unit, an '{alpha}TSR' domain. The {alpha}TSR domain possesses a hydrophobic pocket and core, missing in TSR domains. CS binds heparin, but {alpha}TSR does not. Interestingly, polymorphic T-cell epitopes map to specialized {alpha}TSR regions. The N and C termini are unexpectedly close, providing clues for sporozoite sheath organization. Elucidation of a unique structure of a domain within CS enables rational design of next-generation subunit vaccines and functional and medicinal chemical investigation of the conserved hydrophobic pocket.

  15. Development of the Contact Lens User Experience: CLUE Scales

    PubMed Central

    Wirth, R. J.; Edwards, Michael C.; Henderson, Michael; Henderson, Terri; Olivares, Giovanna; Houts, Carrie R.

    2016-01-01

    ABSTRACT Purpose The field of optometry has become increasingly interested in patient-reported outcomes, reflecting a common trend occurring across the spectrum of healthcare. This article reviews the development of the Contact Lens User Experience: CLUE system designed to assess patient evaluations of contact lenses. CLUE was built using modern psychometric methods such as factor analysis and item response theory. Methods The qualitative process through which relevant domains were identified is outlined as well as the process of creating initial item banks. Psychometric analyses were conducted on the initial item banks and refinements were made to the domains and items. Following this data-driven refinement phase, a second round of data was collected to further refine the items and obtain final item response theory item parameters estimates. Results Extensive qualitative work identified three key areas patients consider important when describing their experience with contact lenses. Based on item content and psychometric dimensionality assessments, the developing CLUE instruments were ultimately focused around four domains: comfort, vision, handling, and packaging. Item response theory parameters were estimated for the CLUE item banks (377 items), and the resulting scales were found to provide precise and reliable assignment of scores detailing users’ subjective experiences with contact lenses. Conclusions The CLUE family of instruments, as it currently exists, exhibits excellent psychometric properties. PMID:27383257

  16. Malaria diagnostics in clinical trials.

    PubMed

    Murphy, Sean C; Shott, Joseph P; Parikh, Sunil; Etter, Paige; Prescott, William R; Stewart, V Ann

    2013-11-01

    Malaria diagnostics are widely used in epidemiologic studies to investigate natural history of disease and in drug and vaccine clinical trials to exclude participants or evaluate efficacy. The Malaria Laboratory Network (MLN), managed by the Office of HIV/AIDS Network Coordination, is an international working group with mutual interests in malaria disease and diagnosis and in human immunodeficiency virus/acquired immunodeficiency syndrome clinical trials. The MLN considered and studied the wide array of available malaria diagnostic tests for their suitability for screening trial participants and/or obtaining study endpoints for malaria clinical trials, including studies of HIV/malaria co-infection and other malaria natural history studies. The MLN provides recommendations on microscopy, rapid diagnostic tests, serologic tests, and molecular assays to guide selection of the most appropriate test(s) for specific research objectives. In addition, this report provides recommendations regarding quality management to ensure reproducibility across sites in clinical trials. Performance evaluation, quality control, and external quality assessment are critical processes that must be implemented in all clinical trials using malaria tests.

  17. Newer approaches to malaria control

    PubMed Central

    Damodaran, SE; Pradhan, Prita; Pradhan, Suresh Chandra

    2011-01-01

    Malaria is the third leading cause of death due to infectious diseases affecting around 243 million people, causing 863,000 deaths each year, and is a major public health problem. Most of the malarial deaths occur in children below 5 years and is a major contributor of under-five mortality. As a result of environmental and climatic changes, there is a change in vector population and distribution, leading to resurgence of malaria at numerous foci. Resistance to antimalarials is a major challenge to malaria control and there are new drug developments, new approaches to treatment strategies, combination therapy to overcome resistance and progress in vaccine development. Now, artemisinin-based combination therapy is the first-line therapy as the malarial parasite has developed resistance to other antimalarials. Reports of artemisinin resistance are appearing and identification of new drug targets gains utmost importance. As there is a shift from malaria control to malaria eradication, more research is focused on malaria vaccine development. A malaria vaccine, RTS,S, is in phase III of development and may become the first successful one. Due to resistance to insecticides and lack of environmental sanitation, the conventional methods of vector control are turning out to be futile. To overcome this, novel strategies like sterile insect technique and transgenic mosquitoes are pursued for effective vector control. As a result of the global organizations stepping up their efforts with continued research, eradication of malaria can turn out to be a reality. PMID:23508211

  18. Newer approaches to malaria control.

    PubMed

    Damodaran, Se; Pradhan, Prita; Pradhan, Suresh Chandra

    2011-07-01

    Malaria is the third leading cause of death due to infectious diseases affecting around 243 million people, causing 863,000 deaths each year, and is a major public health problem. Most of the malarial deaths occur in children below 5 years and is a major contributor of under-five mortality. As a result of environmental and climatic changes, there is a change in vector population and distribution, leading to resurgence of malaria at numerous foci. Resistance to antimalarials is a major challenge to malaria control and there are new drug developments, new approaches to treatment strategies, combination therapy to overcome resistance and progress in vaccine development. Now, artemisinin-based combination therapy is the first-line therapy as the malarial parasite has developed resistance to other antimalarials. Reports of artemisinin resistance are appearing and identification of new drug targets gains utmost importance. As there is a shift from malaria control to malaria eradication, more research is focused on malaria vaccine development. A malaria vaccine, RTS,S, is in phase III of development and may become the first successful one. Due to resistance to insecticides and lack of environmental sanitation, the conventional methods of vector control are turning out to be futile. To overcome this, novel strategies like sterile insect technique and transgenic mosquitoes are pursued for effective vector control. As a result of the global organizations stepping up their efforts with continued research, eradication of malaria can turn out to be a reality. PMID:23508211

  19. Using rainfall estimates to predict malaria transmission

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    Malaria kills nearly a million people each year, mostly in rural Africa. The disease is spread by mosquitoes, which thrive in wet areas, so malaria transmission is closely linked to rainfall. Rainfall estimates could therefore be used to help predict potential malaria transmission. However, rain gauge networks are sparse in many of the rural areas that are hit hardest by malaria.

  20. Progress with new malaria vaccines.

    PubMed Central

    Webster, Daniel; Hill, Adrian V. S.

    2003-01-01

    Malaria is a parasitic disease of major global health significance that causes an estimated 2.7 million deaths each year. In this review we describe the burden of malaria and discuss the complicated life cycle of Plasmodium falciparum, the parasite responsible for most of the deaths from the disease, before reviewing the evidence that suggests that a malaria vaccine is an attainable goal. Significant advances have recently been made in vaccine science, and we review new vaccine technologies and the evaluation of candidate malaria vaccines in human and animal studies worldwide. Finally, we discuss the prospects for a malaria vaccine and the need for iterative vaccine development as well as potential hurdles to be overcome. PMID:14997243

  1. Malaria vector control: from past to future.

    PubMed

    Raghavendra, Kamaraju; Barik, Tapan K; Reddy, B P Niranjan; Sharma, Poonam; Dash, Aditya P

    2011-04-01

    Malaria is one of the most common vector-borne diseases widespread in the tropical and subtropical regions. Despite considerable success of malaria control programs in the past, malaria still continues as a major public health problem in several countries. Vector control is an essential part for reducing malaria transmission and became less effective in recent years, due to many technical and administrative reasons, including poor or no adoption of alternative tools. Of the different strategies available for vector control, the most successful are indoor residual spraying and insecticide-treated nets (ITNs), including long-lasting ITNs and materials. Earlier DDT spray has shown spectacular success in decimating disease vectors but resulted in development of insecticide resistance, and to control the resistant mosquitoes, organophosphates, carbamates, and synthetic pyrethroids were introduced in indoor residual spraying with needed success but subsequently resulted in the development of widespread multiple insecticide resistance in vectors. Vector control in many countries still use insecticides in the absence of viable alternatives. Few developments for vector control, using ovitraps, space spray, biological control agents, etc., were encouraging when used in limited scale. Likewise, recent introduction of safer vector control agents, such as insect growth regulators, biocontrol agents, and natural plant products have yet to gain the needed scale of utility for vector control. Bacterial pesticides are promising and are effective in many countries. Environmental management has shown sufficient promise for vector control and disease management but still needs advocacy for inter-sectoral coordination and sometimes are very work-intensive. The more recent genetic manipulation and sterile insect techniques are under development and consideration for use in routine vector control and for these, standardized procedures and methods are available but need thorough

  2. Kallmann's syndrome: clues to clinical diagnosis.

    PubMed

    John, H; Schmid, C

    2000-04-01

    Hypogonadotropic patients may visit pediatricians, general practitioners, endocrinologists or urologists, presenting with microphallus, cryptochidism or pubertas tarda and delayed bone maturation. Congenital hypogonadotropic hypogonadism is characterized, apart from small testes, by the constellation of low serum levels of testosterone, LH and FSH. Kallman's syndrome is characterized by congenital hypogonadotropic hypogonadism with midline defects such as anosmia (a deficiency of the sense of smell). The first case report dates back to 1856, and genetic defects causing the syndrome have been recently described. The diagnosis can be clinically suspected and is established by confirming hormonal studies. PMID:11052640

  3. The Cloud Detection and UV Monitoring Experiment (CLUE)

    NASA Technical Reports Server (NTRS)

    Barbier, L.; Loh, E.; Sokolsky, P.; Streitmatter, R.

    2004-01-01

    We propose a large-area, low-power instrument to perform CLoud detection and Ultraviolet monitoring, CLUE. CLUE will combine the W detection capabilities of the NIGHTGLOW payload, with an array of infrared sensors to perform cloud slicing measurements. Missions such as EUSO and OWL which seek to measure UHE cosmic-rays at 1W20 eV use the atmosphere as a fluorescence detector. CLUE will provide several important correlated measurements for these missions, including: monitoring the atmospheric W emissions &om 330 - 400 nm, determining the ambient cloud cover during those W measurements (with active LIDAR), measuring the optical depth of the clouds (with an array of narrow band-pass IR sensors), and correlating LIDAR and IR cloud cover measurements. This talk will describe the instrument as we envision it.

  4. Serological testing in malaria*

    PubMed Central

    1974-01-01

    The main purpose of this paper is to evaluate, in a critical manner, various serological tests with general emphasis on their value in the epidemiological assessment of malaria. Several tests have been employed in the past. However, the present memorandum will deal only with the methods that have been widely used recently—i.e., indirect immunofluorescence (IFA), passive haemagglutination (IHA), and gel-diffusion. The three immunoglobulins most commonly involved in these tests are IgG, IgM, and—to a lesser extent—IgA. PMID:4218506

  5. [Fake malaria drugs].

    PubMed

    Bygbjerg, Ib Christian

    2009-03-01

    The literature on fake medicaments is sparse, even if approximately 15% of all medicaments are fake, a figure that for antimalarials in particular reaches 50% in parts of Africa and Asia. Sub-standard and fake medicines deplete the public's confidence in health systems, health professionals and in the pharmaceutical industry - and increase the risk that resistance develops. For a traveller coming from a rich Western country, choosing to buy e.g. preventive antimalarials over the internet or in poor malaria-endemic areas, the consequences may be fatal. International trade-, control- and police-collaboration is needed to manage the problem, as is the fight against poverty and poor governance.

  6. Bioorganometallic Chemistry and Malaria

    NASA Astrophysics Data System (ADS)

    Biot, Christophe; Dive, Daniel

    This chapter summarizes recent developments in the design, synthesis, and structure-activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.

  7. Astronomers Gain Clues About Fundamental Physics

    NASA Astrophysics Data System (ADS)

    2005-12-01

    An international team of astronomers has looked at something very big -- a distant galaxy -- to study the behavior of things very small -- atoms and molecules -- to gain vital clues about the fundamental nature of our entire Universe. The team used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to test whether the laws of nature have changed over vast spans of cosmic time. The Green Bank Telescope The Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF (Click on image for GBT gallery) "The fundamental constants of physics are expected to remain fixed across space and time; that's why they're called constants! Now, however, new theoretical models for the basic structure of matter indicate that they may change. We're testing these predictions." said Nissim Kanekar, an astronomer at the National Radio Astronomy Observatory (NRAO), in Socorro, New Mexico. So far, the scientists' measurements show no change in the constants. "We've put the most stringent limits yet on some changes in these constants, but that's not the end of the story," said Christopher Carilli, another NRAO astronomer. "This is the exciting frontier where astronomy meets particle physics," Carilli explained. The research can help answer fundamental questions about whether the basic components of matter are tiny particles or tiny vibrating strings, how many dimensions the Universe has, and the nature of "dark energy." The astronomers were looking for changes in two quantities: the ratio of the masses of the electron and the proton, and a number physicists call the fine structure constant, a combination of the electron charge, the speed of light and the Planck constant. These values, considered fundamental physical constants, once were "taken as time independent, with values given once and forever" said German particle physicist Christof Wetterich. However, Wetterich explained, "the viewpoint of modern particle theory has changed in recent years," with ideas such as

  8. VLA Study Offers Clue to Galaxy Formation

    NASA Astrophysics Data System (ADS)

    2004-11-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) radio telescope to study the most distant known quasar have found a tantalizing clue that may answer a longstanding cosmic chicken-and-egg question: which came first, supermassive black holes or giant galaxies? VLA Image of Quasar VLA Image of Quasar J1148+5251 CREDIT: Walter et al., NRAO/AUI/NSF (Click on Image for Larger Version) For years, astronomers have noted a direct relationship between the mass of a galaxy's central, supermassive black hole and the total mass of the "bulge" of stars at its core. The more massive the black hole, the more massive the bulge. Scientists have speculated extensively about whether the black hole or the stellar bulge formed first. Recently, some theories have suggested that the two may form simultaneously. However, the new VLA observations of a quasar and its host galaxy seen as they were when the Universe was less than a billion years old indicate that the young galaxy has a supermassive black hole but no massive bulge of stars. "We found a large amount of gas in this young galaxy, and, when we add the mass of this gas to that of the black hole, they add up to nearly the total mass of the entire system. The dynamics of the galaxy imply that there isn't much mass left to make up the size of stellar bulge predicted by current models," said Chris Carilli, of the National Radio Astronomy Observatory (NRAO), in Socorro, NM. The scientists studied a quasar dubbed J1148+5251, that, at more than 12.8 billion light-years, is the most distant quasar yet found. Discovered in 2003 by the Sloan Digital Sky Survey, J1148+5251 is a young galaxy with a bright quasar core seen as it was when the Universe was only 870 million years old. The Universe now is 13.7 billion years old. Aiming the VLA at J1148+4241 for about 60 hours, the researchers were able to determine the amount of molecular gas in the system. In addition, they were able to measure the motions of that gas

  9. Glucose-6-phosphate dehydrogenase polymorphisms and susceptibility to mild malaria in Dogon and Fulani, Mali

    PubMed Central

    2014-01-01

    Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with protection from severe malaria, and potentially uncomplicated malaria phenotypes. It has been documented that G6PD deficiency in sub-Saharan Africa is due to the 202A/376G G6PD A-allele, and association studies have used genotyping as a convenient technique for epidemiological studies. However, recent studies have shown discrepancies in G6PD202/376 associations with severe malaria. There is evidence to suggest that other G6PD deficiency alleles may be common in some regions of West Africa, and that allelic heterogeneity could explain these discrepancies. Methods A cross-sectional epidemiological study of malaria susceptibility was conducted during 2006 and 2007 in the Sahel meso-endemic malaria zone of Mali. The study included Dogon (n = 375) and Fulani (n = 337) sympatric ethnic groups, where the latter group is characterized by lower susceptibility to Plasmodium falciparum malaria. Fifty-three G6PD polymorphisms, including 202/376, were genotyped across the 712 samples. Evidence of association of these G6PD polymorphisms and mild malaria was assessed in both ethnic groups using genotypic and haplotypic statistical tests. Results It was confirmed that the Fulani are less susceptible to malaria, and the 202A mutation is rare in this group (< 1% versus Dogon 7.9%). The Betica-Selma 968C/376G (~11% enzymatic activity) was more common in Fulani (6.1% vs Dogon 0.0%). There are differences in haplotype frequencies between Dogon and Fulani, and association analysis did not reveal strong evidence of protective G6PD genetic effects against uncomplicated malaria in both ethnic groups and gender. However, there was some evidence of increased risk of mild malaria in Dogon with the 202A mutation, attaining borderline statistical significance in females. The rs915942 polymorphism was found to be associated with asymptomatic malaria in Dogon females, and the rs61042368 polymorphism was

  10. Malaria in pregnancy: current issues.

    PubMed

    Brabin, B

    1997-01-01

    Though not known why, pregnant women are far more susceptible to Plasmodium falciparum malaria during their first pregnancies. Therefore, in sub-Saharan African countries endemic for malaria, almost half of all primigravidae will be parasitemic at their first antenatal visit. Some estimate that up to half of all low birth weight babies born to primigravidae in malaria-endemic areas may be attributable to malaria. Intrauterine growth in the context of maternal parasitemia therefore has major adverse implications for child survival. For the mothers, the prevalence of anemia among pregnant women is greatly increased in malarious areas, and iron-deficiency anemia in pregnant women in developed countries has been associated with pre-term birth and low birth weight. These adverse health and developmental consequences of malaria infection among mothers and their babies is compounded by the absence of any widely-applied recommendation for malaria control in pregnant women in Africa. Current control strategies are nonetheless described. The influence of HIV infection in relation to the effectiveness of malaria drug control during pregnancy has not been assessed.

  11. Clinical immunity to malaria.

    PubMed

    Schofield, Louis; Mueller, Ivo

    2006-03-01

    Under appropriate conditions of transmission intensity, functional immunity to malaria appears to be acquired in distinct stages. The first phase reduces the likelihood of severe or fatal disease; the second phase limits the clinical impact of 'mild' malaria; and the third provides partial but incomplete protection against pathogen burden. These findings suggest clinical immunity to mortality and morbidity is acquired earlier, with greater ease, and via distinct mechanisms as compared to anti-parasite immunity, which is more difficult to achieve, takes longer and is only ever partially efficacious. The implications of this view are significant in that current vaccination strategies aim predominantly to achieve anti-parasite immunity, although imparting clinical immunity is the public health objective. Despite enormous relevance for global public health, the mechanisms governing these processes remain obscure. Four candidate mechanisms might mediate clinical immunity, namely immunity to cytoadherence determinants, tolerance to toxins, acquired immunity to toxins, and immunoregulation. This review addresses the targets and determinants of clinical immunity, and considers the implications for vaccine development.

  12. Healthy malaria control.

    PubMed

    Mathen, K

    1998-01-01

    According to an article in the May 27, 1998, issue of the Times of India, Dr. Menno Jan Bouma, an epidemiologist from the London School of Hygiene and Tropical Medicine, has suggested spraying India's cows, goats, and buffaloes with insecticide in a bid to combat malaria. This strategy, however, fails to fully consider what is currently known about insect behavior, insecticides' modes of action, and the interaction between the two in the environment. A population of insects can ultimately develop resistance and adapt to the repeated onslaught of insecticides. Furthermore, each type of insecticide which could potentially be used has its own set of problems with regard to the environment, the products into which they break down, and how they affect wildlife and humans. The once commonplace spraying of livestock in the West led to Mad Cow Disease, Chicken Flu, and other problems. India's meat and dairy products will definitely be contaminated should the country's livestock be sprayed with insecticides. In the long-term interest of humankind, efforts must be made to contain, not eradicate, mosquitoes and malaria. PMID:12348880

  13. Ungulate malaria parasites

    PubMed Central

    Templeton, Thomas J.; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A.; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  14. Ungulate malaria parasites.

    PubMed

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium.

  15. Ungulate malaria parasites.

    PubMed

    Templeton, Thomas J; Asada, Masahito; Jiratanh, Montakan; Ishikawa, Sohta A; Tiawsirisup, Sonthaya; Sivakumar, Thillaiampalam; Namangala, Boniface; Takeda, Mika; Mohkaew, Kingdao; Ngamjituea, Supawan; Inoue, Noboru; Sugimoto, Chihiro; Inagaki, Yuji; Suzuki, Yasuhiko; Yokoyama, Naoaki; Kaewthamasorn, Morakot; Kaneko, Osamu

    2016-01-01

    Haemosporida parasites of even-toed ungulates are diverse and globally distributed, but since their discovery in 1913 their characterization has relied exclusively on microscopy-based descriptions. In order to bring molecular approaches to bear on the identity and evolutionary relationships of ungulate malaria parasites, we conducted Plasmodium cytb-specific nested PCR surveys using blood from water buffalo in Vietnam and Thailand, and goats in Zambia. We found that Plasmodium is readily detectable from water buffalo in these countries, indicating that buffalo Plasmodium is distributed in a wider region than India, which is the only area in which buffalo Plasmodium has been reported. Two types (I and II) of Plasmodium sequences were identified from water buffalo and a third type (III) was isolated from goat. Morphology of the parasite was confirmed in Giemsa-reagent stained blood smears for the Type I sample. Complete mitochondrial DNA sequences were isolated and used to infer a phylogeny in which ungulate malaria parasites form a monophyletic clade within the Haemosporida, and branch prior to the clade containing bird, lizard and other mammalian Plasmodium. Thus it is likely that host switching of Plasmodium from birds to mammals occurred multiple times, with a switch to ungulates independently from other mammalian Plasmodium. PMID:26996979

  16. Multigene Phylogenetics Reveals Temporal Diversification of Major African Malaria Vectors

    PubMed Central

    Kamali, Maryam; Marek, Paul E.; Peery, Ashley; Antonio-Nkondjio, Christophe; Ndo, Cyrille; Tu, Zhijian; Simard, Frederic; Sharakhov, Igor V.

    2014-01-01

    The major vectors of malaria in sub-Saharan Africa belong to subgenus Cellia. Yet, phylogenetic relationships and temporal diversification among African mosquito species have not been unambiguously determined. Knowledge about vector evolutionary history is crucial for correct interpretation of genetic changes identified through comparative genomics analyses. In this study, we estimated a molecular phylogeny using 49 gene sequences for the African malaria vectors An. gambiae, An. funestus, An. nili, the Asian malaria mosquito An. stephensi, and the outgroup species Culex quinquefasciatus and Aedes aegypti. To infer the phylogeny, we identified orthologous sequences uniformly distributed approximately every 5 Mb in the five chromosomal arms. The sequences were aligned and the phylogenetic trees were inferred using maximum likelihood and neighbor-joining methods. Bayesian molecular dating using a relaxed log normal model was used to infer divergence times. Trees from individual genes agreed with each other, placing An. nili as a basal clade that diversified from the studied malaria mosquito species 47.6 million years ago (mya). Other African malaria vectors originated more recently, and independently acquired traits related to vectorial capacity. The lineage leading to An. gambiae diverged 30.4 mya, while the African vector An. funestus and the Asian vector An. stephensi were the most closely related sister taxa that split 20.8 mya. These results were supported by consistently high bootstrap values in concatenated phylogenetic trees generated individually for each chromosomal arm. Genome-wide multigene phylogenetic analysis is a useful approach for discerning historic relationships among malaria vectors, providing a framework for the correct interpretation of genomic changes across species, and comprehending the evolutionary origins of this ubiquitous and deadly insect-borne disease. PMID:24705448

  17. Determinants of relapse periodicity in Plasmodium vivax malaria

    PubMed Central

    2011-01-01

    Plasmodium vivax is a major cause of febrile illness in endemic areas of Asia, Central and South America, and the horn of Africa. Plasmodium vivax infections are characterized by relapses of malaria arising from persistent liver stages of the parasite (hypnozoites) which can be prevented only by 8-aminoquinoline anti-malarials. Tropical P. vivax relapses at three week intervals if rapidly eliminated anti-malarials are given for treatment, whereas in temperate regions and parts of the sub-tropics P. vivax infections are characterized either by a long incubation or a long-latency period between illness and relapse - in both cases approximating 8-10 months. The epidemiology of the different relapse phenotypes has not been defined adequately despite obvious relevance to malaria control and elimination. The number of sporozoites inoculated by the anopheline mosquito is an important determinant of both the timing and the number of relapses. The intervals between relapses display a remarkable periodicity which has not been explained. Evidence is presented that the proportion of patients who have successive relapses is relatively constant and that the factor which activates hypnozoites and leads to regular interval relapse in vivax malaria is the systemic febrile illness itself. It is proposed that in endemic areas a large proportion of the population harbours latent hypnozoites which can be activated by a systemic illness such as vivax or falciparum malaria. This explains the high rates of vivax following falciparum malaria, the high proportion of heterologous genotypes in relapses, the higher rates of relapse in people living in endemic areas compared with artificial infection studies, and, by facilitating recombination between different genotypes, contributes to P. vivax genetic diversity particularly in low transmission settings. Long-latency P. vivax phenotypes may be more widespread and more prevalent than currently thought. These observations have important

  18. Influence of climate and river level on the incidence of malaria in Cacao, French Guiana

    PubMed Central

    2011-01-01

    Background The epidemiological profiles of vector-borne diseases, such as malaria, are strongly associated with environmental conditions. An understanding of the effect of the climate on the occurrence of malaria may provide indirect insight into the anopheles mosquito vectors endemic to a particular region. The association between meteorological and hydrographical factors and the occurrence of malaria was studied in a village in French Guiana during an epidemic caused essentially by Plasmodium vivax. Methods A cohort of confirmed cases of P. vivax malaria occurring between 2002 and 2007 was studied to search for an association between the number of new infection episodes occurring each month, mean, maximum and minimum monthly temperatures, cumulative rainfall for the month and the mean monthly height of the river bordering the village, with the aid of time series. Cross-correlation analysis revealed that these meteorological factors had large effects on the number of episodes, over a study period of 12 months. Results Climatic factors supporting the continuance of the epidemic were identified in the short-term (low minimum temperatures during the month), medium-term (low maximum temperatures two months before) and long-term (low maximum temperatures nine months before and high lowest level of the river 12 months before). Cross-correlation analysis showed that the effects of these factors were greatest at the beginning of the short rainy season. Conclusion The association between the river level and the number of malaria attacks provides clues to better understand the environment of malaria transmission and the ecological characteristics of the vectors in the region. PMID:21294884

  19. Shape of Key Malaria Protein Could Help Improve Vaccine Efficacy

    MedlinePlus

    ... Malaria > Research Malaria Understanding Research NIAID Role Basic Biology Prevention and Control Strategies Strategic Partnerships and Research ... the malaria parasite. Related Links Global Research​ Vector Biology International Centers of Excellence for Malaria Research (ICEMR) ...

  20. Tinea imbricata as a clue to occult immunodeficiency.

    PubMed

    Maroñas Jiménez, Lidia; Monsálvez, Verónica; Gutiérrez García-Rodrigo, Carlota; Postigo Llorente, Concepción

    2014-01-01

    Tinea imbricata (TI) is a geographically restricted dermatophytosis with distinctive clinical and immunologic features. We present a case of TI occurring in a native Brazilian child with previously undiagnosed human immunodeficiency virus infection. Physicians should bear in mind that diagnosis of TI may be a clinical clue to potentially serious underlying immunodeficiency.

  1. Clue Insensitivity in Remote Associates Test Problem Solving

    ERIC Educational Resources Information Center

    Smith, Steven M.; Sifonis, Cynthia M.; Angello, Genna

    2012-01-01

    Does spreading activation from incidentally encountered hints cause incubation effects? We used Remote Associates Test (RAT) problems to examine effects of incidental clues on impasse resolution. When solution words were seen incidentally 3-sec before initially unsolved problems were retested, more problems were resolved (Experiment 1). When…

  2. CSI: Immigrant Children--Clues for Teacher Education

    ERIC Educational Resources Information Center

    Larke, Patricia J.

    2012-01-01

    The metaphor of the popular television shows "CSI: New York," "CSI: Miami," and "CSI: Las Vegas" (CSI stands for "crime scene investigation") is applicable to investigating issues of immigrant children in teacher preparation programs (TPP). One of the fundamental principles of CSI is to solve the crime by critically examining clues as evidence…

  3. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    PubMed Central

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G.

    2015-01-01

    Background The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. Methods We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Findings Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. Interpretation This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts. PMID:26501116

  4. Microsporidians as evolution-proof agents of malaria control?

    PubMed

    Koella, Jacob C; Lorenz, Lena; Bargielowski, Irka

    2009-01-01

    Despite our efforts at malaria control, malaria remains one of our most serious and deadly diseases. The failure of control stems in part from the parasite's intense transmission in many areas and from the emergence and spread of resistance of the malaria parasites and their mosquito vectors against most of the chemicals used to attack them. New methods for control are desperately needed. However, new methods will be useful only if they are effective (i.e., decrease transmission substantially) and evolutionarily sustainable (i.e., evolution-proof, in that they prevent evolution from eroding efficacy). We suggest microsporidian parasites that infect mosquitoes could be potentially effective and sustainable agents for malaria control. They may be effective because they target several epidemiologically important traits: survival of larvae (and thus number of adult mosquitoes), adult longevity, biting rate and the development of malaria within the mosquitoes. Even if each trait is affected only moderately, the intensity of transmission can be reduced considerably. They may be evolution-proof, for the evolutionarily most important trait is juvenile survival, whereas the two epidemiologically most important factors are traits of the adult mosquito: biting rate and longevity. Under the intense microsporidian pressure of a control programme, it is likely (if not inevitable) that the larvae evolve to survive microsporidian infection. However, if this larval tolerance to microsporidians is genetically correlated with the adult traits, tolerant mosquitoes may not live as long and bite less frequently than microsporidian-sensitive ones. While such a trade-off has not been measured, combining several studies suggests indirectly a negative genetic correlation between larval tolerance and adult longevity. Therefore, evolution might not undermine control; rather it might increase its effectiveness. While the evolution of resistance may be inevitable, the failure of control need

  5. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria.

    PubMed

    Hien, Domonbabele F D S; Dabiré, Kounbobr R; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S; Cohuet, Anna; Yameogo, Bienvenue K; Gouagna, Louis-Clément; Hopkins, Richard J; Ouedraogo, Georges A; Simard, Frédéric; Ouedraogo, Jean-Bosco; Ignell, Rickard; Lefevre, Thierry

    2016-08-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374

  6. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria

    PubMed Central

    Hien, Domonbabele F. d. S.; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S.; Cohuet, Anna; Yameogo, Bienvenue K.; Gouagna, Louis-Clément; Hopkins, Richard J.; Ouedraogo, Georges A.; Simard, Frédéric; Ignell, Rickard; Lefevre, Thierry

    2016-01-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities. PMID:27490374

  7. Testing in Mice the Hypothesis That Melanin Is Protective in Malaria Infections

    PubMed Central

    Waisberg, Michael; Vickers, Brandi K.; Yager, Stephanie B.; Lin, Christina K.; Pierce, Susan K.

    2012-01-01

    Malaria has had the largest impact of any infectious disease on shaping the human genome, exerting enormous selective pressure on genes that improve survival in severe malaria infections. Modern humans originated in Africa and lost skin melanization as they migrated to temperate regions of the globe. Although it is well documented that loss of melanization improved cutaneous Vitamin D synthesis, melanin plays an evolutionary ancient role in insect immunity to malaria and in some instances melanin has been implicated to play an immunoregulatory role in vertebrates. Thus, we tested the hypothesis that melanization may be protective in malaria infections using mouse models. Congenic C57BL/6 mice that differed only in the gene encoding tyrosinase, a key enzyme in the synthesis of melanin, showed no difference in the clinical course of infection by Plasmodium yoelii 17XL, that causes severe anemia, Plasmodium berghei ANKA, that causes severe cerebral malaria or Plasmodium chabaudi AS that causes uncomplicated chronic disease. Moreover, neither genetic deficiencies in vitamin D synthesis nor vitamin D supplementation had an effect on survival in cerebral malaria. Taken together, these results indicate that neither melanin nor vitamin D production improve survival in severe malaria. PMID:22242171

  8. Plant-Mediated Effects on Mosquito Capacity to Transmit Human Malaria.

    PubMed

    Hien, Domonbabele F D S; Dabiré, Kounbobr R; Roche, Benjamin; Diabaté, Abdoulaye; Yerbanga, Rakiswende S; Cohuet, Anna; Yameogo, Bienvenue K; Gouagna, Louis-Clément; Hopkins, Richard J; Ouedraogo, Georges A; Simard, Frédéric; Ouedraogo, Jean-Bosco; Ignell, Rickard; Lefevre, Thierry

    2016-08-01

    The ecological context in which mosquitoes and malaria parasites interact has received little attention, compared to the genetic and molecular aspects of malaria transmission. Plant nectar and fruits are important for the nutritional ecology of malaria vectors, but how the natural diversity of plant-derived sugar sources affects mosquito competence for malaria parasites is unclear. To test this, we infected Anopheles coluzzi, an important African malaria vector, with sympatric field isolates of Plasmodium falciparum, using direct membrane feeding assays. Through a series of experiments, we then examined the effects of sugar meals from Thevetia neriifolia and Barleria lupilina cuttings that included flowers, and fruit from Lannea microcarpa and Mangifera indica on parasite and mosquito traits that are key for determining the intensity of malaria transmission. We found that the source of plant sugar meal differentially affected infection prevalence and intensity, the development duration of the parasites, as well as the survival and fecundity of the vector. These effects are likely the result of complex interactions between toxic secondary metabolites and the nutritional quality of the plant sugar source, as well as of host resource availability and parasite growth. Using an epidemiological model, we show that plant sugar source can be a significant driver of malaria transmission dynamics, with some plant species exhibiting either transmission-reducing or -enhancing activities.

  9. Major Histocompatibility Complex and Malaria: Focus on Plasmodium vivax Infection

    PubMed Central

    Lima-Junior, Josué da Costa; Pratt-Riccio, Lilian Rose

    2016-01-01

    The importance of host and parasite genetic factors in malaria resistance or susceptibility has been investigated since the middle of the last century. Nowadays, of all diseases that affect man, malaria still plays one of the highest levels of selective pressure on human genome. Susceptibility to malaria depends on exposure profile, epidemiological characteristics, and several components of the innate and adaptive immune system that influences the quality of the immune response generated during the Plasmodium lifecycle in the vertebrate host. But it is well known that the parasite’s enormous capacity of genetic variation in conjunction with the host genetics polymorphism is also associated with a wide spectrum of susceptibility degrees to complicated or severe forms of the disease. In this scenario, variations in genes of the major histocompatibility complex (MHC) associated with host resistance or susceptibility to malaria have been identified and used as markers in host–pathogen interaction studies, mainly those evaluating the impact on the immune response, acquisition of resistance, or increased susceptibility to infection or vulnerability to disease. However, due to the intense selective pressure, number of cases, and mortality rates, the majority of the reported associations reported concerned Plasmodium falciparum malaria. Studies on the MHC polymorphism and its association with Plasmodium vivax, which is the most widespread Plasmodium and the most prevalent species outside the African continent, are less frequent but equally important. Despite punctual contributions, there are accumulated evidences of human genetic control in P. vivax infection and disease. Herein, we review the current knowledge in the field of MHC and derived molecules (HLA Class I, Class II, TNF-α, LTA, BAT1, and CTL4) regarding P. vivax malaria. We discuss particularly the results of P. vivax studies on HLA class I and II polymorphisms in relation to host susceptibility, naturally

  10. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  11. Malaria Prophylaxis: A Comprehensive Review

    PubMed Central

    Castelli, Francesco; Odolini, Silvia; Autino, Beatrice; Foca, Emanuele; Russo, Rosario

    2010-01-01

    The flow of international travellers to and from malaria-endemic areas, especially Africa, has increased in recent years. Apart from the very high morbidity and mortality burden imposed on malaria-endemic areas, imported malaria is the main cause of fever possibly causing severe disease and death in travellers coming from tropical and subtropical areas, particularly Sub-Saharan Africa. The importance of behavioural preventive measures (bed nets, repellents, etc.), adequate chemoprophylaxis and, in selected circumstances, stand-by emergency treatment may not be overemphasized. However, no prophylactic regimen may offer complete protection. Expert advice is needed to tailor prophylactic advice according to traveller (age, baseline clinical conditions, etc.) and travel (destination, season, etc.) characteristics in order to reduce malaria risk.

  12. The March Toward Malaria Vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-12-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  13. The march toward malaria vaccines.

    PubMed

    Hoffman, Stephen L; Vekemans, Johan; Richie, Thomas L; Duffy, Patrick E

    2015-11-27

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  14. The March Toward Malaria Vaccines

    PubMed Central

    Hoffman, Stephen L.; Vekemans, Johan; Richie, Thomas L.; Duffy, Patrick E.

    2016-01-01

    In 2013 there were an estimated 584,000 deaths and 198 million clinical illnesses due to malaria, the majority in sub-Saharan Africa. Vaccines would be the ideal addition to the existing armamentarium of anti-malaria tools. However, malaria is caused by parasites, and parasites are much more complex in terms of their biology than the viruses and bacteria for which we have vaccines, passing through multiple stages of development in the human host, each stage expressing hundreds of unique antigens. This complexity makes it more difficult to develop a vaccine for parasites than for viruses and bacteria, since an immune response targeting one stage may not offer protection against a later stage, because different antigens are the targets of protective immunity at different stages. Furthermore, depending on the life cycle stage and whether the parasite is extra- or intra-cellular, antibody and/or cellular immune responses provide protection. It is thus not surprising that there is no vaccine on the market for prevention of malaria, or any human parasitic infection. In fact, no vaccine for any disease with this breadth of targets and immune responses exists. In this limited review, we focus on four approaches to malaria vaccines, (1) a recombinant protein with adjuvant vaccine aimed at Plasmodium falciparum (Pf) pre-erythrocytic stages of the parasite cycle (RTS,S/AS01), (2) whole sporozoite vaccines aimed at Pf pre-erythrocytic stages (PfSPZ Vaccine and PfSPZ-CVac), (3) prime boost vaccines that include recombinant DNA, viruses and bacteria, and protein with adjuvant aimed primarily at Pf pre-erythrocytic, but also asexual erythrocytic stages, and (4) recombinant protein with adjuvant vaccines aimed at Pf and Plasmodium vivax sexual erythrocytic and mosquito stages. We recognize that we are not covering all approaches to malaria vaccine development, or most of the critically important work on development of vaccines against P. vivax, the second most important cause of

  15. Re-emergence of malaria in India.

    PubMed

    Sharma, V P

    1996-01-01

    Malaria was nearly eradicated from India in the early 1960s but the disease has re-emerged as a major public health problem. Early set backs in malaria eradication coincided with DDT shortages. Later in the 1960s and 1970s malaria resurgence was the result of technical, financial and operational problems. In the late 1960s malaria cases in urban areas started to multiply, and upsurge of malaria was widespread. As a result in 1976, 6.45 million cases were recorded by the National Malaria Eradication Programme (NMEP), highest since resurgence. The implementation of urban malaria scheme (UMS) in 1971-72 and the modified plan of operation (MPO) in 1977 improved the malaria situation for 5-6 yr. Malaria cases were reduced to about 2 million. The impact was mainly on vivax malaria. Easy availability of drugs under the MPO prevented deaths due to malaria and reduced morbidity, a peculiar feature of malaria during the resurgence. The Plasmodium falciparum containment programme (PfCP) launched in 1977 to contain the spread of falciparum malaria reduced falciparum malaria in the areas where the containment programme was operated but its general spread could not be contained. P. falciparum showed a steady upward trend during the 1970s and thereafter. Rising trend of malaria was facilitated by developments in various sectors to improve the national economy under successive 5 year plans. Malaria at one time a rural disease, diversified under the pressure of developments into various ecotypes. These ecotypes have been identified as forest malaria, urban malaria, rural malaria, industrial malaria, border malaria and migration malaria; the latter cutting across boundaries of various epidemiological types. Further, malaria in the 1990s has returned with new features not witnessed during the pre-eradication days. These are the vector resistance to insecticide(s); pronounced exophilic vector behaviour; extensive vector breeding grounds created principally by the water resource

  16. An Integrated Atmospheric and Hydrological Based Malaria Epidemic Alert System

    NASA Astrophysics Data System (ADS)

    Asefi Najafabady, S.; Li, J.; Nair, U. S.; Welch, R. M.; Srivastava, A.; Nagpal, B. N.; Saxena, R.; Benedict, M. E.

    2005-05-01

    resolution QuickBird data has been used to identify small mosquito breeding sites with an accuracy of 90 %, as verified by ground observations. These layers of information, along with a 30m resolution Digital Elevation Model and field measurements of malaria incidence, larvae and mosquito counts, were examined in a GIS system to identify the environmental parameters effective in mosquito distribution. The Genetic Algorithm for Rule Set Production (GARP) has been applied to the region using the parameters defined above to predict regions susceptible to malaria transmission.

  17. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    PubMed Central

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria. PMID:26029172

  18. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. PMID:26832999

  19. [Malaria and intestinal protozoa].

    PubMed

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately.

  20. Climate change and malaria transmission.

    PubMed

    Lindsay, S W; Birley, M H

    1996-12-01

    There is a consensus among climatologists that our planet is experiencing a progressive rise in surface temperature due to the increased production of "greenhouse" gases. Some of the possible consequences of elevated temperature on malaria transmission are examined in the present review. A simple mathematical model is first used to examine the effect of temperature on the ability of Anopheles maculipennis to transmit vivax malaria. This indicates that small increases in temperature at low temperatures may increase the risk of transmission substantially. This is important, since vulnerable communities, poorly protected by health services, in areas of unstable or no malaria are likely to be at increased risk of future outbreaks. In contrast, areas of stable transmission may be little affected by rising temperature. It is thought that global warming will lead to coastal flooding, changes in precipitation and, indirectly, changes in land use. Just how these changes will effect transmission at a regional level requires an understanding of the ecology of local vectors, since environmental changes which favour malaria transmission in one vector species may reduce it in another. Methods for predicting future changes in malaria in different regions are discussed, highlighting the need for further research in this area. Most importantly, there is a need for researchers to validate the accuracy of the models used for predicting malaria and to confirm the assumptions on which the models are based.

  1. A new malaria agent in African hominids.

    PubMed

    Ollomo, Benjamin; Durand, Patrick; Prugnolle, Franck; Douzery, Emmanuel; Arnathau, Céline; Nkoghe, Dieudonné; Leroy, Eric; Renaud, François

    2009-05-01

    Plasmodium falciparum is the major human malaria agent responsible for 200 to 300 million infections and one to three million deaths annually, mainly among African infants. The origin and evolution of this pathogen within the human lineage is still unresolved. A single species, P. reichenowi, which infects chimpanzees, is known to be a close sister lineage of P. falciparum. Here we report the discovery of a new Plasmodium species infecting Hominids. This new species has been isolated in two chimpanzees (Pan troglodytes) kept as pets by villagers in Gabon (Africa). Analysis of its complete mitochondrial genome (5529 nucleotides including Cyt b, Cox I and Cox III genes) reveals an older divergence of this lineage from the clade that includes P. falciparum and P. reichenowi (approximately 21+/-9 Myrs ago using Bayesian methods and considering that the divergence between P. falciparum and P. reichenowi occurred 4 to 7 million years ago as generally considered in the literature). This time frame would be congruent with the radiation of hominoids, suggesting that this Plasmodium lineage might have been present in early hominoids and that they may both have experienced a simultaneous diversification. Investigation of the nuclear genome of this new species will further the understanding of the genetic adaptations of P. falciparum to humans. The risk of transfer and emergence of this new species in humans must be now seriously considered given that it was found in two chimpanzees living in contact with humans and its close relatedness to the most virulent agent of malaria.

  2. Management of relapsing Plasmodium vivax malaria

    PubMed Central

    Chu, Cindy S; White, Nicholas J

    2016-01-01

    ABSTRACT Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely. PMID:27530139

  3. Orthographic Analogies and Early Reading: Evidence from a Multiple Clue Word Paradigm

    ERIC Educational Resources Information Center

    Savage, Robert S.; Deault, Louise; Daki, Julia; Aouad, Julie

    2011-01-01

    Two experiments using a variation of the clue word analogy task (Goswami, 1986) explored whether children can make orthographic analogies when given multiple clue words, beyond the known effects of purely phonological activation. In Experiment 1, 42 children (mean age 6 years and 8 months) were first taught 3 "clue" words (e.g., "fail", "mail",…

  4. Composition of the gut microbiota modulates the severity of malaria.

    PubMed

    Villarino, Nicolas F; LeCleir, Gary R; Denny, Joshua E; Dearth, Stephen P; Harding, Christopher L; Sloan, Sarah S; Gribble, Jennifer L; Campagna, Shawn R; Wilhelm, Steven W; Schmidt, Nathan W

    2016-02-23

    Plasmodium infections result in clinical presentations that range from asymptomatic to severe malaria, resulting in ∼1 million deaths annually. Despite this toll on humanity, the factors that determine disease severity remain poorly understood. Here, we show that the gut microbiota of mice influences the pathogenesis of malaria. Genetically similar mice from different commercial vendors, which exhibited differences in their gut bacterial community, had significant differences in parasite burden and mortality after infection with multiple Plasmodium species. Germfree mice that received cecal content transplants from "resistant" or "susceptible" mice had low and high parasite burdens, respectively, demonstrating the gut microbiota shaped the severity of malaria. Among differences in the gut flora were increased abundances of Lactobacillus and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics followed by yogurt made from these bacterial genera displayed a decreased parasite burden. Consistent with differences in parasite burden, resistant mice exhibited an elevated humoral immune response compared with susceptible mice. Collectively, these results identify the composition of the gut microbiota as a previously unidentified risk factor for severe malaria and modulation of the gut microbiota (e.g., probiotics) as a potential treatment to decrease parasite burden.

  5. Multilateral perspective on malaria begins to take shape.

    PubMed

    1998-02-01

    13 funding bodies collaborated in January 1997 to create the Africa-targeted Multilateral Initiative on Malaria (MIM). African scientists have been deeply involved in the MIM from its inception in Dakar, Senegal. The immediate goal of the initiative is to facilitate collaboration between governments, control programs, scientists and supporting agencies. Both the public and private sectors are actively involved. It is possible that in the long term the MIM will function as a global forum for malaria-related discussions, creating political awareness and a political context for concerted action by parties which usually work separately. With follow-up meetings held in the Hague in July and in London in November, the MIM is moving ahead quickly with a varied and full agenda of research objectives. In the short term, improvements will be sought in the way existing tools are used, while results from studies of epidemiology, pathogenesis, the malaria genome project, and the genetic engineering of mosquitoes will be applied over the medium and long terms. The UNDP/World Bank/WHO Special Program for Research and Training in Tropical Diseases (TDR) will help assess the scientific needs and strengthen the research capacities of malaria endemic countries in Africa, providing approximately US$3 million annually to support 10-15 projects for periods of 1-3 years. Training will be a component of all research.

  6. Composition of the gut microbiota modulates the severity of malaria

    PubMed Central

    Villarino, Nicolas F.; LeCleir, Gary R.; Denny, Joshua E.; Dearth, Stephen P.; Harding, Christopher L.; Sloan, Sarah S.; Gribble, Jennifer L.; Campagna, Shawn R.; Wilhelm, Steven W.; Schmidt, Nathan W.

    2016-01-01

    Plasmodium infections result in clinical presentations that range from asymptomatic to severe malaria, resulting in ∼1 million deaths annually. Despite this toll on humanity, the factors that determine disease severity remain poorly understood. Here, we show that the gut microbiota of mice influences the pathogenesis of malaria. Genetically similar mice from different commercial vendors, which exhibited differences in their gut bacterial community, had significant differences in parasite burden and mortality after infection with multiple Plasmodium species. Germfree mice that received cecal content transplants from “resistant” or “susceptible” mice had low and high parasite burdens, respectively, demonstrating the gut microbiota shaped the severity of malaria. Among differences in the gut flora were increased abundances of Lactobacillus and Bifidobacterium in resistant mice. Susceptible mice treated with antibiotics followed by yogurt made from these bacterial genera displayed a decreased parasite burden. Consistent with differences in parasite burden, resistant mice exhibited an elevated humoral immune response compared with susceptible mice. Collectively, these results identify the composition of the gut microbiota as a previously unidentified risk factor for severe malaria and modulation of the gut microbiota (e.g., probiotics) as a potential treatment to decrease parasite burden. PMID:26858424

  7. Pulmonary pathology in pediatric cerebral malaria.

    PubMed

    Milner, Danny; Factor, Rachel; Whitten, Rich; Carr, Richard A; Kamiza, Steve; Pinkus, Geraldine; Molyneux, Malcolm; Taylor, Terrie

    2013-12-01

    Respiratory signs are common in African children where malaria is highly endemic, and thus, parsing the role of pulmonary pathology in illness is challenging. We examined the lungs of 100 children from an autopsy series in Blantyre, Malawi, many of whom death was attributed to Plasmodium falciparum malaria. Our aim was to describe the pathologic manifestations of fatal malaria; to understand the role of parasites, pigment, and macrophages; and to catalog comorbidities. From available patients, which included 55 patients with cerebral malaria and 45 controls, we obtained 4 cores of lung tissue for immunohistochemistry and morphological evaluation. We found that, in patients with cerebral malaria, large numbers of malaria parasites were present in pulmonary alveolar capillaries, together with extensive deposits of malaria pigment (hemozoin). The number of pulmonary macrophages in this vascular bed did not differ between patients with cerebral malaria, noncerebral malaria, and nonmalarial diagnoses. Comorbidities found in some cerebral malaria patients included pneumonia, pulmonary edema, hemorrhage, and systemic activation of coagulation. We conclude that the respiratory distress seen in patients with cerebral malaria does not appear to be anatomic in origin but that increasing malaria pigment is strongly associated with cerebral malaria at autopsy.

  8. Malaria at Christmas: risks of prophylaxis versus risks of malaria.

    PubMed

    Reid, A J; Whitty, C J; Ayles, H M; Jennings, R M; Bovill, B A; Felton, J M; Behrens, R H; Bryceson, A D; Mabey, D C

    1998-11-28

    A large increase in the number of falciparum malaria cases imported into the UK was reported to the malaria reference laboratory in the first quarter of 1998. Contributory factors were unusually heavy rains in east Africa and a reduction in the use of the most effective antimalarial drug, mefloquine. There was also an increase in the number of cases of severe malaria in the UK. During December 1997 and January 1998, the Hospital for Tropical Diseases, London, treated 5 patients for severe malaria and gave advice on 20 more patients with malaria who had been admitted to intensive care units throughout England. 4 of the severe cases treated at the hospital are reported. In 3 of those 4 cases, incorrect, misleading, or inadequate advice was given by health care professionals. Media coverage of the adverse effects of antimalarial drugs has contributed to confusion about prophylactic regimens among both health care professionals and the public. The incidence of falciparum malaria among travellers who do not take prophylactic drugs is about 0.6% in east Africa and 3.5% in west Africa over a 2-week travel period. Travellers need to take measures to avoid being bitten by mosquitoes and should be taught to promptly seek medical help if they develop a fever while abroad or after they return. Moreover, using any one of the recommended prophylactic regimens is better than not using a potent regimen or no prophylaxis at all. Mefloquine is 90% protective against malaria in sub-Saharan Africa. While the efficacy of proguanil and chloroquine in 1987 was about 70% in west Africa and 50% in east Africa, those levels are now probably lower. The side effects of antimalarial drugs are discussed.

  9. [Current malaria situation in Turkey].

    PubMed

    Gockchinar, T; Kalipsi, S

    2001-01-01

    Geographically, Turkey is situated in an area where malaria is very risky. The climatic conditions in the region are suitable for the malaria vector to proliferate. Due to agricultural infrastructural changes, GAP and other similar projects, insufficient environmental conditions, urbanization, national and international population moves, are a key to manage malaria control activities. It is estimated that malaria will be a potential danger for Turkey in the forthcoming years. The disease is located largely in south-eastern Anatolia. The Diyarbakir, Batman, Sanliurfa, Siirt, and Mardin districts are the most affected areas. In western districts, like Aydin and Manisa, an increase in the number of indigenous cases can be observed from time to time. This is due to workers moving from malaria districts to western parts to final work. Since these workers cannot be controlled, the population living in these regions get infected from indigenous cases. There were 84,345 malaria cases in 1994 and 82,096 in 1995, they decreased to 60,884 in 1996 and numbered 35,456 in 1997. They accounted for 36,842 and 20,963 in 1998 and 1999, respectively. In Turkey there are almost all cases of P. vivax malaria. There are also P. vivax and P. falciparum malaria cases coming from other countries: There were 321 P. vivax cases, including 2 P. falciparum ones, arriving to Turkey from Iraq in 1995. The P. vivax malaria cases accounted for 229 in 1996, and 67, cases P. vivax including 12 P. falciparum cases, in 1997, and 4 P. vivax cases in 1998 that came from that country. One P. vivax case entered Turkey from Georgia in 1998. The cause of higher incidence of P. vivax cases in 1995, it decreasing in 1999, is the lack of border controls over workers coming to Turkey. The other internationally imported cases are from Syria, Sudan, Pakistan, Afghanistan, Nigeria, India, Azerbaijan, Malaysia, Ghana, Indonesia, Yemen. Our examinations have shown that none of these internationally imported cases

  10. [Current malaria situation in Turkmenistan].

    PubMed

    Amangel'diev, K A

    2001-01-01

    Malaria is one of the main health problems facing most developing countries having a hot climate. It is a problem in Turkmenistan. The country is situated in Central Asia, north of the Kopetdag mountains, between the Caspian Sea to the west and the Amu-Darya river to the east. Turkmenistan stretches for a distance of 1,100 km from west to east and 650 km from north to south. It borders Kazakhstan in the north, Uzbekistan in the east and north-east, Iran in the south, and Afghanistan in the south-east. Seven malaria vector species are found in Turkmenistan, the main ones being Anopheles superpictus, An. pulcherrimus, and An. martinius. The potentially endemic area consists of the floodplains of the Tejen and Murgab rivers, with a long chain of reservoirs built along them. In 1980 most cases of imported malaria were recorded in military personnel who had returned from service in Afghanistan. In the past years, only tertian (Plasmodium vivax) malaria has been recorded and there have been no death from malaria over that period. In the Serkhetabad (Gushgi) district there are currently 5 active foci of malaria infection, with a population of 22,000 people. In 1999, forty nine cases of P. vivax malaria were recorded in Turkmenistan. Of them, 36 cases, including 4 children under 14 years were diagnosed for the first time while 13 were relapses. There were 88 fewer cases than those in the previous year (by a factor of 2.8). There were 17 more cases of imported malaria than those in 1998 (by a factor of 1.7), most of which occurred in the foci of malaria infection (Serkhetabad, Tagtabazar, and Kerki districts), in the city of Ashkhabat and in Lebap, Dashkhovuz and Akhal Regions. The emergence of indigenous malaria in the border areas was due to the importation of the disease at intervals by infected mosquitoes flying in from neighbouring countries (e.g. Afghanistan), the lack of drugs to treat the first cases and the lack of alternative insecticides. Most patients suffer

  11. [Current malaria situation in Turkmenistan].

    PubMed

    Amangel'diev, K A

    2001-01-01

    Malaria is one of the main health problems facing most developing countries having a hot climate. It is a problem in Turkmenistan. The country is situated in Central Asia, north of the Kopetdag mountains, between the Caspian Sea to the west and the Amu-Darya river to the east. Turkmenistan stretches for a distance of 1,100 km from west to east and 650 km from north to south. It borders Kazakhstan in the north, Uzbekistan in the east and north-east, Iran in the south, and Afghanistan in the south-east. Seven malaria vector species are found in Turkmenistan, the main ones being Anopheles superpictus, An. pulcherrimus, and An. martinius. The potentially endemic area consists of the floodplains of the Tejen and Murgab rivers, with a long chain of reservoirs built along them. In 1980 most cases of imported malaria were recorded in military personnel who had returned from service in Afghanistan. In the past years, only tertian (Plasmodium vivax) malaria has been recorded and there have been no death from malaria over that period. In the Serkhetabad (Gushgi) district there are currently 5 active foci of malaria infection, with a population of 22,000 people. In 1999, forty nine cases of P. vivax malaria were recorded in Turkmenistan. Of them, 36 cases, including 4 children under 14 years were diagnosed for the first time while 13 were relapses. There were 88 fewer cases than those in the previous year (by a factor of 2.8). There were 17 more cases of imported malaria than those in 1998 (by a factor of 1.7), most of which occurred in the foci of malaria infection (Serkhetabad, Tagtabazar, and Kerki districts), in the city of Ashkhabat and in Lebap, Dashkhovuz and Akhal Regions. The emergence of indigenous malaria in the border areas was due to the importation of the disease at intervals by infected mosquitoes flying in from neighbouring countries (e.g. Afghanistan), the lack of drugs to treat the first cases and the lack of alternative insecticides. Most patients suffer

  12. Age at onset of Alzheimer's disease: clue to the relative importance of etiologic factors

    SciTech Connect

    Horner, R.D.

    1987-09-01

    Clues to the relative importance of possible etiologic factors for dementia of the Alzheimer type may be gained by examining the fit of case series to Sartwell's model of the distribution of incubation periods. If age at disease onset is used as the incubation period of this disease, a genetic or environmental factor acting during the prenatal period is suggested if the distribution of these ages fits the lognormal curve; otherwise, environmental factors acting after birth are implicated. Case series were identified from the literature. Four case series were found which contained sufficiently detailed data to permit this secondary analysis; only one case series was population-based. The distribution of age at disease onset for each series was graphically and statistically assessed for fit to the logarithmic normal distribution. Each case series fit the lognormal curve well. This suggests that research into the etiology of dementia of the Alzheimer type should focus on the prenatal experiences of patients with this disease.

  13. CHILD syndrome with mild skin lesions: histopathologic clues for the diagnosis.

    PubMed

    Gantner, Susanne; Rütten, Arno; Requena, Luis; Gassenmaier, Gerhard; Landthaler, Michael; Hafner, Christian

    2014-10-01

    CHILD syndrome is an acronym signifying congenital hemidysplasia with ichthyosiform nevus and limb defects. A 27-year-old woman presented with chronic verrucous and hyperkeratotic skin lesions involving the left genital area, left hand and left foot since childhood. The histopathologic findings were consistent with verruciform xanthoma. In correlation with the clinical picture of a linear lesion, the diagnosis of CHILD nevus was made. Subsequent genetic analysis identified a germline c.324C>T (p.A105V) NSDHL mutation and confirmed a diagnosis of CHILD syndrome. This syndrome can be associated with only minimal clinical symptoms. The anatomical distribution of the lesions, a static clinical course and the typical histopathologic features of a CHILD nevus can serve as the clue to a diagnosis of CHILD syndrome in such cases. PMID:25093865

  14. Malaria in Brazil: an overview

    PubMed Central

    2010-01-01

    Malaria is still a major public health problem in Brazil, with approximately 306 000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in

  15. Changing landscape of malaria in China: progress and feasibility of malaria elimination.

    PubMed

    Diouf, Gorgui; Kpanyen, Patrick N; Tokpa, Augustine F; Nie, Shaofa

    2014-01-01

    Large-scale malaria control activities in China have been conducted with significant success, since the launch of the nationwide malaria control program. This study investigated the malaria distribution in China, particularly in provinces with high risks. Spatial and temporal data were assembled for all endemic or historically endemic areas and combined to identify common patterns and to investigate the actual changes in the burden of malaria in the country. Data were analyzed and the progress in malaria elimination feasibility was discussed. The results indicated that the current distribution of malaria and vectors associated could provide evidence on the assessment of the feasibility of the malaria elimination in China.

  16. An Analysis of Hematological Parameters as a Diagnostic test for Malaria in Patients with Acute Febrile Illness: An Institutional Experience

    PubMed Central

    Jairajpuri, Zeeba Shamim; Rana, Safia; Hassan, Mohd Jaseem; Nabi, Farhat; Jetley, Sujata

    2014-01-01

    Objectives Hematological changes are among the most common complications encountered in malaria. This study analyzes and statistically evaluates the hematological changes as a diagnostic test for malaria in patients with acute febrile illness and whether these could guide the physician to institute specific antimalarial treatment. Methods The present study was an observational study, conducted from January to December 2012. A total of 723 patients presenting with acute febrile illness at our hospital were evaluated. A complete blood count and malarial parasite microscopy were performed for each patient. Results The findings showed that 172 out of 723 patients (24%) were diagnosed to have malaria by positive smear report. There were 121 males and 51 females with a male to female ratio of 2.3:1. Maximum number of cases were seen in the 20-30 years age group. There was a statistically significant reduction in hemoglobin (p<0.005), platelet count (p<0.001) and total leukocyte count (p<0.001) levels in patients with malaria compared to those without the disease. Likelihood ratios for a positive result of platelets (6.2) and total leukocyte count (3.4) was relevant as compared to hemoglobin (1.61) and Red cell distribution width (1.79). The negative predictive values for hemoglobin (79%), total leukocyte count (86%), platelets (94%) and Red cell distribution width (93%) were significant. Red cell distribution width values were found to be higher in patients with malaria than in patients without malaria (p<0.001). Conclusion This study revealed that routinely used laboratory findings such as hemoglobin, leukocytes, platelet counts and even red cell distribution width values can provide a diagnostic clue in a patient with acute febrile illness in endemic areas, thus increasing the probability of malaria and enhancing prompt initiation of treatment. PMID:24498476

  17. Mapping residual transmission for malaria elimination.

    PubMed

    Reiner, Robert C; Le Menach, Arnaud; Kunene, Simon; Ntshalintshali, Nyasatu; Hsiang, Michelle S; Perkins, T Alex; Greenhouse, Bryan; Tatem, Andrew J; Cohen, Justin M; Smith, David L

    2015-12-29

    Eliminating malaria from a defined region involves draining the endemic parasite reservoir and minimizing local malaria transmission around imported malaria infections . In the last phases of malaria elimination, as universal interventions reap diminishing marginal returns, national resources must become increasingly devoted to identifying where residual transmission is occurring. The needs for accurate measures of progress and practical advice about how to allocate scarce resources require new analytical methods to quantify fine-grained heterogeneity in malaria risk. Using routine national surveillance data from Swaziland (a sub-Saharan country on the verge of elimination), we estimated individual reproductive numbers. Fine-grained maps of reproductive numbers and local malaria importation rates were combined to show 'malariogenic potential', a first for malaria elimination. As countries approach elimination, these individual-based measures of transmission risk provide meaningful metrics for planning programmatic responses and prioritizing areas where interventions will contribute most to malaria elimination.

  18. Choosing a Drug to Prevent Malaria

    MedlinePlus

    ... a CDC Malaria Branch clinician. malaria@cdc.gov File Formats Help: How do I view different file formats (PDF, DOC, PPT, MPEG) on this site? Adobe PDF file Microsoft PowerPoint file Microsoft Word file Microsoft Excel ...

  19. Tutorials for Africa - Malaria: MedlinePlus

    MedlinePlus

    Tutorials for Africa: Malaria In Uganda, the burden of malaria outranks that of all other diseases. This ... of treatment and techniques for prevention. Select the tutorial to play: Japadhola Japadhola (Self Playing Tutorial) Luganda ...

  20. Endocrine origins of rheumatic disease. Diagnostic clues to interrelated syndromes.

    PubMed

    Lockshin, Michael D

    2002-04-01

    Heightened awareness of endocrine abnormalities is important in evaluation of patients presenting with musculoskeletal symptoms. Endocrine disorders such as diabetes, hyperthyroidism, hypothyroidism, hyperparathyroidism, hypoparathyroidism, hyperadrenocorticism, and acromegaly cause a unique array of rheumatic manifestations. Such conditions include Dupuytren's contracture, carpal tunnel syndrome, chondrocalcinosis, pseudogout, scleredema, and osteoporosis. Characteristic changes on radiologic evaluation and serum enzyme testing are additional clues to these atypical presentations. Consideration of a possible endocrine cause early in the evaluation may improve management in patients with such an underlying disorder.

  1. Malaria research and eradication in the USSR

    PubMed Central

    Bruce-Chwatt, Leonard J.

    1959-01-01

    Relatively little is known outside the USSR about the past history of malaria in that country, the contribution of its scientists to malaria research, the recent progress of Soviet malariology, or the achievements of the Soviet Union in the eradication of malaria. These achievements are of particular interest because the general strategy of malaria eradication in the USSR has many technical, administrative, and economic and social features not seen elsewhere. PMID:13805136

  2. Bilateral optic neuritis due to malaria.

    PubMed

    Chacko, Joseph G; Onteddu, Sanjeeva; Rosenbaum, Eric R

    2013-09-01

    Malaria is a mosquito-borne infectious disease caused by protists of the genus Plasmodium. Malaria is widespread in tropical regions around the equator, including much of sub-Saharan Africa, Asia, and the Americas, and uncommonly seen in the developed world. Although a variety of ocular manifestations have been linked to malaria, optic neuritis is rare. We report a patient who developed bilateral optic neuritis after he was treated successfully for acute falciparum malaria.

  3. Sampling using a ‘bank’ of clues

    NASA Astrophysics Data System (ADS)

    Allanach, Benjamin C.; Lester, Christopher G.

    2008-08-01

    An easy-to-implement form of the Metropolis Algorithm is described which, unlike most standard techniques, is well suited to sampling from multi-modal distributions on spaces with moderate numbers of dimensions (order ten) in environments typical of investigations into current constraints on Beyond-the-Standard-Model physics. The sampling technique makes use of pre-existing information (which can safely be of low or uncertain quality) relating to the distribution from which it is desired to sample. This information should come in the form of a "bank" or "cache" of parameter space points of which at least some may be expected to be near regions of interest in the desired distribution. In practical circumstances such "banks of clues" are easy to assemble from earlier work, aborted runs, discarded burn-in samples from failed sampling attempts, or from prior scouting investigations. The technique equilibrates between disconnected parts of the distribution without user input. The algorithm is not lead astray by "bad" clues, but there is no free lunch: performance gains will only be seen where clues are helpful.

  4. UK malaria treatment guidelines 2016.

    PubMed

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  5. Prospects and recommendations for risk mapping to improve strategies for effective malaria vector control interventions in Latin America.

    PubMed

    Alimi, Temitope O; Fuller, Douglas O; Quinones, Martha L; Xue, Rui-De; Herrera, Socrates V; Arevalo-Herrera, Myriam; Ulrich, Jill N; Qualls, Whitney A; Beier, John C

    2015-12-23

    With malaria control in Latin America firmly established in most countries and a growing number of these countries in the pre-elimination phase, malaria elimination appears feasible. A review of the literature indicates that malaria elimination in this region will be difficult without locally tailored strategies for vector control, which depend on more research on vector ecology, genetics and behavioural responses to environmental changes, such as those caused by land cover alterations, and human population movements. An essential way to bridge the knowledge gap and improve vector control is through risk mapping. Malaria risk maps based on statistical and knowledge-based modelling can elucidate the links between environmental factors and malaria vectors, explain interactions between environmental changes and vector dynamics, and provide a heuristic to demonstrate how the environment shapes malaria transmission. To increase the utility of risk mapping in guiding vector control activities, definitions of malaria risk for mapping purposes must be standardized. The maps must also possess appropriate scale and resolution in order to become essential tools in integrated vector management (IVM), so that planners can target areas in greatest need of control measures. Fully integrating risk mapping into vector control programmes will make interventions more evidence-based, making malaria elimination more attainable.

  6. Malaria transmission rates estimated from serological data.

    PubMed Central

    Burattini, M. N.; Massad, E.; Coutinho, F. A.

    1993-01-01

    A mathematical model was used to estimate malaria transmission rates based on serological data. The model is minimally stochastic and assumes an age-dependent force of infection for malaria. The transmission rates estimated were applied to a simple compartmental model in order to mimic the malaria transmission. The model has shown a good retrieving capacity for serological and parasite prevalence data. PMID:8270011

  7. Averting a malaria disaster: will insecticide resistance derail malaria control?

    PubMed

    Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas

    2016-04-23

    World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe. PMID:26880124

  8. Averting a malaria disaster: will insecticide resistance derail malaria control?

    PubMed

    Hemingway, Janet; Ranson, Hilary; Magill, Alan; Kolaczinski, Jan; Fornadel, Christen; Gimnig, John; Coetzee, Maureen; Simard, Frederic; Roch, Dabiré K; Hinzoumbe, Clément Kerah; Pickett, John; Schellenberg, David; Gething, Peter; Hoppé, Mark; Hamon, Nicholas

    2016-04-23

    World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe.

  9. Thalassemia and malaria: new insights into an old problem.

    PubMed

    Clegg, J B; Weatherall, D J

    1999-01-01

    The hemoglobinopathies are probably the world's most common genetic diseases: The World Health Organization has estimated that at least 5% of the population are carriers for one or other of the most serious forms, the alpha- and beta-thalassemias and the structural variant hemoglobins S, C, and E, which are found at polymorphic frequencies in many countries. All these hemoglobinopathies are believed to provide protection against malaria, and it is thought that, in malarial regions of the world, natural selection has been responsible for elevating and maintaining their gene frequencies, an idea first proposed 50 years ago by J.B.S. Haldane. Epidemiological studies undertaken in the 1950s on hemoglobin S in Africa provided support for the "malaria hypothesis," but until recently it has proved extremely difficult to verify it for the thalassemias. The application of molecular methods has, however, provided new opportunities to address this old question. Population and molecular genetic analysis of thalassemia variants, and microepidemiological studies of the relationship between alpha-thalassemia and malaria in the southwest Pacific, have provided unequivocal evidence for protection. Surprisingly, some of this protection appears to derive from enhanced susceptibility in very young thalassemic children to both Plasmodium falciparum and, especially, P. vivax, and this early exposure appears to provide the basis for better protection in later life. PMID:10417734

  10. Malaria in the WHO Southeast Asia region.

    PubMed

    Kondrashin, A V

    1992-09-01

    Malaria endemic countries in the southeast Asia region include Bangladesh, Bhutan, India, Indonesia, Maldives, Myanmar, Nepal, Sri Lanka, and Thailand. Population movement and rapid urbanization, both largely caused by unemployment, and environmental deterioration change the malaria pattern. They also increase the incidence of drug-resistant malaria, especially resistance to 4-aminoquinolines. In India, Plasmodium falciparum is linked to the density and distribution of tribals, and, in southern Thailand, rubber tappers have the highest malaria incidence rate (46.29%). Since the population is young and the young are highly sensitive to malaria infection, the region has low community immunity. High malaria priority areas are forests, forested hills, forest fringe areas, developmental project sites, and border areas. High risk groups include infants, young children, pregnant women, and mobile population groups. Malaria incidence is between 2.5-2.8 million cases, and the slide positivity rate is about 3%. P. falciparum constitutes 40% for all malaria cases. In 1988 in India, there were 222 malaria deaths. Malaria is the 7th most common cause of death in Thailand. 3 of the 19 Anopheline species are resistant to at least 1 insecticide, particularly DDT. Posteradication epidemics surfaced in the mid-1970s. Malaria control programs tend to use the primary health care and integration approach to malaria control. Antiparasite measures range from a single-dose of an antimalarial to mass drug administration. Residual spraying continues to be the main strategy of vector control. Some other vector control measures are fish feeding on mosquito larvae, insecticide impregnated mosquito nets, and repellents. Control programs also have health education activities. India allocates the highest percentage of its total health budget to malaria control (21.54%). Few malariology training programs exist in the region. Slowly processed surveillance data limit the countries' ability to

  11. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade

    PubMed Central

    Tachibana, Shin-Ichiro; Sullivan, Steven A.; Kawai, Satoru; Nakamura, Shota; Kim, Hyunjae R.; Goto, Naohisa; Arisue, Nobuko; Palacpac, Nirianne M. Q.; Honma, Hajime; Yagi, Masanori; Tougan, Takahiro; Katakai, Yuko; Kaneko, Osamu; Mita, Toshihiro; Kita, Kiyoshi; Yasutomi, Yasuhiro; Sutton, Patrick L.; Shakhbatyan, Rimma; Horii, Toshihiro; Yasunaga, Teruo; Barnwell, John W.; Escalante, Ananias A.; Carlton, Jane M.; Tanabe, Kazuyuki

    2013-01-01

    Plasmodium cynomolgi, a malaria parasite of Asian Old World monkeys, is the sister taxon of Plasmodium vivax, the most prevalent human malaria species outside Africa. Since P. cynomolgi shares many phenotypic, biologic and genetic characteristics of P. vivax, we generated draft genome sequences of three P. cynomolgi strains and performed comparative genomic analysis between them and P. vivax, as well as a third previously sequenced simian parasite, Plasmodium knowlesi. Here we show that genomes of the monkey malaria clade can be characterized by CNVs in multigene families involved in evasion of the human immune system and invasion of host erythrocytes. We identify genome-wide SNPs, microsatellites, and CNVs in the P. cynomolgi genome, providing a map of genetic variation for mapping parasite traits and studying parasite populations. The P. cynomolgi genome is a critical step in developing a model system for P. vivax research, and to counteract the neglect of P. vivax. PMID:22863735

  12. Rabies, tetanus, leprosy, and malaria.

    PubMed

    Murthy, J M K; Dastur, Faram D; Khadilkar, Satish V; Kochar, Dhanpat K

    2014-01-01

    The developing world is still endemic to rabies, tetanus, leprosy, and malaria. Globally more than 55000 people die of rabies each year, about 95% in Asia and Africa. Annually, more than 10 million people, mostly in Asia, receive postexposure vaccination against the disease. World Health Organization estimated tetanus-related deaths at 163000 in 2004 worldwide. Globally, the annual detection of new cases of leprosy continues to decline and the global case detection declined by 3.54% during 2008 compared to 2007. Malaria is endemic in most countries, except the US, Canada, Europe, and Russia. Malaria accounts for 1.5-2.7 million deaths annually. Much of the disease burden related to these four infections is preventable.

  13. Novel approaches to whole sporozoite vaccination against malaria.

    PubMed

    Bijker, Else M; Borrmann, Steffen; Kappe, Stefan H; Mordmüller, Benjamin; Sack, Brandon K; Khan, Shahid M

    2015-12-22

    The parasitic disease malaria threatens more than 3 billion people worldwide, resulting in more than 200 million clinical cases and almost 600,000 deaths annually. Vaccines remain crucial for prevention and ultimately eradication of infectious diseases and, for malaria, whole sporozoite based immunization has been shown to be the most effective in experimental settings. In addition to immunization with radiation-attenuated sporozoites, chemoprophylaxis and sporozoites (CPS) is a highly efficient strategy to induce sterile protection in humans. Genetically attenuated parasites (GAP) have demonstrated significant protection in rodent studies, and are now being advanced into clinical testing. This review describes the existing pre-clinical and clinical data on CPS and GAP, discusses recent developments and examines how to transform these immunization approaches into vaccine candidates for clinical development.

  14. Exchange Transfusion in Severe Falciparum Malaria

    PubMed Central

    Khatib, Khalid Ismail

    2016-01-01

    Malaria is endemic in India with the incidence of P. falciparum Malaria increasing gradually over the last decade. Severe malaria is an acute disease, caused by P. falciparum, but increasingly also by P. vivax with major signs of organ dysfunction and/or high levels of parasitaemia (>10%) in blood smear. Use of exchange transfusion with antimalarial drug therapy as an additional modality of treatment in severe Falciparum malaria is controversial and is unclear. We report a case of severe malaria complicated by multiorgan failure and ARDS. Patient responded well to manual exchange transfusion with standard artesunate-based chemotherapy. PMID:27042503

  15. Infer the Meaning of Unknown Words by Sheer Guess or by Clues?--An Exploration on the Clue Use in Chinese EFL Learner's Lexical Inferencing

    ERIC Educational Resources Information Center

    Yin, Zhaochun

    2013-01-01

    Lexical inferencing is referred to as guessing the meaning of an unknown word using available linguistic and other clues. It is a primary lexical processing strategy to tackle unknown words while reading. This study aims to explore the clue use of Chinese EFL learners in inferring the meaning of unknown word in reading. Two types of introspective…

  16. Clinical Aspects of Uncomplicated and Severe Malaria

    PubMed Central

    Bartoloni, Alessandro; Zammarchi, Lorenzo

    2012-01-01

    The first symptoms of malaria, common to all the different malaria species, are nonspecific and mimic a flu-like syndrome. Although fever represents the cardinal feature, clinical findings in malaria are extremely diverse and may range in severity from mild headache to serious complications leading to death, particularly in falciparum malaria. As the progression to these complications can be rapid, any malaria patient must be assessed and treated rapidly, and frequent observations are needed to look for early signs of systemic complications. In fact, severe malaria is a life threatening but treatable disease. The protean and nonspecific clinical findings occurring in malaria (fever, malaise, headache, myalgias, jaundice and sometimes gastrointestinal symptoms of nausea, vomiting and diarrhoea) may lead physicians who see malaria infrequently to a wrong diagnosis, such as influenza (particularly during the seasonal epidemic flu), dengue, gastroenteritis, typhoid fever, viral hepatitis, encephalitis. Physicians should be aware that malaria is not a clinical diagnosis but must be diagnosed, or excluded, by performing microscopic examination of blood films. Prompt diagnosis and appropriate treatment are then crucial to prevent morbidity and fatal outcomes. Although Plasmodium falciparum malaria is the major cause of severe malaria and death, increasing evidence has recently emerged that Plasmodium vivax and Plasmodium knowlesi can also be severe and even fatal. PMID:22708041

  17. An analysis of the geographical distribution of severe malaria in children in Kilifi District, Kenya.

    PubMed

    Schellenberg, J A; Newell, J N; Snow, R W; Mung'ala, V; Marsh, K; Smith, P G; Hayes, R J

    1998-04-01

    To investigate the geographic pattern of severe malaria and the stability of this pattern over time, all 358 children under 5 years of age admitted to a district hospital in Kenya's Kilifi District with severe malaria in 1991-93 and living in a rural study population of about 50,000 people were identified. All households were mapped through use of a hand-held satellite navigation system and the resulting databases were linked through a geographic information system. Area-specific rates showed evidence of association between the two years, suggesting that the pattern of disease was to some extent stable over time. As expected, hospital admissions for malaria were significantly higher in children with easier access to the hospital. Those living more than 25 km from the hospital had admission rates about one-fifth those for children living within 5 km of the hospital. Those living more than 2.5 km from the nearest road had admission rates about half those for children within 0.5 km of a road. Investigation of short-term local fluctuations in severe malaria revealed evidence of space-time clustering of severe malaria, supporting the view that severe malaria tends to occur in localized micro-epidemics. Recommended are case-control studies of environmental, genetic, and human behavioral factors involved in the etiology of the disease. PMID:9602418

  18. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids.

    PubMed

    Griffing, Sean M; Mixson-Hayden, Tonya; Sridaran, Sankar; Alam, Md Tauqeer; McCollum, Andrea M; Cabezas, César; Marquiño Quezada, Wilmer; Barnwell, John W; De Oliveira, Alexandre Macedo; Lucas, Carmen; Arrospide, Nancy; Escalante, Ananias A; Bacon, David J; Udhayakumar, Venkatachalam

    2011-01-01

    Malaria has reemerged in many regions where once it was nearly eliminated. Yet the source of these parasites, the process of repopulation, their population structure, and dynamics are ill defined. Peru was one of malaria eradication's successes, where Plasmodium falciparum was nearly eliminated for two decades. It reemerged in the 1990s. In the new era of malaria elimination, Peruvian P. falciparum is a model of malaria reinvasion. We investigated its population structure and drug resistance profiles. We hypothesized that only populations adapted to local ecological niches could expand and repopulate and originated as vestigial populations or recent introductions. We investigated the genetic structure (using microsatellites) and drug resistant genotypes of 220 parasites collected from patients immediately after peak epidemic expansion (1999-2000) from seven sites across the country. The majority of parasites could be grouped into five clonal lineages by networks and AMOVA. The distribution of clonal lineages and their drug sensitivity profiles suggested geographic structure. In 2001, artesunate combination therapy was introduced in Peru. We tested 62 parasites collected in 2006-2007 for changes in genetic structure. Clonal lineages had recombined under selection for the fittest parasites. Our findings illustrate that local adaptations in the post-eradication era have contributed to clonal lineage expansion. Within the shifting confluence of drug policy and malaria incidence, populations continue to evolve through genetic outcrossing influenced by antimalarial selection pressure. Understanding the population substructure of P. falciparum has implications for vaccine, drug, and epidemiologic studies, including monitoring malaria during and after the elimination phase.

  19. The Economic Case for Combating Malaria

    PubMed Central

    Purdy, Mark; Robinson, Matthew; Wei, Kuangyi; Rublin, David

    2013-01-01

    To date, existing studies focus largely on the economic detriments of malaria. However, if we are to create suitable incentives for larger-scale, more sustained anti-malaria efforts from a wider group of stakeholders, we need a much better understanding of the economic benefits of malaria reduction and elimination. Our report seeks to rectify this disjuncture by showing how attaining the funding needed to meet internationally agreed targets for malaria elimination would, on conservative assumptions, generate enormous economic improvements. We use a cost-benefit analysis anchored in Global Malaria Action Plan projections of malaria eradication based on fully met funding goals. By calculating the value of economic output accrued caused by work years saved and subtracting the costs of intervention, we find that malaria reduction and elimination during 2013–2035 has a 2013 net present value of US $208.6 billion. PMID:24197172

  20. Malaria: prevention in travellers

    PubMed Central

    2007-01-01

    Introduction Malaria transmission occurs most frequently in environments with humidity over 60% and ambient temperature of 25-30 °C. Risks increase with longer visits and depend on activity. Infection can follow a single mosquito bite. Incubation is usually 10-14 days but can be up to 18 months depending on the strain of parasite. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of non-drug preventive interventions in adult travellers? What are the effects of drug prophylaxis in adult travellers? What are the effects of antimalaria vaccines in travellers? What are the effects of antimalaria interventions in child travellers, pregnant travellers, and in airline pilots? We searched: Medline, Embase, The Cochrane Library and other important databases up to February 2006 (BMJ Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 69 systematic reviews, RCTs, or observational studies that met our inclusion criteria. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: acoustic buzzers, aerosol insecticides, amodiaquine, air conditioning and electric fans, atovaquone-proguanil, biological control measures, chloroquine (alone or with proguanil), diethyltoluamide (DEET), doxycycline, full-length and light-coloured clothing, insecticide-treated clothing/nets, mefloquine, mosquito coils and vaporising mats, primaquine, pyrimethamine-dapsone, pyrimethamine-sulfadoxine, smoke, topical (skin-applied) insect repellents, and vaccines. PMID:19450348

  1. Malaria: prevention in travellers

    PubMed Central

    2010-01-01

    Introduction Malaria transmission occurs most frequently in environments with humidity greater than 60% and ambient temperature of 25 °C to 30 °C. Risks increase with longer visits and depend on activity. Infection can follow a single mosquito bite. Incubation is usually 10 to 14 days but can be up to 18 months depending on the strain of parasite. Methods and outcomes We conducted a systematic review and aimed to answer the following clinical questions: What are the effects of non-drug preventive interventions in non-pregnant adult travellers? What are the effects of drug prophylaxis in non-pregnant adult travellers? What are the effects of antimalaria vaccines in adult and child travellers? What are the effects of antimalaria interventions in child travellers, pregnant travellers, and in airline pilots? We searched: Medline, Embase, The Cochrane Library, and other important databases up to November 2009 (Clinical Evidence reviews are updated periodically, please check our website for the most up-to-date version of this review). We included harms alerts from relevant organisations such as the US Food and Drug Administration (FDA) and the UK Medicines and Healthcare products Regulatory Agency (MHRA). Results We found 79 systematic reviews, RCTs, or observational studies that met our inclusion criteria. We performed a GRADE evaluation of the quality of evidence for interventions. Conclusions In this systematic review we present information relating to the effectiveness and safety of the following interventions: aerosol insecticides, amodiaquine, air conditioning and electric fans, atovaquone–proguanil, biological control measures, chloroquine (alone or with proguanil), diethyltoluamide (DEET), dietary supplementation, doxycycline, electronic mosquito repellents, full-length and light-coloured clothing, insecticide-treated clothing/nets, mefloquine, mosquito coils and vapourising mats, primaquine, pyrimethamine–dapsone, pyrimethamine–sulfadoxine, smoke

  2. An Open Source Business Model for Malaria

    PubMed Central

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, ‘closed’ publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more “open source” approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.’ President’s Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new

  3. An open source business model for malaria.

    PubMed

    Årdal, Christine; Røttingen, John-Arne

    2015-01-01

    Greater investment is required in developing new drugs and vaccines against malaria in order to eradicate malaria. These precious funds must be carefully managed to achieve the greatest impact. We evaluate existing efforts to discover and develop new drugs and vaccines for malaria to determine how best malaria R&D can benefit from an enhanced open source approach and how such a business model may operate. We assess research articles, patents, clinical trials and conducted a smaller survey among malaria researchers. Our results demonstrate that the public and philanthropic sectors are financing and performing the majority of malaria drug/vaccine discovery and development, but are then restricting access through patents, 'closed' publications and hidden away physical specimens. This makes little sense since it is also the public and philanthropic sector that purchases the drugs and vaccines. We recommend that a more "open source" approach is taken by making the entire value chain more efficient through greater transparency which may lead to more extensive collaborations. This can, for example, be achieved by empowering an existing organization like the Medicines for Malaria Venture (MMV) to act as a clearing house for malaria-related data. The malaria researchers that we surveyed indicated that they would utilize such registry data to increase collaboration. Finally, we question the utility of publicly or philanthropically funded patents for malaria medicines, where little to no profits are available. Malaria R&D benefits from a publicly and philanthropically funded architecture, which starts with academic research institutions, product development partnerships, commercialization assistance through UNITAID and finally procurement through mechanisms like The Global Fund to Fight AIDS, Tuberculosis and Malaria and the U.S.' President's Malaria Initiative. We believe that a fresh look should be taken at the cost/benefit of patents particularly related to new malaria

  4. Co-infection of human parvovirus B19 with Plasmodium falciparum contributes to malaria disease severity in Gabonese patients

    PubMed Central

    2013-01-01

    Background High seroprevalence of parvovirus B19 (B19V) coinfection with Plasmodium falciparum has been previously reported. However, the impact of B19V-infection on the clinical course of malaria is still elusive. In this study, we investigated the prevalence and clinical significance of B19V co-infection in Gabonese children with malaria. Methods B19V prevalence was analyzed in serum samples of 197 Gabonese children with P. falciparum malaria and 85 healthy controls using polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and direct DNA-sequencing. Results B19V was detected in 29/282 (10.28%) of Gabonese children. B19V was observed more frequently in P. falciparum malaria patients (14.21%) in comparison to healthy individuals (1.17%) (P<0.001). Notably, the mild-malaria group revealed significantly lower hematocrit levels in B19V/P. falciparum co-infection than in P. falciparum mono-infection (P<0.05). Genetic analysis revealed a predominance of B19V genotype-1 (71.43%) in the studied population. However, B19V-genotype 2 was observed significantly more often in children with severe-malaria than in mild-malaria (P=0.04). Conclusion Our findings reveal that B19V-infection is frequent in Gabonese children with P. falciparum malaria and signifies a possible contribution of B19V on the clinical course of malaria in a genotype-dependent manner. B19V co-infection should be considered as a additional diagnostic measure in malaria patients with life threatening anemia. PMID:23945350

  5. Prevalence and beta diversity in avian malaria communities: host species is a better predictor than geography.

    PubMed

    Scordato, Elizabeth S C; Kardish, Melissa R

    2014-11-01

    Patterns of diversity and turnover in macroorganism communities can often be predicted from differences in habitat, phylogenetic relationships among species and the geographical scale of comparisons. In this study, we asked whether these factors also predict diversity and turnover in parasite communities. We studied communities of avian malaria in two sympatric, ecologically similar, congeneric host species at three different sites. We asked whether parasite prevalence and community structure varied with host population, host phylogeography or geographical distance. We used PCR to screen birds for infections and then used Bayesian methods to determine phylogenetic relationships among malaria strains. Metrics of both community and phylogenetic beta diversity were used to examine patterns of malaria strain turnover between host populations, and partial Mantel tests were used determine the correlation between malaria beta diversity and geographical distance. Finally, we developed microsatellite markers to describe the genetic structure of host populations and assess the relationship between host phylogeography and parasite beta diversity. We found that different genera of malaria parasites infect the two hosts at different rates. Within hosts, parasite communities in one population were phylogenetically clustered, but there was otherwise no correlation between metrics of parasite beta diversity and geographical or genetic distance between host populations. Patterns of parasite turnover among host populations are consistent with malaria transmission occurring in the winter rather than on the breeding grounds. Our results indicate greater turnover in parasite communities between different hosts than between different study sites. Differences in host species, as well as transmission location and vector ecology, seem to be more important in structuring malaria communities than the distance-decay relationships frequently found in macroorganisms. Determining the factors

  6. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali.

    PubMed

    Maiga, Bakary; Dolo, Amagana; Touré, Ousmane; Dara, Victor; Tapily, Amadou; Campino, Susana; Sepulveda, Nuno; Risley, Paul; Silva, Nilupa; Silva, Nipula; Corran, Patrick; Rockett, Kirk A; Kwiatkowski, Dominic; Clark, Taane G; Troye-Blomberg, Marita; Doumbo, Ogobara K

    2013-01-01

    Malaria still remains a major public health problem in Mali, although disease susceptibility varies between ethnic groups, particularly between the Fulani and Dogon. These two sympatric groups share similar socio-cultural factors and malaria transmission rates, but Fulani individuals tend to show significantly higher spleen enlargement scores, lower parasite prevalence, and seem less affected by the disease than their Dogon neighbours. We have used genetic polymorphisms from malaria-associated genes to investigate associations with various malaria metrics between the Fulanai and Dogon groups. Two cross sectional surveys (transmission season 2006, dry season 2007) were performed. Healthy volunteers from the both ethnic groups (n=939) were recruited in a rural setting. In each survey, clinical (spleen enlargement, axillary temperature, weight) and parasitological data (malaria parasite densities and species) were collected, as well as blood samples. One hundred and sixty six SNPs were genotyped and 5 immunoassays (AMA1, CSP, MSP1, MSP2, total IgE) were performed on the DNA and serum samples respectively. The data confirm the reduced malaria susceptibility in the Fulani, with a higher level of the protective O-blood group, and increased circulating antibody levels to several malaria antigens (p<10(-15)). We identified SNP allele frequency differences between the 2 ethnic groups in CD36, IL4, RTN3 and ADCY9. Moreover, polymorphisms in FCER1A, RAD50, TNF, SLC22A4, and IL13 genes were correlated with antibody production (p-value<0.003). Further work is required to understand the mechanisms underpinning these genetic factors.

  7. Human Candidate Polymorphisms in Sympatric Ethnic Groups Differing in Malaria Susceptibility in Mali

    PubMed Central

    Maiga, Bakary; Dolo, Amagana; Touré, Ousmane; Dara, Victor; Tapily, Amadou; Campino, Susana; Sepulveda, Nuno; Risley, Paul; Silva, Nipula; Corran, Patrick; Rockett, Kirk A.; Kwiatkowski, Dominic; Clark, Taane G.; Troye-Blomberg, Marita; Doumbo, Ogobara K.

    2013-01-01

    Malaria still remains a major public health problem in Mali, although disease susceptibility varies between ethnic groups, particularly between the Fulani and Dogon. These two sympatric groups share similar socio-cultural factors and malaria transmission rates, but Fulani individuals tend to show significantly higher spleen enlargement scores, lower parasite prevalence, and seem less affected by the disease than their Dogon neighbours. We have used genetic polymorphisms from malaria-associated genes to investigate associations with various malaria metrics between the Fulanai and Dogon groups. Two cross sectional surveys (transmission season 2006, dry season 2007) were performed. Healthy volunteers from the both ethnic groups (n=939) were recruited in a rural setting. In each survey, clinical (spleen enlargement, axillary temperature, weight) and parasitological data (malaria parasite densities and species) were collected, as well as blood samples. One hundred and sixty six SNPs were genotyped and 5 immunoassays (AMA1, CSP, MSP1, MSP2, total IgE) were performed on the DNA and serum samples respectively. The data confirm the reduced malaria susceptibility in the Fulani, with a higher level of the protective O-blood group, and increased circulating antibody levels to several malaria antigens (p<10-15). We identified SNP allele frequency differences between the 2 ethnic groups in CD36, IL4, RTN3 and ADCY9. Moreover, polymorphisms in FCER1A, RAD50, TNF, SLC22A4, and IL13 genes were correlated with antibody production (p-value<0.003). Further work is required to understand the mechanisms underpinning these genetic factors. PMID:24098393

  8. Comparative efficacy of pre-erythrocytic whole organism vaccine strategies against the malaria parasite.

    PubMed

    Friesen, Johannes; Matuschewski, Kai

    2011-09-16

    Despite major efforts over the past 50 years to develop a malaria vaccine, no product has been licensed yet. Irradiated sporozoites are the benchmark for an experimental live-attenuated malaria vaccine that induces potent protection against re-infection in humans and animal models. Lasting protection can also be elicited by parasite attenuation via tailored genetic modification or drug cover leading to renewed interest in whole-organism vaccination strategies. In this study, we systematically compared the protective efficacy of different whole-organism vaccination approaches in the Plasmodium berghei/C57bl/6 rodent malaria model. We applied blood stage parasitemia and quantitative RT-PCR of liver parasite loads as two complementary primary endpoints of a malaria challenge infection. We were able to demonstrate similar potency of genetic attenuation, i.e., uis3(-) and p36p(-) parasites, and prophylactic drug cover, i.e., azithromycin, pyrimethamine, primaquine and chloroquine, during sporozoite exposure in comparison to irradiated sporozoites. Importantly, when animals were covered with the antibiotic azithromycin during sporozoite exposure we observed superior protection. On the other end, immunizations with heat-killed and over-irradiated sporozoites failed to confer any detectable protection. Together, we show that systematic pre-clinical evaluation and quantification of vaccine efficacy is vital for identification of the most potent whole organism anti-malaria vaccine strategy.

  9. Extreme Polymorphism in a Vaccine Antigen and Risk of Clinical Malaria: Implications for Vaccine Development

    PubMed Central

    Takala, Shannon L.; Coulibaly, Drissa; Thera, Mahamadou A.; Batchelor, Adrian H.; Cummings, Michael P.; Escalante, Ananias A.; Ouattara, Amed; Traoré, Karim; Niangaly, Amadou; Djimdé, Abdoulaye A.; Doumbo, Ogobara K.; Plowe, Christopher V.

    2010-01-01

    Vaccines directed against the blood stages of Plasmodium falciparum malaria are intended to prevent the parasite from invading and replicating within host cells. No blood-stage malaria vaccine has shown clinical efficacy in humans. Most malaria vaccine antigens are parasite surface proteins that have evolved extensive genetic diversity, and this diversity could allow malaria parasites to escape vaccine-induced immunity. We examined the extent and within-host dynamics of genetic diversity in the blood-stage malaria vaccine antigen apical membrane antigen–1 in a longitudinal study in Mali. Two hundred and fourteen unique apical membrane antigen–1 haplotypes were identified among 506 human infections, and amino acid changes near a putative invasion machinery binding site were strongly associated with the development of clinical symptoms, suggesting that these residues may be important to consider in designing polyvalent apical membrane antigen–1 vaccines and in assessing vaccine efficacy in field trials. This extreme diversity may pose a serious obstacle to an effective polyvalent recombinant subunit apical membrane antigen–1 vaccine. PMID:20165550

  10. Tracing evolutionary relicts of positive selection on eight malaria-related immune genes in mammals.

    PubMed

    Huang, Bing-Hong; Liao, Pei-Chun

    2015-07-01

    Plasmodium-induced malaria widely infects primates and other mammals. Multiple past studies have revealed that positive selection could be the main evolutionary force triggering the genetic diversity of anti-malaria resistance-associated genes in human or primates. However, researchers focused most of their attention on the infra-generic and intra-specific genome evolution rather than analyzing the complete evolutionary history of mammals. Here we extend previous research by testing the evolutionary link of natural selection on eight candidate genes associated with malaria resistance in mammals. Three of the eight genes were detected to be affected by recombination, including TNF-α, iNOS and DARC. Positive selection was detected in the rest five immunogenes multiple times in different ancestral lineages of extant species throughout the mammalian evolution. Signals of positive selection were exposed in four malaria-related immunogenes in primates: CCL2, IL-10, HO1 and CD36. However, selection signals of G6PD have only been detected in non-primate eutherians. Significantly higher evolutionary rates and more radical amino acid replacement were also detected in primate CD36, suggesting its functional divergence from other eutherians. Prevalent positive selection throughout the evolutionary trajectory of mammalian malaria-related genes supports the arms race evolutionary hypothesis of host genetic response of mammalian immunogenes to infectious pathogens.

  11. Fossils harbor climate clues and fuel debate over glacier stability

    SciTech Connect

    Not Available

    1993-06-01

    At the edge of the Ross Ice Shelf near McMurdo Station in Antarctica, scientists have discovered fossils of well preserved wood and a mixture of microscopic marine organisms, dating from the Eocene epoch. This discovery promises significant clues to the onset of glaciation in Antarctica. Geologists believe that this discovery may shed light on Antarctica's link to world climate and help predict future climatic change. Debate centers around when glaciation first became extensive, 15 or 20 million years ago, and whether or not the ice sheet was dynamic and responsive to small fluctuations in climate or stable and able to lock up massive amounts of the world's water. 7 refs.

  12. Ependymal damage in a Plasmodium yoelii yoelii lethal murine malaria model.

    PubMed

    Rivera Fernández, Norma; Colín Barenque, Laura; Romero Silva, Samanta E; Salas Garrido, Gerardo; Jiménez Rosey, Samantha G; Zepeda Rodríguez, Armando; Romero Romero, Laura P; Menchaca Gómez, Ángeles; Malagón Gutiérrez, Filiberto

    2015-02-01

    ependymal disruption during lethal murine malaria could help to elucidate the local and systemic factors that are involved in the pathogenesis of the disease and may provide essential clues for the prevention and treatment of complicated human malaria. PMID:25252586

  13. [Malaria in Poland in 2007].

    PubMed

    Rosińska, Magdalena

    2009-01-01

    In Poland in 2007 there were 11 malaria cases confirmed according to the European Union cases definition reported through the routine surveillance system. All of them were imported, 82% from Africa, including 2 cases of relapse. Invasion with Plasmodium falciparum was diagnosed in 7 cases, mixed invasion in 2 cases and P. vivax- in one case. The majority of cases were in the age group 35-45 (8 cases) and were males (10 cases). Common reasons for travel to endemic countries were work-related (5 cases) and tourism or family visits (4 cases). Approximately half of the cases for whom the information was available used malaria chemoprophylaxis during their travel. Clinical course was severe in one case of P. falciparum malaria and the person died of the disease. The decreasing trend in malaria incidence in Poland is likely related to incomplete reporting as tourist and professional travel to endemic areas has not decreased and there is no indication of wider use ofchemoprophylaxis. PMID:19799261

  14. Could malaria return to Britain?

    PubMed

    Snow, K

    2000-09-01

    With predicted global warming, the mosquito fauna of Britain is certain to change. How will this effect our native Anopheles mosquitoes and the development of malarial parasites within them? Will exotic species become established, and act as more effective vectors of malaria?

  15. Malaria acquired in Haiti - 2010.

    PubMed

    2010-03-01

    On January 12, 2010, a 7.0 magnitude earthquake struck Haiti, which borders the Dominican Republic on the island of Hispaniola. The earthquake's epicenter was 10 miles west of the Haiti capital city of Port-au-Prince (estimated population: 2 million). According to the Haitian government, approximately 200,000 persons were killed, and 500,000 were left homeless. Malaria caused by Plasmodium falciparum infection is endemic in Haiti, and the principal mosquito vector is Anopheles albimanus, which frequently bites outdoors. Thus, displaced persons living outdoors or in temporary shelters and thousands of emergency responders in Haiti are at substantial risk for malaria. During January 12-February 25, CDC received reports of 11 laboratory-confirmed cases of P. falciparum malaria acquired in Haiti. Patients included seven U.S. residents who were emergency responders, three Haitian residents, and one U.S. traveler. This report summarizes the 11 cases and provides chemoprophylactic and additional preventive recommendations to minimize the risk for acquiring malaria for persons traveling to Haiti.

  16. Confidential inquiry into malaria deaths.

    PubMed Central

    Dürrheim, D. N.; Frieremans, S.; Kruger, P.; Mabuza, A.; de Bruyn, J. C.

    1999-01-01

    The results of a confidential inquiry into mortality attributed to malaria in South Africa's Mpumalanga Province are being used to guide the design of strategies for improving the management of cases and reducing the probability of deaths from the disease. PMID:10212518

  17. The Origin of Malignant Malaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...

  18. Chemical biology: Knockout for malaria

    NASA Astrophysics Data System (ADS)

    Krysiak, Joanna; Sieber, Stephan A.

    2014-02-01

    Discovering and validating new targets is urgently required to tackle the rise in resistance to antimalarial drugs. Now, inhibition of the enzyme N-myristoyltransferase has been shown to prevent the formation of a critical subcellular organelle in the parasite that causes malaria, leading to death of the parasite.

  19. Characterization of imported malaria, the largest threat to sustained malaria elimination from Sri Lanka.

    PubMed

    Dharmawardena, Priyani; Premaratne, Risintha G; Gunasekera, W M Kumudunayana T de A W; Hewawitarane, Mihirini; Mendis, Kamini; Fernando, Deepika

    2015-01-01

    Sri Lanka has reached zero indigenous malaria cases in November 2012, two years before its targeted deadline for elimination. Currently, the biggest threat to the elimination efforts are the risk of resurgence of malaria due to imported cases. This paper describes two clusters of imported malaria infections reported in 2013 and 2014, one among a group of Pakistani asylum-seekers resident in Sri Lanka, and the other amongst local fishermen who returned from Sierra Leone. The two clusters studied reveal the potential impact of imported malaria on the risk of reintroducing the disease, as importation is the only source of malaria in the country at present. In the event of a case occurring, detection is a major challenge both amongst individuals returning from malaria endemic countries and the local population, as malaria is fast becoming a "forgotten" disease amongst health care providers. In spite of a very good coverage of diagnostic services (microscopy and rapid diagnostic tests) throughout the country, malaria is being repeatedly overlooked by health care providers even when individuals present with fever and a recent history of travel to a malaria endemic country. Given the high receptivity to malaria in previously endemic areas of the country due to the prevalence of the vector mosquito, such cases pose a significant threat for the reintroduction of malaria to Sri Lanka. The challenges faced by the Anti Malaria Campaign and measures taken to prevent the resurgence of malaria are discussed here. PMID:25902716

  20. Urbanization and the global malaria recession

    PubMed Central

    2013-01-01

    Background The past century has seen a significant contraction in the global extent of malaria transmission, resulting in over 50 countries being declared malaria free, and many regions of currently endemic countries eliminating the disease. Moreover, substantial reductions in transmission have been seen since 1900 in those areas that remain endemic today. Recent work showed that this malaria recession was unlikely to have been driven by climatic factors, and that control measures likely played a significant role. It has long been considered, however, that economic development, and particularly urbanization, has also been a causal factor. The urbanization process results in profound socio-economic and landscape changes that reduce malaria transmission, but the magnitude and extent of these effects on global endemicity reductions are poorly understood. Methods Global data at subnational spatial resolution on changes in malaria transmission intensity and urbanization trends over the past century were combined to examine the relationships seen over a range of spatial and temporal scales. Results/Conclusions A consistent pattern of increased urbanization coincident with decreasing malaria transmission and elimination over the past century was found. Whilst it remains challenging to untangle whether this increased urbanization resulted in decreased transmission, or that malaria reductions promoted development, the results point to a close relationship between the two, irrespective of national wealth. The continuing rapid urbanization in malaria-endemic regions suggests that such malaria declines are likely to continue, particularly catalyzed by increasing levels of direct malaria control. PMID:23594701

  1. Malaria elimination in India and regional implications.

    PubMed

    Wangdi, Kinley; Gatton, Michelle L; Kelly, Gerard C; Banwell, Cathy; Dev, Vas; Clements, Archie C A

    2016-10-01

    The malaria situation in India is complex as a result of diverse socio-environmental conditions. India contributes a substantial burden of malaria outside sub-Saharan Africa, with the third highest Plasmodium vivax prevalence in the world. Successful malaria control in India is likely to enhance malaria elimination efforts in the region. Despite modest gains, there are many challenges for malaria elimination in India, including: varied patterns of malaria transmission in different parts of the country demanding area-specific control measures; intense malaria transmission fuelled by favourable climatic and environment factors; varying degrees of insecticide resistance of vectors; antimalarial drug resistance; a weak surveillance system; and poor national coordination of state programmes. Prevention and protection against malaria are low as a result of a weak health-care system, as well as financial and socioeconomic constraints. Additionally, the open borders of India provide a potential route of entry for artesunate-resistant parasites from southeast Asia. This situation calls for urgent dialogue around tackling malaria across borders-between India's states and neighbouring countries-through sharing of information and coordinated control and preventive measures, if we are to achieve the aim of malaria elimination in the region. PMID:27527748

  2. Integrated Approach to Malaria Control

    PubMed Central

    Shiff, Clive

    2002-01-01

    Malaria draws global attention in a cyclic manner, with interest and associated financing waxing and waning according to political and humanitarian concerns. Currently we are on an upswing, which should be carefully developed. Malaria parasites have been eliminated from Europe and North America through the use of residual insecticides and manipulation of environmental and ecological characteristics; however, in many tropical and some temperate areas the incidence of disease is increasing dramatically. Much of this increase results from a breakdown of effective control methods developed and implemented in the 1960s, but it has also occurred because of a lack of trained scientists and control specialists who live and work in the areas of endemic infection. Add to this the widespread resistance to the most effective antimalarial drug, chloroquine, developing resistance to other first-line drugs such as sulfadoxine-pyrimethamine, and resistance of certain vector species of mosquito to some of the previously effective insecticides and we have a crisis situation. Vaccine research has proceeded for over 30 years, but as yet there is no effective product, although research continues in many promising areas. A global strategy for malaria control has been accepted, but there are critics who suggest that the single strategy cannot confront the wide range of conditions in which malaria exists and that reliance on chemotherapy without proper control of drug usage and diagnosis will select for drug resistant parasites, thus exacerbating the problem. An integrated approach to control using vector control strategies based on the biology of the mosquito, the epidemiology of the parasite, and human behavior patterns is needed to prevent continued upsurge in malaria in the endemic areas. PMID:11932233

  3. Laboratory diagnosis of malaria -- overview.

    PubMed

    Bhatt, K M

    1994-01-01

    Features of the laboratory diagnosis of malaria are described. Microscope equipment is absolutely essential. Clinical symptoms are inadequate for the proper diagnosis of malaria. Screening for malaria involves identification of all cases where high fever is present in endemic areas. Diagnosis is complicated because many people take antimalarial drugs which reduce the chances of detecting malarial parasites. Confirmation should be made before treatment is administered. A thick blood slide can be quickly and cheaply taken without much training of health personnel. The disadvantage of thick stains is the difficulty in identifying "plasmodium" strains. When a thin smear with Giemsa and Leishmanin stain is used, a light infection may be missed. Thin smears require trained personnel and time, which in peak seasons may be impractical. Urinary tract and viral infections may be confused with malaria. Evidence of parasites can be discerned from thick stains. Modern assay techniques are also available. There are enzyme linked immunosorbent assays (ELISA) and immunofluorescent assay techniques (IFAT), which are frequently used in large scale seroepidemiological studies. DNA probes have the limitation of radioisotope handling problems. Acridine orange fluorescent microscopy with capillary centrifuged blood is a technique which improves the viability of Giemsa stain procedures. This technique is desirable because of the sensitivity and speed of diagnosis. The quantitative buddy coat (GBC) technique is superior to Giemsa stained thick blood film in identifying malaria, but it is not reliable with mixed infections. Advanced techniques are not readily available in local settings. The recommendation is to continue use of thick or thin blood film and trained health personnel. Laboratory results must be interpreted in the context of when the flood film was prepared, prior drug administration, and clinical manifestations.

  4. Pediatric malaria in Houston, Texas.

    PubMed

    Rivera-Matos, I R; Atkins, J T; Doerr, C A; White, A C

    1997-11-01

    We retrospectively reviewed the medical records of all infants and children (< 18 years of age) with the discharge diagnosis of malaria who were admitted to the four major pediatric teaching hospitals in Houston, Texas from January 1988 through December 1993. Thirty-four cases of pediatric malaria were identified in three newborns, 22 travelers, and nine recent immigrants. The travel destination was West Africa in 68%, Central America in 14%, India in 14%, and unknown in 4%. The location of the child's and parents' birthplace was available in 77% of the travel-related cases and in all cases the destination of travel was the parents' country of origin. The peak incident of the travel-related cases was late summer and early January corresponding to return from summer or Christmas vacation. Sixteen (75%) of the 22 travel-related cases had received either no prophylaxis (12 of 22) or inadequate (4 of 22) chemoprophylaxis. Half of the patients who were given appropriate chemoprophylaxis admitted to poor compliance. The clinical presentation was usually nonspecific. Fever was the most common symptom (97%) and was paroxysmal in one-third. Splenomegaly was the most common physical finding (68%). The malaria species identified included Plasmodium falciparum (56%), P. vivax (23%), P. malariae (3%), and unidentified (18%). Moderate anemia (hemoglobin level = 7.0-10 g/dL) occurred in 38% and severe anemia (hemoglobin level < 7.0 g/dL) in 29%. Three patients required transfusion. There were no end-organ complications. In summary, pediatric malaria in Houston was primarily seen in immigrants or children of immigrants who returned to their native country. Education and preventive strategies should target these families and should be part of the routine well child care of these children.

  5. Using Malaria Medication for Leg Cramps Is Risky

    MedlinePlus

    ... Products Vaccines, Blood & Biologics Articulos en Espanol Using Malaria Medication for Leg Cramps is Risky Printer-friendly ... approved only to treat a certain type of malaria (uncomplicated malaria) caused by the parasite Plasmodium falciparum. ...

  6. From "forest malaria" to "bromeliad malaria": a case-study of scientific controversy and malaria control.

    PubMed

    Gadelha, P

    1994-08-01

    The article analyses the evolution of knowledge and rationale of control of a special case of malaria transmission based on Bromelia-Kerteszia complex. Since bromeliaceae function as a 'host of the carrier' and were previously associated with natural forests, the elucidation of bromeliad malaria historically elicited controversies concerning the imputation of Kertesziae as transmitters as well as over control strategies directed to bromelia eradication (manual removal, herbicides and deforestation), use of insecticides and chemoprophylaxis. Established authority, disciplinary traditions, conceptual premises and contemporary criteria for validating knowledge in the field partly explain the long time gap since Adolpho Lutz announced at the beginning of the century the existence of a new mosquito and breeding site as responsible for a 'forest malaria' epidemic occurring at a high altitude. The article brings attention to how economic, political and institutional determinants played an important role in redefining studies that led both in Trinidad and Brazil to the recognition of the importance of kerteszia transmission, including urban areas, and establishing new approaches to its study, most relevant of all the concurrence of broad ecological research. The article then describes the Brazilian campaign strategies which showed significant short-term results but had to wait four decades to achieve the goal of eradication due to the peculiar characteristics of this pathogenic complex. Finally, it brings attention to the importance of encompassing social values and discourses, in this case, environmental preservation, to understanding historical trends of malaria control programs.

  7. Malaria prevalence in Nias District, North Sumatra Province, Indonesia

    PubMed Central

    Syafruddin, Din; Asih, Puji BS; Wahid, Isra; Dewi, Rita M; Tuti, Sekar; Laowo, Idaman; Hulu, Waozidohu; Zendrato, Pardamean; Laihad, Ferdinand; Shankar, Anuraj H

    2007-01-01

    Background The Nias district of the North Sumatra Province of Indonesia has long been known to be endemic for malaria. Following the economic crisis at the end of 1998 and the subsequent tsunami and earthquake, in December 2004 and March 2005, respectively, the malaria control programme in the area deteriorated. The present study aims to provide baseline data for the establishment of a suitable malaria control programme in the area and to analyse the frequency distribution of drug resistance alleles associated with resistance to chloroquine and sulphadoxine-pyrimethamine. Methods Malariometric and entomology surveys were performed in three subdistricts. Thin and thick blood smears were stained with Giemsa and examined under binocular light microscopy. Blood blots on filter paper were also prepared for isolation of parasite and host DNA to be used for molecular analysis of band 3 (SAO), pfcrt, pfmdr1, dhfr, and dhps. In addition, haemoglobin measurement was performed in the second and third surveys for the subjects less than 10 years old. Results Results of the three surveys revealed an average slide positivity rate of 8.13%, with a relatively higher rate in certain foci. Host genetic analysis, to identify the Band 3 deletion associated with Southeast Asian Ovalocytosis (SAO), revealed an overall frequency of 1.0% among the 1,484 samples examined. One hundred six Plasmodium falciparum isolates from three sub-districts were successfully analysed. Alleles of the dhfr and dhps genes associated with resistance to sulphadoxine-pyrimethamine, dhfr C59R and S108N, and dhps A437G and K540E, were present at frequencies of 52.2%, 82.5%, 1.18% and 1.18%, respectively. The pfmdr1 alleles N86Y and N1042D, putatively associated with mefloquine resistance, were present at 31.4% and 2%, respectively. All but one sample carried the pfcrt 76T allele associated with chloroquine resistance. Entomologic surveys identified three potential anopheline vectors in the area, Anopheles

  8. Rapid diagnostic tests for malaria ---Haiti, 2010.

    PubMed

    2010-10-29

    Plasmodium falciparum malaria is endemic to Haiti and remains a major concern for residents, including displaced persons, and emergency responders in the aftermath of the January 12, 2010 earthquake. Microscopy has been the only test approved in the national policy for the diagnosis and management of malaria in Haiti; however, the use of microscopy often has been limited by lack of equipment or trained personnel. In contrast, malaria rapid diagnostic tests (RDTs) require less equipment or training to use. To assist in the timely diagnosis and treatment of malaria in Haiti, the Ministry of Public Health and Population (MSPP), in collaboration with CDC, conducted a field assessment that guided the decision to approve the use of RDTs. This data-driven policy change greatly expands the opportunities for accurate malaria diagnosis across the country, allows for improved clinical management of febrile patients, and will improve the quality of malaria surveillance in Haiti.

  9. Evaluation of Students' Conceptual Understanding of Malaria

    NASA Astrophysics Data System (ADS)

    Poh-Ai Cheong, Irene; Treagust, David; Kyeleve, Iorhemen J.; Oh, Peck-Yoke

    2010-12-01

    In this study, a two-tier diagnostic test for understanding malaria was developed and administered to 314 Bruneian students in Year 12 and in a nursing diploma course. The validity, reliability, difficulty level, discriminant indices, and reading ability of the test were examined and found to be acceptable in terms of measuring students' understanding and identifying alternative conceptions with respect to malaria. Results showed that students' understanding of malaria was high for content, low for reasons, and limited and superficial for both content and reasons. The instrument revealed several common alternative conceptual understandings students' hold about malaria. The MalariaTT2 instrument developed could be used in classroom lessons for challenging alternative conceptions and enhancing conceptions of malaria.

  10. Acute renal failure due to falciparum malaria.

    PubMed

    Habte, B

    1990-01-01

    Seventy-two patients with severe falciparum malaria are described. Twenty-four (33.3%) were complicated by acute renal failure. Comparing patients with renal failure and those without, statistically significant differences occurred regarding presence of cerebral malaria (83% vs 46%), jaundice (92% vs 33%), and death (54% vs 17%). A significantly higher number of patients with renal failure were nonimmune visitors to malaria endemic regions. Renal failure was oliguric in 45% of cases. Dialysis was indicated in 38%, 29% died in early renal failure, and 33% recovered spontaneously. It is concluded that falciparum malaria is frequently complicated by cerebral malaria and renal failure. As nonimmune individuals are prone to develop serious complications, malaria prophylaxis and vigorous treatment of cases is mandatory. PMID:2236718

  11. Measuring malaria endemicity from intense to interrupted transmission

    PubMed Central

    Hay, Simon I; Smith, David L; Snow, Robert W

    2008-01-01

    Summary The quantification of malaria transmission for the classification of malaria risk has long been a concern for epidemiologists. During the era of the Global Malaria Eradication Programme, measurements of malaria endemicity were institutionalised by their incorporation into rules outlining defined action points for malaria control programmes. We review the historical development of these indices and their contemporary relevance. This is at a time when many malaria-endemic countries are scaling-up their malaria control activities and reconsidering their prospects for elimination. These considerations are also important to an international community that has recently been challenged to revaluate the prospects for malaria eradication. PMID:18387849

  12. Novel image processing approach to detect malaria

    NASA Astrophysics Data System (ADS)

    Mas, David; Ferrer, Belen; Cojoc, Dan; Finaurini, Sara; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2015-09-01

    In this paper we present a novel image processing algorithm providing good preliminary capabilities for in vitro detection of malaria. The proposed concept is based upon analysis of the temporal variation of each pixel. Changes in dark pixels mean that inter cellular activity happened, indicating the presence of the malaria parasite inside the cell. Preliminary experimental results involving analysis of red blood cells being either healthy or infected with malaria parasites, validated the potential benefit of the proposed numerical approach.

  13. Malaria and the work of WHO.

    PubMed Central

    Najera, J. A.

    1989-01-01

    Malaria has been one of the main health problems demanding the attention of WHO from the time the Organization was created. This review of the historical record analyses the different approaches to the malaria problem in the past 40 years and shows how WHO tried to fulfil its constitutional mandate. The article exposes the historical roots of the present situation and helps towards an understanding of current problems and approaches to malaria control. PMID:2670294

  14. [Current management of imported severe malaria].

    PubMed

    Venanzi, E; López-Vélez, R

    2016-09-01

    Severe malaria is a diagnostic and therapeutic emergency with great impact worldwide for incidence and mortality. The clinical presentation of severe malaria can be very polymorphic and rapidly progressing. Therefore a correct diagnosis and an early and adequate antiparasitic and support therapy are essential. This paper attempts to outline the diagnosis frame and the treatment of severe malaria for adults, paediatric patients and for pregnant. PMID:27608318

  15. Molecular approaches to field studies of malaria.

    PubMed

    Beck, Hans-Peter; Tetteh, Kevin

    2008-12-01

    The third 'Molecular Approaches to Malaria' conference was held in Lorne, Australia, in February 2008 and provided extensive information on the application of molecular tools in field studies on malaria. In recent years, technological advances and capacity building in malaria-endemic countries have permitted molecular tools to be applied much more frequently and successfully with exciting new findings. In this review, Hans-Peter Beck and Kevin Tetteh report on the most recent findings using molecular tools in field studies.

  16. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite.

    PubMed

    Chang, Hsiao-Han; Childs, Lauren M; Buckee, Caroline O

    2016-01-01

    The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia. PMID:27193195

  17. Health research ethics in malaria vector trials in Africa

    PubMed Central

    2010-01-01

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks. PMID:21144083

  18. Hemoglobinopathies: Slicing the Gordian Knot of Plasmodium falciparum Malaria Pathogenesis

    PubMed Central

    Taylor, Steve M.; Cerami, Carla; Fairhurst, Rick M.

    2013-01-01

    Plasmodium falciparum malaria kills over 500,000 children every year and has been a scourge of humans for millennia. Owing to the co-evolution of humans and P. falciparum parasites, the human genome is imprinted with polymorphisms that not only confer innate resistance to falciparum malaria, but also cause hemoglobinopathies. These genetic traits—including hemoglobin S (HbS), hemoglobin C (HbC), and α-thalassemia—are the most common monogenic human disorders and can confer remarkable degrees of protection from severe, life-threatening falciparum malaria in African children: the risk is reduced 70% by homozygous HbC and 90% by heterozygous HbS (sickle-cell trait). Importantly, this protection is principally present for severe disease and largely absent for P. falciparum infection, suggesting that these hemoglobinopathies specifically neutralize the parasite's in vivo mechanisms of pathogenesis. These hemoglobin variants thus represent a “natural experiment” to identify the cellular and molecular mechanisms by which P. falciparum produces clinical morbidity, which remain partially obscured due to the complexity of interactions between this parasite and its human host. Multiple lines of evidence support a restriction of parasite growth by various hemoglobinopathies, and recent data suggest this phenomenon may result from host microRNA interference with parasite metabolism. Multiple hemoglobinopathies mitigate the pathogenic potential of parasites by interfering with the export of P. falciparum erythrocyte membrane protein 1 (PfEMP1) to the surface of the host red blood cell. Few studies have investigated their effects upon the activation of the innate and adaptive immune systems, although recent murine studies suggest a role for heme oxygenase-1 in protection. Ultimately, the identification of mechanisms of protection and pathogenesis can inform future therapeutics and preventive measures. Hemoglobinopathies slice the “Gordian knot” of host and parasite

  19. Health research ethics in malaria vector trials in Africa.

    PubMed

    Kilama, Wen L

    2010-12-13

    Malaria mosquito research in Africa as elsewhere is just over a century old. Early trials for development of mosquito control tools were driven by colonial enterprises and war efforts; they were, therefore, tested in military or colonial settings. The failure of those tools and environmental concerns, coupled with the desperate need for integrated malaria control strategies, has necessitated the development of new malaria mosquito control tools, which are to be tested on humans, their environment and mosquito habitats. Ethical concerns start with phase 2 trials, which pose limited ethical dilemmas. Phase 3 trials, which are undertaken on vulnerable civilian populations, pose ethical dilemmas ranging from individual to community concerns. It is argued that such trials must abide by established ethical principles especially safety, which is mainly enshrined in the principle of non-maleficence. As there is total lack of experience with many of the promising candidate tools (eg genetically modified mosquitoes, entomopathogenic fungi, and biocontrol agents), great caution must be exercised before they are introduced in the field. Since malaria vector trials, especially phase 3 are intrusive and in large populations, individual and community respect is mandatory, and must give great priority to community engagement. It is concluded that new tools must be safe, beneficial, efficacious, effective, and acceptable to large populations in the short and long-term, and that research benefits should be equitably distributed to all who bear the brunt of the research burdens. It is further concluded that individual and institutional capacity strengthening should be provided, in order to undertake essential research, carry out scientific and ethical review, and establish competent regulatory frameworks.

  20. Making malaria testing relevant: beyond test purchase.

    PubMed

    Bell, David; Perkins, Mark D

    2008-11-01

    Malaria rapid diagnostic tests (RDT) are being procured and used in increasing numbers. However, the resultant effect of RDT-based diagnosis on fever management has been limited by lack of confidence in RDT results or the inability to act on results appropriately. If the utilisation of malaria RDTs is going to achieve the significant public health and financial benefits anticipated, they must be introduced in a carefully structured way and viewed as a tool for the management of febrile illness, not just malaria. If this is to occur, a re-think is required of the way many malaria programmes are funded and run.

  1. Malaria Parasites Produce Volatile Mosquito Attractants

    PubMed Central

    Kelly, Megan; Su, Chih-Ying; Schaber, Chad; Crowley, Jan R.; Hsu, Fong-Fu; Carlson, John R.

    2015-01-01

    ABSTRACT The malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid organelle that possesses plant-like metabolic pathways. Plants use the plastidial isoprenoid biosynthesis pathway to produce volatile odorants, known as terpenes. In this work, we describe the volatile chemical profile of cultured malaria parasites. Among the identified compounds are several plant-like terpenes and terpene derivatives, including known mosquito attractants. We establish the molecular identity of the odorant receptors of the malaria mosquito vector Anopheles gambiae, which responds to these compounds. The malaria parasite produces volatile signals that are recognized by mosquitoes and may thereby mediate host attraction and facilitate transmission. PMID:25805727

  2. [Vector control and malaria control].

    PubMed

    Carnevale, P; Mouchet, J

    1990-01-01

    Vector control is an integral part of malaria control. Limiting parasite transmission vector control must be considered as one of the main preventive measure. Indeed it prevents transmission of Plasmodium from man to vector and from vector to man. But vector control must be adapted to local situation to be efficient and feasible. Targets of vector control can be larval and/or adults stages. In both cases 3 main methods are currently available: physical (source reduction), chemical (insecticides) and biological tolls. Antilarval control is useful only in some particular circumstances (unstable malaria, island, oasis...) Antiadult control is mainly based upon house-spraying while pyrethroid treated bed nets is advocated regarding efficiency, simple technique and cheap price. Vector control measures could seem restricted but can be very efficient if political will is added to a right choice of adapted measures, a good training of involved personal and a large information of the population concerned with vector control.

  3. Malaria in penguins - current perceptions.

    PubMed

    Grilo, M L; Vanstreels, R E T; Wallace, R; García-Párraga, D; Braga, É M; Chitty, J; Catão-Dias, J L; Madeira de Carvalho, L M

    2016-08-01

    Avian malaria is a mosquito-borne disease caused by protozoans of the genus Plasmodium, and it is considered one of the most important causes of morbidity and mortality in captive penguins, both in zoological gardens and rehabilitation centres. Penguins are known to be highly susceptible to this disease, and outbreaks have been associated with mortality as high as 50-80% of affected captive populations within a few weeks. The disease has also been reported in wild penguin populations, however, its impacts on the health and fitness of penguins in the wild is not clear. This review provides an overview of the aetiology, life cycle and epidemiology of avian malaria, and provides details on the strategies that can be employed for the diagnostic, treatment and prevention of this disease in captive penguins, discussing possible directions for future research.

  4. The pathophysiology of vivax malaria.

    PubMed

    Anstey, Nicholas M; Russell, Bruce; Yeo, Tsin W; Price, Ric N

    2009-05-01

    Long considered a benign infection, Plasmodium vivax is now recognized as a cause of severe and fatal malaria, despite its low parasite biomass, the increased deformability of vivax-infected red blood cells and an apparent paucity of parasite sequestration. Severe anemia is associated with recurrent bouts of hemolysis of predominantly uninfected erythrocytes with increased fragility, and lung injury is associated with inflammatory increases in alveolar-capillary membrane permeability. Although rare, vivax-associated coma challenges our understanding of pathobiology caused by Plasmodium spp. Host and parasite factors contribute to the risk of severe disease, and comorbidities might contribute to vivax mortality. In this review, we discuss potential mechanisms underlying the syndromes of uncomplicated and severe vivax malaria, identifying key areas for future research.

  5. Malaria in penguins - current perceptions.

    PubMed

    Grilo, M L; Vanstreels, R E T; Wallace, R; García-Párraga, D; Braga, É M; Chitty, J; Catão-Dias, J L; Madeira de Carvalho, L M

    2016-08-01

    Avian malaria is a mosquito-borne disease caused by protozoans of the genus Plasmodium, and it is considered one of the most important causes of morbidity and mortality in captive penguins, both in zoological gardens and rehabilitation centres. Penguins are known to be highly susceptible to this disease, and outbreaks have been associated with mortality as high as 50-80% of affected captive populations within a few weeks. The disease has also been reported in wild penguin populations, however, its impacts on the health and fitness of penguins in the wild is not clear. This review provides an overview of the aetiology, life cycle and epidemiology of avian malaria, and provides details on the strategies that can be employed for the diagnostic, treatment and prevention of this disease in captive penguins, discussing possible directions for future research. PMID:27009571

  6. Clinical proteomics and OMICS clues useful in translational medicine research

    PubMed Central

    2012-01-01

    Since the advent of the new proteomics era more than a decade ago, large-scale studies of protein profiling have been used to identify distinctive molecular signatures in a wide array of biological systems, spanning areas of basic biological research, clinical diagnostics, and biomarker discovery directed toward therapeutic applications. Recent advances in protein separation and identification techniques have significantly improved proteomic approaches, leading to enhancement of the depth and breadth of proteome coverage. Proteomic signatures, specific for multiple diseases, including cancer and pre-invasive lesions, are emerging. This article combines, in a simple manner, relevant proteomic and OMICS clues used in the discovery and development of diagnostic and prognostic biomarkers that are applicable to all clinical fields, thus helping to improve applications of clinical proteomic strategies for translational medicine research. PMID:22642823

  7. [Chemical submission, epidemiology and some clues for the diagnosis].

    PubMed

    Cruz-Landeira, Angelines; Quintela-Jorge, Oscar; López-Rivadulla, Manuel

    2008-12-01

    The use of chemical substances to control people is not a new event. Indeed, it has been done for centuries. This practice has recenttly acquired a new dimension because of its association with sexual assaults and other type of crimes. The frequency of the association of the use of chemical substances with sexual assaults is behind the term SQ (drug facilitated sexual assauit). The Spaniish term foir this practice, Sumisión Química, comes from the French one, Soumissión Chimique, and has a wide meaning. In this review, the epidemiology of SQ is revised and an analysis of its main involved elements, namely the chemical, the victim and the assailant, is done. Chief clinical signs and clues for the toxicological doiagnosis are also appproached.

  8. Prehistoric Packrats Piled Up Clues to Climate Change

    USGS Publications Warehouse

    Cole, Kenneth L.

    2008-01-01

    Scientists from the U.S. Geological Survey and Northern Arizona University studying climate change in the Southwestern United States are getting a helping hand?or would that be paw??from prehistoric packrats. By hoarding parts of animals and plants, including seeds and leaves, in garbage piles or ?middens,? these bushy-tailed rodents preserved crucial ecological and environmental information about the past. From these middens, scientists are able to reconstruct plant communities and natural systems from as long ago as 50,000 years. The contents of middens allow scientists to understand how ecosystems responded to rapid, large-scale climate changes of the past. The insights gained from midden research could offer clues to future changes driven by rapid climate shifts.

  9. Red ochre and shells: clues to human evolution.

    PubMed

    Duarte, Carlos M

    2014-10-01

    The 200-kiloannus (ka) use of red ochre and shells by humans is interpreted as a simple clue of symbolic thinking. Integration of multiple lines of evidence supports the opinion that the use of red ochre and shells might have had direct significance for human evolution. Use of seafood and red ochre supplies docosahexaenoic acid (DHA), possibly iron, and other essential nutrients for brain development and reproductive health, improving human fitness and triggering brain growth. The fitness advantages to humans of using shells, and possibly red ochre, might have selected for artistic and symbolic expression, and, thereby, lead to social cohesion. Current global health syndromes show that an adequate supply of seafood and iron continues to play a fundamental role in human health. PMID:25172406

  10. Adenosine monophosphate deaminase 3 activation shortens erythrocyte half-life and provides malaria resistance in mice.

    PubMed

    Hortle, Elinor; Nijagal, Brunda; Bauer, Denis C; Jensen, Lora M; Ahn, Seong Beom; Cockburn, Ian A; Lampkin, Shelley; Tull, Dedreia; McConville, Malcolm J; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2016-09-01

    The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection. PMID:27465915

  11. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria.

    PubMed

    Gong, Lauren; Parikh, Sunil; Rosenthal, Philip J; Greenhouse, Bryan

    2013-01-01

    Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria. Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1 and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite relationship, including the role of the host immune system in protection against malaria. PMID:24025776

  12. Malaria parasite strain characterization, cryopreservation, and banking of isolates: a WHO Memorandum*

    PubMed Central

    1981-01-01

    There has been considerable progress in the biological characterization of malaria parasites in the past few years. Physiological parameters such as host adaptation, virulence, exoerythrocytic development, in vitro growth of erythrocytic stages, and drug sensitivity are of particular importance to epidemiologists. Advances in enzyme analysis, 2-dimensional protein electrophoresis, and nucleic acid analysis have produced several new techniques that can be applied to the malaria parasite. Similarly, antigenic characterization is expected to progress as a result of technical improvements. Many of the biological parameters are needed for the study of parasite genetics, a field which has expanded greatly through the development of cloning techniques. The latter also hold interest for the production, and the future use in research, of biologically well characterized standard clones. In this connexion, the cryopreservation and banking of malaria parasites deserve attention, in order to ensure the supply of well defined, viable isolates and clones to interested research workers. PMID:7032732

  13. [Postmortem diagnosis of tropical malaria].

    PubMed

    Albert, S; Schröter, A; Bratzke, H; Brade, V

    1995-01-01

    Thirteen days after returning from a four week holiday in Kenya a 35-year-old man consulted his doctor complaining of feeling unwell. The doctor diagnosed influenza and gave him a sickness certificate for three days. Because the patient did not reappear at his workplace a search was made and he was found dead in his flat seven days after seeing his doctor. A medicolegal autopsy was performed two days after the estimated time of death. There was marked swelling of liver and spleen together with jaundice and "dirty grey" colouration of the viscera. Samples of heart blood and spleen puncture material were taken. Giemsa stained preparations (ordinary and thick blood smears) revealed numerous objects 1.2 to 1.5 microns in size with indistinct reddish blue staining, some of them arranged in rosettes reminiscent of schizonts. A few of them contained pigment. In material from the spleen there were masses of blackish-brown pigment. The malaria immunofluorescence test performed on serum gave a weakly positive titre of 1:40. The findings were considered enough to support a diagnosis of fulminant falciparum malaria, and this was confirmed by histological changes in various organs, notably the typical capillary blockages in the brain. Because of the popularity of long-haul tourism, cases of imported malaria are increasingly frequent and, in view of the insidiously progressive course of the disease, it should always be considered in the differential diagnosis. In cases of unexplained death, if there is any suspicion of malaria, blood should always be taken for appropriate investigations, in addition to blocks for histological examination. PMID:7821199

  14. Serological malaria surveys in Nigeria*

    PubMed Central

    Voller, A.; Bruce-Chwatt, L. J.

    1968-01-01

    A parasitological and serological malaria survey of 2 large and 2 small areas of Nigeria was carried out in connexion with the activities of the WHO Treponematoses Epidemiological Team. The results, based on data obtained from 1082 subjects, showed that all the areas were holoendemic with the usual pattern of malariometric indices, and that the differences between the parasite rates of the two large areas were due to the different timing of the survey in relation to the seasonal wave of transmission. The fluorescent antibody test was positive (≥1:20) in 92% of the 914 sera collected from these 2 areas. The serological profile of the population in the 2 areas was similar, but the immunofluorescence titres were higher in all age-groups in the area south of the Benue river, indicating the antibody response to the previous endemic wave rather than the actual amount of transmission taking place at the time of the survey. This study confirms the value of the immunofluorescent technique for large-scale malaria surveys, but indicates the need for caution in interpreting the results and stresses the importance of good knowledge of the local epidemiology of malaria before embarking on application of serological methods. PMID:4893493

  15. Epidemiology of malaria in Malaysia.

    PubMed

    Rahman, K M

    1982-01-01

    Malaria is a major public health problem in Malaysia, particularly in peninsular Malaysia and the state of Sabah. An eradication program started in the states of Sabah and Sarawak in 1961 initially was remarkably successful. A similar but staged program was started in peninsular Malaysia in 1967 and was also quite successful. However, a marked upsurge in incidence in Sabah in 1975-1978 showed that malaria is still a major hazard. The disease leads to great economic losses in terms of the productivity of the labor force and the learning capacity of schoolchildren. The topography, the climate, and the migrations of the people due to increased economic activity are similar in peninsular Malaysia, Sabah, and Sarawak. However, the epidemiologic picture differs strikingly from area to area in terms of species of vectors, distribution of parasitic species, and resistance of Plasmodium falciparum to chloroquine. Likewise, the problems faced by the eradication or control programs in the three regions are dissimilar. Because solutions to only some of these problems are possible, the eradication of malaria in Malaysia is not likely in the near future. However, the situation offers an excellent opportunity for further studies of antimalaria measures. PMID:6755616

  16. [Microbiological diagnosis of imported malaria].

    PubMed

    Torrús, Diego; Carranza, Cristina; Manuel Ramos, José; Carlos Rodríguez, Juan; Rubio, José Miguel; Subirats, Mercedes; Ta-Tang, Thuy-Huong

    2015-07-01

    Current diagnosis of malaria is based on the combined and sequential use of rapid antigen detection tests (RDT) of Plasmodium and subsequent visualization of the parasite stained with Giemsa solution in a thin and thick blood smears. If an expert microscopist is not available, should always be a sensitive RDT to rule out infection by Plasmodium falciparum, output the result immediately and prepare thick smears (air dried) and thin extensions (fixed with methanol) for subsequent staining and review by an expert microscopist. The RDT should be used as an initial screening test, but should not replace microscopy techniques, which should be done in parallel. The diagnosis of malaria should be performed immediately after clinical suspicion. The delay in laboratory diagnosis (greater than 3 hours) should not prevent the initiation of empirical antimalarial treatment if the probability of malaria is high. If the first microscopic examination and RDT are negative, they must be repeated daily in patients with high suspicion. If suspicion remains after three negative results must be sought the opinion of an tropical diseases expert. Genomic amplification methods (PCR) are useful as confirmation of microscopic diagnosis, to characterize mixed infections undetectable by other methods, and to diagnose asymptomatic infections with submicroscopic parasitaemia.

  17. An Analysis of Sixth Grade Pupil's Ability to Use Context Clues in Science and Social Studies.

    ERIC Educational Resources Information Center

    Olson, Arthur V.

    The ability of sixth-grade students to use context clues for identifying unknown words in science and social studies reading materials and the types of context clues most frequently used are examined. The 30 subjects from three white, middle-class urban schools missed 50 percent or more of the words on a prevocabulary test. The subjects read two…

  18. Resistance to sulphadrug-based antifolate therapy in malaria: are we looking in the right place?

    PubMed

    Platteeuw, J J

    2006-06-01

    Sulphadrug treatment failure in malaria therapy cannot solely be ascribed to the build-up of genetic resistance within the parasitic genome. Although numerous in vitro studies have tried to determine the exact genetic markers that could predict treatment outcome in patients, this research has not been conclusive. Sulphadrugs work by competitive inhibition with pABA at one point of the pathway to de novo folate synthesis. However, evidence suggests that the malaria parasite is capable of overcoming this competitive inhibition by switching over to other metabolic pathways, like direct folate salvage from a person's bloodstream. In other words, increased folic acid administration, via diet or supplementation, may have reduced the effectiveness of sulphadrugs more than genetic mutations. Although in vitro studies are valuable for understanding disease mechanisms, we should not forget that the human being is infinitely more complex than any laboratory model.

  19. Neuropsychiatric Profile in Malaria: An Overview

    PubMed Central

    Singh, Veer Bahadur; Meena, Babu Lal; Chandra, Subhash; Agrawal, Jatin; Kanogiya, Naresh

    2016-01-01

    Introduction Malaria is the most important parasitic disease of humans causes clinical illness over 300-500 million people globally and over one million death every year globally. The involvement of the nervous system in malaria is studied in this paper, to help formulate a strategy for better malaria management. Aim To study the Neuropsychiatric manifestation in malaria. Materials and Methods This was a prospective observational study in 170 patients with a clinical diagnosis of malaria admitted in various medical wards of medicine department of PBM Hospital, Bikaner during epidemic of malaria. It included both sexes of all age groups except the paediatric range. The diagnosis of malaria was confirmed by examination of thick and thin smear/optimal test/strip test. Only those cases that had asexual form of parasite of malaria in the blood by smear examination or optimal test were included in the study. Results Out of total 170 patients 104 (62%) reported Plasmodium falciparum (PF), Plasmodium vivax (PV) were 57 (33.5%) followed by mixed (PF+PV) 9 (5.3%) cases. The total PBF-MP test positivity was 84.5%. Maximum patients were belonging to the age range of 21-40 year with male predominance. Neuropsychiatric manifestation seen in falciparum malaria (n=111) as follow: altered consciousness 20 (18.01%), headache 17 (15.32%), neck rigidity 5 (4.5%), convulsion 5 (4.55%), extra pyramidal rigidity 2 (1.8%), decorticate rigidity 1 (0.90%), decerebrate rigidity 1 (0.90%), cerebellar ataxia 3 (2.7%), subarachnoid haemorrhage 1 (0.90%), aphasia 2 (1.8%), subconjunctival haemorrhage 1 (0.90%), conjugate deviation of eye 1 (0.90%) and psychosis 6 (5.40%). Twenty one patients presented with cerebral malaria out of 111 patients. Most patients of cerebral malaria presented with altered level of consciousness followed by headache and psychosis. Acute confusional state with clouding of consciousness was the most common presentation of psychosis (50%). Conclusion Neuropsychiatric

  20. Neuropsychiatric Profile in Malaria: An Overview

    PubMed Central

    Singh, Veer Bahadur; Meena, Babu Lal; Chandra, Subhash; Agrawal, Jatin; Kanogiya, Naresh

    2016-01-01

    Introduction Malaria is the most important parasitic disease of humans causes clinical illness over 300-500 million people globally and over one million death every year globally. The involvement of the nervous system in malaria is studied in this paper, to help formulate a strategy for better malaria management. Aim To study the Neuropsychiatric manifestation in malaria. Materials and Methods This was a prospective observational study in 170 patients with a clinical diagnosis of malaria admitted in various medical wards of medicine department of PBM Hospital, Bikaner during epidemic of malaria. It included both sexes of all age groups except the paediatric range. The diagnosis of malaria was confirmed by examination of thick and thin smear/optimal test/strip test. Only those cases that had asexual form of parasite of malaria in the blood by smear examination or optimal test were included in the study. Results Out of total 170 patients 104 (62%) reported Plasmodium falciparum (PF), Plasmodium vivax (PV) were 57 (33.5%) followed by mixed (PF+PV) 9 (5.3%) cases. The total PBF-MP test positivity was 84.5%. Maximum patients were belonging to the age range of 21-40 year with male predominance. Neuropsychiatric manifestation seen in falciparum malaria (n=111) as follow: altered consciousness 20 (18.01%), headache 17 (15.32%), neck rigidity 5 (4.5%), convulsion 5 (4.55%), extra pyramidal rigidity 2 (1.8%), decorticate rigidity 1 (0.90%), decerebrate rigidity 1 (0.90%), cerebellar ataxia 3 (2.7%), subarachnoid haemorrhage 1 (0.90%), aphasia 2 (1.8%), subconjunctival haemorrhage 1 (0.90%), conjugate deviation of eye 1 (0.90%) and psychosis 6 (5.40%). Twenty one patients presented with cerebral malaria out of 111 patients. Most patients of cerebral malaria presented with altered level of consciousness followed by headache and psychosis. Acute confusional state with clouding of consciousness was the most common presentation of psychosis (50%). Conclusion Neuropsychiatric

  1. Climate change and the global malaria recession

    PubMed Central

    Gething, Peter W.; Smith, David L.; Patil, Anand P.; Tatem, Andrew J.; Snow, Robert W.; Hay, Simon I.

    2010-01-01

    The current and potential future impact of climate change on malaria is of major public health interest1,2. The proposed effects of rising global temperatures on the future spread and intensification of the disease3-5, and on existing malaria morbidity and mortality rates3, substantively influence global health policy6,7. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range8, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control9. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since c. 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity hypothesised under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since c. 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen dramatic global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate. PMID:20485434

  2. Climate, environment and transmission of malaria.

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  3. Climate, environment and transmission of malaria.

    PubMed

    Rossati, Antonella; Bargiacchi, Olivia; Kroumova, Vesselina; Zaramella, Marco; Caputo, Annamaria; Garavelli, Pietro Luigi

    2016-06-01

    Malaria, the most common parasitic disease in the world, is transmitted to the human host by mosquitoes of the genus Anopheles. The transmission of malaria requires the interaction between the host, the vector and the parasite.The four species of parasites responsible for human malaria are Plasmodium falciparum, Plasmodium ovale, Plasmodium malariae and Plasmodium vivax. Occasionally humans can be infected by several simian species, like Plasmodium knowlesi, recognised as a major cause of human malaria in South-East Asia since 2004. While P. falciparum is responsible for most malaria cases, about 8% of estimated cases globally are caused by P. vivax. The different Plasmodia are not uniformly distributed although there are areas of species overlap. The life cycle of all species of human malaria parasites is characterised by an exogenous sexual phase in which multiplication occurs in several species of Anopheles mosquitoes, and an endogenous asexual phase in the vertebrate host. The time span required for mature oocyst development in the salivary glands is quite variable (7-30 days), characteristic of each species and influenced by ambient temperature. The vector Anopheles includes 465 formally recognised species. Approximately 70 of these species have the capacity to transmit Plasmodium spp. to humans and 41 are considered as dominant vector capable of transmitting malaria. The intensity of transmission is dependent on the vectorial capacity and competence of local mosquitoes. An efficient system for malaria transmission needs strong interaction between humans, the ecosystem and infected vectors. Global warming induced by human activities has increased the risk of vector-borne diseases such as malaria. Recent decades have witnessed changes in the ecosystem and climate without precedent in human history although the emphasis in the role of temperature on the epidemiology of malaria has given way to predisposing conditions such as ecosystem changes, political

  4. Climate change and the global malaria recession.

    PubMed

    Gething, Peter W; Smith, David L; Patil, Anand P; Tatem, Andrew J; Snow, Robert W; Hay, Simon I

    2010-05-20

    The current and potential future impact of climate change on malaria is of major public health interest. The proposed effects of rising global temperatures on the future spread and intensification of the disease, and on existing malaria morbidity and mortality rates, substantively influence global health policy. The contemporary spatial limits of Plasmodium falciparum malaria and its endemicity within this range, when compared with comparable historical maps, offer unique insights into the changing global epidemiology of malaria over the last century. It has long been known that the range of malaria has contracted through a century of economic development and disease control. Here, for the first time, we quantify this contraction and the global decreases in malaria endemicity since approximately 1900. We compare the magnitude of these changes to the size of effects on malaria endemicity proposed under future climate scenarios and associated with widely used public health interventions. Our findings have two key and often ignored implications with respect to climate change and malaria. First, widespread claims that rising mean temperatures have already led to increases in worldwide malaria morbidity and mortality are largely at odds with observed decreasing global trends in both its endemicity and geographic extent. Second, the proposed future effects of rising temperatures on endemicity are at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale-up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate.

  5. Hemozoin detection may provide an inexpensive, sensitive, 1-minute malaria test that could revolutionize malaria screening.

    PubMed

    Grimberg, Brian T; Grimberg, Kerry O

    2016-10-01

    Malaria remains widespread throughout the tropics and is a burden to the estimated 3.5 billion people who are exposed annually. The lack of a fast and accurate diagnostic method contributes to preventable malaria deaths and its continued transmission. In many areas diagnosis is made solely based on clinical presentation. Current methods for malaria diagnosis take more than 20 minutes from the time blood is drawn and are frequently inaccurate. The introduction of an accurate malaria diagnostic that can provide a result in less than 1 minute would allow for widespread screening and treatment of endemic populations, and enable regions that have gained a foothold against malaria to prevent its return. Using malaria parasites' waste product, hemozoin, as a biomarker for the presence of malaria could be the tool needed to develop this rapid test. PMID:27530228

  6. Hemozoin detection may provide an inexpensive, sensitive, 1-minute malaria test that could revolutionize malaria screening.

    PubMed

    Grimberg, Brian T; Grimberg, Kerry O

    2016-10-01

    Malaria remains widespread throughout the tropics and is a burden to the estimated 3.5 billion people who are exposed annually. The lack of a fast and accurate diagnostic method contributes to preventable malaria deaths and its continued transmission. In many areas diagnosis is made solely based on clinical presentation. Current methods for malaria diagnosis take more than 20 minutes from the time blood is drawn and are frequently inaccurate. The introduction of an accurate malaria diagnostic that can provide a result in less than 1 minute would allow for widespread screening and treatment of endemic populations, and enable regions that have gained a foothold against malaria to prevent its return. Using malaria parasites' waste product, hemozoin, as a biomarker for the presence of malaria could be the tool needed to develop this rapid test.

  7. Delayed action insecticides and their role in mosquito and malaria control.

    PubMed

    Wang, Chuncheng; Gourley, Stephen A; Liu, Rongsong

    2014-01-01

    There is considerable interest in the management of insecticide resistance in mosquitoes. One possible approach to slowing down the evolution of resistance is to use late-life-acting (LLA) insecticides that selectively kill only the old mosquitoes that transmit malaria, thereby reducing selection pressure favoring resistance. In this paper we consider an age-structured compartmental model for malaria with two mosquito strains that differ in resistance to insecticide, using an SEI approach to model malaria in the mosquitoes and thereby incorporating the parasite developmental times for the two strains. The human population is modeled using an SEI approach. We consider both conventional insecticides that target all adult mosquitoes, and LLA insecticides that target only old mosquitoes. According to linearised theory the potency of the insecticide affects mainly the speed of evolution of resistance. Mutations that confer resistance can also affect other parameters such as mean adult life span and parasite developmental time. For both conventional and LLA insecticides the stability of the malaria-free equilibrium, with only the resistant mosquito strain present, depends mainly on these other parameters. This suggests that the main long term role of an insecticide could be to induce genetic changes that have a desirable effect on a vital parameter such as adult life span. However, when this equilibrium is unstable, numerical simulations suggest that a potent LLA insecticide can slow down the spread of malaria in humans but that the timing of its action is very important.

  8. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR) Variants in a Thai Population

    PubMed Central

    van Bruggen, Rebekah; Gualtieri, Christian; Iliescu, Alexandra; Louicharoen Cheepsunthorn, Chalisa; Mungkalasut, Punchalee; Trape, Jean-François; Modiano, David; Sodiomon Sirima, Bienvenu; Singhasivanon, Pratap; Lathrop, Mark; Sakuntabhai, Anavaj; Bureau, Jean-François; Gros, Philippe

    2015-01-01

    Pyruvate kinase (PKLR) is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival) of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q) was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41) is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q) affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria. PMID:26658699

  9. Malaria elimination in Malawi: research needs in highly endemic, poverty-stricken contexts.

    PubMed

    Wilson, Mark L; Walker, Edward D; Mzilahowa, Themba; Mathanga, Don P; Taylor, Terrie E

    2012-03-01

    Malaria control in the impoverished, highly endemic settings of sub-Saharan Africa remains a major public health challenge. Successes have been achieved only where sustained, concerted, multi-pronged interventions have been instituted. As one of the world's poorest countries, Malawi experiences malaria incidence rates that have remained high despite a decade of gradually expanding and more intensive prevention efforts. The Malawi International Center for Excellence in Malaria Research (ICEMR) is beginning work to augment the knowledge base for reducing Plasmodium transmission and malaria morbidity and mortality. Among ICEMR goals, we intend to better assess patterns of infection and disease, and analyze transmission by Anopheles vector species in both urban and rural ecological settings. We will evaluate parasite population genetics and dynamics, transmission intensities and vector ecologies, social and environmental determinants of disease patterns and risk, and human-vector-parasite dynamics. Such context-specific information will help to focus appropriate prevention and treatment activities on efforts to control malaria in Malawi. In zones of intense and stable transmission, like Malawi, elimination poses particularly thorny challenges - and these challengers are different from those of traditional control and prevention activities. Working toward elimination will require knowledge of how various interventions impact on transmission as it approaches very low levels. At present, Malawi is faced with immediate, context-specific problems of scaling-up prevention and control activities simply to begin reducing infection and disease to tolerable levels. The research required to support these objectives is critically evaluated here.

  10. Accelerated Diversification of Nonhuman Primate Malarias in Southeast Asia: Adaptive Radiation or Geographic Speciation?

    PubMed Central

    Muehlenbein, Michael P.; Pacheco, M. Andreína; Taylor, Jesse E.; Prall, Sean P.; Ambu, Laurentius; Nathan, Senthilvel; Alsisto, Sylvia; Ramirez, Diana; Escalante, Ananias A.

    2015-01-01

    Although parasitic organisms are found worldwide, the relative importance of host specificity and geographic isolation for parasite speciation has been explored in only a few systems. Here, we study Plasmodium parasites known to infect Asian nonhuman primates, a monophyletic group that includes the lineage leading to the human parasite Plasmodium vivax and several species used as laboratory models in malaria research. We analyze the available data together with new samples from three sympatric primate species from Borneo: The Bornean orangutan and the long-tailed and the pig-tailed macaques. We find several species of malaria parasites, including three putatively new species in this biodiversity hotspot. Among those newly discovered lineages, we report two sympatric parasites in orangutans. We find no differences in the sets of malaria species infecting each macaque species indicating that these species show no host specificity. Finally, phylogenetic analysis of these data suggests that the malaria parasites infecting Southeast Asian macaques and their relatives are speciating three to four times more rapidly than those with other mammalian hosts such as lemurs and African apes. We estimate that these events took place in approximately a 3–4-Ma period. Based on the genetic and phenotypic diversity of the macaque malarias, we hypothesize that the diversification of this group of parasites has been facilitated by the diversity, geographic distributions, and demographic histories of their primate hosts. PMID:25389206

  11. Genetics and implications in perioperative analgesia.

    PubMed

    Trescot, Andrea M

    2014-06-01

    The wide range of patient responses to surgical pain, opioids, and anesthetic agents has puzzled anesthesiologists for many years. Much of the variation has been attributed to differences in patient size, technique, or prior drug use. However, recent genetic testing has revealed exciting clues into the basis for these variances, allowing us to start to predict which patients may have difficulties and start to select medications more rationally. In this manuscript, we discuss genetics and pain perception, genetic predisposition to pain, drug metabolism interactions, ethnogenetics, opioid metabolism, opioid receptors, genetic-related peri-anesthetic toxicity, as well as a clinical approach and a discussion regarding the future of genetic testing and anesthesia.

  12. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  13. Amazonian malaria: Asymptomatic human reservoirs, diagnostic challenges, environmentally-driven changes in mosquito vector populations, and the mandate for sustainable control strategies

    PubMed Central

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E.; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M.; Ferreira, Marcelo U.

    2012-01-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite P. vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil. PMID:22015425

  14. Amazonian malaria: asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito vector populations, and the mandate for sustainable control strategies.

    PubMed

    da Silva-Nunes, Mônica; Moreno, Marta; Conn, Jan E; Gamboa, Dionicia; Abeles, Shira; Vinetz, Joseph M; Ferreira, Marcelo U

    2012-03-01

    Across the Americas and the Caribbean, nearly 561,000 slide-confirmed malaria infections were reported officially in 2008. The nine Amazonian countries accounted for 89% of these infections; Brazil and Peru alone contributed 56% and 7% of them, respectively. Local populations of the relatively neglected parasite Plasmodium vivax, which currently accounts for 77% of the regional malaria burden, are extremely diverse genetically and geographically structured. At a time when malaria elimination is placed on the public health agenda of several endemic countries, it remains unclear why malaria proved so difficult to control in areas of relatively low levels of transmission such as the Amazon Basin. We hypothesize that asymptomatic parasite carriage and massive environmental changes that affect vector abundance and behavior are major contributors to malaria transmission in epidemiologically diverse areas across the Amazon Basin. Here we review available data supporting this hypothesis and discuss their implications for current and future malaria intervention policies in the region. Given that locally generated scientific evidence is urgently required to support malaria control interventions in Amazonia, we briefly describe the aims of our current field-oriented malaria research in rural villages and gold-mining enclaves in Peru and a recently opened agricultural settlement in Brazil.

  15. Malaria situation in the Greater Mekong Subregion.

    PubMed

    Hewitt, Sean; Delacollette, Charles; Chavez, Irwin

    2013-01-01

    The epidemiology of malaria in the Greater Mekong Subregion is complex and rapidly evolving. Malaria control and elimination efforts face a daunting array of challenges including multidrug-resistant parasites. This review presents secondary data collected by the national malaria control programs in the six countries between 1998 and 2010 and examines trends over the last decade. This data has a number of limitations: it is derived exclusively from public sector health facilities; falciparum-specific and then pan-specific rapid diagnostic tests were introduced during the period under review; and, recently there has been a massive increase in case detection capability as a result of increased funding. It therefore requires cautious interpretation. A series of maps are presented showing trends in incidence, mortality and proportion of cases caused by Plasmodium falciparum over the last decade. A brief overview of institutional and implementation arrangements, historical background, demographics and key issues affecting malaria epidemiology is provided for each country. National malaria statistics for 2010 are presented and their robustness discussed in terms of the public sector's share of cases and other influencing factors such as inter-country variations in risk stratification, changes in diagnostic approach and immigration. Targets are presented for malaria control and where appropriate for elimination. Each country's artemisinin resistance status is described. The epidemiological trends presented reflect the improvement in the malaria situation, however the true malaria burden is as yet unknown. There is a need for continuing strengthening and updating of surveillance and response systems. PMID:24159830

  16. A Research Agenda for Malaria Eradication: Vaccines

    PubMed Central

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of “vaccines that interrupt malaria transmission” (VIMT), which includes not only “classical” transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented. PMID:21311586

  17. An ecohydrological model of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Montosi, E.; Manzoni, S.; Porporato, A.; Montanari, A.

    2012-08-01

    Malaria is a geographically widespread infectious disease that is well known to be affected by climate variability at both seasonal and interannual timescales. In an effort to identify climatic factors that impact malaria dynamics, there has been considerable research focused on the development of appropriate disease models for malaria transmission driven by climatic time series. These analyses have focused largely on variation in temperature and rainfall as direct climatic drivers of malaria dynamics. Here, we further these efforts by considering additionally the role that soil water content may play in driving malaria incidence. Specifically, we hypothesize that hydro-climatic variability should be an important factor in controlling the availability of mosquito habitats, thereby governing mosquito growth rates. To test this hypothesis, we reduce a nonlinear ecohydrological model to a simple linear model through a series of consecutive assumptions and apply this model to malaria incidence data from three South African provinces. Despite the assumptions made in the reduction of the model, we show that soil water content can account for a significant portion of malaria's case variability beyond its seasonal patterns, whereas neither temperature nor rainfall alone can do so. Future work should therefore consider soil water content as a simple and computable variable for incorporation into climate-driven disease models of malaria and other vector-borne infectious diseases.

  18. History of eradication of malaria in Croatia.

    PubMed

    Gregurić Gracner, Gordana; Vucevac Bajt, Vesna

    2002-01-01

    Malaria as a disease of miasmatic origin was known of as early as in the Ancient times. The first written documents on malaria in Croatia date from the 16th century, and concern Istria. Until the end of the 16th century, malaria was spread on almost the whole territory of Croatia. The first studies of the disease were performed as early as in the 18th century. The first piece of work on malaria in Croatia "De morbo Naroniano tractatus" (on the "Neretva disease") was written by Paduan professor Giusepe Antonio Pujati (1701-1760). The term "malaria" (after the Italian mala-aria, meaning bad air) was first mentioned in the gazette "Danica Ilirska" in 1837. During the 19th century, the sanitization of malaric areas in Istria and the Neretva valley was carried out with the aim of eradication of the disease. However, the first significant results were not achieved until the beginning of the 20th century following the arrival of Dr. Robert Koch and his associates to the Islands of Brijuni. They managed to eradicate malaria by systematic quininisation of the whole population and a number of other procedures like land-improvement or population education. Robert Koch's method of eradication of malaria showed outstanding results in 1903. According to physician Mauro Gioseffi's report from 1932 there haven't been significant outbreaks of malaria since those times. PMID:12812206

  19. X-ray microscopy of human malaria

    SciTech Connect

    Magowan, C.; Brown, J.T.; Mohandas, N.; Meyer-Ilse, W.

    1997-04-01

    Associations between intracellular organisms and host cells are complex and particularly difficult to examine. X-ray microscopy provides transmission images of subcellular structures in intact cells at resolutions superior to available methodologies. The spatial resolution is 50-60nm with a 1 micron depth of focus, superior to anything achievable with light microscopy. Image contrast is generated by differences in photoelectric absorption by the atoms in different areas (i.e. subcellular structures) throughout the full thickness of the sample. Absorption due to carbon dominates among all the elements in the sample at 2.4 nm x-ray wavelength. Thus images show features or structures, in a way not usually seen by other types of microscopy. The authors used soft x-ray microscopy to investigate structural development of Plasmodium falciparum malaria parasites in normal and genetically abnormal erythrocytes, and in infected erythrocytes treated with compounds that have anti-malarial effects. X-ray microscopy showed newly elaborated structures in the cytosol of unstained, intact erythrocytes, redistribution of mass (carbon) in infected erythrocytes, and aberrant parasite morphology. Better understanding of the process of intracellular parasite maturation and the interactions between the parasite and its host erythrocyte can help define new approaches to the control of this deadly disease.

  20. Uncovering the transmission dynamics of Plasmodium vivax using population genetics.

    PubMed

    Barry, Alyssa E; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-05-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes.

  1. Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    PubMed Central

    Barry, Alyssa E.; Waltmann, Andreea; Koepfli, Cristian; Barnadas, Celine; Mueller, Ivo

    2015-01-01

    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes. PMID:25891915

  2. Imported malaria cases in Okinawa Prefecture, Japan.

    PubMed

    Higa, Futoshi; Tateyama, Masao; Tasato, Daisuke; Karimata, Yosuke; Nakamura, Hideta; Miyagi, Kazuya; Haranaga, Shusaku; Hirata, Tetsuo; Hokama, Akira; Cash, Haley L; Toma, Hiromu; Fujita, Jiro

    2013-01-01

    With the increase in global transportation, imported malaria has become a significant public health concern in Japan. In the present study, we retrospectively analyzed all imported malaria cases in Okinawa Prefecture from 1988 to 2012. In that period, 23 patients with imported malaria were admitted to the University of the Ryukyus Hospital. Malaria types observed included Plasmodium falciparum (14 cases), P. vivax (7 cases), combined P. falciparum and P. ovale (1 case), and combined P. vivax and P. malariae (1 case). All cases were resolved by anti-malarial treatment. The clinical data from these patients highlights the importance of collecting patient travel history and ensuring an adequate supply of both diagnostic test and drug treatments in Okinawa.

  3. Advances in nanomedicines for malaria treatment.

    PubMed

    Aditya, N P; Vathsala, P G; Vieira, V; Murthy, R S R; Souto, E B

    2013-12-01

    Malaria is an infectious disease that mainly affects children and pregnant women from tropical countries. The mortality rate of people infected with malaria per year is enormous and became a public health concern. The main factor that has contributed to the success of malaria proliferation is the increased number of drug resistant parasites. To counteract this trend, research has been done in nanotechnology and nanomedicine, for the development of new biocompatible systems capable of incorporating drugs, lowering the resistance progress, contributing for diagnosis, control and treatment of malaria by target delivery. In this review, we discussed the main problems associated with the spread of malaria and the most recent developments in nanomedicine for anti-malarial drug delivery.

  4. Malaria in Highlands of Ecuador since 1900

    PubMed Central

    Hunter, Fiona F.

    2012-01-01

    A recent epidemic of malaria in the highlands of Bolivia and establishment of multiple Anopheles species mosquitoes in the highlands of Ecuador highlights the reemergence of malaria in the Andes Mountains in South America. Because malaria was endemic to many highland valleys at the beginning of the 20th century, this review outlines the 20th century history of malaria in the highlands of Ecuador, and focuses on its incidence (e.g., geographic distribution) and elimination from the northern highland valleys of Pichincha and Imbabura and the role of the Guayaquil to Quito railway in creating highland larval habitat and inadvertently promoting transportation of the vector and parasite. Involvement of control organizations in combating malaria in Ecuador is also outlined in a historical context. PMID:22469234

  5. Advances in nanomedicines for malaria treatment.

    PubMed

    Aditya, N P; Vathsala, P G; Vieira, V; Murthy, R S R; Souto, E B

    2013-12-01

    Malaria is an infectious disease that mainly affects children and pregnant women from tropical countries. The mortality rate of people infected with malaria per year is enormous and became a public health concern. The main factor that has contributed to the success of malaria proliferation is the increased number of drug resistant parasites. To counteract this trend, research has been done in nanotechnology and nanomedicine, for the development of new biocompatible systems capable of incorporating drugs, lowering the resistance progress, contributing for diagnosis, control and treatment of malaria by target delivery. In this review, we discussed the main problems associated with the spread of malaria and the most recent developments in nanomedicine for anti-malarial drug delivery. PMID:24192063

  6. [One case of overseas imported quartan malaria].

    PubMed

    Sui, Miao-miao; Zhao, Shuai; Li, Jin; Xu, Yan

    2015-06-01

    A case of overseas imported quartan malaria was reported in Weihai City. The patient worked in Africa for many years, had no blood transfusion history, and had not been to malaria endemic regions of China. In approximately half a month after returning from Africa, the patient appeared suspected malaria symptoms, such as irregular fever, sweating, and headache. The patient was diagnosed as quartan malaria by a blood test in basic hospital, reviewed with a microscope by Weihai Centre for Disease Control and Prevention, and checked through the microscopic examination of malaria diagnosis and reference laboratory and PCR amplification by Shandong Institute of Parasitic Diseases. The patient was cured after the treatment with chloroquine/ primaquine for 8 days, and did not recur in the 3-month following up. PMID:26510375

  7. Challenges for malaria elimination in Brazil.

    PubMed

    Ferreira, Marcelo U; Castro, Marcia C

    2016-01-01

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas. PMID:27206924

  8. Congenital malaria in Urabá, Colombia

    PubMed Central

    2011-01-01

    Background Congenital malaria has been considered a rare event; however, recent reports have shown frequencies ranging from 3% to 54.2% among newborns of mothers who had suffered malaria during pregnancy. There are only a few references concerning the epidemiological impact of this entity in Latin-America and Colombia. Objective The aim of the study was to measure the prevalence of congenital malaria in an endemic Colombian region and to determine some of its characteristics. Methods A prospective, descriptive study was carried out in the mothers who suffered malaria during pregnancy and their newborns. Neonates were clinically evaluated at birth and screened for Plasmodium spp. infection by thick smear from the umbilical cord and peripheral blood, and followed-up weekly during the first 21 days of postnatal life through clinical examinations and thick smears. Results 116 newborns were included in the study and 80 umbilical cord samples were obtained. Five cases of congenital infection were identified (four caused by P. vivax and one by P. falciparum), two in umbilical cord blood and three in newborn peripheral blood. One case was diagnosed at birth and the others during follow-up. Prevalence of congenital infection was 4.3%. One of the infected newborns was severely ill, while the others were asymptomatic and apparently healthy. The mothers of the newborns with congenital malaria had been diagnosed with malaria in the last trimester of pregnancy or during delivery, and also presented placental infection. Conclusions Congenital malaria may be a frequent event in newborns of mothers who have suffered malaria during pregnancy in Colombia. An association was found between congenital malaria and the diagnosis of malaria in the mother during the last trimester of pregnancy or during delivery, and the presence of placental infection. PMID:21846373

  9. Geostatistical modelling of household malaria in Malawi

    NASA Astrophysics Data System (ADS)

    Chirombo, J.; Lowe, R.; Kazembe, L.

    2012-04-01

    Malaria is one of the most important diseases in the world today, common in tropical and subtropical areas with sub-Saharan Africa being the region most burdened, including Malawi. This region has the right combination of biotic and abiotic components, including socioeconomic, climatic and environmental factors that sustain transmission of the disease. Differences in these conditions across the country consequently lead to spatial variation in risk of the disease. Analysis of nationwide survey data that takes into account this spatial variation is crucial in a resource constrained country like Malawi for targeted allocation of scare resources in the fight against malaria. Previous efforts to map malaria risk in Malawi have been based on limited data collected from small surveys. The Malaria Indicator Survey conducted in 2010 is the most comprehensive malaria survey carried out in Malawi and provides point referenced data for the study. The data has been shown to be spatially correlated. We use Bayesian logistic regression models with spatial correlation to model the relationship between malaria presence in children and covariates such as socioeconomic status of households and meteorological conditions. This spatial model is then used to assess how malaria varies spatially and a malaria risk map for Malawi is produced. By taking intervention measures into account, the developed model is used to assess whether they have an effect on the spatial distribution of the disease and Bayesian kriging is used to predict areas where malaria risk is more likely to increase. It is hoped that this study can help reveal areas that require more attention from the authorities in the continuing fight against malaria, particularly in children under the age of five.

  10. How Well Are Malaria Maps Used to Design and Finance Malaria Control in Africa?

    PubMed Central

    Omumbo, Judy A.; Noor, Abdisalan M.; Fall, Ibrahima S.; Snow, Robert W.

    2013-01-01

    Introduction Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. Materials and Methods An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. Results 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. Conclusion The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be

  11. Investigating the Effect of Contextual Clues on the Processing of Unfamiliar Words in Second Language Listening Comprehension

    ERIC Educational Resources Information Center

    Cai, Wei; Lee, Benny P. H.

    2010-01-01

    This study examines the effect of contextual clues on the use of strategies (inferencing and ignoring) and knowledge sources (semantics, morphology, world knowledge, and others) for processing unfamiliar words in listening comprehension. Three types of words were investigated: words with local co-text clues, global co-text clues and extra-textual…

  12. Malaria and tuberculosis: our concerns.

    PubMed

    Shiva, M

    1997-01-01

    In 1978 the concept of primary health care was adopted by 116 countries at Alma Ata, yet the negative impact of structural readjustment programs in Africa and South America could be felt due to the cuts in expenditures on health, education, and social matters. The result is a resurgence of communicable diseases such as malaria and tuberculosis. Another factor in this resurgence is extreme poverty. In 1994 over 1000 people died in Rajasthan, India, of a malaria epidemic, and during the same time in Delhi over 300 deaths were attributed to hemorrhagic dengue fever. Malariogenic and tuberculous conditions continue to flourish owing to distorted development patterns and commercialization of medical care as public health and community health services are being replaced by profit-oriented curative care, 80% of which is in private hands. This has resulted in spiraling medical care costs and rural indebtedness. Socioeconomic deprivation in developing countries threatens TB control. Factors contributing to the spread of TB were established in 1899 and are still valid in India and other developing countries: TB contamination of air, inadequate food, overcrowded dwelling, and low state of physical health. Even in developed countries TB is on the rise: there were 172 cases in 1991 in England vs. 305 cases in 1993, half of them among immigrants. The increase occurred in the poorest 30% of the population. The World Bank is providing loans for a revised TB and malaria strategy, and the Disability Adjusted Life Year has been used to identify the greatest burden of diseases. On the other hand, the Indian National Health Policy has not been revised since 1983. Priority must be given to those living in extreme poverty to curb the resurgence of once controlled diseases.

  13. Avian malaria in New Zealand.

    PubMed

    Schoener, E R; Banda, M; Howe, L; Castro, I C; Alley, M R

    2014-07-01

    Avian malaria parasites of the genus Plasmodium have the ability to cause morbidity and mortality in naïve hosts, and their impact on the native biodiversity is potentially serious. Over the last decade, avian malaria has aroused increasing interest as an emerging disease in New Zealand with some endemic avian species, such as the endangered mohua (Mohua ochrocephala), thought to be particularly susceptible. To date, avian malaria parasites have been found in 35 different bird species in New Zealand and have been diagnosed as causing death in threatened species such as dotterel (Charadrius obscurus), South Island saddleback (Philesturnus carunculatus carunculatus), mohua, hihi (Notiomystis cincta) and two species of kiwi (Apteryx spp.). Introduced blackbirds (Turdus merula) have been found to be carriers of at least three strains of Plasmodium spp. and because they are very commonly infected, they are likely sources of infection for many of New Zealand's endemic birds. The spread and abundance of introduced and endemic mosquitoes as the result of climate change is also likely to be an important factor in the high prevalence of infection in some regions and at certain times of the year. Although still limited, there is a growing understanding of the ecology and epidemiology of Plasmodium spp. in New Zealand. Molecular biology has played an important part in this process and has markedly improved our understanding of the taxonomy of the genus Plasmodium. This review presents our current state of knowledge, discusses the possible infection and disease outcomes, the implications for host behaviour and reproduction, methods of diagnosis of infection, and the possible vectors for transmission of the disease in New Zealand. PMID:24313228

  14. Congenital Malaria due to Plasmodium Vivax Infection in a Neonate.

    PubMed

    Bhatia, Ravi; Rajwaniya, Dinesh; Agrawal, Priti

    2016-01-01

    Although malaria is endemic in India, congenital malaria is not very common. Congenital malaria is a very rare condition in both endemic and nonendemic areas. We report a case of congenital malaria in a six-day-old neonate with fever and splenomegaly. The diagnosis was picked up accidentally on a peripheral smear examination. Congenital malaria should be kept as differential diagnosis of neonatal sepsis. Timely detection of this condition could lead to early diagnosis and treatment, thereby preventing neonatal mortality. PMID:27651968

  15. Congenital Malaria due to Plasmodium Vivax Infection in a Neonate

    PubMed Central

    Rajwaniya, Dinesh; Agrawal, Priti

    2016-01-01

    Although malaria is endemic in India, congenital malaria is not very common. Congenital malaria is a very rare condition in both endemic and nonendemic areas. We report a case of congenital malaria in a six-day-old neonate with fever and splenomegaly. The diagnosis was picked up accidentally on a peripheral smear examination. Congenital malaria should be kept as differential diagnosis of neonatal sepsis. Timely detection of this condition could lead to early diagnosis and treatment, thereby preventing neonatal mortality.

  16. [The ABCD of malaria prevention in pediatric travelers].

    PubMed

    Berberian, Griselda; Rosanova, M Teresa; Torroija, Cecilia; Praino, M Laura

    2014-10-01

    The development and spread of drug resistant malaria parasites, population and travelers movements to malaria zones have led to the resurgence of malaria as a global health problem. Estimates suggest that 660,000 deaths occur annually, mainly in infants, children and pregnant woman. Disease knowledge and protection against mosquito bites are the first line of defense against malaria. Malaria chemoprophylaxis adds to these measures, it must be evaluated based on the individual risk.

  17. Congenital Malaria due to Plasmodium Vivax Infection in a Neonate

    PubMed Central

    Rajwaniya, Dinesh; Agrawal, Priti

    2016-01-01

    Although malaria is endemic in India, congenital malaria is not very common. Congenital malaria is a very rare condition in both endemic and nonendemic areas. We report a case of congenital malaria in a six-day-old neonate with fever and splenomegaly. The diagnosis was picked up accidentally on a peripheral smear examination. Congenital malaria should be kept as differential diagnosis of neonatal sepsis. Timely detection of this condition could lead to early diagnosis and treatment, thereby preventing neonatal mortality. PMID:27651968

  18. Sustainable malaria control: transdisciplinary approaches for translational applications

    PubMed Central

    2012-01-01

    With the adoption of the Global Malaria Action Plan, several countries are moving from malaria control towards elimination and eradication. However, the sustainability of some of the approaches taken may be questionable. Here, an overview of malaria control and elimination strategies is provided and the sustainability of each in context of vector- and parasite control is assessed. From this, it can be concluded that transdisciplinary approaches are essential for sustained malaria control and elimination in malaria-endemic communities. PMID:23268712

  19. Microbiota Control of Malaria Transmission.

    PubMed

    Soares, Miguel P; Yilmaz, Bahtiyar

    2016-02-01

    Stable mutualistic interactions between multicellular organisms and microbes are an evolutionarily conserved process with a major impact on host physiology and fitness. Humans establish such interactions with a consortium of microorganisms known as the microbiota. Despite the mutualistic nature of these interactions, some bacterial components of the human microbiota express immunogenic glycans that elicit glycan-specific antibody (Ab) responses. The ensuing circulating Abs are protective against infections by pathogens that express those glycans, as demonstrated for Plasmodium, the causative agent of malaria. Presumably, a similar protective Ab response acts against other vector-borne diseases. PMID:26774793

  20. Control of Plasmodium knowlesi malaria

    NASA Astrophysics Data System (ADS)

    Abdullahi, Mohammed Baba; Hasan, Yahya Abu; Abdullah, Farah Aini

    2015-10-01

    The most significant and efficient measures against Plasmodium knowlesi outbreaks are efficient anti malaria drug, biological control in form of predatory mosquitoes and culling control strategies. In this paper optimal control theory is applied to a system of ordinary differential equation. It describes the disease transmission and Pontryagin's Maximum Principle is applied for analysis of the control. To this end, three control strategies representing biological control, culling and treatment were incorporated into the disease transmission model. The simulation results show that the implementation of the combination strategy during the epidemic is the most cost-effective strategy for disease transmission.

  1. Observational Clues to the Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Maoz, Dan; Mannucci, Filippo; Nelemans, Gijs

    2014-08-01

    Type Ia supernovae (SNe Ia) are important distance indicators, element factories, cosmic-ray accelerators, kinetic-energy sources in galaxy evolution, and end points of stellar binary evolution. It has long been clear that a SN Ia must be the runaway thermonuclear explosion of a degenerate carbon-oxygen stellar core, most likely a white dwarf (WD). However, the specific progenitor systems of SNe Ia, and the processes that lead to their ignition, have not been identified. Two broad classes of progenitor binary systems have long been considered: single-degenerate (SD), in which a WD gains mass from a nondegenerate star; and double-degenerate (DD), involving the merger of two WDs. New theoretical work has enriched these possibilities with some interesting updates and variants. We review the significant recent observational progress in addressing the progenitor problem. We consider clues that have emerged from the observed properties of the various proposed progenitor populations, from studies of SN Ia sites—pre- and postexplosion—from analysis of the explosions themselves and from the measurement of event rates. The recent nearby and well-studied event, SN 2011fe, has been particularly revealing. The observational results are not yet conclusive and sometimes prone to competing theoretical interpretations. Nevertheless, it appears that DD progenitors, long considered the underdog option, could be behind some, if not all, SNe Ia. We point to some directions that may lead to future progress.

  2. The Evolution of Galaxies, I-Observational Clues

    NASA Astrophysics Data System (ADS)

    Vilchez, José M.; Stasińska, Grazyna; Pérez, Enrique

    2001-12-01

    Galaxies have a history. This has become clear from recent sky surveys, which have shown that distant galaxies, formed early in the life of the Universe, differ from the nearby ones. New observational windows at ultraviolet, infrared and millimetric wavelengths (provided by ROSAT, IRAM, IUE, IRAS, ISO) have revealed that galaxies contain a wealth of components: very hot gas, atomic hydrogen, molecules, dust, dark matter.... A significant advance is expected due to new instruments (VLT, FIRST, XMM) which will allow one to explore the most distant Universe. Three Euroconferences have been planned to punctuate this new epoch in galactic research, bringing together specialists in various fields of Astronomy. The first, held in Granada (Spain) in May 2000, addressed the observational clues. The second will take place in October 2001 in St Denis de la Réunion (France) and will review the basic building blocks and small-scale processes in galaxy evolution. The third will take place in July 2002 in Kiel (Germany) and will be devoted to the overall modelling of galaxy evolution. This book contains the proceedings of the first conference. It is recommended to researchers and PhD students in Astrophysics. Link: http://www.wkap.nl/prod/b/1-4020-0001-4

  3. Artistic representations: clues to efficient coding in human vision.

    PubMed

    Graham, Daniel J; Meng, Ming

    2011-07-01

    In what ways is mammalian vision--and in particular, human vision--efficiently adapted to its ecology? We suggest that human visual artwork, which is made for the human eye, holds clues that could help answer this question. Paintings are readily perceived as representations of natural objects and scenes, yet statistical relationships between natural images and paintings are nontrivial. Although spatial frequency content is generally similar for art and natural images, paintings cannot reproduce the dynamic range of luminance in scenes. Through a variety of image manipulations designed to alter image intensity distributions and spatial contrast, we here investigate the notion that artists' representational strategies can efficiently capture salient features of natural images, and in particular, of faces. We report that humans perform near flawless discrimination of faces and nonfaces in both paintings and natural images, even for stimulus presentation durations of 12 ms. In addition, contrast negation and up-down inversion have minimal to no effect on performance for both image types, whereas 1/f noise addition significantly affects discrimination performance for art more than for natural images. Together, these results suggest artists create representations that are highly efficient for transmitting perceptual information to the human brain.

  4. Clues of subjective social status among young adults.

    PubMed

    Nielsen, François; Roos, J Micah; Combs, R M

    2015-07-01

    We investigate determinants of subjective social status (SSS) as measured by respondents placing themselves on a ten-rung ladder from least to most "money", "education" and "respected job", in a large sample of young adults. The most potent clues of SSS are proximate in the life course, reflecting educational attainment and current socioeconomic and job situation, rather than distal characteristics such as family background, although relatively distal High school GPA has a lingering effect. Additional analyses reveal that College selectivity has a substantial impact on SSS, net of other variables in the model; Currently married does not significantly contribute to SSS, but contrary to some expectations Number of children significantly lowers SSS. We find no evidence of greater "status borrowing" by women as associations of SSS with shared household characteristics (Household income, Household assets, Home ownership) do not differ by gender. Our findings for these young adults support the conclusion of earlier research that SSS reflects a "cognitive averaging" of standard dimensions of socioeconomic status. PMID:26004468

  5. New vision based navigation clue for a regular colonoscope's tip

    NASA Astrophysics Data System (ADS)

    Mekaouar, Anouar; Ben Amar, Chokri; Redarce, Tanneguy

    2009-02-01

    Regular colonoscopy has always been regarded as a complicated procedure requiring a tremendous amount of skill to be safely performed. In deed, the practitioner needs to contend with both the tortuousness of the colon and the mastering of a colonoscope. So, he has to take the visual data acquired by the scope's tip into account and rely mostly on his common sense and skill to steer it in a fashion promoting a safe insertion of the device's shaft. In that context, we do propose a new navigation clue for the tip of regular colonoscope in order to assist surgeons over a colonoscopic examination. Firstly, we consider a patch of the inner colon depicted in a regular colonoscopy frame. Then we perform a sketchy 3D reconstruction of the corresponding 2D data. Furthermore, a suggested navigation trajectory ensued on the basis of the obtained relief. The visible and invisible lumen cases are considered. Due to its low cost reckoning, such strategy would allow for the intraoperative configuration changes and thus cut back the non-rigidity effect of the colon. Besides, it would have the trend to provide a safe navigation trajectory through the whole colon, since this approach is aiming at keeping the extremity of the instrument as far as possible from the colon wall during navigation. In order to make effective the considered process, we replaced the original manual control system of a regular colonoscope by a motorized one allowing automatic pan and tilt motions of the device's tip.

  6. Adjunctive therapy for cerebral malaria and other severe forms of Plasmodium falciparum malaria

    PubMed Central

    John, Chandy C; Kutamba, Elizabeth; Mugarura, Keith; Opoka, Robert O

    2010-01-01

    Severe malaria due to Plasmodium falciparum causes more than 800,000 deaths every year. Primary therapy with quinine or artesunate is generally effective in controlling P. falciparum parasitemia, but mortality from cerebral malaria and other forms of severe malaria remains unacceptably high. Long-term cognitive impairment is also common in children with cerebral malaria. Of the numerous adjunctive therapies for cerebral malaria and severe malaria studied over the past five decades, only one (albumin) was associated with a reduction in mortality. In this article, we review past and ongoing studies of adjunctive therapy, and examine the evidence of efficacy for newer therapies, including inhibitors of cytoadherence (e.g., levamisole), immune modulators (e.g., rosiglitazone), agents that increase nitric oxide levels (e.g., arginine) and neuroprotective agents (e.g., erythropoietin). PMID:20818944

  7. DIAGNOSIS OF MALARIA BY MAGNETIC DEPOSITION MICROSCOPY

    PubMed Central

    ZIMMERMAN, PETER A.; THOMSON, JODI M.; FUJIOKA, HISASHI; COLLINS, WILLIAM E.; ZBOROWSKI, MACIEJ

    2013-01-01

    Although malaria contributes to a significant public health burden, malaria diagnosis relies heavily on either non-specific clinical symptoms or blood smear microscopy methods developed in the 1930s. These approaches severely misrepresent the number of infected individuals and the reservoir of parasites in malaria-endemic communities and undermine efforts to control disease. Limitations of conventional microscopy-based diagnosis center on time required to examine slides, time required to attain expertise sufficient to diagnose infection accurately, and attrition from the limited number of existing malaria microscopy experts. Earlier studies described magnetic properties of Plasmodium falciparum but did not refine methods to diagnosis infection by all four human malaria parasite species. Here, following specific technical procedures, we show that it is possible to concentrate all four human malaria parasite species, at least 40-fold, on microscope slides using very inexpensive magnets through an approach termed magnetic deposition microscopy. This approach delivered greater sensitivity than a thick smear preparation while maintaining the clarity of a thin smear to simplify species-specific diagnosis. Because the magnetic force necessary to concentrate parasites on the slide is focused at a precise position relative to the magnet surface, it is possible to examine a specific region of the slide for parasitized cells and avoid the time-consuming process of scanning the entire slide surface. These results provide insight regarding new strategies for performing malaria blood smear microscopy. PMID:16606985

  8. Tropical malaria does not mean hot environments.

    PubMed

    Ikemoto, Takaya

    2008-11-01

    If global warming progresses, many consider that malaria in presently malaria-endemic areas will become more serious, with increasing development rates of the vector mosquito and malaria parasites. However, the correlation coefficients between the monthly malaria cases and the monthly mean of daily maximum temperature were negative, showing that the number of malaria cases in tropical areas of Africa decreases during the season when temperature was higher than normal. Moreover, an analysis of temperature and development rate using a thermodynamic model showed that the estimated intrinsic optimum temperatures for the development of the malaria parasites, Plasmodium falciparum and P. vivax, in the adult mosquito stage and that of the vector mosquito Anopheles gambiae s.s. were all approximately 23-24 degrees C. Here, the intrinsic optimum temperature is defined in the thermodynamic model as the temperature at which it is assumed that there are no or negligible adverse effects for development. Therefore, this study indicates that the development of malaria parasites in their mosquito hosts and the development of their vector mosquitoes are inhibited at temperatures higher than 23-24 degrees C. If global warming progresses further, the present center of malarial endemicity in sub-Saharan Africa will move to an area with an optimum temperature for both the vector and the parasite, migrating to avoid the hot environment.

  9. Malaria-associated rubber plantations in Thailand.

    PubMed

    Bhumiratana, Adisak; Sorosjinda-Nunthawarasilp, Prapa; Kaewwaen, Wuthichai; Maneekan, Pannamas; Pimnon, Suntorn

    2013-01-01

    Rubber forestry is intentionally used as a land management strategy. The propagation of rubber plantations in tropic and subtropic regions appears to influence the economical, sociological and ecological aspects of sustainable development as well as human well-being and health. Thailand and other Southeast Asian countries are the world's largest producers of natural rubber products; interestingly, agricultural workers on rubber plantations are at risk for malaria and other vector-borne diseases. The idea of malaria-associated rubber plantations (MRPs) encompasses the complex epidemiological settings that result from interactions among human movements and activities, land cover/land use changes, agri-environmental and climatic conditions and vector population dynamics. This paper discusses apparent issues pertaining to the connections between rubber plantations and the populations at high risk for malaria. The following questions are addressed: (i) What are the current and future consequences of rubber plantations in Thailand and Southeast Asia relative to malaria epidemics or outbreaks of other vector-borne diseases? (ii) To what extent is malaria transmission in Thailand related to the forest versus rubber plantations? and (iii) What are the vulnerabilities of rubber agricultural workers to malaria, and how contagious is malaria in these areas?

  10. Spatial targeting of interventions against malaria.

    PubMed Central

    Carter, R.; Mendis, K. N.; Roberts, D.

    2000-01-01

    Malaria transmission is strongly associated with location. This association has two main features. First, the disease is focused around specific mosquito breeding sites and can normally be transmitted only within certain distances from them: in Africa these are typically between a few hundred metres and a kilometre and rarely exceed 2-3 kilometres. Second, there is a marked clustering of persons with malaria parasites and clinical symptoms at particular sites, usually households. In localities of low endemicity the level of malaria risk or case incidence may vary widely between households because the specific characteristics of houses and their locations affect contact between humans and vectors. Where endemicity is high, differences in human/vector contact rates between different households may have less effect on malaria case incidences. This is because superinfection and exposure-acquired immunity blur the proportional relationship between inoculation rates and case incidences. Accurate information on the distribution of malaria on the ground permits interventions to be targeted towards the foci of transmission and the locations and households of high malaria risk within them. Such targeting greatly increases the effectiveness of control measures. On the other hand, the inadvertent exclusion of these locations causes potentially effective control measures to fail. The computerized mapping and management of location data in geographical information systems should greatly assist the targeting of interventions against malaria at the focal and household levels, leading to improved effectiveness and cost-effectiveness of control. PMID:11196487

  11. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  12. A Research Agenda for Malaria Eradication: Drugs

    PubMed Central

    2011-01-01

    Antimalarial drugs will be essential tools at all stages of malaria elimination along the path towards eradication, including the early control or “attack” phase to drive down transmission and the later stages of maintaining interruption of transmission, preventing reintroduction of malaria, and eliminating the last residual foci of infection. Drugs will continue to be used to treat acute malaria illness and prevent complications in vulnerable groups, but better drugs are needed for elimination-specific indications such as mass treatment, curing asymptomatic infections, curing relapsing liver stages, and preventing transmission. The ideal malaria eradication drug is a coformulated drug combination suitable for mass administration that can be administered in a single encounter at infrequent intervals and that results in radical cure of all life cycle stages of all five malaria species infecting humans. Short of this optimal goal, highly desirable drugs might have limitations such as targeting only one or two parasite species, the priorities being Plasmodium falciparum and Plasmodium vivax. The malaria research agenda for eradication should include research aimed at developing such drugs and research to develop situation-specific strategies for using both current and future drugs to interrupt malaria transmission. PMID:21311580

  13. Radar Monitoring of Wetlands for Malaria Control

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    Malaria is perhaps the most serious human disease problem. It inflicts millions worldwide and is on the rise in many countries where it was once under control. This rise is in part due to the high costs, both economic and environmental, of current control programs. The search for more cost-effective means to combat malaria has focussed attention on new technologies, one of which is remote sensing. Remote sensing has become an important tool in the effort to control a variety of diseases worldwide and malaria is perhaps one of the most promising. This study is part of the malaria control effort in the Central American country of Belize, which has experienced a resurgence of malaria in the last two decades. The proposed project is a feasibility study of the use of Radarsat (and other similar radar systems) to monitor seasonal changes in the breeding sites of the anopheline mosquito, which is responsible for malaria transmission. We propose that spatial and temporal changes in anopheline mosquito production can be predicted by sensing where and when their breeding sites are flooded. Timely knowledge of anopheline mosquito production is a key factor in control efforts. Such knowledge can be used by local control agencies to direct their limited resources to selected areas and time periods when the human population is at greatest risk. Radar is a key sensor in this application because frequent cloud cover during the peak periods of malaria transmission precludes the use of optical sensors.

  14. Protection against malaria morbidity: Near-fixation of the α-thalassemia gene in a Nepalese population

    PubMed Central

    Modiano, G.; Morpurgo, G.; Terrenato, L.; Novelletto, A.; Di Rienzo, A.; Colombo, B.; Purpura, M.; Mariani, M.; Santachiara-Benerecetti, S.; Brega, A.; Dixit, K. A.; Shrestha, S. L.; Lania, A.; Wanachiwanawin, W.; Luzzatto, L.

    1991-01-01

    We have previously reported that the Tharu people of the Terai region in southern Nepal have an incidence of malaria about sevenfold lower than that of synpatric non-Tharu people. In order to find out whether this marked resistance against malaria has a genetic basis, we have now determined in these populations the prevalence of candidate protective genes and have performed in-vitro cultures of Plasmodium falciparum in both Tharu and non-Tharu red cells. We have found significant but relatively low and variable frequencies of β-thal, βs, G6PD (−), and Duffy (a-b-) in different parts of the Terai region. The average in-vitro rate of invasion and of parasite multiplication did not differ significantly in red cells from Tharus versus those from non-Tharu controls. By contrast, the frequency of α-thalassemia is uniformly high in Tharus, with the majority of them having the homozygous α-/α-genotype and an overall α-thal gene (α-) frequency of .8. We suggest that holoendemic malaria has caused preferential survival of subjects with α-thal and that this genetic factor has enabled the Tharus as a population to survive for centuries in a malaria-holoendemic area. From our data we estimate that the α-thal homozygous state decreases morbidity from malaria by about 10-fold. This is an example of selection evolution toward fixation of an otherwise abnormal gene. ImagesFigure 1 PMID:1990845

  15. Current status of malaria in Malaysia.

    PubMed

    Lim, E S

    1992-09-01

    The Malaria Eradication Program was started in 1967 in Peninsular Malaysia. Since then and up to 1980, there was a reduction in the number of reported malaria cases from 160,385 in 1966 to 9,110 cases for Peninsular Malaysia. Although the concept of eradication has changed to one of control in the 1980, the anti-malaria activities have remained the same. However, additional supplementary activities such as the use of impregnated bednets, and the Primary Health Care approach, have been introduced in malarious and malaria-prone areas. Focal spraying activity is instituted in localities with outbreaks in both malaria-prone and non-malarious areas. Passive case detection has been maintained in all operational areas. In 1990, 50,500 cases of malaria were reported of which 69.7% (35,190) were from Sabah, 27.8% (14,066) from Peninsular Malaysia and 2.5% (1,244) from Sarawak. Until June 1991 a total of 18,306 cases were reported for the country. Plasmodium falciparum continues to be the predominant species, contributing to 69.6% of the parasites involved. The case fatality rate for 1990 was 0.09%. There were 43 deaths all of which were attributed to cerebral malaria. The problems faced in the prevention and control of malaria include problems associated with the opening of land for agriculture, mobility of the aborigines of Peninsular Malaysia (Orang Asli) and inaccessibility of malaria problem areas. There is need to ensure prompt investigation and complete treatment of cases especially in malarious areas. The promotion of community participation in control activities should be intensified. Primary Health Care should be continued and intensified in the malarious areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. [Pulmonary complications of malaria: An update].

    PubMed

    Cabezón Estévanez, Itxasne; Górgolas Hernández-Mora, Miguel

    2016-04-15

    Malaria is the most important parasitic disease worldwide, being a public health challenge in more than 90 countries. The incidence of pulmonary manifestations has increased in recent years. Acute respiratory distress syndrome is the most severe form within the pulmonary complications of malaria, with high mortality despite proper management. This syndrome manifests with sudden dyspnoea, cough and refractory hypoxaemia. Patients should be admitted to intensive care units and treated with parenteral antimalarial drug treatment and ventilatory and haemodynamic support without delay. Therefore, dyspnoea in patients with malaria should alert clinicians, as the development of respiratory distress is a poor prognostic factor.

  17. Transdermal Diagnosis of Malaria Using Vapor Nanobubbles

    PubMed Central

    Lukianova-Hleb, Ekaterina; Bezek, Sarah; Szigeti, Reka; Khodarev, Alexander; Kelley, Thomas; Hurrell, Andrew; Berba, Michail; Kumar, Nirbhay; D’Alessandro, Umberto

    2015-01-01

    A fast, precise, noninvasive, high-throughput, and simple approach for detecting malaria in humans and mosquitoes is not possible with current techniques that depend on blood sampling, reagents, facilities, tedious procedures, and trained personnel. We designed a device for rapid (20-second) noninvasive diagnosis of Plasmodium falciparum infection in a malaria patient without drawing blood or using any reagent. This method uses transdermal optical excitation and acoustic detection of vapor nanobubbles around intraparasite hemozoin. The same device also identified individual malaria parasite–infected Anopheles mosquitoes in a few seconds and can be realized as a low-cost universal tool for clinical and field diagnoses. PMID:26079141

  18. Automated haematology analysis to diagnose malaria

    PubMed Central

    2010-01-01

    For more than a decade, flow cytometry-based automated haematology analysers have been studied for malaria diagnosis. Although current haematology analysers are not specifically designed to detect malaria-related abnormalities, most studies have found sensitivities that comply with WHO malaria-diagnostic guidelines, i.e. ≥ 95% in samples with > 100 parasites/μl. Establishing a correct and early malaria diagnosis is a prerequisite for an adequate treatment and to minimizing adverse outcomes. Expert light microscopy remains the 'gold standard' for malaria diagnosis in most clinical settings. However, it requires an explicit request from clinicians and has variable accuracy. Malaria diagnosis with flow cytometry-based haematology analysers could become an important adjuvant diagnostic tool in the routine laboratory work-up of febrile patients in or returning from malaria-endemic regions. Haematology analysers so far studied for malaria diagnosis are the Cell-Dyn®, Coulter® GEN·S and LH 750, and the Sysmex XE-2100® analysers. For Cell-Dyn analysers, abnormal depolarization events mainly in the lobularity/granularity and other scatter-plots, and various reticulocyte abnormalities have shown overall sensitivities and specificities of 49% to 97% and 61% to 100%, respectively. For the Coulter analysers, a 'malaria factor' using the monocyte and lymphocyte size standard deviations obtained by impedance detection has shown overall sensitivities and specificities of 82% to 98% and 72% to 94%, respectively. For the XE-2100, abnormal patterns in the DIFF, WBC/BASO, and RET-EXT scatter-plots, and pseudoeosinophilia and other abnormal haematological variables have been described, and multivariate diagnostic models have been designed with overall sensitivities and specificities of 86% to 97% and 81% to 98%, respectively. The accuracy for malaria diagnosis may vary according to species, parasite load, immunity and clinical context where the method is applied. Future

  19. Malaria diagnosis: Memorandum from a WHO Meeting*

    PubMed Central

    1988-01-01

    This Memorandum reviews (1) the diagnostic requirements for malaria control within the primary health care system; (2) the current methods of malaria diagnosis used both in the clinic and in epidemiological studies; (3) the status of research on alternative methods to microscopy for the diagnosis of malaria; and (4) the application of new diagnostic methods in individual cases, in the community, and in the mosquito and their possible integration into existing epidemiological studies and control programmes. It also identifies priorities for the development and validation of new and reliable diagnostic techniques, and makes recommendations for the improvement, standardization, and utilization of current methodology. PMID:3061674

  20. Genetics issues in preconception health care.

    PubMed

    Brundage, Stephanie C; Strossner, Mary

    2002-10-01

    Genetics is an important area of focus for the preconception visit (Table 4). Folic acid should be recommended for all women. The genetic and pregnancy history should be evaluated for clues to a genetic disorder. Preconception screening and counseling are available for many diseases that are indicated in the family history. Screening may be offered for sickle cell anemia, thalassemia, Tay Sachs disease, and cystic fibrosis in the appropriate population groups. Older couples should be counseled about their increased risks for having complications during pregnancy and for having children with genetic disorders.

  1. Study of Teen Brains Offers Clues to Timing of Mental Illness

    MedlinePlus

    ... of Teen Brains Offers Clues to Timing of Mental Illness Regions that undergo greatest change also where schizophrenia, ... may help explain why the first signs of mental illness tend to appear during this time, researchers report. ...

  2. TV Crime Reporter Missed Clues | NIH MedlinePlus the Magazine

    MedlinePlus

    ... JavaScript on. Feature: Women and Heart Disease TV Crime Reporter Missed Clues Past Issues / Spring 2016 Table ... heart attack at the age of 36. A crime reporter for WJLA-TV in Washington, D.C., ...

  3. Knowledge of Malaria and Its Association with Malaria-Related Behaviors—Results from the Malaria Indicator Survey, Ethiopia, 2007

    PubMed Central

    Hwang, Jimee; Graves, Patricia M.; Jima, Daddi; Reithinger, Richard; Kachur, S. Patrick

    2010-01-01

    Background In 2005, the Ministry of Health in Ethiopia launched a major effort to distribute over 20 million long-lasting insecticidal nets, provide universal access to artemisinin-based combination therapy (ACTs), and train 30,000 village-based health extension workers. Methods and Findings A cross-sectional, nationally representative Malaria Indicator Survey was conducted during the malaria transmission season in 2007. Multivariate logistic regression analyses were performed to assess the effect of women's malaria knowledge on household ITN ownership and women's ITN use. In addition, we investigated the effect of mothers' malaria knowledge on their children under 5 years of age's (U5) ITN use and their access to fever treatment on behalf of their child U5. Malaria knowledge was based on a composite index about the causes, symptoms, danger signs and prevention of malaria. Approximately 67% of women (n = 5,949) and mothers of children U5 (n = 3,447) reported some knowledge of malaria. Women's knowledge of malaria was significantly associated with household ITN ownership (adjusted Odds Ratio [aOR] = 2.1; 95% confidence interval [CI] 1.6–2.7) and with increased ITN use for themselves (aOR = 1.8; 95% CI 1.3–2.5). Knowledge of malaria amongst mothers of children U5 was associated with ITN use for their children U5 (aOR = 1.6; 95% CI 1.1–2.4), but not significantly associated with their children U5 seeking care for a fever. School attendance was a significant factor in women's ITN use (aOR = 2.0; 95% CI 1.1–3.9), their children U5′s ITN use (aOR = 4.4; 95% CI 1.6–12.1), and their children U5 having sought treatment for a fever (aOR = 6.5; 95% CI 1.9–22.9). Conclusions Along with mass free distribution of ITNs and universal access to ACTs, delivery of targeted malaria educational information to women could improve ITN ownership and use. Efforts to control malaria could be influenced by progress towards broader goals of

  4. The history of 20th century malaria control in Peru

    PubMed Central

    2013-01-01

    Malaria has been part of Peruvian life since at least the 1500s. While Peru gave the world quinine, one of the first treatments for malaria, its history is pockmarked with endemic malaria and occasional epidemics. In this review, major increases in Peruvian malaria incidence over the past hundred years are described, as well as the human factors that have facilitated these events, and concerted private and governmental efforts to control malaria. Political support for malaria control has varied and unexpected events like vector and parasite resistance have adversely impacted morbidity and mortality. Though the ready availability of novel insecticides like DDT and efficacious medications reduced malaria to very low levels for a decade after the post eradication era, malaria reemerged as an important modern day challenge to Peruvian public health. Its reemergence sparked collaboration between domestic and international partners towards the elimination of malaria in Peru. PMID:24001096

  5. The history of 20th century malaria control in Peru.

    PubMed

    Griffing, Sean M; Gamboa, Dionicia; Udhayakumar, Venkatachalam

    2013-08-30

    Malaria has been part of Peruvian life since at least the 1500s. While Peru gave the world quinine, one of the first treatments for malaria, its history is pockmarked with endemic malaria and occasional epidemics. In this review, major increases in Peruvian malaria incidence over the past hundred years are described, as well as the human factors that have facilitated these events, and concerted private and governmental efforts to control malaria. Political support for malaria control has varied and unexpected events like vector and parasite resistance have adversely impacted morbidity and mortality. Though the ready availability of novel insecticides like DDT and efficacious medications reduced malaria to very low levels for a decade after the post eradication era, malaria reemerged as an important modern day challenge to Peruvian public health. Its reemergence sparked collaboration between domestic and international partners towards the elimination of malaria in Peru.

  6. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.

    PubMed

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V; Rizk, Shahir S; Njimoh, Dieudonne L; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M; Wiest, Olaf; Haldar, Kasturi

    2015-04-30

    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.

  7. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria

    PubMed Central

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V.; Rizk, Shahir; Njimoh, Dieudonne L.; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M.; Wiest, Olaf; Haldar, Kasturi

    2015-01-01

    Artemisinins are the corner stone of anti-malarial drugs1. Emergence and spread of resistance to them2–4 raises risk of wiping out recent gains achieved in reducing world-wide malaria burden and threatens future malaria control and elimination on a global level. Genome wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance5–10. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase as well as its lipid product phosphatidylinositol 3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signaling, where transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination. PMID:25874676

  8. Search for clues to Mesozoic graben on Long Island

    USGS Publications Warehouse

    Rogers, W.B.; Aparisi, M.; Sirkin, L.

    1989-01-01

    The position of Long Island between the Hartford Basin of Connecticut and graben structures reported from seismic reflection studies offshore to the south of the island suggests the possibility that other grabens associated with the early Mesozoic rifting might be buried beneath central Long Island. The hypothesis that post-rift tectonic activity would be related to the rift grabens and that such activity would be expressed in the post-rift sedimentary deposits led to a study of the Cretaceous and Pleistocene section to seek clues for buried grabens on Long Island. The Pleistocene glacial deposits in central and eastern Long Island have been mapped and a pollen zonation in the Upper Cretaceous section in the central part established. This work, combined with literature research, suggests the following: 1. (1) In central Long Island, the spacing of wells which reach basement enables a NE- striking zone free of basement samples to be defined where a buried graben could occur. This zone is referred to as the "permissible zone" because within it the data permit the existence of a hidden graben. 2. (2) The abrupt changes in the thickness of some pollen zones in the Upper Cretaceous deposits of central Long Island may be related to Cretaceous faulting. 3. (3) Buried preglacial valleys, the confluence of glacial lobes and major glacial outwash channels seem concentrated in west central and central Long Island. The loci of these drainage features may reflect structural control by a basement depression. 4. (4) The "permissible zone" is aligned with the zone of structures in an offshore zone south of central Long Island and with the Hartford Basin in Connecticut. Geophysical anomalies also fit into this pattern. 5. (5) A definitive answer to the question of a buried graben on Long Island will require a seismic line across the "permissible zone", or further drilling. ?? 1989.

  9. Severe malaria in immigrant population: a retrospective review.

    PubMed

    Mathai, Suja; Bishburg, Eliahu; Slim, Jihad; Nalmas, Sandhya

    2010-12-01

    Imported malaria continues to be an increasing medical challenge in the US. A significant proportion of imported malaria occurs in foreign born immigrants visiting their native countries and do not take prophylaxis for malaria mostly due to a misconception of being immune to malaria. The purpose of this study is to review epidemiology, clinical presentation, rate of prophylaxis and delineate the rate of severe malaria in a community hospital with largely immigrant population. Retrospective chart review of forty patients diagnosed with malaria from 1997 to 2007 at a 673 bed teaching hospital in Newark, NJ, USA. Of the 40 cases included, 90% were born in a malaria endemic area (MEA).The Majority (85%) acquired malaria while visiting the African subcontinent. Overall prophylaxis rate was only 12%. Plasmodium falciparum was the most common malaria species diagnosed. Severe malaria was diagnosed in 25% of the cases, all in foreign born subjects visiting native countries where malaria is endemic. Malaria continues to be a challenge in a population of immigrants visiting their country of origin. Low use of prophylaxis is of major concern in immigrant population especially in light of high rates of severe malaria. Primary care physicians play an important role in pre-travel advice to prevent the complications of malaria.

  10. Lymphocyte Perturbations in Malawian Children with Severe and Uncomplicated Malaria

    PubMed Central

    Mandala, Wilson L.; Msefula, Chisomo L.; Gondwe, Esther N.; Gilchrist, James J.; Graham, Stephen M.; Pensulo, Paul; Mwimaniwa, Grace; Banda, Meraby; Taylor, Terrie E.; Molyneux, Elizabeth E.; Drayson, Mark T.; Ward, Steven A.; Molyneux, Malcolm E.

    2015-01-01

    Lymphocytes are implicated in immunity and pathogenesis of severe malaria. Since lymphocyte subsets vary with age, assessment of their contribution to different etiologies can be difficult. We immunophenotyped peripheral blood from Malawian children presenting with cerebral malaria, severe malarial anemia, and uncomplicated malaria (n = 113) and healthy aparasitemic children (n = 42) in Blantyre, Malawi, and investigated lymphocyte subset counts, activation, and memory status. Children with cerebral malaria were older than those with severe malarial anemia. We found panlymphopenia in children presenting with cerebral malaria (median lymphocyte count, 2,100/μl) and uncomplicated malaria (3,700/μl), which was corrected in convalescence and was absent in severe malarial anemia (5,950/μl). Median percentages of activated CD69+ NK (73%) and γδ T (60%) cells were higher in cerebral malaria than in other malaria types. Median ratios of memory to naive CD4+ lymphocytes were higher in cerebral malaria than in uncomplicated malaria and low in severe malarial anemia. The polarized lymphocyte subset profiles of different forms of severe malaria are independent of age. In conclusion, among Malawian children cerebral malaria is characterized by lymphocyte activation and increased memory cells, consistent with immune priming. In contrast, there are reduced memory cells and less activation in severe malaria anemia. Further studies are required to understand whether these immunological profiles indicate predisposition of some children to one or another form of severe malaria. PMID:26581890

  11. Lymphocyte Perturbations in Malawian Children with Severe and Uncomplicated Malaria.

    PubMed

    Mandala, Wilson L; Msefula, Chisomo L; Gondwe, Esther N; Gilchrist, James J; Graham, Stephen M; Pensulo, Paul; Mwimaniwa, Grace; Banda, Meraby; Taylor, Terrie E; Molyneux, Elizabeth E; Drayson, Mark T; Ward, Steven A; Molyneux, Malcolm E; MacLennan, Calman A

    2015-11-18

    Lymphocytes are implicated in immunity and pathogenesis of severe malaria. Since lymphocyte subsets vary with age, assessment of their contribution to different etiologies can be difficult. We immunophenotyped peripheral blood from Malawian children presenting with cerebral malaria, severe malarial anemia, and uncomplicated malaria (n = 113) and healthy aparasitemic children (n = 42) in Blantyre, Malawi, and investigated lymphocyte subset counts, activation, and memory status. Children with cerebral malaria were older than those with severe malarial anemia. We found panlymphopenia in children presenting with cerebral malaria (median lymphocyte count, 2,100/μl) and uncomplicated malaria (3,700/μl), which was corrected in convalescence and was absent in severe malarial anemia (5,950/μl). Median percentages of activated CD69(+) NK (73%) and γδ T (60%) cells were higher in cerebral malaria than in other malaria types. Median ratios of memory to naive CD4(+) lymphocytes were higher in cerebral malaria than in uncomplicated malaria and low in severe malarial anemia. The polarized lymphocyte subset profiles of different forms of severe malaria are independent of age. In conclusion, among Malawian children cerebral malaria is characterized by lymphocyte activation and increased memory cells, consistent with immune priming. In contrast, there are reduced memory cells and less activation in severe malaria anemia. Further studies are required to understand whether these immunological profiles indicate predisposition of some children to one or another form of severe malaria.

  12. Malaria: Immunity and Prospects for Vaccination

    PubMed Central

    Hommel, Marcel

    1981-01-01

    Malaria infections elicit a complex chain of cellular events which can, in some instances, lead to a state of immunity. Although there is strong evidence that a collaboration between specific antibodies and activated macrophages plays the central effector role in malaria immunity, alternative interpretations are possible. It is, for example, not known which malarial antigens are essential for triggering the critical effector functions and how these antigens are presented to the immune system. Under these circumstances, it is not surprising that the search for a vaccine against malaria has used rather empirical methods. Three invasive stages of the parasite (merozoites, sporozoites and gametes) have so far shown a potential efficiency in inducing protection in experimental models, but there is much to be done before vaccination can be an effective tool in malaria control. PMID:7043898

  13. Do hypnozoites cause relapse in malaria?

    PubMed

    Markus, Miles B

    2015-06-01

    The concept that hypnozoites give rise to relapses in Plasmodium vivax and Plasmodium ovale malaria has become dogma. However, it is evident from particular contemporary research findings that hypnozoites are not necessarily the origin of all relapse-like recurrences of malaria caused by these parasites. This is the core opinion presented, and I discuss it fully. The hypnozoite theory of relapse needs to be re-evaluated in view of the recent, increased focus on P. vivax and liver stages of Plasmodium. Hypnozoites have also assumed a new significance because they might, by facilitating ongoing transmission, be a threat to the current (post-2007) goal of eliminating malaria globally. I have suggested some new research directions for finding putative nonhypnozoite sources of recurrent malaria.

  14. Malaria and the Millennium Development Goals.

    PubMed

    Owens, Stephen

    2015-02-01

    Malaria, as a key disease of poverty, was singled out for special attention in the Millennium Project of 2000. Recent data suggest that malaria incidence and mortality are now declining all over the world. While these figures are cause for celebration, they must be interpreted carefully and with caution, particularly in relation to Africa. There are daunting challenges ahead for those working to achieve malaria eradication, not least of which is the poor quality of the data on which the work is based. In the absence of an affordable and fully effective vaccine, international funding for malaria control needs to be escalated still further. The money is essential to pay for universal access to a set of simple and proven interventions which would save the lives of millions of children over the next 15 years. PMID:25613970

  15. Whole organism blood stage vaccines against malaria.

    PubMed

    Stanisic, Danielle I; Good, Michael F

    2015-12-22

    Despite a century of research focused on the development and implementation of effective control strategies, infection with the malaria parasite continues to result in significant morbidity and mortality worldwide. An effective malaria vaccine is considered by many to be the definitive solution. Yet, after decades of research, we are still without a vaccine that is capable of inducing robust, long lasting protection in naturally exposed individuals. Extensive sub-unit vaccine development focused on the blood stage of the malaria parasite has thus far yielded disappointing results. There is now a renewed focus on whole parasite vaccine strategies, particularly as they may overcome some of the inherent weaknesses deemed to be associated with the sub-unit approach. This review discusses the whole parasite vaccine strategy focusing on the blood stage of the malaria parasite, with an emphasis on recent advances and challenges in the development of killed and live attenuated vaccines.

  16. Spontaneous rupture of spleen in falciparum malaria.

    PubMed

    Vidyashankar, C; Basu, Arup; Kulkarni, A R; Choudhury, R K

    2003-01-01

    Spontaneous rupture of spleen is an extremely rare complication of falciparum malaria. We report a 3 1/2-year-old girl with splenic rupture who was managed successfully with splenectomy and antimalarials.

  17. Frequently Asked Questions (FAQs) about Malaria

    MedlinePlus

    ... have remained free of symptoms of malaria. Blood banks follow strict guidelines for accepting or deferring donors ... the United Nations' Children's Fund (UNICEF), the World Bank, and the U.S. Agency for International Development) on ...

  18. Targeting Human Transmission Biology for Malaria Elimination

    PubMed Central

    Buckee, Caroline; Marti, Matthias

    2015-01-01

    Malaria remains one of the leading causes of death worldwide, despite decades of public health efforts. The recent commitment by many endemic countries to eliminate malaria marks a shift away from programs aimed at controlling disease burden towards one that emphasizes reducing transmission of the most virulent human malaria parasite, Plasmodium falciparum. Gametocytes, the only developmental stage of malaria parasites able to infect mosquitoes, have remained understudied, as they occur in low numbers, do not cause disease, and are difficult to detect in vivo by conventional methods. Here, we review the transmission biology of P. falciparum gametocytes, featuring important recent discoveries of genes affecting parasite commitment to gametocyte formation, microvesicles enabling parasites to communicate with each other, and the anatomical site where immature gametocytes develop. We propose potential parasite targets for future intervention and highlight remaining knowledge gaps. PMID:26086192

  19. Malaria vaccines: looking back and lessons learnt

    PubMed Central

    Lorenz, Veronique; Karanis, Panagiotis

    2011-01-01

    The current status of malaria vaccine approaches has the background of a long and arduous path of malaria disease control and vaccine development. Here, we critically review with regard to unilateral interventional approaches and highlight the impact of socioeconomic elements of malaria endemicity. The necessity of re-energizing basic research of malaria life-cycle and Plasmodium developmental biology to provide the basis for promising and cost-effective vaccine approaches and to reach eradication goals is more urgent than previously believed. We closely analyse the flaws of various vaccine approaches, outline future directions and challenges that still face us and conclude that the focus of the field must be shifted to the basic research efforts including findings on the skin stage of infection. We also reflect on economic factors of vaccine development and the impact of public perception when it comes to vaccine uptake. PMID:23569729

  20. Malaria in Birmingham 1968-73.

    PubMed

    Ansdell, V E; Boosey, C M; Geddes, A M; Morgan, H V

    1974-04-27

    During the years 1968 to 1973 70 patients suffering from malaria were admitted to one hospital in England. Twenty had malignant tertian malaria while the remainder had infections caused by Plasmodium vivax, P. ovale and P. malariae. Malaria should be suspected in every febrile patient who has visited a tropical country, and the diagnosis can be confirmed only by examining blood films. Disseminated intravascular coagulation may complicate the disease, and should be considered in every case.British workers spending short periods in malarious areas and Asian immigrants returning home for a holiday are often inadequately instructed about malarial prophylaxis, particularly the need to continue this for at least a month after they return home. Companies and travel agencies should be obliged to provide such instructions.

  1. The biological control of the malaria vector.

    PubMed

    Kamareddine, Layla

    2012-09-01

    The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes. PMID:23105979

  2. Malaria control: achievements, problems and strategies.

    PubMed

    Nájera, J A

    2001-06-01

    Even if history has not always been the Magistra vitae, Cicero expected it to be, it should provide, as Baas said, a mirror in which to observe and compare the past and present in order to draw therefrom well-grounded conclusions for the future. Based on this belief, this paper aims to provide an overview of the foundations and development of malaria control policies during the XX century. It presents an analysis of the conflicting tendencies which shaped the development of these policies and which appear to have oscillated between calls for frontal attack in an all-out campaign and calls for sustainable gains, even if slow. It discusses the various approaches to the control of malaria, their achievements and their limitations, not only to serve as a background to understand better the foundations of current policies, but also to prevent that simplistic generalisations may again lead to exaggerated expectations and disillusion. The first part of the paper is devoted to the development of malaria control during the first half of the century, characterised by the ups and downs in the reliance on mosquito control as the control measure applicable everywhere. The proliferation of "man-made-malaria", which accompanied the push for economic development in most of the endemic countries, spurred the need for control interventions and, while great successes were obtained in many specific projects, the general campaigns proposed by the enthusiasts of vector control faced increasing difficulties in their practical implementation in the field. Important events, which may be considered representative of this period are, on the campaign approach, the success of Gorgas in the Panama Canal, but also the failure of the Mian Mir project in India; while on the developmental approach, the Italian and Dutch schools of malariology, the Tennessee Valley and the development of malaria sanitation, included the so called species sanitation. The projection of these developments to a global

  3. Reducing empiricism in malaria vaccine design.

    PubMed

    Moorthy, Vasee S; Kieny, Marie Paule

    2010-03-01

    Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time.

  4. Cerebral malaria: gamma-interferon redux

    PubMed Central

    Hunt, Nicholas H.; Ball, Helen J.; Hansen, Anna M.; Khaw, Loke T.; Guo, Jintao; Bakmiwewa, Supun; Mitchell, Andrew J.; Combes, Valéry; Grau, Georges E. R.

    2014-01-01

    There are two theories that seek to explain the pathogenesis of cerebral malaria, the mechanical obstruction hypothesis and the immunopathology hypothesis. Evidence consistent with both ideas has accumulated from studies of the human disease and experimental models. Thus, some combination of these concepts seems necessary to explain the very complex pattern of changes seen in cerebral malaria. The interactions between malaria parasites, erythrocytes, the cerebral microvascular endothelium, brain parenchymal cells, platelets and microparticles need to be considered. One factor that seems able to knit together much of this complexity is the cytokine interferon-gamma (IFN-γ). In this review we consider findings from the clinical disease, in vitro models and the murine counterpart of human cerebral malaria in order to evaluate the roles played by IFN-γ in the pathogenesis of this often fatal and debilitating condition. PMID:25177551

  5. Malaria in India: The Center for the Study of Complex Malaria in India

    PubMed Central

    Das, Aparup; Anvikar, Anupkumar R.; Cator, Lauren J.; Dhiman, Ramesh C.; Eapen, Alex; Mishra, Neelima; Nagpal, Bhupinder N.; Nanda, Nutan; Raghavendra, Kamaraju; Read, Andrew F.; Sharma, Surya K.; Singh, Om P.; Singh, Vineeta; Sinnis, Photini; Srivastava, Harish C.; Sullivan, Steven A.; Sutton, Patrick L.; Thomas, Matthew B.; Carlton, Jane M.; Valecha, Neena

    2012-01-01

    Malaria is a major public health problem in India and one which contributes significantly to the overall malaria burden in Southeast Asia. The National Vector Borne Disease Control Program of India reported ~1.6 million cases and ~1100 malaria deaths in 2009. Some experts argue that this is a serious underestimation and that the actual number of malaria cases per year is likely between 9 and 50 times greater, with an approximate 13-fold underestimation of malaria-related mortality. The difficulty in making these estimations is further exacerbated by (i) highly variable malaria eco-epidemiological profiles, (ii) the transmission and overlap of multiple Plasmodium species and Anopheles vectors, (iii) increasing antimalarial drug resistance and insecticide resistance, and (iv) the impact of climate change on each of these variables. Simply stated, the burden of malaria in India is complex. Here we describe plans for a Center for the Study of Complex Malaria in India (CSCMi), one of ten International Centers of Excellence in Malaria Research (ICEMRs) located in malarious regions of the world recently funded by the National Institute of Allergy and Infectious Diseases, National Institutes of Health. The CSCMi is a close partnership between Indian and United States scientists, and aims to address major gaps in our understanding of the complexity of malaria in India, including changing patterns of epidemiology, vector biology and control, drug resistance, and parasite genomics. We hope that such a multidisciplinary approach that integrates clinical and field studies with laboratory, molecular, and genomic methods will provide a powerful combination for malaria control and prevention in India. PMID:22142788

  6. Rapid urban malaria appraisal (RUMA) I: Epidemiology of urban malaria in Ouagadougou

    PubMed Central

    Wang, Shr-Jie; Lengeler, Christian; Smith, Thomas A; Vounatsou, Penelope; Diadie, Diallo A; Pritroipa, Xavier; Convelbo, Natalie; Kientga, Mathieu; Tanner, Marcel

    2005-01-01

    Background Rapid urbanization in sub-Saharan Africa has a major impact on malaria epidemiology. While much is known about malaria in rural areas in Burkina Faso, the urban situation is less well understood. Methods An assessment of urban malaria was carried out in Ouagadougou in November -December, 2002 during which a rapid urban malaria appraisal (RUMA) was applied. Results The school parasitaemia prevalence was relatively high (48.3%) at the cold and dry season 2002. Routine malaria statistics indicated that seasonality of malaria transmission was marked. In the health facilities, the number of clinical cases diminished quickly at the start of the cold and dry season and the prevalence of parasitaemia detected in febrile and non-febrile cases was 21.1% and 22.0%, respectively. The health facilities were likely to overestimate the malaria incidence and the age-specific fractions of malaria-attributable fevers were low (0–0.13). Peak prevalence tended to occur in older children (aged 6–15 years). Mapping of Anopheles sp. breeding sites indicated a gradient of endemicity between the urban centre and the periphery of Ouagadougou. A remarkable link was found between urban agriculture activities, seasonal availability of water supply and the occurrence of malaria infections in this semi-arid area. The study also demonstrated that the usage of insecticide-treated nets and the education level of family caretakers played a key role in reducing malaria infection rates. Conclusion These findings show that determining local endemicity and the rate of clinical malaria cases are urgently required in order to target control activities and avoid over-treatment with antimalarials. The case management needs to be tailored to the level of the prevailing endemicity. PMID:16168054

  7. Malaria resurgence in India: a critical study.

    PubMed

    Sharma, V P; Mehrotra, K N

    1986-01-01

    In 1953, the Indian National Malaria Control Programme (NMCP) was started. Encouraged by the results, and the fact that insecticide resistance in vector species may evolve and become an obstacle, in 1958 a control programme was converted to the National Malaria Eradication Programme (NMEP). By 1964, malaria was eradicated from 88% of the area and it was in the advanced stage of spraying in the remaining parts. At that time, focal outbreaks that occurred in 1965 and increased in later years, could not be contained due to the shortages of DDT. As a result, large areas in consolidation and maintenance phases were reverted to the attack phase. Besides, the infrastructure in general health services was not adequate and mature enough to take up surveillance and vigilance. This produced a large number of secondary cases due to the re-introduction and relapse of malaria. Added to this was the problem of urban malaria, the control of which was the responsibility of local bodies. Malaria cases increased in towns, and started diffusing to the rural areas, due to inadequate staff and the shortages of malarial larvicidal oil (MLO). Later, it turned out, that while it was technically feasible to eradicate malaria from 91% of the population, the strategy of indoor spraying of DDT to interrupt transmission did not succeed in 9.0% of the population, despite more than 12-14 years of regular spraying. During the years of resurgence, there was no research support to the programme, so that technical problems were not properly appreciated, understood and tackled. The reservoir of parasites that were present throughout the country started multiplying and spreading to newer areas due to the presence of vectors in high densities. Thus malaria resurged and re-established itself even in areas that were at one time freed from the disease. The analysis of the pattern of malaria resurgence revealed that malaria outbreaks preceded the true problem of insecticide resistance. It is noteworthy to

  8. Global malaria connectivity through air travel

    PubMed Central

    2013-01-01

    Background Air travel has expanded at an unprecedented rate and continues to do so. Its effects have been seen on malaria in rates of imported cases, local outbreaks in non-endemic areas and the global spread of drug resistance. With elimination and global eradication back on the agenda, changing levels and compositions of imported malaria in malaria-free countries, and the threat of artemisinin resistance spreading from Southeast Asia, there is a need to better understand how the modern flow of air passengers connects each Plasmodium falciparum- and Plasmodium vivax-endemic region to the rest of the world. Methods Recently constructed global P. falciparum and P.vivax malaria risk maps, along with data on flight schedules and modelled passenger flows across the air network, were combined to describe and quantify global malaria connectivity through air travel. Network analysis approaches were then utilized to describe and quantify the patterns that exist in passenger flows weighted by malaria prevalence. Finally, the connectivity within and to the Southeast Asia region where the threat of imported artemisinin resistance arising is highest, was examined to highlight risk routes for its spread. Results The analyses demonstrate the substantial connectivity that now exists between and from malaria-endemic regions through air travel. While the air network provides connections to previously isolated malarious regions, it is clear that great variations exist, with significant regional communities of airports connected by higher rates of flow standing out. The structures of these communities are often not geographically coherent, with historical, economic and cultural ties evident, and variations between P. falciparum and P. vivax clear. Moreover, results highlight how well connected the malaria-endemic areas of Africa are now to Southeast Asia, illustrating the many possible routes that artemisinin-resistant strains could take. Discussion The continuing growth in air

  9. Reappraisal of known malaria resistance loci in a large multi-centre study

    PubMed Central

    Rockett, Kirk A.; Clarke, Geraldine M.; Fitzpatrick, Kathryn; Hubbart, Christina; Jeffreys, Anna E.; Rowlands, Kate; Craik, Rachel; Jallow, Muminatou; Conway, David J.; Bojang, Kalifa A.; Pinder, Margaret; Usen, Stanley; Sisay-Joof, Fatoumatta; Sirugo, Giorgio; Toure, Ousmane; Thera, Mahamadou A.; Konate, Salimata; Sissoko, Sibiry; Niangaly, Amadou; Poudiougou, Belco; Mangano, Valentina D.; Bougouma, Edith C.; Sirima, Sodiomon B.; Modiano, David; Amenga-Etego, Lucas N.; Ghansah, Anita; Koram, Kwadwo A.; Wilson, Michael D.; Enimil, Anthony; Evans, Jennifer; Amodu, Olukemi; Olaniyan, Subulade; Apinjoh, Tobias; Mugri, Regina; Ndi, Andre; Ndila, Carolyne M.; Uyoga, Sophie; Macharia, Alexander; Peshu, Norbert; Williams, Thomas N.; Manjurano, Alphaxard; Riley, Eleanor; Drakeley, Chris; Reyburn, Hugh; Nyirongo, Vysaul; Kachala, David; Molyneux, Malcolm; Dunstan, Sarah J.; Phu, Nguyen Hoan; Ngoc Quyen, Nguyen Thi; Thai, Cao Quang; Hien, Tran Tinh; Manning, Laurens; Laman, Moses; Siba, Peter; Karunajeewa, Harin; Allen, Steve; Allen, Angela; Davis, Timothy M. E.; Michon, Pascal; Mueller, Ivo; Green, Angie; Molloy, Sile; Johnson, Kimberly J.; Kerasidou, Angeliki; Cornelius, Victoria; Hart, Lee; Vanderwal, Aaron; SanJoaquin, Miguel; Band, Gavin; Le, Si Quang; Pirinen, Matti; Sepúlveda, Nuno; Spencer, Chris C.A.; Clark, Taane G.; Agbenyega, Tsiri; Achidi, Eric; Doumbo, Ogobara; Farrar, Jeremy; Marsh, Kevin; Taylor, Terrie; Kwiatkowski, Dominic P.

    2015-01-01

    Many human genetic associations with resistance to malaria have been reported but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. There was strong evidence of association with the HBB, ABO, ATP2B4, G6PD and CD40LG loci but previously reported associations at 22 other loci did not replicate in the multi-centre analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anaemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed. PMID:25261933

  10. [Gestational malaria: HELLP syndrome mistaken diagnosis].

    PubMed

    Castillo Medina, Nayra Marizol; Velázquez Fonseca, Julián; Hernández Pacheco, José Antonio; Acevedo Tacuba, José Luis

    2008-05-01

    Malaria is one of the most important parasitic infections in Mexico and Latin America. Here we report a case of a 21 year-old female with 38.4 weeks of pregnancy and previous hospitalization due to malaria. Showing a thick drop negative test she was referred to Mexico City Hospital de la Mujer with presumptive diagnosis of preeclampsia and HELLP syndrome. During her stay in ICU she developed malarial paroxysm and Plasmodium vivax was identified, conducting to specific therapy.

  11. Perceptions of malaria and vaccines in Kenya.

    PubMed

    Ojakaa, David; Yamo, Emmanuel; Collymore, Yvette; Ba-Nguz, Antoinette; Bingham, Allison

    2011-10-01

    Malaria is a leading cause of morbidity and mortality in Kenya. To confront malaria, the Government of Kenya has been implementing and coordinating three approaches - vector control by distributing insecticide-treated bed nets and indoor residual spraying, case management, and the management of malaria during pregnancy. Immunization is recognized as one of the most cost-effective public health interventions. Efforts are underway to develop a malaria vaccine. The most advanced (RTS,S), is currently going through phase 3 trials. Although recent studies show the overwhelming support in the community for the introduction of a malaria vaccine, two issues - culture and the delivery of child immunization services - need to be considered. Alongside the modern methods of malaria control described above, traditional methods coexist and act as barriers to attainment of universal immunization. The gender dimension of the immunization programme (where women are the main child caretakers) will also need to be addressed. There is an age dimension to child immunization programmes. Two age cohorts of parents, caregivers, or family members deserve particular attention. These are the youth who are about to initiate childbearing, and the elderly (particularly mother-in-laws who often play a role in child-rearing). Mothers who are less privileged and socially disadvantaged need particular attention when it comes to child immunization. Access to immunization services is often characterized in some Kenyan rural communities in terms of living near the main road, or in the remote inaccessible areas. Should a malaria vaccine become available in the future, a strategy to integrate it into the immunization programme in Kenya should take into account at least two issues. First, it must address the fact that alongside the formal approach in malaria control, there exist the informal traditional practices among communities. Secondly, it must address particular issues in the delivery of

  12. Relationship between ABO blood groups and malaria*

    PubMed Central

    Gupta, Madhu; Chowdhuri, A. N. Rai

    1980-01-01

    A total of 736 patients with fever was tested for malaria and classified according to ABO blood group. Of these, 476 cases had patent parasitaemia at the time of investigation. The distribution of blood groups in this group was significantly different from that in 1300 controls from the same area. While group A was found to be more common in malaria cases than in normals, the reverse situation was found for group O. Possible explanations for this are discussed. PMID:6971187

  13. [A histologic study of brain in fatal cerebral malaria].

    PubMed

    Burel-Vandenbos, Fanny; Effa'a, Christian; Alunni, Véronique; Cardot-Leccia, Nathalie; Haudebourg, Juliette; Michiels, Jean-François

    2008-12-01

    Plasmodium falciparum infection is an emergency because of the risk of cerebral malaria, that is the most severe complication. Malaria diagnosis is usually made on blood samples of feverish patients coming from endemic area. The pathologist is rarely confronted with malaria lesions. If the occasion arises, the diagnosis of malaria is often already known or suspected and the pathologist has to confirm it. Rarely, malaria is unknown before histological examination and the diagnosis is based on the identification of specific histological features. We report a case of sudden death due to cerebral malaria diagnosed on autopsy findings. PMID:19084718

  14. Age of Diagnosis Influences Serologic Responses in Children with Crohn Disease: A Possible Clue to Etiology?

    PubMed Central

    Markowitz, James; Kugathasan, Subra; Dubinsky, Marla; Mei, Ling; Crandall, Wallace; LeLeiko, Neal; Oliva-Hemker, Maria; Rosh, Joel; Evans, Jonathan; Mack, David; Otley, Anthony; Pfefferkorn, Marian; Bahar, Ron; Vasiliauskas, Eric; Wahbeh, Ghassan; Silber, Gary; Quiros, J. Antonio; Wrobel, Iwona; Nebel, Justin; Landers, Carol; Picornell, Yoanna; Targan, Stephan; Lerer, Trudy; Hyams, Jeffrey

    2009-01-01

    Crohn disease (CD) is often associated with antibodies to microbial antigens. Differences in immune response may offer clues to the pathogenesis of the disease. AIM To examine the influence of age at diagnosis on serologic response in children with CD. METHODS Data were drawn from 3 North American multicenter pediatric IBD research consortia. At or shortly after diagnosis, pANCA, ASCA IgA, ASCA IgG, anti-ompC and anti-CBir1 were assayed. Results were compared as a function of age at CD diagnosis (0–7 years vs 8–15 years). RESULTS 705 children (79 <8 yr of age at diagnosis, 626 ≥8yr) were studied. Small bowel CD was less frequent in the younger group (48.7% vs 72.6%; p<0.0001) while colonic involvement was comparable (91.0% vs 86.5%). ASCA IgA and IgG were seen in <20% of those 0–7 yr compared to nearly 40% of those 8–15 yr (p<0.001), while anti-CBir1 was more frequent in the younger children (66% vs 54%, p<0.05). Anti-CBir1 detected a significant number of children in both age groups who otherwise were serologically negative. Both age at diagnosis and site of CD involvement were independently associated with expression of ASCA and anti-CBir1. CONCLUSIONS Compared to children 8–15 yr of age at diagnosis, those 0–7 yr are more likely to express anti-CBir1 but only half as likely to express ASCA. These age-associated differences in antimicrobial seropositivity suggest that there may be different, and as yet unrecognized, genetic, immunologic and/or microbial factors leading to CD in the youngest children. PMID:19107777

  15. Malaria drives T cells to exhaustion

    PubMed Central

    Wykes, Michelle N.; Horne-Debets, Joshua M.; Leow, Chiuan-Yee; Karunarathne, Deshapriya S.

    2014-01-01

    Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp. Recent research on malaria, has investigated the programmed cell death-1 (PD-1) pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria. PMID:24904561

  16. Nanotechnology applied to the treatment of malaria.

    PubMed

    Santos-Magalhães, Nereide Stela; Mosqueira, Vanessa Carla Furtado

    2010-03-18

    Despite the fact that we live in an era of advanced technology and innovation, infectious diseases, like malaria, continue to be one of the greatest health challenges worldwide. The main drawbacks of conventional malaria chemotherapy are the development of multiple drug resistance and the non-specific targeting to intracellular parasites, resulting in high dose requirements and subsequent intolerable toxicity. Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of drug therapy, such as poor bioavailability and the selectivity of drugs. Several nanosized delivery systems have already proved their effectiveness in animal models for the treatment and prophylaxis of malaria. A number of strategies to deliver antimalarials using nanocarriers and the mechanisms that facilitate their targeting to Plasmodium spp.-infected cells are discussed in this review. Taking into account the peculiarities of malaria parasites, the focus is placed particularly on lipid-based (e.g., liposomes, solid lipid nanoparticles and nano and microemulsions) and polymer-based nanocarriers (nanocapsules and nanospheres). This review emphasizes the main requirements for developing new nanotechnology-based carriers as a promising choice in malaria treatment, especially in the case of severe cerebral malaria. PMID:19914313

  17. Advances and challenges in malaria vaccine development

    PubMed Central

    Wang, Ruobing; Smith, Joseph D.; Kappe, Stefan H.I.

    2010-01-01

    Malaria remains one of the most devastating infectious diseases that threaten humankind. Human malaria is caused by five different species of Plasmodium parasites, each transmitted by the bite of female Anopheles mosquitoes. Plasmodia are eukaryotic protozoans with more than 5000 genes and a complex life cycle that takes place in the mosquito vector and the human host. The life cycle can be divided into pre-erythrocytic stages, erythrocytic stages and mosquito stages. Malaria vaccine research and development faces formidable obstacles because many vaccine candidates will probably only be effective in a specific species at a specific stage. In addition, Plasmodium actively subverts and escapes immune responses, possibly foiling vaccine-induced immunity. Although early successful vaccinations with irradiated, live-attenuated malaria parasites suggested that a vaccine is possible, until recently, most efforts have focused on subunit vaccine approaches. Blood-stage vaccines remain a primary research focus, but real progress is evident in the development of a partially efficacious recombinant pre-erythrocytic subunit vaccine and a live-attenuated sporozoite vaccine. It is unlikely that partially effective vaccines will eliminate malaria; however, they might prove useful in combination with existing control strategies. Elimination of malaria will probably ultimately depend on the development of highly effective vaccines. PMID:20003658

  18. The Malaria-High Blood Pressure Hypothesis

    PubMed Central

    Smeeth, Liam; Cruickshank, J. Kennedy; Scott, J. Anthony G.

    2016-01-01

    Rationale: Several studies have demonstrated links between infectious diseases and cardiovascular conditions. Malaria and hypertension are widespread in many low- and middle-income countries, but the possible link between them has not been considered. Objective: In this article, we outline the basis for a possible link between malaria and hypertension and discuss how the hypothesis could be confirmed or refuted. Methods and Results: We reviewed published literature on factors associated with hypertension and checked whether any of these were also associated with malaria. We then considered various study designs that could be used to test the hypothesis. Malaria causes low birth weight, malnutrition, and inflammation, all of which are associated with hypertension in high-income countries. The hypothetical link between malaria and hypertension can be tested through the use of ecological, cohort, or Mendelian randomization studies, each of which poses specific challenges. Conclusions: Confirmation of the existence of a causative link with malaria would be a paradigm shift in efforts to prevent and control hypertension and would stimulate wider research on the links between infectious and noncommunicable disease. PMID:27151400

  19. Copper-transporting ATPase is important for malaria parasite fertility.

    PubMed

    Kenthirapalan, Sanketha; Waters, Andrew P; Matuschewski, Kai; Kooij, Taco W A

    2014-01-01

    Homeostasis of the trace element copper is essential to all eukaryotic life. Copper serves as a cofactor in metalloenzymes and catalyses electron transfer reactions as well as the generation of potentially toxic reactive oxygen species. Here, we describe the functional characterization of an evolutionarily highly conserved, predicted copper-transporting P-type ATPase (CuTP) in the murine malaria model parasite Plasmodium berghei. Live imaging of a parasite line expressing a fluorescently tagged CuTP demonstrated that CuTP is predominantly located in vesicular bodies of the parasite. A P. berghei loss-of-function mutant line was readily obtained and showed no apparent defect in in vivo blood stage growth. Parasite transmission through the mosquito vector was severely affected, but not entirely abolished. We show that male and female gametocytes are abundant in cutp(-) parasites, but activation of male microgametes and exflagellation were strongly impaired. This specific defect could be mimicked by addition of the copper chelator neocuproine to wild-type gametocytes. A cross-fertilization assay demonstrated that female fertility was also severely abrogated. In conclusion, we provide experimental genetic and pharmacological evidence that a healthy copper homeostasis is critical to malaria parasite fertility of both genders of gametocyte and, hence, to transmission to the mosquito vector.

  20. Optimal control in a model of malaria with differential susceptibility

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    A malaria model with differential susceptibility is analyzed using the optimal control technique. In the model the human population is classified as susceptible, infected and recovered. Susceptibility is assumed dependent on genetic, physiological, or social characteristics that vary between individuals. The model is described by a system of differential equations that relate the human and vector populations, so that the infection is transmitted to humans by vectors, and the infection is transmitted to vectors by humans. The model considered is analyzed using the optimal control method when the control consists in using of insecticide-treated nets and educational campaigns; and the optimality criterion is to minimize the number of infected humans, while keeping the cost as low as is possible. One first goal is to determine the effects of differential susceptibility in the proposed control mechanism; and the second goal is to determine the algebraic form of the basic reproductive number of the model. All computations are performed using computer algebra, specifically Maple. It is claimed that the analytical results obtained are important for the design and implementation of control measures for malaria. It is suggested some future investigations such as the application of the method to other vector-borne diseases such as dengue or yellow fever; and also it is suggested the possible application of free software of computer algebra like Maxima.

  1. New developments in malaria diagnostics

    PubMed Central

    Versteeg, Inge; Migchelsen, Stephanie J; González, Iveth J; Perkins, Mark D; Mens, Petra F; Schallig, Henk DFH

    2012-01-01

    Currently available rapid diagnostic tests (RDTs) for malaria show large variation in sensitivity and specificity, and there are concerns about their stability under field conditions. To improve current RDTs, monoclonal antibodies (mAbs) for novel malaria antigens have been developed and screened for their possible use in new diagnostic tests. Three antigens, glutamate rich protein (GLURP), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and heme detoxification protein (HDP), were selected based on literature searches. Recombinant antigens were produced and used to immunize mice. Antibody-producing cell lines were subsequently selected and the resulting antibodies were screened for specificity against Plasmodium falciparum and Plasmodium vivax. The most optimal antibody couples were selected based on antibody affinity (expressed as dissociation constants, KD) and detection limit of crude antigen extract from P. falciparum 3D7 culture. The highest affinity antibodies have KD values of 0.10 nM ± 0.014 (D5) and 0.068 ± 0.015 nM (D6) for DHFR-TS mAbs, 0.10 ± 0.022 nM (H16) and 0.21 ± 0.022 nM (H18) for HDP mAbs and 0.11 ± 0.028 nM (G23) and 0.33 ± 0.093 nM (G22) for GLURP mAbs. The newly developed antibodies performed at least as well as commercially available histidine rich protein antibodies (KD of 0.16 ± 0.13 nM for PTL3 and 1.0 ± 0.049 nM for C1–13), making them promising reagents for further test development. PMID:22327435

  2. Prevalence of malaria and HIV coinfection and influence of HIV infection on malaria disease severity in population residing in malaria endemic area along the Thai-Myanmar border.

    PubMed

    Rattanapunya, Siwalee; Kuesap, Jiraporn; Chaijaroenkul, Wanna; Rueangweerayut, Ronnatrai; Na-Bangchang, Kesara

    2015-05-01

    The objective of the study is to investigate the prevalence of malaria and HIV coinfection and assess the effect of HIV coinfection on malaria disease severity in malaria patients from the endemic area of Thailand along the Thai-Myanmar border. Blood samples were collected from a total of 867 patients with malaria (all species and severity) who attended Mae Tao clinic for migrant workers, Tak Province during 2005-2007 (439 samples), 2008-2010 (273 samples), and 2011-2013 (155 samples). The average prevalence rate of malaria and HIV coinfected cases in this malaria endemic area of the country during the three periods was 1.85%. HIV coinfection was observed only in samples with mono-infection of Plasmodium falciparum or Plasmodium vivax, with similar proportions (0.81 vs. 1.04%). Patients' admission parasite density, an indicator of disease severity, was significantly higher in cases with HIV coinfection observed during 2008-2010. Anemia was found at a significantly higher frequency in patients coinfected with malaria and HIV observed during 2005-2007 compared with those infected with malaria alone. No association was observed between malaria and HIV coinfection and gender, and infected malaria species during the three observation periods. Patients with malaria and HIV coinfection had a significantly lower hemoglobin level than those with malaria infection alone. In conclusion, the prevalence of malaria and HIV coinfection in population of the malaria endemic area along the Thai-Myanmar border is low. HIV coinfection tended to increase parasite density, an indicator of malaria disease severity.

  3. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory

    PubMed Central

    Molina-Cruz, Alvaro; Canepa, Gaspar E.; Kamath, Nitin; Pavlovic, Noelle V.; Mu, Jianbing; Ramphul, Urvashi N.; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-01-01

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the “lock-and-key theory” of P. falciparum globalization, is proposed, and its implications are discussed. PMID:26598665

  4. Health research ethics in public health: trials and implementation of malaria mosquito control strategies.

    PubMed

    Kilama, Wen L

    2009-11-01

    Health research ethics has its roots in protecting individuals participating in clinical trials. There is, however, nascent interest in ethics in public health, although it does not yet cover ethics in the development of public health products. The paper reviews the history of the development of malaria vector interventions, which initially aimed at promoting colonial interests. Attempts at eradicating malaria in Africa ended in 1969, and DDT, the leading malaria vector control tool was banned soon after. Insecticide Treated Nets, which later gave rise to Long Lasting Insecticidal Nets have resurrected malaria mosquito vector control, and their development has set new benchmarks, which it is suggested should be followed by all vector control tools under development. Furthermore, DDT has been exonerated and is back in the vector control arsenal. New tools under development include the sterile male technique, genetically modified mosquitoes, entomopathogenic fungi, and odorants.The paper proposes that these new tools be tested in community settings, abiding by all the leading bioethical principles, and calls for the development and implementation of international ethical guidelines for trials in public health.

  5. Ranking Malaria Risk Factors to Guide Malaria Control Efforts in African Highlands

    PubMed Central

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-01-01

    Introduction Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. Methods and Findings A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through “classification and regression trees”, an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. Conclusions In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors. PMID:19946627

  6. Sources of Malaria Information among Pregnant Women in Ebonyi State and Implications for Malaria Health Education

    ERIC Educational Resources Information Center

    Amari-Omaka, Lois Nnenna; Obande-Ogbuinya, Nkiru Edith

    2016-01-01

    The purpose of this study was to determine sources of malaria information among pregnant women in Ebonyi state and implications for malaria education. The cross sectional research design was adopted and stratified sampling technique was used to select a total of five hundred and four (504) pregnant women from 12 hospitals in the state. A self…

  7. History of malaria research and its contribution to the malaria control success in Suriname: a review

    PubMed Central

    2012-01-01

    Suriname has cleared malaria from its capital city and coastal areas mainly through the successful use of chloroquine and DDT (dichloro-diphenyl-trichloroethane) during the Global Malaria Eradication programme that started in 1955. Nonetheless, malaria transmission rates remained high in the interior of the country for a long time. An impressive decline in malaria cases was achieved in the past few years, from 14,403 registered cases in 2003 to 1,371 in 2009. The introduction of artemisinin-based combination therapy (ACT) in 2004 has further fuelled the decrease in the number of infections with Plasmodium falciparum. The only population group still heavily burdened with malaria is gold mining industry workers. Interestingly, an important part of malaria cases diagnosed and treated in Suriname originate from border regions. Therefore, practical initiatives of combined efforts between neighbouring countries must be scaled up in order to effectively attack these specific areas. Furthermore, it is of vital importance to keep investing into the malaria control programme and public awareness campaigns. Especially the correct use of ACT must be promoted in order to prevent the emergence of resistance. However, effective preventive measures and adequate therapeutic options are on their own not enough to control, let alone eliminate malaria. Changing personal and social behaviour of people is particularly difficult, but crucial in making the current success sustainable. With this in mind, research on successfully implemented interventions, focusing on behavioural modifications and methods of measuring their effectiveness, must be expanded. PMID:22458802

  8. The Gates Malaria Partnership: a consortium approach to malaria research and capacity development.

    PubMed

    Greenwood, Brian; Bhasin, Amit; Targett, Geoffrey

    2012-05-01

    Recently, there has been a major increase in financial support for malaria control. Most of these funds have, appropriately, been spent on the tools needed for effective prevention and treatment of malaria such as insecticide-treated bed nets, indoor residual spraying and artemisinin combination therapy. There has been less investment in the training of the scientists from malaria-endemic countries needed to support these large and increasingly complex malaria control programmes, especially in Africa. In 2000, with support from the Bill & Melinda Gates Foundation, the Gates Malaria Partnership was established to support postgraduate training of African scientists wishing to pursue a career in malaria research. The programme had three research capacity development components: a PhD fellowship programme, a postdoctoral fellowship programme and a laboratory infrastructure programme. During an 8-year period, 36 African PhD students and six postdoctoral fellows were supported, and two research laboratories were built in Tanzania. Some of the lessons learnt during this project--such as the need to improve PhD supervision in African universities and to provide better support for postdoctoral fellows--are now being applied to a successor malaria research capacity development programme, the Malaria Capacity Development Consortium, and may be of interest to other groups involved in improving postgraduate training in health sciences in African universities.

  9. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    PubMed

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought.

  10. Picking up Clues from the Discard Pile (Stereo)

    NASA Technical Reports Server (NTRS)

    2008-01-01

    As NASA's Phoenix Mars Lander excavates trenches, it also builds piles with most of the material scooped from the holes. The piles, like this one called 'Caterpillar,' provide researchers some information about the soil.

    On Aug. 24, 2008, during the late afternoon of the 88th Martian day after landing, Phoenix's Surface Stereo Imager took separate exposures through its left eye and right eye that have been combined into this stereo view. The image appears three dimensional when seen through red-blue glasses.

    This conical pile of soil is about 10 centimeters (4 inches) tall. The sources of material that the robotic arm has dropped onto the Caterpillar pile have included the 'Dodo' and ''Upper Cupboard' trenches and, more recently, the deeper 'Stone Soup' trench.

    Observations of the pile provide information, such as the slope of the cone and the textures of the soil, that helps scientists understand properties of material excavated from the trenches.

    For the Stone Soup trench in particular, which is about 18 centimeters (7 inches) deep, the bottom of the trench is in shadow and more difficult to observe than other trenches that Phoenix has dug. The Phoenix team obtained spectral clues about the composition of material from the bottom of Stone Soup by photographing Caterpillar through 15 different filters of the Surface Stereo Imager when the pile was covered in freshly excavated material from the trench.

    The spectral observation did not produce any sign of water-ice, just typical soil for the site. However, the bigger clumps do show a platy texture that could be consistent with elevated concentration of salts in the soil from deep in Stone Soup. The team chose that location as the source for a soil sample to be analyzed in the lander's wet chemistry laboratory, which can identify soluble salts in the soil.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA

  11. Clues for genesis of magnetic field structure of Mercury

    NASA Astrophysics Data System (ADS)

    Hiremath, K. M.

    2012-07-01

    Recent space observations suggest that Mercury inherits a weak and predominantly large-scale steady dipole like magnetic field structure. Present popular paradigm is to invoke most promising geodynamo like phenomenon that requires the main ingredients such as either a full or partial convection of the interior and fast rotation such that magnetic (Lorentz) and Coriolis forces are of similar order of magnitudes. Hence, the ratio of Lorentz to Coriolis force, called the Elsasser number Λ, must be order of unity. Contrary to the expectation, Mercury rotates so slow that Elsasser number turns out to be << 1. There are also other alternative models to explain genesis of magnetic field structure of Mercury. With the observed constraint of Mercury's atmospheric magnetic field structure, internal magnetic field structure is obtained as a solution of magnetic diffusion equation in the core and a combined multipolar (dipole and quadrupole like magnetic field structures embedded in the uniform field) solution of a current free like magnetic field structure in the mantle and in the atmosphere. Magnetic diffusion time scales are estimated to be ˜ billion years suggesting that present day magnetic field structure might be of primordial origin. In order to reconcile with the experimental fact that, as temperature of Mercury's iron core is above Curie temperature and primordial magnetic field structure must be non-existent, it is proposed that permanency of such a large-scale magnetic field structure of the planet is attained during Mercury's early evolutionary history of heavy bombardments by the asteroids and comets leaving their imprints as craters on this planet. That means the solar system bodies that have heavy bombardments with high density craters during the early epochs of such catastrophic events should have strong magnetic field structures. Is this hypothesis universal? Can this hypothesis gives some clues regarding presence or absence of magnetic field structure of

  12. Identifying Environmental Contributions to Autism: Provocative Clues and False Leads

    ERIC Educational Resources Information Center

    Lawler, Cindy P.; Croen, Lisa A.; Grether, Judith K.; Van de Water, Judy

    2004-01-01

    The potential role of environmental factors in autism spectrum disorders (ASD) is an area of emerging interest within the public and scientific communities. The high degree of heritability of ASD suggests that environmental influences are likely to operate through their interaction with genetic susceptibility during vulnerable periods of…

  13. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India

    PubMed Central

    Sharma, V. P.

    2012-01-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  14. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India.

    PubMed

    Sharma, V P

    2012-12-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the economy, without health impact assessment, have had adverse consequences by providing enormous breeding grounds for the vectors that have become refractory to interventions. As a result, malaria prospers and its control is in dilemma, as finding additional resources is becoming difficult with the ongoing financial crisis. Endemic countries must contribute to make up the needed resources, if malaria is to be contained. Malaria control requires long term planning, one that will reduce receptivity and vulnerability, and uninterrupted financial support for sustained interventions. While this seems to be a far cry, the environment is becoming more receptive for vectors, and epidemics visit the country diverting major resources in their containment, e.g. malaria, dengue and dengue haemorrhagic fevers, and Chikungunya virus infection. In the last six decades malaria has taken deep roots and diversified into various ecotypes, the control of these ecotypes requires local knowledge about the vectors and the parasites. In this review we outline the historical account of malaria and methods of control that have lifted the national economy in many countries. While battles against malaria should continue at the local level, there is a need for large scale environmental improvement. Global Fund for AIDS, Tuberculosis and Malaria has provided huge funds for malaria control worldwide touching US$ 2 billion in 2011. Unfortunately it is likely to decline to US$ 1

  15. Battling malaria iceberg incorporating strategic reforms in achieving Millennium Development Goals & malaria elimination in India.

    PubMed

    Sharma, V P

    2012-12-01

    Malaria control in India has occupied high priority in health sector consuming major resources of the Central and State governments. Several new initiatives were launched from time to time supported by foreign aids but malaria situation has remained static and worsened in years of good rainfall. At times malaria relented temporarily but returned with vengeance at the local, regional and national level, becoming more resilient by acquiring resistance in the vectors and the parasites. National developments to improve the econom